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Abstract

In a preceding paper, we proved the discrete compactness properties of Rellich type for some 2D discon-
tinuous Galerkin finite element methods (DGFEM), that is, the strongL2 convergence of some subfamily of
finite element functions bounded in anH1-like mesh-dependent norm. In this note, we will show the strongLp

convergence of the above subfamily for 1≤ p< ∞. To this end, we will utilize the duality mappings and special
auxiliary problems. The results are applicable to numerical analysis of various semi-linear problems.
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1 Introduction

Various discontinuous Galerkin finite element methods (DGFEM) have been developed and analyzed in recent
years[1, 2]. Since they use discontinuous approximation functions, some important results in the conventional
functional analysis are not directly available, so that we are obliged to establish their discrete analogs.

In [3], we proved discrete compactness properties of Rellich type for some 2D DGFEM. That is, from a mesh-
dependent family of functions bounded in a brokenH1-like Sobolev norm, we can choose a subfamily which is
strongly convergent and whose approximate first-order derivatives are weakly convergent in theL2 sense. The
obtained results can be applied to justification of numerical approximations to various linear problems. However,
in the 2D cases, the original Rellich theorem also assures the strongLp convergence for 1≤ p < ∞, and this
property is effective to analysis of some semi-linear problems. So we will derive such property for some DGFEM
by making use of the duality maps and regularity results of special auxiliary boundary value problems.

2 Preliminaries
2.1 Function spaces

Let Ω ⊂ R2 be a bounded polygonal domain with boundary∂Ω. We assume that its maximum interior angle
is strictly less than 2π. For Ω, we can define the Lebesgue and Sobolev spacesLp(Ω) andWs,p(Ω) ( s≥ 0,
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1 ≤ p ≤ ∞, Lp(Ω) = W0,p(Ω)), where fractional cases (s /∈ N∪ {0}) are included[2, 4]. We will also use
Hs(Ω) := Ws,2(Ω). The inner products of bothL2(Ω) andL2(Ω)2 are designated by(·, ·)Ω, with the associated
norms by‖ ·‖Ω, and the norm and the standard semi-norm ofWs,p(Ω), as well as those ofWs,p(Ω)2, are denoted
by ‖ · ‖s,p,Ω and| · |s,p,Ω, respectively. For domains other thanΩ, notations of the above spaces, norms etc. will
be used withΩ replaced appropriately.

Let us consider a subset∂ΩD of ∂Ω, which either is empty or consists of finitely many closed segments. Then
we introduce a closed subspaceH1

D(Ω) of H1(Ω) by

H1
D(Ω) = {v∈ H1(Ω) ; v = 0 on∂ΩD} . (1)

2.2 Definitions and notations for triangulations

We first construct a family of triangulations{T h}h>0 of Ω by polygonal finite elements (or shortly elements) :
eachT h consists of a finite number of elements, and each elementK ∈ T h is a boundedm-polygonal (open)
domain, wherem is an integer which can differ withK such that 3≤ m≤ M for an integerM ≥ 3 common to the
considered family{T h}h>0. Thus the boundary∂K of K ∈ T h is a closed simple polygonal curve composed of
medges. We do not avoid non-convex cases forK unlike in the classical quadrilateral elements, cf.[5].

We use the notatione to denote an edge ofK, which is assumed here to be an open segment. The sets of
edges ofK ∈ T h and ofT h are respectively denoted byE KandE h. For each triangulationT h, we define its
“skeleton”Γh asΓh = ∪e∈E he. We assume that the triangulations are so constructed that any edgee∈ E h such
thate∩∂ΩD 6= /0 is entirely contained in∂ΩD.

The diameter ofK is denoted byhK , and the length ofe∈ E K by |e|. Moreover,h = maxK∈T h hK . We will
designate the inner products ofL2(∂K) andL2(∂K)2 by [·, ·]∂K , and the associated norms by| · |∂K . Fore∈ E K ,
[·, ·]e and| · |e are defined similarly, and the norm ofLp(e) (1≤ p≤ ∞) is denoted by| · |p,e (| · |e = | · |2,e).

We will also impose the “regularity” conditions on{T h}h>0 presented in [3], cf. also [5]. In particular, we
adopt the chunkiness condition[2], the triangle condition, and the local quasi-uniformity of edge lengths.

2.3 Function spaces associated to triangulations
OverT h, we consider the broken Sobolev spaces[1, 2]:

Ws,p(T h) = {v∈ Lp(Ω); v|K ∈Ws,p(K)(∀K ∈ T h)}, Hs(T h) = Ws,2(T h) (s≥ 0, 1≤ p≤ ∞). (2)

Here,Ws,p(T h) can be identified withΠK∈T hWs,p(K). For v∈ H
1
2+σ (T h) (σ > 0) andK ∈ T h, the trace of

v|K to ∂K is well defined as an element ofL2(∂K) and denoted byv|∂K or simplyv, which can be double-valued
on edges shared by two elements [1, 2].

OnΓh, we consider a kind of flux ˆv∈ L2(Γh), which is single-valued on each edge shared by two elements [1, 2].
To deal with the boundary condition in (1), define

L2
D(Γh) = {v̂∈ L2(Γh) ; v̂ = 0 on∂ΩD} . (3)

In the hybrid(ized) DGFEM, the flux ˆv is independent ofv, and they are used as a pair. On the other hand,
in some genuine (non-hybridized) DGFEM like IP and LDG methods[1, 2], we make ˆv to be subject tov by
introducing appropriate constraints between them. A typical approach is: first define{{v}} ∈ L2(Γh) for v ∈
H1(T h) by: for an edgee∈ E h, we set{{v}}|e = v|e if e⊂ ∂Ω, while we take as follows (simple averaging) ife
is shared by two elementsK1, K2 ∈ T h;

{{v}}|e = (v1 +v2)/2, (4)

wherev1 (v2 resp.)= trace ofv|K1 (v|K2 resp.) toe. Then we can use such{{v}}|e asv̂|e whene 6⊂ ∂ΩD.
For eachT h, let us define a mesh-dependent semi-norm for{v, v̂} ∈ H1(T h)×L2(Γh) by

|{v, v̂}|2h = ‖∇hv‖2
Ω + ∑

K∈T h
∑

e∈E K

|e|−1|v− v̂|2e , (5)

wherev one∈ E K implies the trace ofv|K to e, and∇h : H1(T h)→ L2(Ω)2 is characterized by(∇hv)|K = ∇(v|K)
for v∈ H1(T h) andK ∈ T h.
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2.4 Finite element spaces

To approximate{v, v̂} ∈ H
3
2+σ (T h)×L2(Γh) (0 < σ ≤ 1

2) associated toT h, let us prepare two concrete finite
dimensional spaces for a specifiedk∈ N :

Uh= ΠK∈T hPk(K) ⊂W2,∞(T h) ⊂ H
3
2+σ (T h), (6)

Ûh= Πe∈E hPk(e)⊂L∞(Γh) or Πe∈E hPk(e)∩C(Γh), (7)

wherePk(K) andPk(e) are the spaces of polynomials of degree≤ k on K ande, respectively, andC(Γh) is the
space of continuous functions onΓh.

To deal with the Dirichlet condition in (1), define also

Ûh
D = {v̂h ∈ Ûh; v̂h = 0 on∂ΩD} = Ûh∩L2

D(Γh). (8)

We will employ the finite element spaces given by

Vh = Uh×Ûh, Vh
D = Uh×Ûh

D . (9)

2.5 Lifting operators

First let us introduce, for the samek ∈ N as in 2.4,

QK = Pk(K) or Pk−1(K) . (10)

Then the local lifting operatorRK : g∈ L2(∂K) 7→ ξ ∈ (QK)2 is defined as : giveng∈ L2(∂K), findξ = {ξ1,ξ2} ∈
(QK)2 such that,∀η = {η1,η2} ∈ (QK)2,

(ξ ,η)K = [g,η ·n]∂K (η ·n = η1n1 +η2n2) , (11)

wheren = {n1,n2} is the outward unit normal on∂K.
IdentifyingQh := ΠK∈T hQK with a subspace ofL2(Ω) and furtherΠK∈T h(QK)2 with (Qh)2, the global lifting

operatorRh is defined by

Rh : g̃ = {g∂K
}K∈T h ∈ ΠK∈T hL2(∂K) 7→ {RKg∂K

}K∈T h ∈ (Qh)2 ⊂ L2(Ω)2. (12)

Sincev̂∈ L2(Γh) is single-valued one∈ E h, it can be naturally identified with an element ofΠK∈T hL2(∂K).
On the other hand, the trace ofv∈ H1(T h) to e 6⊂ ∂Ω may be double-valued. To useRh for suchv, we define

Sh : v∈H1(T h) 7→ {v|∂K
}K∈T h ∈ ΠK∈T hL2(∂K). (13)

For the present choice of the discrete spaces, we can show thatRh in (12) satisfies [1, 3]

‖Rhg̃‖Ω ≤C( ∑
K∈T h

∑
e∈E K

|e|−1|g∂K
|2e)

1
2 . (14)

HereC > 0 is independent ofh > 0 andg̃, and, along withC∗ andc, will denote generic positive constants[2].
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3 Rellich type discrete compactness

In [3], we showed the following results.

Theorem 1. We employ the above finite element spaces and assume the regularity conditions in[3]. Let
{{uh, ûh} ∈ Vh

D}h>0 be a family associated to{T h}h>0 such that|{uh, ûh}|2h + ‖uh‖2
Ω ≤ 1. Then there exist a

function u0 ∈ H1
D(Ω) and a subfamily, denoted again by{{uh, ûh}}h>0 for convenience, such that, as h↓ 0,

uh → u0 in L2(Ω), (15)

uh|∂ΩD
→ u0|∂ΩD

= 0 in L2(∂ΩD) if ∂ΩD 6= /0, (16)

∇huh +Rh(ûh−Shuh) ⇀ ∇u0 in L2(Ω)2, (17)

where→ and⇀ respectively denote the strong and weak convergences.

To prove the above, we used some assumptions on the family of finite element spaces, which can be assured
for the present types of triangulations and piecewise polynomial spaces[3], cf. also [1]. However, we should
supplement the techniques used there. In the former proof[3], we utilized anh−family (h > 0) of problems
−∆uh +uh = uh (uh ∈Uh) under the mixed Dirichlet-Neumann boundary conditions associated toH1

D(Ω). But
this choice yields so severe regularity results forΩ of general shape[4], that some arguments employed there may
loose the validity, unless we put additional restrictions on the interior angles of the polygonal domainΩ. Instead,
we can use the pure Neumann condition without any essential changes of the proof.

Remark 1. Another approach of showing the discrete compactness for some genuine DGFEM is to use the recon-
struction operators, see e.g.[6]. Probably, we can also apply such techniques to various hybrid(ized) DGFEM.

4 StrongLp convergence for1≤ p < ∞
Let us show that the subfamily{uh}h>0 in Theorem 1 also converges strongly tou0 in Lp(Ω) for p∈ [1,∞[. Since
Ω is bounded, the conclusion is obvious forp∈ [1,2[, so that we will consider only forp∈ ]2,∞[. We will use
the notationq∈ ]1,2[ characterized by1p + 1

q = 1.
Notice here the following lemma[7].

Lemma 1. If f ∈ L2(Ω)∩ Lp(Ω) (p ∈ ]2,∞[), it also belongs to Lp
∗
(Ω) where1/p∗ = (1−α)/2+ α/p for

α ∈]0,1[, and the following “interpolation inequality” holds:

‖ f‖0,p∗,Ω ≤ ‖ f‖1−α
Ω ‖ f‖α

0,p,Ω. (18)

Thus we can conclude the strong convergence of{uh}h>0 in Lp∗(Ω) for all p∗∈ ]2, p[ by deriving theLp bound-
edness forp > 2. Moreover, to our aim, it suffices to show such boundedness for each sufficiently largep.

Let Jp : Lp(Ω) → Lq(Ω) be the duality map characterized for eachv∈ Lp(Ω) by∫
Ω

(Jpv)vdx= ‖v‖2
0,p,Ω , ‖Jpv‖0,q,Ω = ‖v‖0,p,Ω, (19)

wherex = {x1,x2} denotes the variable inR2, andJpv is uniquely given byJpv = v· |v|p−2/‖v‖p−2
0,p,Ω[7].

For each{uh, ûh} ∈Vh with |{uh, ûh}|2h +‖uh‖2
Ω ≤ 1, defineuh,p ∈W1,q(Ω) (p∈ ]2,∞[, 1

p + 1
q = 1) such that

∫
Ω
(

2

∑
i=1

∂uh,p

∂xi

∂v
∂xi

+uh,pv)dx=
∫

Ω
(Jpuh)vdx ; ∀v∈W1,p(Ω). (20)

This is a variational formulation to−∆uh,p +uh,p = Jpuh with the homogeneous Neumann condition. Forp = 2,
it reduces to the auxiliary problem in Sec. 3.

Since we are dealing with a bounded polygonal domainΩ whose maximum interior angle is strictly smaller than
2π, we have the following existence and regularity results for elliptic problems with possible corner singularities
(cf. Theorems 1.4.5.3 and 4.4.3.7 in [4]).
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Lemma 2. For the present domainΩ and any sufficiently large p< ∞, there exists a unique solution uh,p ∈
W1,q(Ω) of (20), which also satisfies

uh,p ∈Ws,q(Ω) (s= min{2, 1
2 + 2

q +δ}) , ‖uh,p‖s,q,Ω ≤Cp,Ω‖Jpuh‖0,q,Ω = Cp,Ω‖uh‖0,p,Ω . (21)

Here,δ > 0 depends only on p and the maximum interior angle ofΩ, and Cp,Ω > 0 does only on p andΩ.

Remark 2. The present results may not hold for some finite p[4]. Moreover, for2 < p < ∞, the number12 + 2
q in

the definition of s is evaluated as3
2 < 1

2 + 2
q < 5

2.

Let us integrate−∆uh,p +uh,p = Jpuh overΩ after multiplyinguh to the both sides, and then apply the Green
formula with carefully handling the singularities around the vertices[2]. To justify such calculations, we should
notice thatuh,p ∈Ws,q(Ω), uh ∈W1,∞(T h) andûh ∈ L∞(Γh) for anyh > 0, and in addition, for anyK ∈ T h and

e∈ E K , (∇uh,p)|e ∈Ws−1− 1
q ,q(e)2, anduh|e ∈ L∞(e), whereuh|e for example denotes the trace ofuh|K to e and

the trace theorem fromWs−1,q(K) to Ws−1− 1
q ,q(e) is used by taking account thats−1− 1

q = min{1− 1
q,−1

2 +
1
q +δ} > 0[4]. Using also (19), we finally obtain

‖uh‖2
0,p,Ω =

∫
Ω

(Jpuh)uhdx= I1 + I2 ;


I1 = ∑

K∈T h

2

∑
i=1

∫
K

∂uh,p

∂xi

∂uh

∂xi
dx+

∫
Ω

uh,puhdx,

I2 = ∑
K∈T h

∫
∂K

[(∇uh,p) ·n] (ûh−uh)ds,
(22)

wheredsdenotes the infinitesimal line element.
By the Sobolev imbedding theorem (Theorem 1.4.4.1 in [4]), we have the continuous inclusions

Ws,q(Ω) ⊆ H
s+1−2

q (Ω) ⊆ H1(Ω), (23)

sinces+1− 2
q = min{3− 2

q, 3
2 +δ} > 1. ThusI1 in (22) can be expressed byI1 = (∇uh,p,∇huh)Ω +(uh,p,uh)Ω,

and is estimated as, for a generic constantC > 0,

|I1| ≤C‖uh,p‖s,q,Ω(‖∇huh‖2
Ω +‖uh‖2

Ω)
1
2 . (24)

To estimateI2 in (22), we need some inverse inequalities and trace theorems toe andK along with Lemma 2.
To this end, recall the triangle condition in [3]:Let T0 be a fixed isosceles triangle with unit base length. For
each h> 0 and each edge e of any K∈ T h, there exists a isosceles triangle Te ⊂ K that is similar to T0 with the
similarity ratio |e| and whose base coincides with e.

Let us first show a trace theorem related toK ∈ T h.

Lemma 3. Let e be an arbitrary edge of K∈ T h, and v be an arbitrary element of Wt,r(K) with

1 < r < ∞ , 1/r < t ≤ 1. (25)

Then the trace of v to e exists as an element of Lr(e) and satisfies, with C> 0 independent of h> 0 and v,

|v|r,e ≤C(|e|−
1
r ‖v‖0,r,K + |e|t−

1
r |v|t,r,K). (26)

Proof. For a reference triangleT0 in the triangle condition, whose basee0 has unit length. By the trace theorem
for T0[1, 4], anyṽ∈Wt,r(T0) has a trace toe0 as an element ofLr(e0), and satisfies for an appropriateC > 0

|ṽ|r,e0 ≤C
(
‖ṽ‖0,r,T0 + |ṽ|t,r,T0

)
.

Let us introduce a suitable similarity transformation fromT0 to Te ⊂ K in the triangle condition. By relatingv
to an appropriate ˜v and using the scaling arguments, we can derive the desired results.

We also need the following inverse inequalities.
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Lemma 4. Let e be an arbitrary edge of K∈ T h, and{vh, v̂h} be an arbitrary element of Vh. For any p with
2 < p < ∞, (vh|K)|e andv̂h|e can be regarded as elements of Lp(e), and satisfy

|vh− v̂h|p,e ≤C|e|
1
p−

1
2 |vh− v̂h|e, (27)

where C> 0 depends on p and the polynomial degree k but is independent of h> 0, e and{vh, v̂h}.

Proof. Using some notations in the preceding proof, we find for ˜u∈ Pk(T0) andṽ∈ Pk(e0) (k∈ N)

|ũ− ṽ|p,e0 ≤C|ũ− ṽ|e0 (ũ = ũ|e0),

sinceũ|e0 − ṽ belongs to the finite-dimensional spacePk(e0). Here,C > 0 depends onk but does not on ˜u andṽ.
Connecting ˜u and ṽ respectively withvh and v̂h by an appropriate similarity transformation betweenT0 andTe,
we have the desired estimation.

In addition, let us defineξh ∈ (Qh)2 such thatξK = ξh|K for eachK ∈ T h is given by

ξK ∈ P0(K)2, ξK(x) =
1
|K|

∫
K
∇uh,pdx (x∈ K), (28)

where|K| is the measure ofK. Then we find that[2]

‖ξh‖Ω ≤ ‖∇uh,p‖Ω , (29)

‖∇uh,p−ξK‖0,q,K ≤Chs−1
K |uh,p|s,q,K , (30)

whereC > 0 is independent ofh andK. Using the aboveξh, we splitI2 into I3 + I4 with

I3 = ∑
K∈T h

∫
∂K

(ξh ·n)(ûh−uh)ds= (Rh(ûh−Shuh),ξh)Ω (by (11)) ,

I4 = ∑
K∈T h

∫
∂K

[(∇uh,p−ξh) ·n] (ûh−uh)ds. (31)

By (5), (14), (23) and (29),I3 is estimated as

|I3| ≤C‖∇uh,p‖Ω · |{uh, ûh}|h ≤C∗‖uh,p‖s,q,Ω . (32)

Finally, let us estimateI4.

Lemma 5. For {uh, ûh} ∈Vh and uh,p in (20), we have

|I4| ≤C‖uh,p‖s,q,Ω , (33)

where C> 0 is independent of h> 0 and{uh, ûh}.

Proof. For α, β , γ ≥ 1 and the present{uh, ûh}, define

Jh(α ,β ,γ) = ∑
K∈T h

∑
e∈E K

|e|−
α
2 |ûh−uh|γβ ,e.

By the Hölder inequality, we have, withηh = ∇uh,p−ξh,

|I4| ≤ ∑
K∈T h

∑
e∈E K

∫
e
|ηh ·n| · |ûh−uh|ds≤

(
∑

K∈T h
∑

e∈E K

|e|
q
p |ηh|qq,e

)1
q Jh(2, p, p)

1
p , (a)

where|ηh|q,e = (∑2
i=1 |ηh

i |
q
q,e)1/q (ηh = {ηh

1 ,ηh
2}). By Lemma 4,|ûh−uh|pp,e ≤Cp|e|1−

p
2 |ûh−uh|pe, so that

Jh(2, p, p) ≤CpJh(p,2, p) . (b)

6



It follows from |{uh, ûh}|2h +‖uh‖2
Ω ≤ 1 and (5) that

Jh(2,2,2) = ∑
K∈T h

∑
e∈E K

|e|−1|ûh−uh|2e ≤ 1.

Then we have|e|−
1
2 |ûh−uh|e ≤ 1, and hence, forp > 2, |e|−

p
2 |ûh−uh|pe ≤ |e|−1|ûh−uh|2e, which means that

Jh(p,2, p) ≤ Jh(2,2,2) ≤ 1. (c)

On the other hand, by noting1q < s−1≤ 1 and applying Lemma 3 to∇uh,p ∈Ws−1,q(Ω)2, we find that

|ηh|q,e = |∇uh,p−ξK |q,e ≤C(|e|−
1
q‖∇uh,p−ξK‖0,q,K + |e|s−1−1

q |uh,p|s,q,K).

Then, by (30) and|e|/hK ≥ c for somec > 0, we obtain

∑
K∈T h

∑
e∈E K

|e|
q
p |ηh|qq,e ≤C∗ ∑

K∈T h

h
q
p−1+q(s−1)

K |uh,p|qs,q,K ≤C∗hqs−2‖uh,p‖q
s,q,Ω (d)

sincehK ≤ h andqs> 2, whereC∗ > 0 is independent ofh. By (a), (b), (c) and (d), we have (33).

By (21), (24), (32), (33) and|{uh, ûh}|2h +‖uh‖2
Ω ≤ 1, ‖uh‖2

0,p,Ω = I1 + I3 + I4 in (22) is bounded from above by

C‖uh,p‖s,q,Ω ≤C∗‖uh‖0,p,Ω (C, C∗ > 0). Thus‖uh‖0,p,Ω for each sufficiently largep < ∞ is uniformly bounded
for h > 0, so that we obtain the theorem below.

Theorem 2. The subfamily{uh}h>0 in Theorem 1 also converges strongly to u0 in Lp(Ω) ( ∀p∈ [1,∞[) as h↓ 0.

5 Concluding remarks

We have proved the strongLp convergence associated with the Rellich type discrete compactness for some dis-
continuous Galerkin FEM. The results can be applied to justification of numerical computations of various semi-
linear problems by DGFEM. To give a firm foundation to DGFEM, we are also planning to show the discrete
Korn inequalities, which play essential roles in applications to solid mechanics and fluid dynamics [2, 8]. More-
over, our results onLp boundedness are only “qualitative” since we have not shown, for example, the dependence
of ‖uh‖0,p,Ω on p. Such refined results may be required in certain cases, and we will continue our studies.
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