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Abstract

We study a new monotonicity problem in combinatorial auctions called goods rev-

enue monotonicity, which requires that the auctioneer earn no more revenue by drop-

ping goods from the endowments. Although no mechanism satisfies goods revenue

monotonicity together with strategy-proofness, efficiency, and participation even in the

domain of substitute valuations, we find a restricted domain called per-capita goods-

bidder submodular domain in which there exists a goods revenue monotone mechanism

satisfying the above three conditions. The restriction is likely to be met when bidders’

valuations are similar. Finally, we provide a relation to the monopoly theory, and argue

that per-capita goods-bidder submodularily is independent of the standard elasticity

argument.

1 Introduction

A combinatorial auction is an auction in which the auctioneer attempts to sell combina-

tions of multiple objects. In combinatorial auctions, large possibilities of combinations

of objects aggravate a difficulty in designing a suitable mechanism. In the literature, the
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Vickrey-Clarke-Groves (VCG) mechanism is one of the most widely accepted as a desir-

able candidate possessing nice properties. In the VCG mechanism, no bidder obtains

a negative payoff, no bidder has an incentive to misreport his true preference, and the

outcome is always efficient in terms of the reported valuations.

On the other hand, Milgrom (2004, Chapter 2) points out that the VCG mechanism

has several weaknesses. One of the most important is a monotonicity problem that the

auctioneer’s revenue is non-monotone with respect to the set of bidders. It may cause the

auctioneer to disqualify bidders for an increase of the revenue. Rastegari et al. (2011) show

that this bidder revenue monotonicity problem arises in the domain of single-minded

valuations.1 In their seminal paper, Ausubel and Milgrom (2002) show that the above

monotonicity problem disappears when goods are substitutes for all bidders.2

Our finding is that, even if goods are substitutes, the VCG mechanism suffers another

monotonicity problem, goods revenue monotonicity. In words, goods revenue monotonicity

requires that the auctioneer earn no more revenue by dropping goods. This property

is desirable since if violated, an incentive would arise for the auctioneer to drop goods,

leading to misallocation. This problem is generally serious as the price theory predicts

that a monopolist may under-supply. Indeed, implementing goods revenue monotone

outcomes together with strategy-proofness, efficiency, and participation is impossible in

the substitutes domain.

Nevertheless, we find a new restricted domain, per-capita goods-bidder submodular do-

main. This condition requires that the social welfare per capita be submodular with respect

to goods and bidders. In this domain, we show that the VCG mechanism is goods revenue

monotone. The per-capita goods-bidder submodular domain is nonempty, and likely to

hold when all bidders’ valuations are similar. We also demonstrate by examples that if this

condition holds, the valuations are relatively close to the additive. This contrasts bidder

revenue monotonicity which is always satisfied in the substitutes domain.

1A bidder’s valuation is called single-minded if he demands only a target bundle of goods. See Section 4
for more details.

2Furthermore, they show that if goods are substitutes for all bidders, the VCG mechanism satisfies the
false-name proofness, and the VCG outcome is always in the core.
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Our goods revenue monotonicity is related to the standard monopoly theory. To dis-

cuss this relation, we investigate another domain in which all goods are homogeneous for

all bidders, and thus the auction can be viewed as a multi-unit auction. We show, thanks

to the homogeneity, that the VCG mechanism in the multi-unit auction is goods revenue

monotone if the marginal value elasticity of demand is higher than or equal to one. This

parallels the fact in the monopoly theory that the monopolist’s revenue is monotonically

increasing with respect to the quantity if the price elasticity of demand is higher than or

equal to one.

Per-capita goods-bidder submodularity also works in this environment. We argue

however that it is logically independent of the above elasticity in the market with homo-

geneous goods. Since cross elasticity matters in the market with heterogeneous goods, it

is hard to generalize the elasticity argument to the combinatorial auctions. Hence our per-

capita goods-bidder submodularity is a new condition that guarantees no under-supply

in the context of combinatorial auctions.

The rest of the paper is organized as follows. Section 2.1 defines a combinatorial

auction mechanism, and introduces goods revenue monotonicity. In Section 2.2 we show

the impossibility. In Section 3.1 we show a possibility in the per-capita goods-bidder

submodular domain. Section 3.2 studies a multi-unit auction with homogeneous goods.

Section 4 discusses relations to the literature and bidder revenue monotonicity. Section 5

concludes.

2 Preliminaries

2.1 The model

An auctioneer faces a problem of selling multiple goods to bidders. Let G be a universal

set of indivisible goods which are potentially to be sold. We assume that G contains at

least two goods. We analyze problems for multiple sets of goods contained in G, as an

auction mechanism generally works with distinct sets of goods. We denote the set of
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goods actually sold in the auction by G ⊆ G. We also denote the finite set of bidders

who actually participate in the auction by N with |N| ≥ 2. Let XG =
{
(x1, . . . , x|N|) ⊆

G|N| | xi ∩ xj = ∅ for all i, j ∈ N (i ̸= j)
}

be the set of feasible allocations when the set of

goods to be sold is G ⊆ G. An auction mechanism allocates goods to bidders while we

allow the auctioneer to retain some goods unsold.

Given a set of goods G, each bidder i has a private valuation function vi : xi 7→ vi(xi) ∈

R over all bundles of goods xi ⊆ G. Let Vi be the set of valuation functions of bidder

i, and V = ∏i∈N Vi be the set of valuation profiles of all bidders.3 We always assume

free-disposal; xi ⊆ x′i implies vi(xi) ≤ vi(x′i) for all i ∈ N and all vi ∈ Vi. For normalization,

each bidder i values no goods at zero, i.e. vi(∅) = 0 for all i ∈ N and all vi ∈ Vi. All

bidders have quasi-linear payoff functions. If bidder i obtains a bundle of goods xi ⊆ G

in exchange of payment ti ∈ R, his payoff is vi(xi)− ti.

Let us introduce a standard notion of substitutes. Suppose that G is finite and each

good g ∈ G is sold separately at price pg. Then, the demand correspondence for each

bidder i at price vector p = (pg)g∈G is defined by

Di(p) = argmax
xi⊆G

(
vi(xi)− ∑

g∈xi

pg

)
.

Definition 1. Goods are substitutes for bidder i if for any p, p′ with p ≤ p′ and any xi ∈

Di(p), there exists an x′i ∈ Di(p′) such that {g | g ∈ xi, pg = p′g} ⊆ x′.4

Note that since any bidder has a quasi-linear payoff function with no budget con-

straints, this condition is equivalent to the gross substitutes condition defined by Kelso

and Crawford (1982). We denote the set of all substitute valuations by VSub.

We consider a deterministic direct combinatorial auction mechanism (CA mechanism for

short) M = (MG)G⊆G .By the revelation principle, we can focus on CA mechanisms with-

out loss of generality. Each MG = (x(G), t(G)) is a CA mechanism for G in which each

3We do not write dependency of Vi on G explicitly. We note that Vi can be regarded as of a set of
valuation functions on G restricted to G.

4We can generalize the definition for the infinitely many goods straightforwardly.

4



bidder i simultaneously bids a valuation function v̂i ∈ Vi, and the goods and monetary

transfers are allocated according to the reported valuation profile v̂ = (v̂1, . . . v̂|N|). For

each v̂ ∈ V , x(G)(v̂) =
(

x1(G)(v̂), . . . , x|N|(G)(v̂)
)
∈ XG is the allocation function, and

t(G)(v̂) =
(
t1(G)(v̂), . . . , t|N|(G)(v̂)

)
∈ R|N| is the payment function. In what follows, we

denote x(G)(v̂) and t(G)(v̂) as x(v̂; G) and t(v̂; G), respectively. If bidders report v̂ ∈ V ,

then each bidder i with true valuation vi obtains payoff vi(xi(v̂; G))− ti(v̂; G).

We next define properties of CA mechanisms.

Definition 2. (i) CA mechanism M satisfies participation if a payment is zero for any

bidder obtaining payoff zero. That is, for all (v̂i, v̂−i) ∈ V , and all G ⊆ G,

if v̂i(xi(v̂i, v̂−i; G)) = 0 then ti(v̂i, v̂−i; G) = 0.

(ii) CA mechanism M is strategy-proof if no bidder has an incentive to misreport his

valuations in MG,N = (x, t). That is, for all vi ∈ Vi, (v̂i, v̂−i) ∈ V , and all G ⊆ G,

vi(xi(vi, v̂−i; G))− ti(vi, v̂−i; G) ≥ vi(xi(v̂i, v̂−i; G))− ti(v̂i, v̂−i; G).

(iii) CA mechanism M is efficient if for all v ∈ V and all G ⊆ G,

x(v; G) ∈ argmax
y∈XG

∑
i∈N

vi(yi).

We assume that this is well-defined for all v ∈ V .5

Now, we introduce a notion of goods revenue monotonicity, which will play the central

role in this paper. A CA mechanism is goods revenue monotone if the auctioneer earns

no more revenue by dropping any goods. Formally, we define this concept as follows:

Definition 3. A strategy-proof CA mechanism M is goods revenue monotone if for all v̂ ∈ V

5This maximum exists under a weak condition. A sufficient condition is that each vi is upper semi-
continuous and the domain is compact in a suitable topology (see Holmström (1979, footnote 6)).
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and all sets of goods G, G′ with G′ ⊆ G ⊆ G,

∑
i∈N

ti(v̂; G) ≥ ∑
i∈N

t′i(v̂; G′).

We denote welfare for coalition S ⊆ N with set of goods G ⊆ G at valuation profile

v ∈ V by w(v; G, S) = maxx∈XG ∑i∈S vi(xi).

A natural candidate satisfying the desirable properties defined in Definition 2 is the

Vickrey-Clarke-Groves (VCG) mechanism. The VCG mechanism (MVCG
G )G⊆G is a CA

mechanism in which xVCG(v̂; G) ∈ argmaxy∈XG
∑i∈N v̂i(yi) and

tVCG
i (v̂; G) = w(v̂; G, N \ {i})− ∑

j∈N\{i}
v̂j(xVCG

j (v̂; G))

for each i ∈ N and G ⊆ G. The VCG mechanism obviously satisfies participation, strategy-

proofness, and efficiency for any environment. By strategy-proofness, the revenue of

the auctioneer ∑i∈N tVCG
i (v; G) for each G is computed with respect to the bidders’ true

valuations. The following example demonstrates that the VCG mechanism is not goods

revenue monotone in some environment.

Example 1. Let G = {a, b} be the set of two goods. There are two bidders 1, 2. For each

bidder i = 1, 2, the valuation vi is given as follows; v1({a}) = 7, v1({b}) = 3, v1({a, b}) =

8, v2({a}) = 3, v2({b}) = 7, and v2({a, b}) = 8. The outcome of the VCG mechanism is

allocating a to 1 and b to 2, and payment 1 by both, i.e. xVCG(v; {a, b}) = ({a}, {b}) and

tVCG(v; {a, b}) = (1, 1). Hence, the revenue is 1 + 1 = 2.

On the other hand, if the auctioneer sells only good b, the VCG outcome is allocating

b to 1 with payment 3. The auctioneer’s revenue is 3, which exceeds the revenue ob-

tained from selling both goods a and b. Hence the VCG mechanism is not goods revenue

monotone if V contains the above valuation profile. ♢
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2.2 An impossibility

Goods revenue monotonicity, as one may suppose, is a strong requirement in general. In

this section, we prove an impossibility in any domain including all “single-unit demand”

valuations. We say that a valuation function vi is single-unit demand if for all xi ⊆ G,

vi(xi) = supg∈xi
vi({g}). Let VSUD be the set of valuation functions with a single-unit

demand. This is an extreme case of substitutes since obtaining any combination of two

bundles of goods causes no increase in valuations.

Proposition 1. Suppose that Vi ⊇ VSUD for all i ∈ N. Then, any CA mechanism M that satisfies

efficiency, strategy-proofness, and participation is not goods revenue monotone.

The proof is given in the Appendix. Since VSub ⊇ VSUD, we obtain the following

corollary:

Corollary 2. Suppose that Vi ⊇ VSub is for all i ∈ N. Then, any CA mechanism M that satisfies

efficiency, strategy-proofness, and participation is not goods revenue monotone.

3 Main results

3.1 A possibility result: Per-capita goods-bidder submodular domain

We showed an impossibility in Proposition 1 that if Vi ⊇ VSUD for all i, then no mech-

anism satisfies goods revenue monotonicity together with efficiency, strategy-proofness,

and participation. This section examines the existence of such mechanisms on a restricted

domain of valuations.

We consider a restricted domain satisfying the following property: Let w̃(v; G, S) =

1
|S|w(v; G, S) be the welfare per capita for coalition S with ∅ ̸= S ⊆ N.

Definition 4. A profile of valuation functions v is per-capita goods-bidder submodular if for

all G′ ⊆ G ⊆ G and all i ∈ N,

w̃(v; G, N)− w̃(v−i; G, N \ {i}) ≤ w̃(v; G′, N)− w̃(v−i; G′, N \ {i}).
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A set of all per-capita goods-bidder submodular valuation profiles is called the per-capita

goods-bidder submodular domain.6

This domain has a nonempty interior; for example, suppose that v = (v1, . . . , vn) is

such that vi is additive (i.e., satisfies vi(G) = ∑g∈G vi({g})) for all i ∈ N, and vi = vj

for all i, j ∈ N. Then the total welfare w(v; G, N) = vi(G) is independent of N, and thus

w̃(v; G, N)− w̃(v−i; G, N \ {i}) = − 1
|N|(|N|−1)w(v; G, N) is nonincreasing in G. This mono-

tonicity directly implies per-capita goods-bidder submodularity. If vi is strictly increasing

in G, the above monotonicity is also strict. In such a case, per-capita goods-bidder sub-

modularity holds with strict inequalities for this v, and also for any valuation profiles

close to v.

Theorem 3. Suppose that V is the per-capita goods-bidder submodular domain. Then, the VCG

mechanism satisfies goods revenue monotonicity.

Proof. Fix G. In the VCG mechanism, the payment of each bidder i ∈ N is tVCG
i (v; G) =

w(v−i; G, N \ {i})− [w(v; G, N)− vi(xVCG
i (v; G))].

Then, the revenue is

∑
i∈N

tVCG
i (v; G) = ∑

i∈N
w(v−i; G, N \ {i})− |N|w(v; G, N) + ∑

i∈N
vi(xVCG

i (v; G))

= ∑
i∈N

w(v−i; G, N \ {i})− (|N| − 1)w(v; G, N)

= ∑
i∈N

(|N| − 1)w̃(v−i; G, N \ {i})− (|N| − 1)|N|w̃(v; G, N)

= ∑
i∈N

(|N| − 1)
(
w̃(v−i; G, N \ {i})− w̃(v; G, N)

)
.

This is nondecreasing in G since, by per-capita goods-bidder submodularity, w̃(v; G, N \

{i})− w̃(v; G, N) is nondecreasing in G for each i ∈ N.

It is obvious that this argument holds for all G ⊆ G. Hence, the auctioneer cannot earn

more revenue by dropping goods.
6This terminology follows “bidder submodularity” (Ausubel and Milgrom (2002)), submodularity of the

welfare function with respect to the set of bidders. We will discuss the relation in Section 4.

8



We now discuss properties of the per-capita goods-bidder submodular domain.

For a positive integer K, a set of bidders N, and v ∈ V , let N(K) = {(i, k) | i ∈ N, k =

1, . . . , K} be a set of K|N| bidders, and vK be the K-replica valuation profile with v(i,k) = vi

for each (i, k) ∈ N(K).

Proposition 4. Suppose that |G| is finite.7 For any valuation profile v ∈ V , there exists K̄ such

that for all K ≥ K̄, the K-replica valuation profile vK satisfies per-capita goods-bidder submodular-

ity.

Proof. Let K̄ = |G|+ 1. Since for any K ≥ K̄ and any i ∈ N, there exists k = 1, . . . , K such

that bidder (i, k) obtains no goods in an efficient allocation in the K-replica environment,

dropping any bidder (i, k) does not influence the resulting efficient allocation. There-

fore, for any K ≥ K̄, any (i, k) ∈ N(K), and any G′ ⊆ G, we have w(v; G′, N(K)) =

w(v−(i,k); G′, N(K) \ {(i, k)}). Since w(v; G′, N(K)) ≥ 0 is nondecreasing in G′ ⊆ G,

w̃(v; G′, N(K))− w̃(v−(i,k); G′, N(K) \ {(i, k)}) = − 1
(K|N|−1)K|N|w(v; G′, N(K)) must be non-

increasing in G′. Hence per-capita goods-bidder submodularity is satisfied.

Proposition 4 implies that if the set of goods is finite, for any valuation function vi,

a profile (vi, vi, . . . , vi) satisfies per-capita goods-bidder submodularity whenever the set

of bidders is sufficiently large. This roughly suggests that per-capita goods-bidder sub-

modularily holds if every bidder’s valuation is close to each other. Conversely, we can

show that if some bidder’s valuation is very far from the others’, per-capita goods-bidder

submodularily may fail.

Proposition 5. Let V be any domain of valuations for a set of bidders N. For any v ∈ V and any

i ∈ N, there exists a valuation function ṽi ∈ R2G
+ such that (ṽi, v−i) is not per-capita goods-bidder

submodular.

Proof. Let us fix v ∈ V and i ∈ N. For a good a ∈ G, take a valuation ṽi such that

ṽi(x) ≥ |N|
|N|−1 w(v−i; G, N \ {i}) + 1 if a ∈ x, and ṽi(x) = 0 otherwise. Since ṽi({a}) >

7For infinite goods, there is the following counter-example. Suppose that G is countably infinite and
take any positive integer K. Then profile (v1, . . . , vK|N|) with vi(x) = 1 for any x ̸= ∅ and any i satisfies
w̃(v; G)− w̃(v; G, N \ {i}) = 0, but if we take G′ with |G′| < |N|, w̃(v; G, N′, N)− w̃(v; G, N′, N \ {i}) < 0.
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w(v−i; G, N \ {i}), bidder i must obtain a in any efficient allocation under (ṽi, v−i). Then,

w̃(ṽi, v−i; G, N)− w̃(ṽi, v−i; G \ {a}, N)− w̃(v−i; G, N \ {i}) + w̃(v−i; G \ {a}, N \ {i})

=
ṽi({a}) + w(v−i; G \ {a}, N \ {i})

|N| − w(v−i; G \ {a}, N \ {i})
|N|

− w(v−i; G, N \ {i})
|N| − 1

+
w(v−i; G \ {a}, N \ {i})

|N| − 1

≥ ṽi({a})
|N| − w(v−i; G, N \ {i})

|N| − 1

=
1
|N|

(
ṽi({a})− |N|

|N| − 1
w(v−i; G, N \ {i})

)
≥ 1

|N| > 0.

Hence per-capita goods-bidder submodularity fails.

Per-capita goods-bidder submodularily is a condition of a profile of valuations, not of

an individual valuation function. These two propositions suggest that it is not fit to discuss

per-capita goods-bidder submodularily with respect to a valuation of an individual bidder,

since closeness among valuations is important.

We conclude this section by presenting a simple example to show that the per-capita

goods-bidder submodular domain has a nonempty intersection with the domain of sub-

stitutes.

Example 2. Consider an environment with two bidders and two goods. Let N = {1, 2}

and G = {a, b}. We assume substitutes, namely, vi({a}) + vi({b}) ≥ vi({a, b}) for all

vi ∈ Vi and i ∈ N. The valuation vi is additive if the equality holds. By the definition, the

free-disposal holds if and only if vi({a, b}) ≥ max
{

vi({a}), vi({b})
}

for all vi ∈ Vi and

i ∈ N. The valuation vi is single-unit demand if the equality holds.

For simplicity we focus on the domain V in which bidder 1 values {a} no lower than

the opponent, while bidder 2 values {b} no lower than the opponent, i.e. v1({a}) ≥

v2({a}) and v2({b}) ≥ v1({b}). In this case, (x1, x2) = ({a}, {b}) is an efficient allocation

for any v ∈ V . Then a straight-forward computation proves that per-capita goods-bidder
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submodularity holds true if ṽi ≤ vi({a, b}) ≤ vi({a}) + vi({b}) for all i ∈ N where

ṽ1 = max
{

v1({b}) + 1
2

v1({a}), v1({a}) + 1
2

v2({b})
}

,

ṽ2 = max
{

v2({b}) + 1
2

v1({b}), v2({a}) + 1
2

v2({b})
}

.

Such a domain actually exists whenever 2v2({a}) ≥ v1({a}) and 2v1({b}) ≥ v2({b}).

Since one can easily show that ṽi > max
{

vi({a}), vi({b})
}

if each bidder has a positive

valuation to either good, the single-unit demand domain cannot be included as we showed

in Proposition 1. To sum up, the valuations are not close to the single-unit demand

domain, i.e., close to the additive if per-capita goods-bidder submodularity is satisfied. ♢

3.2 Multi-unit auctions—A relation to the monopoly theory

To connect goods revenue monotonicity with the standard monopoly theory, this section

studies a multi-unit auction where all goods are homogeneous. Of course, per-capita

goods-bidder submodularity works also in this environment. We furthermore introduce

another condition that ensures goods revenue monotonicity. This condition is related to a

well-known argument in the monopoly theory that the monopolist’s revenue is increasing

in the quantity if the price elasticity of demand is larger than one. We argue that the

above condition is independent of per-capita goods-bidder submodularity becuase the

elasticity argument crucially relies on the homogeneity assumption. Therefore per-capita

goods-bidder submodularity is a new requirement of the domain of valuation functions.

Let Q be the potential amount of the homogeneous goods, and Q be the total quantity

of the homogeneous goods to be sold (Q ≤ Q). To convey an intuition we assume divisible

goods, and discuss whether the auctioneer’s revenue is nondecreasing with respect to the

quantity Q of the goods.

Every bidder i’s valuation function depends only on the quantity of goods allocated

to i, denoted by qi. Let vi(qi) be the valuation when i obtains qi ∈ [0,Q].8 We assume

8One can accommodate this notion to the original model by letting G = [0,Q], and the domain Vi satisfy
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that for all i ∈ N and all vi ∈ Vi, valuation vi is twice continuously differentiable, v′i ≥ 0,

v′′i < 0, and limqi→0 v′i(qi) = ∞. Let q∗(v; Q, S) be an efficient allocation in a coalition S

with ∅ ̸= S ⊆ N for a valuation profile v ∈ V such that qVCG
i (v; Q) = q∗i (v; Q, N) for all

v ∈ V and all Q ≤ Q. By efficiency, ∑i∈S q∗i (v; Q, S) = Q, and there is a common marginal

value p(v; Q, S) such that p(v; Q, S) = v′i(q
∗
i (v; Q, S)) for all i ∈ S.

Denote by e(v; Q, S) = − p/Q
∂p/∂Q ≥ 0, the marginal value elasticity of aggregated demand

of coalition S with ∅ ̸= S ⊆ N. Then, we obtain the following result:

Proposition 6. In the multi-unit auction, if e(v−i; Q, N \ {i}) ≥ 1 for all i ∈ N, v ∈ V , and all

Q ∈ [0,Q], then the VCG mechanism satisfies goods revenue monotonicity.

Proof. Since w(v; G, S) = ∑i∈S vi(q∗i (v; Q, S)), the VCG payment of bidder i is tVCG
i (v; Q) =

∑j ̸=i
(
vj(q∗j (v−i; Q, N \ {i}))− vj(q∗j (vi; Q, N))

)
. Then, for all i ∈ N,

∂

∂Q
tVCG
i (v; Q) =

∂

∂Q ∑
j ̸=i

vj(q∗j (v−i; Q, N \ {i}))− ∂

∂Q ∑
j ̸=i

vj(q∗j (v; Q, N))

= ∑
j ̸=i

p(v−i; Q, N \ {i}) ∂

∂Q
q∗j (v−i; Q, N \ {i})− ∑

j ̸=i
p(v; Q, N)

∂

∂Q
q∗j (v; Q, N)

= p(v−i; Q, N \ {i}) ∂

∂Q
Q − p(v; Q, N)

∂

∂Q
(
Q − q∗i (v; Q, N)

)
= p(v−i; Q, N \ {i})− p(v; Q, N)

(
1 −

∂q∗i (v; Q, N)

∂Q

)
.

Summing these up with respect to i ∈ N yields

∂

∂Q ∑
i∈N

tVCG
i (v; Q) = ∑

i∈N
p(v−i; Q, N \ {i})− p(v; Q, N) ∑

i∈N

(
1 −

∂q∗i (v; Q, N)

∂Q

)
= ∑

i∈N
p(v−i; Q, N \ {i})− (|N| − 1)p(v; Q, N). (1)

Since e(v−i; Q, N \ {i}) ≥ 1, the function pQ satisfies that for all j and all Q,

∂

∂Q
p(v−i; Q, N \ {i})Q = p(v−i; Q, N \ {i}) + (∂p/∂Q) · Q

ṽi(xi) = ṽi(x′i) for all ṽi ∈ Vi and all xi, x′i ⊆ G ⊆ G with an equal Lebesgue measure qi.
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= p(v−i; Q, N \ {i})
(

1 − 1
e(v−i; Q, N \ {i})

)
≥ 0.

Fix i. Since q∗j (v; Q, N) = q∗j (v−i; Q − q∗i (v; Q, N), N \ {i}) for all j ̸= i,

p(v; Q, N) = v′j(q
∗
j (v; Q, N)) = v′j(q

∗
j (Q − q∗i (v−i; Q, N), N \ {i}))

= p(Q − q∗i (v; Q, N), N \ {i}).

This implies that by ∂(pQ)/∂Q ≥ 0,

p(v; Q, N)(Q − q∗i (v; Q, N)) = p(v−i; Q − q∗i (v; Q, N), N \ {i})(Q − q∗i (v; Q, N))

≤ p(v−i; Q, N \ {i})Q. (2)

Summing these up with respect to all i ∈ N yields

(|N| − 1)p(v; Q, N) ≤ ∑
i∈N

p(v−i; Q, N \ {i}). (3)

By (1) and (3), ∂
∂Q ∑i∈N tVCG

i (v; Q) ≥ 0. This implies goods revenue monotonicity.

An immediate sufficient condition for the above is that each bidder’s elasticity is larger

than or equal to one. Formally, let ei(vi; qi) = − v′i(qi)/qi
v′′i (qi)

be the marginal value elasticity of

demand of buyer i. If ei(vi; qi) ≥ 1 for all i ∈ N and all qi ∈ [0,Q], then e(v; Q, S) ≥ 1 for

any coalition S. Then we obtain the following:

Corollary 7. In the multi-unit auction, if ei(vi; qi) ≥ 1 for all i ∈ N, all vi ∈ Vi, and all

qi ∈ [0,Q], then the VCG mechanism satisfies goods revenue monotonicity.

This corollary claims that if the valuation function of each bidder is a concave function

which is close to linear, then goods revenue monotonicity is satisfied. In contrast to the

per-capita goods-bidder submodular valuations, the elasticity of aggregated demand can

be decomposed to the each individual bidder’s elasticity.

To provide an economic intuition of Proposition 6, suppose that there are many bid-
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ders, and that the price remains almost the same if a single bidder i drops out of the

auction. Then, we can interpret p(v; Q, N) as the inverse aggregated demand function

that the monopolist (auctioneer) faces, and p(v; Q, N)Q as the monopolist’s revenue func-

tion. The monopoly theory shows that if the aggregated demand is elastic such that the

price elasticity of aggregated demand e(v; Q, N) ≥ 1, then the revenue is monotonically

non-decreasing in Q, i.e. ∂p(v;Q,N)Q
∂Q ≥ 0. Hence, the monopolist has no incentive to under-

supply, and the goods revenue monotonicity is satisfied.

Remark 1. While they are related, the domains of per-capita goods-bidder submodular

valuations and of the elastic demands are logically independent. In this environment

with homogeneous goods, a similar computation to that in the proof of Proposition 6

shows that per-capita goods-bidder submodularity holds if and only if

p(v; Q, N)
|N| − 1
|N| Q ≤ p(v; Q, N \ {i})Q (4)

for all Q and all i ∈ N. Obviously this inequality (4) is logically independent of (2).

Therefore per-capita goods-bidder submodularity is not directly related to the standard

argument of elasticity. We note that the VCG price, which may not be uniform among

bidders, is different from the monopoly price, and elasticity of the demand is not implied

by goods revenue monotonicity. ♢

Remark 2. One might wonder if it is possible to generalize the elasticity argument to the

general environment as in Sections 2 and 3. There is, however, no natural generalization of

Proposition 6 in the environment with heterogeneous goods because cross price elasticity

of demand matters when discussing the revenue monotonicity in quantity. ♢

4 Relations to the literature

We review existing papers and discuss properties related to goods revenue monotonicity.

Goods revenue monotonicity is related to a well-known property of bidder revenue

monotonicity: A CA mechanism is bidder revenue monotone if the auctioneer earns no
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more revenue by excluding some bidders. Ausubel and Milgrom (2002) show that the

VCG mechanism is bidder revenue monotone if and only if goods are substitutes, and

goods are substitutes if and only if the welfare function is submodular with respect to

the set of bidders whenever there are four or more bidders. By Theorem 3, both goods

revenue monotonicity and bidder revenue monotonicity are ensured in the intersection

of the per-capita goods-bidder submodular domain and the bidder submodular domain

with four or more bidders, and this intersection is nonempty as we saw in Section 3.1.

In contrast to bidder revenue monotonicity, goods revenue monotonicity often fails for

substitute valuations by Proposition 1. This implies that in the substitutes domain, goods

revenue monotonicity is stronger than bidder revenue monotonicity.

There are other papers that discuss bidder revenue monoconicity: Rastegari et al.

(2011) show that in the single-minded domain9 no mechanism satisfies bidder revenue

monotonicity together with participation, consumer sovereignty, and a property that any

good should be allocated to a bidder who positively values it. They provide inefficient

mechanisms that satisfy bidder revenue monotonicity.10 Todo et al. (2009) characterize

strategy-proof and bidder revenue monotone auction mechanisms in a general domain of

valuations. They also discuss relations between bidder revenue monotonicity and false-

name-proofness. Lamy (2010) shows that there is no bidder-optimal core selecting auc-

tions which satisfy bidder revenue monotonicity if there are more than two goods for sale,

while there exists one if there are only two goods.

Beck and Ott (2009) introduce a condition stronger than both bidder and goods rev-

enue monotonicities; the revenue should not decrease if bidders report weakly higher

valuations for all bundles. They show a necessary condition of this stronger monotonic-

ity, and propose core-selecting mechanisms satisfying their monotonicity condition. Their

9A valuation function vi is single-minded if there is a particular bundle of goods xi ⊆ G such that i wants
only xi. That is, vi(yi) = vi(xi) if xi ⊆ yi ⊆ G, and vi(yi) = 0 otherwise. Goods are not substitutes if the
targeted bundle contains two or more goods.

10Rastegari et al. (2011, Section 4.2) consider goods revenue monotonicity in the single-minded domain.
Their impossibility is, however, immediately followed from that with bidder revenue monotonicity since
dropping a good g is equivalent to disqualifying every single-minded bidder with a target bundle including
g.
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monotonicity is much stronger than goods revenue monotonicity. In fact, their neces-

sary condition is so strong that it rules out most non-additive valuations. In contrast,

our Theorem 3 provides a sufficient condition which is satisfied in a domain containing

non-additive valuations with a nonempty interior.

5 Conclusion

We found a new monotonicity problem—a problem of goods revenue monotonicity in combi-

natorial auctions. The monotonicity requires that the auctioneer earn no higher revenue by

dropping goods from the set of endowments. We first demonstrated that in the domain

containing valuations with a single-unit demand, there exists no mechanism satisfying

strategy-proofness, efficiency, participation, and goods revenue monotonicity. This sug-

gests that combinatorial auction design can be seriously affected by seller’s manipulation

of the set of objects for sale, even if goods are supposed to be substitutes for all bidders.

Nevertheless, we found a possibility in a restricted domain of valuations satisfying

per-capita goods-bidder submodularity. This condition means that the welfare per capita

is submodular with respect to the set of bidders and goods, and is likely to hold when

bidders’ valuations are similar to each other and close to the additive.

We further investigate a relation to the monopoly theory by discussing the multi-

unit auction with homogeneous goods. In the multi-unit auction, the VCG mechanism

is goods revenue monotone if the marginal value elasticity of the aggregated demand is

larger than or equal to one. Such elasticity is meaningful thanks to the homogeneity. We

showed, however, that this elasticity is independent of per-capita goods-bidder submodu-

larity. This suggests that in the context of combinatorial auctions, per-capita goods-bidder

submodularity is a new condition under which the monopolist may not under-supply.

Given our results, further investigations will be necessary to implement desirable al-

locations in a larger domain; e.g. a domain containing all subsutitute valuations. Since a

combinatorial auction which is not goods revenue monotone would mis-allocate endow-

ments of the seller, a social planner should design goods revenue monotone auctions to
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achieve her purpose, weakening some other desirable properties.

We propose two directions that would be interesting. One is to design a second-

best goods revenue monotone auction in terms of efficiency, while maintaining strategy-

proofness and participation. The other is to design a goods revenue monotone auction

mechanism satisfying efficiency, participation, and Bayesian Nash incentive compatibility

instead of strategy-proofness. These issues are left for future research.

Appendix: Proof of Proposition 1

The appendix proves Proposition 1. When G is finite or countably infinite, the revenue

equivalence shown by Chung and Olszewski (2007) enables us to skip Step 1 of the proof

below. In a general environment with a possibly uncountable cardinality of the set of

goods, we adopt the graph theoretic method developed by Heydenreich et al. (2009).

Fix a bidder i ∈ N and a profile v−i, and let f (vi) = xVCG
i (vi, v−i; G) for all vi. We

define G f = (X, l) as the weighted complete directed allocation graph, where X is the set

of nodes with X = f (Vi), and l(x, y) = infvi∈ f−1(y)
(
vi(y)− vi(x)

)
is the length function for

x, y ∈ X. A path from node x to node y is defined as P = (x = a0, a1, ..., ak = y) such that

aj ∈ X for j = 0, ..., k. Let P(x, y) be the set of all paths from x to y. Define the distance of

(x, y) as d(x, y) = infP∈P(x,y) ∑k−1
j=0 l(aj, aj+1).

Proof of Proposition 1. Step 1: Prove the revenue equivalence.

Suppose that Vi = VSUD for all i ∈ N. Take any bidder i ∈ N and any profile v−i ∈

VN−1
SUD , and consider the allocation graph G f .

First we prove the revenue equivalence of f . Heydenreich et al. (2009, Theorem 1)

show that a necessary and sufficient condition is d(x, y) + d(y, x) = 0 for all x, y ⊆ G.

Since strategy-proofness generally ensures d(x, y) + d(y, x) ≥ 0 (Heydenreich et al. (2009,

Observation 2)), it suffices to show that d(x, y) + d(y, x) ≤ ε for all ε > 0.

Take any v0
i ∈ f−1(x) and v3

i ∈ f−1(y). For any δ ∈ (0, ε/4], let x̄(δ) = {g ∈

x | v0
i ({g}) ≥ v0

i (x) − δ}, and ȳ(δ) = {g ∈ y | v3
i ({g}) ≥ v3

i (y) − δ}. Note that these
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sets are nonempty since we consider single-unit demand valuations. First suppose that

x̄(δ) ∩ ȳ(δ) ̸= ∅. Then we have v0
i (y) ≥ v0

i (x)− δ and v3
i (x) ≥ v3

i (y) − δ, which imply

d(x, y), d(y, x) ≤ δ. Therefore d(x, y) + d(y, x) ≤ 2δ ≤ ε.

Next suppose that x̄(δ) ∩ ȳ(δ) = ∅. Let us fix g ∈ x̄(δ) and g′ ∈ ȳ(δ) (g ̸= g′).

For α, β ≥ 0, we denote a single-unit demand valuation function by v̄α,β
i ∈ Vi satisfying

v̄α,β
i ({g}) = α, v̄α,β

i ({g′}) = β, and v̄α,β
i ({g′′}) = 0 for all g′′ ̸= g, g′. We consider two

cases:

Case 1: Suppose that there do not exist α, β such that f (v̄α,β
i ) ⊇ {g, g′}. Since the

efficient allocation assigns a good to bidder i who values the good very highly, there exists

a large value C such that f (v̄α,β
i ) ∋ g for all α, β ≥ C with α ≥ β + C, and f (v̄α,β

i ) ∋ g′ for

all α, β ≥ C with β ≥ α + C. Therefore there exist α̃, β̃ ≥ C and δ′, δ′′ ∈ (0, δ] such that for

v1
i := v̄α̃+δ′,β̃

i and v2
i := v̄α̃,β̃+δ′′

i , the allocations f (v1
i ) ∋ g and f (v2

i ) ∋ g′. Let x̃ := f (v1
i )

and ỹ := f (v2
i ). Since the assumption implies x̃ ̸∋ g′ and ỹ ̸∋ g, each length is bounded as

follows:

l(x, x̃) ≤ v1
i (x̃)− v1

i (x) = 0

l(x̃, ỹ) ≤ v2
i (ỹ)− v2

i (x̃) = β̃ − α̃ + δ′′

l(ỹ, y) ≤ v3
i (y)− v3

i (ỹ) ≤ δ

l(y, ỹ) ≤ v2
i (ỹ)− v2

i (y) = 0

l(ỹ, x̃) ≤ v1
i (x̃)− v1

i (ỹ) = α̃ − β̃ + δ′

l(x̃, x) ≤ v0
i (x)− v0

i (x̃) ≤ δ.

Hence,

d(x, y) + d(y, x) ≤
(
l(x, x̃) + l(x̃, ỹ) + l(ỹ, y)

)
+

(
l(y, ỹ) + l(ỹ, x̃) + l(x̃, x)

)
≤ 4δ ≤ ε.

Case 2: Suppose that there exist α, β such that f (v̄α,β
i ) ⊇ {g, g′}. By efficiency, this
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means that no other bidders −i positively value {g, g′} since v̄α,β
i is a unit-demand valu-

ation. Then for v1
i := v̄δ,0

i and v2
i := v0,δ

i , we have x̃ := f (v1
i ) ∋ g and ỹ := f (v2

i ) ∋ g′.

Therefore, applying the same computation as in Case 1 for α̃ = β̃ = 0, δ′ = δ′′ = δ, we

have d(x, y) + d(y, x) ≤ 4δ ≤ ε.

This completes the proof of revenue equivalence.

Step 2: Prove impossibility.

Recall that Vi = VSUD for all i ∈ N. Then, Vi is connected, i.e., for any vi, ṽi ∈ Vi there

is a path in Vi connecting vi and ṽi. Suppose that a mechanism MG = (x(v̂; G), t(v̂; G))

for G satisfies efficiency and strategy-proofness in the domain V = Vi × · · · × Vn. By the

revenue equivalence, the revenue ∑ ti(v; G) = ∑ tVCG
i (v; G) + c, where c is a constant.

Let vi ∈ Vi be the zero valuation function with vi(xi) = 0 for all bundles xi ⊆ G.

Since vi(xi(vi, v−i; G)) = 0, participation implies ti(vi, v−i; G) = tVCG
i (vi, v−i; G) for any

vi ∈ Vi and any v−i ∈ V−i. Therefore, the constant c is zero if MG satisfies efficiency,

strategy-proofness, and participation.

Consider the following valuation functions with a single-unit demand: vi(xi) = 1 for

any bundle xi ̸= ∅ and any bidder 1 ≤ i ≤ min{|G|, |N|}, and vi(xi) = 0 for any bundle

xi ⊆ G and any bidder i > min{|G|, |N|}. Then, w(G, N) = min{|G|, |N|}, and w(G, N \

{i}) = w(G)− 1 for all 1 ≤ i ≤ min{|G|, |N|} and w(G, N \ {i}) = w(G, N) otherwise.

Thus, the payment tVCG
i (v; G) = 1 for all 1 ≤ i ≤ min{|G|, |N|} and 0 otherwise. Hence

the revenue is min{|G|, |N|} − ∑i∈N tVCG
i (v; G) = 0.

Suppose that the auctioneer drops some goods, and that a set of goods G′ ⊊ G with

|G′| = min{|G|, |N|} − 1 (≥ 1) remains to be sold. Since w(G′, N)− w(G′, N \ {i}) = 0

for all i ∈ N, the payment tVCG
i (v; G) = 1 for any bidder 1 ≤ i ≤ |G′|, and 0 otherwise.

Therefore, the revenue increases; |G′| > 0.

This implies that the VCG mechanism is not goods revenue monotone. By revenue

equivalence, M is not goods revenue monotone in the domain V if M satisfies efficiency,

strategy-proofness, and participation. Hence M cannot be goods revenue monotone in

any larger domains if M satisfies efficiency, strategy-proofness, and participation.
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