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1 Introduction

The three-person cooperative game with side payments in characteristic-function
form is a classical problem of game theory in which three players negotiate about
coalition formation and payoff allocations. The game serves as a prototype for
the economic analysis of efficiency and equity in resource allocation. Since von
Neumann and Morgenstern (1944), various kinds of solutions have been proposed
in the literature on cooperative game theory. There has been no consensus among
game theorists about what is an appropriate solution for a three-person game and
for an n-person cooperative game, in general. This disagreement remains to the
present day. It may be argued that the diversity of solutions is a virtue, reflecting
the complexity of the real world. However, to apply cooperative game theory to
economic analysis, we need a general understanding of when one solution is more
suitable than others.

In the last two decades, the noncooperative-game approach to cooperative
games has been rapidly growing. Cooperation has been analyzed as a noncooper-
ative equilibrium under a specified procedure of coalition formation. Ray (2007)
has provided an excellent review of this field. Among the bargaining games studied
well is the random proposer model (Baron and Ferejohn 1989; Okada 1996). The
stationary subgame perfect equilibrium (SSPE) of the model provides a noncoop-
erative foundation for various cooperative solutions, including the Nash bargaining
solution (Okada 2010), the coalitional Nash bargaining solution (Compte and Je-
hiel 2010), the core (Yan 2002) for a general game, and the kernel (Montero 2002)
and nucleolus (Montero 2006) for a weighted majority game.

The aim of this paper is to characterize all SSPEs of a three-person superaddi-
tive game with general parameters played by patient players. To our knowledge,
the full structure of the SSPEs of a three-person random proposer game has not
yet been reported in the literature.1 In particular, when a game has an empty core,
it is well known that an SSPE outcome must be inefficient,2 whereas almost all
cooperative solutions presume efficiency even in such a case. A complete analysis
of a three-person cooperative game helps us to understand why and how efficiency
and/or inequality may occur in negotiations among rational players under the
condition of complete information.

We consider all SSPEs of a three-person game in terms of the support of every
player’s mixed strategy, i.e., the set of all coalitions that the player may choose
with positive probability. There are 343 possible configurations of supports for
players’ strategies. These configurations can be classified into different levels of ef-

1Recently, Nash (2008) considered a noncooperative bargaining model called the agencies
method for a three-person cooperative game and presented some computational results.

2It is also well known that an efficient allocation is guaranteed if renegotiation is allowed. See
Seidmann and Winter (1998) and Okada (2000), among others.
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ficiency, measured by the equilibrium probability of the grand coalition. In the one
efficient SSPE, the grand coalition forms with probability one. In an asymptoti-
cally efficient SSPE (Compte and Jehiel 2010), the grand coalition will form almost
surely. In an inefficient SSPE, the probability of the grand coalition is less than
one, and may possibly be zero. We show that the existence of a “central” player
who joins all equilibrium coalitions guarantees efficiency (in one configuration)
and asymptotic efficiency (in 36 configurations). An inefficient SSPE arises when
the core of a game is empty. When the grand coalition may form with positive
probability (162 configurations), the expected payoffs of the players are equal to
their marginal contributions to the grand coalition except in three configurations.

This paper is organized as follows. Section 2 gives some definitions. Section 3
provides several lemmas useful for the analysis. Section 4 presents a classification
of SSPEs. Section 5 concludes the paper.

2 Preliminaries

An n-person game in coalitional form with transferable utility is represented as
a pair (N, v), where N = {1, 2, · · · , n} is the set of players. A nonempty subset
S of N is called a coalition of players. The number of members of S is denoted
by s. The characteristic function v is a real-valued function that assigns to each
coalition S its value v(S). It is assumed that v satisfies (i) v({i}) = 0 for all i ∈ N
(zero-normalized), (ii) v(S ∪ T ) ≥ v(S) + v(T ) for any two disjoint coalitions S
and T (superadditive), and (iii) v(N) > v(S) for every S ⊂ N,S 6= N . The
last condition is a regularity one that guarantees that only the grand coalition N
maximizes the total value. For S ⊂ N , let RS denote an s-dimensional Euclidean
space with coordinates indexed by the elements of S. Each point in RS is denoted
by xS = (xSi )i∈S.

The payoff allocation for a coalition S is a vector xS = (xSi )i∈S of RS, where
xSi represents the payoff for player i ∈ S. A payoff allocation xS for S is feasible
if
∑

i∈S x
S
i ≤ v(S). Let XS denote the set of all feasible payoff allocations for S,

and let XS
+ denote the set of all elements in XS with nonnegative components.

For S ⊂ N and x ∈ RN , the excess of S with respect to x is defined by e(S, x) =
v(S) −

∑
i∈S xi. For i ∈ N , mi = v(N) − v(N − {i}) is player i’s marginal

contribution to the grand coalition N .
As a noncooperative bargaining procedure for a game (N, v), we consider the

random proposer model with recognition probability p = (p1, · · · , pn), where pi > 0
for every i. The bargaining rule is simple. Negotiations take place over a possibly
infinite number of rounds t (= 1, 2, · · · ) until an agreement is reached. At the
start of each round t, one player i ∈ N is randomly selected as a proposer with
probability pi. Player i proposes a coalition S, with i ∈ S and a payoff allocation
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xS ∈ XS
+. All other members of S either accept or reject the proposal (S, xS)

sequentially. The order of responders does not affect the result in any critical
way. If all responders accept the proposal, then the game ends with the agreement
(S, xS).3 All members i of S receive payoffs xSi , and the others receive zero payoffs.
Otherwise, negotiations continue in the next round t + 1 with the same rule as
in round t. If the game does not stop, all players receive zero payoffs. Let δ(0 ≤
δ < 1) be the common discount factor for future payoffs. All players have perfect
information about the history of play whenever they choose their actions. The
bargaining game above is denoted by Γδ. The notation Γ denotes the limit as the
discount factor δ goes to one in Γδ.

A (behavior) strategy σi for player i in Γδ (and also in Γ) is a function that
assigns a randomized (mixed) action to every possible move of the player, depend-
ing on the history of the game. Under the standard assumptions about v above, it
is well known that all responders accept a proposal with probability one in every
SSPE of Γδ (see Lemma 3.1). A randomized action may occur only in proposing
coalitions. For a strategy combination σ = (σ1, · · · , σn), the expected (discounted)
payoff for player i in Γδ is defined in the usual way. A strategy σi for player i is
stationary if the (possibly mixed) action of player i at round t is independent of the
history before round t.4 In what follows, the analysis is restricted to a stationary
subgame perfect equilibrium, in which the equilibrium strategy of every player is
stationary.

For an SSPE σ and for every i ∈ N , let vi be player i’s expected payoff; let qi
be the probability distribution over the set of all coalitions S with i ∈ S; let Ci
be the support of qi, which is the set of all coalitions including i that qi assigns
a strictly positive probability to; and let θi be the conditional probability that
player i receives an offer from some other player, given that player i becomes a
responder. Note that θi = (1/(1 − pi))

∑
j∈N,j 6=i pj

∑
S:i∈S∈Cj

qj(S). We call the

profile φ = (vi, qi, Ci, θi)i∈N the configuration of the SSPE σ. Whenever we want to
emphasize the dependence of elements of φ on δ, we shall add δ to them, as in “vδi ”
and “qδi .” In the following, the collection (Ci)i∈N of supports plays an important
role; we call it the support configuration of σ.

Definition 2.1. Let σ = (σ1, · · · , σn) be an SSPE of Γδ with a configuration
φ = (vi, qi, Ci, θi)i∈N .

(1) An SSPE σ of Γδ is efficient if
∑

i∈N vi = v(N).

(2) A strategy combination σ∗ = (σ∗1, · · · , σ∗n) of Γ is an asymptotically efficient

3Since our aim is to analyze a three-person bargaining game, we assume that only one coalition
may form. A general rule used in Okada (1996) allows sequential formation of coalitions.

4The players’ responses depend surely on the proposal in the present round.
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equilibrium with limit payoff v∗ = (v∗1, · · · , v∗n) if there exists a sequence {σδ}
of SSPEs of Γδ such that the expected payoffs vδ of σδ converge to v∗ as δ
goes to one, and if

∑
i∈N v

∗
i = v(N).

(3) An SSPE σ of Γδ is subcoalition-inefficient if the probability of the grand
coalition is zero.

(4) Player i is a central player in σ if θi = 1, that is, i ∈ S for every S ∈ Cj and
every j ∈ N, j 6= i.

In the case of the random proposer model Γδ, it is known that there is no
delay in the agreements in any of the SSPEs whenever δ < 1 (see Lemma 3.1).
Because of this fact, the efficiency of an SSPE is determined solely by coalitions
formed in equilibrium. Under the regularity assumption v(N) > v(S) for every
S ⊂ N,S 6= N , an SSPE is efficient if and only if the grand coalition N forms
with probability one. Thus, an efficient SSPE must be the grand-coalition SSPE.
In an inefficient SSPE, the probability of the grand coalition is strictly smaller
than one. The notion of asymptotic efficiency introduced by Compte and Jehiel
(2010) describes a situation where the probability of the grand coalition becomes
almost equal to one as players become sufficiently patient. Compte and Jehiel
proved that the limit payoff in an asymptotically efficient equilibrium is equal to
the coalitional Nash bargaining solution (the core allocation maximizing the Nash
product). Whereas an efficient SSPE is given by nonrandomized (pure) strategies,
an asymptotically efficient equilibrium is genuinely supported by (a sequence of)
mixed strategies of players when δ < 1. The probability of any subcoalition S with
v(S) < v(N) converges to zero as δ goes to one. In the limit in which δ becomes
close to one, the asymptotically efficient equilibrium provides an efficient allocation
of payoffs. The limit of the efficient SSPE as δ → 1 is obviously asymptotically
efficient.

In the next section, we shall show that the existence of a central player guar-
antees asymptotic efficiency of an SSPE. A central player is a player who joins
a coalition with probability one. In the efficient SSPE, all players are central.
The inefficient SSPEs are divided into two types, according to whether or not the
probability of the grand coalition is zero. In a subcoalition-inefficient SSPE, the
grand coalition never forms. The Baron and Ferejohn (1989) equilibrium in the
majority game is an extreme case of this situation.

3 Lemmas

Here, we present several basic properties of an SSPE that are useful for our anal-
ysis. First, we review some known results in the literature (Okada 1996, 2011).

5



Lemma 3.1.

(1) An SSPE of Γδ in behavior strategies exists for every δ (0 ≤ δ < 1).

(2) For every SSPE σ of Γδ, every proposal is accepted in the initial round. In
the proposal, all responders j are offered their discounted expected payoffs
δvj.

(3) A strategy combination σ = (σ1, · · · , σn) is an SSPE of Γδ if and only if its
configuration φ = (vi, qi, Ci, θi)i∈N satisfies the following conditions, for every
i ∈ N :

(i) Every S ∈ Ci (i.e., qi(S) > 0) is a solution of

max
i∈T⊂N

(
v(T )−

∑
j∈T,j 6=i

δvj

)
. (3.1)

(ii) vi ∈ R+ satisfies

vi = pi max
i∈T⊂N

(
v(T )−

∑
j∈T,j 6=i

δjvj

)
+ (1− pi)θiδivi. (3.2)

(4) The grand-coalition SSPE exists if and only if v(N) ≥ v(S)/(1−δ
∑

j∈N−S pj)
for every S ⊂ N . In equilibrium, every player i ∈ N receives the expected
payoff vi = piv(N).

In what follows, we call (3.1) the optimality condition of and (3.2) the payoff
equation of an SSPE.

The grand-coalition (efficient) SSPE is fully characterized by Lemma 3.1(3) for
an n-person cooperative game. The next lemma characterizes an asymptotically
efficient equilibrium.

Lemma 3.2. Let σ∗ be a strategy combination for Γ. If there exists some sequence
{σδ} of SSPEs in Γδ such that every σδ has at least one central player and {σδ}
converges to σ as δ → 1, then the following properties hold.

(1) σ∗ is an asymptotically efficient equilibrium of Γ.

(2) The limit payoff v∗ = (v∗1, · · · , v∗n) of σ∗ belongs to the core of (N, v), and∑
i∈S v

∗
i = v(S) holds for every S that may form with positive probability in

σδ for any sufficiently large δ.

(3) For any central player k in σδ where δ is sufficiently large, v∗k ≥ pkv(N).
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Proof. (1) Let φδ = (vδi , q
δ
i , C

δ
i , θ

δ
i )i∈N be the configuration of an SSPE σδ. We

shall omit δ in the elements of φδ whenever no confusion will arise. For every
i ∈ N and every Si ∈ Ci, qi(Si) denotes the positive probability that player i
chooses Si in σδ. Let xi(Si) = (xij(Si))j∈N ∈ XN

+ be the payoff allocation when
player i proposes to Si. Note that

∑
j∈N x

i
j(Si) = v(Si). It then holds that∑

i∈N

vi =
∑
i∈N

∑
j∈N

pj
∑
Sj∈Cj

qj(Sj)x
j
i (Sj) =

∑
j∈N

pj
∑
Sj∈Cj

qj(Sj)
∑
i∈N

xji (Sj)

=
∑
j∈N

pj
∑
Sj∈Cj

qj(Sj)v(Sj). (3.3)

Let k ∈ N be any central player in σδ.5 By definition, θk = 1. Let Sk ∈ Ck. It
follows from the payoff equation (3.2) that

vk = pk

(
v(Sk)−

∑
j∈Sk,j 6=k

δvj

)
+ (1− pk)δvk.

This can be rewritten as

(1− δ)vk = pk

(
v(Sk)−

∑
j∈Sk

δvj

)
. (3.4)

It follows from the optimality condition (3.1) that

v(Sk)−
∑
j∈Sk

δvj ≥ v(N)−
∑
j∈N

δvj. (3.5)

Noting (3.3), it follows from (3.4) and (3.5) that

(1− δ)vk ≥ pk

v(N)− δ
∑
j∈N

pj
∑
Sj∈Cj

qj(Sj)v(Sj)

 .

This can be rewritten as

vk ≥
pk

1− δ
∑
j∈N

pj
∑
Sj∈Cj

qj(Sj)(v(N)− δv(Sj)). (3.6)

By way of contradiction, suppose that σ∗ is not asymptotically efficient. Then,
there exists some j ∈ N and some Sj ∈ Cj, Sj 6= N , such that

lim
δ→1

qδj (Sj) > 0.

5By choosing a subsequence (if necessary), we can assume without loss of generality that
every σδ has at least one central player in common.
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Since Sj is a proper subset of N , v(N) > v(Sj) by assumption. The right-hand
side of (3.6) then becomes infinite as δ → 1. This contradicts the assertion that
v∗k is bounded from above. This proves (1).

(2) Since σ∗ is asymptotically efficient by (1), its limit payoff v∗ satisfies
∑

i∈N v
∗
i =

v(N). Since qδi (N) > 0 for every i ∈ N and every sufficiently large δ, the optimality
condition (3.1) for an SSPE σδ implies

v(N)−
∑
j∈N

δvδj ≥ v(S)−
∑
j∈S

δvδj (3.7)

for every S ⊂ N . As δ → 1, (3.7) implies that

0 ≥ v(S)−
∑
j∈S

v∗j .

Thus, v∗ = (v∗1, · · · , v∗n) belongs to the core of (N, v). If the coalition S is proposed
with positive probability in σδ for sufficiently large δ, equality holds in (3.7) by
the optimality condition (3.1). Thus, as δ → 1 in (3.7), we obtain

∑
i∈S v

∗
i = v(S).

(3) Finally, it follows from (3.6) that vδk ≥ pkv(N) for every δ. This proves that
v∗k ≥ pkv(N). Q.E.D.

Lemma 3.2 is closely related to the results of Compte and Jehiel (2010, Propo-
sition 1 and Claim C). These authors showed that if there exists some “key” player
who belongs to all binding coalitions in the coalitional Nash bargaining solution for
some reduction parameter of v, then a sufficient condition (called P1) for asymp-
totic efficiency holds whenever the core is nonempty. In contrast to their approach,
we define a central player in terms of the support configuration of an SSPE, and
give a direct proof that the existence of a central player guarantees asymptotic
efficiency. This approach enables us to classify all SSPEs for n = 3 according to
the number of central players.

The final lemma presented here demonstrates some properties of the excess of
a coalition with respect to the supports of an SSPE.

Lemma 3.3. Let σ be an SSPE of Γδ with expected payoffs vi and supports
Ci for all i ∈ N . For S ⊂ N , let e(S, δv) be the excess of S with respect to
δv = (δv1, · · · , δvn).

(1) For all S and T in Ci, e(S, δv) = e(T, δv).

(2) For j ∈ S ∈ Ci and i ∈ T ∈ Cj, e(S, δv) = e(T, δv).
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(3) If there exists an order (i1, · · · , in) over N such that every player i’s support
Ci includes some Si satisfying

ij ∈ Sij−1
∩ Sij for all j = 1, · · · , n,

(with i0 = in), then e(Si1 , δv) = · · · = e(Sin , δv).

Proof. All of these results follow from the optimality condition (3.1) for an SSPE
σ given in Lemma 3.1.

(1) Since S, T ∈ Ci, we have

v(S)−
∑

j∈S,j 6=i

δvj = v(T )−
∑

j∈T,j 6=i

δvj.

This yields e(S, δv) = e(T, δv).

(2) Since S ∈ Ci and i ∈ T , we have

v(S)−
∑

j∈S,j 6=i

δvj ≥ v(T )−
∑

j∈T,j 6=i

δvj.

This yields e(S, δv) ≥ e(T, δv). Similarly, since T ∈ Cj and j ∈ S, we have
e(T, δv) ≥ e(S, δv). Thus, e(S, δv) = e(T, δv).

(3) Since ij ∈ Sij−1
and Sij ∈ Cij , it holds that e(Sij−1

, δv) ≤ e(Sij , δv). By varying
j from 1 to n, we have

e(Sin , δv) ≤ e(Si1 , δv) ≤ · · · ≤ e(Sin , δv).

This proves (3). Q.E.D.

4 A Classification of SSPEs: n = 3

We can classify all SSPEs in a three-person cooperative game according to their
support configurations C = (C1, C2, C3). Table 4.1 gives a list of all seven possible
supports for each player’s equilibrium strategy.6 There are 353 (= 7 × 7 × 7)
possible support configurations. We characterize the limit payoff of an SSPE for
each configuration of supports as the discount factor δ converges to one. For
the sake of analysis, we assume the uniform distribution (1/3, 1/3, 1/3) for the
recognition probabilities pi for each player i = 1, 2, 3. A similar analysis can be
applied to a general distribution.

6We have simplified the set notation {1, 2, 3} to 123 in Table 4.1. Similar notation is used in
this section.
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Table 4.1 List of all possible supports of three players’ strategies

C1 C2 C3

123, 12, 13 123, 12, 23 123, 13, 23
123, 12 123, 12 123, 13
123, 13 123, 23 123, 23

12, 13 12, 23 13, 23
123 123 123

12 12 13
13 23 23

We classify all possible support configurations into four cases, according to the
number of central players.

Case 1. All three players are central, i.e., C1 = C2 = C3 = {123} (one type).
In this case, the SSPE is the grand-coalition SSPE characterized by Lemma

3.1(4). The grand-coalition SSPE exists if and only if v(123) ≥ (3/(3− δ))v(S) for
every two-person coalition S. The expected payoff vi of every player i = 1, 2, 3 is
v(123)/3. As the discount factor δ goes to one, the equilibrium allocation converges
to the equity allocation (v(123)/3, v(123)/3, v(123)/3), regardless of the proposer.
The equity allocation must belong to the core, i.e., v(123)/3 ≥ v(S)/2 for every
two-person coalition S.

Case 2. Only two players are central (nine types).
Table 4.2 shows a list of all possible configurations of supports when only play-

ers 1 and 2 are central. Notice that each player’s support Ci must include the
grand coalition 123, since the SSPE is asymptotically efficient by Lemma 3.2. In
Table 4.2, the configuration C1 = C2 = C3 = {123} considered in case 1 is ex-
cluded. Thus, there are three types: (i) C1 = C2 = {123, 12}, C3 = {123}, (ii)
C1 = {123, 12}, C2 = C3 = {123}, and (iii) C2 = {123, 12}, C1 = C3 = {123}. In
total, there are nine types of configurations, considering permutations of players.

Table 4.2 List of players’ supports when only players 1 and 2 are central
(C1 = C2 = C3 = {1, 2, 3} is excluded)

C1 C2 C3

123, 12 123, 12 123
123 123
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In each type of SSPE, the payoff equation (3.2) for i = 1, 2, 3 gives

3v1 = v(123)− δv2 − δv3 + 2δv1, (4.1)

3v2 = v(123)− δv1 − δv3 + 2δv2, (4.2)

3v3 = v(123)− δv1 − δv2 + 2δθ3v3, (4.3)

where θ3 is the conditional probability that player 3 joins a coalition, given that
that player becomes a responder. Equations (4.1) and (4.2) solve v1 = v2 for any
δ < 1. Since 123, 12 ∈ C1 or C2, Lemma 3.3(1) implies e(123, δv) = e(12, δv). This
yields

v3 =
v(123)− v(12)

δ
. (4.4)

Equations (4.1) and (4.4) with v1 = v2 solve

v1 = v2 =
v(12)

3− δ
. (4.5)

Thus, the limit payoff v∗ = (v∗1, v
∗
2, v
∗
3) of an SSPE as δ → 1 is given by

v∗1 = v∗2 =
v(12)

2
, v∗3 = v(123)− v(12). (4.6)

The optimality conditions (3.1) for i = 1 and 2 imply e(123, δv) ≥ e(13, δv)
and e(123, δv) ≥ e(23, δv), respectively. As δ → 1, these conditions yield

v(12)

2
≤ v(123)− v(13),

v(12)

2
≤ v(123)− v(23). (4.7)

Substituting (4.4) and (4.5) into (4.3) solves

θ3 =
1

2(v(123)− v(12))

[
3− δ
δ

v(123)− 9− 3δ − 2δ2

δ(3− δ)
v(12)

]
.

¿From θ3 < 1, this yields ((3− δ)/3)v(123) < v(12). As δ → 1, we obtain

v(123)− v(12) ≤ v(123)

3
. (4.8)

In summary, (4.6), (4.7), and (4.8) show the following bargaining outcome in
the limit in which the discount factor δ is almost equal to one. When the equity
allocation does not belong to the core, player 3, whose marginal contribution
v(123)−v(12) is smaller than the equity allocation v(123)/3, receives not v(123)/3
but that player’s marginal contribution. The two other players, 1 and 2, split the
surplus v(12) equally. They are central players; that is, all equilibrium coalitions
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2 3

1

SSPE

equity

m =1 v(123)- v (23)

m =3 v(123)- v (12)

m =2 v(123)- v (13)

core

Figure 4.1 The SSPE allocation with two central players.
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include them. The limit payoff allocation (4.6) is equal to the coalitional Nash
bargaining solution of Compte and Jehiel (2010). Figure 4.1 illustrates the payoff
allocation.

Case 3. Only one player is central (27 types).
Table 4.3 shows a list of all possible configurations of supports when only player

1 is central. Notice that the support of each player must include the grand coalition
123, since the SSPE is asymptotically efficient. There are nine possible configura-
tions in this subcase.7

Table 4.3 All configurations of players’ supports where only player 1 is central

C1 C2, C3

C1 3 123 C2 = {123, 12}, C3 = {123, 13}
C1 3 123, 13 C2 = {123, 12}, C3 = {123}
C1 3 123, 12 C2 = {123}, C3 = {123, 13}
C1 = {123, 12, 13} C2 = {123}, C3 = {123}

In all nine possible configurations in Table 4.3, we have 123, 12 ∈ Ci and
123, 13 ∈ Cj for some i, j ∈ N (including the case i = j). It then follows from
Lemma 3.3 that e(123, δv) = e(12, δv) = e(13, δv). These equations yield

δv2 = v(123)− v(13), (4.9)

δv3 = v(123)− v(12). (4.10)

Since player 1 is a central player, the payoff equations for an SSPE yield (4.1),
(4.3), and

3v2 = v(123)− δv1 − δv3 + 2δθ2v2 (4.11)

(instead of (4.2)).
¿From (4.1), (4.9), and (4.10), it follows that

v1 =
v(12) + v(13)− v(123)

3− 2δ
. (4.12)

It can be seen without much difficulty that (4.11) and θ2 < 1 imply

(3− δ)v(123) < δv(12) + (3− δ)v(13). (4.13)

7In Table 4.3, the first row shows that the support C1 of player 1 must include the grand
coalition 123. There are four possible configurations in this case. The second and third rows
contain two possible configurations each. In total, there are 9 (= 4 + 2 + 2 + 1) possible
configurations.
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Similarly, it follows from (4.3) and θ3 < 1 that

(3− δ)v(123) < (3− δ)v(12) + δv(13). (4.14)

For δ < 1, the optimality condition (3.1) implies

v(123)− δv1 − δv3 ≥ v(23)− δv3.

Substituting (4.12) into this inequality, we have

(3− δ)v(123) ≥ δv(12) + δv(13) + (3− 2δ)v(23). (4.15)

Finally, as δ → 1, we obtain the limit payoff of an SSPE as

v∗1 = v(12) + v(13)− v(123), v∗2 = v(123)− v(13), v∗3 = v(123)− v(12) (4.16)

from (4.9), (4.10), and (4.12), and obtain

v(123)− v(13) ≤ v(12)

2
, (4.17)

v(123)− v(12) ≤ v(13)

2
, (4.18)

2v(123) ≥ v(12) + v(13) + v(23) (4.19)

from (4.13), (4.14), and (4.15), respectively. Equation (4.19) is a well-known
condition for the core to be nonempty in a three-person game. Under (4.17) and
(4.18), the limit payoff (4.16) becomes the coalitional Nash bargaining solution.

The last two cases, 4 and 5, without central players, correspond to a game with
an empty core. Case 4 deals with the case where the grand coalition may form
with positive probability. Case 5 examines a subcoalition-inefficient SSPE where
the grand coalition never forms.

Case 4. An SSPE without central players where the grand coalition may form
with positive probability (162 types).

We shall show that all support configurations satisfy

e(123, δv) = e(12, δv) = e(23, δv) = e(13, δv), (4.20)

except for the three configurations

C1 = {123, 12, 13}, C2 = {23}, C3 = {23}, (4.21)

C1 = {13}, C2 = {123, 12, 23}, C3 = {13}, (4.22)

C1 = {12}, C2 = {12}, C3 = {123, 13, 23}. (4.23)
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Without any loss of generality, we assume 123 ∈ C1, and shall show that (4.20)
holds for all possible configurations except (4.21). Equations (4.22) and (4.23)
are obtained by similar arguments in other cases, where 123 ∈ C2 and 123 ∈ C3,
respectively. Consider the following four cases.

(i) C1 = {123, 12, 13}. In this case, e(123, δv) = e(12, δv) = e(13, δv) by
Lemma 3.3.(1). Suppose that 23 ∈ C2. If 13 ∈ C3, then e(12, δv) = e(23, δv) =
e(13, δv) by Lemma 3.3(3) with the order (1, 2, 3), and thus (4.20) holds. If 123 ∈
C3, then e(123, δv) = e(23, δv), since 23 ∈ C2, and thus (4.20) holds. Equation
(4.21) remains. Suppose that 23 /∈ C2. We must then have 23 ∈ C3 so that player
1 is not a central player. If 123 ∈ C2, then e(123, δv) = e(23, δv) from Lemma
3.1.(2), and thus (4.20) holds. If 12 ∈ C2, then e(13, δv) = e(23, δv) = e(12, δv)
from Lemma 3.3(3), and thus (4.20) holds.

(ii) C1 = {123, 12}. In this case, e(123, δv) = e(12, δv). Suppose that 23 ∈
C2. We must have 13 ∈ C3, so that player 2 is not a central player. Then
e(12, δv) = e(23, δv) = e(13, δv) by Lemma 3.3(3). Thus, (4.20) holds. Suppose
that 23 /∈ C2. In this case, we have C2 = {123, 12}, C2 = {123} or C2 = {12}.
In either case, we must have 13, 23 ∈ C3 so that neither 1 nor 2 is a central
player. Thus, e(13, δv) = e(23, δv). If 123 ∈ C2, then e(123, δv) = e(23, δv) by
Lemma 3.3(2), and thus (4.20) holds. Finally, consider the case C2 = {12}. If
C3 = {123, 13, 23}, then (4.20) holds, since C1 = {123, 12}. If C3 = {13, 23}, then
we have e(12, δv) ≥ e(23, δv) ≥ e(123, δv) = e(12, δv), and thus (4.20) holds.

(iii) C1 = {123, 13}. We must have 12 ∈ C2, so that player 3 is not a central
player. This must induce 23 ∈ C3 so that player 1 is not a central player. Then
(4.20) holds, from Lemma 3.3(3).

(iv) C1 = {123}. Suppose that C2 = {123, 12, 23}. We have e(123, δv) =
e(12, δv) = e(23, δv). We must have 13 ∈ C3, so that 2 is not a central player.
Thus, e(123, δv) = e(13, δv) from Lemma 3.3(2), since C1 = {123}. This yields
(4.20). Neither C2 = {123}, C2 = {23}, nor C2 = {123, 23} is possible, otherwise
3 would become a central player. Suppose that C2 = {12, 23}. We must have
13 ∈ C3, so that 2 is not a central player. Then e(123, δv) = e(12, δv) = e(13, δv)
from Lemma 3.3(2). We have e(12, δv) = e(23, δv), since C2 = {12, 23}, and thus
(4.20) holds. Finally, suppose that C2 = {123, 12} or {12}. We must then have
13, 23 ∈ C3, so that neither 1 nor 2 is a central player. We have e(123, δv) =
e(12, δv) and e(123, δv) = e(13, δv), since 12 ∈ C2 and 13 ∈ C3, respectively. Since
13, 23 ∈ C3, we have e(13, δv) = e(23, δv). Thus, (4.20) holds.

By solving (4.20), we obtain

δv1 = v(123)− v(23), δv2 = v(123)− v(13), δv3 = v(123)− v(12). (4.24)

All players’ discounted expected payoffs are equal to their marginal contributions.
In every SSPE where (4.20) applies, the optimality condition is trivially satisfied.
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It must hold that 0 ≤ θi < 1 for each i = 1, 2, 3, and

3

2
< θ1 + θ2 + θ3 < 3.8 (4.25)

The payoff equation for an SSPE for i = 1 is given by

3v1 = v(123)− δv2 − δv3 + 2δθ1v1. (4.26)

Equations (4.24) and (4.26) solve

θ1 =
(3 + δ)v(123)− δv(12)− 3v(23)− δv(13)

2δ(v(123)− v(23))
. (4.27)

Letting δ → 1, the constraints θ1 < 1 and θ1 ≥ 0 yield

2v(123) ≤ v(12) + v(23) + v(13), (4.28)

4v(123) ≥ v(12) + 3v(23) + v(13), (4.29)

respectively, and we have the limit payoff of an SSPE,

v∗1 = v(123)− v(23), v∗2 = v(123)− v(13), v∗3 = v(123)− v(12). (4.30)

Similarly to (4.29), we have

4v(123) ≥ v(12) + v(23) + 3v(13), (4.31)

4v(123) ≥ 3v(12) + v(23) + v(13). (4.32)

The three cases (4.21)–(4.23) remain. Since the analysis is similar, we shall
solve the case of (4.21) only. When (4.21) holds, we have θ1 = 0 and e(123, δv) =
e(12, δv) = e(13, δv). Thus, δv2 = v(123)− v(13) and δv3 = v(123)− v(12). Since
θ1 = 0, the payoff equation for i = 1 is 3v1 = v(12)− δv2. This solves

v1 =
v(12) + v(13)− v(123)

3
. (4.33)

The payoff equation for i = 2 is 3v2 = v(23) − δv3 + 2δθ2v2. Substituting v1, v2,
and v3, this yields

θ2 =
(3 + δ)v(123)− δv(12)− δv(23)− 3v(13)

2δ(v(123)− v(13))
. (4.34)

8The first inequality can be derived as follows. Let r1 and r′1 be the probabilities that player
1 chooses coalitions 12 and 13, respectively, let r2 and r′2 be the probabilities that player 2
chooses coalitions 12 and 23, respectively, and let r3 and r′3 be the probabilities that player 3
chooses coalitions 23 and 13, respectively. Since θ1 = 1− (r′2 + r3)/2, θ2 = 1− (r′1 + r′3)/2, and
θ3 = 1− (r1 + r2)/2, we have θ1 + θ2 + θ2 = 3− ((r1 + r′1) + (r2 + r′2) + (r3 + r′3))/2 > 3/2.

16



Letting δ → 1, the constraints θ2 < 1 and θ2 ≥ 1/2 (by (4.25)) yield (4.28) and

3v(123) ≥ v(12) + v(23) + 2v(13), (4.35)

respectively. Interchanging 2 with 3, we obtain

3v(123) ≥ 2v(12) + v(23) + v(13). (4.36)

Finally, as δ → 1, the optimality condition e(23, δv) ≥ e(123, δv) yields

4v(123) ≤ v(12) + 3v(23) + v(13). (4.37)

We can summarize our analysis of case 4 as follows. In the limit as δ goes to
one, every player i’s expected payoff is equal to that player’s marginal contribution
mi = v(123) − v(jk), i 6= j, k, in most configurations of supports (159 cases) if
mi is greater than or equal to (v(123) − mj − mk)/3. In the remaining three
cases, two players receive their marginal contributions and the other player receives
(v(123)−mj −mk)/3 more than his or her marginal contribution.

Case 5. A subcoalition-inefficient SSPE without central players (18 types).
Table 4.4 shows a list of all possible support configurations. The configurations

in Table 4.4 can be divided into four subcases according to the values of θi (i =
1, 2, 3). In this case, note that θ1 + θ2 + θ3 = 3/2 (see footnote 5). In every
configuration, all two-person coalitions (i.e., 12, 23, and 13) belong to the support
of some players. Because of this fact, the condition for optimality of an SSPE
implies e(12, δv), e(23, δv), e(13, δv) ≥ e(123, δv). Thus, the limit expected payoff
vi of every player i = 1, 2, 3 as δ → 1 is greater than or equal to that player’s
marginal contribution mi = v(123)− v(jk) (i 6= j, k).

Subcase (i). θ1 = θ2 = θ3 = 1/2 (Nos. 13 and 18).
From Lemma 3.3(3), e(12, δv) = e(23, δv) = e(13, δv). Together with this, it

can be seen without much difficulty that the payoff equations

3v1 = v(12)− δv2 + δv1, (4.38)

3v2 = v(23)− δv3 + δv2, (4.39)

3v3 = v(13)− δv1 + δv3 (4.40)

imply that v(12) = v(23) = v(13) and

v1 = v2 = v3 =
1

3
v(12). (4.41)

The optimality condition e(12, δv) ≥ e(123, δv) implies v(12) ≥ (3/(3 + δ))v(123).
As δ → 1, we obtain

v(12) = v(23) = v(13) ≥ 3

4
v(123). (4.42)
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Table 4.4 List of all possible configurations of an SSPE without central players
where the grand coalition never forms

C1 C2 C3

1 12, 13 12, 23 13, 23
2 12, 13 12, 23 13
3 12, 13 12, 23 23
4 12, 13 12 13, 23
5 12, 13 12 23
6 12, 13 23 13, 23
7 12, 13 23 13
8 12, 13 23 23
9 12 12, 23 13, 23
10 12 12, 23 13
11 12 12 13, 23
12 12 23 13, 23
13 12 23 13
14 13 12, 23 13, 23
15 13 12, 23 13
16 13 12, 23 23
17 13 12 13, 23
18 13 12 23
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An SSPE is possible in this case only in a symmetric game where each two-
person coalition is productive relative to the grand coalition. All players receive
equal expected payoffs v(12)/3, and thus the payoff allocation in each two-person
coalition is unequal in that a proposer receives a payoff twice as large as a respon-
der.

Subcase (ii). θi = 1/2 for only one i = 1, 2, 3 (Nos. 5, 7, 10, 12, 16, 17).
We consider only the configuration C1 = {12, 13}, C2 = {12}, C3 = {23} (No.

5) in Table 4.4. Other configurations can be solved in the same way. It follows
from Lemma 3.3 that e(12, δv) = e(23, δv) = e(13, δv). Together with this, it can
be seen without much difficulty that the payoff equations

3v1 = v(12)− δv2 + δv1, (4.43)

3v2 = v(12)− δv1 + 2θ2δv2, (4.44)

3v3 = v(23)− δv2 + 2θ3δv3 (4.45)

imply

v1 =
v(12) + v(13)− v(23)

3
,

δv2 =
δv(12) + (3− δ)v(23)− (3− δ)v(13)

3
,

δv3 =
−(3− δ)v(12) + (3− δ)v(23) + δv(13)

3
,

θ2 =
δv1 + 3v2 − v(12)

2δv2

,

θ3 =
δv2 + 3v3 − v(23)

2δv3

.

In the limit as δ → 1, we examine the constraints 0 ≤ θi < 1 (i = 2, 3)9 and the
optimality condition e(12, δv) ≥ e(123, δv). It can be shown that

v(12) + v(13) ≥ v(23),

v(12) + 5v(23)− 5v(13) ≥ 0,

−5v(12) + 5v(23) + v(13) ≥ 0,

v(12) + 2v(23) + v(13) ≥ 3v(123).

The limiting expected payoffs for players are given by

v∗1 =
v(12) + v(13)− v(23)

3
, v∗2 =

v(12) + 2v(23)− 2v(13)

3
,

v∗3 =
−2v(12) + 2v(23) + v(13)

3
.

9There is another constraint, θ2 + θ3 = 1, which we omit for simplicity of exposition.
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Subcase (iii). θi = 0 for some i = 1, 2, 3 (Nos. 8, 11, 15).
Consider the configuration C1 = {12, 13}, C2 = {23}, C3 = {23} (No. 5) in

Table 4.4, where θ1 = 0. From the payoff equation 3v1 = v(12) − δv2 and the
optimality condition e(12, δv) = e(13, δv), it follows that δv2 = v(12) − 3v1 and
δv3 = v(13)− 3v1. We obtain v1 by solving a quadratic equation constructed from
θ2 + θ3 = 3/2.10

Subcase (iv). Others (Nos. 1, 2, 3, 4, 6, 9, 14).
In all configurations, the optimality conditions e(12, δv) = e(23, δv) = e(13, δv)

hold. Thus, δv2 = v(23)− v(13) + δv1 and δv3 = v(23)− v(12) + δv1. We obtain
v1 by solving a cubic equation constructed from θ1 + θ2 + θ3 = 3/2.

We summarize the result of a three-person cooperative game in the following
proposition and Table 4.5.

Proposition. Let (N, v) be a three-person superadditive game, where N =
{1, 2, 3} and mi = v(N) − v(N − {i}) is player i’s marginal contribution to the
grand coalition, and let Γ be the random proposer game for (N, v) with a uniform
recognition probability. The limit of the expected payoffs for an SSPE in Γ when
the discount factor goes to one can be classified as follows.

1. The equal allocation, where the probability of the grand coalition is one.

2. The coalitional Nash bargaining solution, where the probability of the grand
coalition converges to one. In equilibrium, there exists at least one player
who joins all possible coalitions.

3. The marginal contributions (m1,m2,m3), where mi ≥ ni ≡ (v({1, 2, 3}) −
mj −mk)/3 for all i = 1, 2, 3 and j, k 6= i.

4. The vector (n1,m2,m3) (and two permutations), where n1 ≥ m1, m2 ≥ n2,
and m3 ≥ n3.

5. Allocations within two-person coalitions.

In the first two cases, the limit of the SSPE payoff belongs to the core of the game.
In the remaining cases, the core is empty.

When the players are sufficiently patient, the SSPEs of the random proposer
game can be classified according to the level of efficiency, i.e., the equilibrium prob-
ability of the grand coalition. The efficiency level is characterized by the number

10We can compute θ2 = (3v(12) + δv(13) − δv(23) − (9 + 3δ)v1)/(2δv(12) − 6δv1) and θ3 =
(δv(12) + 3v(13) − δv(23) − (9 + 3δ)v1)/(2δv(13) − 6δv1). Since it is cumbersome to derive a
general formula for the expected equilibrium payoffs in subcases (iii) and (iv), we have omitted
this derivation.
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of central players who join all equilibrium coalitions (Table 4.5). The efficient
SSPE (Okada 1996) has the full number of central players, and an asymptotically
efficient equilibrium (Compte and Jehiel 2010) has at least one central player.
These (asymptotically) efficient equilibria exist only when the core of a game is
nonempty. When the core is empty, an SSPE must be inefficient. There are two
types of inefficient SSPE, depending on whether or not the probability of the grand
coalition is positive.

In a three-person game, the equal allocation v(123)/3 and the marginal con-
tributions mi to the grand coalition for every player i play a critical role in the
expected payoffs for players in equilibrium. If the equal allocation v(123)/3 is
smaller than all players’ marginal contributions mi (or, equivalently, the equal
allocation belongs to the core), then the SSPE expected payoffs are given by the
equal allocation. In this case, all players are central. If the equal allocation exceeds
the marginal contribution for some player, then that player must be noncentral,
and that player receives his or her marginal contribution. The remaining players
split the surplus equally. In an inefficient SSPE where the probability of the grand
coalition is positive, every player’s expected payoff is equal to their marginal con-
tribution mi if it exceeds the threshold (v({1, 2, 3})−mj−mk)/3 for j, k 6= i. In a
subcoalition-inefficient SSPE where the probability of the grand coalition is zero,
all players’ expected payoffs are not less than their marginal contributions.

Table 4.5 Classification of SSPEs (n = 3)a

Case No. of central players Efficiency level Core Marginal contribution
1 3 Efficient Nonempty vi = v(123)/3 ≤ mi: i = 1, 2, 3
2 2 Asymptotically efficient Nonempty vi ≤ mi: central
3 1 Asymptotically efficient Nonempty vj = mj : noncentral
4 0 Inefficient Empty vi = mi: i = 1, 2, 3
5 0 Subcoalition-inefficient Empty vi ≥ mi: i = 1, 2, 3

a In case 4, the three allocations (v1,m2,m3), (m1, v2,m3), and (m1,m2, v3) are possible, where vi ≥ mi for

i = 1, 2, 3. They correspond to (4.21), (4.22), and (4.23), respectively.

5 Concluding Remarks

The classification of the SSPEs of the random proposer model for a three-person
game reveals a variety of bargaining outcomes regarding the level of efficiency.
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When the core is nonempty, the grand coalition forms almost surely, and the payoff
allocation is characterized by the coalitional Nash bargaining solution (Compte
and Jehiel 2010). When the core is empty, the equilibrium is inefficient. Our
analysis of a three-person game shows that although no single cooperative solution
appropriately describes bargaining behavior, the concepts of the Nash bargaining
solution, the core, and the marginal contribution are closely related to an SSPE
allocation of the random proposer model. The noncooperative analysis of a three-
person cooperative game is a cornerstone of a promising research program to unite
two different approaches in game theory.
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