
IMPOSSIBILITIES OF PARETIAN SOCIAL WELFARE FUNCTIONS

FOR INFINITE UTILITY STREAMS WITH DISTRIBUTIVE EQUITY
＊

NORIHITO SAKAMOTO

Faculty of Science and Technology, Tokyo University of Science

Noda, Chiba 278-8510, Japan

n-sakamoto@rs.tus.ac.jp

Accepted July 2012

Abstract

This paper examines the existence of social welfare functions satisfying some reasonable

axioms of distributive equity and Pareto efficiency in aggregating infinite utility streams. Our

main results show that there exist social welfare functions that satisfy both the Pigou-Dalton

transfer principle and weak dominance̶a weak version of the Pareto principle̶, but there

exists no social welfare function that satisfies any of our distributive equity axioms and weak

Pareto principle simultaneously. Thus, we prove that no Paretian ranking can satisfy numerical

representability and any of distributive equity axioms in the setting of intertemporal social

choice.
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I. Introduction

In analysis of the intertemporal social choice problem, two classes of equity axioms have

been considered in the previous literature. The first is a class of anonymity axioms that

demands that each generation be treated equally in the evaluation of infinite utility streams

(Diamond 1965; Svensson 1980; Campbell 1985; Epstein 1986; Lauwers 1997; Shinotsuka

1998; Basu and Mitra 2003; 2007b; Mitra and Basu 2007). The second is a class of distributive

equity axioms that prefers a more equitable distribution of utilities (Fleurbaey and Michel 2001;

2003; Sakai 2003; 2006; Asheim and Tungodden 2004; Bossert, et al. 2007; Hara, et al. 2007).
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Basu and Mitraʼs pioneering study reveals some impossibility/possibility results about the

existence of social welfare functions satisfying the finite anonymity axiom and several

variations of the Pareto principle (Basu and Mitra 2007b). While the finite anonymity axiom

treats each generation equally in their utility levels, it ignores the distributional aspect of utility

levels.

Therefore, this paper focuses on distributive equity axioms and analyze the compatibility

of these axioms with weaker versions of the Pareto principle. One of the most fundamental

distributive equity axioms is the Pigou-Dalton transfer principle adapted to the infinite-horizon

framework. In the setting of intertemporal social choice, the Pigou-Dalton transfer principle

requires that a pure transfer of income from the better-off generation to the worse-off generation
must increase social welfare given other things. We then show that there exist social welfare

functions that satisfy the Pigou-Dalton transfer principle and a weak version of the Pareto

principle (called the weak dominance axiom in the previous literature), but there exists no

social welfare function that satisfies any of the distributive equity axioms and the weak Pareto

principle at the same time. Thus, we prove that no Paretian social welfare function can satisfy

any of the distributive equity axioms. These impossibility results form a contrast to a social

ranking approach in which many possibility results can be gained by sacrificing the continuity

requirement (Basu and Mitra 2007a; Bossert, Sprumont, and Suzumura 2007).

II. Basic Notations and Definitions

Let denote the set of real numbers. Let + and ++ denote, respectively, the set of non-

negative integers and the set of positive integers. We write the set of all possible utility levels

for each generation as Y, so the set of infinite utility streams is X=Y ++ . For simplicity of

notation, we denote the K times repetition of the finite vector (x1, ..., xT) by (x1, ..., xT)K-rep,

where T,K� ++ . If K=�, then we write (x1, ..., xT)K-rep as (x1, ..., xT) rep . Throughout this

paper, we interpret the utilities as either income levels or level-plus comparable ones following

Blackorby et al. (1984).

There are at least two ways to evaluate infinite utility streams defined as above. One way

is to use a primitive binary relation on X, and the other is to consider a social welfare function,

i.e., a real-valued function defined on X. In this paper, we use the latter approach and examine

the existence of social welfare functions satisfying some appealing axioms.

As Basu and Mitra (2003; 2007b) show, the finite anonymity axiom contradicts several

versions of the Pareto efficiency axiom in the social welfare function approach. The anonymity
axiom, however, treats each generation equally in their utility levels and ignores the

distributional aspect of utility levels.

Hence, this paper focuses on some axioms of distributional equity proposed by the

previous studies (Fleurbaey and Michel 2001; 2003; Sakai 2003; 2006; Asheim and Tungodden

2004; Hara, et al. 2007) as a solution to the distributional problem in aggregating infinite utility

streams.

First, we introduce the strict equity preference axiom, which is used by the axiomatic

characterization of leximin rankings in Bossert et al. (2007).
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Strict Equity Preference (SEP): "x, y�X, "i, j� ++;

[yi>xiBxj>yj & "k4i, j, xk=yk]�W(x)>W(y).

In this axiom, social welfare is improved whenever an income transfer from the better-off
generation to the worse-off one is implemented; this may increase or decrease the total surplus
between the loss of the rich and the gain of the poor.

Formally, this axiom can be divided into the following three variations according to the

degree of inequality aversion over an income transfer.

The first axiom is the well-known condition called the Pigou-Dalton transfer principle,

which is a standard axiom in the study of income inequality measures.

Pigou-Dalton Transfer Principle (PDT): "x, y�X, "X>0, "i, j� ++;

[xi=yi,XByj+X=xj & "k4i, j, xk=yk]�W(x)>W(y).

Intuitively, this axiom states that transferring income from the rich to the poor is always

good as long as their relative positions are not reversed.

The definitions of the following two variations of the SEP depend on the total surplus

between a loss of the rich and a gain of the poor.

Altruistic Equity-1 (AE-1): "x, y�X, "X>d>0, "i, j� ++;

[xi=yi,dByj+X=xj & "k4i, j, xk=yk]�W(x)>W(y).

Altruistic Equity-2 (AE-2): "x, y�X, "X>d>0, "i, j� ++;

[xi=yi,XByj+d=xj & "k4i, j, xk=yk]�W(x)>W(y).

Altruistic equity-1, the axiom proposed by Hara et al. (2007), states that a transfer from the

rich to the poor should be done if the gain of the poor is greater than the loss of the rich.

In contrast, altruistic equity-2 requires that society should accept a transfer from the rich to

the poor even if the gain of the poor is smaller than the loss of the rich.

The last of the equity axioms is proposed and investigated by Asheim, Mitra, and

Tungodden (2007) and Banerjee (2006).

Hammond Equity for Future Generations (HEF): "x, y�X;

[y1>x1>x>y & "iB2, x i=x & y1=y ]�W(x)>W(y).

This axiom states that social welfare must increase if inequity between generation 1 and all

future generations is wholly improved. Note that this axiom is logically independent of the

strict equity preference.

Now, we introduce efficiency axioms in the framework of intertemporal social choice. The
first axiom is the standard Pareto criterion.

Pareto Principle (P): "x, y�X;

["i� ++, xiByi & $j� ++ xj>yj]�W(x)>W(y).
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In the previous studies, this efficiency axiom is often too strong to gain possibility results.
Therefore, this paper considers two weak forms of the Pareto principle, as in Basu and Mitra

(2007b). The first version can be written as follows:

Weak Pareto Principle (WP): "x, y�X; "i� ++, xi>yi�W(x)>W(y).

The weak Pareto principle requires that social welfare must be improved whenever all

generations strictly increase their utilities. The second axiom of efficiency is defined as follows:

Weak Dominance (WD): "x, y�X;

[$j� ++, xj>yj & "i4j, xi=yi]�W(x)>W(y).

The weak dominance axiom states that an improvement of exactly one generationʼs utility

increases social welfare. Under weak dominance, we can easily show that AE-2 implies PDT

and that PDT implies AE-1
1
.

III. Consistency of the Weak Dominance Axiom

This section examines the compatibility of the weak dominance axiom -one of the Pareto

efficiency axioms- with three variations of SEP in terms of the social welfare function
approach.

First, we show that WD is incompatible with AE-2 which is the strongest requirement

among our three equity axioms.

Proposition 1: Let Y include a closed interval [0, 1]. Then, there exists no social welfare

function satisfying AE-2 and WD.

[Proof] Suppose the contrary. Let a social welfare function W satisfy AE-2 and WD.

Define the two utility streams x(X), y(X) as follows:

For X�(3/10, 1/2),

x(X)=r2X, 12X, (d) rep�,

y(X)=rX, 12X, (d) rep�,
where d�[0, 1]. It is easy to show that for all X, both x(X) and y(X) are in (0, 1) ++. Now, for

all X�(3/10, 1/2), the WD axiom implies W(x(X))>W(y(X)). Then, for all X, X'�(3/10, 1/2),

X>X' implies 2X'>X>X/2>X'/2 and 2X',X>
1

2
(X,X'). Hence, we have W (y (X))>W (x (X'))

because of AE-2. By the above argument, W(x(X'))>W(y(X')) holds. Therefore, for all X,X'�
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(3/10, 1/2) with X>X', both of the closed intervals [W(y(X)), W(x(X))] and [W(y(X')), W(x(X'))]

are non-degenerate and their intersection must be empty. Thus, for all real numbers X�(3/10,

1/2), we can choose a distinct rational number r(X) from the closed interval [W(y(X)), W(x(X))].

This implies, however, that the cardinality of the continuum is a countable cardinality, a

contradiction. +
Since the SEP axiom implies AE-2, the following corollary can be immediately established

by the above proposition.

Corollary 1
2
: Let Y	[0, 1]. Then, there is no social welfare function satisfying SEP and

WD.

Hammond equity for future generations is logically independent of altruistic equity2, but

Banerjee (2006) proves that this equity axiom is incompatible with weak dominance.

Proposition 2 (Banerjee 2006): Let Y	 [0, 1]. Then, there is no social welfare function

satisfying HEF and WD.

However, replacing WD with WP, we obtain a social welfare function satisfying both HEF

and WP. For example, W(x)=min{x1, x2} is a social welfare function satisfying these axioms

(Asheim, Mitra and Tungodden 2007, Example 1). But this function is not particularly useful

because it does not impose value on procedural and distributive equity over future generations

except for generations 1 and 2. In this sense, HEF is so weak as a concept of distributive equity

that a class of social welfare functions satisfying HEF cannot rule out inequitable social welfare

functions.

The next proposition states that the Pigou-Dalton transfer principle is compatible with the

weak dominance axiom
3
.

Proposition 3: There exist social welfare functions satisfying PDT and WD.

[Proof] The following functions are variations of SWFs proposed by Basu and Mitra

(2007b). For all infinite utility streams x�X, define a set E(x) as follows:

E(x)={y�X |$T� ++,"tBT, xt=yt}.

That is, E (x) is the set of the same utility streams for all generations beyond some

generation T. The set E clearly forms an equivalence class, and the universal set X is

partitioned by E. We denote the set of partitions of X as . Then, by the axiom of choice, there

exists a function g that assigns each E� into x�X such that g (E)�E for all E� . Using

this function g, define a social welfare function as follows:
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W(x)=lim
n
�
6

n

t=1

[U(xt),U(gt (E(x)))],

where U(•) is a strictly increasing, real-valued, and strictly concave function. The function W(x)

must have a limit for all x�X since both x and g(E(x)) are in the E(x). Therefore, this social

welfare function is well-defined and satisfies WD by definition. Because of the strict concavity

of U(•), this function satisfies PDT. +
Since combining WD with PDT implies AE-1, the social welfare function above readily

satisfies AE-1.

Proposition 3 shows that the non-negativeness of the total surplus between two generations

through a transfer leads to the existence of equitable social welfare functions satisfying weak

dominance. That is, if society always prefers income transfers from a richer generation to a

poorer one, which keep the total surplus between the loss of the rich and the gain of the poor

non-negative, then we can construct social welfare functions satisfying the axioms of

distributive equity and weak dominance.

The next section, however, proves that the weak Pareto principle is incompatible with any

axiom of distributive equity regardless of whether the total surplus between the loss of the rich

and the gain of the poor is negative or non-negative.

IV. Impossibilities of the Weak Pareto Principle

This section investigates the existence of a social welfare function satisfying the axioms of

distributive equity and the weak Pareto principle. In the following propositions, we show that

any axiom of distributive equity is incompatible with the weak Pareto principle. Therefore,

there is a conflict between the axioms of distributive equity and the weak Pareto principle in

the social welfare function approach for an infinite generations setting.

First, we show that the weak Pareto principle is incompatible with the altruistic equity-1,

which is the weakest requirement among our three equity axioms under weak dominance.

Proposition 4: Let Y	[0, 1]. Then, there is no social welfare function satisfying AE-1 and

WP.

[Proof] Suppose the contrary. Let a social welfare function W satisfy AE-1 and WP.

Define the two utility streams x(X), y k(X) as follows:

For X�(3/10, 1/2),

x(X)=((X, 2X) rep) ,

y k(X)=((X+(2/3) k-1(2/10), 2X,(1/3) k-1(1/10))2k-1-rep, (X, 2X) rep).

By definition, both x (X) and y k (X) are in (0, 1) ++ for all X� (3/10, 1/2) and all natural

numbers k.

Now, we will show that AE-1 implies W (x (X))<W (y1 (X))<W (y2 (X))<.... It is easy to

check that y1(X) is derived from x(X) by an income transfer where generation 2 loses (1/10) but

generation 1 gains (2/10). Hence, we have W(x(X))<W(y1(X)).

Next, we show that for all k, the stream y k+1 (X) is constructed from y k (X) by repeated
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applications of an appropriate income transfer.

In the stream y k(X), odd-numbered generations are relatively poor but there are inequalities

among them; that is, one has X+(2/3) k-1(2/10) but the other has only X. By implementing the

transfer where the relatively rich odd-numbered generations lose (2/3) k(1/10) but the relatively

poor odd-numbered generations gain (2/3) k(2/10), each generation has the same utility X+(2/3) k

(2/10). Specifically, for all i=1, 2, ..., 2 k-1, we take (2/3) k(1/10) from the (2i,1)-th generation

and give (2/3) k (2/10) to the (2 k
+2i,1) -th generation. Similarly, among even-numbered

generations, which are relatively rich in y k(X), there are also inequalities. These generations can

have the same utility level, 2X,(1/3) k(1/10), by repeated applications of a transfer in which the

rich, who have 2X, lose (1/3) k(1/10) but the poor, who only have (2X,(1/3) k-1,1(1/10)), gain

(1/3) k(2/10). That is, for all i=1, ..., 2 k-1, we take (1/3) k(1/10) from the 2i-th generation and

give (1/3) k(2/10) to the (2 k
+2i)-th generation. Therefore, for all k, W(y k(X))<W(y k+1(X)).

Then, for all distinct X, X'�(3/10, 1/2) with X>X', there exists a natural number K* such

that X>X'+ (2/3)K*-1 (2/10). Obviously, 2X>2X' and 2X>2X', (1/3)K*-1 (1/10), so WP implies

W(x(X))>W(yK*(X')). Because W(yK*(X'))>W(y1(X')) by the above argument, for all X, X'�(3/10,

1/2) with X>X', the two closed intervals [W(x(X)), W(y1(X))] and [W (x(X')), W(y1(X'))] are non-

degenerate, and their intersection is empty.

Thus, for all real numbers X�(3/10, 1/2), we can choose a distinct rational number r(X)

from the closed interval [W(x(X)),W(y1(X))]. This implies, however, that the cardinality of the

continuum equals the countable cardinality, a contradiction. +
Since it holds true that AE-2 � PDT � AE-1 under weak dominance, Proposition 4 is

interpreted as the strongest result for the non-existence of equitable social welfare functions

satisfying the weak Pareto principle. In fact, the remaining two equity axioms are incompatible

with the weak Pareto principle in the social welfare function approach. That is, whatever the

total surplus gained by an income transfer from the rich to the poor, whether negative or non-

negative, combining the distributive equity axioms and the weak Pareto principle always leads

to impossibility results. The following two impossibility results are established by proofs

similar to that of Proposition 4.

Proposition 5: Let Y	[0, 1]. Then, there is no social welfare function satisfying PDT and

WP.

[Proof] Since the proof of this proposition is similar to that of Proposition 4, we omit

some details of the proof. Consider the two utility streams x(X), y k(X) as follows:

For X�(1/5, 1/2),

x(X)=((X, 2X) rep),

y k(X)=((X+(1/2) k-1(1/10), 2X,(1/2) k-1(1/10))2k-1-rep, (X, 2X) rep).

The stream y1(X) is constructed from x(X) by the income transfer 1/10 from generation 2 to

generation 1. Hence, PDT implies W(x(X))<W(y1(X)). Next, for all k, we show that the stream

y k+1(X) is induced from y k(X) through the following transfer.

First, we transfer (1/2) k-(1/10) from the better-off odd-numbered generations, who have
X+(1/2) k-1 (1/10), to the worse-off odd-numbered generations, who have only X in the stream

y k(X). Then, each generation has the same utility X+ (1/2) k (1/10). Similarly, even-numbered
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generations can have the same utility level, 2X,(1/2) k(1/10), by the transfer (1/2) k(1/10) from

the better-off even-numbered generations, who have 2X, to the worse-off even-numbered
generations, who have only (2X,(1/2) k-1(1/10)). Therefore, we show that W(y k(X))<W(y k+1(X))

for all k.

The remainder of this proof can be shown by the same argument used in the proof of

Proposition 4. +

Proposition 6: Let Y	[0, 1]. Then, there is no social welfare function satisfying AE-2 and

WP.

[Proof] Define the two utility streams x(X), y k(X) as follows:

For X�(3/10, 1/2),

x(X)=((X, 2X) rep) ,

y k(X)=((X+(1/3) k-1(1/10), 2X,(2/3) k-1(2/10))2k-1-rep, (X, 2X) rep).

The stream y1(X) is gained from x(X) by the transfer in which generation 2 loses (2/10) but

generation 1 gains (1/10). Next, we show that for all k, the stream y k+1(X) is constructed from

y k(X) by repeated applications of an appropriate transfer. In the stream y k(X), if we implement

the transfer in which the relatively rich odd-numbered generations lose (1/3) k (2/10) but the

relatively poor odd-numbered generations gain (1/3) k(1/10), then each odd-numbered generation

has the same utility X+(1/3) k(1/10). In addition, even-numbered generations can have the same

utility level, 2X,(2/3) k(2/10), by repeated applications of a transfer in which the rich, who have

2X, lose (2/3) k (2/10), but the poor, who only have (2X, (2/3) k-1 (2/10)), gain (2/3) k (1/10).

Therefore, for all k, W(y k(X))<W(y k+1(X)).

The remainder of the proof can be shown by the same argument used in the proof of

Proposition 4. +
Since SEP implies the axioms PDT, AE-1, and AE-2, the following corollary follows

directly from our impossibility results (Propositions 4-6).

Corollary 2: Let Y	 [0, 1]. Then, there is no social welfare function satisfying SEP and

WP.

V. Concluding Remarks

In this paper, we have examined the compatibility of the distributive equity axioms with

two weak forms of the Pareto principle in aggregating infinite utility streams. We have shown

that there exists no Paretian social welfare function satisfying any variation of distributive

equity in our framework. Table 1 summarizes the results obtained in this paper.

As we can see from Table 1, we can construct social welfare functions satisfying two

variations of distributive equity and weak dominance. These possibility results, however, should

not be construed essentially as “positive” because we never construct a social welfare function

simultaneously satisfying any form of the distributive equity axioms and the weak Pareto

principle. Accordingly, our analysis reveals the difficulties of the social welfare function
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approach in the context of intergenerational equity.

Now we discuss the implications.

Firstly, the non-existence of a social welfare function does not necessarily mean the non-

existence of a social ranking for infinite utility streams. Indeed, Bossert, Suzumura and

Sprumont (2007) characterize quasi-orderings satisfying the axioms of the strong Pareto

principle, the finite anonymity and the Pigou-Dalton transfer principle. Since every quasi-

ordering has an ordering extension of itself, without a numerical representation of social

evaluation for intergenerational equity, we can construct a social ordering that satisfies the

axioms of equity and efficiency.
Secondly, we can obtain some possibility results by weakening the domain restriction of Y.

Indeed, if Y= +, then we can easily construct a social welfare function satisfying the Pigou-

Dalton transfer principle and the Pareto principle following Basu and Mitra (2007b).

Lastly, the requirement of a numerical representation for social welfare functions is

logically independent of the continuity of social rankings. If a social ranking on X is continuous

with some topology, then the numerical representation of this ranking must be continuous on X

as well. However, this does not imply the continuity of the social ranking on X in which the

numerical representation of the ranking is generally possible. In their seminal papers, Sakai

(2006) and Hara et al. (2007) show that there is no continuous social ranking on X satisfying

both the Pigou-Dalton transfer principle and some axioms of collective rationality such as

acyclicity. However, their impossibility results are independent of ours because the numerical

representability of social rankings does not imply the continuity of these rankings. The results

of this paper suggest a trade-off between intergenerational equity and efficiency in the objective
functions of the usual dynamic optimization problems.
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