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Abstract

This paper analyzes empirical income distributions and proposes a simple stochastic

model to explain the stationary distribution and deviations from it. Using the individual

tax returns data in the U.S. and Japan for 40 years, we first summarize the shape of

income distribution by an exponential decay up to about the 90th percentile and a power

decay for the top 1 percent. We then propose a minimal stochastic process of labor

and asset income to reproduce the empirical characteristics. In particular, the Pareto

exponent is derived analytically and matched with empirical statistics.
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1 Introduction

This paper characterizes the historical shape of income distributions in the U.S. and Japan

and proposes a simple two-factor model to reproduce the stationary distribution and devia-

tions from it. Our goal is to explain the parameters of the income distribution by a set of

fundamental economic parameters.

Our research is motivated by the recent development on the analysis of power-law tail

distributions. Since Pareto, it has long been known that the tail of distribution of income

or wealth w universally obeys a power-law distribution w−α for a constant α around 1.5–2.5.

A multiplicative process of wealth accumulation has been a standard explanation for the

heavy tail. This explanation makes a good economic sense, because the rate of return for

asset is a stationary process. Gibrat’s celebrated “law of proportionate effect” first embodied

the idea that the multiplicative process generates a lognormal evolution of distribution (see

Sutton [25] for a review). Kalecki [11] observed, however, that the variance of empirical log

income does not grow linearly in time such as in the lognormal process. A successive surge of

research, notably by Champernowne [3], Simon [21], Rutherford [19], and more recently Reed

[18], showed a little modification of the lognormal development generates a power law. The

field has been stimulated recently by studies on a reflected multiplicative process (Levy and

Solomon [13]) or a closely related Kesten process (Sornette and Cont [23] and Takayasu et al.

[26]) which have revealed the effect of a reflective lower bound on the tail of the stationary

distribution.

The reflective barrier model provides economists with an interestingly sharper structure in

the multiplicative processes than the previous models do. Gabaix [8] constructed an economic

model of city size distributions by utilizing this structure and suggested its application to

income distribution tails. Levy [14] also derived the power-law distribution of wealth in the

same framework. We extend this literature by incorporating the labor wage process in the

wealth accumulation process.
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This paper builds upon the idea that the savings from labor income serve as the reflective

lower bound of asset which accumulates multiplicatively. Our model of personal income con-

sists of an asset accumulation process and a wage process. The asset accumulation process

is multiplicative due to the stationary random asset returns. The wage process is assumed

additive, reflecting the productivity heterogeneity. We show that this simple process can

successfully reproduce the empirical distribution of income. In particular, the model can

reproduce the transition of the distribution shape from the middle part which decays expo-

nentially to the tail part which decays in power.

A novelty of the model is that it allows us to analytically derive the tail exponent of the

distribution α and provides us with an economic intuition for the determinants of α. The

exponent α turns out to be approximately one plus the ratio of the savings from labor income

to the asset income. This formula intuitively captures the dynamics behind the power-law

tail. The savings are the inflow of wealth into the tail part, and the asset returns are the

inequalizing growth within the tail part. The tail becomes flatter when the asset returns

boost, and it becomes steeper when the inflow from the middle part increases. Moreover, if

the asset income exceeds the savings in amount, α is less than two and the variance of the

stationary distribution of income diverges to infinity. When the savings are more than the

asset income, α is greater than two and the income distribution has a finite variance. In this

sense, the stationary distribution of income qualitatively differs depending on the balance

between the savings and the asset income. GDP statistics show that the investment and

the asset income are about the same historically. This fact is consistent with the empirical

estimate of α being about two and with our formula. The formula also shows that α is greater

than one, which implies that the mean of the power-law distribution is always finite.

The multiplicative asset process generates a power-law distribution, and the additive wage

process generates an exponential decay. This observation motivates our parametrization of

empirical income distributions. We use the tax returns data in the U.S. and Japan for 40

years. The data sets have been utilized by Feenberg and Poterba [5] and Souma [24] for
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estimating the Pareto exponents as well as by Piketty and Saez [16] and Moriguchi and Saez

[15] for estimating the top income shares. We also use the list of top Japanese taxpayers

compiled by Fujiwara et al. [7]. The list covers about 80,000 individuals. It provides a

compelling evidence to the long held conjecture that the tail distribution follows a Pareto

(or a power-law) distribution. The tax returns data are suitable for the study of the shape

of income distribution especially in its heavy tail, due to its nature of thorough collection of

data from all the taxpayers, whereas the absence of demographic attributes by the nature of

tax returns has kept the researchers of earning distributions from utilizing the data.

The data shows that the distribution of adjusted gross income in tax returns consists of

three different parts: the top 1 percent, the middle part above about the 10th percentile, and

the lower part which we exclude from our study for not being representative as an income

distribution. The distinct pattern of the income distribution in the middle and in the tail has

been well noted by researchers such as Singh and Maddala [22]. We parametrize the distri-

bution by an exponential distribution for the middle part and by the Pareto distribution for

the upper tail, following Dragulescu and Yakovenko [4]. Although the data does not exclude

various alternative parametrizations such as discussed in Bordley et al. [1], we choose this

parametrization on the ground that it allows an economic interpretation with our model. We

do not simply fit the income distribution by parametric functions or simulated distributions,

but we do so only in the perspective of an economic model which enables us to interpret the

result.

Ours is a reduced-form model in contrast to the dynamic general equilibrium models which

have been carefully calibrated to match empirical income distributions (Castañeda et al. [2] for

example). At the expense of comprehensiveness, our model provides a sharper analysis of the

generative mechanism of the income distribution properties, such as the Pareto exponent of

the tail. Our reduced form model emphasizes two facts of an economy: that income is largely

derived from labor and capital and that the return to capital is stationary and stochastic.

The two factors lead to a two-story structure of the income distribution. Accordingly, the
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historical fluctuation in the Gini coefficient is shown to be decomposed into two factors: the

real wage growth which affects the middle part and the real asset return which affects the

tail.

The rest of the paper is organized as follows. Section 2 explains the tax returns data set

we use, and characterizes the income distribution shape. Section 3 presents the model and

derives the Pareto exponent analytically. Section 4 shows the simulation results. Section 5

concludes.

2 Empirical distributions of income

2.1 Data

We use the individual income tax returns data in the U.S. and Japan from 1960 to 1999. The

data records the number of taxpayers for various income strata. The number of bins is 15

to 30 for the U.S. data and 11 to 14 for Japanese data. The tabulated data of the U.S. tax

returns is provided by Statistics of Income database of the Internal Revenue Service. The

Japanese tax returns data is provided by National Tax Agency and tabulated as in Souma

[24].

Additionally, we use Japanese tax returns data for all the individuals who pay income tax

more than 10 million yen. The data on those top taxpayers is made publicly available by the

same agency. The length of the list varies around 80,000 year to year. As far as we know,

this is by far the most extensive list available on the distribution of high income earners.1

The method for converting the income tax to income is described in Fujiwara et al. [7].

The tax returns data has been utilized in the previous studies [5, 24, 16, 15]. It has a

distinctive merit for the study of the shape of income distributions. First, it provides an exact

rank-size relation at the threshold of the bins, unlike sampled survey data which always suffers

1The publication of the list started after the second world war, and ceased in 2005 due to privacy concerns.
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sampling errors. The sampling error is most severe for the high income range, because income

distributions typically have a heavy tail and thus the sampled data contains few observations

in this range. Secondly, the range covered by all the bins is relatively wide. The top bin

corresponds to at least the 99.9 percentile and sometimes extends to the 99.999 percentile.

Besides, our data on Japanese top taxpayers provides us with a decisive testing power for

parametric examination of the tail distribution. The tax returns data has a disadvantage as

well. Since there is no demographic data associated with the income tax data, we cannot

study how the income level is attributed to demographic factors. For this reason our study

concentrates on the overall shape of the distribution.

The lowest 10 percent of the tax returns data is excluded from our scope. The adjusted

gross income of the taxpayers in the range is considerably different from the actual income

due to exemptions. Also, that portion of tax returns data include taxpayers who have other

means to sustain their consumption, such as the transfer within family. Hence the gross

adjusted income is not considered representative for the distribution of income for this range.

2.2 Stationary distribution

Figure 1 shows the distribution of adjusted gross income for the U.S. and Japan in 1999.

The distribution is cumulated from the top. The top panel shows the entire distribution in

log-log scale. The bottom panel shows the distribution up to 200,000 U.S. dollars in semi-

log scale. The Japanese income is converted to U.S. dollars by an average exchange rate

in 1999. The following two features are evident in the plot, as proposed in Dragulescu and

Yakovenko [4] for British and the U.S. income distributions. First, the top panel shows that

the distribution decays in power for the top 1 percent, which can be seen by the linearity

in the log-log plot. The Japanese data with top taxpayers clearly shows the good fit with a

power-law distribution:

Pr(W > w |W ≥ θ) = (w/θ)−α. (1)
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Figure 1: Income distribution in the U.S. and Japan in 1999
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where θ is the income level at which the power law starts. We call α Pareto exponent. A larger

α implies that the distribution among the rich is more equal. Secondly, the bottom panel

shows that the middle portion of the distribution is fitted well by an exponential distribution:

Pr(W > w) = e−(w−w0)/β. (2)

The β represents the standard deviation of the exponential distribution. The w0 is the income

level at which the exponential decay starts, and we interpret it as a subsistence income in

the model later.

The pattern that the distribution decays in power in the tail and decays exponentially in

the middle is found for all 40 years in the U.S. and Japan. Figure 2 shows the plot for all

the years. Figures 3 and 4 show distributions normalized by average income of each year in

log scale and in semi-log scale, respectively. We observe that the plots collapse well by the

normalization. This suggests that, in the first approximation, we can view the dynamics of

the empirical income distribution as a stationary distribution with a multiplicative horizontal

shift. The shape parameters α and β do not seem to have a trend over time, while the location

of the distribution shifts to the right along with the lower bound income w0. This observation

corresponds to the fact that the income distribution does not follow a lognormal process in

which the log-variance grows linearly in time. The stationary levels of α and β are plotted by

dashed lines in the panels in Figures 3 and 4. The stationary level of the standard deviation

of the exponential distribution β is about 0.85 for the U.S. and 0.6 for Japan. The Pareto

exponent α is centered around 2 in both countries. The stationary relative lower bound (w0

divided by average income) is estimated at the intersection of the dashed line in the semi-log

plot and the horizontal line at which the cumulative probability is equal to 1.

The tails of the top taxpayers for 1987–1999 in the bottom panel of Figure 3 provide us

with a compelling evidence that the tail obeys a power-law distribution. We also notice that

the tail slope around the 99th percentile extends well to the further tail during the normal

years in the second half of the 1990s. However, in the years of volatile financial market such
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Figure 2: Time-development of income distribution in the U.S. (top) and Japan (bottom)
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as the bubble and burst of stock and land prices around 1990 in Japan, the slope at the 99th

percentile seems flatter than the further tail.

The empirical distributions lead us to the following hypothesis. The stationary distribu-

tion of income consists of two parts. The top 1 percent follows a power-law distribution. The

middle part that covers from the 10th percentile to the 90th percentile of the population is

approximated by an exponential distribution. The hypothetical distribution is described by

4 parameters: the Pareto exponent α, the standard deviation of the exponential distribution

β, the lower bound of the exponential distribution w0, and the cross-over income level θ at

which the two distributions meet.

2.3 Fluctuation of distribution

The fluctuation of the shape of income distributions can be quantified by estimating α and

β for each year. We estimate α by a linear fit to the log-scaled cumulative distribution for

the points greater than the 99th percentile, and estimate β by a linear fit to the semi-log

plot of the cumulative distribution for the range between the 10th and the 90th percentiles.

We are restricted to the linear regression for these estimates, because our data is already

binned; otherwise, other estimators such as Hill’s estimator for α and the maximum likelihood

estimator for β would have been available. The top row of Figure 5 shows the estimated time

series of α̂ (left panel) and β̂ (right). The α̂ is quite similar to the estimates by Feenberg and

Poterba [5] for the U.S. and by Souma [24] for Japan. The bottom row shows the estimates

of θ (left) and the Gini coefficients (right). The θ is defined as the intercept of the linear fit

to the tail in log-scale with the horizontal line at the 99th percentile. The income level is

normalized by the average. The Gini coefficient is computed from the whole distribution of

the taxpayers.

The fluctuation of α appears anti-correlated with the asset returns. We observe that the

U.S. exponent stays high during the stagnation in the 1970s and declines during the stock
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boom periods in the 80s and 90s. The U.S. also experienced a jump in θ in the late 80s. These

behaviors of α and θ match with the rising income share of top taxpayers found by Piketty

and Saez [16] and can correspond to the increasing inequality of wealth during the period

(Wolff [27]). Japanese exponent also declines during the bull years in the 80s and has a sharp

rebounce after the crash. The sharp decline of the exponent around 1970 in Japan seems

to correspond with the real estate boom in the period. The β̂ shows a persistent difference

between the two countries. The U.S. distribution has been less equal than the Japanese in

the middle part. In the U.S., the dispersion becomes larger during the 60s and 70s, and a

reversed trend is observed in the latter 90s. In Japan, it declines during the economic high

growth years and rebounded at the end of the period in the mid 70s.

We can decompose the Gini coefficients into the effects within the tail α, within the

middle β, and of the cross-over point θ. A simple regression confirms this point. Table 1

shows the ordinary least square result for the regression of the first-order difference of the Gini

coefficients on the first-order difference of estimated α, β, and θ. The demeaned estimation

equation is written as follows when we denote the Gini coefficient and the regression coefficient

by gt,i and bi respectively for year t and country i: gt,i−gt−1,i = bα,i(αt,i−αt−1,i)+ bβ,i(βt,i−

βt−1,i) + bθ,i(θt,i − θt−1,i) + εt,i for all the years2 t and country set i ∈ {U.S., Japan,Pooled}.

In the pooled regression, the coefficients are pooled whereas dummy variables are assigned

for the two countries. We confirm significant effects of α and θ on the fluctuation of the Gini

coefficients, where as the effect of β is significantly seen only for Japan.

3 Model

In this section we propose a simple stochastic model of income process. We show that the

model can match the empirical distributions of income and wealth. The process is quite par-

simonious as a model of personal income which in reality involves many important variables,

2For the U.S. data, t = 1960, 1961, . . . , 1999, whereas for the Japanese data, t = 1961, 1962, . . . , 1999.
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Table 1: Least squares regression of difference in Gini on differences of α, β, and θ

α β θ R2

US -0.0379 -0.0013 0.0174 0.559

(se) (0.0070) (0.0188) (0.0030)

Japan -0.0332 0.1419 0.0259 0.856

(se) (0.0034) (0.0654) (0.0031)

Pooled -0.0322 0.0143 0.0214 0.794

(se) (0.0027) (0.0214) (0.0022)

but its simplicity earns us an analytical insight and intuition for the dynamics behind the

peculiar shape of the empirical income distributions.

The process consists of an asset accumulation process a(t) and a labor income process

w(t). The asset accumulation follows a multiplicative process. Namely, an individual bears

an idiosyncratic risk in asset returns. Let γ denote the asset return which is independently

and identically distributed across individuals and time. Then:

a(t+ 1) = γ(t)a(t) + w(t)− c(t) (3)

where c(t) denotes the consumption. We assume that the log return log γ(t) follows a normal

distribution with mean y and variance x2. This is consistent with the case when the asset

return is stationary in continuous time. Let us recall that the mean of lognormal distribution

is ey+x
2/2. We may thus interpret y as a risk-free common return and x2/2 as a return for

taking idiosyncratic risks. We do not allow the agent to choose the asset portfolio, however.

The agent in our model behaves as an entrepreneur who does not diversify her risks.

We assume that the labor income evolves as an additive process with a reflective lower
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bound as follows.

w(t+ 1) =

 uw(t) + sε(t)w̄(t) if uw(t) + sε(t)w̄(t) > w̄(t)

w̄(t) otherwise
(4)

w̄(t) = vtw̄(0) (5)

The trend growth rate of the labor income is denoted by u. The reflective lower bound w̄(t)

grows deterministically at the rate v. The reflective lower bound is interpreted as a subsistence

level of income, since the worker below the subsistence income will have to seek another job

to sustain the labor force. The idiosyncratic additive shock term sε(t)w̄(t) represents the

heterogeneity of labor productivity across workers and time. The random shock ε(t) follows

a standard normal distribution, and the constant s determines the standard deviation.

In the simulation, we specify the consumption c(t) as a linear function in asset and

disposable income:

c(t) = w̄(t) + b(a(t) + w(t)− w̄(t)). (6)

Note that the subsistence income w̄(t) determines the minimum level of consumption. The

linearity is of course a crude assumption. However, our simulation results are robust to

introducing concavity for the consumption function in the lower and middle levels of income.

The behavior of the marginal propensity for the top income part, b, does affect the results.

Finally, we define a normalized income I(t) = Ĩ(t)/E[Ĩ(t)] where:

Ĩ(t) = w(t) + E[γ(t)− 1]a(t) (7)

This model offers an analytical characterization of the stationary Pareto exponent. The

power-law tail distribution of income parallels the power-law distribution of asset holdings.

The power law of wealth is generated by the reflected multiplicative asset accumulation

process as in Levy [14]. In our model, the reflective barrier for the asset accumulation is the

savings from labor income. To see this point, let us normalize Equation (3) by the average

asset:

â(t+ 1) = (γ(t)/g(t))â(t) + s(t)/(g(t)〈a(t)〉) (8)
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where â(t) ≡ a(t)/〈a(t)〉, g(t) is the growth rate of average asset 〈a(t)〉, and s(t) is savings

from labor income s(t) ≡ w(t)− c(t). This is called a stationary Kesten process, when s(t) is

positive and independent of a(t) and γ(t), and when E[γ] < g (which is the case if 〈s(t)〉 > 0).

Let us define z as the steady state value of s(t)/〈a(t)〉. Also define g as the steady state value

of g(t). By applying the formula in Gabaix [8], the power-law exponent of the stationary

distribution of â is derived as α = 1− log[1− z/g]/(x2/2). Since the savings-to-asset ratio z

is sufficiently close to zero, we can approximate the expression as α ≈ 1 + z/(gx2/2).

The formula for α provides rich implications on the universality of the power-law exponent

of the income and wealth distributions. Recall that x2/2 is the contribution of diffusion to

the mean growth rate of assets: log E[γ] = y + x2/2. Then the formula is rewritten as

α ≈ 1 + s(t)/(〈a(t+ 1)〉x2/2). The term x2/2 = log E[γ]− y is the average excess returns to

assets. Thus, 〈a(t+1)〉x2/2 expresses the part of asset income that accrues to the risk-taking

behavior. Thus α is approximated by one plus the ratio of the savings from labor income to

the asset income accrued to risk-taking.

According to this formula, the Pareto exponent becomes two roughly when the savings

are equal to the asset income. The power-law distribution has a diverging variance when α is

less than two. (The infinite variance means that a sample variance grows unboundedly as the

sample size increases.) Our formula thus implies that the variance of the stationary income

distribution is infinite if the asset income exceeds the savings, whereas it is finite otherwise.

In other words, the stationary income distribution is qualitatively different depending on

whether the asset income exceeds the savings. Our data shows that the Pareto exponent

historically fluctuates around two. Thus the economy goes back and forth between the two

different regimes with respect to the second moment of the income distribution.

Why does α fluctuate? The formula tells us how the asset market fluctuations affect α.

The α decreases when the excess asset returns x2/2 increase. Note that this takes effect

quickly, because the entrepreneur’s income and its distribution is affected directly by the

riskier environment. The effect of the savings-asset ratio (s/a) will be much slower, since
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the convergence to the new stationary distribution involves a slow process of income mobility

between the top and the middle parts. However, the savings-asset ratio plays an important

role in determining the stationary level of α. To analyze the determinant of the stationary

level of α, we need a structural model that endogenously determines the savings rate. It

is possible to derive our reduced model of the consumer behavior from such a structural

model. For example, the linear consumption function is obtained when the preference exhibits

constant relative risk aversion [20]. Further, the saving rate can be endogenized in the Ramsey

models. In the Brock-Mirman model as a special case, the saving rate is analytically solved

as the capital share of income times the discount factor. The optimal saving rate in a more

realistic environment such as a fractional depreciation of capital is also determined in a

standard dynamic general equilibrium model. It is interesting to characterize the Pareto

exponent in such a structural model, but it has to be deferred to a separate paper.

It is also known that the power-law distribution has a diverging mean when α is less than

one. If this is the case, the highest individual income is of the same order as the average

income (see Feller [6]). In our model, the stationary α is always greater than one. Thus our

model shows that the income dispersion due to stationary random asset returns does not

lead to as much of inequality as α < 1 where a single individual occupies a sizable fraction

of aggregate income, as long as the savings from labor income grow fast enough to serve as

the lower bound of asset accumulation.

GDP statistics support the validity of our formula for the Pareto exponent. For the U.S.

data, we estimate the ratio of the savings to the asset income by the private investment divided

by the sum of asset income and proprietors’ income in the next period. Our formula gives

1.8 for the average Pareto exponent whereas the estimated average Pareto exponent is 2.1.

For Japan, the ratio is estimated as the private investment divided by the operating surplus.

Our formula provides 2.1, which coincides with the estimated average Pareto exponent.

Let us note that the normalized asset converges to a power-law distribution only if the

growth rates of the savings and the asset income balance. If the asset income grows consis-
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tently faster than the savings, then the asset accumulation is a lognormal process and the

estimated α decreases over time. This fact is suggestive for the apparent constant growth in

the log variance of the U.S. distribution in these two decades. A structural inbalance in the

growth rates of savings and asset income can cause such a constant decrease in α rather than

a temporary deviation from the stationary distribution.

It is assumed that the labor income follows an additive process with a growing reflective

lower bound. We obtain a normalized labor income ŵ(t) by dividing the process (4) by the

average income which grows at v in the stationary growth: ŵ(t+ 1) = (u/v)ŵ(t) + sε(t). The

normalized process is a stationary AR(1) if u < v, namely, if the lower bound grows faster

than the trend growth. The diffusion coefficient s determines the wage differentiation effect.

The diffusion effect balances out the mean-reverting force u/v at the stationary state. Thus

the stationary distribution of ŵ has larger variance when u/v is close to one or s is large.

The stationary distribution of ŵ is not generally known. However, it is known that

there exists a non-negative random variable ε(t) for which the process ŵt converges to an

exponential stationary distribution (Gaver and Lewis [9]). Let us replace the reflective bound

with a non-negative shock ε(t). Then w(t)/w̄(t) is non-negative and has a stationary mean

E[ε(t)]s/(1 − u/v). If we fit the stationary distribution by an exponential distribution, the

standard deviation is determined by the mean and it is positively affected by u/v. Namely,

the standard deviation of the middle part distribution widens when the growth gap between

the bottom part and the middle part decreases. Numerical simulations confirm this relation,

as well as that the exponential distribution well approximates the stationary distribution in

the middle part.

The mean-zero shock of wage contributes to the average growth when the process is near

the reflective lower bound. A job creation-destruction dynamics can be considered behind

this process. A job disappears when it cannot afford a subsistence level of consumption of

a worker, and then a new job is created at the subsistence level by a new industry. Also we

can consider a minimum wage scheme, unemployment compensation, and government-funded
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jobs as the factors behind the reflective lower bound.

The additive process is one of the simplest representations of the wage process which

generates the stationary degree of differentiation when the average labor income grows. We

can consider a productivity shock as the main risk of the wage process. In this sense, this

is a wage process of a job rather than an individual. An individual labor income process is

clearly affected by demographic factors such as experience and life-cycle as well as sudden

probabilistic events such as health and unemployment risks. As long as we are concerned

with the overall shape of the distribution, however, the distribution of wage for jobs should

coincide with the distribution of individual wage. We can consider that a job is a vehicle of an

individual wage which individuals switch due to demographic or individual risk factors. This

reshuffle of the job-worker match causes the discrepancy between a process of an individual’s

wage and of a job’s wage, but the distributions of the two processes coincide. However,

this interpretation does not match the the correlation structure between labor income and

asset accumulation specified in our model. This interpretation is useful only to interpret the

exponential decline of the wage income.

The asset income is set equal to the asset multiplied by the mean growth rate of assets

E[γ(t)− 1]. In reality, the realization of the asset income from the asset growth can happen

in various ways. It is not immediately clear how the timing of the realization (and taxation)

of the asset income affects the distribution shape. To simplify, we assume a constant rate of

the asset income realization. The constant is chosen so that all amount of the asset growth

is eventually realized and taxed. If the rate is less than E[γ(t)− 1], then there is a portion of

asset growth which is not counted as income in the long run. If the rate is bigger, then the

realized asset income eventually becomes bigger than the accumulated asset itself.

We will not try to match the factor distributions in our simulation, because the notion of

labor and capital in our model does not exactly correspond to the notions in the tax account.

Our tax returns data does include break-down of the income into basic factors such as labor

and asset. The distribution shape of labor income (salary and wage) in the U.S. is quite
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similar to the total income distribution. In Japan, the labor income distribution matches

the lower and middle part and the asset income distribution matches the power-law part.

In our model, the asset income is broadly associated with any income that is derived from

accumulable factor. An important example is human capital. Another example is managers’

salary which should correlate strongly with the capital size and capital growth rate. Thus the

income classified as asset income in our model can be filed as labor income in the taxation

system.

4 Simulation

4.1 Stationary distribution

The stochastic process proposed in the previous section generates a stationary distribution

of the normalized income I(t), and it matches the empirical distribution with a plausible

set of parameter values. Figure 6 shows the simulated and empirical income distributions

for Japan in 1999. The plot also shows the simulated individual wealth a(t)/E[I(t)] along

with the empirical household wealth distribution which is taken from Survey of Consumers

in 1999. We also plot Lorenz curves in Figure 7 for both simulated and empirical data. We

see that the fit is quite good.

The parameter values for the simulation are obtained as follows. We note that the average

labor income, the average asset income and the lower barrier must grow at the same rate at

the balanced-growth path. Thus, we use the time-average growth rate of the nominal income

per capita for the parameter of the bound growth rate: v = 1.0673 for the period 1961–1999.

The trend growth rate of labor income, u, reflects an automatic growth in nominal wage. We

use an average inflation rate for u, which is 1.0422 for the same period.

The log-variance of the asset return x2 is estimated from top taxpayers data. The data

contains the growth rate of individuals who paid income tax more than 10 million yen in 1997

and 1998. The distribution of the log of income growth rate is symmetric, and its tail follows a
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Figure 6: Simulated and empirical stationary distributions of income and wealth
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power law. The scatter plot of the income for the two years in Fujiwara et al. [7] also exhibits

symmetry in the density function (Pr(I1997, I1998) = Pr(I1998, I1997)). These two observations

indicate that the tail distribution of the income growth rate strongly reflects temporal income

such as bequest. Hence we truncate the tail at the point where the power-law takes place,

and thus only use the range 1/3 < I1998/I1997 < 3 to estimate the log-variance. In order to

eliminate the upper bias due to the censoring of the data at 10 million yen, we use the sample

only if the 1997 income tax is greater than 30 million yen. The estimated x is 0.3122.

The log-mean of the asset growth y cannot be estimated by the same growth rate data,

since 1997 was not a typical year in financial markets and the average growth rate was

negative. In general, asset markets suffer considerable aggregate shocks across years. Thus

we estimate y by using a time-average growth rate of the Nikkei average index. The Nikkei

grew by 5.95% in average over 1961–1999. Hence the log-mean is derived from the formula

of lognormal mean as y = 0.0595− x2/2.
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The propensity to consume from asset, b = 0.059, is chosen from the empirical range

(0.05–0.1) estimated from Japanese micro data in 1990s by [10]. The linear specification of

consumption function does not affect our simulation result much as long as the marginal

propensity to consume from asset for the high asset range is held in the empirical range,

because the consumption function most crucially affects the accumulation rate of asset for

the high asset group in our simulation. The standard deviation of labor income shock s

determines the level of income for the middle class. We chose s = 0.32 to fit the middle part

of the empirical distribution. We run the stochastic process for 100,000 agents.

The same model can simulate the U.S. distribution well with the different set of parameter

values. Figure 8 plots the income distribution in the U.S. in 1971 and the simulated stationary

distribution. We chose the year 1971 so that the bins in our data extend well in the tail part of

the distribution (the tail extends to the top 0.001 percentile). The parameters are estimated

by the same method as for the Japanese data. The lower bound growth rate is determined

by the growth rate of average income for 1961-1970: v = 1.0525. The trend wage growth rate

is estimated by the inflation rate for the same period: u = 1.0308. We assume that the log-

variance of the asset returns is the same as in Japan: x = 0.3122. The log-mean of the asset

returns is estimated by using x and the time-average growth rate of Dow-Jones industrial

index as y = −0.029. Parameters s and b are set free. The standard deviation of the labor

shock, s, is set 0.37 and the asset propensity to consume, b, is set 0.018. The number of agent,

100,000, is the same as before. The good fit shown by the plot indicates that our parametric

specification is versatile enough to produce realistic distributions for different economies. The

model also enables us to discern what economic parameters correspond to the different shapes

of income distributions. The standard deviation of the exponential distribution β is larger in

the U.S. than in Japan. In the simulations, the larger β in the U.S is caused by the larger

s and the smaller v − u. Also, the Pareto exponent α is larger in the U.S. in 1971 than in

Japan in 1999, which corresponds to the smaller b and y in the U.S.
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Figure 8: Simulated stationary distribution for the U.S.
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4.2 Fluctuations

We conduct a sensitivity analysis by simulations to see that the changes in the parameter

values can explain the fluctuations of the distribution. Figure 9 summarizes the results. In

the top row, we observe that an increase in u or s increases β while the tail exponent α is

unaltered. The bottom row shows that an increase in b or a decrease in x increases α while β

is unaltered. Note that the log-mean of the asset returns y has the similar effect as −b, since

it affects the asset growth rate γ(t) − b through its mean ey+x
2/2 − b. Thus a decrease in y

increases α just as an increase in b does. We also observed in simulations that an increase

in v decreases β and increases α. Note that v is the growth rate of the average income

which is the normalization factor. Hence the true growth parameters that determine the

stationary distribution should be taken relative to v. Namely, u− v instead of u determines

the exponential mean β, and y − v instead of y determines the Pareto exponent α. We also

show the Gini coefficient for each distribution in Figure 9. The calculated coefficient varies

considerably as the parameter changes. Plausible range of fluctuations of our parameters can

span the range of Gini coefficients we observed in the data.

Finally, we test whether the effects of our fundamental parameters u − v and y − v on

the Gini coefficients are statistically significant in the tax returns data. Table 2 shows the

estimates of the regression equation gt−gt−1 = bu(ut−vt)+by(yt−vt)+εt where the difference

in Gini coefficients is demeaned. The result is mixed. The coefficients for the Japanese data

and the pooled data exhibit the predicted signs, but it is not significantly different from zero

for y − v. For the U.S. data, the coefficient for y − v is insignificant, and the coefficient for

u−v is significantly negative. This result shows the limitation of our data choice to represent

the independent variables: the asset returns volatility x2 may be time-varying and have a

significant role in determining α, and the real wage may not be a good measurement for the

growth gap u− v in the U.S.
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Table 2: Least squares regression of the difference in Gini coefficients

u− v (se) y − v (se) R2

US -0.0755 (0.0247) 0.0068 (0.0048) 0.237

Japan 0.0801 (0.0303) 0.0111 (0.0085) 0.183

Pooled 0.0452 (0.0216) 0.0082 (0.0055) 0.154

5 Conclusion

This paper investigates the empirical shape of income distribution with a parametric speci-

fication motivated by the basic fact that income is derived from two different factors, labor

and capital. Forty years of tax returns data in the U.S. and Japan reveal that the income

distribution consistently obeys a particular shape of distribution if normalized by the average

income each year. The distribution is described by an exponential distribution in the range

from low to middle income and a power-law distribution for the top portion. In particular,

the top taxpayers data clearly demonstrates the power-law in the tail. The power-law part

has a stationary Pareto exponent about 2 and fluctuates in the range 1.3–2.6. The exponen-

tial part in Japan has a stationary standard deviation about 0.6 of the average income and

fluctuates in the range 0.5–0.65. The standard deviation of the exponential part in the U.S.

rose from about 0.75 to 0.95 in the 1960s and 70s and then declined to 0.8 by 1999.

A simple stochastic process model of labor and asset income can explain this particular

shape. We assume that the labor income follows an additive process with a growing lower

bound, and the distribution of asset returns is independent of the asset size. The additive

process of labor income generates the stationary exponential distribution for the middle part

of the distribution above a subsistence level of income. The savings from labor income

behaves as the lower bound of the asset accumulation process. We characterize the tail

exponent analytically. Our formula provides a rule-of-thumb relation between the Pareto
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exponent and macroeconomic statistics. Historically, the savings and the asset income are

of the same magnitude, and it explains the stationary level of historical Pareto exponents.

A simulation with calibrated parameters matches the middle and tail parts of the empirical

distributions well. The model also explains the fluctuations of the shape of the distribution

by the change in parameter values.

We leave it for a future research to implement our mechanism of income distribution in

the dynamic stochastic general equilibrium model in which the individual’s policy function

and the factor prices are endogenously determined. The income and wealth distribution in

the DSGE models with incomplete insurance markets have been explored extensively, notably

by Castañeda et al. [2], Krusell and Smith [12], and Quadrini [17]. Our conjecture is that the

DSGE model with idiosyncratic returns would generate the power-law distribution in the tail

even with ex ante homogenous population, and the tail exponent would find a representation

by the fundamental economic parameters.
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