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MAXIMAL FUNCTIONS 
FOR 

DISTRIBUTIONS ON OPEN SETS 

AKIHIKO MIYACHI* 

Notation 

The following notations will be used throughout this note. 

If g2 is an open subset of R", then Co"((?) denotes the set of smooth functions with compact 

support in !2, and ~'(12) denotes the set ofdistributions on 9. Iffe ~'(Q) and ipeECo~(g2), 

then <f, c> denotes the value of f evaluated at c. 

A multi-index is an n-tuple of nonnegative integers. If a=(al' ' ' " a*) is a multi-index and 

x=(xl' "" x~)eR", then , 
la I =al + "' + a*, 

x" =xl"I " 'x~"", 

lxl =(~ xj2)1/2 

j=1 

a."f(x)=(a"f)(x)=(a/axD"I ･･･ (a/axD"*f(x). 

If s is a real number, [s] denotes the integer which is defined by [s]~s<[s]+ 1. 

N denotes the set of positive integers. 

Let S2 be an open subset of R" and 0<p;~oo. For measurable functionsfon Q, we set 

l/ P (J If(x)lpdx if0<p<oo l I f I I p,9 = p ) 

ess, sup {If(x)1 ; xeQ} ifp=oo. 

We set LP(Q)= {f; Ilfllp,p<oo} . IfS2=R*, we denote llfllp,p simply by llfllp-

Lll(R") denotes the set of locally integrable functions on R". 

Let S2' and 9 be open subsets of R" with S2'cp. Iffe~'(O) or iff is a function defined 
on Q, then flS2' denotes the restriction off to s2'. 

If E is a measurable subset of R", then IEI denotes the Lebesgue measure of E and XE 
denotes the characteristic function of E. 

supp f denotes the support of f. 

fo g denotes the convolution off and g. 

* Partly supported by the Grant-in-Aid for Encouragement of Young Scientists (No. 62740083) and by the 

Grant-in-Aid for General Scientific Research (No. 62540025, No. 62540145), The Ministry of Education, 
Science and Culture, Japan. 
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I . Introd uction 

One of the results of C. Fefferman and E.M. Stein [5] reads as follows. Take a func-

tion ceCo~(R") with fip(x)dx=1. For anyfe ~'(R"), definef+c(x), xeR~, by 

f +c(x) = su p l( f * t-"c(t-1 .))(x) I -

l >0 

For NeN, xeR" and t>0, we denote by ~fN(x, t) the set of those ceCo~(R~) such that 
supp ipc{yeR"; Iy-xl<t} and lay"ep(y)l~t-"-1'1 for multi-indices a with lal~N. For 

any fe ~'(R~), define f*N(x), xeR~, by 

.f*N(x)=sup {1<f, ~'f>1 ; ipet>Uo~N(x, t)} . 

Then the following holds : If p>0 and N is sufficiently large, the inequality 

l I f *N I I p~C~,p,iv;c I I f +c I I p (1.1) 

holds for all tempered distributionsf. (See [5; S1l].) 

In proving the above result, Fefferman and Stein used Fourier transform; this is the 

reason why their result was restricted to tempered distributions. 

In [11] and [12], Uchiyama gave an alternate proof to the above result, which did not 

use Fourier transform, and at the same time extended the result. Among other things, he 

proved, for all f e ~ '(R") and for appropriate q>0 and N, the following pointwise estimate : 

f ~ N(x) < C~,q,iv,c Mq( f +c)(x), . 

where Mq(･) is defined by 

t>0 Jly-xl<t Mq(g)(x) =sup (t~" Ig(y)lq~y)lh. 

The inequality (1. l) is a consequence of this estimate. 

The purpose of this note is to further extend Uchiyama's result. In particular, we 

shall consider distributions on arbitrary open subsets of R". 

In the next section, Section II, we shall give our results and explain the relationship 

between Uchiyama's results and our results in detail. 

Sections 111 and IV will be devoted to the proofs of our re~ults. 

II. Main Results 

Let {A(t); t>0} be a set of linear transformations of R" with the following properties: 

t-A(t)x is continuous for every xeR", A(t)A(s)=A(ts), A(1)=1 (the identity operator), and 

IA(t)xl~tlxl if t~1. Let r be the positive number for which det A(t)=t,. For each 
xeR"¥ {O} , we denote by p(x) the uniquet t>0 for which IA(t-1)xl =1 ; we set p(O)=0. This 

function p has the following properties : 

p(x + y) ~p(x) + p( y), 

p( - x) Fp(x), 

p(A (t)x) = t p(x), 
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p(x)~1 ifand only if [xl~~l, 

lxl~p(x) if lxl or p(x)~1, 

p(x)~lxl if lxl or p(x)~l. 

For xeR" and t>0, we set 

B(x, t)= {yeR"; p(y-x)<t} . 

It holds that IB(x, t)1=1B(O, l)Itr. For xeR" and ECR", we set 

inf {p(x-y);yeE} if E~c {
 

dis (x, E)= 
if E=c. oo 

For any function ip on R" and for t>0, we define (ip)t by 

(~)t(x) =t~Tip(A(t-1)x). 

As for these matters, see Calder6n-Torchinsky [2]. 

Hereafter, the letter C denotes a constant, which may be different in each occasion. 

The constant C depends only on the dimension n, the group {A(t)} and other explicitly indi-

cated parameters. 

In the following, ~~ denotes the set of polynominals on R" of order not exceeding m. 

Let a>0 andfa function defined on R". IffeLlto.(R"), then we set 

l I f I IA(~)=sup Jlinf t-T-"J I f(y) -h(y)Idy}, 

*,t h B(*,t) 

where the infimum is taken over all he~![･] and the supremum is taken over all xeR" 
and all t>0. Iff$Llto.(R"), then we set I IfllA(*)=oo. We denote by A(a) the set of those 

f for which I If I Id(*)< oo. 

Let a>0, p an open subset of R" and f a function defined on p. We denote by f the 

extension offto R~ whose value is equal to zero outside Q, If 9~R", we set 

I I f I IA(.;p)= I I f I IA(*) + sup { I f(x)1(dis (x, O"))-"} . 

*e~o 

If Q=R", we set llfllA(*;o)=1lfllA(*). We denote by A(a; Q) the set of those f for which 
l I f I l 

A(* ;o) < co. 

REMARK 2.1. If A(t)=tl, the following hold. 

(1) The space A(a) coincides, modulo polynominals, with the homogeneous Besov space 
B*,=". As for this fact, see, for example, [8]. 

(2) Let a>0 and a~N. Then functlons of class A(a) can be characterized by Lipschitz 
continuity of order a-[a] of their derivatives of order [a] (see, e.g., [8 ; S6.2]). Using this 

characterization, we easily see that the inequalities 

Il f I IA(*)~1 IflQl IA(* p)<C Il f I IA(~) 

hold for any !2, open subset of R", and for any functionfon R~ with suppfcQ. (AS for a 

related result, see 307 of the next section.) 

(3) The above result does not hold if aeN. This can be seen from the following example. 

Letn=1. Set 

xlogx if x>1 
f(x)= O if lxl~1 

xloglxl if x<-1. 
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Then, f eA(1) and supp fc {x; 'lxl > 1/2} =9, whereas the in~quality 

I f(x)1<CI I f I IA(1)dis (x, g2') 

does not hold. 

Let ep be a function defined on R~ x R~ x (O, eo). Let 0<L~= and Ka positive function 

defined on the interval (O,L). We assume c. L and K satisfy the conditions (i)-(viii) below. 

(i) c(x, ', t)eCo~(B(x, t)) for all xeR" and t>0. 

(ii) Ilep(x, ', t)llA(b);~Kt r bforall xeR t>0andbe(O L) 

(iii) c(., y, t)ELl(R") and J c(x, y, t)dx=1 for all yeR" and t>0. 

R~ 
(iv) For a bounded function k on R" with compact support and for t>0, we define k~ep(t) 

by 

(k~c(t))(y) =Jk(x)ep(x, y, t)dx; 

then, for all be(O, L) and t>0, we have 

l lk#ep(t) I IA(b)~Kb I Ikl IA(b)' 

(v) If k is a bounded function with compact support and t>0, then k#c(t) is a smooth 

function. 

(vi) For any fe~'(R") and for any t>0, the function x-<f, c(x, ', t)> is locally inte-

grable on R". 
(vii) If k is a bounded function with compact support, fe:~r'(R") and t>0, then 

<f, k#c(t)>=Jk(x)<f, c(x, ', t)>dx. 

(viii) For any open subset Q of R" and for any fe~'(Q), we define the radial maximal 

function Mo,0+(f)(x), xeQ, by 

Mc.D+(f)(x)=sup {1<f, ~)(x, ', t)>1 ; 0<t<dis (x, g2')} ; 

the final condition is that Mo,p+(f) is measurable for any Q and f as mentioned above. 

REMARK 2.2. (1) The estimate l~(x, y, t)1~CbKbt-' holds. This can be proved by the 

use of 307 of the next section. 

(2) The condition (iv) is satisfied if, together with the other conditions, the following con-

r
 dition is satisfied: For multi-indices a with lal <L, the integral jc(x, y, t)(x-y)"dx does not 

depend on y. As for a proof of this fact, see Uchiyama [11; Proof of Lemma 4]. (In the 

notation of [1 1], our space A(a) is denoted by A*/r') 

(3) If ceC0=(B(O, l)) and Jc(x)dx=1, and if we set c(x, y, t)=(ip)t(x-y), then this c 

satisfies the conditions (i)-(viii) with L = ~ . 

Before we state our results, we introduce a terminology. Let b>0, p an open subset 

of R", andfe~'(9). Then we sayfis of order b if there exists a constant M such that 

l< f, c> I ~MI lc1 IA(b;a) for all ce C0=(Q)' 

If Q' is an open subset of p, we say f is of order b on 12' if the restriction f lg2' is of order b. 

The following is our main theorem. 
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THEORl3M. Let p be an open subset of R" and let fe~r'(Q). Suppose for every 
relatively compact open subset 9' ofQ there exists bp,E(O, L) for which f is of order bp, on 9'. 

Then the inequality ' 
l < f, op> I ~C..L.KI lc1 IA(* ;P)1 IMc, p+(f) I Irl(r+*) J2 

holds for all ae(O, L) and all ce C0=(9). 

REMARK 2.3. From the definition of distribution and 306.2 of the next section, we see 

that every f e ~'(!2) is of finite order (i.e., of order b, in our terminology, for some be(O co)) 
,
 on every relatively compact open subset of Q. Hence, if L =co, every fe ~ '(9) satisfies the 

assumption of the Theorem. 

In order to give some corollaries to the Theorem, we introduce some maximal functions. 

Let 9 be an open subset of R" and let f e ~r '(p). 

First, for any a>0 we define the grand maximalfunction M.,J7*(f)(x), xeQ, by 

M.,oi(f)(x)=sup I <f ep> l, 
p
 

where th~ supremum is taken over those c for which there exist yep and t > O such that 

(2. 1) 

xeB(y, t)cQ 
epe coeo(B(y, t)) 

I lc I I A(a)~t~r-a 

This function M*,n*(f) is lower semicontinuous and hence measurable. 

Secondly, for any a>0 and 6 > O, we define the truncatedgrandmaximalfunction M*,n,a* 

Cf)(x), xep, by 

M.,a,d*(f)(x)=sup I<f, ep> l, 
p
 

where the supremum is taken over those ep for which there exist yel2 and t satisfying O < t < a 

and (2.1). 

Thirdly, for 6 >0 we define the truncated radial maximalfunction Mc,0,8+(f)(x), xeQ, by 

Md,,P,a~(f)(x)=sup {1<f c(x, ', t)>1; 0<t<min {6, dis (x, i2')} } . 

Finally, for any measurable function g on R" and for s > o, we define M,[g](x), xeR', by 

M,[g](x)=stu>Po flt~rJ Ig(y)1'dy . v* }
 B(*.t) 

Now the following hold. 

COROLLARY l. Let 9 andfbe the same as in the Theorem, and let 0<a<L. Then 

(2.2) M*, a*Cf)(x)~~C.,L,KM7/(r+*)[(Mc, 0+(f))-](x), xe9. 

If in addition, r/(r + a) <p~=, then 

(2.3) l IM*, p*( f )1 I p, o~~C., L,K, pl IMc, a+( f ) I I p, a' 

COROLLARY 2. Let 9 andfbe the same as in the Theorem, and let 0<a<L and 5 >0. 
Suppose Md,,o,a+(f) is a measurabJefunction. Then 

M*,a,8 (f)(x)<C. L KMr/(r+*)[(Mo,o,a+(f))-](x), xe9. 
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If, in addition, r/(r+a)<p~=, then 

llM*,n,8*(f)llp 0<C* L K pl IMc n a+(f)1 Ip o 

REMARK 2.4. These results are refinements of the results of Uchiyama [1 I] and [12]. 

In [1 I], Uchiyama proved the inequalities of our Corollary I under the a priori assumption 

that feHq(R") for some q~r/(r+a), where Hq(R") is the parabolic Hq space studied by 
Calder6n and Torchinsky [3]. In [12], he treated the case where A(t)=tl and c(x,y, t)= 

J
 

(c)t(x-y), where ceC0=(B(O, l)) and c(x)dx=1, and obtained the following results: For 

any f e ~ '(R") and s>0, Iet 

fc,,+(x)= sup l(f*(c)t)(x)1 ; 
0<t<-_* 

then if e >0, a>0, f e ~ '(R"), xoeR", t0>0 and ipe Co~(B(xo' to))' it holds that 

l<f ip> l<C I lc1 Id(*)l[ fc ,t0+1 l~/(*+') B('o (1+')to) 

, = c,.," * , 
(Note that r=n if A(t)=tl.) In view of Remark 2.3 and 307 of the next section, one can 

easily see that this result is covered by our Theorem. 

III. Preliminaries 

Before we proceed to the proofs of our results, we shall summarize in this section some 

preliminary results. 
The presentation of the material in this section is arranged as follows. Paragraphs 301 

to 308 contain statements. The remaining paragraphs contain the proofs or references for 

proofs. The statements of paragraph x, 301~x~308, are proved (or references for proofs 

are given) in paragraph x + 50. 

Throughout this section, a stands for an arbitrary positive number unless the contrary 

is explicitly stated. 

301. Let !2 be an open subset of R" and suppose 0~R". Then there exist sequences 

{x.} , {r.} and {c.} with the following properties. 

(i) x.el2, r.>0. 

(ii) UB(x., r.)=12. 

(iii) B(x., 20r.)cs2. 

(iv) B(x., 60r.)n~2'~c. 

(v) ~XB(',,lo'.)(x)~Cfor all xeR". 

(vi) If xeB(x., lOr.), then 10r.~~dis(x, ~')~70r.. 

(vii) c.eCo"(B(x., 2r.)). 

(viii) ~ip.(x)=1 for all xe9. 

(ix) If O <t~r., then la."c.(A(t)x)l~C.(t/r.)1'L 

302. Let p be a measure on R" x (O, =), 1;~O and M~0. 

Suppose the inequality 

p(B(x, t) x (O, t))~MIB(x, t)1*+" 
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holds for all xeR" and t>0. Then, for p> l, it holds that 

JJG(f, x, t)P(1+')dp(x, t)~C.,pMl I f I IpP(1+'), 

where 

G(f, x, t)=t~' If(y)Idy 
B(.,t) 

303. Let J be an open cube in R" with sides parallel to the coordinate axes. We de-

note by /(J) the side length of J. Let meN, m~2. M0>0, M~ >0 and f a function of class 

C~ defined on J Suppose that I If ll= J<M and lla"f I l=.J~~M~ if lal=m, and that 

/ ( J)~M~ ~2~2Mo' 

Then for multi-indices a with 0< Ial <m, it holds that 

l I arf I l*. J~2~ " Mol-[*v~M~1*V~ 

304. For xeR" and t>0, we denote by J~~~(x, t) the set ofthose ipECo*(B(x, t)) such 
that I I~'f I l*~~t-'-" and 

Jip(x)x"dx=0 if l,xl~[a]. 

Then for all f eLl*1(R") it holds that 

llf I IA(*)=sup {1<f, c> I ; ipeJ~{~(x, t) for some xeR", t>0} . 

305.1. Let v be a function in C0=(B(O, 1)) with the property that 

{
 
1 if a=0 JV(x)x"dx- O if 0<lal~[a]. 

For feA(a), set F(x, t)=(f*(~)t)(x). Then F(x, t) is a smooth function in xeR" and t>0 

and has the following estimates : 

la."F(A(t)x, t)1;~C*,,llfIIA(.)t" if lal=[a]+1, (3.1) 

latF(x, t) l;~C~ I I f I I A(*)t"-1. (3.2) 

305.2. Conversely, suppose M~0 and F(x, t) is a smooth function in xeR" and t>0 
with the estimates 

la*"F(A(t)x,t)l~Mt" if lal=[a]+1, 

l atF(x, t) I ~Mt"-1. 

Then, as t tends to zero F(x, t) converges uniformly in xeER", and for f(x)=1im F(x, t) 
t~o 

we have I I f I IA(*)~C*M. 

306.1. Iffis a bounded function of calss C[.]+1 and if the derivatives of f of order 

[a] + I are bounded, then f belongs to A(a) and 

I I f I IA(*);~C.([ I f [ l~ + ~ I I a f I l=) 
f*1= [.] + 1 

306.2. Let p be a positive number for which I IA(t)[l~tp for t~1 (cf. Calder6n-Torch-

insky [2; p.2]). Let k be a non-negative integer satisfying kp<a. Let E be an arbitrary 
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compact subset of R". Then the following holds. IffeA(a) and suppfcE, then we can 
modify f on a set of measure zero to obtain a Ck function, which we shall still denote by f 

and we have 

~ Ila"fll*~C.,k,E[IfllA(*)-
I"[~k 

307. If 9 is an open convex subset of R", then the inequalities 

I I f I IA(*)~ I I f IQ[ I ; A(. a);~C*1 If llA(*) 

hold for functions f on R" which vanish outside Q. (Note that the above constant C* does 

not depend on O.) 

308. Let p be an open subset of R" with Q~R". Let {x.} , {r.} and {c~} be as men-
tioned in 301. 

308.1. Suppose that feA(a; S2) and that suppf is a compact subset of p. Set f.(x)= 
f(x)c.(x). Then 

supp f~CB(x., 2r.), 

l I f. I IA(*)~C* I I f I IA(* ;P) 

f.=0 except for a finite number of v's, 

f=~ f. on !2. 

308.2. Conversely, suppose M~0 and suppose g and {g.} are functions on R" such 
that 

supp g.CB(x., 6r.), 

I Ig.1 1 A(*)~M, 

g. =0 except for a finite number of v's, 

g=~:g.. 

Then supp gco and 

I Igl91 1 ; d(. p)~~C*M. 

351. Using a 'dyadic grid' of balls we can carry out an argument regarding the Whitney 

decomposition. Cf. Latter [7] and Stein [9; Chap. VI, S1]. 

352. See Duren [4] or Uchiyama [lO;Lemma l]. 

353. For a proof of this result for the case n=1 and m=2, see Landau [6] or Bourbaki 

[1; Chap. I, S3, Exercice 12]. In the case n=1 and m>2, we can prove the result by induc-

tion on m. ~n the case n = I , we can replace the constant 2~1*1 by 2(~~1*1)1*L) The result 

for the case n > I can be proved by repeated application of the result for n = I . 

. 354. The dual space of the quotient Banach space Ll(B(x, t))/~j[*] can be identified 

wrth the anmhilator of ~~j I m L=(B(x t)). This fact and the Hahn-Banach theorem, com-
bined with a limiting argument, give the desired result. 

355.1. It holds that 

J
 

a."F(A(t)x, t)= f(y)t~ra*"V(x-A(t-1)y)dy. 

It is easy to see that if lal =[a] + 1, the function 
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g( y) =(C*,7t")-It-ra."7(x - A(t-1)y) 

belongs to ~~:*(A(t)x, t). Hence by 304 we obtain (3.1). We can prove (3.2) in a similar way. 

355.2. Let xeR" and t>0. If PeJ~~~t"] and if P(y) coincides, up to the terms of 
degree~[a], with the Taylor senes of the functron F(A(t)y t) expanded about y A(t )x 

then 

IF(A(t)y, t)-P(y)l~C*Mt"Iy-A(t l)xl[.]+1 

From this, we see that 

IF(y t) P(A(t-1)y)1;~C*Mt" if yeB(x, t). 

On the other hand, we have 

(3･3) IF(y, t) - f(y)1 ~Jt I a,F(y, s) Ids~C.Mt". 

Combining the above estimates, we obtain 

If(y)-P(A(t-1)y)1;~C.Mt" if yeEB(x, t). 

From this follows the estimate I IfllA(.)~C.M. The uniform convergence of F(y, t)-f(y) 
follows from (3.3). 

356.1. This can be immediately proved by the use of Taylor's formula. 

356.2. This can be proved by the same method as given in 355.1 and 355.2. We 
shall omit the details. Cf, also [8 ; S6.2]. 

357. We may and shall assume Q~R~. It is sufficient to show the second inequality. 

Define F(x, t) in the same way as in 305.1. Then (3.1) and (3.2) hold. Let xoeoand t0= 

dis (xo' p'). Take pe~2' such that t0=p(xo~P) and set y0=2p-xo' Then, since O is an 

open convex set, it follows that B(yo, to)n~~=c, where ~~ denotes the closure of ~2. From 

this we see that y0$supp F(., to)' Hence (3.1), combined with Taylor's formula, gives 

IF(A(to)x, to) I ~~C* I I f I I d (*)to" Ix - A(to~1)yo I L*]+1 

In particular, we have 

IF(xo' to)1<C*1 If I IA(*)to ' 

From this and (3.2) we obtain 

I f(xo) I ~C~ I I f I IA(*)to 

This implies the result. 

358.1. Fix a function v with the properties of 305.1. Set F(x, t)=(f*(~)t)(x). Let 

xoe9 and t0=dis (xo' Q')' If 0<t<to and A(t)xeB(xo' 2to), then 

(3.4) Ia*"F(A(t)x, t)1;~C~llfllA(~;p)t" if lal=[a]+1 

and 

(3･5) IF(A(t)x, t)1 ~C* I I f I Id(*;a)to ' 
(The inequality (3.4) is given in 305.1, and the inequality (3.5) follows from the estimate 

If(y)l~C*llfllA(*;D)to" for yeB(xo' 3to)') If0<t<to and A(t)yeB(xo' to)' then the cube 

{(xl' x )eR"' Ixj-yjl <t / Vn~t j=1 "" " ' o ' ,"',n} 
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is included in B(A(t-1)x0'2to/t), and hence (3.4) and (3.5) hold in this cube. Hence, we can 

use 303 to see that the inequalities 

[a."F(A(t)x, t) I ;~C* I I f I IA(* ;o)t"I~1/([*1+1)to"(1-1*v(c*]+1)) (3 . 6) 

hold if O;~lal;~[a]+ l, 0<t<to and A(t)xeB(xo' to)' By 305.1 we also have 

(3.7) I atF(x, t) I ;~C* I I f I I A(~ ;o)t"~1 

Take a smooth function h on R with the properties that O;~h(t);~l, h(t)=1 if t~1/2, and 

h(t)=0ift>1. Set 

F.(x, t) =F(x, t)c.(x)h(t/r.). 

Notice thatf.(x)=1im F.(x, t). By (3.6) and 301 (ix), we have 
t~0 

la."F.(A(t)x, t)l~C. .1 Ifl I ; A(* a)t" if lal=[a]+1. 

By (3.5) and (3.7), we have 

la,F.(x, t)1;~C*1 IfllA(*;p)t" 1 

Hence, by using 305.2, we obtain 

l I f.1 IA(*)~~C* I I f I IA(*;n) 

Other claims are clear. 

358.2. Let v and h be the same as in 358.1. Set 

G.(x, t ) =(g.*(V)t)(x)h(t/r.). 

By using 305.1 and 307, we have 

[a*"G.(A(t)x, t)l~C*llg.llA(~)t"~C*Mt" if lal=[a]+1 

and 

I a,G.(x, t) I ;~C* I Ig. I I A(*)t"-1~C*Mt "-1. 

Since supp G.(., t)CB(x., 7r.) and the overlaps of the balls B(x., 7r.) are bounded (301 (v)), 

we can deduce, from the above estimates, that 

la ~G(A(t)x t)1<C Mt" if lal=[a]+1 

and 

[a, ~ G.(x, t)1 ;~C*Mt"-1. 

We now use 305.2 to obtain 

l I ~g.1 1 A(*)~~C*M. 

Moreover, using 307, we have lg.(x)l~C~Mr.". Hence 

lg(x) I ~~ C*Mr."XB(", 6'.)(x)~C*M(dis (x, Q'))". 

A(~ p)<C M. The other claim, suppgc9, is c]ear. Thus llgll ; = 
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rv. proofs of the Main~Results 

Before we proceed to the proofs of the main results, we give two lemmas, which are 

fundamental in our arguments. 

LEMMA 1. Let 1>6>0, T>0, NeN. 0<b<L, geLI*1(R"), and veCo"(B(O, l)). 
Suppose g(x)~0 and 

JV(x)x"dx I if a=0 {
 

O if 0<lal~~[b]. 

Let ipeCo~(R"), xoeR" and t0>0, and suppose supp cCB(xo, to)' Set 

k0=c*(7)to' 

k/ =ip*((~)t02-/ - (V)t02-/+1) a eN), 

pj= {xeR"; g(x)_,_.<TG(g, x, 6t02~/)} aeNU {O} ), 

hj=kjXP/ (jeNU {O} ), 

N 
p' = ~ hj#ep(6t02~/). 

j=0 

Then for all a with 0<a<b the following estimates hold: 

I Ihj I l*;~C*,7 1 Iep I Id(*)(t02~j)", 

supp hjCB(xo' 2to)' 

hj(x)=0 if x$9/' 

supp c'CB(xo' 3to), 

llep*(V)t02-N~ep'llA(*);~C*,b,7Kb(61 */b+ T 16 ")llipl Id(*), 

where j eN U {O} . 

This lemma is a modification of Lemma 5 of Uchiyama [1l]. We shall not give a proof 

to this lemma since we can prove it by only slightly modifying the argument of Uchiyama 
[ibid.]. 

LEMMA 2 Let (? be an o . pen subset of R" with 12~R". Let {x.} , {r.} and {c.} be as 
given in 301. Let 6, T, N, b, g and 7 be the same as in Lemma 1. For ceCo~(12), we set 

ip.=ipc.. Since supp ip.CB(x., 2r.), we can apply theprocess (ip, xo' to)~~((hj), ep') as given in 

Lemma I to each (c., x., 2r.); we denote by h.,/ and ip.' the corresponding h/ and ep'. We set 

ep'=~:ip.'. Then, if0<a<b and ifN is sufficiently large, thefollowing hold: 

c ' e C0=(Q), 

l lh., j I I*;~C*,T I Iip I I d(* ;J2)(2-/r.)", 

supp h.,jCB(x., 4r.), 

h. /(x)=0 if g(x)>TG(g, x, 62~/+1r.), 
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; + C*,b,7Kb(~1-'/b + T-16-")/ I Iip I Il(' ;p)' llip c'[lA(.o)=¥T 

where j eN U {OI . 

PRooF. Since supp ip is a compact subset of Q, there are only a finite number of ~,'s for 

which ip.~0. Hence if we take N sufficiently large, we have 

~] llep ip *(V) N+1. IIA(*･p)<lllcllA(* n) 

' =4 
Now the desired results follow from 308.1, 308.2 and Lemma l. 

Now we shall prove the results stated in Section 2. 

PROOF OF THE THEOREM. Let 0<a<L. Wemay and shall assume M(,,9+(f)eLr/(r+")(J2). 
We shall denote the constants C*,7 and C*,b,7 in Lemma 2 by C*,70 and C*,b,70 respectively. 

First, we assumefis of order a. Set 

g(x)- (Mc,9+(f)(x))T/2(T+") if xe9 f
 O if x~0. Then geL2(R")cLto.1(R"). Take b and v such that a<b<L ~eC"(B(O l)) and 

1 if a=0 {
 

JV(x)x"dx- O if 0<lofl~[b]. 

Take ~ and T such that 0< 6 < 1. T>0 and 

l
 (4.1) C*,b,70Kb(61-*/b+T-16-");~ . T 

Then repeated application of Lemma 2 gives functions ip(t) and h.,j(i), ieN, with the follow-

ing properties : 

N(i) 

(4.2) 9'/ (t) = ~ j~0 h., f t)#c(62-j+1r.)e C0=(9), 

(4.3) I Ih~, f i) I l*~~ C*,702-t+1 1 Iip I I J(* ;a)(2~fr.) 

(4.4) supp h.,f')cB(x., 4r.), 
h.,/(i)(x)=0 if g(x)>TG(g, x, 62~j+1r.), (4. 5) 

M l [~'! - ~1 c(i) I IA(*;n)~2~M I lc1 iA(* ;p)(MeN). 

Moreover, as the proof of Lemma 2 shows, for each i there are only finitely many v's for 

which h.,j(i)~0 with at least onej. Now, sincefis of order a, (4.2) and (4.6) imply ~hat 

M ~ N(i) f (4.7) <f, c> = Iim <f, ~ c(t)>= ~ ~ ~ Ill.j(o(x)<f, c(x, ', 62~/+1r.)>dx 
M-= i=1 i=1 . j=0J ' 

If h.,fi)(x)~0, then from (4.4) and (4.5) we have 

l<f, c(x, ', a2~j+1r.)> l~Mc,a+(f)(x) 

=g(x)2(1+"/r)~(TG(g, x, a2~j+1r.))2(1+*/r). 

From this and (4.7) we obtain 
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l<f c> I~JJG(g, x, t)2(1+'/r)dp(x, t), 

where p is the measure on R" x (O, oo) given by 

JJc(x t)dp(x t)-~ ~ ~ T2(1+'1r)Jlh. ft)(x)lc(x 62~i+1r)dx , , -" ~ , , " . 
i=1 . j=0 

Using (4.3) and (4.4), we easily see that this p satisfies the estimate 

p(B(x, t) x (O, t));~C*,~~~"T2(1+*/r) I Iip I IA(.;o)lB(x, t)11+'/r. 

Hence by 302 we obtain 

I+'/r (J ) (4 8) l<f ip>l~C Ilipll g(x)2dx =C*,~,8,TllipllA(.;p)llMd,,p+(f)jlr/(r+"),p' . ' - ",P,d,T A(~;p) 

This is the desired inequality since v, 6 and T can be taken depending only on a, L and K. 

Secondly, assume that f is of order a' for some a'e(O. L). We shall prove that (4.8) 

still holds (with the same constant C*,7,a,T=C*,L,K). In order to prove this, it is sufficient 

to prove f is in fact of order a. (If this is proved, we can use the results of the first case 

to obtain (4.8).) Take b, b' and v such that a<b<L, a'<b'<L, VeCo*(B(O, 1)) and 

1 ifa=0 {
 

JV(x)x"dx= o if0<lal~max {[b], [b']} . 

Take 6 and T satisfying O < 6 < 1, T>0, (4.1) arid 

1
 C~,,b,,70Kb,(~ 1-"/b' + T-16 -"') <_ 

=4' 
Let g(x) be the same as in the first case. With these 6, T, v and g, we repeat the argument 

of the first case to obtain c(') and h.,j(i) which have, in addition to the properties mentioned 

in the frst case, the property 

M llip- ~: ip(i)llA(* 9) ,･ ~2-Mlliplld(*,;9), MeN. 
i=1 

Since f is now of order a', the equalities (4.7) hold again. Thus, the same argument as in 

the first case gives (4.8). Note that in this case, V' 6 and T depends on a', and hence (4.8) 

obtained above does not immediately imply the conclusion of the Theorem but it implies, 

at any rate, f is of order a, which we wanted to show. This completes the proof for the 

second case. 

Finally, we shall consider the general case. Suppose f satisfies the condition of the 

Theorem. Take an increasing sequence of open sets {9j} such that ~~j rs compact, !2~jc! 

and Uj=1"9J=9. Smce 

Mc,p,~(flQ)(x)<Mc p (f)(x) for xe9 

and since flS2j is of order bj with some b/e(O. L), the result in the second case implies that 

the inequality 

(4.9) I< f ~> l<C~ L K I l~1 1 IIMd, 9+(f)1 Irl(r+") 9 , = , . A(*;nj) , , 
holds for all 9'! eC=(12 ) If epeC*(~2) then ip~Co"(pj) for all sufficiently larg~ j and 

llcI[d(.;pj)~'1lipllA(*;!2) as j~'oo. Hence letting jH,oo in (4.9) we obtam the desrred m 

equality. This completes the proof of the Theorem. 
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PROOF OF COROLLARY 1. Suppose xeBO,, t)cQ, ceCo~(B(y, t)) and I Iiplll(*)~t-r-'. 
By 307, we have 

l lip I I d (*;B('~l)) ~C*t-r-". 

Hence, using the inequality of the Theorem, we obtain 

l < f c> I ~~C..L.K I lc I IA(*;B(y,t)) l'lM(,.B(y,t)+(f IB(y, t)) I Ir/(T+") B(y o 

~C*.L.Kt -r-" I I Me, g +( f ) [ I r/(r+"), B(y, t) 

~C.,L,KMr/(r~")[(Mc,n+( f ))-](x). 

Taking supremum over ep we obtain (2.2). The Hardy-Littlewood maximal theorem (see 
e.g. Stein [9; Chapt. I, S1]) gives the LP inequality (2.3). This completes the proof. 

Corollary 2 can be proved in a similar way. We shall omit the details. 
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