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A FORMAL DEDUCTIVE SYSTEM FOR CFG 

TAKASHI NAGASHIMA* 

We will formulate context-free grammar as a form of logical calculus. As against 
the familiar generative (rewriting) system of context-free grammar, our system is deductive. 

That is to say, a word belongs to a language if this fact is deduced within the formal system 

In [H29] Hertz introduced the concept of sentence. A sentence is a formal expression 

of the form 

vl' ' ' " v~-w 

. . , v* and w are atomic "elements." In [G32] Gentzen inves-where the components vl' ' 

tigated Hertz's theory of sentence systems and improved Hertz's calculus. The concept 

of sequent in LJ and LK in [G351 is a_generali~atiQn of Hertz's sentence. The deductive 

system proposed here is a calculus of sequents and it is a generalization of Gentzen's cal-

culus in [G32]. The concept of sequent in our system is a generalization of Hertz's sentence 

in respect of components. With regard to inference rules, we adopt the substitution rule 

in addition to Gentzen's rules in [G32]. 

Though in formal language theories a nonterminal is sometimes called a variable, 

we regard a nonterminal as a unary predicate rather than a variable. For example, a pro-

duction rule such as 

CI~use-,No_un Verb 

means "if a is a Noun and p is a Verb then aP is a Clause" or formally 

Noun[a], Verb[p]- Clause[aP]-

Therefore it seems more natural to regard "Noun," "Verb," "Clause" as predicates than 

to regard them as variab]es. 

Our system is related to the first order predicate logic. The set I* consisting of all 

words over an arbitrary finite alphabet 2 is supposed to be the individual domain. A vari-

able ranges over 2* but a constant denotes an element of E. Any element of the domain 

2* can be denoted by a string of constants. 

The symbols of the system are : 

Predicates : Q, R, . . . (at least one) ; 

Variables: a, p, . . . (countably many) ; 

Constants: a, b, . . . (at least one); 

Auxiliary symbols : [, l, --

The set of predicates and the finite set of constants may be arbitrarily fixed. 

A term is a finite (possibly empty) string consisting of variables and constants. The 

empty term is denoted by e. A formula is an expression of the form Q[x] where Q is any 
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predicate and x is any term. An expression is closed if it contains no variables. A finite 

(possibly empty) sequence of formulas is denoted by F. A or (?. For any variable a and 

any term x, the expression obtained by substituting x for a in a formal expression E is de-

noted as E(a/x). A sequent is an expression of the form 

A1' ' ' " A*-B 

where Al' ' ' " A~, B are formulas. The formulas occurring in the left hand side of "-" 

are called antecedent formulas, and the right hand side formula is called succedent formula. 

If F and A are equal as sets, two sequents F-B and A-~B are considered identical. A se-

quent is trivial if its succedent formula is equal to one of the antecedent formulas. A se-

quent is linear if it has only one antecedent formula. A sequent is tautological if it is trivial 

and linear. A sequent is regular if it has the form Q[a]-R[xa] or -R[x] where x is a closed 

term. An axiom system is a fixed set of sequents, and its members are called axioms. An 

axiom system is regular if all the axioms are regular. 

The inference schemata are as follows. 

Substitution : 

F-A 
F(a/x)-~A(a/x). 

Thinning : 

F-A 
A-A, 

where every element of F occurs in A. 

Cut : 

F-A A, A-B 
r, A-B. 

A proofis a tree consisting of sequents. The one sequent at the root of the tree is called 

the endsequent, and the sequent at any leaf of the tree is called an initial sequent. Each 

sequent except the initial sequents is a lower sequent of an inference. Each sequent except 

the endsequent is (one of) the upper sequent(s) of an inference. If the endsequent is S and 

if every initial sequent is either a tautological sequent or an axiom of K, then it is called a 

proof of Sfrom K. A sequent S is provable from K and denoted as KHS if there exists a 

proof of S from K. 
Let G=(N, 2. P, A) be a context-free grammar. The language generated by G is de-

noted as L(G). Let the set of constants be ~, and suppose that for any nonterminal BeN 

there corresponds a predicate. For the sake of simplicity, we do not distinguish a nonterm-

inal and its corresponding predicate. Any production pePcan be expressed as 

p=(B-xoClxlC2x2 ' ' ' C~x^), 

, cr~ be dis-wheren~~O, BeN, CieN(i=1,2, . . . n). Let al' ' " , n), xieE2:* (i=0, 1, . . . , 

tinct variables and define p* as the sequent 

C1[aJ, a~x*]. . . . , C*[a~]-B[xoalxl ' ' ' 

The axiom system G* is defined as the set 
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G* = {p* I pe P} . 

If the grammar G is regular (right linear) then the axiom system G* is regular. 

Now we will generalize Gentzen's concept of normal proof and prove a normal form 

theorem. A proof consisting of exactly one tautological sequent is normal. A proof con-

sisting of exactly one thinning with a tautological upper sequent is normal. A proof of a 

nontrivial sequent is normal if it satisfies the following conditions : 

(1) No trivial sequent occurs. 

(2) Any cut occurs above neither a substitution nor the left upper sequent of a cut. 

(3) If any thinning occurs, it is the lowest inference. 

The following is a generalization of Theorem 111 in [G32]. Though Gentzen proved 
it in another way, any proof can be transformed into a normal proof by a finitary procedure 

(cf, the remark after Theorem 111). 

THEOREM I . For any axiom s.vstem K and any sequent S, if KHS then there exists a 
normal proof of S from K. 

PRooF. It is clear that any trivial sequent has a normal proof, It is easy to show 

that a proof of a nontrivial sequent can be transformed into a normal proof by permuting 

inferences successively. For instance, if a part of given proof runs: 

F-A A, A-B 
F, A-B B, e-C 

F. A, Q-C, 

then this part is transformed into : 

A, A-B B, e-C 

F-A A. A, e-C 
F, A, e~,C. 

[
l
 

The principal portion of a normal proof consists of the endsequent, the upper sequent 

of every thinning and the right upper sequent of every cut. 

LEMMA. Let G=(N, E, P, A) be a context-free grammar. BeN and xeE(N U 2)*. Jf 
B => *x and x is decomposed as 

x=xoClxlCzx2 ' ' ' C~x* (C(eN, xte2*), 

then 

G*HC1[cYl]' ' a~x~] . . . C*[a~]-B[xoalxl ' ' ' 

for distinct variables al' ' ' " a~. 

PRooF. By induction on the length of a derivation B=> *x. 

Basis: x=B. G*HB[a]~>B[a]. 
Inductive step: Let the last step of derivation be uCw=> uvw, where (C-v) is a production, 

x=uvw and 

u=uoDlul ' ' ' 

v=voElvl ' ' ' 

}v=woFlwl ' ' ' 
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(ut vi wie2*, Dt, Ei, FieEN). By induction hypothesis, the sequent 

D1[aJ, . . . , C[p], F1[rJ,･ ･ ･-B[uoal ' ' ' pworl ' ' '] 

is provable from G*. The sequent 

E [6~, . . .-C[v061 . . .] 

rs an axrom. From these two sequents, the sequent 

Dl[al]' E [61]' . . . , I . . . , F1[rJ, ･ ･ ･-B[uoal ' ' ' v061 ' ' worl ' ' '] 

is deducible by an application of substitution and an application of cut. [I 

THEOREM 2. Let G=(N, E, P, A) be a context-free grammar. If xeL(G) then G*H 
-A[x]. 

PRooF. It immediately follows from Lemma that for ant BeN and any xe2*, if 
B=>*x then G*H -B[x]. ~] 

THEOREM 3. Let G=(N, 2, P, A) be a context-free grammar. If x is closed and G*H 

-A[x] then xeL(G). 
PRooF. There exists a normal proof of -A[x] from G*. Any sequent S in the prin-

cipal portion is closed and its succedent is A[x]. If S runs as 

Bl[y~, B2[y'~, . , . . B~[y~]-A[x], 

then each y, is a subterm of x, and the subterms yl' y2, ' ' ' , y* do not overlap m x We 

define ip(S)e(NU2)* to be the word obtained by replacing each occurrence of yi by Bi 
for every i=1, 2, . . . , n in x. If the antecedent of S is empty then c(S)=x. 

If S1 and S2 occur in the principal portion and if S2 occurs immediately below S1' then 

~(Sl) => ip(S2) in G. Hence by induction, A => *x in G. [] 

As an application, we prove a well-known fact. ~ 

THEOREM 4. A Ianguage is acceptable by a nondeterministic finite automaton if and 
only if it is regular. 

PRooF. Let M=(Q, 2, 6, A, F) (FCQ, 6CQX~X Q, AeQ) be a nondeterministic 
finite automaton. Suppose that for any state BeQ there corresponds a predicate. For 
the sake of simplicity, we denote a state and its corresponding predicate by the same letter. 

The axiom system K is defined as 

K= {(C[a]-B[aa] I (B, a, CDe6} U {-D[e] I DeF} . 

There exists a regular grammar G =(Q, E, P, A) satisfying K=G*. Now we will prove that 

xeL(M) if and only if KH-A[x]. By induction on the length of x, it can be shown that 

if (B, x. C)e~* then KHC[cr]-B[xa]. For any xeL(M) there exists a CeF such that 
(A,x,C)ea*, hence there exists a proof of C[a]-A[xa] from K. By adding the figure 

C[a] - A [xa] 

-C[e] C[e]-A[x] 

-A[x] 
to this proof, we obtain a proof of -A[x] krom K. 
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For the proof of the converse, suppose KH~,A[x] and consider the principal portion 

of a normal proof. Any sequent in the principal portion except the endsequent has the 

form B[y]H,A[xy] and it can be shown that (A,x,B)e:6*. The lowermost part of the proof 

has the form 

~'C[e] C[e]-A[x] 

-A[x] 

for some CeF. It follows that xeL(M). Hence L(M) is regular. 

Conversely, for any regular language L there exists a regular axiom system K, and an 

automaton M such that L(M) =L can be constructed from K. [] 
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