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MAXIMAL FUNCTIONS
FOR
DISTRIBUTIONS ON OPEN SETS

AKIHIKO MIYACHI*

Notation

The following notations will be used throughout this note.
If 2 is an open subset of R*, then C;=(2) denotes the set of smooth functions with compact
support in £, and Z’'(2) denotes the set of distributions on 2. If f€ Z2'(2) and ¢ Cy=(2),
then (f, ¢> denotes the value of f evaluated at ¢.
A multi-index is an n-tuple of nonnegative integers. If a=(ay, . .., as) is 2 multi-index and
x=(xy, ***, X,)ER", then

lal=ay+ -+ an,

X =X"1+"+Xp%n,
n

IXI=(ZIl x /)3,
ij=

32°f(x)=(a°f)(x)=(3/ax1 -+~ (3/9x)*=f ().
If 5 is a real number, [s] denotes the integer which is defined by [s]<s<[s]+]1.
N denotes the set of positive integers.
Let 2 be an open subset of R® and 0 <p=co. For measurable functions f on £, we set

(S |f(x)|1’dx)1/p if 0<p<oo
HA A lp,e={ \/2
ess. sup {|f(x)|; x€2} if p=oo.

We set L2(Q)=1{f; || fllp,a<oo}. If 2=R", we denote ||f||5,o simply by ||f|l5.

LY(R™) denotes the set of locally integrable functions on R=.

Let @' and 2 be open subsets of R* with Q'cQ. If f€ () or if fis a function defined
on 2, then f|0Q’ denotes the restriction of fto £’.

If E is a measurable subset of R”, then |E| denotes the Lebesgue measure of E and yxz
denotes the characteristic function of E.

supp f denotes the support of f.

[+ g denotes the convolution of fand g.

* Partly supported by the Grant-in-Aid for Encouragement of Young Scientists (No. 62740083) and by the
Grant-in-Aid for General Scientific Research (No. 62540025, No. 62540145), The Ministry of Education,
Science and Culture, Japan.
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1. Introduction

One of the results of C. Fefferman and E.M. Stein [5] reads as follows. Take a func-
tion g€ C,=(R") with f¢(x)dx=1. For any f€ Z'(R), define f+¥(x), xER", by

fH(x)=supl(frt="g(t=1))(x).
>0

For NEN, xR” and >0, we denote by <Zx(x, t) the set of those ¢ C,>(R") such that
supp ¢ (yER®?; |p—x|<t} and |3,2¢(y)|<t'« for multi-indices « with |e|=<N. For
any f€ 2'(R?), define f*¥(x), xER™, by

F¥x)=sup {IKf, ¥I; ¢Elgoéé’zv(x, D}

Then the following holds: If p>0 and N is sufficiently large, the inequality

(1.1 1/ *¥ |p=Cop s L/ *#11

holds for all tempered distributions f. (See [5; §11].)

In proving the above result, Fefferman and Stein used Fourier transform; this is the
reason why their result was restricted to tempered distributions.

In [11] and [12], Uchiyama gave an alternate proof to the above result, which did not
use Fourier transform, and at the same time extended the result. Among other things, he
proved, for all f& 27’(R") and for appropriate ¢>0 and N, the following pointwise estimate:

S X)ZCong s Mo(fH9)(X)s,
where M,(+) is defined by
M@@=sup (= |g(isd)e
t>0 ly—x|<t

The inequality (1.1) is a consequence of this estimate.
The purpose of this note is to further extend Uchiyama’s result. In particular, we

shall consider distributions on arbitrary open subsets of R
In the next section, Section II, we shall give our results and explain the relationship

between Uchiyama’s results and our results in detail.
Sections III and IV will be devoted to the proofs of our results.

II. Main Results

Let {A(z); t>0} be a set of linear transformations of R* with the following properties:
t—A(t)x is continuous for every x&R®, A(t)A(s)=A(ts), A(1)=I (the identity operator), and
|A()x|=t|x] if t=1. Let 7 be the positive number for which det A(t)=tr. For each
x<Rm\ {0}, we denote by p(x) the uniquet >0 for which |A(t~?)x|=1; we set p(0)=0. This
function p has the following properties:

o+ PZp(0)+00),
p(=x)=p(x),
(A1) =1 (),
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o(x)=1 ifandonlyif [x|=1,
[x|=Zp(x) if |x| or p(x)=1,
e@)=x| if |x] or p(x)=1.
For x&R*® and >0, we set
B(x, )={yER"; p(y—x)<t}.
It holds that |B(x, ¢)|=|B(0, 1)]¢r. For x&R" and ECR*, we set
dis (x, E)={inf {o(x—y); yEE} _if E+#¢
) if E=¢
For any function ¢ on R” and for ¢>0, we define (¢); by

(B)(x) =t77g(A(71)x).
As for these matters, see Calderén-Torchinsky [2].

Hereafter, the letter C denotes a constant, which may be different in each occasion.
The constant C depends only on the dimension #, the group {A(¢)} and other explicitly indi-
cated parameters.

In the following, 7. denotes the set of polynominals on R* of order not exceeding m.

Let 2>0 and f a function defined on R, If f L1, (R"), then we set

1 lacw=sup {int <[ 17)~hlab},
X,0 h B(x,t)

where the infimum is taken over all he FA, and the supremum is taken over all xeR?
and all t>0. If f& LY, (R"), then we set || f|[4ay=00. We denote by A(a) the set of those
ffOI' which ”f] |A(a,)< oo,

Let @>0, 2 an open subset of R* and f a function defined on 2. We denote by f the
extension of fto R™ whose value is equal to zero outside 2. If 2=R=", we sct

"f”““;"’:”f”““’“LE‘E’E {l/)|(dis (x, 2°))~}.

If Q=R>, we set ||f||ica;00=]]f|l1cc>» We denote by A(a; 2) the set of those f for which
1 N acas0y<oo.

RemMARK 2.1, If A(t)=t], the following hold.
(1) The space A(a) coincides, modulo polynominals, with the homogeneous Besov space
B, * As for this fact, see, for example, [8].
(2) Let a>0 and a&N. Then functions of class A(a) can be characterized by Lipschitz
continuity of order a—[a] of their derivatives of order [a] (see, e.g., [8; §6.2]). Using this
characterization, we easily see that the inequalities

U Nacar =512 ace;00=Call f 1] 1ca>

hold for any 2, open subset of R”, and for any function f on R® with supp fCQ. (As for a
related result, see 307 of the next section.)
(3) The above result does not hold if eeN. This can be seen from the following example.

Let n=1. Set
xlogx if x>1
f(x)={0 if |x|=1

xlog |x| if x<-—1.
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Then, f€A(1) and supp £ C {x; |x]|>1/2} =0, whereas the inequality

[ fGON=CI f ] acpdis (x, 2°)
does not hold.
Let @ be a function defined on R®* x R* x (0, ). Let 0<L=oo and K a positive function
defined on the interval (0,L). We assume @, L and X satisfy the conditions (i)~(viii) below.
@ o, -, HYEC™(B(x, t)) for all x&R* and ¢>0.
i) |19(x, =, O 4ey=Kyt—7-? for all x&R", t>0 and (0, L).

(iii) @(., y, HeIXR") and E @(x, y, t)dx=1 for all yeR" and ¢>0.
R=n

(iv) For a bounded function k on R” with compact support and for >0, we define k#@(r)
by

(HOON) = [k, 3, 1dx;

then, for all 5<(0, L) and >0, we have
[[E#O(E) || 1r=Ks] k|| c0>-

(v) If k is a bounded function with compact support and >0, then k#®(z) is a smooth
function.
(vi) For any f€.<'(R") and for any ¢>0, the function x—{f, &(x, +, t)> is locally inte-
grable on R*, )
(vii) If k is a bounded function with compact support, f € Z'(R") and >0, then

(s 40 =[G, 0, -, Dy
(viii) For any open subset 2 of R” and for any f€.27'(Q), we define the radial maximal
function M0,9+(f)(x): XE.Q, bY
Mo, ot (f)x)=sup {|{f, O(x, , 1)>|; 0<r<dis (x, 2°)} ;
the final condition is that M, o*(f) is measurable for any 2 and f as mentioned above.
REMARK 2.2. (1) The estimate |@(x, y, £)|<C,Ks¢t~7 holds. This can be proved by the

use of 307 of the next section.
(2) The condition (iv) is satisfied if, together with the other conditions, the following con-

dition is satisfied: For multi-indices « with |a| <L, the integral Sd)(x, ¥, D(x—y)=dx does not

depend on y. As for a proof of this fact, see Uchiyama [11; Proof of Lemma 4]. (In the
notation of [11], our space A(a) is denoted by 4,/,.)

() If ¢=Cy=(B(0, 1)) and S¢(x)dx=1, and if we set &(x, ¥, t)=(¢)(x—y), then this @

satisfies the conditions (i)~(viii) with L=o0.

~ Before we state our results, we introduce a terminology. Let 5>0, 2 an open subset

of R*, and f€ 7 '(2). Then we say fis of order b if there exists a constant M such that
[Kf, o> 1=M|B]l 1o for all ¢€CO°°(.Q).

If 2’ is an open subset of 2, we say f is of order b on 2" if the restriction f]2" is of order b.
The following is our main theorem.
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THEOREM. Let 2 be an open subset of R* and let fe Z'(2). Suppose for every
relatively compact open subset Q' of 2 there exists bo (0, L) for which fis of order bor on 2.
Then the inequality '

[<fs 921=Carxl@]| acas00| | Mo, o ()1 /¢r4a3,0
holds for all a€(0, L) and all <= Cy>(R). .

REMARK 2.3. From the definition of distribution and 306.2 of the next section, we see

that every f€ 27'(Q) is of finite order (i.e., of order &, in our terminology, for some be(0, o0))

on every relatively compact open subset of 2. Hence, if L=oco, every f& &'(9) satisfies the
assumption of the Theorem.

In order to give some corollaries to the Theorem, we introduce some maximal functions.
Let 2 be an open subset of R* and let f€ 2 (0).
First, for any a>0 we define the grand maximal function M, o*(f)(x), x€2, by

Mo, o*(f )(x)=SI;P I<f @21

where the supremum is taken over those ¢ for which there exist y2 and >0 such that

xEB(y, )CQ,
(2 1) [¢G Co”(B(J’, t)),
Hollacar=t-7-2.

This function M, ,o*(f) is lower semicontinuous and hence measurable.
Secondly, for any >0 and 5 >0, we define the fruncated grand maximal function Ma,o,s*
(f)(x), x€2, by

Ma,a,a*(f)(x)=sgp KL o>,

where the supremum is taken over those ¢ for which there exist y2 and ¢ satisfying O0<t<§
and (2.1).
Thirdly, for >0 we define the truncated radial maximal function M 0,0, ()(x), x€2, by

Mo,0,* (f)x)=sup {|<f, D(x, +, 1)}|; 0<t<min {5, dis (x, 2°)}}.
Finally, for any measurable function g on R* and for s>0, we define M,[g](x), xR*, by

aisle)=swp {irf  gnrar}”

Now the following hold.

COROLLARY 1. Let 2 and f be the same as in the Theorem, and let 0<a<L. Then

(2.2 Ma, o*(fYX)=Co kM yir105[(Mo, o (f))~1(x), xER.
If, in addition, y[(y + a) <p=<co, then
(2.3) 1Mo, a*(f)ll2,0=Co,z, .5l [ Mo, a* ()] 5, 0.

COROLLARY 2. Let 2 and f be the same as in the Theorem, and let 0<a<L and §>0.
Suppose Mo,o0,s*(f) is a measurable function. Then

Mo, 0,*( YX)=Co, 1, kM 1r10[(Mo, 2,57 ())~1(x), xE0.
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If, in addition, 1[(y +a) <p=oo, then
[[Ma,2,s*(f)15,0=Ca,L,k,| | Mo,0,5*()]]2,0:

REMARK 2.4. These results are refinements of the results of Uchiyama [11] and [12].
In [11], Uchiyama proved the inequalities of our Corollary 1 under the a priori assumption
that f€HY(R") for some g=y/(y+a), where H(R") is the parabolic H? space studied by
Calderén and Torchinsky [3]. In [12], he treated the case where A(t)=t] and &(x,y,t)=

(@)i(x—y), where ¢=Cy>(B(0,1)) and qu(x)dx:l, and obtained the following results: For

any f€ Z'(R") and 5s>0, let
Jo,T(X) :0s<u‘gsl(f*(¢)c)(x)l ;

then if ¢>0, a>0, f€ Z'R"), x,ER?, 1,>0 and ¢< Cy>(B(x,, 1)), it holds that

IS, ¢P1=Co,e,al 1) acarll Fiet9 ™ | nscntar, Bezgycatregd-
(Note that y=n if A(t)=tI) In view of Remark 2.3 and 307 of the next section, one can
easily see that this result is covered by our Theorem.

III. Preliminaries

Before we proceed to the proofs of our results, we shall summarize in this section some
preliminary results.

The presentation of the material in this section is arranged as follows. Paragraphs 301
to 308 contain statements. The remaining paragraphs contain the proofs or references for
proofs. The statements of paragraph x, 301=x=308, are proved (or references for proofs
are given) in paragraph x+ 50.

Throughout this section, @ stands for an arbitrary positive number unless the contrary
is explicitly stated.

301. Let 2 be an open subset of R™ and suppose 2-=R”. Then there exist sequences
{x.}, {r} and {g,} with the following properties.

@ x.e0,r>0.

(i) UB(x,, r,)=20.

(iiiy B(x., 20r,)CL.

(iv) B(x,, 60r,)NQ2°+#4.

) X x5e,0mn(X)=C for all x&eR™.

(i) If x€B(x,, 10r,), then 10r,=dis(x, 2°)=70r..
(vii) ¢.€ Co(B(X., 21.)).
(viii) T gu(x)=1 for all x€2.

(ix) If 0<t=r, then [3;°¢.(A()x)|=C.(t/r.)"\

302. Let z be a measure on R” x (0, o), v=0 and M =0.

Suppose the inequality .
p(B(x, 1) x (0, )=M|B(x, t)[**
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holds for all x&R” and #>0. Then, for p>1, it holds that

5 j G(f, x, P+2dp(x, =Co, o M| f] 1,744,

where

GUx, 0=1r]  1fO)ldy.

303. Let J be an open cube in R* with sides parallel to the coordinate axes. We de-
note by /(J) the side length of J. Let m&N, m=2, M;>0, M, >0 and f a function of class
C™ defined on J. Suppose that || f}|e, <M, and ||6%f ||, y<Mm if |&|=m, and that

)" Mn22"*M,.
Then for multi-indices a with 0< |a| <m, it holds that
119 | o s 52" « Mt =m M i,
304. For x&R" and >0, we denote by % (x, t) the set of those g = Cy>(B(x, 1)) such
that [|¢]]|.=t-7~% and
j¢(x)xadx:0 it lal=[d]

Then for all f & L1,}(R%) it holds that
[1flacas=sup {I<f; ¢>|; € H(x, t) for some x&R*, >0}.
305.1. Let 5 be a function in Cy=(B(0, 1)) with the property that
1 if «=0
ud :{
X”(x)x o if 0<|al=[a)

For f€A(a), set F(x, t)=(f*(y))(x). Then F(x, t) is a smooth function in x€R* and ¢t>0
and has the following estimates:

(3.1 10z2F(A(t)x, )| = Copl| fllaast® if Ja|=[a]+1,
(3.2) [0:F(x, )| =C,l| f 1] acart®

305.2. Conversely, suppose M =0 and F(x, t) is a smooth function in xR™ and >0
with the estimates

|82 F(AO)x,)|=Mte if |a|=[a]+]1,
|8:F(x, )| =M1t°-2,
Then, as ¢ tends to zero F(x, ¢t) converges uniformly in x€R*, and for f(x)=lim F(x, t)
130

we have || f|| xar=Co M.
306.1. If fis a bounded function of calss Cle+! and if the derivatives of f of order
[a]+1 are bounded, then f belongs to A(a) and

H Nary=Ca([lfllot 2 3% Heo)-
fal=[a]+1

306.2. Let g be a positive number for which ||4(¢)[|=¢*# for t=1 (cf. Calderén-Torch-
insky [2; p.2]). Let k£ be a non-negative integer satisfying kg<a. Let E be an arbitrary
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compact subset of R*. Then the following holds. If f&A4(a) and supp fCE, then we can
modify f on a set of measure zero to obtain a C* function, which we shall still denote by f;
and we have

| [Z<:k||3"f||oo§Ca,k,E||f||A<a)-

307. If 2is an open convex subset of R”, then the inequalities

S Naar=H 12| 4ca;0=Call f | aca>

hold for functions f on R* which vanish outside 2. (Note that the above constant C, does
not depend on 2.)

308. Let £ be an open subset of R* with 2=R». Let {x,}, {r.} and {¢.,} be as men-
tioned in 301.

308.1. Suppose that fe4(a; Q) and that supp f is a compact subset of 2. Set fy(x)=

f(x)é.(x). Then
supp f,.CB(x,, 2r.),
Hll 4y = Call £ ace ;00
Jf,=0 except for a finite number of v’s,

f=Xf, onQ

308.2. Conversely, suppose M =0 and suppose g and {g,} are functions on R* such
that
supp g,C B(x,, 6r,),
g llaar =M,
g,=0 except for a finite number of »’s,
g=2xg.
Then supp g2 and
1212/ 4ca;09=Ca M.
351. Using a ‘dyadic grid’ of balls we can carry out an argument regarding the Whitney
decomposition. Cf. Latter [7] and Stein [9; Chap. VI, §1].
352. Sec Duren [4] or Uchiyama [10; Lemma 1].
353. For a proof of this result for the case n=1 and m=2, see Landau [6] or Bourbaki
[1; Chap. I, §3, Exercice 12]. In the case n=1 and m>2, we can prove the result by induc-
tion on m. (In the case n=1, we can replace the constant 2™l by 2¢m—iablal) The result
for the case n>1 can be proved by repeated application of the result for n=1.
354. The dual space of the quotient Banach space LY(B(x,?))/ %, can be identified
with the annihilator of A, in L*(B(x,t)). This fact and the Hahn-Banach theorem, com-

bined with a limiting argument, give the desired result.
355.1. It holds that

0s A, 1)={ f(p)t10ae (0~ AG))dy.

It is easy to see that if |«|=[a]+ 1, the function
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8N =(Ca, ) t7732"9(x — A(t71)y)
belongs to (4(1)x,t). Hence by 304 we obtain (3.1). We can prove (3.2) in a similar way.
355.2. Let x€R* and ¢t>0. If P€E A, and if P(y) coincides, up to the terms of

degree=[a], with the Taylor series of the function F(A(f)y, t) expanded about y=A(t-)x,
then

|F(A)y, 1)— P(y)|=CaMte|y— A(t)x| 1+,
From this, we see that

[F(y, )= P(AQY)|=CoMte if yEB(x, 1)
On the other hand, we have

(.3) IF(y, £)— f(y)léﬁlasF(y, $)|ds=C Mo,

Combining the above estimates, we obtain

| () —PAEHY|=C.Mte if yEB(x,t).
From this follows the estimate ||f[|4a)=CaM. The uniform convergence of F(y, t)— f(3)
follows from (3.3).

356.1. This can be immediately proved by the use of Taylor’s formula.

356.2. This can be proved by the same method as given in 355.1 and 355.2. We
shall omit the details. Cf. also [8; §6.2].

357. We may and shall assume 2+R". It is sufficient to show the second inequality.
Define F(x,t) in the same way as in 305.1. Then (3.1) and (3.2) hold. Let x,€2 and ¢,—
dis (x,, 2°). Take p0° such that ty=p(x,—p) and set y,=2p—x, Then, since 2 is an
open convex set, it follows that B(y,, ;)N 7 =¢, where @ denotes the closure of 2. From
this we see that y,&supp F(-, t,). Hence (3.1), combined with Taylor’s formula, gives

LF(A(t0)x, t)=Collf ]| acarto®]x — A(ty 1)y, e 4L,
In particular, we have
[E(xo, t)|=Call f ] acarte®
From this and (3.2) we obtain
[fx)I=Call f 1 acarto™
This implies the result.

358.1. Fix a function 5 with the properties of 305.1. Set F(x, #)=(f*(7).)(x). Let
xE2 and t,=dis (x,, 2°). If0<z<t,and A()x< B(x,, 2t,), then

(3.9) [82"F(A()x, )|=Callf || aca;0ot® if |al=[a]+1
and
(3.5) |[FCA@)x, DISColl f | acasarte™

(The inequality (3.4) is given in 305.1, and the inequality (3.5) follows from the estimate
[FONZCall f || acasarte® for yEB(xy, 38,).) If 0<t<t, and A(t)yEB(x,, ,), then the cube

{(xl’ s x’ﬂ)ERﬂ; lxl_yil<t0/ \/;t,j=l, cre s n}
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is included in B(A(t~Y)x,,24,/t), and hence (3.4) and (3.5) hold in this cube. Hence, we can
use 303 to see that the inequalities

36) 192 F(A(0)%, 1)|ZCal|f]|aca;aptel/ ST et/ Ca3 i1
hold if 0=|x|=[a]+ 1, 0<z< 1, and A(t)xE B(x,, t;). By 305.1 we also have
(3.7 [8:.F(x, )| =Call f1aca;05t* %

Take a smooth function 42 on R with the properties that 0=<h(¢)=<1, h(¢)=1 if t=1/2,and
h(t)=0ift>1. Set

F(x, t)=F(x, )¢ (x)h(t[r.).
Notice that f,(x)=Ilim F,(x, t). By (3.6) and 301 (ix), we have
t40

182 F(A(0)x, DIZCall flacasart® if  |a|=[a]+1.
By (3.5) and (3.7), we have
[8:F(x, ) =Callfllaca;art*
Hence, by using 305.2, we obtain
[/ acr=Call flacas0>-

Other claims are clear.
358.2. Let 5 and A be the same as in 358.1. Set

G.(x, 1)=(g.*(n))Oh(/r,).
By using 305.1 and 307, we have
102°G(A()x, N =Callg.lscart*SCaMr® if  |a|=[a]+1
and
18.G.(x, )|=Callg. || scart* 1 =CaM1o~L.

Since supp G,(+, t)CB(x,, 7r,) and the overlaps of the balls B(x,, 7r,) are bounded (301 (v)),
we can deduce, from the above estimates, that

|82 2 GA)x, HECMte if  |a|=[a]+1

and
[6: 2 Gux, )| =C. Mte 1,

We now use 305.2 to obtain
[| 28l acay=CaM.

Moreover, using 307, we have |g,(x)|=C.Mr,* Hence
lg(x)léz CaMruaZB(xu,Bru)(x)éca,M(diS (x, Q”))“.

Thus ||g|l1ca;0>=C.M. The other claim, supp gC2, is clear.
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IV. Proofs of the Main Results

Before we proceed to the proofs of the main results, we give two lemmas, which are
fundamental in our arguments.

LemmMA 1. Let 1>6>0, T>0, NEN, 0<b<[, gE L MR™), and = Cy=(B(0, 1)).
Suppose g(x)=0 and

X;y(x)x“dx={l {f a=0
0 if O<|a|=Z[0]

Let $=C>(R™), xo&R* and t,>0, and suppose supp ¢ B(x,, 1,). Set

ko=¢*(n).,,

ky=g#((nege—1—(egz-s1+1) GEN),

2s=1{x€R*; g(x)=TG(g, x, 6t2~7)} (GENU {0}),
hy=ksya, JENU {0}),

N
¢'= 5 h0(01,27)

Then for all a with 0<a<b the following estimates hold:

[1A5lloe = Ca, I || acas(t6279)",

supp h;C B(xg, 2t,),

h(x)=0 if x&Q,,

supp ¢'C B(xo, 31y),

He*(mege-N— "1 4ca>= Cayp,, Ko(6172/° + T25-%)| || 4cas
where j&eNU {0} .

This lemma is a modification of Lemma 5 of Uchiyama [11]. We shall not give a proof
to this lemma since we can prove it by only slightly modifying the argument of Uchiyama
[ibid].

LEMMA 2. Let Q2 be an open subset of R* with Q=R Let {x}, {r.} and {¢.} be as
given in 301. Let 6, T, N, b, g and 7 be the same as in Lemma 1. For $EC(2), we set
$.=¢¢.. Since supp ¢,CB(x,, 2r,), we can apply the process (¢, Xq, t5)—((hy), ¢") as given in
Lemma 1 to each (¢, x., 2r,); we denote by h,,; and ¢, the corresponding hy and ¢'. We set
¢'=2¢.) . Then, if 0<a<b and if N is sufficiently large, the following hold:

' EC(RD),

(1A, 5110 =Ca,511$ 1l 4¢a;0)(277r,)%,

supp h,,;C B(x,, 4r,),

i (x)=0 if g(x)>TG(g, x, 52-7+1r,),
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. 1
llg—g¢'l I/‘(“;mé(}f + Cayp,, Ko(312/2+ T'15_“)) 1] 4cas23,
where jeNU {0}.
ProOF. Since supp ¢ is a compact subset of 2, there are only a finite number of »’s for
which ¢,0. Hence if we take N sufficiently large, we have
1
Zllge— ¢ (e-¥ 41 lace; =7 [l 4cas0>-

Now the desired results follow from 308.1, 308.2 and Lemma 1.
Now we shall prove the results stated in Section 2.
PROOF OF THE THEOREM. Let0<a<L. We may and shall assume My ot(f)E L1/r+e3(Q).
We shall denote the constants Ca,, and Ca,s,, in Lemma 2 by C,,,* and Ca,," respectively.
First, we assume fis of order a. Set

(Mo, 0™ ())) /2t if xeQ
g(x)_{o if x&o0.

Then g€ LAR™)C Li,M(R™). Take b and 7 such that a<b <L, &€ C>(B(0, 1)) and
1 if «=0
xX)xedx=
S”( ) {o it 0<|al<[B].
Take ¢ and T such that 0<s<1, T>0 and
4.1 Ca,p,, Ko(322+ T ‘15“‘)2%.

Then repeated application of Lemma 2 gives functions ¢ and 4,,;®, i€EN, with the follow-
ing properties:

NG)
4.2 ¢gO=3 3 h, 0627 r)E Co=(9),
v j=0
4.3) (17,59 oo = Cayy 27| 4ca;00(2771,)°,
4.9 supp h, S PCB(x,, 4r,),
4.5) h,,$9(x)=0 if g(x)>TG(g, x, 62-1+r,),
M
4.6) H¢ _;l | aca;>=27"||¢1] 4ca;0(M EN).

Moreover, as the proof of Lemma 2 shows, for each i there are only finitely many v’s for
which A, ;0 with at least one j. Now, since f is of order a, (4.2) and (4.6) imply that

@) Lp=lm T = F B T O 00, - 52
-0 1= = v J:

If A, ;9(x)#0, then from (4.4) and (4.5) we have
IS, D(x, =, 5271+r,)) | = Mo, 0t (f)X)
=g(x)2+e/NZ(TG(g, x, §279+1r,))x1+a/D,

From this and (4.7) we obtain
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K, o1= (e, 5 operemdus, )
where p is the measure on R* x (0, o) given by
[fs0x, Ddutx, D=5 51 T Tevarn(ih, o0lg(x, 027+ )dx.
i=1 v j=0
Using (4.3) and (4.4), we easily see that this g satisfies the estimate
p(B(x, 1)x(0, 1))=Ca,,6~ T2 /0| ||| aca;05| B(x, D)I1+/1.
Hence by 302 we obtain

4

1+a/
4.8) XS ¢>1=Ca,ppo,rl |¢||A(a;g)<5g(x)2dx) =Ca,,s,7 19|l 1ca;05l[ Mo, 0 (N1 s¢r400,0-

This is the desired inequality since », § and T can be taken depending only on g, L and K.

Secondly, assume that f is of order a’ for some o'<(0, L). We shall prove that (4.8)
still holds (with the same constant Ca,,,5,r=Ca,z,x). In order to prove this, it is sufficient
to prove f is in fact of order a. (If this is proved, we can use the results of the first case
to obtain (4.8).) Take b, b’ and 5 such that a<b< L, a'<b’'<L, pCy>(B(0, 1)) and

a1 if a=0
S”(x)x dx“{o if 0< |a|<max {[5], [6']}.
Take ¢ and T satisfying 0<g <1, T>0, (4.1) and
Ca',b','qub’((sl-—a’/bl-*- TqB‘“')é—i—.

Let g(x) be the same as in the first case. With these §, T, » and g, we repeat the argument
of the first case to obtain ¢ and 4, ,® which have, in addition to the properties mentioned
in the first case, the property

M
l |¢ - 'Zl ¢0)| IA(a';Q)éZ_M“SbIIA(a’;.O); MeN.
i=

Since f is now of order 4/, the equalities (4.7) hold again. Thus, the same argument as in
the first case gives (4.8). Note that in this case, 5, § and T depends on &', and hence (4.8)
obtained above does not immediately imply the conclusion of the Theorem but it implies,
at any rate, f is of order a, which we wanted to show. This completes the proof for the
second case.

Finally, we shall consider the general case. Suppose f satisfies the condition of the
Theorem. Take an increasing sequence of open sets {2,} such that @; is compact, 2,;CQ
and U;-1>°2,=2. Since '

Moo, (f12)(x)=Mo,0*(f)(x) for x€0;

and since f|Q; is of order &; with some b;(0, L), the result in the second case implies that
the inequality

4.9 Sy o2 I=Corx @l acasopllMo, 0 ()| scr4a, 0

holds for all ¢€Cy>(2;). If g=C>(2), then ¢p=Cy=(Q,) for all sufficiently large j and
[l aca;0 0= |1¢ || 4ca;0> as j—oo. Hence letting j—oo in (4.9) we obtain the desired in-
equality. This completes the proof of the Theorem.



58 HITOTSUBASHI JOURNAL OF ARTS AND SCIENCES

PrOOF OF COROLLARY 1. Suppose x&B(y, )2, ¢ Cy>(B(», t)) and ||¢]|acar=t—7-%.
By 307, we have :

g1 agasBirm=Cat=7%
Hence, using the inequality of the Theorem, we obtain

[Kfs 1= Corx @ atasBiran Mo, 8.0 (F1B(Ys M r/¢r+ay, Br0
SCorxt | Mo,a* (N 1/¢r+0), B0,
=Corx M, 120 [(Mo, 0™ (f))~1(x).

Taking supremum over ¢ we obtain (2.2). The Hardy-Littlewood maximal theorem (see
e.g. Stein [9; Chapt. I, §1]) gives the L? inequality (2.3). This completes the proof.
Corollary 2 can be proved in a similar way. We shall omit the details.
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