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1 Introduction

In this paper, we shall propose an approach to estimating heteroscedastic

parameters of regression error variances that are of unknown form, using

Dirichlet prior pdf in a Bayesian inference. As pointed out by Amemiya

(1985, p.199), the crucial ω vector1 cannot be consistently estimated be-

cause as the number of parameters increases, the sample size also increases

at the same rate, leading to the lack of identifiability of ω. In asymptotics

framework, Eicker (1963) and White (1980) independently developed a well-

known consistent variance-covariance matrix estimator (“HCCM” hereafter)

for the OLS regression coefficient estimator. The methodology we propose

in this paper is a Bayesian that uses information obtained from the HCCM,

in terms of a proposal density of a Metropolis-Hastings (“M-H” hereafter)

algorithm in Markov Chain Monte Carlo simulation. The lack of identifia-

bility of ω poses no problem. For one thing, as in Amemiya (1985) we use

an orthogonal regression that circumvents possible underidentifiability of ω,

and we shall explain this method in detail later2. Second, we impose a prior

on ω so that the vector becomes identifiable in a Bayesian context.

1The ω vector has in its elements, all the normalized diagonal elements of variance-
covariance matrix of the regression error term. The normalization rule for the matrix is
given just below equation (1).

2Amemiya op cit proposes and uses an orthogonal regression to obtain a better per-
forming GLS.

2



The trend in the HCCM literature seems to be how to improve the finite

sample performance of tests of the linear restriction(s) on the coefficient

vector, e.g., Long and Ervin(2000) and Godfrey (2006), among others. We

note that our focus in this paper is in the direct estimation of the elements

of ω. There are papers that deal with statistical inferences of regression

coefficients, when the scedastic function of the error term is unconstrained.

Robinson (1987), for example, assumes it to be a function of regressors, and

derives an GLS estimator that is more efficient than the existing ones. Our

Bayesian estimation of heteroscedasticity should sharpen posterior density of

regression coefficient vector β and/or lead to a better predictive density. It

may also lead to more efficient estimator of β in terms of asymptotic theory

framework as well.

We need to discuss the direct estimation of the ω vector. In financial

returns, ω is nothing but the volatility. In order to access an option pric-

ing, what we need to do first is to come up with a reasonable estimate of

volatility. Our estimation of ω needs no parametric model for the volatility

process such as the GARCH model, since we use information obtained from

the HCCM estimation, in our MCMC simulation. If we wish to estimate

a volatility process in time series data nonparametrically, what we usually

do is to calculate a historical volatility series. But this is just a descriptive

statistic without a theoretical background. Moreover, when it comes to cross

section data, historical volatility calculation breaks down for obvious rea-

sons. Our Bayesian method, on the other hand, should provide a good deal

of theoretical support for cross sectional data.

Our strategy to estimate the ω vector is Bayesian. After assuming a
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usual prior density for the parameters in the regression model, we are able to

write down a joint posterior density. The usual parameters such as regression

coefficients, β, may be easily simulated using the Gibbs sampler scheme. It

is in the simulation of the elements of ω that we use the HCCM. We use

results from HCCM to form the candidate density in the M-H algorithm.

The rest of this paper is organized as follows. In section 2, we set our

regression model. Prior pdf’s are assumed here, and the joint posterior pdf

is derived. Section 3 starts out with our Bayesian MCMC calculation by a

Gibbs sampler. We propose to use the Eicker–White result to simulate ω by

a M-H scheme. Our numerical illustration is very much limited. Section 5

concludes.

2 Model and Assumptions

2.1 Likelihood

We first give a heteroscedastic NLR (normal linear regression) model, as

follows:

yi = x′
iβ + ui, (i = 1, . . . , n) (1)

where yi ∼ dependent variable, xi ∼ K × 1 non stochastic explanatory

variables, β ∼ K × 1 coefficients, and the properties of regression error

term u will be given below. This equation (1), with the assumption on the

disturbance term, ui,

ui|ωi, σ
2 ∼ N(0, σ2ωi) (2)

our single likelihood function for yi has the following distribution

yi| xi, β, ωi, σ
2 ∼ N(x′

iβ, σ2ωi) , (3)
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where ωi (i = 1, . . . , n) is the heteroscedastic variance parameter for ui.

We may switch around the following two notations: ωi =
1

λi

, where λi

refers to the precision parameter. Geweke (1993, 2005) in particular, uses

the λi notation. Greenberg (2008) also.

Let us now present (1) in an matrix form.

y = Xβ + u , (4)

where y ∼ n×1 of yi’s, X ∼ n×K matrix of stacked up x′
i, u ∼ Nn(0, σ2Ω),

and Ω = diag(ω) = diag(ω1, . . . , ωn) ∼ n × n with
n∑

i=1

ωi = tr(Ω) = n. We

may note that tr(Ω) = n restriction is often employed in heteroscedasticity

literature, e.g., Greene (2012, p 308). Our likelihood function for the entire

sample of size n given (3) becomes

`(y|X,θ) ∝ σ−n(
n∏

i=1

ω
−1
2

i ) exp
( −1

2σ2
(y − Xβ)′Ω−1(y − Xβ)

)
, (5)

where we noted |σ2Ω|−1
2 = σ−n

n∏
i=1

ω
−1
2

i . On completing squares on β above,

we obtain another likelihood expression as

`(y|X,θ) ∝ σ−n(
n∏

i=1

ω
−1
2

i ) exp
( −1

2σ2
(νs2 + (β − β̂)′X̃

′
X̃(β − β̂)

)
, (6)

where ν = n − K, νs2 is the sum of squared residuals from the regres-

sion of ỹ on X̃, ỹ = Ω−1/2y, X̃ = Ω−1/2X, and β̂ = (X̃
′
X̃)−1X̃

′
ỹ =

(X ′Ω−1X)−1X ′Ω−1y is the GLS estimator of β. (6) turns out to be useful

for simulating β since it is in a Multivariate Normal form in β.

2.2 Prior to Posterior

Let our parameter vector be θ = (β′, σ2, ω′)′ ∼ (K + 1 + n) × 1. Our

assumption on θ is

π(θ) ∝ π(β) π(σ2) π(ω) , (7)
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where the three arguments of θ are independent in π(θ). We postulate a set

of priors for θ starting with β and σ2 as follows:

β ∼ N(β0, B0), σ2 ∼ IG(
α0

2
,
δ0

2
), (8)

where β0 ∼ K×1, B0 ∼ K×K, α0 and δ0 are hyper parameters in the prior

pdf’s that are assumed to be known, and IG(·) denotes an inverted gamma

distribution.

It should be noted that our prior for ω, needs to satisfy the tr(Ω) =∑
i ωi = n restriction. The best suited prior to this regard, is obviously

Dirichlet with its hyper parameter values the same for all i = 1, . . . , n. This

way, we may effectively represent unknown heteroscedasticity structure and

the needed restriction that the elements add up to one, at the same time. If

we employed Gamma prior, e.g., Geweke (1993, 2005) and Greenberg (2008),

among others, then we are in effect imposing a certain structure in the het-

eroscedasticity.

Since a Dirichlet has the property that its elements add up to one, not n,

we cannot place a Dirichlet prior directly on ω. Instead, we shall assume

ω̃ ∼ D(η), (9)

where ω̃ =
1

n
ω, and D(η) denotes a Dirichlet distribution with a parameter

vector η = (η1, . . . , ηn)′ ∼ n × 1. The values of η will be given later in this

paper.

Note that this assumption on ω̃ implies tr(Ω̃) = 1, thus tr(Ω) = n. If

we make a transformation from ω̃ vector to ω vector, we should arrive at
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our prior distribution on ω that resembles to D(η) aside from normalizing

constant.

π(ω) =
1

n

Γ

(∑
i

ηi

)
n∏

j=1

Γ(ηj)

n∏
h=1

(
ωh

n

)ηh−1

= n
n−1−

∑
h

ηh

Γ

(∑
i

ηi

)
n∏

j=1

Γ(ηj)

n∏
`=1

ω`
η`−1 , (10)

thus its kernel is given by

π(ω) ∝
n∏

i=1

ωηi−1
i . (11)

Given (8) and (11), our joint prior for θ becomes

π(θ) ∝ exp
(−1

2
q

β

) (
1

σ2

)α0
2

+1

exp

(
−δ0

2σ2

)
n∏

h=1

ω̃ηh−1
h , (12)

where q
β

= (β−β0)
′B−1

0 (β−β0). Finally our joint posterior of θ, π(θ|y,X),

is obtained by combining (6) and (12) as

π(θ|y,X) ∝ `(y|X,θ)π(θ)

to obtain

π(θ|y, X) ∝ σ−n(
n∏

i=1

ω
−1
2

i ) exp

(
−ψ

2σ2

)
exp

(−1

2
q

β

) (
σ2

)−(
α0
2

+1)
exp

(
−δ0

2σ2

)
n∏

h=1

ω̃ηh−1
h ,

(13)

where ψ = νs2 + (β − β̂)′X̃
′
X̃(β − β̂). Note that so far as θ is concerned,

ψ depends on β and ω, while q
β

depends on β.

2.3 What is the difference?

We, now, point out a salient feature of our model that distinguishes it from a

class of heteroscedastic NLR model of Geweke(1996, 2005), Greenberg (2008),

among others. In an earlier paper, Chigira and Shiba (2012), we showed
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that a heteroscedastic NLR model ui| λi, σ
2 ∼ N(0, σ2/λi) with a set of

nonconjugate mutually independent priors on θ usually boils down to ui| σ2 ∼

unknown distribution, although it resembles to a Student-t3 . If we further

assume a special prior on λi, viz. a Gamma with an identical shape and scale

parameters, ν = ν1 = ν2, then the resultant ui| σ2 distribution becomes a

fat-tailed homoscedastic Student-t with the parameters (ν, 0, σ2). We, here

note that in both cases, viz. two νi parameters’ case and a single ν parameter

case, Bayesian analysis may be carried out. In particular, single ν case does

not require any MCMC simulation.

The above peculiar result is sometimes construed as a model with Normal

heteroscedastic error term is equivalent to a model with homoscedastic fat-

tailed Student-t error term. We caution the reader that this interpretation

is valid only when we assume a very special prior pdf on the precision pa-

rameter, λi. This is something akin to obtaining an analytically manageable

posterior (in the present case, homoscedastic model) using a set of natural

conjugate priors (in the present case, Gamma prior with identical parame-

ters). If there is a compelling need for such a peculiar prior on λi, then the

above equivalence seems to be of a great value between:

Normally distributed error ==> heteroscedasticity

Student-t fat-tail error ==> homoscedasticity.

What would the effect be if there is only one parameter value ν1 = ν2 = ν

in the Gamma distribution? This is answered in the Appendix below. Such

Gamma random variable would have E(x) = 1 always, and its pdf becomes

3Only in this subsection, λ replaces ω in the definition of the entire parameter vector,
θ.
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concentrated abound it as ν gets large. We may thus conclude that the one

parameter Gamma distribution assumption is rather peculiar.

In view of the above conclusion, we suggest that we depart from λi ∼

Gamma distribution assumption, and adopt more reasonable prior for ui

heteroscedasticity. Notice that if the Gamma prior G(
ν1

2
,

ν2

2
), on λi is

assumed, then n λi’s are assumed to be generated from one single Gamma.

This is in effect assuming a particular structure on the heteroscedasticity of

ui’s. If the interest of the Bayesian analysis, is in finding the parameter of

the structure, ν = ν1 = ν2, then the Gamma distribution assumption may be

justified. But if we are interested in estimating each σ2
i = σ2/λi = σ2ωi then

we need something other than the Gamma assumption. As we developed in

the previous subsection, we employ a Dirichlet prior to this end.

Dirichlet prior on λi or ωi is suitable for Bayesian estimation of het-

eroscedastic variance parameters that have unknown structure, on two grounds.

First, it is free of restrictions from the small number of parameters that gov-

erns the entire shape of the prior pdf. In Geweke’s Gamma pdf prior for

λ ∼ n × 1, ν is the only parameter of the distribution. If the prior pdf of

the λ vector were to be of unknown structure, it should have n parameters.

Secondly, Dirichlet distributed random variables, xi’s, satisfy the
n∑

i=1

xi = 1

constraint by construction. This is a welcome constraint to our setup, where∑
ωi = n restriction, needs to be satisfied a priori.

3 MCMC Simulation of θ

We use notations such as “θ−ϑ.” For instance, “θ−β” implies θ−β = (σ2,ω′)′ ∼

(1 + n) × 1 and so on.
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3.1 Gibbs Sampler for β and σ2

As shown in the two remarks below, tractable fully conditional posteriors of

β and σ2 may be obtained, thus making Gibbs sampler applicable. On the

other hand we need to implement an independence chain Metropolis-Hastings

algorithm for simulating ω.

Remark 1. Fully conditional posterior of β is given by

β|θ−β, y, X ∼ NK(β1, σ−2 B1) , (14)

where B1 = (X̃
′
X̃ + (σ−2B0)

−1)−1, β1 = B1ϕ, and ϕ = X̃
′
X̃β̂ +

(σ−2B0)
−1β0.

Proof From the joint posterior (13), conditional posterior of β becomes

π(β| θ−β,y, X) ∝ exp(

(
−ψ

2σ2

)
exp

(−1

2
qβ

)
∝ exp(

−1

2σ2
Aβ) ,

where Aβ = (β − β̂)′X̃
′
X̃(β − β̂) + (β − β0)

′(σ−2B0)
−1(β − β0). On com-

pleting squares for β, Aβ becomes

Aβ = (β − β1)
′B−1

1 (β − β1) + (β̂ − β0)
′[(X̃

′
X̃)−1 + σ−2B0]

−1(β̂ − β0) .

Hence,

π(β|θ−β, y,X) ∝ exp
(
−1

2
(β − β1)

′(σ−2B1)
−1(β − β1)

)
(15)

The right hand side of (15) may be used to simulate β, however, there is a

simpler set of expressions to that effect. Let

ĨK = (ι ⊗ IK) ∼ K × 2K, b =

(
β̂
β0

)
∼ 2K × 1,

and Q = diag(X̃
′
X̃, (σ−2B0)

−1) ∼ 2K × 2K block diagonal, then we have

B−1
1 = ĨKQĨ, ϕ = ĨKQb, β1 = B1ϕ .
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Remark 2. Fully conditional posterior of σ2 is given by

σ2 | θ−σ2 , y, X ∼ IG
(

n + α0

2
,

ψ + δ0

2

)
(16)

Proof From the joint posterior (13), conditional posterior of σ2 becomes

π(σ2| θ−σ2 , y, X) ∝ σ−n exp

(
− ψ

2σ2

)
(σ2)

−(α0
2 +1)

exp

(
−δ0

2σ2

)

∝ (σ2)
−(n+α0

2 +1)
exp

(
−(ψ + δ0)

2σ2

)
.

3.2 Independence Chain for ω

We now turn to ω simulation. From the joint posterior, (13), we have

π(ω|θ−ω, y,X) ∝ (
n∏

i=1

ω
(η∗

i −1)
i ) exp

(
−ψ

2σ2

)
, (17)

where η∗
i = ηi − 1

2
> 0 for i = 1, .., n in order for η˜ vector to make sense as

a Dirichlet parameter. Let

Aω =
n∏

i=1

ω
(η∗

i −1)
i and Bω = exp

(
−ψ

2σ2

)

hence π(ω|θ−ω, y,X) = Aω Bω. Obviously Aω is a kernel of D(η˜). On

the other hand Bω certainly looks like a Nn(Xβ, σ2Ω), however, as a kernel

of ω, Bω is not of any known form.

We shall use an Independence Chain M-H simulator for ω. Since Bω is not

going to give any clue for a proposal density, we use information contained

in Aω ∼ Dirichlet distribution, for our proposal density. Particular value of

the parameter vector in the proposal density, will be discussed later. In the

following, we shall first give an outline of our M-H strategy.
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3.2.1 Acceptance Probability of M-H on ω

Let the “rth” current value in the chain be ω(r), and suppose that we need

to decide whether to accept ω(′) or not. Then the acceptance probability of

accepting ω(′), given ω(r) would be

α(ω(r), ω(′)) = min

(
1,

π(ω(′), θ−ω|y, X)

π(ω(r), θ−ω|y, X)

f(ω(r))

f(ω(′))

)
,

where f(ω) represents our proposal density for ω, and it is explained in

below. We first take up the ratio of posterior densities in the acceptance

probability. Noting that arguments other than ω cancels out, it becomes

π(ω(′), θ−ω|y,X)

π(ω(r), θ−ω|y,X)
=

∏
i

(
ω

(′)
i

)η∗
i −1

∏
j

(
ω

(r)
j

)η∗
j −1

exp

(
−ψ(′)

2σ2

)

exp

(
−ψ(r)

2σ2

) , (18)

where ψ(′) = (y−Xβ)′
(
Ω(′)

)−1
(y−Xβ), Ω(′) = diag(ω(′)) and this is not to

be confused with a transpose of Ω. Likewise, ψ(r) = (y−Xβ)′
(
Ω(r)

)−1
(y−

Xβ), Ω(r) = diag(ω(r)). Suppose that we employ D(η) as our proposal4 ,

then the ratio of proposal densities above becomes,

f(ω(r))

f(ω(′))
=

π(ω(r))

π(ω(′))
=

∏
i

(
ω

(r)
i

)ηi−1

∏
j

(
ω

(′)
j

)ηj−1 . (19)

Results of (18) and (19) may be put together to produce

α(ω(r), ω(′)) = min

1,

exp

(
−ψ(′)

2σ2

)

exp

(
−ψ(r)

2σ2

) ∏
i

(
ω

(r)
i

)ηi−η∗
i

∏
j

(
ω

(′)
j

)ηj−η∗
j

 . (20)

3.2.2 Proposal Density Parameter

So far, we have just said that our proposal density is Dirichlet with a known

parameter vector. Let this parameter vector be “η◦.” In the numerical ex-

periments below, we have let η◦ = c η̂, where “c” is a tuning constant,
4The details of our proposal density are given later.
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and η̂ is obtained from information that White’s HCCM (Heteroscedasticity

Consistent Covariance Matrix) estimator provides.

Let us briefly describe how we obtain η̂ .5 We first regress y on X by

the OLS to obtain estimated residual vector eols. We then use it to construct

White’s HCCM estimator, Ĥ . Let a vector obtained from Ĥ be ĥ, where

ĥ = vech(Ĥ) ∼ K ′ × n and K ′ = 1
2
K(K + 1). As a regressor matrix to ĥ,

consider X n = [vech(x1x
0
1), . . . , vech(xnx0

n)] ∼ K ′ × n. Regression of ĥ on

X n, i.e.,

ĥ = X nσ
2ω + v , (21)

where v is an appropriate error term vector, will yield an estimator of ω, when

K ′ > n and n > K. When these conditions are not met, we may augment

X by W ∼ n × KW such that W ′(y, X) = 0. Since W is orthogonal

to both y and X, eols would be the same as before, even if we used the

augmented new X. In summary, we may always estimate ω given data, y

and X, using (21). Letting the result from (21) be ω̂ols, our η̂ becomes ω̂ols

with some restrictions imposed on it. We shall discuss such restrictions in

the paragraphs below.

Since setting proposal parameter values would be heavily dependent on

data, we need to outline our numerical experiments that is given in our

earlier paper (Chigira and Shiba (2009)). We set our sample size, n, to be

50. ω̂ols is used to set our proposal density parameter, since we suspect that

White’s HCCM should contain information on V ar(u). In our setting
∑

ωi

is restricted to be n = 50. Note that ω̂ols need not satisfy this condition,

5We refer our earlier discussion paper, Chigira and Shiba (2009) for the details.
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however6. What matters, is the relative magnitude of ω̂ols i’s for i = 1, .., n.

Hence, although “c” in η◦ = c η̂, may be used to adjust the overall level of

η◦, relative magnitude of η̂ is crucial for conveying HCCM information to

proposal density.

Letting ωmax = max(ω̂ols) and ωmin = min(ω̂ols), we may set bounds

for η̂ as max(η̂) = ωmax and min(η̂) = (ωmax/n), say. This certainly

sets max(η̂)/ min(η̂) = n the sample size, but the relative magnitude of

ω̂ols < min(η̂) is ignored. To rectify this situation, we add d > 0 to all ω̂ols i

values. It can be shown that adding d > 0 to both the numerator and to the

denominator, makes the ratio smaller:

ωmax

ωmin
>

ωmax + d

ωmin + d

but the ordering of values of ω̂ols < min(η̂) is now preserved. In summary,

we set

η̂i = ω̂ols i + d

in practice. The actual value of “d” is arbitrary. For instance, in our nu-

merical experiment, n = 50 and d = 1 yielded max(η̂)/ min(η̂) ratio of

9 << n = 50.

4 Numerical Experiments

In the numerical experiments in this section, we employed the same Data

Generating Process (DGP) as in our earlier paper. As to our prior, we used

β ∼ NK(β0, B0), where β0 = 0 and B0 = 104IK .

σ2 ∼ IG
(

α0

2
,

δ0

2

)
, where α0 = δ0 = 10−2.

6Surprisingly, in our numerical experiments, tr(Ω̂ols) is “60.12”. Fair to say that this
is close enough to n = 50.
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Prior Dirichlet parameters and proposal Dirichlet parameters are specified

as follows, where prior parameter vector η = k ιn and k ∼ scalar, ιn ∼ n× 1

vector of all one’s.

Prior η η̂ in Proposal η◦ = c η̂

Case 1 k = 10−4 true ω (as in the DGP)

Cases 2 to 6 five different k’s HCCM based η̂

c in η◦ is given in below. k in Cases 2 to 6 were k = 10−4, 10−2, 100, 10, 50.

Case 1: In this case, we did not need to make bounds restriction on η̂, since

the ratio of maximum to minimum of ω̂ols’s was less than n; actually 3.26

and 0.0747 yielding 43.7 < n = 50. We let c = 36.5 and the acceptance rate

in M-H was 68.94%. Figures 1 and 2 give n = 50 different posterior means

of σ2ωi. Figure 1, in particular, demonstrates that our Bayesian estimation

procedure works, if appropriate proposal density were found. A goodness of

fit measure was computed as :

Dtrue = (σ2ω − σ̂2ω)′(σ2ω − σ̂2ω) = 0.71 .

Cases 2 to 6: In these cases, max(ω̂) = 7.97 and min(ω̂) = 1.157 × 10−4,

thus the ratio was 6.88 × 104 >> n = 50. We imposed a set of bounds

restrictions. Adjustment scalar to be added to each ω̂i was set to be 0.162.

For cases 2 to 5, c = 14.9 yielded acceptance rates in the range 88 to 89%,

and the results seem to resemble each other. For h = 50, however, different c

values brought quite unstable results and acceptance rate often approached

to 100%. Perhaps this fact indicates that h values ought to be small.
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Figures 4 to 6 are h = 1 case. Figure 4 seems to indicate that our

posterior means tracks the true, given values, reasonably well. The goodness

of fit measure was

DHCCM = (σ2ω − σ̂2ω)′(σ2ω − σ̂2ω) = 57.08 .

which is quite larger than Dtrue. The absolute vale, 57.08, in itself does

not render any easy interpretation. We have, thus, computed different mea-

sures for comparison purposes. First, without the bounds constraints in the

proposal parameter η̂, we have

DnoBoundsHCCM = (σ2ω − σ̂2ω)′(σ2ω − σ̂2ω) = 72.07 .

This shows that the bounds constraints are effective. Next, let σ̂2 = e′
olseols/(n−

K) the OLS σ2 estimator, and ω̂ols be the HCCM based ĥ regression esti-

mated coefficient. Then

DolsHCCM = (σ2ω − σ̂2ω̂ols)
′(σ2ω − σ̂2ω̂ols) = 86.51 .

This shows that our Bayesian procedure makes a considerable improvement

over the ĥ regression method.

5 Concluding Remarks

In this paper, we proposed a Bayesian method to estimate regression error

heteroscedasticity structure that is unknown. “Unknown” in the sense that

no structure is assumed. It is well known that when Gamma priors with a par-

ticular set of hyper parameter values are assumed on the precision parameters

of heteroscedastic regression error term , then this leads to a homoscedastic

Student-t regression error term. We pointed out that assuming such priors,
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are in effect, imposing an unwanted structure in the heteroscedasticity. We

have, thus, proposed to use a Dirichlet prior with equal hyper parameter

values. This should represent we “know nothing” status about the structure

of heteroscedasticity.

We, on the other hand, believe that the Eicker-White HCCM (Het-

eroscedasticity Consistent Covariance Matrix estimator) should provide valu-

able information about the heteroscedasticity, although derived from a sam-

pling theory point of view. In empirical analysis, regression equation is bound

to be misspecified. HCCM, in essence, draws heteroscedasticity information

connecting with regressors. Our idea is to use this HCCM information in

the proposal distribution in the Independence sampler. We showed that this

approach is reasonably successful in a numerical experiment.

Finally we may present two tasks that need our attention. The first

one is concerned with a comparison between our Dirichlet prior approach,

and Geweke (1993) type Gamma prior modelling. In the Gamma prior type

modelling, their interest is mainly in inferences of β vector and σ2. Despite

this fact, it is still possible to compute posterior means of the heteroscedastic

parameters in their approach, and compare them with that of our approach.

The second one is about our use of the HCCM information. We certainly

need to make sure that this information improves our result in numerical

experiments. As to the design of experiments, we may result to the many

DGP’s of HCCM papers.
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Appendix: Figures

Figure 1: Posterior Means of the 50 ωi’s: true value

Figure 2: Posterior Std’s of the 50 ωi’s: true value
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Figure 3: Posterior Density of ω1 and ω2: true value

Figure 4: Posterior Means of the 50 ωi’s: HCCM
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Figure 5: Posterior Std’s of the 50 ωi’s: HCCM

Figure 6: Posterior Density of ω1 and ω2: HCCM
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