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1. Introduction

The process of portfolio management is a dynamic process, that is, a sequence of decisions over
time. Therefore, it is quite natural that the theory of portfolio selection, which was originally formu-
lated as the problem of maximizing a target function at a particular date in the future by means of a
single decision at the present, has recently been generalized to the analysis of intertenﬁpéral choices on
asset holding.

Mossin (1968) has asked the following question: Suppose an investor is trying to maximize the
expected utility of the wealth at the end of th #’th period (n=2). If he makes the decision to max-
imize the expected utility of the wealth at the end of the present period, is the decision optimal from
the standpoint of the long-run optimization to maximize the expected utility of the wealth at the end
of the »n’th period? He has found the necessary and sufficient condition on the shape of the utility
function in order for the myopic decision to be optimal from the long-run point of view. The condition
is that the utility function of wealth belongs to a family of functions which includes quadratic, isoelastic
functions as special cases.l) ]

The purpose of this note is to ask an equivalent question in the continuous-time model, and to
obtain a similar resuitv In other words, this note is to provide an alternative proof to the conclusion
obtained by Mossin. Since the proof in his discrete model is rather complicated, we consider our attempt
to prove it in a continuous-time model worth doing.

In section 2, we shall exposite briefly the method of stochastic control with continuous-time vari-
able. Particularly, the sufficient conditions for optimality will be examined explicitly. In section 3, we

shall illustrate the use of the method by solving the problem outlined above.
2. The Method of continuous-time Optimal Conirol

Now we shall explain in an elementary way the continuous-time approach to dynamic stochastic
programming. '

The continuous-time formulation of programming problem under certainty, is written as follows :
The state variable z(¢)--«--- which may be a vector in R”...... is generated by a system of ordinary
differential equations,

dx
& Tl @), c 0, 1),
where ¢ (f) is a piecewise continuous control vector applied to the system at time 7. As the target

function one takes the functional

* Iam very grateful to Professor Harl E. Ryder and Mr. Motoo Kusakabe for their helpful suggestions.
1) See also Hamada (1969). Fama (1970)argues that the multiperiod decision rule is qualitatively similar to
the single period decision rule. But, we are concerned with quantitative as well as qualitative equivalence.
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2) 7@ = j (s (), o (), di+U (w(T), T)

where s is the beginning and T is the end of the planning horizon. In the maximum principle J(¢) is
to be maximized (or minimized)subject to : fixed initial data (z(s), s), terminal data (z(T), T)and the
constraints on the control vector of the form ¢ (t) € K for s<t<T.

For a stochastic optimal control problem, we are faced with a system of stochastic differential
equations _

3) Bt c®, 40

~ where v(#) is a white noise possibly multiplied by a coefficient matrix depending on the state and
possibly on the control of the system at time . For the target function we take the average or expected

value of (2), namely

@ FTOT=E| [ 460, c0. artv @@ |

Beforé proceeding to solving the optimization problem, we recall the fundamental properties of
the stochastic differential equation following Flemming (1970),
(3) can be written in a more rigorous form
(5) de(®) =f (@), c(), Ddita (@), c(t), ds ~
where z is n-dimensional brownian motion.2

The meaning of (5) can be explained as follows : (5)is equivalent to the integral equation
¢ ¢ :
&) z(t) = x(5)+ff(x(r), ¢(z), r)dT+/ o (z(r), ¢(z), 7)dz (2).
s S
¢
The / adz should be interpreted in Ito’s sense that
S

¢ : N-1
© o6, @, 9@ =1im T G, o o) e —s )

where s =7, < 7y -eree <ty=t h=max (z'j“——rj) 3
Suppose we can observe the state vector without lag. Let us assume that there exists the optimal
value of E[ ] (¢)]. Then it must be the function of the initial data, that is

Viz(s),s) =max E[J () ]. Then according to the principle of Dynamic
programming (Bellman 1957) the following functional equation should hold 4 5; : ' ¥
‘ av .
<7> §+nlax [/1 ("v, ¢, S) V+u (x; [ 5):' = 0.
. N e

2) A real stochastic process z(¢) on( s, T) is called one-dimensional brownian motion
i) zis a continuous process (namely, continuous with probability one
il)  z(¢) —z(s)has a normal distribution with mean 0 and variance /—s,
iii) ~z has independent increments, 1. e. if s<t;<t, <. <iyp< T, 2(tj41) —2(t;) are independent for j=1,
’ <o, N—1, .
7= (2, -+, 4p)is called an n-dimensional brownian motion if Zy---2y ATE indepéndent one-demensional
brownian motions.
3) We should note that this integral consists of the limit of the terms which evaluate ¢ at the initial point of
the small time-interval.
4) For example, Florentin (1961), Fleming (1970).
5) From now on we omit the time variable in z () and ¢(#) if it does not lead to confusion.
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where A (z, ¢, s) is a partial differential operator such that

n 2 n
®  Awod) = 3 auleo gt Bllaadg  wherelal = ool
Equation (7) should be solved with the boundary data )
© Ve, T) = U, T).
The derivation of (7)is illustrated in the one-dimensional case in the following way : According to

the principle of optimality, the following relationship should hold for the small As.
(10) "V (z,s) = max {;% (s,¢,9) As—[—fV (z-+dz, s-+4s)dP (dz/z, s) :‘-{—0 (dz)

‘where P(dz]z, s) is the conditional probability distribution given z(s) and s defined by the stochas-
tic differential equation (5).

Let us expand ¥ under the integral sign formally in the Taylor’s series,

3V (dz)? RV (ds)? | PV
(11> V(x—{—d.r,s—]—ds) = V(xy S)+ A +a—‘A +a 2 T os? - 21 +a Js

Azds+---
If we substitute (11) into (10), noticing
f P (dzfn, s) = 1
we obtain
' v v
(12) V(zs) = max[u (z,¢,0)+V(z,s) —}——fodP (dz/z, s) —|~—,§A$

a Vf(A ) 24P (dz|z, s)+82V @)24—4 i-r—fdde(Ax/x, ) -+ }4—0(415)

Since from (5)

fAZ‘dP (dzfz,s) = fdt+o(di)

f(Ax) 24P (Anfz, s) = o*di+o(4t)

by dividing (12) by 4¢ and putting 4¢—0, the higher order of expression than two can be neglected.

Therefore we obtain in the one-dimensional case,

(13) %—~+maX[f(x, c, s)a 1 {0(.1;, , )} s et (a, c, s)} =0

which is a special case of (7). Similarly, one can deduce formally the functional equation (7) in the case
of higher dimensions.

Itis not always easy, however, to find the solution of the nonlinear partial differential equation
(7). In order to prove the existence of a solution, that is, to prove the existence of the optimal control,
some additional conditions are required. Setting aside the existence problem, let us consider here the
sufficiency conditions for the optimality of the solution obtained from the functional equation above.

To prove the sufficiency of the solution sa’cisfying (7) and (9), 'we need the generalized version of
the Tto’s lemma that states : If g satisfies the stochastic dffievential equation (5) and @ (z, s) has continuous
partial devivatives @ gy, Oy Dy, ty =1, 4+, 1, then @ (z, s) satisfies the equation

(14) 0@ (),1) = (@t AP)dt-+0p0dz,

operatoy A being defined by (8).
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By integrating (14) from s to T and taking expected values, we obtain the formula

as - E® (1), T) —ED (z(5),s) = E(@,+AD)dt,
provided that a certain conditions®) are satisfied which are needed to reduce E f @, ¢dz to zero.

If V(, s) satisfies equation (13)under the control policy & then for any other feasible control ¢,

(16) VS+A (.23, Cy t) V+M (.Z, 0, t) g V8+A (JI, é: t) V+’bt (QU, éy t) = 0.
By integrating : .
T r ' T ‘ T,
(17) f (Vo A°V) dH—f udt g/ (V4451 dt-}—f widt = 0.

where A=/ (z, ¢, 1), u’=u (z,¢,t) and so on.
By taking expectation and using (15), we get, (E° being expectation corresponding to control ¢)

. T
(18) E“[V(x(T),T)~V(w(5),8)]+E“f w(z(?),c(),at

s

< BV G, D=V 66,9145 [ ue0,60,na=0

S

That is, by the boundary condition (9),

(19) EU w(z (), 6 ), ) di+U (2(D), r)] < Eé[/fm(t),a@,t)dtwu(n, 7)

= V(z(s),s),

Therefore, ¢ (¢) is optimal.

Thus we can state the following sufficiency theorem :

Suppose V (z, s) is a solution of (7) and (9) such that

a) Vs continuous on Q= (Ty, T) X B, B being a subsel in R,

b)  the partial devivatives Vi,V V., ave continuous on Q, i, §, =1, -, n

¢) in case B is bounded theve exist positive constants C, v such that

(20) Viz,s) = CQA+|z])".

Moveover, suppose that ¢ is a control policy such that for almost all(z, s)e€ Q, A(z, ¢, s) V-+u(z, c, s)is
maximum on K when c=E(z, s).
Then ¢ is the optimal policy.

Let us now turn to the infinite horizon problem. If the maximand is the following discounted sum

(21) E / Wu (2 (), c(®) e Pa,

this includes familiar problems in economics. In the case of infinite horizon, if the generating function
is autonomous, the control and the optimand become functions independent of time. The functional
equation is reduced to -

(22) max[u(z, ¢) +4(z, c) V—BV] = 0.
Thus the parabolic partial differential equation is reduced to an elliptic partial differential equation. If
this is one-dimensional problem, then the equation is an ordinary differential equatoin of the second

order, which is easier to solve. However, since we do not have the boundary condition like (9}, we need

6) These conditions are stated in the sufficiency theorem below as (a), (b), (c). One can see that the defini-

tion of stochastic integral (6) plays a crucial role in cancelling E f Dpodz =0
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an additional transversality condition. This fact gives difficulty in some cases. The following sufficiency
theorem is known (Kushnér 1967).
Suppose V (x)is a solution of (22) with continuous second devivatives, and swppose that
(23) lim EV (z)e T = 0

T—oo

"Then V (z)and the corvesponding contvol ¢(z)gives the maximand among the all admissible ¢ (z)

satisfying
(24) lim B[V (z)e~#7] = 0
T—o0

The outline of proof is as follows: Applying the Ito’s lemma to V (z)e # instead of V(z), we can

get from (22) the following inequality for a large T,
(25) E‘/Tmce‘ﬁ”dt—f—E”V(g;) e‘ﬁTgﬁéf
0 0
If (23) and (24) are satisfied .
(26) : E? / Tu (%, &) e™Pdt — E° ﬁ T (z, c)e~Pdt
0

ZE(V(z) =V (&)e " ——0

r
u’e PTAt--E°V (z) e *T=V ()

This proves the optimality of £(z).
3. An Alternative Proof to the Mossin’s Problem

Suppose an individﬁal or a mutual fund is trying to maximize the expected value of the utility
U (z(T)) defined on the stock of wealth z at the end of the planning period 7. He is assumed to choose
a combination of a risky asset and a riskless asset with a fixed rate of return. Let us assume that the
rate of return on the riskless asset is + and that the rate of return on the risky asset is genera’éed by
the Gaussian process with stationary mean y and variance ¢, Then if we denote the proportion of
risky asset in the total wealth as @, the generating function of the wealth in the continuous version is
written,

27) dz={(u—1}0+i}x di+0Oozx dz,

where ¢ is the normalized brownian motion in a single dimension. The choice problem for the decision
maker is to maximize E[U (z(7T))] with respect to @ (f) subject to (27) and the given value of z(s), s
being the initial time. Then the Bellman equation can be written, V=max E[V (z(T))]

v L 0V @x*e?0%V
(28) - Smax | (e o+ial +120 00

The question to he asked in this section is: What restrictions on the utility function U are needed

=0

in order that the “myopic” decision, that is, the decision to maximize E[U (z(7"))] (7<T)is optimal
also for long-run maximization of E[ (U (z(7))]1? In other words, the question is whether the length of
time to the final date influences the decision. This is what Mossin has called the presence or absence of
the time effect.

Formally, the questidn is under what conditions the two problems: max: E[U (z(7”))] and max:
ETU (z(T))] give identical optimal solutions. This quesﬁdn is again equivalent to the quesﬁon of under
what conditions the solution V (g, #)and V (z, s) yield the same @ for {ss. The conclusion is true if

and only if the optimal # is independent of time,
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Assuming the internal solution, we obtain

. —{ 19V /o*V

¢ z oz/ 05

If ¢ is independent of time, then

19V /8*V
30 ——— e =
(30) s 9] 5 = 9@
should be solved.
Following solution is easily found,
dx_
(31) V=40 [eJaSasrne

(28) is rewritten in view of (29)

v, . Ql’__(ﬁ:ﬁ@ V>2 v _
(32) ds +w3x 20t oz

oz
Then by substituting (31) into (32) we obtain

an_ e () _ar
(33) A (s) fe 29@) dg+-B' (s) +izd (s)e ”g(x)——%—xg () A(s)ed @ = 0

dz
Differentiating (33) by z and dividing by A (s) eJ 29t we get
A (s) { 1 } (p—9)*
= 1+— 4
O TS bgt te(@) tag (@)}

Since both sides are functions of s and z independently, they must be constant. Therefore we
should find g (z) which satisfies

NN | _(y——i)z / = cons
(34) z<1lg($)> 2 (9 @) g @) = const.

Here we should look for the solutions of (34) that are independent of parameters 4, 4 or g. For we
are not interested in the utility functions which permit the myopic decision only when parameters of
distribution take some specific values. Thus we obtain the following type of solutions to (34):

If =0, then we have

(35) . g (x) +x¢’ (x) = const.
that is g (z) =a,+—z-)—, which generate the following type of F.(x).
z

_ A (ax+-b)7+-B with its limiting forms of
(36) F(g) = {4 log (@z+V) +B

Ae®® 1L B. A, B being integration constant.
If 50, we have two types of solutions.
37 g (z) = const.
g 1
(38) Ctloga = — = [p1og(y—p) +qlogy+) I

or

[(y—$)?(y+4) 553 = Ca

where y=gu,C is an integration constant, and p and (—g) —p, ¢>0—are two roots of the equation

7). Use the transformation log z=x'.
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22—)’ 2_%)_2_ == 0, 7 being an arbitrary constant.

The second type of solutions generates F (z) which is crucially dependent on the value of parameters.
Therefore if {20, we have g (z) =const. which generates the type of F(z)as,
Az"+B
A log z+B

If we combine the solution F (z)of (32)and 4 (s) to form V (@, s) and if we note that

Ve, T) = Uz, T)

then we can conclude that the utility functions U (x) which allow the myopic decision to be optimal
coincides with the type of F(z).

(39) | F(z) = |

‘Thus the utility function which permits myopic decision, or which excludes the time effect is either

one of the above type of functions given by (36)and (39). This result is the same as Mossin obtained in
his discrete-time model.

(R ERRBEEE)
REFERENCES

Bellman, R., Dynamic Programming, Princeton University Press, Princeton, 1957. ) )

Fama, E. F., “Multiperiod Consumption-Investment Decisions,” American Economic Review, March 1970, pp.
163~74.

Fleming, W. H., “Optimal Continuous-parameter Stochastic Control,” SIAM Review, Vol. 8, 1970,

Florentin, J. J., “Optimal Control of Continuous-time Markov Stochastic Systems,” Journal of Electronic
Control, Vol. 10, (1961) pp. 473-488. .

Hamada, K., ““A Multiperiod Portfolio Choice and the Existence of Money,” FEconomic Studies Quarterly, Vol.
20, April 1969, pp. 11-20. .

Tto, K., “On Stochastic Differential Equations,” Memoirs, American Mathematical Society, No. 4, 1963, pp.
1-15. )

Kushner, H. J., “Optimal Discounted Stochastic Control for Diffusion Processes, STAM . Journal of Control,
Vol. 5, 1967, pp. 520-31. '

Merton, R. C., “Lifetime Portfolio Selection Under Uncertainty: The Continuous-time Case,” Review of
Economics and Statistics, Vol. 50, 1969, pp. 247-57.

Mossin, J., “Optimal Multiperiod Portfolio Policies,”’ Journal of Business of the University of Chicago, 1968, Vol.
41, pp. 215-29.




