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This dissertation consists of four chapters. Chapter 1 contains the introduction of this disser-

tation and the overviews of the other chapters. Chapters 2, 3 and 4 give the main contributions

of the author.

Summary of Chapter 2

Chapter 2 presents a model that has an asymptotically efficient ordinary least squares (OLS)

estimator, irrespective of the singularity of its limiting sample moment matrix. In the literature

on time series, Grenander and Rosenblatt’s result is necessary to judge the asymptotic efficiency

of the OLS estimator with requiring that the regressors satisfy Grenander’s conditions. Without

the conditions, however, it is not obvious whether the estimator is efficient. In Chapter 2, we

introduce such a model by analyzing the regression model with a slowly varying (SV) regressor

under a quite general assumption on errors. These regressors are known to display asymptotic

singularity in the sample moment matrices; that is, Grenander’s condition fails.

A positive-valued function L on R+ is called SV if it satisfies, for any r > 0, L(rn)/L(n)→ 1

as n → ∞. To deal with an SV function L, we suppose that L has the following Karamata’s

representation:

L(n) = cL exp
(∫ n

B

ε(s)
s

ds
)

for n ≥ B

for some B> 0. Here cL > 0, ε is continuous and ε(n)→ 0 as n→∞. Note that any SV function

is of order o(nα) for all α > 0. With some additional conditions on L, we consider the following

regression model

yt = β0 +β1L(t)+ut for t = 1, . . . ,n, or y = Xβ +u,

where y = [y1, . . . ,yn]
′, β = [β0,β1]

′ and X = [ι ,L] with ι = [1, . . . ,1]′ and L = [L(1), . . . ,L(n)]′.

The term ut represents the regression error and is modeled to include a very wide class of

stationary processes with a positive and continuous spectrum. If we write u = [u1, . . . ,un]
′, the

1



variance is given by

Var(u) =



γ0 γ1 · · · γn−1

γ1 γ0 · · · γn−2

...
... . . . ...

γn−1 γn−2 · · · γ0


= [Γ0,Γ1, . . . ,Γn−1] = Γ,

where Γt is the tth column vector of Var(u). Using these notations, we may define the OLS and

GLS estimators as β̂OLS = (X ′X)−1X ′y and β̂GLS = (X ′Γ−1X)−1X ′Γ−1y, respectively.

The OLS estimator is said to be asymptotically efficient if

Fn

[
Var(β̂OLS)−Var(β̂GLS)

]
Fn → 0

is true for some common standardizing matrix Fn. In Chapter 2, the convergence is proved for

the SV model. That is, if regularity conditions hold, then Var(β̂OLS) and Var(β̂GLS) of the model

have the same asymptotic variance of the form

σ2


1

nε(n)2 − 1
nL(n)ε(n)2

− 1
nL(n)ε(n)2

1
nL(n)2ε(n)2

(1+o(1)),

implying that the OLS estimator is asymptotically efficient with the standardizing matrix Fn =

diag[
√

nε(n),
√

nL(n)ε(n)].

Summary of Chapter 3

Chapter 3 considers a unit root test in the presence of a SV regressor L. The definition of the

SV function L follows from the preceding section, but the assumptions to be imposed here are

somewhat different. Consider the model

yt = α +βL(t)+ut and ut = ρut−1 + vt for t = 1, . . . ,n, (1)

where ρ = 1 and {vt} is assumed to be a one-summable linear process with E|vt |p < ∞ for some

p > 2. The regressor L(t) is given by an SV function that satisfies some regularity conditions.

The first result is the derivation of the limiting distribution of the OLS estimator:

1√
n

 ε(n)(α̂n −α)

L(n)ε(n)
(

β̂n −β
)
 d−→ N

0,
2σ2

L
27

 1 −1

−1 1


 ,
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where σ2
L is the long-run variance of vt . This weak convergence is obtained by Mynbaev’s

CLT (see Mynbaev 2009, 2011a), which is applicable for a weighted sum of linear processes.

Because any SV function possesses an asymptotic order of o(
√

n), the OLS estimators cannot be

consistent. This fact contrasts with the case where the simple trend t is employed. Considering

models with an SV regressor, we therefore remark that the existence of a unit root leads to a

meaningless regression and that testing for a unit root is indispensable.

Let W (·) denote the standard Brownian motion obtained in the limit of the partial sum

process σ−1
L n−1/2 ∑[ ·n]

t=1 vt . The next result we investigate is the asymptotic behaviors of the unit

root test statistics, or estimated regression coefficient ρ̂n and corresponding t-statistic tρ̂n , based

on the regression residuals. Under the regularity conditions, we obtain

nε(n)2 (ρ̂n −1) d−→− U1

2V1
and ε(n)2tρ̂n

d−→−σL

σS

U1

2
√

V1
,

where σ2
S is the short-run variance of vt , and U1 and U2 are given by

U1 =

{∫ 1

0
(1+ logr)W (r)dr

}2

and

V1 =
∫ 1

0
W (r)2dr−

(∫ 1

0
W (r)dr

)2

−
{∫ 1

0
(1+ logr)W (r)dr

}2

.

These results are derived by an application of both Mynbaev’s CLT and FCLT for a linear

process. When it comes to testing a unit root by these statistics, however, it will turn out to be

useless in that the finite sample approximation is poor.

To overcome the difficulty, we first consider the following no-constant model

yt = βL(t)+ut and ut = ρut−1 + vt for t = 1, . . . ,n, (2)

where the same assumptions on L(t) and vt continue to hold. Then, we have similar weak

convergence results

L(n)√
n

(
β̂n −β

)
d−→ N

(
0,

σ2
L

3

)
,

and

n(ρ̂n −1) d−→
U2 −σ2

S/σ2
L

2V2
and tρ̂n

d−→ σL

σS

U2 −σ2
S/σ2

L

2
√

V2
,
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where

U2 =

{
W (1)−

∫ 1

0
W (r)dr

}2

and V2 =
∫ 1

0
W (r)2dr−

(∫ 1

0
W (r)dr

)2

.

In practice, it may not be appropriate to suppose that the true model has no constant term. How-

ever, it is worth analyzing the situation where the true model is given by (1), which possesses

a constant term, but the no-constant model (2) is employed for regression. Then, we still have

the same asymptotic result based on the no-constant model with the effect of a constant term

declining at the rate O(n−1/2). This manipulation brings about a significant improvement in

terms of the size and power in finite sample situations and a unit root test based on this proce-

dure is recommended. Applying the result, we finally give general Phillips and Perron type test

statistics.

Summary of Chapter 4

Chapter 4 studies estimation and inference for nonlinear regression models with integrated time

series by quantile regression. Suppose that the scalar-valued random variable yt is generated

from the following nonlinear model

yt = α0 +g(xt ,β0)+ut for t = 1, . . . ,n, (3)

where g : R×Rℓ → R is a known regression function, and xt and ut are the covariate and error,

respectively. In particular, xt is specified as a simple AR(1) unit root model xt = xt−1 + vt ,

where vt is stationary. The ℓ-dimensional true parameter vector θ0 = (α0,β ′
0)

′ is assumed to

lie in the parameter set Θ = A×B ⊂ R×Rℓ. Moreover, let F and f denote the cumulative

distribution function (CDF) and pobability density function (PDF) of ut , respectively. Note that

the τth quantile of ut for a fixed τ ∈ (0,1) is simply denoted by F−1(τ) under some regularity

conditions on ut . Let utτ = ut −F−1(τ) for t = 1, . . . ,n. We may also rewrite the parameter so

that α0(τ) = α0+F−1(τ) in response to the error term utτ and define the new parameter vector

θ0(τ) =
(
α0(τ),β ′

0
)′.

The regression function (x,β ) 7→ g(x,β ) is classified into two functional classes as in park

and Phillips (2001). The first is the class of H-regular functions, which are defined by

g(λx,β ) = κ(λ )h(x,β )+R(x,λ ,β ),
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where the functions κ and h are said to be the asymptotic order and limit homogeneous function

of g, respectively. The last term, R(x,λ ,β ), is a remainder. Polynomial functions, distribution-

like functions and logarithmic function are included in this H-regular class. The second is the

class of I-regular functions, which are characterized as bounded and integrable functions with

respect to x with sufficient smoothness in β .

With this setting, we may obtain the nonlinear quantile regression (NQR) estimator θ̂n(τ) =(
α̂n(τ), β̂n(τ)′

)′
of θ0(τ) by solving the minimization problem

θ̂n(τ) = argmin
θ∈Θ

n

∑
t=1

ρτ(yt −α −g(xt ,β )),

where ρτ(u) = uψτ(u) with ψτ(u) = τ −1(u < 0).

To develop the analysis, we are required to make assumptions on errors ut and vt . We

construct two partial sum processes

Uψ
n (τ,r) =

1
n1/2

[nr]

∑
t=1

ψτ(utτ) and Vn(r) =
1

n1/2

[nr]

∑
t=0

vt+1.

The process {ψτ(utτ)} is assumed to be a martingale difference sequence. Further, we suppose

that the vector (Uψ
n ,Vn)(r) converges weakly to a vector Brownian motion (Uψ ,V )(r) whose

covariance matrix is Ω(r). In addition, we assume that vt is a linear process for an I-regular g.

One of the main contributions of Chapter 4 is that the asymptotic distribution of the NQR

estimator θ̂n(τ) is derived with restricting our attention to the class of H-regular functions.

Note that the class of I-regular functions cannot be treated in the same framework due to

the irregular convergence rate n1/4; this class is investigated later with a restriction to model

(3). The regression function g(x, ·) is always supposed to be twice continuously differen-

tiable. Define notation of the first and second order derivatives as ġ(x,β ) = ∂g(x,β )/∂β

and G̈(x,β ) = ∂ 2g(x,β )/∂β∂β ′, and we further write g̈ = vec(G̈). Corresponding to the ℓ-

dimensional vector ġ and ℓ2-dimensional vector g̈, the asymptotic order matrices κ̇n (ℓ× ℓ) and

κ̈n (ℓ2 × ℓ2) and the vector of the limit homogeneous functions ḣ and ḧ are introduced when ġ

and g̈ are H-regular. We further let g̃ = (1, ġ′)′, h̃ = (1, ḣ′)′ and κ̃n = diag(1, κ̇n). To obtain the

limiting distribution, we need to suppose an additional assumption on the parameter vector θ

so that θ = θ0(τ)+n−1/2κ̃ ′−1
n π , where π lies in a compact set Π ⊂ R×Rℓ.
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Define the derivative from the right of the objective function

zt(θ) = g̃t(β )ψτ(yt −α −gt(β )).

Utilizing this function, we may derive the limiting distribution by considering the “first order

condition”

n−1/2κ̃−1
n

n

∑
t=1

zt(θ̂n(τ)) = op(1).

This estimating equation leads to the Bahadur representation of the NQR estimator θ̂n(τ). In

consequence, we obtain the result. Let ġ and g̈ be H-regular on B. Then, under some regularity

conditions, we have

n1/2κ̃ ′
n(θ̂n(τ)−θ0(τ))

d−→ 1
f (F−1(τ))

[∫ 1

0
h̃(V (r),β0)h̃(V (r),β0)

′dr
]−1 ∫ 1

0
h̃(V (r),β0)dUψ(r).

Note that the limiting distribution is not usually (mixed) normal because of the possible nonzero

correlation between Uψ and V . Therefore standard inferences are not applicable in this case.

To overcome the difficulty, we suggest fully-modified NQR (FM-NQR) estimator based

on the results of Phillips and Hansen (1990) and de Jong (2002). The FM-NQR estimator is

constructed by

θ̂+
n (τ) = θ̂n(τ)−

n−1/2κ̃−1
n

̂f (F−1(τ))

ω̂ψv

ω̂2
v

S−1
n Tn,

where ̂1/ f (F−1(τ)), ω̂ψv and ω̂2
v are consistent estimators. The statistics Sn and Tn satisfy

Sn
p−→

∫ 1

0
h̃(V (r),β0)h̃(V (r),β0)

′dr and Tn
d−→

∫ 1

0
h̃(V (r),β0)dV (r).

If some additional conditions of de Jong (2002) are satisfied, we then have

n1/2κ̃ ′
n
(
θ̂+

n (τ)−θ0(τ)
)

d−→ 1
f (F−1(τ))

[∫ 1

0
h̃(V (r),β0)h̃(V (r),β0)

′dr
]−1 ∫ 1

0
h̃(V (r),β0)dUψ+(r),

where Uψ+(r) =Uψ(r)−ωψvω−2
v V (r). Therefore, the mixed normality of the limiting random

variable is brought to light immediately because Uψ+ is easily found to be uncorrelated with V
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and, hence, independent of V . Because of the asymptotic normality of the FM-NQR estimator,

we can consider testing linear restrictions on the parameter vector.

We have considered the NQR estimator of the nonlinear model only in the case of H-regular

ġ and g̈. We then investigate the so-called linear-in-parameter model obtained by confining

model (3) to

yt = α0 +β0g(xt)+ut . (4)

The regression function g is either I-regular or H-regular and write gt = g(xt). The parameter

β0 is allowed ℓ-dimensional, but is assumed ℓ= 1 for the sake of brevity. Because the model is

linear in parameter, the asymptotics can be derived even if g is an I-regular function as well as

an H-regular one.

First, we consider model (3) under restriction (4) with I-regular regression function deriva-

tive ġ. The limiting distribution of the NQR estimator θ̂n(τ) is summarized as follows. Let g be

I-regular on B, and suppose some regularity conditions. Then we have

DI
n(θ̂n(τ)−θ0(τ))

d−→ 1
f (F−1(τ))

 Uψ(1)(
L(1,0)

∫ ∞

−∞
g(x)2dx

)−1/2

W (1)

 ,

where DI
n = diag(n1/2,n1/4) and the Brownian motion W (r) has variance rτ(1 − τ), which

is the same as the variance of Uψ(r). This implies that α̂n(τ) and β̂n(τ) are asymptotically

independent; consequently, the limiting joint distribution is mixed normal of the form

MN

0,
ω2

ψ

f (F−1(τ))2

1 0

0 L(1,0)
∫ ∞
−∞ g(x)2dx


−1
 .

Hence, standard inferences are applicable in an asymptotic sense. For the case of H-regular

functions, we certainly have the same result obtained above.

Finally, we investigate finite sample performances of the NQR estimators with τ = 0.5

via comparison to nonlinear least squares (NLS) estimators by simulations. We observe from

simulations that our suggested NQR estimators are preferable to the NLS estimators in terms of

estimation accuracy and powers of tests when distributions of regression errors possess fat tails.

7


