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Abstract

By imposing no-arbitrage condition (NAC), the volatility of changes in interest

rates is linked to the cross-section of interest rates. Due to this link, the cross-section

may have impact on estimation and prediction of volatility using interest rate data.

Furthermore, the volatility may have impact on identification of latent factors from

the cross-section. In this study, these impacts arising from the NAC are examined,

and found to be minor or mitigated without much difficulty. It follows that the

resulting dynamics of interest rates do not differ much between estimation with and

without imposing the NAC.
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1 Introduction

The imposition of no-arbitrage condition (NAC) derives a theoretical relationship in the cross-

section of interest rates, which in turn may constitute constraints for modeling and estimating

interest rate dynamics. In particular, since it relates the volatility of changes in interest rates

to the cross-section of interest rates, 1 the behavior of volatility estimated from both time-

series and cross-sectional properties of interest rate data may differ from that estimated from

time-series properties alone. Furthermore, if the volatility is driven partially by the same latent

factors driving interest rates, the interpretation of these factors identified from the cross-section

of interest rates may not be straightforward: It would be difficult to immediately answer whether

they are interest-rate specific or volatility specific.

This study investigates the impact of the NAC on the identification of latent factors and the

estimation and prediction of volatility using interest rate data. To clarify the research objectives,

the following questions, resulting from the imposition of the NAC, are raised:

Q1. Does the modeling of volatility practically influence the identification of latent factors from

the cross-section of interest rates?

Q2. Does the cross-section of interest rates practically influence the estimation and prediction

of volatility?

The answers to these questions have important implications for the estimation of the dynam-

ics of interest rates and their volatilities. If the answer to Q1 is no, the identification of factors

and the modeling of volatility can be conducted separately. Specifically, it would be possible

to first identify latent factors, and then consider realistic volatility models that accommodate

time-varying and persistent features. In addition, if the answer to Q2 is no, the behavior of

volatility can be estimated using time-series properties of the data alone, without explicitly tak-

ing account of cross-sectional properties of the data constrained by the NAC. Taken together,

the resulting dynamics of interest rates do not differ much between the estimation with and

without imposing the NAC. Meanwhile, the latter estimation allows for flexible modeling and

yet is computationally less demanding.

1This holds true for model parameters as well as latent factors. For example, even with the existence of volatility

factors that cannot be extracted from the cross-section of interest rates, the so-called unspanned volatility (USV)

factors, parameters regarding the second moments of the other factors are still related to the cross-section of

interest rates; see, e.g., Colline-Dufresne and Goldstein (2002, p.1705).
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Many studies without considering the NAC seem to take it as granted that the answers to

Q1 and Q2 are “no.” In these studies, interest rate factors are first obtained from observed

variables by combining key interest rates or applying the principal component analysis. Or, as

implemented by Diebold and Li (2006), they are obtained by fitting a descriptive model such

as the one proposed by Nelson and Siegel (NS) (1987) to the yield curve at each point in time;

see also Almeida and Vicente (2008) adopting a similar approach. In any case, cross-sectional

constraints due to no-arbitrage are not always explicitly imposed in the factor identification

process. Next, the dynamics of the factors, potentially augmented with time-varying volatility,

are estimated using time-series (pooled) data. Again, cross-sectional constraints due to no-

arbitrage are not typically imposed in the model estimation process. This convention also holds

for the estimation of the dynamics of interest rate volatility using high-frequency data; see, e.g.,

Andersen and Benzoni (2010).

The literature does not appear to be of little concern to Q1 and Q2, however. In fact, a

more recent study by Christensen et al. (2009, 2011) develops the dynamic NS model on which

the NAC is imposed. Nevertheless, a thorough investigation of these questions has yet to be

conducted.2

Theoretically, the NAC links conditional second moments of the factors to the cross-section

of interest rates. Practically, however, the strength of the link depends on how a model is

specified and estimated. This means that in order to examine a practical impact of the NAC,

some specific setting regarding models and estimation methods is unavoidable. Then, a setting

should be such that findings and implications obtained there are generalizable to some extent.

Since this study raises Q1 and Q2 to examine the validity of the aforementioned approaches to

modeling and estimating interest rate dynamics, and these approaches normally stand on the

ground that the answers to Q1 and Q2 are no, a setting that potentially increases the likelihood

of answering “yes” seems appropriate. Specifically, such an unfavorable setting consists of

(i) model with the volatility that is tightly linked to the cross-section of interest rates;

(ii) estimation method that closely fits a model to the cross-section of interest rates.

An example of (i) is a level-dependent volatility model, where the factor covariance matrix

is driven by the same factors driving the yield curve. Then, the existing link between volatility

and cross-section of interest rates is expected to be further strengthened by imposing the NAC.

2Coroneo et al. (2011) examine how arbitrage-free the NS model is. But their focus is on neither factor

identification nor volatility prediction, which would potentially be affected by imposing the NAC.
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One way to develope such models is to extend existing models. For example, suppose the

Gaussian term structure model with constant covariance matrix. Then, an extended version of

the Gaussian model is obtained by making the covariance matrix depend on all factors with

the positive definiteness maintained. By comparing identified factors between the Gaussian

and extended models, therefore, the impact of volatility modeling on factor identification will

be uncovered. Furthermore, by estimating these models with and without imposing the NAC,

the impact of cross-sectional constraints on volatility estimation and prediction will also be

understood. The same extension and analysis are also possible based on the other affine term

structure models with stochastic volatility.

As for (ii), the quasi-maximum likelihood method employed by, e.g., Chen and Scott (1993)

is appropriate. In the estimation, it is assumed that some interest rates are observed without

measurement error. Then, by equating model-implied interest rates (functions of latent factors)

to these observed counterparts at each point in time, the latent factors can be obtained by

inversion. Since this inversion method forcefully fits the volatility to the cross-section of interest

rates when the NAC is imposed, it allows us to highlight the resulting impact of the NAC.

Suppose instead other settings where a model with USV factors that are of little relevance

to the cross-section of interest rates is estimated with the assumption that all interest rates are

measured with error. Then, it is obvious that the current setting with (i) and (ii) is more prone

to being influenced by cross-sectional constraints due to no-arbitrage than others. Nevertheless,

the answers to Q1 and Q2 found in this study are “virtually no.”

In comparison with the earlier work, Duffee (2011), and Joslin, Singleton, and Zhu (JSZ)

(2011) discuss, using the Gaussian term structure model (a particular model), whether cross-

sectional constraints due to no-arbitrage influence the estimation of the physical drift. However,

they do not explore whether cross-sectional constraints influence the estimation of the covariance

matrix, which is not a trivial issue as the covariance matrix cannot be separated between the

physical and risk-neutral probability measures. Joslin (2010) argues, based on the Gaussian

model, that the (constant) factor covariance matrix has a minor impact on the cross-section

of interest rates. However, he does not explore the impact of the covariance matrix on both

cross-section and factor identification when the covariance matrix depends on the same factors

driving interest rates.

Duffee (2011) and JSZ (2011) demonstrate that estimation of conditional means of interest

rates can be made independently of the NAC. 3 This study extends this insight by showing that

3In contrast, Almeida and Vicente (2008), using term structure models that are not exactly the same as the
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cross-sectional constraints due to no-arbitrage have a limited impact on both identification of

factors and estimation of conditional volatilities of interest rates. Taken together, the imposition

of the NAC is not restrictive for modeling and estimating the dynamics of interest rates and their

volatilities. Even if it is restrictive for a model, it can be mitigated owing to the introduction

of nearly USV factors, which this study shows is possible without much difficulty. After all,

standard approaches in time-series analysis are not contradictory to the absence of arbitrage.

It is important to note, however, that this study does not imply that the imposition of the

NAC is without merit. It is useful, and in fact essential, for estimating market prices of risk,

and more generally, investors’ risk preferences and future prospects implicit in interest rate data.

What is emphasized here is a virtually innocuous role of no-arbitrage in estimating interest rate

dynamics using interest rate data.4

Section 2 introduces models based on the Gaussian term structure model. Section 3 explains

data and realized volatility measure. Sections 4 and 5 address Q1 and Q2, respectively. Section

6 conducts robustness checks based on the affine models with stochastic volatility. Section 7

concludes. Technical arguments on the computation of no-arbitrage bond prices, when they are

unavailable in closed-form, are collected in Appendices.

2 Models

As term structure models appropriate for the research objectives, the Gaussian term structure

model is first selected with a number of reasons in Section 2.1 and then extended by making

the factor covariance matrix depend on all factors in Section 2.2. Since such extended models

do not have closed-form expressions for no-arbitrage bond prices, a method of computing them

is explained in Section 2.3.

2.1 The baseline Gaussian model

The Gaussian term structure model is reported to have a number of desirable properties: It can

explain observed properties of interest rate data such as failure of the efficient hypothesis of the

term structure and hump shape of unconditional volatility of changes in logarithmic yields (Dai

and Singleton, 2003); provide accurate prediction of the level of interest rates (Duffee, 2002);

affine models, find that the models’ predictive ability to the level of interest rates improves by imposing the NAC.

However, whether the same is true for volatility prediction is left unanswered.
4This study is silent on whether the same is true for option data, which is left for future research.
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and generate interest rate factors whose statistical properties anticipated before estimation are

consistent with those realized after estimation (Collin-Dufresne, Goldstein, and Jones (CDGJ),

2009). Additionally, the use of the Gaussian model enables us to obtain implications regarding

the impact of the NAC that are useful for the popular dynamics NS model employed by, e.g.,

Diebold and Li (2006), Diebold et al. (2006, 2008), and Koopman et al. (2010). This is because

as shown by Christensen et al. (2009, 2011), the Gaussian model nests the no-arbitrage version

of the NS model.

There are numerous specifications of the Gaussian model depending on factor rotations.

Among them, this study adopts a conventional one characterized by the mean-reversion of

the instantaneous interest rate; see, e.g., Andersen and Lund (1997b), Balduzzi et al. (1996,

1998), and Bikbov and Chernov (2011). The mean-reversion specification, where the roles of the

factors are anticipated to some extent, is convenient because model adequacy is easily checked

by examining the consistency between the ex-ante and ex-post roles.

Following Litterman and Scheinkman (1991) and the subsequent studies, this study assumes

three factors. Let Xt = (rt θt εt)
′ be a three-dimensional state vector, and the risk-neutral

distribution of instantaneous changes in Xt is given by

dXt ∼ N

⎡
⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎝

κ1(θt − rt) + εt

κ2(θ̄ − θt)

−κ3εt

⎞
⎟⎟⎟⎟⎠ dt , Σ dt

⎤
⎥⎥⎥⎥⎦ , (1)

with the (i, j)-th element of Σ denoted as σij . In this specification, θt is assumed to be the

central tendency, toward which the instantaneous interest rate rt reverts. εt is assumed to be a

shock that makes the mean-reverting behavior a bit irregular. In reality, however, the following

constraint has to be placed, as pointed out by CDGJ (2008), for each process to be interpreted

as above: 0 < κ2 < κ1 < κ3. That is, θt also mean-reverts to a constant θ̄, but its speed is

slower than that of rt reverting to θt. The speed of mean reversion of εt is assume to be the

fastest for the shock to be temporary.

For the purpose of estimation and prediction, the physical distribution of instantaneous

changes in Xt also needs to be specified. By assuming the market price of risk that leads to the

essentially affine model proposed by Duffee (2002), it can be expressed as

dXt ∼ N

⎡
⎢⎢⎢⎢⎣

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎝

Kr,0

Kθ,0

Kε,0

⎞
⎟⎟⎟⎟⎠+

⎛
⎜⎜⎜⎜⎝

Kr,1 Kr,2 Kr,3

Kθ,1 Kθ,2 Kθ,3

Kε,1 Kε,2 Kε,3

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

rt

θt

εt

⎞
⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
dt , Σ dt

⎤
⎥⎥⎥⎥⎦ , (2)
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where all parameters in the physical drift are different from those in the risk-neutral drift.

For robustness check, this study also considers an alternative specification of the Gaussian

model proposed by CDGJ (2008, equation (29)) and its extended version presented below,

and finds that the answers to Q1 and Q2 remain unchanged from those based on the mean-

reversion specification (the results are available upon request). However, this study does not

consider an alternative specification in which rt is given by the sum of arbitrary state variables

as rt = X1,t+X2,t+X3,t because this equation unnecessarily imposes an affine structure on the

non-affine extended version. Besides, the discussion on factor identification would be easier if

the roles of the factors were preliminarily anchored than if they were unknown.

2.2 Extended models

The Gaussian model is extended in a way that the factor covariance matrix depends on all

factors with the positive definiteness maintained. The extension to the level dependence is the

key to creating an unfavorable setting for conventional approaches without considering the NAC.

Namely, if the answers to Q1 and Q2 were no for models with level-dependent volatility that is

tightly linked to the cross-section of interest rates, the same would be true for other models with

USV factors or GARCH volatilities that are of little relevance to the cross-section of interest

rates.

Many previous studies incorporate the level dependence into the dynamics of interest rates;

see, e.g., Aı̈t-Sahalia (1996), Andersen and Lund (1997a, b), Bali (2000), Ball and Torous (1999),

Brennan and Schwartz (1979), Brenner et al. (1996), Chan et al. (1992), Durham (2003), and

Gallant and Tauchen (1998). In what follows, level-dependent specifications are explored that

are more complicated than those considered in the literature. However, the purpose is not to

propose models. Rather, it is to strengthen the link between volatility and cross-section of

interest rates as much as possible within admissible specifications for the factor dynamics.

Based on the Gaussian model, the risk-neutral distribution of instantaneous changes in Xt

is given by

dXt ∼ N

⎡
⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎝

κ1(θt − rt) + εt

κ2(θ̄ − θt)

−κ3εt

⎞
⎟⎟⎟⎟⎠ dt , Σt dt

⎤
⎥⎥⎥⎥⎦ . (3)

The instantaneous covariance matrix, Σt, is now time-dependent. On the other hand, the risk-

neutral drift vector is the same as in the original Gaussian model. This same specification allows
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us to control for potential influences of the risk-neutral drift vector and hence focus exclusively

on potential influences of the covariance matrix on factor identification and volatility prediction.

To satisfy both level dependence and positive definiteness of Σt, it is convenient to first

decompose Σt and then specify its components. The following two approaches to the decom-

position are considered. The first approach follows Bollerslev (1990) and Engle (2002) among

others, and decomposes Σt as

Σt = HtRtHt , (4)

where Ht is a diagonal matrix and Rt is a correlation matrix.

The second approach uses the spectral decomposition, which is similar in spirit to Fan et

al. (2003), Han (2007), Jarrow et al. (2007), Longstaff et al. (2001), and Pérignon and Villa

(2006):

Σt = PLtP
′ , (5)

where Lt is a diagonal matrix consisting of the eigenvalues, which are time-varying, and P is

an orthonormal matrix consisting of the corresponding eigenvectors, which are fixed as in the

previous studies. In each decomposition, level-dependent specifications are introduced.

Specifications based on the decomposition using the correlation matrix :

The diagonal matrix Ht in equation (4) is given by

Ht =

⎛
⎜⎜⎜⎜⎝

h1(Xt) 0 0

0 h2(Xt) 0

0 0 h3(Xt)

⎞
⎟⎟⎟⎟⎠ . (6)

Then, this study specifies hi(Xt) simply by a linear function of Xt as
5

hi(Xt) = βi
0 + βi′Xt (i = 1, 2, 3) . (7)

The correlation matrix Rt is given by

Rt =

⎛
⎜⎜⎜⎜⎝

1 ρ12(Xt) ρ13(Xt)

ρ12(Xt) 1 ρ23(Xt)

ρ13(Xt) ρ23(Xt) 1

⎞
⎟⎟⎟⎟⎠ . (8)

5This study also considers an alternative specification for hi(Xt) by following Andersen and Lund (1997b):

h1(Xt) = σ1r
γ
t exp{ 1

2
εt}; h2(Xt) = σ2

√
θt; h3(Xt) = σ3. The answers to Q1 and Q2 remain unchanged from those

obtained by the linear specification in equation (7). The results for this alternative specification are available

upon request.
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The following two specifications for ρij(Xt) are considered. The first specification is given by

ρij(Xt) = ρij (i, j = 1, 2, 3, i < j) , (9)

where |ρij | ≤ 1. The second specification is given by

ρij(Xt) = δijc(Xt) (i, j = 1, 2, 3, i < j) , (10)

where 0 ≤ δij ≤ 1 and

c(Xt) =
2

1 + exp{γ0 + γ′Xt} − 1 . (11)

Note that |c(Xt)| ≤ 1. Further constraints on ρij(Xt) in equation (10) are required for Rt to

be positive definite, which are specified in estimating the model in Section 4. For convenience,

the first model with Quadratic variances and Constant correlations is labeled as QC, and the

second model with Quadratic variances and State-dependent correlations as QS.

Specifications based on the spectral decomposition :

The diagonal matrix Lt in equation (5) is given by

Lt =

⎛
⎜⎜⎜⎜⎝

l1(Xt) 0 0

0 l2(Xt) 0

0 0 l3(Xt)

⎞
⎟⎟⎟⎟⎠ . (12)

The orthonormal matrix P can be expressed as

P =

⎛
⎜⎜⎜⎜⎝

1 0 0

0 cosϕP
3 − sinϕP

3

0 sinϕP
3 cosϕP

3

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

cosϕP
2 0 − sinϕP

2

0 1 0

sinϕP
2 0 cosϕP

2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

cosϕP
1 − sinϕP

1 0

sinϕP
1 cosϕP

1 0

0 0 1

⎞
⎟⎟⎟⎟⎠ , (13)

where the parameters to be estimated are sinϕP
i (i = 1, 2, 3). For identification, ϕP

i ∈
[−π/2, π/2] is imposed so that cosϕP

i =
√
1− sin2 ϕP

i . For Σt to be positive definite, all

eigenvalues in equation (12) must be positive, i.e., li(Xt) > 0 (i = 1, 2, 3) for any Xt. Then, this

study specifies li(Xt) simply by a quadratic function of Xt as
6

li(Xt) = ci0 +X ′
tΓ

iXt (i = 1, 2, 3) , (14)

where ci0 > 0 and Γi is a nonnegative definite matrix. Similar to Σt, Γ
i is parameterized based

on the spectral decomposition:

Γi = QiM iQi′ (i = 1, 2, 3) , (15)
6This study also considers an alternative specification given by li(Xt) = exp{ci0 + ci′Xt}. The answers to Q1

and Q2 remain unchanged from those obtained by the quadratic specification in equation (14). The results for

the exponential specification are available upon request.
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where

M i =

⎛
⎜⎜⎜⎜⎝

mi
1 0 0

0 mi
2 0

0 0 mi
3

⎞
⎟⎟⎟⎟⎠ , with 0 ≤ mi

1 ≤ mi
2 ≤ mi

3 , (16)

and

Qi =

⎛
⎜⎜⎜⎜⎝

1 0 0

0 cosϕi
3 − sinϕi

3

0 sinϕi
3 cosϕi

3

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

cosϕi
2 0 − sinϕi

2

0 1 0

sinϕi
2 0 cosϕi

2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

cosϕi
1 − sinϕi

1 0

sinϕi
1 cosϕi

1 0

0 0 1

⎞
⎟⎟⎟⎟⎠ , (17)

with ϕi
j ∈ [−π/2, π/2]. It is noted that sinϕi

j cannot be identified for some mi
j . For example,

when mi
j = 0 for all j, sinϕi

j cannot be identified for all j. In such cases, sinϕi
j = 0 is placed.

This model with Quadratic Eigenvalues is labeled as QE.

Since for all extended models Σt is designed to be positive definite and there is no sign

constraint on the factors, the market price of risk can be specified as flexibly as in the original

Gaussian model. It then follows that the physical distribution of instantaneous changes in Xt

can also be expressed as (2) with Σ replaced by Σt.

2.3 An approximation to no-arbitrage zero-coupon bond prices

To practically examine the impact of the NAC, this study actually estimates the models. For

the estimation (including factor identification) to be feasible, closed-form expressions for no-

arbitrage bond prices are needed.

Let P (Xt, τ) be the price at time t of a zero-coupon bond with τ years to maturity. Then,

by the absence of arbitrage, it is given by

P (Xt, τ) = EQ
t

[
exp

{
−
∫ t+τ

t
rudu

}]
, (18)

where EQ
t [·] stands for the conditional expectation under the risk-neutral probability measure.

The yield to maturity of a τ -year zero-coupon bond is given by Y (Xt, τ) = − 1
τ lnP (Xt, τ).

P (Xt, τ), however, has no closed-form under the extended models. It is therefore approx-

imated by relying on a method proposed by Takamizawa and Shoji (2009): The method ap-

proximates a vector of conditional moments as the solution to a system of ordinary differential

equations. Since the zero-coupon bond price is given as the conditional expectation, the method

can be directly applied. The outline of the method is provided in Appendix A, and the accuracy

of the approximation is checked in Appendix B. In brief, the accuracy is maintained at least for
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maturities ranging up to ten years when reasonable values of parameter and state vectors are

provided.

3 Data and realized volatility measure

Weekly (Wednesday) data on U.S. dollar LIBOR and swap rates are used, which cover the period

from January 4, 1991 to May 27, 2009 with 961 observations in total. The data are divided into

in-sample portion for estimation and out-of-sample portion for prediction. The out-of-sample

analysis is conducted to detect the possibility that the impact of the NAC is small in-sample

but not out-of-sample. The in-sample period is until April 9, 2003 with 641 observations. This

partition is intended to incorporate information on the lowest range of interest rates into model

estimation as well as to reserve sufficient out-of-sample observations.

The LIBOR rates with maturities of 6 and 12 months, and swap rates with maturities of 2, 3,

4, 5, 7, and 10 years are used to obtain zero-coupon bond yields on a continuously compounded

basis by a bootstrap method with linear interpolation to discount functions. The maturities of

the zero yields used for the analysis are 0.5, 1, 2, 3, 5, and 10 years. Following the previous

studies, e.g., CDGJ (2008) and Duffee (2002), this study assumes that the yields with maturities

of 0.5, 2, and 10 years are measured without error to extract latent factors and that the rest of

the yields are measured with error. There may be a concern that this choice is arbitrary. But it

is actually convenient because by selecting the yields that are measured without error from each

of the short, medium, and long segments of the yield curve, one can measure also without error

proxies for the level, slope, and curvature of the yield curve by combining these yields. More

importantly from the research objectives, this no-measurement-error assumption is another key

to potentially raising the likelihood of answering yes to Q1 and Q2.

For volatility prediction, a realized series is constructed from daily changes in zero yields. A

realized measure of the one-week ahead conditional variance of a τ -year yield is computed as

RVt,t+Δ,τ =

mt+Δ∑
i=1

(yt+ Δ
mt+Δ

i,τ − yt+ Δ
mt+Δ

(i−1),τ )
2 , (19)

where

• yt,τ : a zero-coupon bond yield at time t with τ years to maturity.

• Δ: a week interval set to 1/52.

• mt: the number of observations during a week ending at time t (usually mt = 5).
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The realized measure is generated every Wednesday. The total number of observations is 960,

among which the first 640 observations belong to the in-sample.

A realized measure of the h-week ahead conditional variance is computed as

RVt,t+hΔ,τ =
h∑

j=1

RVt+(j−1)Δ,t+jΔ,τ . (20)

The annualized variance is obtained by dividing RVt,t+hΔ,τ by hΔ. RVt,t+hΔ,τ is also generated

weekly, which means that some overlapping daily observations are used in successive observations

of RVt,t+hΔ,τ with h > 1. This study uses h = 4, aiming at balancing between ensuring a number

of observations for the calculation and avoiding too much overlapping. But other realistic values

of h do not qualitatively or quantitatively change the results presented below.

We are fully aware that the realized volatility measure constructed with daily data is crude.

But the purpose of this study is not to rank competing models based on predictive accuracy,

for which the measurement of the target variable seems to be crucial. Rather, it is to examine

within the same model whether the difference in volatility prediction arises between with and

without the NAC, regardless of whether the prediction is accurate or not. Therefore, as long as

the same conditions are maintained, the use of the crude measure does not seem to be a serious

concern.

4 Impact of volatility modeling on factor identification

The purpose of this section is to address Q1: Does the modeling of volatility practically influence

the identification of latent factors from the cross-section of interest rates when the NAC is

imposed? To achieve the purpose, latent factors extracted from the cross-section of interest rates

are compared between the Gaussian model with constant covariance matrix and the extended

models with level-dependent covariance matrix. Section 4.1 explains estimation method, and

Sections 4.2 and 4.3 report the results regarding factor identification and parameter estimation,

respectively.

4.1 Estimation method

The models with the NAC are estimated by the quasi-maximum likelihood method, which is one

of the standard methods employed by, e.g., Chen and Scott (1993), Duffee (2002), and Pearson

and Sun (1994). First of all, parameter vectors of the term structure models are defined in the
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following, which will be useful in comparing parameter estimates between with and without the

NAC.

ΘμQ : a parameter vector for the risk-neutral drift vector;

ΘμP : a parameter vector for the physical drift vector;

ΘΣ : a parameter vector for the covariance matrix.

Then, define

Θ =

⎛
⎜⎜⎜⎜⎝

ΘμQ

ΘμP

ΘΣ

⎞
⎟⎟⎟⎟⎠ , ΘQ =

⎛
⎜⎝ ΘμQ

ΘΣ

⎞
⎟⎠ , ΘP =

⎛
⎜⎝ ΘμP

ΘΣ

⎞
⎟⎠ . (21)

Next, let Y p
t = (yt,0.5 yt,2 yt,10)

′ be a vector of yields measured without error, and Υ(Xt; ΘQ)

be a vector of model-implied yields with the corresponding maturities:

Υ(Xt; ΘQ) = (Y (Xt, 0.5;ΘQ) Y (Xt, 2;ΘQ) Y (Xt, 10;ΘQ))
′ . (22)

Then, Xt is extracted by solving Y p
t = Υ(Xt; ΘQ) for Xt. This extraction is performed numeri-

cally for the extended models, however, only a few iterations are sufficient if a good initial value

of Xt is given: It is actually the value of Xt implied by the Gaussian model.

The rest of the yields, denoted as Y e
t = (yt,1 yt,3 yt,5)

′, are measured with error, denoted

as Ut = (ut,1 ut,3 ut,5)
′: It is assumed to be independent of Xs for any s and follow

Ut ∼ i.i.d.N(0, ς2I) . (23)

The reason for assuming such a simple distribution is to let the models explain various features

of the data as much as possible.

The joint density function at time t conditioned on time t−Δ can be written and developed

as follows:

f(Y p
t , Y

e
t |Y p

t−Δ; Θ, ς2) = f(Xt, Ut|Xt−Δ; Θ, ς2)

∣∣∣∣dΥ(Xt; ΘQ)

dX ′
t

∣∣∣∣
−1

= fT (Xt|Xt−Δ; Θ)fC(Ut|Xt; ΘQ, ς
2)

∣∣∣∣dΥ(Xt; ΘQ)

dX ′
t

∣∣∣∣
−1

. (24)

The first equality is from changes of variables from Y p
t to Xt, by which the Jacobian term

appears, and from Y e
t to Ut. The second equality is from the decomposition of the joint density

into the marginal (fT ) and conditional (fC) components with Xt Markovian.

For the extended models, the transition density, fT , has no analytical expression for finite Δ.

It is then approximated by the multivariate normal density function, which might be justified by
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a relatively short interval, Δ = 1/52. The conditional first and second moments to be substituted

are computed with the same method used for pricing bonds. It is noted that for all models except

the QS model, these moments can be computed exactly since the drift vector is linear in Xt

and the instantaneous covariance matrix is at most quadratic in Xt. Still, the formula given in

equation (49) (without the residual term) is useful for this computation. The Jacobian term is

computed in the process of extracting Xt. On the other hand, fC is the multivariate normal

density function from (23). The objective function for estimating the model parameters is then

∑
t

{
ln fT (Xt|Xt−Δ; Θ) + ln fC(Ut|Xt; ΘQ, ς

2)− ln

∣∣∣∣dΥ(Xt; ΘQ)

dX ′
t

∣∣∣∣
}

. (25)

The parameters are estimated using the in-sample data. These estimates are held fixed

throughout the out-of-sample period. This means that the models are not re-estimated each

time the out-of-sample prediction is made. This approach does not seem to be a serious concern

because, as will be discussed in Section 4.2, the model parameters appear to be stable between

the two sample periods.

4.2 Identified factors

Before reporting estimated parameters in the next subsection, identified factors are first reported

to address Q1. Figure 1 exhibits the time series of rt extracted through the Gaussian, QC,

QS, and QE models over the whole period. It is seen that these plots are hardly visually

distinguishable. In fact, sample correlations over the whole period across the four models are

all very close to one, regardless of the level or first difference of the data. In Panel (a), the

time-series of the six-month yield is also displayed. As anticipated, it tracks the time-series of

rt with sample correlation over the whole period 0.98.

Analogous time-series for θt and εt are displayed in Figures 2 and 3, respectively, showing

that they are also hardly distinguishable among the four models with sample correlations all

close to one. The results for θt and εt may be a bit more surprising than that for rt. This is

because while rt is unambiguously the instantaneous interest rate and can be determined as the

starting point of the yield curve independently of models considered, this is not the case for θt

and εt, which realize model-dependently.

In Panel (a) of Figure 2, the time-series of the ten-year yield is also displayed. As also

anticipated, it tracks the time-series of θt with sample correlation over the whole period 0.96.

Similarly, Panel (a) of Figure 3 displays the time-series of an observed variable that turns out to

track well the time-series of εt. It is actually a curvature factor known as the third factor driving
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the yield curve, which is simply measured here by curt = 2yt,2 − (yt,0.5 + yt,10). It is noted that

these similarities between the state and observed variables continue in the out-of-sample period,

suggesting that there is no structural break or regime shift in the model parameters despite

experiencing severe market turmoil in the out-of-sample period.

These figures imply that the covariance matrix does not have a significant impact on the iden-

tification of latent factors. It then follows that it is the risk-neutral drift vector that dominantly

determines factor identification. The identified factors are similar across the four models because

the specification of the risk-neutral drift vector is identical with similar parameter values, as will

be discussed in Section 4.3.

An important implication can then be obtained from this finding: A factor is difficult to

be identified from the cross-section of interest rates if it does not drive the risk-neutral drift of

interest rate factors. Put simply, if there is a factor that appears in the covariance matrix but

not in the risk-neutral drift vector, it will virtually act as an unspanned factor. Indeed, a similar

argument is made by Joslin (2010) using the Gaussian term structure model. Besides, in CDGJ

(2009, p.51), the sufficient conditions to obtain the A1(4) USV model from the A1(4) model are

presented, one of which indicates that the coefficient of a volatility factor in the risk-neutral

drift of a conditionally Gaussian factor should be very small. In fact, their Table 2A shows that

the estimate of this coefficient for the A1(4) USV model is −0.260, which is in sharp contrast

to the corresponding estimate of −809.5 for the A1(4) model obtained by the inversion method.

Other parameters in the risk-neutral drift do not exhibit such a dramatic change. The result

suggests that by this constraint alone the volatility factor becomes nearly, if not completely,

unspanned. A similar result is reported by Thompson (2008, Tables 3 and 4). Taken together,

the introduction of a nearly unspanned factor into no-arbitrage term structure models is not as

difficult as is thought: Simply exclude a factor from the risk-neutral drift vector.

4.3 Estimated parameters

The estimation results are detailed, which will be helpful in discussing the impact of the NAC on

volatility estimation and prediction in the next section. Since estimated parameters of particular

interest are those in the covariance matrix, those in the physical drift vector are omitted from

each of the following tables but collected altogether in Table 5. It is noted here that to control

for potential influences of the physical drift, the drift parameters to be estimated are exactly

the same across all models.
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4.3.1 Results for the Gaussian model

In columns labeled “with NAC” of Table 1, the estimates for the baseline Gaussian model are

presented with standard errors in parenthesis: The standard errors are computed by the outer

product of the gradient of the log-likelihood function. When the full parameters are estimated,

some parameters including those in the physical drift are insignificant. Such parameters are set

to zero, and the remaining parameters are re-estimated. The parameters of the other models are

treated in a similar way unless otherwise noted. Since this study also performs out-of-sample

analysis, simple models are not necessarily evaluated unfavorably. By this simplification, σ23 = 0

is placed, indicating that the instantaneous covariance between θt and εt is zero.

The speed of mean reversion of θt under the risk-neutral measure is by far the lowest, as

implied by the estimate of κ2, 0.017. The estimates of κ1 and κ3 are similar around 0.95, impling

that an additional (fourth) factor is unnecessary for describing the cross-section of interest rates.

The high goodness-of-fit to the cross-section is also evidenced by a small standard deviation of

the measurement errors: The estimate of ς × 104 is 6.15 basis points (bps).

4.3.2 Results for the QC model

Columns labeled “with NAC” of Table 2 show that the estimates in the risk-neutral drift for the

QC model are not very different from those for the Gaussian model. Additionally, the estimate

of ς× 104 (6.13 bps) remains almost the same. These similarities between the QC and Gaussian

models indicate that the level-dependent covariance matrix of this form does not much affect the

parameters in the risk-neutral drift nor improve the goodness-of-fit to the cross-section of interest

rates. In fact, looking at the values of the log-likelihood and its components, the cross-sectional

component, which is denoted as LogLC and corresponds to the second term of (25), is increased

only by 6 to 11478 from that for the Gaussian model. In contrast, the time-series component,

which is denoted as LogLT and corresponds to the first term of (25), is indeed increased by 67

to 9417. Consequently, the total log-likelihood value denoted as LogL is increased by 93 with

additional 9 parameters. It is the descriptive power for time-series properties of the data that

is benefited from the level-dependent covariance matrix.

Furthermore, some interesting results emerge from the estimates in hi(Xt) (i = 1, 2, 3). First,

the estimates of β2
1 and β2

2 in h2(Xt) are both insignificant, suggesting that neither the short-

term nor long-term yield drives the instantaneous variance of θt.
7 Since θt is highly correlated

7To highlight this result and differences in estimates between with and without the NAC, the insignificant
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with the ten-year yield as seen in Figure 2, h2(Xt) also governs the variability in long-term yields.

Then, the result is consistent with those by the previous studies pointing out that the volatility

of long-term yields is especially difficult to be captured by the level of interest rates; see, e.g.,

Andersen and Benzoni (2010), CDGJ (2009), and Jacobs and Karoui (2009). In contrast, the

estimated coefficients on rt and θt in h1(Xt) and h3(Xt) are all significant. Specifically, the

estimates of β1
1 and β1

2 in h1(Xt) are both positive, implying that a positive shift in the yield

curve increases the volatility of rt and thus of short-term yields. In h3(Xt), while the estimate

of β3
2 is positive, that of β3

1 is negative. The result suggests that when the slope of the yield

curve steepens, the volatility of εt and thus of the curvature factor increases.

Second, the estimated coefficients on εt, β
i
3 (i = 1, 2, 3), are all significant and negative. These

negative coefficients seem to be inconsistent with the theory documented in, e.g., Christiansen

and Lund (2005), and Ilmanen (1999). Specifically, as seen in Figure 3, εt moves closely to

the curvature factor of the yield curve measured by 2yt,2 − (yt,0.5 + yt,10), which in turn can be

interpreted as a butterfly spread. Since this butterfly spread has a negative convexity, the spread

position loses money when a large shift in the yield curve occurs regardless of the direction of the

shift. To compensate the loss induced by high volatility, the butterfly spread or the curvature

factor should move parallel with the volatility. That is, the theory suggests that the sign of βi
3 is

positive. The result that the estimates of βi
3 are all negative implies that at any segment of the

yield curve the volatility increases with decrease in the curvature factor. Further examination

of the empirical relationship between shape and volatility of the yield curve seems interesting

and is left for future research.

4.3.3 Results for the QS model

Before estimation, the following constraints are placed based on the previous results to keep the

model simple: β2
1 = β2

2 = β3
0 = 0 and ρ23(Xt) = 0 or equivalently δ23 = 0. The latter constraint

(zero instantaneous correlation between θt and εt) simplifies a further constraint required for

Rt to be positive definite. Namely, it is ρ212(Xt) + ρ213(Xt) < 1 for any Xt, or by substituting

equation (10) into this inequality c2(Xt)(δ
2
12 + δ213) < 1. Since c2(Xt) ≤ 1, it follows that

δ212 + δ213 < 1. To further simplify the constraint, however, δ13 =
√
1− δ212 is actually placed:

With this constraint, Rt becomes semi-positive definite in a special case of c2(Xt) = 1.

parameters are left unconstrained. But the answers to Q1 and Q2 do not change if β2
1 = β2

2 = 0 is placed

consistently with the other insignificant parameters. For the same reason, the insignificant parameters in the

correlation matrix Rt for the QS model, presented in Table 3, are left unconstrained.
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In columns labeled “with NAC” of Table 3, the estimates for the QS model are presented.

First of all, it is found that none of the estimates associated with time-varying correlations,

γi (i = 1, 2, 3), are significant. Consequently, the goodness-of-fit to neither cross-sectional nor

time-series properties of the data is improved from the QC model: Actually, due to the constraint

of β2
1 = β2

2 = β3
0 = 0, the values of LogL and LogLT are slightly decreased. Therefore, the overall

picture of the estimation results remains unchanged from that for the QC model. Here, it is

additionally implied that time-varying correlations are more difficult to be captured by the level

of interest rates than are time-varying volatilities, though this difficulty may be partly due to

the limited specification for the positive definite correlation matrix.8

4.3.4 Results for the QE model

There are sign constraints on the parameters of the QE model to make the covariance matrix

positive definite. Some parameters reach the boundary values or violate the sign constraints.

Such parameters are fixed in the following and then the remaining parameters are re-estimated:

ci0 = 10−8 (as ci0 > 0); mi
j = 0 (as mi

j ≥ 0).

In columns labeled “with NAC” of Table 4, the estimates for the QE model are presented.

Again, the overall picture remains unchanged from the previous models. In particular, the

estimates in the risk-neutral drift are very similar to those for the Gaussian model. Also, it

is reconfirmed that the goodness-of-fit to cross-sectional properties of the data is not much

improved, as evidenced by the estimate of ς × 104 (6.13 bps) and the value of LogLC that

is increased only by 9 from that for the Gaussian model. In contrast, the goodness-of-fit to

time-series properties of the data exhibits a significant improvement with the value of LogLT

increased to 9472. Consequently, the value of LogL is increased by 151 to 22416 from that for

the Gaussian model with additional 11 parameters.

Among the parameters in the eigenvector matrix P , only sinϕP
2 is estimated significantly,

8To capture time-varying correlations as well as volatilities, it seems promising to use a Wishert process; see,

e.g., Buraschi et al. (2008), and Gourieroux and Sufana (2011). Cieslak and Povala (2011) apply a term structure

model where the covariance matrix of interest rate factors is driven by a 2-by-2 Wishert process to the joint data

on interest rates and realized (co)variance measures, and show that the proposed model has a surprisingly good

performance to the latter data without reducing the goodness-of-fit to the former data.
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leading to Σt of the following form:

Σt =

⎛
⎜⎜⎜⎜⎝

l1(Xt) cos
2 ϕP

2 + l3(Xt) sin
2 ϕP

2 0 {l1(Xt)− l3(Xt)} sinϕP
2 cosϕP

2

0 l2(Xt) 0

{l1(Xt)− l3(Xt)} sinϕP
2 cosϕP

2 0 l1(Xt) sin
2 ϕP

2 + l3(Xt) cos
2 ϕP

2

⎞
⎟⎟⎟⎟⎠ . (26)

It turns out that l2(Xt) is the instantaneous variance of θt. In addition, since the estimate

indicates sinϕP
2 < cosϕP

2 , l1(Xt) is more closely related to the instantaneous variance of rt,

whereas l3(Xt) to that of εt. Among the instantaneous covariances, only that between rt and εt

is significant. These interpretations will be helpful for understanding the difference in volatility

prediction between with and without the NAC in the next section.

5 Impact of cross-sectional constraints on volatility estimation

and prediction

The purpose of this section is to address Q2: Does the cross-section of interest rates practically

influence the estimation and prediction of interest rate volatility when the NAC is imposed?

To achieve the purpose, the Gaussian and extended models are used also here, and estimated

with and without imposing the NAC while the other conditions are held constant. Section

5.1 explains a setting for the analysis, and Sections 5.2 and 5.3 report the results regarding

parameter estimation and volatility prediction, respectively.

5.1 Empirical setting

5.1.1 Estimation

The analysis bases the no-arbitrage models that have already been estimated in Section 4, and

proceeds from a point of view of removing, rather than imposing, the NAC. This seemingly

reverse approach makes it easier to control for comparative conditions. The key to this control

is to use the same state vector Xt between with and without the NAC. A simple way to guarantee

the same Xt is to treat Xt as observed by overlooking the fact that Xt is extracted through the

no-arbitrage models. The reasons for taking this reverse approach are further addressed in

Section 5.1.3.

It is useful to clarify from the context of this study that the NAC is involved in the following

two properties:

(a) time-series behavior of interest rate factors and their volatilities;
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(b) cross-sectional relation between the factors and observed interest rates.

Then, when the NAC is removed, properties (a) and (b) need to be determined in other ways.

It follows that the estimation procedure without the NAC consists of two parts for determining

these properties separately.

To determine property (a), ΘP defined in equation (21) is estimated. Specifically, given the

in-sample data on Xt, it is estimated by maximizing

∑
t

ln fT (Xt|Xt−Δ; ΘP ) . (27)

Then, the estimate of ΘP obtained by maximizing (27) is compared with that obtained by

maximizing (25) to examine the impact of the NAC on parameter estimation. From now on,

the estimates of ΘP are distinguished between with and without the NAC by denoting ΘTC
P and

ΘT
P , respectively: “TC” indicates that the parameter vector is estimated by maximizing (25)

and hence using both time-series and cross-sectional dimensions of the data, whereas “T” by

maximizing (27) and hence using only time-series dimension of the data.

To determine property (b), the simplest relation is considered:

yt,τ = α0,τ + α′
1,τXt . (28)

The linear function is intended to raise the likelihood of answering yes to Q2 as it may overstate

the impact of the NAC for the extended models that are not exactly the affine models. However,

even if a significant impact is detected, there is still room for considering nonlinear functions

to mitigate it. The parameters in equation (28) are estimated for each τ by OLS using the

in-sample data. For estimation, measurement errors are introduced in all yields.

5.1.2 Prediction

Model-implied h-week ahead conditional variances of a τ -year yield are given by

with NAC: vart[yt+hΔ,τ ] = vart[Y (Xt+hΔ, τ ; ΘQ);Θ
TC
P ] , (29)

without NAC: vart[yt+hΔ,τ ] = α′
1,τvart[Xt+hΔ; Θ

T
P ]α1,τ , (30)

where vart[·] stands for the conditional variance under the physical measure.

The following notes are in order regarding the computation of equations (29) and (30). First,

while measurement errors are introduced in some or all yields for estimation, their variances are

omitted for prediction, as the purpose is to compare predicted values generated by the models.
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Second, since the conditional variance in (29) has no closed-form for the extended models, it

is computed with the same method used for pricing bonds. The application and accuracy of

the method are provided in Appendices A and B, respectively. It is noted that the conditional

variance in (30) can be computed exactly for all models except the QS model by the same

reason as noted in Section 4.1. Third, although the constant term in equation (28), α0,τ , does

not appear in (30), it may affect volatility prediction through the estimate of α1,τ . But this

effect is negligible. The results of volatility prediction with α0,τ excluded preliminarily from (28)

remain unchanged from those presented below with α0,τ included.

The magnitude of the difference in forecasts between with and without the NAC is evaluated

from both statistical and economic perspectives. From a statistical perspective a mean squared

error (MSE) criterion is applied to variance forecasts, whereas a root mean squared error (RMSE)

criterion is applied to annualized standard-deviation forecasts from an economic perspective.

Prediction errors for variance are computed according to the degree of involvement of the

NAC in properties (a) and (b):

e1,t,h,τ = RVt,t+hΔ,τ − vart[Y (Xt+hΔ, τ ; ΘQ);Θ
TC
P ] , (31)

e2,t,h,τ = RVt,t+hΔ,τ − α′
1,τvart[Xt+hΔ; Θ

TC
P ] α1,τ , (32)

e3,t,h,τ = RVt,t+hΔ,τ − α′
1,τvart[Xt+hΔ; Θ

T
P ] α1,τ . (33)

e1 and e3 are prediction errors with and without the NAC, respectively. Our primary interest

is in the difference between these two errors. On the other hand, e2 is prediction error with

partial involvement of the NAC, where ΘTC
P is used as the parameter vector for the physical

distribution while the simple linear function given by equation (28) is used as the cross-sectional

relation.

Using the error in the intermediate step, the MSE ratio of primary interest can be decom-

posed as
MSE3

MSE1
=

MSE2

MSE1
× MSE3

MSE2
, (34)

where MSEi is calculated from ei. If the ratio on the left-hand side of equation (34), the 3-1

ratio for short, significantly deviates from one, this deviation can be regarded as evidence of

the resulting impact of the NAC. Further, if the 3-1 ratio is above (below) one, the imposition

of the NAC is (un)favorable for volatility prediction. The first ratio on the right-hand side of

(34), the 2-1 ratio, asks if the prediction differs by changing the cross-sectional relation between

with and without the NAC while the value of the physical parameter vector is held fixed at
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ΘTC
P . The second ratio on the right-hand side, the 3-2 ratio, asks if the prediction differs by

changing the value of the physical parameter vector between with and without the NAC while

the cross-sectional relation is held fixed by the linear function. This decomposition uncovers

which has a dominant effect, cross-section function or time-series estimation.

5.1.3 Discussion

As explained above, the analysis is conducted following the reverse approach, starting from

imposing the NAC and ending in removing it. A more natural approach, on the other hand,

bases the results without the NAC and then compares them with those obtained by imposing

the NAC. The reasons for not taking this natural approach are detailed as follows.

The natural approach starts from providing an observed vector, say Xo
t , consisting of interest

rates or their combinations. The physical distribution of instantaneous changes in Xo
t is assumed

to follow the Gaussian model or its extended version, and estimated using time-series data on

Xo
t . The question then is whether the estimated physical distribution significantly changes if

the NAC is imposed. The estimation with the NAC is equivalent to estimating no-arbitrage

term structure models. To model the no-arbitrage term structure, the risk-neutral distribution

of instantaneous changes in Xt (an unobserved state vector) is required. This distribution can

be derived, after providing an appropriate model for market price of risk, by applying the Ito

formula to Xt = g−1(Xo
t ), where g is a function derived as the solution to the pricing equation

under the NAC. Note that in this approach, the same Xo
t is used between with and without the

NAC, allowing for examining whether the estimated physical distribution of dXo
t significantly

changes by imposing the NAC. The analogous logic in the reverse approach is that using the

sameXt between with and without the NAC allows for examining whether the estimated physical

distribution of dXt significantly changes by removing the NAC.

The above natural approach is applicable to the Gaussian model, which indeed is demon-

strated by JSZ (2011). But the application to the extended models is almost infeasible. This is

because the implied risk-neutral distribution of dXt becomes very complicated due to the level

dependence of the covariance matrix and a potentially nonlinear relationship between Xt and

Xo
t . This complexity makes it extremely difficult to derive analytical expressions of no-arbitrage

bond prices even approximately. We believe that it is more constructive to try to understand

the impact of the NAC by adopting the feasible reverse approach.
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5.2 Comparison of parameter estimation

Parameter estimates in the covariance matrix are compared between with and without the NAC

in Tables 1–4. Columns labeled “without NAC” present the estimates obtained by maximizing

(27). The estimates in the physical drift vector are collected altogether in Table 5, and the

estimates in the cross-section function (28) are not reported for saving space.

Table 1 shows that in the Gaussian model there is no parameter that exhibits a significant

change by removing the NAC. Besides, the value of LogL without the NAC is almost the same

as that of LogLT with the NAC. These results imply that cross-sectional constraints due to

no-arbitrage have little impact on parameters associated with the volatility.

Tables 2 and 3 also show that a significant impact of the NAC is detected for neither the

QC nor QS model. Especially, the estimates in h1(Xt) and h3(Xt) are stable to the presence or

absence of the NAC. Additionally, the coefficients on rt and θt in h2(Xt) remain insignificant,

confirming that the volatility of long-term yields is difficult to be explained by the level of

interest rates. Still, the point estimates in h2(Xt) are increased in absolute value, though not

statistically significantly.

Table 4 presents the results for the QE model, which are generally similar to those for the

previous models but contain a notable difference between with and without the NAC. Specifically,

the estimate of m2
3 in l2(Xt), which is originally 0.058 but not statistically different from zero, is

increased to 0.140 and turns significant without the NAC. The result suggests that fitting a model

to both time-series and cross-sectional properties of the data tends to reduce the variability in θt

and thus in long-term yields. But in spite of this change, the overall fit to time-series properties

of the data is not changed much. Even by removing the NAC, the value of LogL is increased

only by 5 from that of LogLT with the NAC. In other words, when the NAC is imposed, the loss

in the log-likelihood value of the time-series dimension is at most 0.05%. This is an intuitive

number representing the cost of no-arbitrage constraints.

5.3 Comparison of volatility prediction

5.3.1 Statistical perspective

Table 6 presents the ratios of the MSEs of four-week-ahead (h = 4) variance forecasts generated

by the extended models: Those for the Gaussian model are omitted as they are almost identical

to one for all cases considered. The last column labeled “Ave.” displays the ratio between

average MSEs with each average taken over the maturity spectrum. * and ** indicate that the
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Diebold and Mariano (DM) (1995) test rejects the null hypothesis of equal predictive accuracy

between ei and ej (i, j = 1, 2, 3) given in equations (31)–(33) at the 5% and 1% significance

levels, respectively. The standard error of the test statistic is computed by the Newey and West

(1987) method with 8 lags. As noted by Diebold (2015), the DM test is originally designed

to compare forecasts, but not models, where forecast errors are treated as given or primitive

variables. Since this study compares forecasts within the same model, the application of the

DM test is suitable.

In Panel A of Table 6, the results from the in-sample are presented. The values of the 3-1

ratio at the average are close to one for all models. The same is true for the values of the

component ratios at the average, although the value of the 2-1 ratio for the QE model (0.992)

indicates a statistically significant deviation from one. Also at τ = 0.5, 2, the 2-1 ratio for

the QE model deviates from one statistically significantly though the magnitude of deviation is

small. The result indicates that the difference in the cross-sectional relation can produce a small

but distinct difference in volatility prediction. Furthermore, the 3-1 ratio for the QE model at

τ = 1, 2 is statistically below one, which is attributed to both the 2-1 and 3-2 ratios with the

latter having a slightly stronger impact. In contrast, for the QC and QS models, there is no

case at respective maturities as well as at the average in which the difference is statistically

significant.

In Panel B of Table 6, the results from the out-of-sample are presented. In contrast to the

in-sample results, it is apparent that the values of the 3-1 ratio tend to be below one and that

the number of cases in which the difference is statistically significant is increased. Specifically,

for the QC model, the value of the 3-1 ratio at the average is 0.949 and the values of the 3-1 ratio

at respective maturities range from 0.901 (τ = 5) to 0.997 (τ = 0.5). They are all below one,

indicating the possibility that cross-sectional constraints are binding out-of-sample though they

are not in-sample. A similar pattern is observed for the QS model. For both models, the 3-2

ratio contributes more than the 2-1 ratio, implying that the difference in time-series estimation

has a stronger impact on volatility prediction than the difference in cross-section function.

For the QE model, on the other hand, the 3-1 ratio at neither the average nor respective

maturities is statistically different from one. This holds true even at τ = 10, where the 3-1 ratio

reaches 0.824. Behind the result of not detecting a statistical difference is, aside from the smaller

sample size, large variation in forecast errors generated by the QE model, ei,t,4,10 (i = 1, 2, 3):

These errors are further discussed in Section 5.3.3. Behind the result of a seemingly large
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deviation (0.824) is the difference in the estimates of m2
3 presented in Table 4. As discussed in

Section 5.2, m2
3 determines the magnitude of the volatility of θt and thus of long-term yields. By

removing the NAC, the point estimate of m2
3 becomes more than double, from 0.06 to 0.14. This

change is actually desirable for capturing large variation in the ten-year yield volatility observed

in the out-of-sample period, as will be seen in Figure 5. This explanation is also supported by

the 3-2 ratio measuring the time-series-related difference, which is further below one, 0.791.

To summarize from a statistical point of view, significant differences in forecasts between

with and without the NAC can arise. The next step then is to evaluate the magnitude of

these differences from an economic point of view. This evaluation is also informative for the

case in which the difference is not statistically significant but appears large. When the impact

of the NAC is decomposed into cross-section-related and time-series-related components, the

latter measured by the 3-2 ratio is generally stronger. But the cross-section-related difference

measured by the 2-1 ratio, though it is small in magnitude, can be statistically significant. Still,

it could be made insignificant by considering more flexible functions than the linear one given

by equation (28).

5.3.2 Economic perspective

To see the differences in forecasts from an economic point of view, the four-week-ahead (h = 4)

annualized standard deviation is predicted, instead of the variance, and the predictive accuracy

is evaluated by the RMSE criterion. Specifically, the RMSEs are computed from the following

prediction errors:

ẽ1,t,h,τ =

√
RVt,t+hΔ,τ

hΔ
−
√

vart[Y (Xt+hΔ, τ ; ΘQ);ΘTC
P ]

hΔ
, (35)

ẽ3,t,h,τ =

√
RVt,t+hΔ,τ

hΔ
−
√

α′
1,τvart[Xt+hΔ; Θ

T
P ] α1,τ

hΔ
. (36)

Table 7 presents the RMSEs expressed in bps, where RMSEi is calculated from ẽi. From

Panel A displaying the in-sample results, it is found that the difference is at most −1.1 bps (QE,

τ = 10). This negative difference, however, does not indicate that the imposition of the NAC is

restrictive. Panel B shows that the differences are somewhat larger and generally positive in the

out-of-sample period. Still, the differences at the average are well within 1 bp for all models.

Besides, the largest difference for each model does not seem to be economically significant: 1.7

(QC, τ = 5), 1.6 (QS, τ = 5), and 2.0 (QE, τ = 10) bps. As presented in Panel B of Table 6,

the 3-1 ratio of the variance forecast MSEs falls to as low as 0.824 (QE, τ = 10). This seemingly
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large deviation from one is in fact equivalent to a difference of 2 bps in terms of the annualized

standard deviation.

5.3.3 Further investigation from time-series perspective

The difference in RMSE of at most 2 bps does not seem large. However, it may still be concerned

that the differences become occasionally large although they are small on average. To see the

differences in forecasts at each point in time, Figures 4 and 5 display time-series of four-week-

ahead (h = 4) forecasts of annualized standard deviation of a τ -year yield (τ = 0.5, 2, 10)

generated by the QC and QE models, respectively: The bold and dotted lines correspond to the

forecasts with and without the NAC, respectively, and the thin line to the realized value. The

analogous figures for the QS model are omitted as they are similar to those for the QC model

and hence for saving space. For both models, there is no visual difference in forecast series

between with and without the NAC at τ = 0.5, 2. At τ = 10, however, some differences can

be observed. Specifically, the forecasts without the NAC are higher, especially in high volatility

periods, which is attributed to the differences in point estimates in h2(Xt) for the QC model

and in l2(Xt) for the QE model, as discussed in Section 5.2.

If this magnitude of difference in forecasts observed at some points in time is unacceptable,

it may be recommended to introduce (nearly) USV factors. In this particular case, they are to

be introduced into h2(Xt) and l2(Xt). Then, even though some parameters in these functions

were adjusted to cross-sectional properties of the data by imposing the NAC, the goodness-of-fit

to time-series properties of the data would not be reduced owing to the nearly USV factors.

And this study has argued that their introduction is achieved without much difficulty. That is,

the time-series-related difference can also be reduced, as is the case for the cross-section-related

difference.

Taken together, even if a large impact of the NAC on volatility prediction is detected, there

are ways to mitigate it by considering flexible functions (nonlinear regression equations) for the

cross-sectional relation or by introducing nearly USV factors for the time-series estimation, or

by both. Normally, models in time-series analysis are sufficiently flexible and embed nearly

unspanned factors such as GARCH volatilities. Therefore, even if the NAC were imposed on

such models, its impact would not be large.
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6 Robustness checks using affine models with stochastic volatil-

ity

We have seen using the Gaussian and extended models that the imposition of the NAC does not

much affect the identification of latent factors or the estimation and prediction of interest rate

volatility. Also, we have discussed that even if there is a significant impact, it can be mitigated

without much difficulty. This section examines the robustness of these findings by changing

the baseline models to affine models with stochastic volatility. Sections 6.1 and 6.2 present

specifications for an affine stochastic volatility model and its extended version, respectively.

Sections 6.3 through 6.5 present the results regarding factor identification, parameter estimation,

and volatility prediction, respectively. Section 6.6 discusses and summarizes the results of this

section.

6.1 The baseline affine model with stochastic volatility

Following the notation developed by Dai and Singleton (2000), let Am(3) (0 ≤ m ≤ 3) denote

an affine term structure model that has 3 factors in total with m factors driving the factor

covariance matrix: m = 0 corresponds to the Gaussian model. Below, the results with m = 1

are presented, however, the results with m = 2 (available upon request) do not qualitatively or

quantitatively differ from those with m = 1. On the other hand, m = 3 is not considered as the

dynamics of rt are directly specified here. More specifically, the remaining two factors cannot

drive the volatility of changes in rt, and hence they are difficult to be interpreted as stochastic

volatility factors of the yield curve.

Among numerous specifications for the A1(3) model, this study adopts the one proposed by

CDGJ (2008, equations (33) and (34)). Let Xt = (rt μt Vt)
′ be a three-dimensional state vector,

and the risk-neutral distribution of instantaneous changes in Xt is given by

dXt ∼ N

⎡
⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎝

μt

κμ,0 + κμ,1rt + κμ,2μt + Vt

κV,0 + κV,3Vt

⎞
⎟⎟⎟⎟⎠ dt , Σt dt

⎤
⎥⎥⎥⎥⎦ , (37)

where

Σt =

⎛
⎜⎜⎜⎜⎝

s11 s12 s13

s12 s22 s23

s13 s23 s33

⎞
⎟⎟⎟⎟⎠Vt +

⎛
⎜⎜⎜⎜⎝

c11 c12 0

c12 c22 0

0 0 0

⎞
⎟⎟⎟⎟⎠ . (38)
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In this specification, rt is also the instantaneous interest rate, whose risk-neutral drift is μt.

Vt is a factor driving both conditional first and second moments of Xt. It is noted that Vt

is normalized in the risk-neutral drift of μt, where the coefficient on Vt is set to one. This

normalization is useful for interpreting extracted Vt, as will be seen in the following subsections.

The market price of risk is specified with the assumption that Vt does not reach zero in

finite time under both the risk-neutral and physical probability measures; see Cheridito et al.

(2007). Then, the constant term in the drift of Vt can be separated between these measures.

The resulting physical distribution of instantaneous changes in Xt is given by

dXt ∼ N

⎡
⎢⎢⎢⎢⎣

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎝

Kr,0

Kμ,0

KV,0

⎞
⎟⎟⎟⎟⎠+

⎛
⎜⎜⎜⎜⎝

Kr,1 Kr,2 Kr,3

Kμ,1 Kμ,2 Kμ,3

0 0 KV,3

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

rt

μt

Vt

⎞
⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
dt , Σt dt

⎤
⎥⎥⎥⎥⎦ . (39)

Vt does not reach zero in finite time under both measures if 2κV,0 ≥ s233 and 2KV,0 ≥ s233.

These inequalities are satisfied by the actual estimates presented in Tables 8 and 11 despite the

fact that they are not explicitly imposed on the objective function for estimation.

6.2 Extension of the A1(3) model

The A1(3) model is extended in the same way as the Gaussian term structure model. Specifically,

the extension is achieved by making the covariance matrix of the A1(3) model depend on all

factors, where the dependence structure is exactly the same as that of the QC or QE model

specified in Section 2.2. The extension to the QS model is not considered here based on the

previous results showing similarities between the QC and QS models. It is important to note

that as is the previous extension, the specifications for both the risk-neutral and physical drift

vectors are the same between the A1(3) and extended models in order to control for potential

influences of the drift vectors and thus focus exclusively on potential influences of the covariance

matrix on factor identification and volatility prediction.

6.3 Identified factors

One of the major findings of this study is that the volatility is of little relevance to factor

identification. This is so even using the models with the volatility that is originally linked to the

cross-section of interest rates and using the inversion method with the assumption that some

interest rates are measured without error.
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This finding is confirmed in Figure 6 displaying the time-series of identified factors: The

left panels present the results for the A1(3) model together with the time series of observed

variables that track those of the factors, and the right panels present the results for the QC

and QE models together. Again, for each factor the three plots are visually indistinguishable.

Furthermore, it is seen from the left panels that the identified factors are well tracked by (a

combination of) observed interest rates. In particular, Vt and the ten-year yield (a proxy of the

level factor) are highly correlated with sample correlation over the whole period 0.96, which is

in line with the results by the previous studies. Furthermore, μt exhibits a moderately high

correlation with the curvature factor, 0.70.

These results imply that all factors in the A1(3) model, including Vt, are interest-rate spe-

cific, when identified from the cross-section of interest rates with the inversion method. This

implication, which has already been addressed in CDGJ (2009) based on the affine models,

seems to hold more generally, regardless of the specification in the factor covariance matrix.

The interpretation and implication of the results are further discussed in Section 6.6.

6.4 Estimated parameters

Among a maximum of fourteen identifiable parameters associated with the risk-neutral distri-

bution for the A1(3) model, ten are estimated significantly and displayed in Table 8: As before,

the estimates in the physical drift vector are collected altogether in Table 11. First, between

with and without the NAC, there is no parameter that exhibits a statistically significant change.

However, of note is that the estimate of s33 is slightly increased by removing the NAC so that

Vt becomes slightly more volatile. Meanwhile, Vt is realized as the most persistent factor in the

risk-neutral world as evidenced by the estimate of κV,3, −0.006. Second, compared with the

Gaussian model, the goodness-of-fit to the cross-section of interest rates remains unchanged.

Specifically, the estimate of ς × 104 is 6.15 bps and the value of LogLC is 11472, both of which

are almost the same as those for the Gaussian model. The result is in line with Bikbov and

Chernov (2011), who document that these two affine models are hardly distinguishable in terms

of describing the cross-section of interest rates.

Tables 9 and 10 present the estimates for the QC and QE models, respectively. First of all,

looking at columns labeled “with NAC”, the estimates in the risk-neutral drift for both models

are basically similar to those for the original A1(3) model, as is the case for the Gaussian and

extended models. Also, it is confirmed by comparing the values of the LogL and its components
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between the A1(3) and extended models that the extension of the covariance matrix does not

contribute to the cross-sectional fit but it does to the time-series fit.

Looking more precisely at the estimates for the QC model in Table 9, the level of Vt is found

to be irreverent to the volatility of Vt as β3
3 in h3(Xt) is set to zero in both cases with and

without the NAC. Since Vt is highly correlated with the ten-year yield as seen in Figure 6, the

result indicates that long-term yields have little predictive power for their own volatilities. On

the other hand, rt, which also represents an interest rate level at the other end of the yield curve,

is found to be reverent to the volatilities of all factors. In particular, because the estimates of

βi
1 (i = 1, 2, 3) are negative, the decrease in rt increases the volatility, which is consistent with

recent movements in interest rates.

As for the differences in parameter estimates between with and without the NAC, the results

from the A1(3)-based extension are basically the same as those from the Gaussian-based exten-

sion. Namely, while the parameters associated with the volatilities of rt and μt are stable, those

associated with the volatility of the persistent factor, Vt, are changeable. For example, Table 9

shows that the estimate of β3
1 for the QC model changes from −0.027 to −0.062 by removing

the NAC. In spite of this decrease, however, the volatility of Vt is actually higher without the

NAC than with the NAC, which is due to the increase in β3
0 from 0.011 to 0.013. From Table

10, the volatility of Vt for the QE model is most affected by l3(Xt) as the estimate of sinϕP
i

indicates sinϕP
i < cosϕP

i for all i. Then, consistent with the result from the Gaussian-based

extension, the volatility of Vt is higher without the NAC than with the NAC as m3
3 is increased

from 0.11 to 0.16.

6.5 Volatility Prediction

Table 12 presents the ratios of the MSEs of four-week-ahead (h = 4) variance forecasts. In

Panel A displaying the in-sample results, neither the A1(3) nor QC model exhibits a statistically

significant deviation from one at the average or respective maturities. In contrast, the QE model

generates forecasts that are significantly different between with and without the NAC at the

average and medium to long maturities. But these significant ratios are all above one, indicating

that the imposition of the NAC is not necessarily restrictive for volatility prediction.

In Panel B displaying the out-of-sample results, the opposite pattern emerges. Significant

differences in forecasts are detected for the A1(3) and QC models, whereas none for the QE

model. Specifically, for the A1(3) model, the values of the 3-1 ratio at the average and τ = 2, 5, 10
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are significantly below one, which is mainly attributed to the 3-2 ratio. However, the 2-1 ratio

measuring the cross-section-related difference also exhibits a significant deviation at τ ≥ 2. Since

for the A1(3) model, the cross-sectional relation between factors and yields is linear in both

cases with and without the NAC, the cross-section-related difference arises as the difference

in parameter values: structural model parameters with the NAC versus regression parameters

without the NAC. The result again suggests that even a tiny difference in the cross-sectional

relation can generate a statistically significant difference in volatility prediction.

To understand the magnitude of the 3-1 ratio from an economic point of view, Table 13

presents the RMSEs of four-week-ahead (h = 4) annualized standard deviation forecasts in bps.

The differences in forecasts between with and without the NAC are all within 2 bps in absolute

value for both in- and out-of-sample.

To see the differences in forecasts at each point in time, Figures 7–9 display time-series of four-

week-ahead (h = 4) forecasts of annualized standard deviation of a τ -year yield (τ = 0.5, 2, 10)

generated by the A1(3), QC, and QE models, respectively. The basic pattern remains unchanged

from that for the Gaussian-based QC and QE models shown in Figures 4 and 5. Namely, for all

three models, the differences in forecasts between with and without the NAC are hardly visible

at τ = 0.5, 2. But they are occasionally seen at τ = 10, which is attributed to the differences in

parameter estimates for the persistent factor (here Vt) as discussed in Section 6.4.

6.6 Discussion

In the A1(3) model, Vt is realized as the most persistent factor, which in turn is the least relevant

factor for volatility. Indeed, looking at Figure 7 displaying the time-series of volatility forecasts

generated by this model, it is apparent that the forecast series do not vary largely nor track the

realized series closely. But it may not be fair to judge by this phenomenon that the A1(3) model

is misspecified. As noted in Section 6.3, all factors, when identified from the cross-section of

interest rates with the inversion method, are interest-rate specific. In this respect, all models,

except those accommodating (nearly) USV factors, are more or less misspecified unless linear

or nonlinear combinations of interest rates are capable of capturing volatility dynamics. Since

the A1(3) model has a factor covariance matrix that is slightly more restrictive for the recent

data on U.S. interest rates than its extended version, implied behavior of the volatility does not

match with the realized counterpart as displayed in Figure 7. However, the fact remains that

the A1(3) model and its extended version attempt to capture the volatility with the level of
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interest rates.

If one wishes Vt in the A1(3) model to behave like standard volatility measures in any sample

period, the inversion method that forcefully fits the volatility to the cross-section of interest rates

should be avoided. Instead, filtering-based estimation techniques such as the (extended) Kalman

filter are suitable, where all interest rates are assumed to be measured with error; see, e.g., Chen

and Scott (2003), de Jong (2000), Duan and Simonato (1999), and Duffee and Stanton (2012).

If the change of estimation methods alone is not sufficient, it may be necessary to change model

structure and incorporate (nearly) USV factors as in Collin-Dufresne and Goldstein (2002).

It may be the case, however, that the parameter constraints required for obtaining the USV

factors are not supported by the data; see e.g., Bikbov and Chernov (2009), and Thompson

(2008). Then, an alternative approach is not to impose these constraints but to apply an

unrestricted model to the joint data on interest rates and volatility measures constructed from

options and/or high-frequency observations as in Bikbov and Chernov (2009, 2011), and Cieslak

and Povala (2011).

Although the previous studies have already developed these innovative approaches and ob-

tained a number of insights, it seems worth discussing and confirming them from a perspective

of level-dependent volatility that is the opposite of USV.

7 Concluding Remarks

The imposition of no-arbitrage condition (NAC) produces a constraint that the volatility is

linked to the cross-section of interest rates. This study has examined using interest rate data

whether this constraint is binding from two perspectives: The first is that of the identification

of latent factors and the second is that of the prediction of interest rate volatility. Taken into

consideration the importance of the earlier study which reveals that the imposition of the NAC

can be made irrelevant to the prediction of the level of interest rates (Duffee, 2011, JSZ, 2011),

the examination from the above two perspectives seems worth advancing.

To examine a practical impact of the NAC, this study considers a particular setting regarding

models and estimation method with care. The models have factor covariance matrix driven by

common factors driving interest rates. The estimation method relies on the assumption that

some interest rates are measured without error. These considerations are motivated to match

the models closely to the cross-section of interest rates and thus highlight the impact of cross-

sectional constraints due to no-arbitrage. Nevertheless, the impact is found to be minor on both
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factor identification and volatility prediction. Specifically, the factors identified from the cross-

section of interest rates do not much differ, after controlling for the risk-neutral drift, across

models with different specifications in the factor covariance matrix. It is evident that factor

identification is almost dominantly determined by the risk-neutral drift and that the covariance

matrix is of little relevance to it. It then follows that it is not difficult to obtain nearly unspanned

factors: Simply add a factor to the covariance matrix of existing factors but not to the risk-

neutral drift vector. In addition, parameter estimates in the factor covariance matrix do not

differ much between with and without the NAC, though the imposition of the NAC tends to

slightly reduce the volatility of a persistent factor affecting the long end of the yield curve.

Consequently, volatility forecasts do not substantially differ between with and without the NAC

on average. Even if there is an unacceptable difference at some points in time, it can be reduced

by introducing nearly USV factors into no-arbitrage term structure models, which is achieved

without much difficulty as noted above.

These findings will have important implications for time-series analysis on interest rate dy-

namics. Conventional approaches in time-series analysis are to first identify interest rate factors

independently of volatility modeling and then estimate the dynamics of the factors and their

volatilities independently of cross-sectional constraints. This study confirms that the results

produced by these approaches do not substantially differ from those that would be obtained

by explicitly imposing the NAC if a model is sufficiently flexible. This condition is not actu-

ally binding as many models in time-series analysis originally embed unspanned factors such as

GARCH volatilities.

33



Appendix A: An approximation method of conditional moments

and its application to the pricing of bonds

A1. Outline of the method

The method is originally developed by Shoji (2002) and applied to the pricing of bonds by

Takamizawa and Shoji (2009). The method generally allows for the computation of up to

n-th conditional moments, if they exist, for a d-dimensional diffusion process. To ease the

explanation, we limit our attention to the case of (n, d) = (2, 2), i.e., the conditional first and

second moments of a two-dimensional diffusion process. As seen below, n can be considered as

the order of approximation.

Let Xt = (xt,1 xt,2)
′ be a two-dimensional diffusion process, which evolves according to the

following stochastic differential equation (SDE):

dxt,i = fi(Xt)dt+ ξi(Xt)
′dWt (i = 1, 2) , (40)

where Wt is two-dimensional Brownian motion, and the drift and diffusion functions, fi and ξi

(i = 1, 2), satisfy certain technical conditions for the solution to equation (40) to exist for an

arbitrary X0.

Let Ψs,t be a vector consisting of the first and second moments of changes in Xt conditioned

on time s < t:

Ψ′
s,t = Es

(
xt,1 − xs,1 xt,2 − xs,2 (xt,1 − xs,1)

2 (xt,2 − xs,2)
2 (xt,1 − xs,1)(xt,2 − xs,2)

)
.

The goal is to obtain an approximation of Ψs,t, which will turn out to be the solution to a system

of ordinary differential equations.

By integrating equation (40) and taking the conditional expectation,

Es[xt,i − xs,i] = Es

[∫ t

s
fi(Xu)du

]
. (41)

By applying the Taylor expansion to fi(Xu) around Xs up to the second order

fi(Xu) = fi(Xs)

+f
(1,0)
i (Xs)(xu,1 − xs,1) + f

(0,1)
i (Xs)(xu,2 − xs,2) +

1

2
f
(2,0)
i (Xs)(xu,1 − xs,1)

2

+
1

2
f
(0,2)
i (Xs)(xu,2 − xs,2)

2 + f
(1,1)
i (Xs)(xu,1 − xs,1)(xu,2 − xs,2) + ei , (42)
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where f (k,l) = ∂k+lf
∂xk

1∂x
l
2
, and ei is a residual term. By substituting equation (42) into equation

(41) and expressing the resulting equation in a vector form

Es[xt,i − xs,i] = fi(t− s)

+

(
f
(1,0)
i f

(0,1)
i

1

2
f
(2,0)
i

1

2
f
(0,2)
i f

(1,1)
i

)∫ t

s
Ψs,udu+Ri , (43)

where Xs is omitted for notational convenience, and Ri = Es[ei].

Next, by applying the Ito formula to (xt,1 − xs,1)
2 and taking the conditional expectation,

Es[(xt,1 − xs,1)
2] = Es

[∫ t

s
{2f1(Xu)(xu,1 − xs,1) + g11(Xu)}du

]
, (44)

where g11 = ξ′1ξ1. By applying the Taylor expansion to f1(Xu) and g11(Xu) around Xs up to

the first and second orders, respectively, the integrand of equation (44) becomes

2f1(Xu)(xu,1 − xs,1) + g11(Xu)

= g11(Xs) + {2f1(Xs) + g
(1,0)
11 (Xs)}(xu,1 − xs,1) + g

(0,1)
11 (Xs)(xu,2 − xs,2)

+{2f (1,0)
1 (Xs) +

1

2
g
(2,0)
11 (Xs)}(xu,1 − xs,1)

2 +
1

2
g
(0,2)
11 (Xs)(xu,2 − xs,2)

2

+{2f (0,1)
1 (Xs) + g

(1,1)
11 (Xs)}(xu,1 − xs,1)(xu,2 − xs,2) + e11 , (45)

where g(k,l) is defined analogously with f (k,l), and e11 is a residual term. By substituting equation

(45) into equation (44),

Es[(xt,1 − xs,1)
2] = g11(t− s)

+

(
2f1 + g

(1,0)
11 g

(0,1)
11 2f

(1,0)
1 +

1

2
g
(2,0)
11

1

2
g
(0,2)
11 2f

(0,1)
1 + g

(1,1)
11

)

×
∫ t

s
Ψs,udu+R11 , (46)

where R11 = Es[e11]. A similar manipulation is applied to Es[(xt,2 − xs,2)
2] and Es[(xt,1 −

xs,1)(xt,2 − xs,2)]. Expressing the resulting equations together in a vector form leads to

Ψs,t = A(Xs)

∫ t

s
Ψs,udu+ b(Xs)(t− s) +R , (47)

where

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f
(1,0)
1 f

(0,1)
1

1
2f

(2,0)
1

1
2f

(0,2)
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2

1
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1
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(0,1)
11 2f

(1,0)
1 + 1
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(2,0)
11

1
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11 2f

(0,1)
1 + g

(1,1)
11

g
(1,0)
22 2f2 + g

(0,1)
22

1
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(2,0)
22 2f

(0,1)
2 + 1
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(0,2)
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(1,0)
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(1,1)
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(1,0)
12 f1 + g

(0,1)
12 f

(1,0)
2 + 1

2g
(2,0)
12 f

(0,1)
1 + 1

2g
(0,2)
12 f

(1,0)
1 + f

(0,1)
2 + g

(1,1)
12

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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b = (f1 f2 g11 g22 g12)
′ ,

R = (R1 R2 R11 R22 R12)
′ .

Equation (47) can be solved as

Ψs,t =

∫ t

s
eA(Xs)(t−u)b(Xs)du+ R̂ . (48)

If, in addition, A is invertible, we obtain

Ψs,t = A−1(Xs){eA(Xs)(t−s) − I}b(Xs) + R̂ . (49)

It is noted that equations (47)–(49) hold for any (n, d) with modification to A(Xs) and

b(Xs). In general, Ψs,t consists of
(n+d

n

) − 1 = (n + d)!/(n!d!) − 1 elements when up to n-th

conditional moments for a d-dimensional diffusion process are computed. Correspondingly, up

to n-th derivatives of fi and gij (i, j = 1, ..., d) are taken to compute the elements of A(Xs).

Omitting the residual vector, R or R̂, leads to the approximation formula. According to Shoji

(2002), both R and R̂ have order of O((t − s)(n+3)/2). Thus, n can be considered as the order

of approximation. In pricing bonds, we consider n = 3.

It is also noted that R contains conditional expectations of derivatives of fi higher than the

first order and derivatives of gij higher than the second order. Then, if fi and gij are linear

and quadratic in Xs, respectively, there is no residual term. In other words, the conditional

moments computed by the formula are exact. Even in this case, the use of this formula may be

beneficial when the derivation of closed-form conditional moments is demanding.

A2. Application to bond prices

To apply the approximation method to the pricing of bonds, define

zs,t = exp

{
−
∫ t

s
r(Xu)du

}
, (50)

and the price of a discount bond at time t maturing at time T is equal to the conditional first

moment of zt,T under the risk-neutral measure. This (actually EQ
t [zt,T − zt,t]) is computed as

one of the elements of the moment vector, Ψt,T . Specifically, we first extend a state vector as

X̂t = (X ′
t zs,t)

′, where Xt is a d-dimensional diffusion process and zs,t is treated as the (d+1)-th

process. By the Ito formula,

dzs,t = −r(Xt)zs,tdt , zs,s = 1 , (51)
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and we have

fd+1(X̂t) = −r(Xt)zs,t , (52)

gi d+1(X̂t) = 0 (i = 1, ..., d + 1) . (53)

Then, the elements of A(X̂t) can be readily computed by taking appropriate derivatives of fi

(i = 1, ..., d + 1) (the risk-neutral drift functions here) and gij (i, j = 1, ..., d + 1; i ≤ j). The

accuracy of the approximation to EQ
t [zt,T ] is investigated in Appendix B.

A3. Application to yield moments

The approximation method is also applied to the computation of conditional first and second

moments of a model-implied yield, Es[Y (Xt, τ)] and Es[Y (Xt, τ)
2]. Similar to the case for zs,t,

we first extend a state vector as X̂t = (X ′
t Y (Xt, τ))

′, and then derive the SDE for Y (Xt, τ)

by applying the Ito formula:

dY (Xt, τ) = fd+1(Xt, τ)dt+ ξ′d+1(Xt, τ)dWt , (54)

where

fd+1(Xt, τ) =
∂Y (Xt, τ)

∂X ′
t

μt +
1

2
tr

(
∂2Y (Xt, τ)

∂Xt∂X ′
t

Σt

)
, (55)

ξd+1(Xt, τ) = Σ0.5′
t

∂Y (Xt, τ)

∂Xt
, (56)

and where Wt is d-dimensional Brownian motion, and μt and Σt are the physical drift vector

and the instantaneous covariance matrix of dXt, respectively. gi d+1 is obtained by ξ′iξd+1 (i =

1, ..., d + 1).

In computing A(X̂t), the derivatives of fd+1 and gi d+1 are required. But fd+1 and gi d+1

already contain the derivatives of Y (Xt, τ) up to the second order, which complicates the cal-

culation. To avoid the tedious calculation, the derivatives of Y (Xt, τ) higher than the second

order are omitted, while the derivatives of μt and Σt are taken as many times as necessary. The

accuracy of the approximation to Et[Y (Xt+hΔ, τ)
n] (n = 1, 2) is also investigated in Appendix

B.
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Appendix B: Accuracy of the approximation

The purpose of this appendix is to let the cost of using the approximation be known. By

construction of the method, the accuracy becomes worse the longer the time interval, t − s.

Here, the interval is up to ten years for pricing bonds, which raises concerns with the application

of this method. To check the accuracy of the approximation, we consider two cases with and

without a closed-form solution for bond prices, aiming at examining how close the approximate

solution is to the closed-form and numerical solutions, respectively.

B1. Comparison with the closed-form solution for bond prices

We treat the Gaussian model as the true model. We divide the analysis into three steps according

to the degree of approximation involved. Let Θ0 be the parameter vector of the the Gaussian

model, the elements of which are set at the estimates presented in columns of Table 1 labeled

“with NAC”. The extracted state vector can then be expressed as X(Y p
t ; Θ0).

In the first step, we examine the impact of the approximation on the pricing of bonds alone.

Specifically, both Θ0 and X(Y p
t ; Θ0) are given as input for the approximation method. Then,

we compare

Y (X(Y p
t ; Θ0), τ ; Θ0) v.s. Ỹ (X(Y p

t ; Θ0), τ ; Θ0) (τ = {0.5, 1, 2, 3, 5, 10}) ,

where Y and Ỹ stand for the closed-form and approximate functions, respectively: Note that in

Appendix B, the tilde symbol is used for clarifying the fact that the approximation method is

involved.

In the second step, we examine the impact of the approximation on the extraction of state

variables as well as on the pricing of bonds. Here, only Θ0 is given. Using the approximation

method, the state vector is first extracted, which is denoted as X̃(Y p
t ; Θ0), and the rest of the

yields are computed. Then, we compare:

X(Y p
t ; Θ0) v.s. X̃(Y p

t ; Θ0) ,

Y (X(Y p
t ; Θ0), τ ; Θ0) v.s. Ỹ (X̃(Y p

t ; Θ0), τ ; Θ0) (τ = {1, 3, 5}) .

Note that at τ = {0.5, 2, 10}, both Y (Xt, τ ; Θ0) and Ỹ (X̃t, τ ; Θ0) are equal to the observed yields

by construction of the inversion method.

In the last step, we examine the impact of the approximation on the estimation of model

parameters as well as on the pricing of bonds and the extraction of state variables. Here, no
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prior information is given regarding the true value of the parameter or state vector. Instead,

using the approximation method, the parameter vector of the Gaussian model is first estimated;

denote it as Θ̃0. Next, the state vector is extracted; denote it as X̃(Y p
t ; Θ̃0). Finally, the rest of

the yields are computed. Then, we compare:

Θ0 v.s. Θ̃0

X(Y p
t ; Θ0) v.s. X̃(Y p

t ; Θ̃0) ,

Y (X(Y p
t ; Θ0), τ ; Θ0) v.s. Ỹ (X̃(Y p

t ; Θ̃0), τ ; Θ̃0) (τ = {1, 3, 5}) .
It is noted that the accuracy in the third step, which is a more realistic setting, is not examined

by Takamizawa and Shoji (2009).

Apart from the parameter vector, the key input for these comparisons is Y p
t . We use the

actual data on Y p
t . To condense the analysis, we pick up nine observations from the entire

sample as follows. First, Y p
t is transformed to the conventional level (levt), slope (slot), and

curvature (curt) factors by⎛
⎜⎜⎜⎜⎝

levt

slot

curt

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

0 0 1

−1 0 1

−1 2 −1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

yt,0.5

yt,2

yt,10

⎞
⎟⎟⎟⎟⎠ . (57)

Then, we choose three dates in which levt takes the minimum, median, or maximum value.

Likewise, the three dates are chosen for each of the other proxies, leading to nine dates in total.

In this way, the accuracy of the approximation is evaluated at both typical and atypical states.

Table B1 presents the differences in yields/factors between the approximate and closed-form

solutions in bps. Panel A presents the results for the first step comparison, where the true

values of the parameter and state vectors are given as input for the approximation method.

For maturities of up to five years, the approximation errors are negligibly small at all states.

Even for the ten-year maturity, the error exceeds 2 bps only at the maximum-slope state. The

accuracy is little affected by the state of the curvature.

Panel B presents the results for the second-step comparison, where only the true value of the

parameter vector is given. A systematic pattern is found in the approximation errors for the state

variables. Specifically, both r and θ are undervalued, which is compensated by the overvaluation

of ε. The difficulty of the approximation method arises again at the maximum-slope state. On

the other hand, the approximation errors for the remaining yields are small.

Panel C presents the results for the third-step comparison, where no prior information is

given. Compared with Panel B, the magnitude of the approximation errors for the state variables
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is generally larger, even though parameter estimates do not much differ between the approximate

and closed-form solutions (this estimation result is not presented in any table but available upon

request). This is the reality. Here, an error pattern is less clear, but it is seen that r tends to

be overvalued and θ and ε tend to be undervalued. Also, the difficulty of the approximation

method is not limited at the maximum-slope state. In fact, the largest errors in absolute value

for r and θ appear at the minimum-curvature state and the minimum-level state, respectively.

The remaining yields are accurately computed as in the second-step comparison.

B2. Comparison with the numerical solution for bond prices

We employ the Monte Carlo (MC) method to evaluate the accuracy. As models that do not

have closed-form expressions for no-arbitrage bond prices, we use the Gaussian-based QS and

QE models. Let Θ be the true parameter vector, the elements of which are set at the estimates

presented in Table 3 for the QS model and Table 4 for the QE model. Further, the state vector

is extracted by the approximation method, but not the MC method with which the extraction

is computationally very demanding. The extracted state vector is denoted as X̃(Y p
t ; Θ). Then,

we compare

Y (X̃(Y p
t ; Θ), τ ; Θ) v.s. Ỹ (X̃(Y p

t ; Θ), τ ; Θ) (τ = {0.5, 1, 2, 3, 5, 10}) .

In the MC simulations, {Xs}t+τ
t is generated from (3) (the risk-neutral distribution), where dt

is replaced by Δt. We set Δt = 1/1, 000, an interval corresponding roughly to four observations

per day. The number of repetition is set at 10,000 with antithetic variates.

Table B2 presents the differences in yields between the approximate and MC solutions in

bps. Generally, the error pattern is similar to that for the first-step comparison with the closed-

form solution. For maturities up to five years, the approximation errors are within 1 bp at all

states for both models. For the ten-year yield, the approximation error is the largest at the

maximum-slope state but still around 2 bps.

It is noted, however, that this comparison scheme does not take into consideration the

approximation errors in the parameter and state vectors. In reality, therefore, the approximation

errors for the resulting yields would be larger, as is the case for the third-step comparison with

the closed-form solution.
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B3. Accuracy to yield volatility

We continuously use the Gaussian-based QS and QE models and the MC method to evaluate the

accuracy of the approximation to yield volatility at the same nine states. In the MC simulations,

{Xs}t+hΔ
t is generated from (2) (the physical distribution), where dt is replaced by Δt = 1/1, 000

and Σ by Σt. For simplicity, once Xt+hΔ is obtained, a model-implied τ -year yield (and its

squared value) is computed by the approximation method, but not the MC method with which

the computation is very demanding. This approach seems to be justified by the results presented

in Table B2. This procedure is repeated 10,000 times with antithetic variates. Then, we compare

√
varmc

t [Ỹ (Xt+hΔ, τ)]/hΔ v.s.
√
varapt [Ỹ (Xt+hΔ, τ)]/hΔ ,

where varmc
t [·] and varapt [·] stand for the conditional variance computed by the MC and ap-

proximation methods, respectively. We set h = 4, but other values of h up to h = 52 do not

qualitatively or quantitatively change the results presented below.

Table B3 presents the differences in annualized standard deviations between the approximate

and MC solutions in bps. All approximation errors are around or below 1 bp in absolute value.

It is noted that a more rigorous investigation of the accuracy requires for comparing

Emc
t [Y (Xt+hΔ, τ)

n] v.s. Eap
t [Ỹ (Xt+hΔ, τ)

n] (n = 1, 2) .

That is, no approximation is involved in the former in computing the τ -year yield at time t+hΔ.

In reality, therefore, the approximation errors would be larger than presented in Table B3, even

though the differences between Y (Xt+hΔ, τ) and Ỹ (Xt+hΔ, τ) at τ ≤ 10 are actually small as

presented in Table B2.
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with NAC without NAC

Parameters in the risk-neutral drift vector
κ1 0.946 (0.088)
κ2 0.017 (0.002)
κ3 0.957 (0.090)
θ̄ 0.147 (0.008)

Parameters in the covariance matrix
σ11 × 104 0.725 (0.033) 0.724 (0.032)
σ22 × 104 1.218 (0.064) 1.307 (0.062)
σ33 × 104 8.100 (0.449) 7.883 (0.344)
σ12 × 104 0.097 (0.035) 0.103 (0.036)
σ13 × 104 −1.005 (0.120) −0.983 (0.093)
σ23 × 104 0.000 0.000

ς × 104 6.149 (0.092)

LogL 22265 9351
LogLT 9350
LogLC 11472

Table 1: Parameter estimates (standard errors) for the Gaussian model
The risk neutral and physical distributions of instantaneous changes in Xt = (rt θt εt)

′ are given
by (1) and (2), respectively. To obtain the estimates without NAC, the same Xt as extracted by
imposing the NAC is used and its physical distribution is estimated using time-series properties
of the data alone. ς is the standard deviation of measurement errors. LogL is the log-likelihood
value, which is decomposed into time-series (LogLT), cross-sectional (LogLC), and Jacobian (not
displayed) parts, for the no-arbitrage case. In-sample data from January 4, 1991 to April 9, 2003
are used for the estimation (641 observations).
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with NAC without NAC

Parameters in the risk-neutral drift vector
κ1 0.938 (0.091)
κ2 0.021 (0.003)
κ3 0.968 (0.096)
θ̄ 0.124 (0.007)

Parameters in h1(Xt)
β1
0 −0.006 (0.002) −0.006 (0.002)

β1
1 0.041 (0.013) 0.042 (0.009)

β1
2 0.169 (0.021) 0.169 (0.019)

β1
3 −0.086 (0.012) −0.087 (0.011)

Parameters in h2(Xt)
β2
0 0.013 (0.002) 0.015 (0.002)

β2
1 −0.026 (0.025) −0.038 (0.027)

β2
2 −0.014 (0.030) −0.030 (0.031)

β2
3 −0.042 (0.018) −0.050 (0.019)

Parameters in h3(Xt)
β3
0 0.007 (0.006) 0.007 (0.006)

β3
1 −0.123 (0.071) −0.120 (0.068)

β3
2 0.378 (0.073) 0.365 (0.058)

β3
3 −0.151 (0.043) −0.147 (0.041)

Parameters in R
ρ12 0.081 (0.043) 0.075 (0.040)
ρ13 −0.420 (0.043) −0.421 (0.036)
ρ23 0.000 0.000

ς × 104 6.131 (0.091)

LogL 22358 9418
LogLT 9417
LogLC 11478

Table 2: Parameter estimates (standard errors) for the QC model
The risk neutral and physical distributions of instantaneous changes in Xt = (rt θt εt)

′ are given
by (3) and (2) (where Σ is replaced by Σt), respectively. To obtain the estimates without NAC,
the same Xt as extracted by imposing the NAC is used and its physical distribution is estimated
using time-series properties of the data alone. The covariance matrix Σt is decomposed as
Σt = HtRHt with Ht being the diagonal matrix and R the constant correlation matrix. The
i-th diagonal element of Ht is specified as hi(Xt) = βi

0 + βi′Xt (i = 1, 2, 3). ς is the standard
deviation of measurement errors. LogL is the log-likelihood value, which is decomposed into
time-series (LogLT), cross-sectional (LogLC), and Jacobian (not displayed) parts, for the no-
arbitrage case. In-sample data from January 4, 1991 to April 9, 2003 are used for the estimation
(641 observations).
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with NAC without NAC

Parameters in the risk-neutral drift vector
κ1 0.921 (0.074)
κ2 0.018 (0.002)
κ3 0.998 (0.088)
θ̄ 0.135 (0.007)

Parameters in h1(Xt)
β1
0 −0.007 (0.002) −0.007 (0.002)

β1
1 0.038 (0.016) 0.039 (0.014)

β1
2 0.180 (0.024) 0.181 (0.023)

β1
3 −0.088 (0.013) −0.088 (0.013)

Parameters in h2(Xt)
β2
0 0.010 (0.000) 0.011 (0.000)

β2
1 0.000 0.000

β2
2 0.000 0.000

β2
3 −0.057 (0.014) −0.067 (0.015)

Parameters in h3(Xt)
β3
0 0.000 0.000

β3
1 −0.092 (0.056) −0.089 (0.037)

β3
2 0.457 (0.051) 0.450 (0.033)

β3
3 −0.182 (0.032) −0.176 (0.029)

Parameters in Rt

γ0 0.681 (0.552) 0.651 (0.540)
γ1 −2.587 (7.534) −2.488 (7.419)
γ2 5.874 (7.996) 6.125 (7.848)
γ3 0.559 (5.197) 0.440 (5.064)
δ12 −0.184 (0.088) −0.187 (0.089)

ς × 104 6.129 (0.092)

LogL 22357 9417
LogLT 9416
LogLC 11478

Table 3: Parameter estimates (standard errors) for the QS model
The risk neutral and physical distributions of instantaneous changes in Xt = (rt θt εt)

′ are
given by (3) and (2) (where Σ is replaced by Σt), respectively. To obtain the estimates without
NAC, the same Xt as extracted by imposing the NAC is used and its physical distribution is
estimated using time-series properties of the data alone. The covariance matrix Σt is decomposed
as Σt = HtRtHt with Ht being the diagonal matrix and Rt the correlation matrix. The i-th
diagonal element of Ht is specified as hi(Xt) = βi

0 + βi′Xt (i = 1, 2, 3). The off-diagonal
elements of Rt are given by ρ12(Xt) = δ12c(Xt), ρ13(Xt) = (1 − δ212)

0.5c(Xt), and ρ23(Xt) = 0,
where c(Xt) =

2
1+exp{γ0+γ′Xt} − 1. ς is the standard deviation of measurement errors. LogL is

the log-likelihood value, which is decomposed into time-series (LogLT), cross-sectional (LogLC),
and Jacobian (not displayed) parts, for the no-arbitrage case. In-sample data from January 4,
1991 to April 9, 2003 are used for the estimation.
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with NAC without NAC

Parameters in the risk-neutral drift vector
κ1 0.967 (0.077)
κ2 0.016 (0.002)
κ3 0.975 (0.081)
θ̄ 0.146 (0.009)

Parameters in P
sinϕP

1 0.000 0.000
sinϕP

2 0.130 (0.011) 0.132 (0.010)
sinϕP

3 0.000 0.000

Parameters in l1(Xt)
c10 × 104 1e−4 1e−4
m1

1 0.000 0.000
m1

2 0.024 (0.003) 0.024 (0.002)
m1

3 0.231 (0.036) 0.237 (0.021)
sinϕ1

1 0.289 (0.049) 0.286 (0.034)
sinϕ1

2 0.616 (0.025) 0.619 (0.020)
sinϕ1

3 −0.674 (0.049) −0.679 (0.037)

Parameters in l2(Xt)
c20 × 104 0.990 (0.066) 1.044 (0.072)
m2

1 0.000 0.000
m2

2 0.000 0.000
m2

3 0.058 (0.042) 0.140 (0.067)
sinϕ2

1 0.000 0.000
sinϕ2

2 0.413 (0.170) 0.467 (0.097)
sinϕ2

3 −0.351 (0.193) −0.428 (0.099)

Parameters in l3(Xt)
c30 × 104 1e−4 1e−4
m3

1 0.043 (0.008) 0.040 (0.009)
m3

2 0.413 (0.132) 0.346 (0.095)
m3

3 2.109 (0.633) 2.393 (0.626)
sinϕ3

1 0.470 (0.092) 0.391 (0.105)
sinϕ3

2 0.586 (0.069) 0.628 (0.045)
sinϕ3

3 −0.651 (0.107) −0.715 (0.075)

ς × 104 6.130 (0.090)

LogL 22416 9477
LogLT 9472
LogLC 11481

Table 4: Parameter estimates (standard errors) for the QE model
The covariance matrix Σt is decomposed as Σt = PLtP

′ with Lt being the diagonal eigenvalue
matrix and P the orthonormal eigenvector matrix parameterized in equation (13). The i-th
diagonal element of Lt is specified as li(Xt) = ci0 +X ′

tΓ
iXt (i = 1, 2, 3), where ci0 > 0 and Γi is

a non-negative definite matrix. Γi is also parameterized based on the spectral decomposition,
Γi = QiM iQi′, where M i is the diagonal eigenvalue matrix with its elements satisfying 0 ≤
mi

1 ≤ mi
2 ≤ mi

3, and Qi is the orthonormal eigenvector matrix parameterized in equation (17).
In-sample data from January 4, 1991 to April 9, 2003 are used for the estimation.
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Gaussian model QC model
with NAC without NAC with NAC without NAC

Kr,0 0.028 (0.015) 0.028 (0.014) −0.002 (0.019) −0.003 (0.018)
Kr,1 −1.160 (0.246) −1.156 (0.219) −0.813 (0.234) −0.803 (0.211)
Kr,2 0.513 (0.230) 0.511 (0.203) 0.704 (0.273) 0.707 (0.249)
Kr,3 1.164 (0.149) 1.160 (0.145) 0.983 (0.167) 0.977 (0.162)
Kθ,0 0.035 (0.019) 0.038 (0.020) 0.036 (0.021) 0.036 (0.022)
Kθ,1 0.000 0.000 0.000 0.000
Kθ,2 −0.573 (0.282) −0.610 (0.301) −0.585 (0.307) −0.589 (0.321)
Kθ,3 0.000 0.000 0.000 0.000
Kε,0 −0.077 (0.038) −0.075 (0.037) −0.052 (0.040) −0.054 (0.039)
Kε,1 1.232 (0.724) 1.187 (0.697) 0.754 (0.759) 0.776 (0.731)
Kε,2 0.000 0.000 0.000 0.000
Kε,3 −1.512 (0.525) −1.461 (0.485) −1.240 (0.542) −1.264 (0.513)

QS model QE model
with NAC without NAC with NAC without NAC

Kr,0 −0.002 (0.019) −0.002 (0.018) 0.010 (0.016) 0.010 (0.015)
Kr,1 −0.811 (0.231) −0.784 (0.209) −1.053 (0.297) −1.071 (0.281)
Kr,2 0.692 (0.266) 0.674 (0.251) 0.736 (0.229) 0.739 (0.210)
Kr,3 0.982 (0.167) 0.971 (0.163) 1.177 (0.216) 1.175 (0.214)
Kθ,0 0.039 (0.022) 0.040 (0.023) 0.035 (0.020) 0.036 (0.023)
Kθ,1 0.000 0.000 0.000 0.000
Kθ,2 −0.631 (0.318) −0.634 (0.339) −0.567 (0.292) −0.573 (0.337)
Kθ,3 0.000 0.000 0.000 0.000
Kε,0 −0.058 (0.038) −0.058 (0.037) −0.058 (0.045) −0.059 (0.044)
Kε,1 0.869 (0.730) 0.862 (0.699) 0.930 (0.840) 0.954 (0.822)
Kε,2 0.000 0.000 0.000 0.000
Kε,3 −1.293 (0.544) −1.318 (0.507) −1.141 (0.696) −1.090 (0.657)

Table 5: Parameter estimates (standard errors) in the physical drift for the Gaussian
and extended models
The specification of the physical drift is given by (2) for all models. The same parameters are
estimated between the Gaussian and extended models in order to control for potential influences
from the physical drift. In-sample data from January 4, 1991 to April 9, 2003 are used for the
estimation (641 observations).
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Maturity 0.5 1 2 3 5 10 Ave.

Panel A: In-sample (1991/1 – 2003/4)
QC model
MSE3/MSE1 1.002 1.002 0.998 0.996 1.001 1.005 1.000
MSE2/MSE1 1.000 0.996 1.000 1.000 1.004 0.999 1.000
MSE3/MSE2 1.002 1.006 0.998 0.996 0.997 1.006 1.000

QS model
MSE3/MSE1 1.000 0.999 1.000 1.001 1.019 1.016 1.005
MSE2/MSE1 1.000 0.998 1.000 1.000 1.006 0.998 1.000
MSE3/MSE2 1.000 1.001 1.000 1.001 1.013 1.018 1.005

QE model
MSE3/MSE1 0.996 0.964∗ 0.965∗∗ 0.991 1.053 1.066 0.999
MSE2/MSE1 1.000∗ 0.984 0.993∗ 0.992 0.994 0.994 0.992∗

MSE3/MSE2 0.996 0.980 0.972∗ 0.999 1.059 1.073 1.007

Panel B: Out-of-sample (2003/4 – 2009/5)
QC model
MSE3/MSE1 0.997 0.995∗ 0.973 0.960 0.901∗ 0.925 0.949
MSE2/MSE1 1.000∗ 0.998 1.000 1.008 0.988∗ 1.004 1.000
MSE3/MSE2 0.997 0.996 0.972 0.952 0.912∗ 0.921 0.949

QS model
MSE3/MSE1 0.997 0.998 0.985∗ 0.979∗ 0.930∗∗ 0.941∗ 0.965∗

MSE2/MSE1 1.000 1.004 1.000∗ 1.009∗ 0.986∗∗ 1.003 1.000
MSE3/MSE2 0.997 0.994 0.985∗ 0.971∗ 0.943∗∗ 0.939∗ 0.965∗

QE model
MSE3/MSE1 1.013 0.965 1.058 1.073 0.957 0.824 0.983
MSE2/MSE1 0.999∗ 0.943∗∗ 0.982 0.982 0.995 1.042 0.991
MSE3/MSE2 1.013 1.023 1.078 1.093 0.962 0.791 0.992

Table 6: MSE Ratios for variance prediction
Ratios of mean squared errors (MSEs) of four-week-ahead (h = 4) variance forecasts generated by the
QC, QS, and QE models are presented. MSEi (i = 1, 2, 3) are computed from the following prediction
errors:

e1,t,h,τ = RVt,t+hΔ,τ − vart[Y (Xt+hΔ, τ ; ΘQ); Θ
TC
P ] ,

e2,t,h,τ = RVt,t+hΔ,τ − α′
1,τvart[Xt+hΔ; Θ

TC
P ] α1,τ ,

e3,t,h,τ = RVt,t+hΔ,τ − α′
1,τvart[Xt+hΔ; Θ

T
P ] α1,τ ,

where ΘTC
P and ΘT

P are parameter vectors for the physical distribution estimated with and without the
NAC, respectively. Then, MSE3/MSE1 measures the total impact of the NAC on variance prediction,
whereas MSE2/MSE1 and MSE3/MSE2 measure cross-section-related and time-series-related components
of the impact, respectively. * and ** indicate that the Diebold-Mariano test rejects the null hypothesis
of equal predictive accuracy between ei and ej at the 5% and 1% significance levels, respectively, with
standard errors computed using the Newey-West method with 8 lags. The last column displays the ratios
of average MSEs with each average taken over the maturity spectrum. In-sample period is from January
4, 1991 to April 9, 2003, and the out-of-sample period is from April 16, 2003 to May 27, 2009.
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Maturity 0.5 1 2 3 5 10 Ave.

Panel A: In-sample (1991/1 – 2003/4)
QC model
RMSE1 32.9 33.5 31.8 32.6 27.5 25.9 30.7
RMSE3 32.9 33.2 31.8 32.5 27.8 26.3 30.8
difference 0.0 0.3 0.0 0.0 −0.4 −0.3 −0.1

QS model
RMSE1 32.7 33.3 32.2 33.1 28.3 26.6 31.0
RMSE3 32.7 32.9 32.2 33.1 28.7 27.0 31.1
difference 0.0 0.4 0.0 −0.1 −0.5 −0.4 −0.1

QE model
RMSE1 34.7 34.6 32.7 33.9 28.5 27.1 31.9
RMSE3 34.7 34.0 32.3 33.9 29.4 28.2 32.1
difference 0.0 0.6 0.4 0.0 −0.9 −1.1 −0.2

Panel B: Out-of-sample (2003/4 – 2009/5)
QC model
RMSE1 40.0 35.5 37.6 37.6 37.6 37.6 37.7
RMSE3 40.1 35.4 37.3 37.0 36.0 36.9 37.1
difference −0.1 0.1 0.4 0.6 1.7 0.7 0.6

QS model
RMSE1 39.0 34.2 37.8 38.0 38.5 37.6 37.5
RMSE3 39.0 34.0 37.4 37.5 36.8 36.4 36.8
difference 0.1 0.2 0.4 0.5 1.6 1.2 0.7

QE model
RMSE1 48.3 42.8 37.7 34.3 32.4 33.6 38.2
RMSE3 48.4 41.9 38.2 35.1 31.9 31.6 37.9
difference −0.1 0.9 −0.5 −0.8 0.5 2.0 0.3

Table 7: RMSEs for volatility prediction
Root mean squared errors (RMSEs) of four-week-ahead (h = 4) annualized standard deviation
forecasts generated by the QC, QS, and QE models are presented in basis points. RMSEi

(i = 1, 3) are computed from the following prediction errors:

ẽ1,t,h,τ =
√
RVt,t+hΔ,τ/hΔ −

√
vart[Y (Xt+hΔ, τ ; ΘQ);ΘTC

P ]/hΔ ,

ẽ3,t,h,τ =
√
RVt,t+hΔ,τ/hΔ −

√
α′
1,τvart[Xt+hΔ; Θ

T
P ] α1,τ/hΔ ,

where ΘTC
P and ΘT

P are parameter vectors for the physical distribution estimated with and
without the NAC, respectively. The last column displays the average RMSEs with the average
taken over the maturity spectrum. In-sample period is from January 4, 1991 to April 9, 2003,
and the out-of-sample period is from April 16, 2003 to May 27, 2009.
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with NAC without NAC

Parameters in the risk-neutral drift vector
κμ,0 0.000
κμ,1 −0.882 (0.026)
κμ,2 −1.845 (0.053)
κV,0 × 102 0.156 (0.014)
κV,3 −0.006 (0.002)

Parameters in the covariance matrix
s11 × 102 0.112 (0.005) 0.112 (0.005)
s22 × 102 1.776 (0.100) 1.736 (0.077)
s33 × 102 0.155 (0.009) 0.167 (0.008)
s12 × 102 −0.239 (0.021) −0.235 (0.019)
s13 × 102 0.012 (0.005) 0.013 (0.005)
s23 × 102 0.158 (0.019) 0.163 (0.020)
c11 0.000 0.000
c22 0.000 0.000
c12 0.000 0.000

ς × 104 6.150 (0.097)

LogL 22283 9491
LogLT 9490
LogLC 11472

Table 8: Parameter estimates (standard errors) for the A1(3) model
The risk neutral and physical distributions of instantaneous changes in Xt = (rt μt Vt)

′ are given
by (37) and (39), respectively, where Σt is given by (38). The rest of the legend is the same as
in Table 1.

54



with NAC without NAC

Parameters in the risk-neutral drift vector
κμ,0 0.000
κμ,1 −0.879 (0.026)
κμ,2 −1.789 (0.052)
κV,0 × 102 0.191 (0.016)
κV,3 −0.013 (0.002)

Parameters in h1(Xt)
β1
0 −0.007 (0.001) −0.007 (0.001)

β1
1 −0.044 (0.008) −0.045 (0.008)

β1
2 −0.089 (0.011) −0.090 (0.011)

β1
3 0.291 (0.031) 0.292 (0.029)

Parameters in h2(Xt)
β2
0 0.000 0.000

β2
1 −0.309 (0.049) −0.304 (0.046)

β2
2 −0.184 (0.038) −0.181 (0.036)

β2
3 0.790 (0.045) 0.777 (0.043)

Parameters in h3(Xt)
β3
0 0.011 (0.001) 0.013 (0.001)

β3
1 −0.027 (0.012) −0.062 (0.014)

β3
2 −0.040 (0.013) −0.038 (0.013)

β3
3 0.000 0.000

Parameters in R
ρ12 −0.532 (0.037) −0.532 (0.034)
ρ13 0.098 (0.043) 0.106 (0.043)
ρ23 0.299 (0.033) 0.291 (0.034)

ς × 104 6.127 (0.097)

LogL 22360 9587
LogLT 9584
LogLC 11479

Table 9: Parameter estimates (standard errors) for the A1(3)-based QC model
The risk neutral and physical distributions of instantaneous changes in Xt = (rt μt Vt)

′ are given
by (37) and (39), respectively, where Σt is decomposed as Σt = HtRHt. The rest of the legend
is the same as in Table 2.
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with NAC without NAC

Parameters in the risk-neutral drift vector
κμ,0 0.000
κμ,1 −0.892 (0.027)
κμ,2 −1.843 (0.056)
κV,0 × 102 0.152 (0.014)
κV,3 −0.006 (0.002)

Parameters in P
sinϕP

1 0.143 (0.011) 0.141 (0.011)
sinϕP

2 −0.363 (0.042) −0.342 (0.031)
sinϕP

3 0.050 (0.016) 0.065 (0.016)

Parameters in l1(Xt)
c10 × 104 1e−4 1e−4
m1

1 0.000 0.000
m1

2 0.000 0.000
m1

3 0.020 (0.003) 0.021 (0.002)
sinϕ1

1 0.000 0.000
sinϕ1

2 0.230 (0.038) 0.243 (0.034)
sinϕ1

3 0.324 (0.035) 0.331 (0.030)

Parameters in l2(Xt)
c20 × 104 1e−4 1e−4 (0.072)
m2

1 0.059 (0.025) 0.067 (0.021)
m2

2 0.705 (0.256) 0.734 (0.260)
m2

3 1.595 (0.429) 1.602 (0.425)
sinϕ2

1 0.462 (0.086) 0.481 (0.089)
sinϕ2

2 0.456 (0.160) 0.487 (0.164)
sinϕ2

3 0.684 (0.196) 0.649 (0.218)

Parameters in l3(Xt)
c30 × 104 1e−4 1e−4
m3

1 0.000 0.000
m3

2 0.032 (0.009) 0.032 (0.009)
m3

3 0.106 (0.025) 0.160 (0.034)
sinϕ3

1 0.289 (0.098) 0.265 (0.095)
sinϕ3

2 0.149 (0.083) 0.183 (0.075)
sinϕ3

3 0.871 (0.064) 0.895 (0.041)

ς × 104 6.136 (0.097)

LogL 22356 9538
LogLT 9536
LogLC 11476

Table 10: Parameter estimates (standard errors) for the A1(3)-based QE model
The risk neutral and physical distributions of instantaneous changes in Xt = (rt μt Vt)

′ are given
by (37) and (39), respectively, where Σt is decomposed as Σt = PLtP

′. The rest of the legend
is the same as in Table 4
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A1(3) model QC model
with NAC without NAC with NAC without NAC

Kr,0 0.000 0.000 0.000 0.000
Kr,1 0.000 0.000 0.000 0.000
Kr,2 1.077 (0.154) 1.071 (0.146) 0.980 (0.148) 0.987 (0.138)
Kr,3 −0.220 (0.050) −0.219 (0.047) −0.191 (0.057) −0.191 (0.054)
Kμ,0 0.000 0.000 0.000 0.000
Kμ,1 0.000 0.000 0.000 0.000
Kμ,2 −2.416 (0.566) −2.357 (0.548) −1.976 (0.538) −1.986 (0.516)
Kμ,3 0.300 (0.174) 0.291 (0.166) 0.198 (0.180) 0.195 (0.172)
KV,0 0.035 (0.016) 0.037 (0.016) 0.035 (0.017) 0.035 (0.018)
KV,3 −0.633 (0.274) −0.664 (0.290) −0.617 (0.278) −0.622 (0.288)

QE model
with NAC without NAC

Kr,0 0.000 0.000
Kr,1 0.000 0.000
Kr,2 0.994 (0.149) 0.999 (0.139)
Kr,3 −0.193 (0.058) −0.194 (0.054)
Kμ,0 0.000 0.000
Kμ,1 0.000 0.000
Kμ,2 −2.013 (0.524) −1.976 (0.501)
Kμ,3 0.199 (0.175) 0.194 (0.167)
KV,0 0.033 (0.017) 0.033 (0.017)
KV,3 −0.599 (0.269) −0.599 (0.277)

Table 11: Parameter estimates (standard errors) in the physical drift for the A1(3)
and extended models
The specification of the physical drift is given by (39) for all models. The same parameters are
estimated between the A1(3) and extended models in order to control for potential influences
from the physical drift. In-sample data from January 4, 1991 to April 9, 2003 are used for the
estimation (641 observations).
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Maturity 0.5 1 2 3 5 10 Ave.

Panel A: In-sample (1991/1 – 2003/4)
A1(3) model
MSE3/MSE1 1.000 1.001 1.000 1.000 1.013 1.014 1.004
MSE2/MSE1 1.000 1.001 1.000 1.000 1.003 1.000 1.001
MSE3/MSE2 1.000 1.000 1.000 1.000 1.010 1.014 1.003

QC model
MSE3/MSE1 0.998 0.995 0.993 0.993 0.990 0.992 0.993
MSE2/MSE1 1.000 0.996 1.000 0.999 1.007 1.000 1.000
MSE3/MSE2 0.998 0.999 0.993 0.994 0.983 0.992 0.993

QE model
MSE3/MSE1 1.005 1.004 1.016 1.020∗ 1.121∗∗ 1.140∗∗ 1.053∗∗

MSE2/MSE1 1.000 0.994 0.998 0.989 1.016∗ 0.979 0.995
MSE3/MSE2 1.005 1.010∗ 1.018 1.031∗ 1.103∗∗ 1.164∗∗ 1.058∗∗

Panel B: Out-of-sample (2003/4 – 2009/5)
A1(3) model
MSE3/MSE1 1.000 1.002 0.998∗ 1.000 0.976∗∗ 0.979∗∗ 0.989∗∗

MSE2/MSE1 1.000 1.001 1.000∗ 1.006∗∗ 0.992∗∗ 1.000∗∗ 1.000
MSE3/MSE2 1.000 1.000 0.998∗ 0.994∗∗ 0.984∗∗ 0.979∗∗ 0.990∗∗

QC model
MSE3/MSE1 1.000 1.007 1.001 0.998 0.936∗∗ 0.943 0.975∗

MSE2/MSE1 1.000 1.004 1.000∗∗ 1.012∗∗ 0.987∗∗ 1.003∗ 1.001
MSE3/MSE2 1.000 1.003 1.001 0.987∗ 0.949∗∗ 0.940 0.975∗

QE model
MSE3/MSE1 0.980 1.008 1.037 1.039 1.031 1.015 1.025
MSE2/MSE1 1.000 0.982 0.995 0.987 0.983 0.997 0.990
MSE3/MSE2 0.980 1.027 1.042 1.053 1.049 1.019 1.035

Table 12: MSE Ratios for variance prediction generated by the A1(3) and extended
models
The same note applies as in Table 6.
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Maturity 0.5 1 2 3 5 10 Ave.

Panel A: In-sample (1991/1 – 2003/4)
A1(3) model
RMSE1 36.9 36.7 33.4 34.4 30.3 28.6 33.4
RMSE3 36.9 36.4 33.4 34.4 30.8 29.1 33.5
difference 0.0 0.3 0.0 0.0 −0.5 −0.5 −0.1

QC model
RMSE1 32.2 32.7 32.5 33.4 28.3 26.1 30.9
RMSE3 32.1 32.3 32.3 33.2 28.3 26.2 30.7
difference 0.1 0.4 0.2 0.2 0.0 −0.1 0.2

QE model
RMSE1 33.0 32.8 32.2 35.1 32.4 33.4 33.2
RMSE3 33.1 32.6 32.5 35.4 33.8 35.0 33.7
difference 0.0 0.2 −0.2 −0.3 −1.4 −1.7 −0.6

Panel B: Out-of-sample (2003/4 – 2009/5)
A1(3) model
RMSE1 44.0 37.1 44.2 46.8 50.5 49.9 45.4
RMSE3 44.0 37.0 44.1 46.8 49.6 49.1 45.1
difference 0.0 0.2 0.0 0.0 0.9 0.8 0.3

QC model
RMSE1 39.1 35.4 40.5 40.3 39.9 38.2 38.9
RMSE3 39.1 35.5 40.6 40.2 38.2 37.2 38.5
difference 0.0 −0.1 0.0 0.0 1.7 1.0 0.4

QE model
RMSE1 38.5 33.5 36.1 35.9 35.7 34.2 35.6
RMSE3 38.8 33.6 36.6 36.1 35.1 33.7 35.6
difference −0.2 −0.1 −0.4 −0.3 0.6 0.5 0.0

Table 13: RMSEs for volatility prediction generated by the A1(3) and extended
models
The same note applies as in Table 7.
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Panel A: the first-step comparison
y0.5 y1 y2 y3 y5 y10

Level 0.00 0.00 0.00 0.00 0.01 0.25
Minimum Slope 0.00 0.01 0.00 0.00 0.00 0.16

Curvature 0.01 0.02 −0.01 −0.02 0.00 0.39

Level 0.00 0.00 0.00 0.01 0.06 1.20
Median Slope 0.00 0.00 0.00 0.01 0.05 0.78

Curvature 0.00 0.00 0.00 0.00 0.03 0.73

Level 0.00 0.00 0.00 0.01 0.06 1.29
Maximum Slope 0.00 0.00 0.00 0.01 0.14 2.20

Curvature 0.00 −0.01 0.00 0.01 0.04 0.62

Panel B: the second-step comparison
r θ ε y1 y3 y5

Level −0.09 −0.39 0.80 0.03 −0.06 −0.14
Minimum Slope −0.06 −0.25 0.52 0.02 −0.04 −0.10

Curvature −0.16 −0.62 1.34 0.06 −0.10 −0.23

Level −0.41 −1.90 3.89 0.13 −0.26 −0.66
Median Slope −0.27 −1.24 2.55 0.08 −0.17 −0.42

Curvature −0.25 −1.16 2.37 0.08 −0.16 −0.41

Level −0.44 −2.03 4.16 0.14 −0.28 −0.71
Maximum Slope −0.75 −3.46 7.09 0.23 −0.47 −1.18

Curvature −0.22 −0.99 2.03 0.06 −0.13 −0.34

Panel C: the third-step comparison
r θ ε y1 y3 y5

Level 0.06 −4.95 5.13 0.02 −0.13 −0.38
Minimum Slope 0.72 −1.26 0.21 −0.16 0.18 0.22

Curvature 2.11 −2.27 −8.23 −0.47 0.53 0.65

Level 0.51 −0.86 −7.15 −0.10 0.06 −0.10
Median Slope −0.37 2.81 −4.02 0.07 −0.04 −0.01

Curvature 0.03 −1.76 −1.90 0.01 −0.07 −0.25

Level 1.26 3.15 −13.47 −0.31 0.40 0.53
Maximum Slope 0.02 −1.89 −8.47 0.03 −0.17 −0.63

Curvature −0.79 3.01 −1.47 0.16 −0.13 −0.11

Table B1: Comparison with the closed-form solution using the Gaussian model
Approximation errors, defined as the differences in yields/factors between the approximate and closed-
form solutions, are presented in bps. The errors are evaluated at nine states taken from the actual data
from January 4, 1991 to May 27, 2009, where the level, slope, and curvature factors take the minimum,
median, or maximum value. Panel A presents the results for the first-step comparison, where the true
values of both parameter and state vectors are given as input for the approximation method. Panel B
presents the results for the second-step comparison, where the true value of only the parameter vector is
given. Panel C presents the results for the third-step comparison, where no prior information is given.
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Maturity 0.5 1 2 3 5 10

Panel A: QS model

Level 0.12 0.10 0.09 0.10 0.08 0.29
Minimum Slope 0.21 0.18 0.13 0.14 0.11 0.45

Curvature 0.39 0.32 0.14 0.07 0.03 0.39

Level −0.04 −0.05 −0.07 −0.02 0.04 0.78
Median Slope −0.18 −0.17 −0.15 −0.08 0.02 0.61

Curvature −0.04 −0.06 −0.09 −0.12 −0.15 0.31

Level 0.02 0.03 0.06 0.02 −0.05 1.20
Maximum Slope −0.18 −0.17 −0.06 0.05 0.13 1.81

Curvature −0.27 −0.25 −0.23 −0.28 −0.24 0.45

Panel B: QE model

Level 0.10 0.08 0.09 0.18 0.31 0.42
Minimum Slope 0.19 0.23 −0.09 −0.14 −0.11 0.19

Curvature 0.37 0.20 −0.26 −0.82 −1.45 −1.07

Level −0.03 −0.03 −0.03 −0.04 0.10 1.54
Median Slope −0.21 −0.14 −0.14 −0.11 −0.06 0.39

Curvature −0.04 −0.04 −0.07 −0.10 −0.10 0.57

Level 0.03 0.04 0.04 0.01 −0.27 0.80
Maximum Slope −0.17 −0.11 −0.05 −0.05 0.04 2.02

Curvature −0.27 −0.34 −0.29 −0.25 −0.26 −0.02

Table B2: Comparison with the MC solution using the Gaussian-based QS and QE
models
Approximation errors, defined as the differences in yields between the approximate and MC
solutions, are presented in bps. The errors are evaluated at nine states taken from the actual
data from January 4, 1991 to May 27, 2009, where the level, slope, and curvature factors take
the minimum, median, or maximum value. Panels A and B present the results for the Gaussian-
based QS and QE models with the parameter values given in Tables 3 and 4, respectively.
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Maturity 0.5 1 2 3 5 10

Panel A: QS model

Level 0.08 0.09 0.09 0.08 0.07 0.05
Minimum Slope 0.35 0.22 0.10 0.00 −0.13 −0.22

Curvature −0.31 −0.34 −0.26 −0.13 0.08 0.25

Level 0.65 0.71 0.71 0.63 0.49 0.36
Median Slope −0.35 −0.78 −0.95 −0.87 −0.68 −0.50

Curvature 0.44 0.60 0.52 0.33 0.07 −0.14

Level 0.21 −0.53 −0.71 −0.45 0.08 0.60
Maximum Slope −0.36 −0.63 −0.81 −0.87 −0.90 −0.91

Curvature −0.29 −0.36 −0.45 −0.46 −0.43 −0.40

Panel B: QE model

Level −0.54 −0.75 −1.01 −1.10 −1.14 −1.16
Minimum Slope 0.15 −0.18 −0.52 −0.61 −0.59 −0.54

Curvature 1.12 0.57 0.06 −0.02 0.09 0.37

Level 0.07 0.02 0.09 0.29 0.63 0.93
Median Slope 0.23 0.22 0.21 0.25 0.33 0.41

Curvature −0.13 0.12 0.29 0.32 0.32 0.30

Level 0.55 0.78 0.89 0.77 0.50 0.22
Maximum Slope 0.38 −0.08 −0.40 −0.35 −0.07 0.27

Curvature −0.16 −0.57 −0.83 −0.68 −0.27 0.15

Table B3: Accuracy to 4-week annualized standard deviation using the Gaussian-
based QS and QE models
Approximation errors, defined as the differences in annualized standard deviations between the
approximate and MC solutions, are presented in bps. The errors are evaluated at nine states
taken from the actual data from January 4, 1991 to May 27, 2009, where the level, slope, and
curvature factors take the minimum, median, or maximum value. Panels A and B present the
results for the Gaussian-based QS and QE models with the parameter values given in Tables 3
and 4, respectively.
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(a) Gaussian model (with yt,0.5)
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Figure 1: Time series of rt
In panel (a), time-series of the six-month yield is also displayed. The vertical dotted line sepa-

rates the in-sample and out-of-sample periods.
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(a) Gaussian model (with yt,10)
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Figure 2: Time series of θt
In panel (a), time-series of the ten-year yield is also displayed. The vertical dotted line separates

the in-sample and out-of-sample periods.
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(a) Gaussian model (with curt)
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Figure 3: Time series of εt
In panel (a), time-series of a proxy for the curvature factor given by curt = 2yt,2 − (yt,0.5+ yt,10)
is also displayed. The vertical dotted line separates the in-sample and out-of-sample periods.
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(a) τ = 0.5
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Figure 4: Time series of 4-week-ahead forecasts of τ-year yield volatility generated

by the QC model

The bold and dotted lines correspond to forecasts with and without NAC, and the thin line to

the realized value. The vertical dotted line separates the in-sample and out-of-sample periods.
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Figure 5: Time series of 4-week-ahead forecasts of τ-year yield volatility generated

by the QE model

The bold and dotted lines correspond to forecasts with and without NAC, and the thin line to

the realized value. The vertical dotted line separates the in-sample and out-of-sample periods.
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(a) A1(3) model: rt (with yt,0.5)

0.00

0.02

0.04

0.06

0.08

0.10

91 93 95 97 99 01 03 05 07 09

r

y_0.5

correlation = 0.98

(c) A1(3) model: μt (with curt)
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(e) A1(3) model: Vt (with yt,10)
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(b) QC and QE models: rt
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(d) QC and QE models: μt
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(f) QC and QE models: Vt
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Figure 6: Time series of factors extracted through the A1(3) and extended models

The left panels present the time-series of rt, μt, and Vt extracted through the A1(3) model

together with the time-series of observed variables that track those of the factors. The corre-

sponding factor time-series for the QC and QE models are displayed together in the right panels.

The vertical dotted line separates the in-sample and out-of-sample periods.
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Figure 7: Time series of 4-week-ahead forecasts of τ-year yield volatility generated

by the A1(3) model
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Figure 8: Time series of 4-week-ahead forecasts of τ-year yield volatility generated

by the A1(3)-based QC model
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Figure 9: Time series of 4-week-ahead forecasts of τ-year yield volatility generated

by the A1(3)-based QE model
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