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Abstract

In a preceding paper, we proved the discrete compactness properties of Rellich type for some 2D discon-
tinuous Galerkin finite element methods (DGFEM), that is, the stichgonvergence of some subfamily of
finite element functions bounded in &H-like mesh-dependent norm. In this note, we will show the stidhg
convergence of the above subfamily for1p < . To this end, we will utilize the duality mappings and special
auxiliary problems. The results are applicable to numerical analysis of various semi-linear problems.
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1 Introduction

Various discontinuous Galerkin finite element methods (DGFEM) have been developed and analyzed in recent
years[1, 2]. Since they use discontinuous approximation functions, some important results in the conventional
functional analysis are not directly available, so that we are obliged to establish their discrete analogs.

In [3], we proved discrete compactness properties of Rellich type for some 2D DGFEM. That is, from a mesh-
dependent family of functions bounded in a broké¢hlike Sobolev norm, we can choose a subfamily which is
strongly convergent and whose approximate first-order derivatives are weakly convergent 4rsémse. The
obtained results can be applied to justification of numerical approximations to various linear problems. However,
in the 2D cases, the original Rellich theorem also assures the dtfongnvergence for X p < e, and this
property is effective to analysis of some semi-linear problems. So we will derive such property for some DGFEM
by making use of the duality maps and regularity results of special auxiliary boundary value problems.

2 Preliminaries

2.1 Function spaces

Let Q ¢ R? be a bounded polygonal domain with bounda®. We assume that its maximum interior angle
is strictly less than & For Q, we can define the Lebesgue and Sobolev sphBe) andWSP(Q) (s> 0,



1< p<oo, LP(Q) =WOP(Q)), where fractional cases ¢ N U {0}) are included[2, 4]. We will also use
HS(Q) :=W32(Q). The inner products of both?(Q) andL?(Q)? are designated bf, -)q, with the associated
norms by| - ||q, and the norm and the standard semi-norwéf(Q), as well as those &/SP(Q)?, are denoted
by || - [|sp.o @and| - |sp,0, respectively. For domains other thé notations of the above spaces, norms etc. will
be used withQ replaced appropriately.

Let us consider a subséf)p of dQ, which either is empty or consists of finitely many closed segments. Then
we introduce a closed subspadg(Q) of H1(Q) by

H3(Q) = {ve HY(Q); v=00ndQp}. (1)

2.2 Definitions and notations for triangulations

We first construct a family of triangulatior{s?h}mo of Q by polygonal finite elements (or shortly elements):
each.Z7" consists of a finite number of elements, and each eleient7" is a boundedn-polygonal (open)
domain, wherenis an integer which can differ witk such that 3< m < M for an integetM > 3 common to the
considered family{.7"}p-o. Thus the boundangK of K € .7" is a closed simple polygonal curve composed of
m edges. We do not avoid non-convex caseKfamlike in the classical quadrilateral elements, cf.[5].

We use the notatioe to denote an edge d€, which is assumed here to be an open segment. The sets of
edges oK € 7" and of 7" are respectively denoted §<and&". For each triangulatiot?", we define its
“skeleton” " asl = Ugcsn® We assume that the triangulations are so constructed that aneedg8 such
thaten dQp # 0 is entirely contained idQp.

The diameter oK is denoted byhk, and the length oé € £ by |e|. Moreover,h = max. ;- hk. We will
designate the inner productslof(dK) andL?(dK)? by [-,-] sk, and the associated norms byyx. Fore € &K,
[-,-]e and| - |e are defined similarly, and the normbf(e) (1 < p < ) is denoted by [pe (| |e = | |2.)-

We will also impose the “regularity” conditions o7 "}n-o presented in [3], cf. also [5]. In particular, we
adopt the chunkiness condition[2], the triangle condition, and the local quasi-uniformity of edge lengths.

2.3 Function spaces associated to triangulations
Over.Z", we consider the broken Sobolev spaces[1, 2]:

WSP(7M) = {ve LP(Q); vk e WSP(K) (VK € M)}, HS(ZM) =WS2(7") (s>0,1<p<x). (2)

Here,WSP(7) can be identified wittfl, . ,nWSP(K). Forve H2t9(7") (g > 0) andK € 7", the trace of
v|k to dK is well defined as an element bf(dK) and denoted by|y« or simplyv, which can be double-valued
on edges shared by two elements|[1, 2].
onr", we consider a kind of flux & L(I'"), which is single-valued on each edge shared by two elements [1, 2].
To deal with the boundary condition in (1), define

L3(IM) = {9 L3(M");Y=00ndQp}. (3)

In the hybrid(ized) DGFEM, the flux i5 independent of, and they are used as a pair. On the other hand,
in some genuine (non-hybridized) DGFEM like IP and LDG methods[1, 2], we naakeb@ subject tor by
introducing appropriate constraints between them. A typical approach is: first défifjec L2(I'") for v €
H1(.7") by: for an edges € &", we set{{v}}|e = V| if € C dQ, while we take as follows (simple averagingkpif
is shared by two elemenkg, K, € 77,

{vhe= (1 +v2)/2, 4)
wherev; (V2 resp.)= trace ofv|k, (v|k, resp.) toe. Then we can use sudkv}}|e asvle whene ¢ 9Qp.
For each7™, let us define a mesh-dependent semi-norn{foi} € H(.7") x L2(I'") by

VO R=(0wIE+ S 3 lel Hv—92, (5)

Ke7hecsK

wherevonec &K implies the trace of|k toe, andCy : HY(.7") — L2(Q)? is characterized b§Jnv) |k = O(V|k)
forve HY(.7") andK € 7",
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Fig. 1 interior functioru and flux functioru”

2.4 Finite element spaces

To approximate(V, ¥} € H3+9 (7" x L2(T") (0< 0 < 1) associated to7", let us prepare two concrete finite
dimensional spaces for a specified N :

UN= My onPe(K) CW2R(FM) c H2H0(7h), (6)
U"= Mg enPk(e) CL®(T") or Mo enPk(€)NC(TM), (7)

whereR(K) andPR(e) are the spaces of polynomials of degred on K ande, respectively, an€(I'™") is the
space of continuous functions 6.
To deal with the Dirichlet condition in (1), define also

UB = {¥h €U0, =00ndQp} = 0NN LA (M. (8)
We will employ the finite element spaces given by
vh=uhx 0" vi=uhxUp. (9)

2.5 Lifting operators
First let us introduce, for the sarkec N as in 2.4,
Q“ = R(K) or R 1(K). (10)

Then the local lifting operatdR : g € L2(9K) — £ € (Q)?is defined as : giveg € L?(K), find & = {&1, &} €
(Q¥)? such thatyn = {n1,n2} € (QX)?,

(&,n)k =[9,n-nlgk (N-N= N1+ nN2n2), (11)

wheren = {ny,n} is the outward unit normal odK.
Identifying Q" := My ,»QX with a subspace df?(Q) and furtherT, . - (QX)2 with (Q")2, the global lifting
operatorR, is defined by

Rh : g = {gaK}Keﬂh € rIKE,?hLZ(dK) = {RKgaK}Keﬁh € (Qh)z C LZ(Q)Z' (12)

Sinceve L2(T") is single-valued o € &M, it can be naturally identified with an elementlof . ,nL2(9K).
On the other hand, the tracewE H1(.7M) to e ¢ dQ may be double-valued. To uig for suchv, we define

S VEHY(TM) = V], tken € Mg 7nL2(9K). (13)
For the present choice of the discrete spaces, we can shoR.thaf12) satisfies [1, 3]
~ _ 1
IRdlla<C( S Y lel g, [2)7. (14)
KeghecsK

HereC > 0 is independent dfi > 0 andgd; and, along witlC* andc, will denote generic positive constants[2].



3 Rellich type discrete compactness

In [3], we showed the following results.

Theorem 1. We employ the above finite element spaces and assume the regularity condifighs Lret
{{Un,0n} € V8 }ns0 be a family associated t0.7"}n-o such that|{un, Gn}|2 + ||un[|3 < 1. Then there exist a
function w € H3(Q) and a subfamily, denoted again b§un, Gn} }n-0 for convenience, such that, ag 19,

up — Up in L%(Q), (15)
Un|agp — Uolaay, = 0 in L%(dQp) if 9Qp # 0, (16)
OhUn + R (Gh — Shun) — Oup in L2(Q)?, (17)

where— and — respectively denote the strong and weak convergences.

To prove the above, we used some assumptions on the family of finite element spaces, which can be assured
for the present types of triangulations and piecewise polynomial spaces[3], cf. also [1]. However, we should
supplement the techniques used there. In the former proof[3], we utilizéd-&mily (h > 0) of problems
—Au" + u" = u, (uy € UM) under the mixed Dirichlet-Neumann boundary conditions associateld (@). But
this choice yields so severe regularity results®oof general shape[4], that some arguments employed there may
loose the validity, unless we put additional restrictions on the interior angles of the polygonal dentagtead,
we can use the pure Neumann condition without any essential changes of the proof.

Remark 1. Another approach of showing the discrete compactness for some genuine DGFEM is to use the recon-
struction operators, see €[§]. Probably, we can also apply such techniques to various hybrid(ized) DGFEM.

4  StrongLP convergence forl < p < o

Let us show that the subfamilfjun }r~0 in Theorem 1 also converges stronglyutpin LP(Q) for p € [1,[. Since
Q is bounded, the conclusion is obvious fokE [1,2], so that we will consider only fop €]2,[. We will use
the notatiorg €]1, 2 characterized b)% +:=1

Notice here the following lemma][7].

Lemma 1. If f € L2(Q)NLP(Q) (p €]2,%]), it also belongs to B’ (Q) wherel/p* = (1—a)/2+ a/p for
a €]0,1], and the following “interpolation inequality” holds

I llop.0 < ITllg lITlIE po- (18)

Thus we can conclude the strong convergencigfn-o in LP (Q) for all p*c ]2, p| by deriving theL.P bound-
edness fop > 2. Moreover, to our aim, it suffices to show such boundedness for each sufficientlyplarge
LetJ, : LP(Q) — L9(Q) be the duality map characterized for each LP(Q) by

| Gvva= VEpa . 19vloaa = [Vlopa: (19)

wherex = {x;, %} denotes the variable iR?, andJpv is uniquely given bylpv = v- |v|P~ 2/HVHO pQ[7]
For each{un, Gn} € V" with |{un, (n} |7+ [[unl[§ < 1, defineu™P e W4(Q) (p €]2,[, 5 + 5 = 1) such that

2 ahp
/ Zidux,—HJh Pv)dx:/(quh)vdx; wweWLP(Q). (20)
o

This is a variational formulation te- Au™P + uMP = Jpun with the homogeneous Neumann condition. et 2,
it reduces to the auxiliary problem in Sec. 3.
Since we are dealing with a bounded polygonal dor@aimhose maximum interior angle is strictly smaller than
21, we have the following existence and regularity results for elliptic problems with possible corner singularities
(cf. Theorems 1.4.5.3 and 4.4.3.7 in [4]).



Lemma 2. For the present domai® and any sufficiently large g o, there exists a unique solutiod"t e
WL4(Q) of (20), which also satisfies

uPeWsI(Q) (s=min{2,3+2+3}), [lu™P)

0.0 < CpallJptnlloge =Cpallunllopa- (21)
Here,d > 0 depends only on p and the maximum interior angl@pénd G, o > 0 does only on p an.

Remark 2. The present results may not hold for some fin[ pMoreover, for2 < p < o, the number'iL +§ in
the definition of s is evaluated §s< % + % < g

Let us integrate-Au™P 4 u"P = Jpun overQ after multiplyingu to the both sides, and then apply the Green
formula with carefully handling the singularities around the vertices[2]. To justify such calculations, we should
notice thatu™P € WS9(Q), up € W= (7" andu € L*(I'") for anyh > 0, and in addition, for ani € 7" and

ec &K, (Ou"P)|e € Ws’l’%’q(e)z, anduple € L®(e), whereu|e for example denotes the tracewfix to e and
1
the trace theorem from/s~24(K) to WS 1~ a%e) is used by taking account that- 1 — g=min{l—-g,—3+
% + 6} > 0[4]. Using also (19), we finally obtain
2 r guP duy

lp = ——dx+/ u™Pu,dx,
Lk 0% 0% .
o= 5 [ (OW)-n) (G- un)ds,
kezh/ oK

wheredsdenotes the infinitesimal line element.
By the Sobolev imbedding theorem (Theorem 1.4.4.1 in [4]), we have the continuous inclusions

2
stl-g

WS9(Q) CH (Q) CHY(Q), (23)

sinces+1— 2 =min{3— %, 3+6} > 1. Thusly in (22) can be expressed by= (Ou™P, Onun)q + (UMP, un)q,
and is estimated as, for a generic cons@nt 0,

1
[11] < ClIu"Pllsq.al|Cnunl3 + lunli3) 2. (24)

To estimatds in (22), we need some inverse inequalities and trace theoremartdK along with Lemma 2.
To this end, recall the triangle condition in [3let T be a fixed isosceles triangle with unit base length. For
each h> 0 and each edge e of any & .7", there exists a isosceles trianglg T K that is similar to § with the
similarity ratio |e| and whose base coincides with e.

Let us first show a trace theorem relatekte .7".

Lemma 3. Let e be an arbitrary edge of K .7", and v be an arbitrary element of (K ) with
l<r<o, 1l/r<t<1. (25)

Then the trace of v to e exists as an element ¢f)Land satisfies, with G 0 independent of b- 0 and v,

1 1
[Vlre < C(I1el ™7 [Vl[oxx + €7 [Vitrk)- (26)

Proof. For a reference triangl& in the triangle condition, whose basghas unit length. By the trace theorem
for To[1, 4], anyv'e W' (Tp) has a trace teg as an element dff (ey), and satisfies for an appropriate> 0

Ve < C (190270 + [¥lt.r7o) -

Let us introduce a suitable similarity transformation frdgrto Te C K in the triangle condition. By relating
to an appropriate and using the scaling arguments, we can derive the desired results. O

We also need the following inverse inequalities.



Lemma 4. Let e be an arbitrary edge of K .7", and {v,, %} be an arbitrary element of / For any p with
2 < p <o, (Vhlk)|e andVy|e can be regarded as elements &f&), and satisfy

- 11 .

‘Vh_Vh‘p,e§C|e|p 2|V — Vhle, (27)
where C> 0 depends on p and the polynomial degree k but is independent & ke and{vy,, Vx}.
Proof. Using some notations in the preceding proof, we finduiferP¥(Tp) andv'e P¥(ep) (k € N)

sinceule, — V belongs to the finite-dimensional spa®'&ey). Here,C > 0 depends ok but does not oml &ndv:
Connectinguandv'respectively withv, andvi, by an appropriate similarity transformation betwégrand Te,
we have the desired estimation. O

In addition, let us definéy, € (Qh)2 such tha€k = &q|k for eachK € 7N is given by

1
i € RK)%, &) = e [ OUMP0x (xeK), (28)
K
where|K| is the measure dk. Then we find that[2]
&l < [OUP]la, (29)
I0U™ — &ic ok < CHCHU™lsqx (30)

whereC > 0 is independent df andK. Using the abovéy, we splitl, into 13+ 14 with

= Y / (&h-n) (Gn — Up) ds= (R(0h — Shth), &n)a  (by (11)),

Kegh’9

" Kezyh/aK[(Duh’th)'“] (Onh— Un) ds. (31)

By (5), (14), (23) and (29); is estimated as
[13] < C|OU™ g - [{Un, Gn}[n < C*[[U"Plsga- (32
Finally, let us estimaté.
Lemma 5. For {un,0n} € V" and 4"P in (20), we have
la] <CJlu™Pllsqq. (33)
where C> Ois independent of b 0 and {up, Gn}.

Proof. Fora, 3, y > 1 and the presertu, 0y}, define

a .
hiaBy)=3Y 5 lel"2[0h—unlp,.
KeThecsX '

By the Hblder inequality, we have, with" = Ou™P — &,

ol

g 1
[E Y /em“-nl-mh—uhwss( S Y lePn"de) a2 p.p)P, (@)

KeghecsK KeghecsK
_ _p
where|n"qe = (52, [73e)Y8 (0" = {02, n§}). By Lemma 4, — tn|Be < CPlef*2 |G — uy2, so that

In(2,p,p) <CPI(p,2,p). (b)



It follows from [{un, Un}|2 + [|lun||3 < 1 and (5) that

h(222)= 5 5 e o -uZ<1.

KeTheesk
1
Then we havée| 2 |di, — Un|e < 1, and hence, fop > 2, |e]~ % {Gn — un|8 < |&|~2|th — un|2, which means that
Jh(pv 27 p) < ‘]h(za 23 2) < 1. (C)

On the other hand, by notin§< s—1< 1 and applying Lemma 3 tou™P ¢ WS-19(Q)?, we find that

1 . 1
\Uh|q7e = |Duh"p —&klge < C(le @ HDUh’p —&kllogk + \e\s T \Uh"p|s,q,K)~
Then, by (30) ande|/hx > c for somec > 0, we obtain
a g—1+q(&1)
S S lEPn"Ee<c S he Pk < CTh 2 AP (d)
KeThecsK Kezh
sincehk < handgs> 2, whereC* > 0 is independent dfi. By (a), (b), (c) and (d), we have (33). O

By (21), (24), (32), (33) anf{un, tn} [+ [|un[l3 < 1, [|un|[§ p.o = 11+ 13+ 14 in (22) is bounded from above by
Cl[u™P||sq.a < C*||unllo,p.q (C,C* > 0). Thus||un|jo.pa for each sufficiently large < o is uniformly bounded
for h > 0, so that we obtain the theorem below.

Theorem 2. The subfamily{un}h=o0 in Theorem 1 also converges strongly toiniLP(Q) (Vp e [1,[) ash| 0.

5 Concluding remarks

We have proved the strord® convergence associated with the Rellich type discrete compactness for some dis-
continuous Galerkin FEM. The results can be applied to justification of numerical computations of various semi-
linear problems by DGFEM. To give a firm foundation to DGFEM, we are also planning to show the discrete

Korn inequalities, which play essential roles in applications to solid mechanics and fluid dynamics[2, 8]. More-
over, our results ohP boundedness are only “qualitative” since we have not shown, for example, the dependence
of ||un||o,p,o ON p. Such refined results may be required in certain cases, and we will continue our studies.

References

[1] D. N. Arnold, F. Brezzi, B. Cockburn and L. D. Marini, Unified analysis of discontinuous Galerkin methods
for elliptic problems, SIAM J. Numer. Anal39 (2002), 1749-1779.

[2] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, 3rd ed., Springer,
New York, 2008.

[3] F. Kikuchi, Rellich-type discrete compactness for some discontinuous Galerkin FEM, Japan J. Indust. Appl.
Math.,29(2012), 269-288.

[4] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman, Boston, 1985, and SIAM, Philadelphia,
2011.

[5] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, 2nd ed., SIAM, Philadelphia, 2002.

[6] A. Buffa and C. Ortner, Compact embeddings of broken Sobolev spaces and applications, IMA J. Numer.
Anal., 29(2009), 827-855.

[7]1 H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York,
2011.

[8] S. C. Brenner, Korn’s inequalities for piecewidé vector fields, Math. Comp73 (2003), 1067-1087.



