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1. Introduction: Problem Stated

Zellner [5] showed that the e伍ciency of estimation

of the parameters of a multivariate regression may

be asymptotically improved i王Aitken's generalized

least squares method is applied to a whole set of

equations instead of estimating each equation by

least squares. Zellner's procedure is as follows:

Let the regression system be, following Zellner s

notation,

(1)

where yt is a T-component vector of the l-th

dependent variable, I; a TxKj matrix with rank

Ki of observations on Zj nonstochastic variables, /3j

a i^i-component vector of regression coefficients and

ui a T-component vector of random error terms,

each with mean zero. Zellner assumes ui is a vector

of independent and stationary random variables but

within the same period m and uj are correlated.

Write (1) simply as

y-XB+u

Then

Euu′(-2) -

O¥¥I avj- ---oimI

oi¥I aiil--蝣ami

<?MII -M2.I cmmI

(2)

(3)

-here cfjj-吉Eu′iUj. Zellner's esti-ator β* of β is
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obtainedby丘:stobtainingtheleastsquaresestimates

βsecondlycalculatingtheresidualsby砿-y-xp,

thirdlyestimating<7ybyoij-一雛andfinally

calculating

β*-{x'I-ix)-1(x′2-*v)(4)

where2isobtainedbyreplacingoyby∂in2.

zellnerobtainstheasymptoticdistributionofβ*

andshowsthatitisasymptoticallymoreefficient

thanβ.

Thequestionwewanttoposeinthispaperis.

WhathappenstothesuperiorityofZellner'sestimator

overthesimpleleastsquaresestimatori:itheelements

ofarecorrelated?Inthatcasethecovariance

matrixofucannotbeexpressedasMxMblocksof

diagonalmatricesasin(3)andtheelementsofz

specifiedtobezeroin(3)becomenon-zero.Thus,

b〇ththeleastsquaresandZellner'smethodassume

wrongcovariancematrices.IsZellner'smethodstill

betterthantheleastsquaresmethodmthiscase,

becausethecovariancematrixonwhichZellners

methodisbasedis"closer"tothetrueonethan

thatoftheleastsquaresmethod?Or,istheleast

squaresbetter,foritmaybesometimesbetterto

bewhollywrongthantobeonlyhalfwrong?

Toanswertheabovequestionweconsiderfor.

simplicitythecase〟-2andwheretheautocorrelation

ofuisabivariatefirst-orderautoregression.That

IS,

l芸¥xI
L。呈IK:(5)

(or simply y-XB+u)

and

蝣J*it-rlltil j-i+r12M2, t-i+eit

u2t-T21Ul 」-1+r22M2,ォーl+ォ2」

(6)

where　{en}　and　{eu}　are each independent and.

stationary with- mean zero and丘nite covanance matrix

and mutually independent. Assume also that the-
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roots of determinantal equation

経　済

;:三一スr22-ス】-0 are

less than unity in modulus.

We want to compare the asymptotic e抗ciency of

the following four estimators o王the parameters β′s

of model (5)-(6).

(I) The least squares method: This is simply

(X'X) ~lx'y.

(II) Zettner's method: This has been defined above.

(Ill) The least squares method after a quasi first-

difference transformation : Assume each of u¥ and u.

follows a丘rst-order autoregression but is independ-

ent of the other. Estimate the parameters of the

autoregression consistently from the calculated resi-

duals. Transform the variables using these estimates

and apply the least squares method to the trans-

formed regression equations.

(IV) Zellner s method after a quasi first-difference

After transformation described in

(ill), apply Zellner's method.

Each of the above four estimates can be written

in the form, (X′di-1x)-1(x'ci-1y),ォ-1,2,3,4, for

some estimate of the true covariance matrix　2. If
l)

the probability limit of Cj is Cj, the asymptotic

covariance matrix of the i-th estimates is (X'Cj 1

X) ~1x′C^ZCiこ1x{x'ci-lx) -1 which reaches its min-

imum (in matrix sense)

(X'S~ixy

when Ci-2. Hence we may de五ne the asymptotic

・e伍ciency of the i-th estimates by

Eff(i -
¥X'Ct-lx】2

|X C4~12'ci~ x¥ ¥xl~1xL
(7)

But this itself is not a good criterion for c0-pa′rison

"because it depends on X. A natural procedure then

is to consider a lower bound of (7) as g varies within

a certain class. We will use one such lower bound

proposed by Watson [3], namely,

u.去る

LBE(i) =両 (8)

where Xi,星　are the largest and the smallest chara-

Lcteristic root of Cj~1S respectively. Before obtaining

1) In section 3 each Cj is de丘ned in detail.

Because of our assumptions stated after equation
rl

(6), the convergence o王　Ci to Cj in probability

can be easily proved by means of Theorem 3A of

Diananda [11.
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the formulas for右as functions of the parameters

m model (5)-(6), we will, in next section, brie免y

discuss Watson's aforementioned work.

2. The Lower Bound of Efficiency

Consider the regression model y-Xfi-¥-u where y

is a T-component vector of dependent variables, X

a TxK matrix of constants, β a if-component vector

o王parameters to be estimated, and u a T-component

vector of stationary random variables with mean zero.

If one uses Aitken's least squares estimator assuming

the covariance matrix of u is A when it really is B,

the efficiency of the estimator may be de丘ned by

E月:=

Efi=

1X′A-lx

lX′A-'-BA~1x「 x'B-Xx¥

¥Z'Z¥*

¥Z'AZ「 LZ′A-'Z

where Z=A-mX and A=A-1/2BA-1/2.

Let gl(z2,-　蝣,zK t>e the column vectors of Z.

Suppose that zx-h+i, -　-, Zkare characteristic vectors

of A associated with the characteristic rootsスT-h+1,

日,スj<. Without loss of generality we may assume

that Xi<ス2<・--<スT-h- Then, according to theorem

of Watson [3],

EfF ≧
4^-スTーh　　4ス2スT_h-1　　　4スK_たスT-K+X

(ス1+えーーuY　{h十スーーft-1) 2　　スK-h-¥-スT-K+l)

(ll)

In the special case where all the columns of Z

except one are characteristic vectors of d associ-

ated with the charaJctenstic roots of other tha′n the

largest and smallest roots, the lower bound of effi-

ciency is given by

4∫.A

LBE=前面　　(12)
where A and　ス　are the largest and the smallest

characteristic roots of A respectively. We will use

this formula in this paper, just as Watson and

Hannan [4] do in theirs. The use o王the simpler

formula (12) rather than the more general (ll)

may be justi丘ed by observing that both (ll) and

(12) measure how widely scattered the characteristic

roots of A are and hence one behaves somewhat
2)

simila,rly to the other.

Consideration of a lower bound is in the spirit of

mmmax and may be justi丘ed for itself. But there

is a possibility that estimator (a) is better than
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estimator (b) if judged by the lower bound of e伍-

ciency whereas the latter is more e氏cient for most

probable values of g. The smaller is the likelihood

of such a possibility, the better measure the lower

bound of efficiency is. Unfortunately we have not

been able to justify Watson's lower bound fully in

this respect: hence, we must use it with caution.

3. Derivation of Characteristic Roots

ln this section we show how to obtain the char-

acteristic roots required to calculate the lower bound

of efficiency (8) for each of the four estimators we

proposed to compare in section 1.

(I) The least squares method

Put ♂12-0 in formula (16) below. Thus, the char-

acteristic roots of C^　z are, approximately,

xl(w) -÷(笠+!慧
+ 亘塑+垂塑

On　　　　<?22

(ft))/22 (tt>) - 1/12

"11サ22

W-争.7-0,1, ,T-1 (13)
For the meaning of notation, see discussion of (II)

below.

(II) Zellner s method

Partition z naturally as

2-E :)(Ml′,u2′)-I

・^11 -^121

-^21 -"2:」

We want to obtain the characteristic roots of

Gr'lM霊22IJ L
^11 -^12

2t<r¥ ,2,25

2,.:]

where an,<r22, and <r12 are the diagonal elements of

JilX, ^*22> aild 2' respectively.

Let U--¥e翠j; h,k-0,1,蝣蝣,T-1

Then, we have asymptotically,

2) Professor Takeuchi pointed out to me that

L古E (12) is equal to

mm mm
V′ (X'B-lx) -lv

x v v′(X′ 'jrr'x′A-'BA~lx(x′A-'x)-

3) For the asymptotic diagonalization of a

covariance matrix, see Grenander and Rosenblatt

[2, p. 103 f].

-127-

[冒*鵠蝣Ie-II

Ib-1¥冒ul冒-It::芸:¥ruO"I

。u¥va-10-7-ll-^11
Le-7i-1¥lFn芸::]

a-Fll+c-F2i a-Fn+e-F22

c-Fn+b-Fn c-F12+b-Fi!:
(14)

where Fllt F2z, Fu, and F^ are diagonal matrices with

the diagonal elements fu(a>) , /2j (a>) , /12 (o>) , and /2]

(a>) respectively for <y-争, y-O, i, - ・-, T-l.fn(o>)
and, /z2(o>) are the spectral densities of ult and u2

respectively, and /12((u) and /2i(<w) are the cross

spectral densities between u¥, and u2-　They are

defined by

+co

fn(o>)- ∑ (Eult;+ %,占)e~inu
71,=-CO

/22 (<*>) -∑ (Eu2, 。十mォ2, t)e

cく1

/ォ(<サ) -∑ (Eui, i+nV-2,t)e

hi (<・>) -∑ {Evv, j+n%,t)e

15

But the丘rst term of (14) has the same characteristic

roots as C^I, for UU*-U*U-I. Calculating the

characteristic roots of the last term of (14) directly,

we have

h (o>)
2 (au0-22-OV)

+oll -fli (.0>)

lサ22-/n(a) -2<Jn蝣Refu M

(g>)-2<r12蝣Eef12 (a>)+oufui (ォ>)・

-4 (ff n0-22-<7122)(/ll (<u)/z2 (0>) - 1/iz O) 2)

・0-争j-0,1,-～,T-1. (16)
Because of our specification I6),f's are related to

γ′∫　as follows.

r/uw
ul(<D)霊;]

where

- {I-Reu>)-1{I-R′ォーrl (i7)

R-Tilサ"12N

^21r22/

Thereforewehave

/n(<u)-D~l-(l+r222-2r22cosォ+r122)

f22(a>)-D"1-(l+rn2-2rllcos0)+r212)

Wia{<サ)-D蝣[(r12+r21)cosc。

-(ri1712+サ"22サ"21)]18
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|/12 W |2--D-2- [4r12r21 cos2 ffl-2 (r12+r21)

(Tiiru+rnrii) cos a>+ (rnru

+r22r2i) z+ (Vi2-r2i) 2]

where D- (l+rn2) (1十Tii) +rur21(rnr21-2rllr22+2)

-2(rll+r22) (mr-22-ri2r2i+l) cos `。十4(rur22-r12r21)

cos o).

tr's are approximately related to f s by

an-謂fll¥ kj)
・722-請M争)

・712 -請wi2(|ri)

(19)

(Ill) The least squares method afleγ a quasi first-

difference transformation

This method means premultiplying equation (5) by

the transformation operator H to be de丘ned below

and then applying the least squares method to

regressionequation

Hy-HXB+Hu

where

i?-fHx0^

vOHi,

1
T
。
-
-
0

and

滋1′滋　　　ff1 2

px=p lira両二=rn+r12-I♂11

滋2′滋　　　　　　　<T12

pz-p lim --　　--r22+r2i-
i2′, -1ォ2, -I　　　　　<?22

whereて2′　are the calculated residuals.

Thus we have

c3-冒1 -1
where

Qi- (Hi'Ht) '
1

1-pi2

I

pi

pi

Pi
r-i i

(20)

(21)

, 4-1,2.

The characteristic roots of C3 12 are t;he same as

those of

l冒*£*JL。 qJ L冒ul冒* oirZuZul冒oU]
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(22)

where Gi is a diagonal matrix with the diagonal

elements 1-2|ojCOs -V

,TJJ

+pi¥　j-0,1,・・～,T-1

for1-1, 2.

Evaluating the characteristic roots of the last term

of (22), we have

-) -÷{9i (<w)/n (ォ>) +ff2 (<w)/22 (o>)

O)/u (a>)十<?2ォ/22 (a<) ]2

-　　　　　　　　　　　　　　　　　　z]}

o>--j,j-0,l, -～, T-　　　　(23)

where gi(a>) -l-2ptcosa>十pf, i-l, 2.

(IV) Zellner's method after a quasi first-difference

trans蝣formah on

To evaluate C4, we must first evaluate the proba・

bility limit of the variance and covariance of the

calculated residuals of Hu-, and Hu2. They are

・n-jp lim吉(砿i-pA, -i) '(滋i-iサA, -i)

-1+^12 CT22　^12

v22-P lim去(蒜2-Pi品2, -1)′ (品2-P2品', -V

-1十r2l ffll-窓)

vn-p liヰ(品1-PI石-. -0 ′ (品2-Pt石:, -i)

= ♂12γ12γ21(霊-1)
This method means premultiplying equation (20)

by the operator J to be de丘ned below and then

applying the least squares method to

JHy - JHXB + JHu

where J is the matrix such that

JIJこ二

vn-I vn-l

v-,,-1 V22-I

(25)

Thus CrlI-B′J'JHS, the characteristic roots of

which we now set out to evaluate. They are the

same as the characteristic roots of

w*H'WW*J′JWW*HWW*2W

-here W-〔冒呂]・
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But we have

wホ　　Lo p2]

where Pi(i-l,2) is the diagonal matrix with the

diagonal elements

2rf.

l-ojeす　　　y-O, i,一一, T-1.

and W*HW is the complex conjugate of the above.

Thus the lengthy matrix product above can be

simpli丘ed as

vviV,,-V JJnFn ~)r L22F21慧豊芸::]
where Zn is a diagonal matrix with the diagonal

elements ^22-[1-pie狗　y-O,i,・-;T-1,

withvn蝣11-p2e勧　Lnwith　-vu-(l-pxei')
2irf.

2ガi.

(1 -p2e~i3), and i2i with the complex conjugate

of the elements of Ln. F's are de丘ned after equa-

tion (14).

Evaluating the characteristic roots of above directly,

we have

l

h {<サ)

2 (vnv22-ォ122)

・tS± S2 -/K ¥ fii (o)) ¥ i -fll{a>)f2i((o)Xvlsli -vnv2i)

(1+^1 -2/9! COS 0)) (1十p% -2(02 COS 0))}

W-争,.7-0,1,・-蝣-, X-1  (26)

where S-v22(l-2pl cos fl)+/Oi )/n(<w) -¥-vn(l-2p2 cos

a>+pi )fiz {a>) +豊{2(piγn+piriz) cosz a)-[(r21+r12)
(1+oip2) + (pi + pi) (riir12 + r22r2i) ] cos a>+ (1 + p^
(rnru+rzira) + (fii-pi) (r21-*・!.) }蝣

4. Computation

In section　3　we have obtained the formulas for

the characteristic roots required to calculate the lower

bound of efficiency (8) for each of the four estimators

to be compared・ From (13), (16), (17), (19), (21),

(23), (24), and (26), the characteristic roots Aj(iw),

i-l, 2,3,4, can be expressed as functions of the four

parameters ru,r12,r21, and r22 as well as T.

In computing the characteristic roots we丘x T to

be 20. That means, there are 40 roots to compute

for each estimation method, from which the largest

and smallest are to be chosen. For the values of

r's, the following 108 combinations are chosen:

-129 -

rn: 0.2,0.5,0.7

γ22: 0.2,0.5,0.7

r21: 0.2,0.5

r,2: -0.7, -0.5, -0.2,0.2, 0.5,0.7

For rn and r22, only positive values are chosen for

simplicity, for positive autoregressive coefficients are

more likely in economic data. Once we assume ㍗ll

and r22 to be positive, there is no loss of generality

m assuming　γ蝣2i to be positive, for　丘xing　γ　and

r22 and changing signs of r12 and r21 simultaneously

keep the values of /j(a>) invariant.

If the roots of derermmantal equation

lrlニ∴:ニ-0
exceed unity in modulus, equations (6) become unsta-

ble. There are 15 combinations in which ^instability

occurs, and computation is made for the remaining

93 combinations. The results are shown in the appen-
4)

ded table.

・n the table, the values of両and孟and
their ratio are also shown. The former is the geometric

mean of the correlation coefficients between u¥ t and

uitt-i and between u% t and M2 t-i- The latteristhe

correlation coefficient between % and uu- pi and p2

are always positive in our ca,ses.

5. Conclusion

lt is clearly shown in the table that the lower

bound of efficiency of estimator (I) is almost identical

with that of estimator (II), that of (III) is almost

identical with that of (IV), and that the latter two

are considerably higher than the former two in every

combination considered. In other words, when the

residuals follow process (6), application of a quasi

負rst-difierence transformation increases the lower

bound of efficiency considerably, whereas applica′tion

of Zellner s method leaves it almost unaltered. Before

extracting any general conclusion from this result,

we must answer a few doubts that might be cast

about this analysis.

Firstly, the use of the particular lower bound of

efficiency may be questioned. We have already men-

4) Computation was carried out on Burroughs

EIOl in the computation office of the Institute of

Economic Research, Histotsubashi University.
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Table: Lower Bound of Efficiency of the Four Estimators and

Correlation Coefficients (Values in Percentage)o)

・ Vol. 19　No. 2
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tioned this point in section 2.

Secondly it may be thought that the result is

peculiar to the丘rst-order autoregressive model as-

sumed m our study. But we think that this model

does contain some essential characteristics common

with a more general model and we can extend our

conclusion to a more general model to a certain

5) For calculating a12,<7n and a12 in cases 24,

30, 46, 52, 61, 62, 66, 72, 81, 82, 86, 90, and 91

m the table, the following exact formula was used,

rather than the approximate formula (23).

I

all

612

"22冒
1-　　-2rnrn　　　　-ru'

-nini 1-7iiサ"22-rnrn -rnr%

-サ"2i　　- 2r21r22

The approximation is not good in these cases

becasue the value of D becomes extremely small

for some value of也,.

extent. It would be reasonal⊃le to guess that Zellner's

method is not helpful in a more general model

whenever the residuals are auto-correlated to some

extent and that a quasi丘rst-order transformation

is helpful to the extent the residuals are dependent

on their丘rst lags. Regarding this former point, it

should be noted that after the transformation the

residuals no longer follow the　丘rst-order autore-

gression as in (6) and yet Zellner's method represent-

ed by (IV) doesn't do any better than (III).

Thirdly, it may be thought that the superiority

of (III) and (IV) over (I) and (II) and the similarity

of (I) with (II) and (III) with (IV) in the lower

bound of efficiency are due to the fact that in

the combinations of the parameters considered in

this analysis the dependence of a residual on its own
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lagged value is always greater than its dependence

on the other residual. Note that in the table V萩
is meant to be a measure of the dependence of a

residual on its own lagged value and <r12!Ji石高a

measure of the dependence on the other residual.

This observation, however, is only partially true. It

is true that comparison of these two measures explain

the superiority of (Ill) over (II) to some extent. But

the correspondence is never consistent, and moreover

the superiority of (III) over (II) is much- greater

than one could imagine from the largeness of V両
over on!J菰蒜.

In conclusion, we believe that the result of this

study indicates the following advices: (1) If the

residuals are believed to be both a′utocorrelated and

correlated among each, other, and lf we are to use

either a quasi　丘rst-difierence transformation or

Zellner's method, it would be much more rewarding

to use the former. (2) Zellner's method is worth

trying, for, if the residuals are independent either

to begin with or after some transformation, Zellner s

研　　　究 Vol. 19　No. 2

method does increase efficiency as proved m Zelmer s

original paper, and, even if they are not, one can t

be much worse off.
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