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GRAPHICAL EXPRESSION OF THE LlNEAR LEAST-SQUARE 
THEORY, AND ITS APPLICATION TO THE VLBI 
OBSERVATIONAL EQUATIONS 

KOICHI NAKAJIMA 

I. Introduction 

In the geodetic observations such as Very Long Baseline Interferometry (VLBI) the 

method of least squares is generally used for determining geodetic parameters from observed 

data. In most cases the observational equations are linearized, and its theoretical treatment 

is given as the theory of linear estimation in which the Gauss-Markoff model is applied 

(Rao 1973). 

The linear least-square theory (we abbreviate LLST hereafter) is described in terms of 

vectors and matrices. It seems that some parts should be expressed graphically to help 

visual ' understandings. However, systematic explanations utilizing graphical expressions 

are hardly seen. 

Here we try to give some simplified graphical explanations of a part of LLST, to make 

clear the characteristics of the normal equation. Then we apply this analysis to an example, 

a VLBI observation schedule. 

The summary of the method of analysis is as follows. The coefficient matrix of the 

normal equation determines a (hyper)ellipsoid in an m-dimensional space formed by m 

unknown parameters, and if the composition of the observational equations is improper, 

some axes are elongated abnormally, causing larger errors in many parameter estimations. 

This is because the standard deviation of each parameter is given as the projection of the 

ellipsoid onto each axis of coordinate corresponding to the parameter. The case like this is 

often called "bad separation of parameters." 

In this case, however, we can find a linear combination of unknown parameters whose 

s.d. is rather small, choosing the estimation-axis toward a thinner part of the ellipsoid. To 

obtain the lengths and directions of principal axes of the ellipsoid, we solve an eigen value 

problem of the coefficient matrix of the normal equation. 

Applying this analysis to actual observations, we can judge, quantitatively, the efficiency 

of the observation schedule, or we can find an optimum estimation of parameters in a form 

of their linear combination in case that the condition of observation is restricted. 

II. Equations 

In this section equations describing LLST are summarized in terms of vectors and 
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matrices. Notations are used following Rao's textbook (Rao 1973). 

Let A' be the transpose of a matrix (including a vector) A. Then we use following 
n otati ons : 

Y'=(yl' ' ' " y~) : observed data such as delay times in VLBI. 

n denotes the number of observations. 

X=(xtj I 1 1, . . ., n;j=1, . . ., m) 

n x m known matrix of coefficients of observational equations, 

m denotes the number of unknown parameters. 

P'=(pl' ' ' " p,n) : unknown parameters. 

e'=(al' ' ' " e~)~~(Y-xp)' : residuals, 

Note that each one p determines one e. We expect that a true p determines e such as 

E(e) = O, 

where E(e) means the expectation of e. 

For simplicity we assume that the observations have equal weight and that yt's are 

independent, i,e., 

D(e)=(T21, ((T>0), 

where D(e)=E(e e') denotes the variance-covariance of e, and I is the unit matrix of n x n. 

Further we assume each ei has the normal distribution 

N(ei I O, a2)s(o t/~~;)-1 exp(-a'2/202). . . . . . , , . . . . . . . . . . . . . . . . . . . . . . . . . . ,(2) 

The observational equations are 

which we depict in Figure I . In the case of n~m, the normal equation is 

n 
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which is derived from equation (3) by minimizing e'e, i,e. (Y-Xp)'(Y-Xp). Let ~ be a 

solution of (4), and let 

Then we have 

X'e=X'(Y-X~)=X'Y-X'X~=0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(6) 

If rankX'X=m (i.e. X'X is regular) the solution ~ is determined uniquely and is given by 

~=(X'X)-lX'Y. . . . . . . . . .(7) 
If it is not the case (i,e. rankX'X<m) we can obtain a ~ by using the generalized inverse 

of matrix (Rao 1973, chapter 4 ; Bjerhammer 1 973) . However, we deal with only the former 

case because in this work we are investigating the efficiency of given observational equations, 

assuming that X'X is regular. 

Note that if n=m and X is regular, we can find a solution ~=X-ry, where e'e=0. This 

is a special case of equation (6) because if X is an m x m matrix and is regular, then aC'X-1= 

X-1(X')-1. 
Here we will show that (X'X)-1 gives the variance-covariance of estimated ~ (i,e. variances 

and covariances among ~l' ' ' " ~~). From equations (3) and (1) we have 

DCY)=D(e)=c21. 

. 
(X'Y)=E(X'vy'X)=X'E(YY')X=c2X'X. 
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=a2Q~'X)-1(X'X)[(X'X)-1]' 

=a2(X'X)-1, . . . . . . . . . . . . . . . . . . . . . . (8) 

because X'X and (X'X)-1 are symmetric. 

III. Graphical Expressions of LLST and the Error Ellipsoid 

In this section we display graphically the relations 'among the observational equations, 

the estimated ~, and its error ellipsoid. 

III.1. The relation between observational equations and ~ 

In the m-dimensional space of p, an equation of p 

. . . 
(9) 

determines a hyperplane, whe]'e 

Xt'~(xtl' ' ' " xi,n)' i=1, . . ., n. 

is a row vector of X (see Figure l). Let 

I I Xi I I ~=(Xf 'Xt)1/2, and 

e,~~X,/1 IX,ll (i.e. a unit vector toward X,). 

The hyperplane (9) is perpendicular to et (i.e. Xt), and its distance from the origin (i.e. P=0) 
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FIG. 2. RELATIONS AMONG THE HYPERPLANE Xt'p=yt, et, yt, 6t, AND e, 

ft2 axis 

FIG. 3. RELATIONS AMONG THE HYPERPLANl3S AND ~ ESTIMATED 

BY THE METHOD OF LEAST SQUARES 

is given by yt/[lXill. This is understood from that the projection of every vector P 

onto the direction ei is given by et'p=Xt'p/llX*ll (see Figure 2). 

If a point p is not on the plane (9), there is an et which is given by equation (3). 

case the distance between p and the plane is 

of (9) 

In this 
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6i s abs(ei)/ I I Xi I I , 

as shown in Figure 2. 

As seen in Figure 3, the least-square solution ~ is in the midst of hyperplanes Xp=Y, 

and is given as a point which makes the square-sum of ei=6tllXill (and not that of distances 

~i) be minimum. 

III.2. Distributions of the true p around the estimated ~, and the error ellipsoid 

Next we investigate the distribution of the true p around the estimated ~. The distribu-

tion can be regarded the distribution of ~ itself. From this distribution we will derive the 

error ellipsoid. 

Adopting the Gauss-Markoff model, we have that the distribution of the true p de-

termined by an observational equation 

Xt'p=yt + ei (in which E(ei2)=a2), 

is given by a one-dimensional normal distribution along et, such as 

N(ei/llXill I O, (o/llXtlD2) 

=N((Xi'p-yi)/llXtll I O, (a/llXilD2) 

=N(ei'(p - ~i) I O, (alllXil I)2) 

=N(e('p I ei'~~, (a/llXtlD2), . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(lO) 

where we put y,=Xi'~i (see Figure 4). 

Now let us define the m-dimensional normal distribution by 

N~(pj~, v)=N~(~l~, v) exp[-(1/2)(P- ~)'v~1(p-~)], . . , . . . . . . . . . . .(11) 

FIG. 4. ONE DIMENSIONAL NoRMAL DISTRIBUTION ALONG ei 
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where v denotes the variance-covariance matrix, and N~(~l~, v) is determined by the normali-

zation, so that fN~(pl~, v)dp=1. Using these notations, we test whether or not the dis-
tribution of the true P around the estimated ~ is an m-dimensional normal distribution. 

This distribution is calculated by multiplying n one-dimensional normal distributions 

of equation (10), in the m-dimensional space of p. Rewriting equation (10) into m-dimensional 

form, as 

N~(pl~i, vi) 

=N*( ~, I ~~, vi) exp[ - (1 /2) [ei '( p - ~t)} 21((T/1 IX, I l)2] 

=N~(~tl ~i, v,) exp[ -(1/2) {X,'(p - ~,)} 21(T2], . . . . . . . (12) 

we have 

fi N~(plpi, vt) 

i=1 

=[ll N~(~tl~i, vi)] exp[-(1/2a2)i~l {Xs'(p- ~i)} 2]. . . . . . . . .(13) 

Remembering that Xt'pt=yt=X P e from equation (5) we have 

~ {Xt'(p-~t)J2=~ {Xt'(p-~t)+et}2 
i=1 
=~ {(p-~()'XtXt'(p- ~t) +2~tXi'(P- ~*) + ~t2} 

=(P-~)'X'X(p- ~)+2~'X(p- ~)+e'~. . . . . . . . . . . (14) 

From equation (6) the second term drops, and we have 

i N~(plpi, vt) 

i=1 
=[ll N~(~il~i, vt)] exp[-(1/2c2)(P- ~),X'X(p- ~)] exp[- (1/2(r2)e'e]. . . . . . . (15) 

FIG. 5. RELATIONS AMoNG EACH HYPERPLANE AND THE SDE 
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Thus we have proved that this distribution is an m-dimensional normal distribution whose 

variance-covariance matrix is c2(X'X)-1. Also we have shown equation (8) again. It can 
be seen in equation (15) that the peak of distribution is the highest when ~ is so determined 

that ~'~ is minimum. 
From these analyses we find that those p which give the probability of exp(- l/2) of the 

peak value form a hyperellipsoid in the m-dimensional space, such as 

02=(p- ~)'X'X(p- ~). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ･ . . ･ ･ ･ ･ ･ ･ ･(16) 

The right hand side of equation (16) shows a quadratic form of p which is positive except 

P=~, and then the symmetric matrix X'X is positive definit (see Rao 1973, Ic). Thus this 

ellipsoid is everywhere convex. Let us call it a "standard-deviation ellipsoid" (SDE) be-

cause such a p-~ is called a standard-deviation. In Figure 5 we show graphically the rela-

tions among each hyperplane for each observational equation and the SDE. 

III.3. The properties of the SDE 
In this subsection we investigate the properties of the SDE and their relations to the 

parameters which appear in the LLST. The properties of an ellipsoid are mainly the lengths 

and directions of its principal axes, and to find them is an eigen-value problem. For simpli-

city we put ~ = O hereafter. 

In this case equation (16) becomes 

(12=P'X'Xp. . . . . . . . . . . . . . . . . . . . . , . . . . . . . . . . . . . . . . . . . . . . ･ ･ ･ ･ ･ ･ ･ ･ ･ ･ ･ ･ ･(17) 

Since X'X is a positive-definit m x m matrix as described above, X'X has m eigen values 

lj(j= l, . . ., m) which are all positive. In this case we have an orthogonal m x m matrix 

FIG. 6. RELATIONS AMONG pj, Pj, rj, Ij, AND THE SDE 
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P, such as 

IPI ~(determinant of P)= l, and 

r=P'p or p=Pr, ･ ･ ･ ･ ･ ･ ･ ･･･････ . . ....(18) 
a nd 

p'X'Xp=r'P'X'X Pr 

r'f~ O r = (O 
'
 

1~ 

" =~: Ijrj2. . . . . . . (19) j=1 

The columnal vectors Pj (j= l, . . ., m) of P are the eigen vectors which are shown in Figure 
6. In this case, r'=(rl' ' ' " r~) expresses a set of coordinates of a point p with respect to the 

reference framework formed by P1' ' ' " P~ , 

From equations (17) and (19) we have 

~ 

a2=~ Ijr/2, . . . . . . . . .(20) j=1 

which determines a hyperellipsoid whose principal axis along Pj has length of a V1~~'j (see Figure 
6
)
 
.
 

Let us examine the relation between the SDE and each s.d. of the estimated value of 

an unknown parameter pj. Calculating the distribution of the true pj, we will find its s.d. 

as a function of parameters which determine the SDE, Note that from equation (8) we al-

ready know that the variance of a true pj (or ~!) is given by theJj component of cr2(X'X)-1. 

The distribution of pj is given by 

J ･ ･ *N~(plO, v)dpl' ' ' ' ; ･ ･ ･, dp~. . . . . . . . . .(21) J
 
"
-
~
-~ J

=
 

To calculate one integral =N~(plO, v)dpk(k~j), Iet us see the pk-dependence of N~(plO, v) 

which we denote f~(pk). Since the exponent in N~(plO, v) is a quadratic form of pk, we 

can write 

fm(pk) oc expl-(112(T2) {a2(pk-b)2+c}], . . , . . . . .(22) 

~ 
where a2=,~_1 xik2, and b is a linear combination of pl' ' ' ' k " p~, further c is a quadratic 

form of~l' ' ' k ' " p~. 

Since a is independent of p, the integral JN~(plO, v)dph= Jf~(pk)dpk is proportional to 

the peak value of f~(ph). (The coefficient of the proportion is 6 1/T/a.) Because of the 

same reason, the integral (21) is proportional to the peak value of N~(plO, v) as a function 

of pl' ' ' k ' " p~, that is, (21) is proportional to the peak value of N~(pjO, v) on the hyper-

plane given by pf=constant (see Figure 7). Since the coefficient of proportion is independ-

ent of pj, the distnbutron of p! rs "normal" about p =0. 

Then it is easy to find the s.d. of pj, i.e, a pj at which the probability is exp(-1/2) of 

the peak value that occurs at pj=0, as follows. Such a fij is given as the coordinates pj+ 
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and pj_ of the two extreme points on the SDE toward the direction of pj axis (see Figure 7), 

because at these points the distribution N~(plO, v) confined in the hyperplane pj=p/~ or 

pj=pj_ is maximum, and is exp(- 1/2) of the peak value of N~(plO, v) which occurs at p=0. 
Finally let us see that the Jj component of c2(X'X)-1 (i.e. the variance of ~J) surely cor-

responds to (pj~)2 or (p/-)2. To begin with, Iet us calculate the m-dimensional "volume" 

of the ellipsoid 62=P'X'Xp. From equation (20) and from Figure 6 we see that the volume 

Vp of the parallelotope which surrounds the SDE is given by 

~ (23) Vp=1101Vlj. .......................................･････-
j=1 

In other words the determinant of 02(X'X)-1 is, from equation (19), 

02~ I (X'X)-11 =02~ IX'XI -l 

=a2~lP'X'XPl-l 

~ 
=a2~(Tl; Ij)-l 

=Vp2, . . ... . ..(24) 
because we defined IP[=1. The ratio of the volume of the SDE (denoted by Ve) to that of 

the parallelotope (Vp) is equal to the ratio of the volume of an m-dimensional hypersphere 

to that of a hypercube, and is equal to 

K~ =1T~/2/F(m/2 + 1), 

that is, 

Ve=K~o~ Vabs IX'Xl-1. . . . . . .(25) 
Next we calculate the "area" of a cross-section of the SDE, cut by a hyperplane fij=0. The 

FIG. 7. RELATION BETWEEN THE STANDARD DEVIATION OF ~j AND THE SDE 
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cross-section is an (m- 1)-dimensional hyperellipsoid which is given from equation (17) by 

putting pj=0, and is 

2=(pl' ' ' " o O, . . ., p~)X'X pl 

O
 

p* , 
that is equal to 

a2=(Pl' ' ' ' ' ' ' " P,n)S pl ,j 

j.< 

pm ' ' ' ' ' '(26) 
where S denotes an (m- 1) x (m - 1) matrix which is made from X'X by omitting j-th row and 

j-th column. Therefore, the area of the cross-section (denoted by Se) is given by 

Se=K~_lam I . . . . . .(27) 
On the other hand, we know, from the theorems of matrices, that Jj component of the inverse 

matrix of X'X is given by 

(X'X)-1Jj=(_ 1)j+/lSI/lX'Xl. . . . . . . . . . . . . . . . . . . . . . . .(28) 

Thus from equations (25), (27) and (28), we have 

a V(X'X)-1=K~Ve/K~_lSe' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' . . . . . .(29) 

which we see m Frgure 8 rs the hight of the top of the SDE above the hyperplane pj=0. 

FIG. 8. RELATIONS AMoNG THE Jj COMPONENT OF VARIANCE-COVARIANCE 
MATRIX, AREA OF THE CROSs-SECTloN, AND THE VOLUME OF SDE 
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IV. Application of the SDE Analysis to the Geodetic Observations 

Applying the SDE analysis to actual observations and investigating the shape of the 

SDE, we can judge the efficiency of observations quantitatively, or we can find an optimum 

estimation of parameters in a form of their linear combination if the condition of observation 

is restricted. In this section we explain how to apply this analysis and then see how useful 

it is, by using an observation schedule of a geodetic VLBI experiment. 

IV,1. Observational equations of geodetic VLBI 

Here the "geodetic VLBI observation" means such an observation as to determine three 

components of a baseline vector and a clock parameter in the reference framework formed 

by some radio sources whose coordinates are assumed to be well determined. Note that 
the "baseline vector" means a vector connecting two antennas, and the "clock parameter" 

means the clock difference between the two sites. By the geodetic VLBI observation we 

can determine these parameters with an unprecedentedly high accuracy, e,g. with a few 
centi-meters or with 0.1 nano-second for as long a baseline as intercontinental. 

As we know rough values of these parameters, we can choose the unknowns to be their 

small corrections, thus the observational equations can be linearized. In the case of our 

simple model, however, the observational equations are originally linear. Let us take a 

reference frame which rotates with a fixed speed with respect to the frame formed by the 

radio sources. Choosing the rotation speed as close to that of the Earth as possible, we can 

treat the baseline vector not changing with time in a relatively short time interval (e.g. a few 

hours). Although vectors pointing radio sources are not constant with time, they can be 

treated as known parameters at a given moment of time, because the rotation speed is fixed. 

Let us introduce the observational equations for the geodetic VLBI. What we observe 

by the VLBI are the "delay" and the "delay-rate," in which the "delay" means the difference 

FIG. 9. RELATIONS AMONG TH13 PARAMl3TERS WHICH AppEAR 

IN THE OBSERVATIONAL EQUATIONS 

~ i-th 
radio 

source 

c (rg-rc) ¥ 
~
~
¥
~
p
t
:
o
 ¥js: ¥~'b 
¥'¥~22' 

antenna 
antenna 

site A 

b
 

site B 

the Earth 



72 HrroTSUBASHI JOURNAL OF ARTS AND SCIENCES [December 

of arrival time of a radio signal between the two antennas. Here we consider only the case 

of delay measurement. Let s be a unit vector pointing to a radio source, and b be the baseline 

vector. Let Tg be the observed delay time. As seen in Figure 9, we have, as an i-th ob-

servational equation, 

c(rb)'=b'st+cfc, ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' 

where c denotes the light-velocity, and ce be the clock advance of the site B against the site 

A. Since the unknown parameters are b and rc, we can find the correspondences 

P' = (cr b b b.) 
c, x, v, 

Xi'=(1, sie, siv, stz) , ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '(31) 

yi = (cTg)i 

where we take into account the dimensions of parameters. 

IV.2. An example of the VLBI observation schedule used here 

Since we investigate only the SDE (i.e. X'X), we use only the data of the observation 

schedule (i,e, a time-table of st) and do not use the data of Tg. By courtesy of the Radio 

Research Laboratory (RRL) of Japan, we can utilize the VLBI observation schedule which 

was actually used in an early system-level experiment performed between Kashima branch of 

RRL and Mojave station of NASA, USA, on January 23, 1984 (N. Kawano and F. Takahashi 
1984, private communication). 

In order to display the distribution of si (i=1, . . ., 176) in the celestial sphere, Iet us 

define the coordinate system as shown in Figure 10, where the direction of x axis is taken 

to be from Kashima to Mojave, z axis toward the center of the common-view zone, and y 
axisto form the right-hand system. Since the distance between the two sites is about 8000km, 

and since their latitudes are almost the same, the angle of the common-view zone is about 

l02" in the x-z plane, and the celestial north pole lies almost in the y-z plane (see Figure 10). 

The number of radio sources used in this experiment is 13, and their 176 observed st are de-

picted in Figure 1 1 , as the projection onto the x-y plane. 

The whole observations were carried out in 28 hours (about 10 minutes per one observa-

tion), and brought a great success into the pioneering VLBI works of RRL in Japan. 

IV.3. Methods of analysis 

In a general geodetic VLBI experiment all the observations in one or two days' expen-

FIG, lO. THE COORDlNATE SYSTEM AND THE COMMON-VIEW ZONE 
FOR KASHIMA-MOJAVE EXPERIMENT 
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FIG. I I . THE DISTRIBUTION OF THE POSITIONS OF ALL THE RADIO-SOURCE 

OBSERVATIONS IN THE COMMON-VIEW AREA. THEY ARE PROJECIED 
oNTo x-y PLANE 

ment are used to make one normal equation of LLST, producing one estimation of b in which 

the theoretical time variations of b (such as caused by the Earth tide) are corrected. In this 

work, however, we try to divide the experiment into several subsets of observations each of 

which gives an estimation of b and Tc in a short time-span (e.g. 2 hours). By such a method 

of reduction we can see the short-time variation of b, and we hope to see, for instance, whether 

or not an abrupt change is happened just before a great earthquake. In the former case (i.e. 

the case of one normal equation) the distribution of st is uniform and the error ellipsoid is 

not elongated so much. In the latter case (i.e. dividing into many normal equations), how-

ever, some st's in short time-intervals are not uniform while some are uniform, and then we 

can see various SDE's and their dependences on st distributions. 

IV.4. Results 
We divide the whole observations into 14 subsets of 2-hours' observations. In Figure 12 

we show some examples of the si distributions. In Table I the eigen values and eigen vectors 

of the first subset is shown. 

It is seen in the Table that two principal axes almost lie in the direction of x and y axes, 

while the others almost lie in the t-z plane and not directed toward t nor z axes. As also 

seen in the Table, one principal axis of the SDE has a very small eigen value, that is, the 

principal axis is very long (i.e, as long as (r/ V0.035 where (T denotes the expected error of 

single observation), and another one principal axis is very short (i.e. as short as a/ VT~~). 

Therefore, we depict the SDE in Figure 13 as two cross-sections in the t-z and x-y planes, 

neglecting those components in eigen vectors which are not arrowed in Table I . The length 

of each principal axis in the Figure is taken to be o/ V1~i, where It denotes each eigen value. 

We also show the SDE of the whole observations in Figure 14. 
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FIG. 12. 
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EXAMPLES OF 2-HOURS' SCHEDULES DEPICTED BY THE SAME WAY 
l I . a : THE FIRST 2-HOURS, b : THE SECoND oNE, c : TH13 WORST 
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TABLE l-TH13 EIGEN VECTORS ANI) EIGEN VALUES OF AN SDE. 
THIS rs CALCULATED WITH THE FIRST 2-HOURS SCHl3DULE 

WHICH rs SHowN IN FIGURES 12a AND 13a 

EIGEN VECTORS 
0.93-

y : 0.04 
-0.35 
O. 10 

0,04 

0,95-
0.28 

0,14 

0.33 

-0.12 
0.68(-

- .64(-

O. 1 5 

- ,29 
0.58~-

0.75~-

EIGEN VALUES 
0.144 l.26 0,035 1 1 .56 

IV.5, Discussions 
Note that the shorter are the lengths of principal axes the better is the composition of 
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observations. In Figure 13 we see that the worst case is exemplified by Figure 13c (and 

Figure 12c), while the best is by Figure 13d (and Figure 12d). It seems that the reason is 

because in the former case the distribution of' si does not fulfill the criterion given by 

Komaki (1985), i.e. it lacks such si as (O, O, l), while the latter fulfills the criterion (compare 

Figure 12c and 12d). It is noteworthy that the efficiency of the observations can be judged 

"quantitatively" by the SDE analysis. However, it should be also noted that the actual 

criteria for better observations are derived by different investigations such as given by 

Komaki (1985). 
Next, Iet us show the method to find an optimum estimation of a linear combination of 

unknown parameters from a given schedule of observations. As shown in 111.3. the s.d.'s of 

estimated T, and b, are given as the projections of the SDE onto y or z axes, respectively. 

Therefore they have large errors in the case of Figure 1 3c. However, the errors are cor-

related with each other, that is, if T, has a large positive error then b, has a (absolutely) Iarge 

negative error. Thus the error of a combination cr, +b, becomes rather small. Such a 
combination can be find as the direction of the shortest axis of SDE, and its s,d, is calculated 

from the largest eigen value, 1***, as (r/ VR***. It is seen in Figure 14 that the geodetic 

VLBI observations generally provide a higher-accuracy estimation of a combination cr, +b,. 

If this combination had some geophysical meanings, the VLBI would have been a very sensi-

tive ditector of those geophysical phenomena. 

It is noteworthy that if the clocks are synchronized so precisely that 7:* may be treated 

as a known parameter, the accuracy of the geodetic VLBI can be improved largely, as seen in 

Figure 14. This is a reason why the "Connected-element interferometer" at Green Bank 
(Matsakis et al, 1986) or the "VLA" of the NRAO (Florkowski et al. 1985) in USA produce 

obsrvations with relatively high accuracy though their baselines are small. 

V. Conclusions 

First we explained graphically the method of SDE analysis of the observational equ-

ations, in terms of LLST. We showed relations of some error parameters to the SDE. It 

was shown that the s.d. of each unknown parameter is given as the projection of the SDE, 

then we showed that if the SDE has an elongated axis (which is caused when the combination 
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of the observational equations is improper), Iarge errors occur in many parameter estima-

tions. The SDE analysis provides a way to judge quantitatively the efficiency of the ob-

servational equations. 

Looking at the eigen values and eigen vectors calculated in the SDE analysis, we can 

find an optimum estimation of a linear-combinations of unknown parameters even in the 

case that the combination of the observational equations is improper. 

The SDE analysis was applied to the actual observational equations of a geodetic VLBI 

experiment, and its usefulness was explained. Some of the characteristics of the geodetic 

VLBI observations were pointed out. 
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