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Abstract

In this paper, we explore the interaction between taxation and a local public good (LPG)

to see how it impacts the spatial pattern in the framework of new economic geography (NEG).

In the benchmark case of a pure LPG, the system displays a similar location pattern to the

existing NEG taxation model, although the tax reduces the market size of manufactured goods.

However, when we consider the inherent congestion of an LPG, we find a new agglomeration

force due to the demand of the LPG and a new dispersion force due to its congestion. As a

result of their interaction, the congestability is crucial in determining the spatial location

pattern.
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I. Introduction

The relationship between factor mobility and the regional provision of a local public good

(LPG) has long been a concern of economists. Previous classic literature can be classified into

two categories. On the one hand, literature on tax competition demonstrates that tax competition

leads to a “race to the bottom” and underprovision of LPGs among jurisdictions (see Wilson,

1999, for a complete survey). On the other hand, Tiebout (1956) and many important

subsequent studies focus on the efficiency of LPG provision in a system of competing

jurisdictions. They offer various combinations of LPG and taxation. In addition to the above,

recently, a separate literature focuses on how tax competition impacts on industrial location by

use of a general equilibrium framework called new economic geography (NEG). These studies

rest heavily on the core-periphery (CP) model of Krugman (1991).

Interestingly, under the NEG framework, tax competition may generate different results

from classic tax competition models due to the hump-shaped agglomeration rents. Theoretical

studies along this line include Kind et al. (2000), Ludema and Wooton (2000), Andersson and

Forslid (2003), Baldwin et al. (2003; Ch. 15, 16), Baldwin and Krugman (2004), Ottaviano and

van Ypersele (2005) and Borck and Pflüger (2006). Most studies focus on the issue of “tax

competition” to emphasis the tax differential outcome and its corresponding spatial pattern of

mobile factor, resulting in a “race to the top” rather than a race to the bottom. Moreover, Ihara

(2008) consider that LPG is input into production to analyze the provision efficiency of LPGs.

Despite great progress in the issue of tax competition, the corresponding LPG issue is not

sufficiently explored in the NEG framework.

Firstly, Ottaviano and van Ypersele (2005), Haufler and Wooton (2010), Kind et al.

(2000), Ludema and Wooton (2000) assume that tax revenues are redistributed as income to

workers instead of financing LPG provision. As a result, Ottaviano and van Ypersele (2005)

show that asymmetric market size results in an incentive of taxation (resp. subsidization) to

attract firms even in the absence of public good provision. Second, although Andersson and

Forslid (2003) and Baldwin et al. (2003; Ch. 15, 16) include the LPG production in their

models, they limit their studies to the case of a “pure” LPG without congestion. Furthermore,

Andersson and Forslid (2003) and Baldwin et al. (2003; Ch. 15, 16) assume that the LPG is

produced using the same composite of the agricultural good and the manufactured good as in

consumersʼ utility function. As a result, the market size of private sectors and the wage rate are

independent of the tax rate. Therefore, the symmetric tax rate is neutral in the NEG framework.

On the one hand, this assumption is successful to simplify their models to derive a tax game.

However, it also makes the symmetric tax rate inessential for an agglomeration pattern.

Furthermore, if the LPG production uses a different fraction of manufactured goods from that in

the consumersʼ utility function, some results of tax competition in previous papers may not

hold. That is because their tax revenue is linear in the tax rate and they must use a specific

functional form so that the governmentʼs objective is concave in the tax rate to obtain an

interior solution (Baldwin and Krugman, 2004; Borck and Pflüger, 2006).

The interaction between taxation and LPGs remains a salient issue in the NEG framework.

For example, taxation may induce a chain reaction which successively impacts the market size

of private consumption, wage rate, tax revenue, LPG provision and incentive of agglomeration

(endogenous market size). Thus, the purpose of this paper is to add several distinctive features
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neglected in previous studies and to explore the chain reaction in the NEG framework.

To this end, as the first feature of this paper, we differentiate the input fraction of

manufactured goods in the LPG production from the consumption fraction of manufactured

goods in the private sector. As a result, the tax revenue becomes concave in tax rate.
1

This

revenue is redistributed as income to workers as in Andersson and Forslid (2003)
2

and also has

an impact on the market size of private goods. Some financial policies in the real world are

actually based on the impact of tax on the private consumption size.
3

To prevent the model

from being too complicated, we assume that the input of LPG production is unskilled labor

only.
4

As a result, the model has full analytical results in the absence of tax competition
5

which complement the numerical examples in tax competition framework of Andersson and

Forslid (2003).

Next, as our second strategic feature, we consider an economy of one state containing two

regions. The central government initially chooses symmetric tax rates in two regions. More

precisely, we follow Baldwin and Krugman (2004) and Andersson and Forslid (2003) by

considering proportional income tax but have no tax game (competition). We also assume that

tax revenue is only used to produce the LPG that is consumed by every resident in the same

region. The above two features provide additional tension between the new centrifugal force

from the reduced wage rate with respect to tax rate and a new centripetal force from LPG

services. As a result, we find more and different agglomeration patterns under the regime of a

symmetric tax rate. Notably, the second feature indicates that we are going to study LPGs

rather than tax competition.

The third feature of this paper is that we consider not only a pure LPG but also a

congestible LPG, which is neglected in Andersson and Forslid (2003). In the real world, all

public services are characterized by some degree of congestion, such as the cases of social

security service, transportation facilities, public utilities, courts, parks, and libraries. Their

service quality should span the range between the polar cases of pure private and pure public

goods. Previously, models with a congestible LPG can be seen in the literature of public

economics and regional economics (Hochman, 1982; Edwards, 1990; Conley and Wooders

(2001); Berliant et al., 2006) as well as in that of endogenous growth theory (Barro and Sala-i-

Martin, 1992; Turnovsky, 1996; Eicher and Turnovsky, 2000). The congestion of an LPG is

inherently related to the scale of the aggregate usage; it is particularly relevant in an economic-

geography context that relative congestion and aggregate (absolute) congestion depend on the

endogenous degree of spatial agglomeration. It is interesting to study how and how far the

presence of usage congestion for an LPG affects the agglomeration pattern in an NEG

framework.

This paper obtains the following results. First, in the benchmark case of a pure local public

good (PLPG), we obtain a similar location pattern to previous NEG taxation models although
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and a low tax rate. In contrast, in the studies of Andersson and Forslid (2003), Baldwin and Krugman, (2004) and

Baldwin et al. (2003), the tax revenue is linear in tax rate.
2 However, the possibility of income redistribution in Andersson and Forslid (2003) is comes from the different tax

rates between skilled and unskilled workers.
3 For example, tax refunds, the grant of a consumption coupon (voucher), and the expansion of domestic demand.
4 This assumption enables us to have a simpler price index of the LPG than Andersson and Forslid (2003).
5 The same tax rate between two regions is the second feature of this paper which is explained in the next paragraph.



the tax reduces the market size of manufactured goods. Meanwhile, we find that the interaction

between the tax rate and the LPG taste is important in determining the value of the breakpoint.
6

Second, in the case of a congestible local public good (CLPG), the equilibria of both symmetric

dispersion and full agglomeration could emerge from the autarky state (i.e., infinite

transportation costs) due to the presence of congestion. In addition, the interaction between the

tax rate and the usage congestion of the LPG determines the spatial structure of the ultimate

state (i.e., zero transportation costs). This is because the economy scale and the corresponding

LPG service may not counteract the endogenous congestion for agglomeration in a high tax

rate. Third, using the fully analytically solvable framework, we show that the break point (resp.

re-dispersion point
7
) increases (resp. decreases) in the tax rate and the LPG congestability. In

particular, it is possible that the dispersion equilibrium is always stable for any level of trade

freeness as long as the breakpoint and the re-dispersion point coincide or do not exist.

The rest of the article is organized as follows. Section II describes a basic two-region

model that extends the footloose entrepreneur model of Forslid and Ottaviano (2003) by

incorporating symmetric tax rates and congestible local public goods. Section III analyzes the

long-run equilibrium of the benchmark case of pure local public goods. Section IV

characterizes the structural change of the spatial pattern in the case of a general congestible

local public good and describes how the location patterns vary with the tax rate, the LPG

congestability, and other parameters. Section V presents our concluding remarks.

II. The Model

We adopt the footloose entrepreneur (henceforth, FE) model of Forslid and Ottaviano

(2003), which is a solvable variant of Krugman (1991). Specifically, we consider an economic

system with the following features: (1) There is one state containing two regions, denoted by 1

and 2. (2) Each region produces three kinds of goods, a homogenous agricultural good (A), a

composite manufactured good (M) consisting of horizontally differentiated varieties (c), and a

local public good (G). (3) The local public good (LPG) in a region is available only to

residents in the same region, and we assume that there is “congestion,” described by parameter

α∈0, 1) . (4) The LPG is provided by the regional tax revenue, while each region levies a

“proportional income tax” to every local resident. Two regions adopt the same tax rate (t), and

there is no “tax game (competition).” (5) There are two factors of production in a private good

market, skilled labor and unskilled labor. Skilled labor only works for the manufacturing sector

and can migrate cost-free between the two regions, while unskilled labor works for either the

manufacturing sector or the agricultural sector but is immobile between regions. (6) The

agricultural good market is perfectly competitive. The agricultural good is freely traded between

two regions, whose production employs unskilled labor only and is subject to constant returns

to scale. (7) The manufactured good is subject to monopolistic competition with increasing

returns to scale. A manufacturing firm employs both skilled and unskilled labor. (8) The
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transport cost of the manufactured goods is modeled by the iceberg technology. (9) The total

number of skilled labor is denoted by H, and that of unskilled labor, by L . The numbers of

unskilled labor in the two regions are L1=L2=L2 . For simplicity, we choose the unit of

population, such that the world population is 1: H+L=1.

1. Consumption

On the demand side, we follow the model of Andersson and Forslid (2003), in which

skilled and unskilled labor have the same preferences described by a CES sub-utility over the

manufacturing varieties nested in a Cobb-Douglas upper-tier function that includes consumption

of A and G, while parameters μ, γ∈(0, 1) measure the tastes for M and G, respectively.

Subsequently, i refers to either region 1 or region 2. For convenience, we also denote the other

region by j. The consumption behavior is formally described as follows:

Max Ui=
1

μ(1−μ)
1 M 

i A1
i Gi



s.t. 
ni

0

pii (ci) dii (ci) dci+
nj

0

pji (cj) dji (cj) dcj+piA Ai=(1−t)wi,

(1)

where 1μ(1−μ)
1

 is a positive coefficient to ease the notation burden later, piA is the price

of the agricultural good, and the manufacturing aggregate M is defined by the following CES

form

Mi≡
ni

0

dii (ci)
1

 dci+
nj

0

dji (cj)
1

 dcj


1

, 0<μ, γ<1<σ

In the above, dji (cj) is the consumption of a manufacturing variety cj produced in region j

and sold in i, and pji (cj) denotes its consumer price. Notations dii (ci) and pii (ci) are defined

similarly. ni and nj are the numbers of manufacturing varieties produced in region i and j,

respectively. σ∈(1,∞) is the elasticity of substitution between any two varieties. In addition,

because firms sell differentiated goods, each of them has some monopoly power facing an

isoelastic demand function with elasticity σ . In addition, wi is the wage rate of a consumer in

region i. More precisely, we denote the wage rate of skilled (resp. unskilled) labor by wHi (resp.

wLi). Since each worker is levied a proportional income tax by rate t∈(0, 1), the budget is

limited to the disposable income (1−t)wi.

Following Berliant et al. (2006), the LPG service consumed by an individual in region i is

represented by

Gi≡
g(Ti)

Hi+
1−H

2 
 ; Ti=t Yi ; Yi=HiwH i+

1−H

2
wL i, (2)

where g is the total output of the LPG, which is a function of the total tax revenue Ti, and Yi

denotes the aggregate regional income consisting of skilled and unskilled wages in region i.

The denominator of Gi measures the “congestion” level of the LPG from two aspects, the
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endogenous number of users Hi+(1−H)2 and the exogenous “congestability” parameter

α∈0, 1) . Notably, α=0 implies a pure LPG, whereas α 1 implies a private good. Unlike

Berliant et al. (2006), the number of LPG users is endogenously given rather than fixed.

Using the two-stage budgeting approach (Fujita et al., 1999, Ch. 4), we can obtain the

demand functions in region i as follows

dji (cj)=
pji (cj)



ℙ1
i

μ (1−t)wi ; dii (ci)=
pii (ci)



ℙ1
i

μ (1−t)wi, (3)

Mi=μ
(1−t)wi

ℙ i

; Ai=(1−μ)
(1−t)wi

piA

, (4)

where ℙ i and ℙ j are the price indices of manufactured goods in region i and j, respectively.

According to the ex-post symmetry among varieties, every variety ci (resp. cj) has the same

price, so the price index in region i is simply expressed as:

ℙ i=ni pii (ci)
1

+nj pji (cj)
1


1

1 . (5)

Substituting (2), (3) and (4) into (1), we obtain the indirect utility function of a skilled labor in

region i:

Vi=
(1−t)wH i

(ℙ i)

(piA)

1⋅
g(Ti)

Hi+
1−H

2 
 . (6)

An interior equilibrium h=h* is obtained when the utility differential is ΔV hh*=V1−V2

=0. The equilibrium is stable iff
∂Δ
∂h 

hh*

<0. Corner equilibrium h=1 is stable if ΔV h1>0

and corner equilibrium h=0 is stable if ΔV h0<0.

2. Production

Turning to the supply side, each region produces the agricultural good, the manufacturing

goods, and the local public good. The following setup of the agricultural and the manufacturing

sectors is standard.

(1) Agricultural sector

The homogenous agricultural good is produced under constant returns to scale, and the

market is in perfect competition. Unskilled labor is the only input. The unit of the agricultural

product is chosen such that one unskilled labor produces one unit of the agricultural good.

These conditions imply that the wage of unskilled labor (wL i) is equal to the price of the

agricultural good: wL i=piA . In addition, the agricultural good is freely traded between two

regions so that its price is the same everywhere (piA=pjA), which also implies interregional

wage equalization (wLi=wLj).
8

We choose the agricultural good as the numéraire. Then, we

obtain wLi=piA=pjA=wLj=1.
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(2) Local public good

As in the agricultural sector, we assume that the input in the LPG production is also

unskilled labor only. Furthermore, the marginal labor requirement is assumed to be one for

simplicity. Therefore, the amount g(Ti) of the LPG is equal to TiwLi=Ti. Then, the first part of

(2) simply becomes

Gi≡
Ti

Hi+
1−H

2 
 . (7)

(3) Manufacturing sector

Manufacturing firms employ both skilled and unskilled labor to produce differentiated

goods subject to increasing returns to scale. Together with the assumption of costless

differentiation, this ensures that each firm produces only one variety. In other words, there is a

one-to-one relationship between firms and varieties. Each firm uses the same technology of

production. Following the FE model, we assume that each firm employs one skilled labor as the

fixed input. We further choose the unit of manufactured goods so that a marginal input of

(σ−1)σ units of unskilled workers are required to produce one unit of a variety. The number

of firms in a region is, therefore, equal to the number of skilled workers. A firm in region i sets

its prices pii and pij to maximize its profit:

Max
pii pij

πi(ci)=pii(ci)Dii(ci)+pij(ci)Dij(ci)−wH i+
σ−1

σ
wL iDii(ci)+τDij(ci), (8)

where Dii(ci) and are the total demands for variety ci in regions i and j, respectively. Here

τ Dij(ci) represents the total supply to region j, inclusive of the Samuelson melting iceberg cost:

for one unit of the manufactured good to reach the other region, τ≥1 units must be shipped.

Hence, under the market-clearing condition, xi(ci)=Dii(ci)+τDij(ci) holds for each variety ci .

Moreover, according to Equation (3), the total demand for each variety ci in one region is

determined as follows:

Dii(ci)=
pii(ci)



ℙ1
i

μ(1−t)Yi ; Dij(ci)=
pij(ci)



ℙ1
j

μ(1−t)Yj. (9)

The first order conditions of (8) imply:

pii=pjj=1 ; pij=pji=τ, (10)

so the manufactured price indices become:

ℙ1=H
1

1 h+ϕ(1−h)
1

1 ; ℙ2=H
1

1 1−h+ϕh
1

1 , (11)

where ϕ≡τ 1∈0, 1 denotes the trade freeness, which is equal to one when the transportation

cost τ−1 is zero (free trade) and zero when the trade of manufacturing goods is impossible.

Notation h≡H1H∈0, 1 is the share of skilled workers residing in region 1.

By the free-entry condition of firms, the operating profit earned by a typical firm is just

sufficient to cover its fixed cost. We then obtain the nominal wages of skilled labor as
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wH1=
μ

σH 
(1−t)Y1

h+ϕ(1−h)
+

ϕ(1−t)Y2

ϕ(1−h)+h  ; wH2=
μ

σH 
(1−t)Y2

1−h+ϕh
+

ϕ(1−t)Y1

h+ϕ(1−h) . (12)

Finally, after plugging the aggregate income (2) into (12), we generate a system of two

equations for wH1 and wH2. Solving the equations obtains the equilibrium wages of skilled labor:

wH1=
(1−H)(1−t)μσ2ϕh+(1−h)(1+ϕ2)−μ(1−t)(1−h)(1−ϕ2)

2Hσ−(1−t)μh(1−h)σ−(1−t)μ+σϕ1−2h(1−h)+h(1−h)σ+(1−t)μϕ2
,

(13)

wH2=
(1−H)(1−t)μσ2ϕ(1−h)+h(1+ϕ2)−μ(1−t)h(1−ϕ2)

2Hσ−(1−t)μh(1−h)σ−(1−t)μ+σϕ1−2h(1−h)+h(1−h)σ+(1−t)μϕ2
.

It is noteworthy that Equation (13) is reduced to Equation (16) of Forslid and Ottaviano (2003)

when t=0 . In our model, the income tax reduces the consumption market of manufactured

goods and then decreases the wage rate of skilled labor.

III. The Benchmark Case: A Pure Local Public Good (PLPG)

This section considers a pure local public good (PLPG): α=0 in (2). Equilibrium is

obtained by the utility indifference of skilled labor between two regions. According to the

indirect utility function of (6), we express the utility differential of skilled labor between two

regions as follows:

ΔV≡Vi−Vj=
(1−t)wH i

(ℙ i)
 ⋅(Gi)


−

(1−t)wH j

(ℙ j)
 ⋅(Gj)


. (14)

Substituting (7), (11), and (13) into (14), we analyze the long-run equilibria and location

patterns of the whole system.

In the PLPG case, we first analyze how taxation affects the relative level of the wage rate

between two regions. To do this, differentiating both wiH−wjH and wiH(ℙ i)

−wjH(ℙ j)


with

respect to h and taking value at h=12, we obtain two thresholds of trade freeness ϕPure
w and

ϕPure
 , above which the larger region offers a higher nominal and real wage rate, respectively,

where

ϕPure
w ≡

σ−(1−t)μ

σ+(1−t)μ
∈(0, 1) ; ϕPure

 ≡ϕPure
w ⋅

σ−1−μ

σ−1+μ
∈(0, 1).

It holds that ϕPure
w >ϕFE

w , ϕPure
 >ϕFE

 and ϕPure
w >ϕPure

 . When t=0, ϕPure
w and ϕPure

 degenerate to the

threshold values (18) and (26) in the FE model. Note that both ϕPure
w and ϕPure

 increase in t,

showing a dispersion force of taxation. It is because tax reduces the local expenditure, or the

market size. On the other hand, using (2), (7), and α=0, it is clear that the services of PLPG

form a new agglomeration force due to the following:
9
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∂

∂h
(GPure

i −GPure
j )=

tμσϕ(1−H)(1−t)

σ−(1−t)μh(1−h)σ−(1−t)μ+σϕ1−2h(1−h)+h(1−h)ϕ2σ+(1−t)μ
2 ⋅Z,



∂

∂h
(GPure

i −GPure
j )=

∂

∂h
t(Yi−Yj)>0, ∀ t, ϕ, h.

Obviously, the relative level of the PLPG service depends upon the relative level of regional

incomes due to the symmetric tax rate regime. Residents in the larger region enjoy a better

PLPG service than those in the smaller one for any tax rate and trade freeness; however, they

may face a reduced wage rate by agglomeration when trade freeness is low. In particular, the

relative real wage rate between two regions monotonically increases in h when ϕ>ϕPure
 , which

results from a standard study of the real wage rate differential between two regions (see

Appendix A, Part 1). Summarizing the above results, in the PLPG case, ΔV>0 is true for any

tax rate 0<t<1 when h>12 and ϕ>ϕPure
 hold.

Although income tax reduces the market size, the long-run configuration still undergoes a

“pitchfork bifurcation,” as in the FE model. Evidently, when ϕ is sufficiently large (before

reaching ϕPure
 ), the utility differential between two regions is monotonically increasing at

agglomeration level h due to the additional agglomeration force of the PLPG.

As a result, full agglomeration is the unique stable configuration when ϕ is large enough,

including the ultimate state ϕ=1. This configuration of the ultimate state is different from that

of the FE model because any spatial distribution is possible there when ϕ=1. Intuitively, the

PLPG specifies the final configuration to full agglomeration when the trade costs are sufficiently

low, since the market (size/crowding) effect only forms a small impact on the wage rate.

Finally, mobile workers choose to access the region with a higher level of PLPG services. Note

that this result holds for any tax rate t∈(0, 1) as long as the PLPG exists.

Next, we consider an important question whether the agglomeration force of PLPGs can be

strong enough to change the stable equilibrium from dispersion to agglomeration for a very low

trade freeness level, so that the dispersion equilibrium is stable forever (i.e., the system falls

into a “dispersion black hole”). By the inspection in Appendix A (Part 2), when ϕ=0, the

symmetry distribution is a unique stable equilibrium if and only if σ>1+μ; the full

agglomeration is the unique stable equilibrium if and only if σ<1+μ . They are shown in

Figure 1, where solid lines are stable equilibria and heavy dashed lines are unstable ones.

The following analysis completes the discussion of Figure 1. On the one hand, the “sustain

point” and “break point” further clarify the meaning of threshold σ=1+μ in the PLPG case.

Since corner equilibrium h=1 is stable iff ΔV 0 h1 ≥0, the “sustain point” ϕPure
S is

determined by

2ϕ
σ+(1−t)μ

σ−(1−t)μ 


−ϕ


11−(1−t)
μ

σ
+ϕ21+(1−t)

μ

σ =0. (15)

By inspection of the LHS of (15), full agglomeration is always a stable equilibrium when

σ<1+μ (see Appendix B). On the other hand, a “break point” is a root in 0, 1 of the

following equation

∂ ΔV

∂ h 0 h
1

2
=0, (16)
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where Z=σ1+ϕ2−2h(1−h)(ϕ−1)
2
−μ(1−t)(1−ϕ2)1−2h(1−h).

Therefore,
∂

∂h
(GPure

i −GPure
j )>0 holds because

∂

∂ϕ
Z>0 and Z 0 =1−(1−t)μ1−2h(1−h)>0.



which can be rewritten as a1ϕ
2+b1ϕ+c1=0, where

a1=σ+(1−t)μ(σ−1+μ)>0,
b1=−2μ(1−t)2γ(σ−1)+μ+σ(σ−1)<0, (17)

c1=σ−(1−t)μ(σ−1−μ).

According to (17), a1>0 and a1+b1+c1=−4γμ(1−t)(σ−1)<0 are true, then Equation (16)

has only one root in (−∞, 1)
10

. Therefore, the break point is max 0, ϕPure
B , where

ϕPure
B =

−b1− Δ1

2a1

,

Δ1=(b1)
2
−4a1c1>0.

11

(18)

According to (17) and (18), ϕPure
B <0 if and only if c1 is negative, which in turn is equivalent to

σ<1+μ. This reveals that there is no stable dispersion equilibrium when σ<1+μ; meanwhile,

the system falls into the so-called “black hole” which comes from the fact that full

agglomeration equilibria exist in any trade freeness by inspection of the LHS of (15). Hence,

the no-black-hole condition in the PLPG case is consistent with the FE model. On the other

hand, ϕPure
B ∈(0, 1) holds if σ>1+μ.

To sum up, in the PLPG case, there are only two types of agglomeration patterns, ϕPure
B <0

and ϕPure
B ∈(0, 1), which display similar structures of the FE model.

Two remarks follow. First, the result that ultimate state (ϕ=1) must be a full

agglomeration is different from that in the FE model. This is because the service level of the

PLPG increases in agglomeration level h . It turns out that the PLPG effect dominates the

geographic configuration when trade costs are sufficiently small, since the market distribution is
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10 Note that the other solution of a1ϕ
2+b1ϕ+c1=0,

−b1+ Δ1

2a1

, is always larger than 1 because a1+b1+c1<0.

11 Δ1=4μ2σ 2+4(1−t)μ(σ−1)4(1−t)μγμ+γ(σ−1) + 4γσ(σ−1)+μ(1−t)(σ−1)+2σ >0.

FIG. 1. THRESHOLD σ=1+μ OF THE PLPG CASE
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no longer important for the market size and the market crowding effect (i.e., access to other

firms and consumers is very easy). Note that this result does not depend upon the tax rate.

Second, the no-black-hole condition of the PLPG case, σ>1+μ, is also independent of the tax

rate. It is clear that the only reason for the “black hole” in the PLPG case is the so-called

“cost-of-living effect” (Forslid and Ottaviano, 2003; p.235), so the result is the same as that in

the FE model. In other words, without the cost-of-living effect, the dispersion equilibrium is

always stable in any tax rate and service level of PLPG when trade costs are sufficiently large.

Proposition 1 summarizes those important features comparing the PLPG case with the FE

model.

Proposition 1. In the PLPG case, (i) the bifurcation diagrams have the same qualitative

structure with the FE model; (ii) the no-black-hole condition is quantitatively identical with the

FE model; (iii) full agglomeration is the only stable equilibrium in the ultimate state (ϕ=1).

Evidently, this benchmark case also shows that mobile workers ignore the effect of the tax

rate, which reduces the wage rate and/or the PLPG scale, when agglomeration takes place

(Proposition 1, (iii)). However, we will show later (Section 4) that the above results may not

hold in the general case of a congestible LPG. Proposition 1 (i) implies that qualitative results

of PLPG case are “independent” of the tax rate. Nevertheless, “quantitative” results are different
since the sustain and the break point formulas clearly depend on the tax rate.

The tax has an impact on the evolving equilibrium path with respect to trade freeness ϕ.

To see the details, we compare the break point of our model with that of the FE model. Note

that, in our framework, the income taxation (t) has a negative impact on the agglomeration

force due to the reduced market. Besides, the preference (γ) of the PLPG forms an

agglomeration force. As a result of their interaction, the break point (ϕPure
B ) may be either larger

or smaller than the break point ϕFE
B of the FE model depending on parameters σ, μ, t and γ. We

summarize the relationship between ϕPure
B and ϕFE

B in the following proposition.

Proposition 2. (i) When σ>1+μ, both ϕFE
B and ϕPure

B belong to (0, 1).

(ii) For any 0<γ<1 and 0<μ<1, ϕPure
B <ϕFE

B holds iff t<tC, where

tC≡
γ(σ−1)(σ 2−μ2)

μσ(2σ−1)+γ(σ−1)(σ 2−μ2)
∈(0, 1)

Proof: See Appendix B.

Proposition 2 complements Andersson and Forslid (2003) in the following two respects.

Firstly, our analytical result shows that a low tax rate results in ϕPure
B <ϕFE

B , whereas a high tax

rate results in ϕPure
B >ϕFE

B . Notation tC is the threshold level of tax rate at which the

agglomeration force of PLPG is just equal to its dispersion force of reducing the market size.

Note that tC increases in the LPG preference parameter γ . Specifically, for a higher γ, skilled

workers are more likely to agglomerate in a region to enjoy the better LPG service, and save

interregional trade costs, while tolerating a higher tax rate. Therefore, a higher tax rate induces

a faster agglomeration with respect to trade freeness ϕ than the FE model. The novel results of

Propositions 1 and 2 provide a policy insight: an applicable tax rate and its corresponding level

of PLPG really enhance an agglomeration path in the FE framework, even the tax reduces the
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wage rate and the market size. In contrast, ϕPure
B <ϕFE

B is always true in the numerical examples

of Andersson and Forslid (2003). This is because their wage rate is independent of the tax rate.

Then the tax revenue financing the LPG enhances the agglomeration force but there is no new

counterpart of the dispersion force.

Secondly, their numerical example shows that skilled workers agglomerate in one region

when the tax rate is high and disperse when the tax rate is low. We are able to calculate the

“breakpoint in tax” in our model:

tB=
(1−ϕ)

2
μ2+σ(σ−1)−μϕ2−4γϕ−1+2σ(1+2γϕ−ϕ2)

μμ(1−ϕ)
2
+(σ−1)(ϕ2−4γϕ−1)

.

The above tB depends on the trade freeness ϕ, whose relationship is illustrated in Figure 2,

where

ϕtB0=
μ2+(2γμ+σ)(σ−1)− μμ(2σ−1)

2
+4γ 2(σ−1)

2
+4γ(σ−1)μ2+σ(σ−1)

(σ+μ)(σ−1+μ)

and

ϕtB1=
σ−1−μ

σ−1+μ
.

Three facts are observed in Figure 2. (i) Any tax rate 0<t<1 cannot induce an

agglomeration pattern when ϕ<ϕtB0. This implies that the central government has an incentive

to induce an agglomeration pattern by subsidization. (ii) Any tax rate 0<t<1 induces an

agglomeration pattern when ϕ>ϕtB1 . This results from the fact that workers in the larger

region always obtain a higher real wage and a better LPG service due to low trade costs

(ϕtB1>ϕPure
 ). In this phase, the central government has an incentive to impose tax on firms to

maximize the welfare of local residents. (iii) When ϕtB0<ϕ<ϕtB1, dispersion is an unstable

(resp. a stable) if the tax rate is lower (resp. higher) than tB, which is opposite to the pattern

obtained in Figure 3 of Andersson and Forslid (2003). This result can be attributed to two

negative effects of a high tax rate. On the one hand, a high tax rate reduces the market size so
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that the larger region may not provide a higher wage rate (the market size effect cannot prevail
over the market crowded effect). On the other hand, the relative level of the LPG service in the

larger region is decreasing in its tax rate.
12

Namely, the larger region loses the comparative

advantage of LPG gradually.
13

Hence, when the trade freeness (ϕ) is intermediate,

agglomeration is observed for low tax rate and it changes to dispersion for high tax rate.

IV. A Congestible Local Public Good (CLPG)

Almost all local public services are subject to some degree of congestion. This section

investigates how the “usage congestion” of a congestible local public good (CLPG) impacts on

the location patterns of firms. Interestingly, both the economy scale and the congestion of the

LPG are related to the endogenous number of skilled workers. The tax rate becomes important

even if it is symmetric between two regions, since it has an impact on the market size of the

economy and the level of public good services.

In the following, we first examine the symmetric equilibrium by the concepts of break

point and sustain point. We will see how the usage congestion of the LPG and the tax rate

affect the values of the break point and the re-dispersion point. We then identify stable patterns

when the trade costs are zero (ϕ=1, the ultimate state) or low enough by use of the break

point. We also examine the spatial configuration when the trade costs approach infinity (ϕ=0,

the autarky state).

1. The Break Point and the Re-dispersion Point

We first examine the stability of the symmetry equilibrium with respect to ϕ in the CLPG

case. Equation

∂ ΔV
∂ h  h

1

2
=0

can be simplified as a2ϕ
2+b2ϕ+c2=0 which may have two economically meaningful roots,

where

a2=σ+(1−t)μ(σ−1+μ)+αHγ(σ−1)>0,
b2=2(1−t)μ2γ(1−σ)−μ+σH(1−αγ)(1−σ)+σ(1−H)(1−σ)<0,

(19)
c2=σ−(1−t)μ(σ−1−μ)+αHγ(σ−1),

Δ2=(b2)
2
−4a2c2.

14

The quadratic equation may have two economically meaningful roots

ϕCong
B =

−b2− Δ2

2a2

; ϕCong
B =

−b2+ Δ2

2a2

, (20)
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12
∂

∂t 
GPure

1

GPure
2

=
2σμϕ(2h−1)h(ϕ−1)−ϕ

1+h(ϕ−1)ϕσ+μ(1−t)+hσ(1−ϕ)−μ(1−t)(1+ϕ)
2<0, ∀ ϕ,

1

2
<h<1.

13 On the contrary, in Andersson and Forslid (2003), since tax rate is independent of market size and wage rate, the

relative level of LPG service between two regions is increasing in tax rate.
14 Δ2=Δ1−4αγ(σ−1)H(1−t)

2
μ22−αγ(σ−1)H+2t(1−t)μ2σ + 4(1−t)μ(σ−1)σγ+4(σ−1)σ 2.



which are the threshold values of the trade freeness for the dispersion equilibrium to become

unstable and stable again. If Δ2 is negative, then neither ϕCong
B nor ϕCong

B exists, and the

symmetry is always stable. On the other hand, if Δ2 is positive, it holds that ϕ
Cong
B <ϕCong

B . When

ϕ is lower than ϕCong
B or larger than ϕCong

B , h=12 is stable; between them, the symmetry is

unstable. Therefore, min 1, max 0, ϕCong
B  is the “break point,” and min 1, max 0, ϕCong

B  is

the “re-dispersion point.”
15

Obviously, when ϕCong
B is larger than 1, there is no re-dispersion, and agglomeration occurs

at ϕ=1, which is similar to the PLPG case. On the other hand, when ϕCong
B is smaller than 1,

we have a re-dispersion process. Precisely, ϕCong
B <1 holds if and only if a2+b2+c2=

4γ(σ−1)αHσ−(1−t)μ>0 where λ≡αHσ−(1−t)μ. Thus, the condition for re-dispersion is

written as

αH>
(1−t)μ

σ
∈(0, 1). (21)

To examine (21), we calculate the partial derivatives with respect to all parameters:

∂λ

∂t
>0,

∂λ

∂α
>0,

∂λ

∂H
>0,

∂λ

∂σ
>0,

∂λ

∂μ
<0. (22)

Inequalities of (22) tell us that the re-dispersion point decreases in t, α, H and σ and

increases in μ. Therefore, ϕCong
B comes earlier for a larger t, α, H and σ and a lower μ.

Furthermore, we explore some general properties of the break point and the re-dispersion

point in the CLPG case.

The following inequalities show the relationship with respect to the tax rate t, the LPG

congestability α, and the LPG taste γ:

∂ ϕCong
B

∂ t
>0,

∂ ϕCong
B

∂ α
>0,

∂ ϕCong
B

∂ t
<0,

∂ ϕCong
B

∂ α
<0, (23)

whose proof is relegated to Appendix C. As illustrated in the LHS panel of Figure 3,

inequalities of (23) reveal that the stable symmetry equilibrium breaks later and the re-

dispersion occurs earlier when the tax rate t and the congestability α are higher. Intuitively,

taking account of the reduced market size and the LPG congestion, the agglomeration pattern is

less likely to emerge and is more difficult to sustain.

Unfortunately, the impact of the taste parameter γ on ϕCong
B and ϕCong

B is indeterminate. The

intuition is straightforward. For a larger taste γ, residents prefer more LPG service but dislike

the increased congestion at the same time. The total effect is indeterminate.

The dispersion equilibrium is stable for any trade freeness as long as the break point and

the re-dispersion point coincide or do not exist (i.e., Δ2≤0). The stable dispersion equilibrium

never breaks in this situation. This happens when c2 is large, as illustrated in the right-hand
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15 The analyses about the existence of the break point and the re-dispersion point are showed in Appendix F. More

details are available from the authors upon request.



panel of Figure 3. As shown in (24) below, c2 increases when the centripetal force is relatively

weak (i.e. when μ is low and/or σ is high) and the centrifugal force is relatively strong (i.e.,

when t, α, γ, and H are high):

∂ c2

∂ t
>0,

∂ c2

∂ α
>0,

∂ c2

∂ γ
>0,

∂ c2

∂ H
>0,

∂ c2

∂ σ
>0,

∂ c2

∂ μ
<0. (24)

2. The Ultimate State (ϕ=1)

The following two equations (25) and (26) are used to examine whether the symmetry and

the full agglomeration are stable:

∂ ΔV
∂ h  1 h

1

2
=η1⋅(1−t)μ−Hασ, (25)

ΔV 1 h1 =η2⋅(1+H)


σ+(1−t)μ

σ−(1−t)μ 


−(1−H)
, (26)

where positive coefficients η1 and η2 are listed in Appendix D. By (25), the condition for the

symmetric equilibrium to be stable when ϕ=1 is identified as the same as (21). The LHS of

(21) αH measures a new dispersion force from the usage congestion of the LPG. If the

congestion is large (i.e., high congestability of the LPG and/or a larger number of skilled

workers), the symmetry distribution becomes a stable equilibrium when ϕ=1 . On the other

hand, the RHS of (21) (1−t)μσ can be regarded as an index measuring the agglomeration

force from the interaction between the reduced manufacturing market size (1−t)μ and

monopoly power σ of the differentiated goods. If it is small, the location pattern changes from

agglomeration to dispersion due to the LPG congestion. This means that, if the economy has

high t, α, and σ or a low μ, the CLPG could not sustain a full agglomeration to the end (ϕ=1).

The intuition is straightforward: The new agglomeration force of the LPG is discounted by the

LPG congestion. Furthermore, the agglomeration force is small for low trade costs.

Comparatively, Proposition 1 says that full agglomeration is the unique stable equilibrium when

ϕ=1 in the PLPG case, so we know that the LPG congestion is critical for the location of
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economic activity.

To examine the role of the tax rate, we define two critical values of tax rate as follows:

ta≡1−
σ

μ
×

(1+H)

−(1−H)



(1+H)

+(1−H)

∈(−∞, 1) ; td≡1−
αHσ

μ
∈(−∞, 1) (27)

According to (25) and (26), when ϕ=1, ta is the threshold value of the tax rate below which

the full agglomeration is stable, and td is the threshold value of the tax rate above which the

symmetric equilibrium is stable. We can prove
16

that ta is always smaller than td when

α∈(0, 1).
Figure 4 illustrates how the ultimate spatial pattern is related to various parameters. The

plane of αH∈(0, 1) and t∈(0, 1) is divided into three parts by ta and td. First, when αH is high

and t>td, (21) is satisfied, and ϕCong
B <1 . The ultimate spatial pattern is the symmetric

dispersion. Second, when αH is intermediate and t lies between ta and td, a partial

agglomeration (an interior asymmetric equilibrium) is the ultimate spatial pattern. Third, when

αH is low and t<ta, the full agglomeration emerges. We can see that, if the economy is of a

low monopoly power or consumers are not lovers of differentiated goods, the presence of

“congestion” and “taxation” could easily transform the spatial pattern from agglomeration into

dispersion for low trade costs.

The bifurcation of industrial location with respect to the tax rate is shown in Figure 5 and

summarized in Proposition 3.

Proposition 3. When ϕ= 1, the spatial pattern exhibits a pitchfork bifurcation with respect to

t.
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16 Note that td is linear in α, while ta is a convex function of α since

∂2ta

∂α2 =
2σ(1−H2)


(1+H)


−(1−H)


ln(1−H)(1+H)

2

μ(1−H)

+(1+H)



3 >0.

Then, the conclusion immediately follows from td0 =ta0 =1 and td1 =ta1 =1−(σμ)H.

FIG. 4. ULTIMATE SPATIAL PATTERNS WITH RESPECT TO ta AND td
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Proof: See Appendix E.

Unlike the PLPG case, tax rate t does matter in the structure of spatial pattern due to the

LPG congestion. Full agglomeration is sustainable only when congestion and tax rate are low.

Otherwise, both partial agglomeration and symmetry are possible. It is worth stressing that

partial agglomeration is also possible in the ultimate state. To the best of our knowledge, this

phenomenon has not been reported elsewhere. Our result provides a credible explanation of the

diverse landscape of economic geography in reality.

There are two reasons for the fact that full agglomeration loses stability for a high trade

freeness. First, the tax revenue reduces the market size of manufactured goods, and it then has

an impact on the wage rate of skilled labor (wH) and the level of the regional aggregated

income (Y). Since the tax rate is symmetric between two regions, skilled labor does not care

about the tax rate directly. However, the relative level of interaction between the wage rate and

the regional income (wH×Y
 ) depends on the tax rate (t). Second, the LPG congestion provides

another new centrifugal force in the system. When trade freeness increases sufficiently, the

centripetal force from pecuniary externalities associated with the manufactured market is no

longer strong, since access to another regionʼs market is very easy. Meanwhile, once the benefit

of a higher regional income fails to defeat the costs of congestion, skilled labor would rather

choose “dispersion” to avoid the crowding region.

3. The Autarky State (ϕ=0)

This section focuses on the autarky case. We check the stability of h=12 and h=1 by

the following equations:

∂ ΔV
∂ h  0 h

1

2
=η3⋅μ−(σ−1)(1+αHγ), (28)

ΔV  0 =η4⋅ h
1

1

(2Hh+1−H)
  −

(1−h)
1

1

2H(1−h)+1−H
  , (29)

with positive coefficients η3 and η4 listed in Appendix D. Obviously, the stability of h=12 and
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h=1 is independent of the tax rate in the autarky case.

According to (28), the condition for the symmetric equilibrium to be stable when ϕ=0 is

identified as:

αHγ>
1+μ−σ

σ−1
. (30)

Equation (30) implies that the value of αHγ determines the spatial pattern in the autarky state

when σ<1+μ . The no-black-hole condition σ>1+μ of the PLPG case does not hold, since

the new centrifugal force from congestion works. Note that this distinctive feature does not

depend upon the tax rate because market size of the manufacturing sector is inessential in the

autarky state.

Representing the preference of the LPG, parameter γ also measures the congestion degree

of the LPG to the utility level. If consumers care more about the LPG (i.e., a higher γ), the

LPG congestion is more sensitive (i.e., αγ is high). Hence, αHγ represents the strength of the

new centrifugal force.

To have a deeper view, we examine ϕCong
B and ϕCong

B of the CLPG case by (20). The sign of

term c2 is indefinite. When αHγ<(1+μ−σ)(σ−1), c2 is negative, and Δ2 is positive.

Meanwhile, ϕCong
B is negative, and ϕCong

B is either between 0~1 or larger than 1 depending on the

tax rate. On the other hand, when αHγ>(1+μ−σ)(σ−1), then c2>0 holds, and both ϕCong
B

and ϕCong
B are positive if they exist. Therefore, we know that, when condition (30) is met, ϕCong

B

might be positive, and the symmetry equilibrium is stable in an economy of high trade costs.

To be precise, we define two critical values, σS and σB, as follows

σB≡1+
μ

αHγ+1
; σS≡1+μ. (31)

According to (28) and (29), σB is the threshold value above which the symmetric equilibrium is

stable, and σS is the threshold value below which the full agglomeration is stable. Obviously,

σB<σS holds. When σ lies between the two thresholds, we observe a new overlap of stable full

agglomeration and dispersion when ϕ is small. This observation is new since such an overlap

only occurs at intermediate level of ϕ from dispersion to agglomeration in the existing

literature. Indeed, this new overlap does not appear in PLPG case (note that σS=σB when

α=0).

The bifurcation of industrial location with respect to σ is shown in Figure 6 and

summarized in Proposition 4.

Proposition 4. When the trade costs (interregional transportation costs) are sufficiently large,
the initial spatial pattern exhibits a tomahawk bifurcation with respect to σ.

Proof: See Appendix E.
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V. Concluding Remarks

This paper presents a simple, analytically solvable, new economic geography model to

analyze the effects of LPGs on the industrial location. We add new features to the existing

literature in several respects. First, a proportional income tax is imposed on both skilled and

unskilled workers to finance the LPG in two regions with symmetric tax rates. Second, the tax

revenue reduces the disposable income level of workers and the market size of private goods.

Third, the LPG is “congestible” depending on the endogenous scale of local user/resident and

an exogenous congestability parameter. In our framework, the benchmark case of PLPG

displays a similar location pattern to the previous NEG taxation model, although the tax

reduces the market size of manufactured goods. The interaction between the tax rate and the

LPG taste makes the appearance of the break point different from that in the FE model.

Furthermore, in the CLPG case, both the symmetry and the full agglomeration equilibria could

emerge from the autarky state due to the presence of congestability. In addition, the interaction

between the tax rate and the LPG congestion determines the spatial pattern of the ultimate state

(transportation costs are zero). This is because the economy scale and the corresponding LPG

service may not counteract the endogenous congestion for an agglomeration in a high tax rate.

Finally, using this fully analytic framework, we have shown that the break point (re-dispersion

point) increases (decreases) in tax rate t and the LPG congestability. In particular, it is possible

that the dispersion equilibrium is always stable for any level of trade freeness as long as the

break point and the re-dispersion point coincide or do not exist. This distinctive feature also

stems from the fact of inherent congestability of the LPG. Thereby, we are able to derive a

richer menu of normative results.

Decentralization of governance is a societal trend nowadays. In most developed countries,

local governments are able to assign tax rates by themselves. Therefore, it is important to

explore the endogenous tax rates and tax competition for future research.
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APPENDIX A

Part 1: The relative real wage rate between two regions monotonically increases in h when ϕ>ϕPure .

This is due to the following standard study of the real wage rate differential between two regions:

wiH

(ℙ i)
−

wjH

(ℙ j)
  h12 =0, ∀ϕ, t;

∂

∂h 
wiH

(ℙ i)
−

wjH

(ℙ j)
  h12  

Pure
 =0,

∂2

∂h ∂ϕ 
wiH

(ℙ i)
−

wjH

(ℙ j)
  h12  

Pure
 >0, ∀t ;

∂2

∂h2 
wiH

(ℙ i)
−

wjH

(ℙ j)
  h12  

Pure
 =0,

∂3

∂h3 
wiH

(ℙ i)
−

wjH

(ℙ j)
  h12  

Pure
 >0, ∀t.

Part 2: We examine the following equations checking the stability of the dispersion (h=12) and

the full agglomeration (h=1 or 0) equilibria at ϕ=0, respectively:

∂ ΔV
∂ h 0 0 h

1

2
=
2

(2)
1 (1−t)

2
μ

H
1

1 σ(σ−1)t
⋅
(1−H)tσ

σ−(1−t)μ 
1

⋅(1+μ−σ), (A1)

ΔV 0 0 =
μ(1−t)

2

H
1

1 σt
⋅

(1−H)tσ

2σ−(1−t)μ 
1

⋅h
1

1 −(1−h)
1

1 . (A2)

The RHS of (A1) is positive so that the symmetry equilibrium is unstable if and only if σ<1+μ. On the

other hand, when σ<1+μ, the RHS of (A2) is positive for h>12 so that the full agglomeration is

stable. If σ>1+μ, as long as h>12, the RHS of (A2) is negative so that the full agglomeration is

unstable.

APPENDIX B

Here, we prove that the LHS of (15) is always positive for any when σ<1+μ. First, we rewrite the

LHS of (15) as ϕ(1)⋅f, where

f≡2ϕ
1

1 
σ+(1−t)μ

σ−(1−t)μ 


−1−(1−t)
μ

σ
+ϕ21+(1−t)

μ

σ .

We immediately have the following

(i)
∂f

∂ϕ
=
2(σ−1−μ)

σ−1
ϕ



1 
σ+(1−t)μ

σ−(1−t)μ 


−2ϕ1+(1−t)
μ

σ <0 when σ<1+μ,

(ii) f  1 =2
σ+(1−t)μ

σ−(1−t)μ 


−1>0.

By putting (i), (ii), and ϕ(1)>0 together, we know that the full agglomeration equilibria are

always stable for any ϕ∈(0, 1) when σ<1+μ. ▄

Proof of Proposition 2: (i) When σ>1+μ, ϕFEB falls in (0, 1) evidently. Furthermore, c1>0 and

a1+b1+c1<0 hold. The conclusion of ϕ
Pure
B ∈(0,1) is derived from the following facts: (ia) ϕPureB is the

smaller root of a1ϕ
2+b1ϕ+c1=0; (ib) a1ϕ

2+b1ϕ+c1>0 when ϕ=0; (ic) a1ϕ
2+b1ϕ+c1<0 when

ϕ=1; (id) a1>0.

(ii) We first calculate the derivative of ϕFEB with respect to t:
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∂ϕPureB

∂t
=

−ϕPureB

2a1ϕ
Pure
B +b1 ϕ

Pure
B

∂a1
∂t

+
∂b1
∂t

+
1

ϕPureB

∂c1
∂t  by use of a1(ϕPureB )

2
+b1ϕ

Pure
B +c1=0.

Furthermore, we have
−ϕPureB

2a1ϕ
Pure
B +b1

=
−ϕPureB

− (b1)
2
−4a1c1

>0, and

ϕPureB

∂a1
∂t

+
∂b1
∂t

+
1

ϕPureB

∂c1
∂t

=
μ

ϕPureB

(σ−1)1+4γϕPureB −(ϕPureB )
2
−μ(1−ϕPureB )

2
>0

for σ>1+μ . Therefore, ϕPureB increases in t when σ>1+μ . On the other hand, ϕFEB is independent of t,

and tC is obtained by solving ϕPureB −ϕFEB =0. Then ϕPureB >ϕFEB holds iff t>tC. Evidently, tC∈(0, 1) for any

0<γ<1, σ>1+μ, 0<μ<1. ▄

APPENDIX C

Here, we prove expression (23):

∂ ϕCongB

∂ t
>0,

∂ ϕCongB

∂ α
>0,

∂ ϕCongB

∂ t
<0,

∂ ϕCongB

∂ α
<0 when ϕCongB and ϕCongB ∈(0, 1).

As shown in (20) and (19), ϕCongB and ϕCongB are two roots of equation a2ϕ
2+b2ϕ+c2=0 . Both of

them are positive when c2>0. Differentiating this equation with respect to t and α gives

∂ϕ

∂θ
=−

ϕ

2a2ϕ+b2 ϕ
∂a2
∂θ

+
∂b2
∂θ

+
1

ϕ

∂c2
∂θ , ϕ=ϕCongB , ϕCongB , θ=t, α.

(i) At ϕ=ϕCongB ∈(0, 1), we have

−
ϕ

2a2ϕ+b2
=
1

 Δ2

ϕCongB >0,

ϕ
∂a2
∂t

+
∂b2
∂t

+
1

ϕ

∂c2
∂t

=
μ

ϕCongB

c21−(ϕ

Cong
B )

2


σ−(1−t)μ
+2μϕCongB (1−ϕCongB )+4γϕCongB (σ−1)>0, (C1)

ϕ
∂a2
∂α

+
∂b2
∂α

+
1

ϕ

∂c2
∂α

=
Hγ

ϕCongB

(σ−1)(1+ϕCongB )σ(1+ϕCongB )−μ(1−t)(1−ϕCongB )>0 (C2)

(ii) At ϕ=ϕCongB ∈(0, 1), we have

−
ϕ

2a2ϕ+b2
=−

1

 Δ2

ϕCongB <0.

On the other hand, the positiveness of (C1) and (C2) holds similarly. Therefore, we obtain the 3rd

and 4th inequalities of (23). ▄

APPENDIX D

η1≡
2(1)2(1−H)

1
(1−t)

2
tγμσ 1

H
1

1 σ−(1−t)μ
1

>0, η2≡
2(1)(1−H)

1
(1−t)

2
tμ

H
1

1 σ−(1−t)μ
>0.
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η3≡
2(1)2(1)(1−H)

1
(1−t)

2
μ(tσ)



H
1

1 (σ−1)σ−(1−t)μ
1

>0, η4≡
2 (1)(1−H)

1
μ(1−t)

2
(tσ)



H
1

1 σ−(1−t)μ
1

>0.

APPENDIX E

Proof of Proposition 3: Note that

ΔV≡Vi−Vj= (1−t)wH i

(ℙ i)
 ⋅(Gi)

− (1−t)wH j

(ℙ j)
 ⋅(Gj)

 and ΔV  1 =η5⋅Ω1,

where η5≡
2(1−H)

1
(1−t)

2
tμ

H
1

1 σ−(1−t)μ
1
is a positive bundling parameter and

Ω1≡σ−(1−2h)(1−t)μ

Hh+
1−H

2 
 



− σ+(1−2h)(1−t)μ

H(1−h)+
1−H

2 




.

Therefore, Ω1 can be used to establish the bifurcation properties of ΔV 1 with respect to t:

Ω1 1 h
1

2
=0, ∀t (E1)

∂Ω1
∂h  1 h

1

2
 ttd =0, where td=1−

αHσ

μ
by Equation (27) (E2)

∂2Ω1
∂h ∂t  1 h

1

2
 ttd =

−22γμ

σ 1 <0 (E3)

∂2Ω1

∂h2  1 h
1

2
 ttd =0 (E4)

∂3Ω1

∂h3  1 h
1

2
 ttd =25H3σ γα(α2−1)<0 (E5)

Equation (E1) means that h=12 is always a stable equilibrium. Equations (E2) and (E3) show that,

as t decreases from a large value, h=12 turns from being stable to unstable as soon as t falls below td.

Equations (E4) and (E5) imply that, as soon as h=12 changes its stability, two asymmetric stable

equilibria appear in its neighborhood.

Moreover, by the explanation after Equation (27), we know that full agglomeration is sustained from

ta to zero and ta is always smaller than td . Summing up, ΔV  1 exhibits a “supercritical” pitchfork

bifurcation as in Figure 5. ▄

Proof of Proposition 4: Note that ΔV  0 =η4⋅Ω0, where η4 defined in Appendix D is positive and

Ω0≡h
1

1 ⋅
2

2Hh+1−H 
 

−(1−h)
1

1 ⋅
2

2H(1−h)+1−H 
 

.

Then, Ω0 can be used to establish the bifurcation properties of ΔV  0 with respect to σ:

Ω0 0 h
1

2
=0 ∀σ (E6)

∂Ω0
∂h  0 h

1

2
 B =0, where σB≡1+

μ

1+Hαγ
by Equation (31) (E7)
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∂2Ω0
∂h ∂σ  0 h

1

2
 B =

−22(1+Hαγ)
2

21Hμ
<0 (E8)

∂2Ω0

∂h2  0 h
1

2
 B =0 (E9)

∂3Ω0

∂h3  0 h
1

2
 B =

25(1−H2)Hαγ

21H >0 (E10)

Equation (E6) reveals that h=12 is always an equilibrium. Equations (E7) and (E8) show that, as σ

decreases from a large value, h=12 turns from being stable to unstable as soon as σ falls below σB .

Equations (E9) and (E10) express that, as soon as h=12 changes its stability, two asymmetric unstable

equilibria appear in its neighborhood.

Moreover, by the explanation after Equation (31), we know that full agglomeration is sustained from

σS=1+μ to 1 and σS is always larger than σB . Summing up, ΔV  0 exhibits a “subcritical” pitchfork

bifurcation with respect to σ as in Figure 6. ▄

APPENDIX F: Existence of the Break Point and the Re-dispersion Point

In Section IV.1, the break point and the re-dispersion point are defined when Δ2 is positive so that

ϕCongB and ϕCongB exist. Further analysis of Δ2 yields the following results.

Result 1: Both ϕCongB and ϕCongB exist for any tax rate t∈(0, 1) if αH< 1≡
μ2

4γ(σ−1)
2 .

Result 2: Neither ϕCongB nor ϕCongB exists for any tax rate t∈(0, 1) if

αH> 2≡
2σ(σ+γμ)

γμ2
+

1

γ(σ−1)
−
2

γμ2 
(σ 2−μ2)(σ+γμ)μ2+(σ−1)(σ+γμ)

σ−1
.

Result 3: Both ϕCongB and ϕCongB exist iff t<tΔ when 1<αH< 2, where

tΔ≡
μ
2σ−1
σ−1

+γ2σ−αHσ2γ+
μ

σ−1 +μαH(2+αHγ)+4γ+
μ

σ−1 − Λ

μ1+γαH(2+αHγ)+4γ+
μ

σ−1 
,

and Λ≡4σ 2γ(1+αHγ)
2
−

μ

σ−1 
2

αH+γ+
μ

σ−1 .

Then, we prove the above results. Note that both ϕCongB and ϕCongB exist iff Δ2 is nonnegative. We

rewrite Δ2 as a function of tax rate t: Δ2=8σ
2(σ−1)

2
(a3t

2+b3t+c3), where

a3=
1

2 
μ

σ 
2

1+γ2αH+(αH)
2
γ+4γ+

4μ

σ−1 >0,

b3=−
μ

σ 
μ

σ−1
+

μ

σ
+γ2−αH2γ+

μ

σ−1 +2αH+(αH)
2
γ+4γ+

4μ

σ−1 
μ

σ <0,

c3=
1

2 
μ

σ−1 
2

+(αH)
2
γ 2

μ

σ 
2

+
2μ2

σ(σ−1) 1+
2γμ

σ 
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+
μ

σ 4γ+
μ

σ
+
4γ 2μ

σ −2αHγ2+
2γμ

σ
+

μ2

σ(σ−1)
−

μ

σ 
2

.

I. If αH≤(1+μ−σ)γ(σ−1), then c2≤0 and Δ2>0 always hold according to (19). Then, both ϕCongB

and ϕCongB exist. On the other hand, if αH> (1+μ−σ)γ(σ−1), then we have two roots of equation

a3t
2+b3t+c3=0 .The larger root (−b3+ (b3)

2
−4a3c3 )(2a3) is always larger than 1 since

2a3+b3<0< (b3)
2
−4a3c3 holds. Therefore, the smaller root

−b3− (b3)
2
−4a3c3

2a3
=tΔ

is the only meaningful solution for an economic system. Clearly, tΔ>1 holds if and only if

a3+b3+c3=
1

2 
μ

σ−1 
2

−4αHγ>0.

Hence, both ϕCongB and ϕCongB exist when
1+μ−σ

γ(σ−1)
<αH<

μ2

4γ(σ−1)
2≡ 1.

II. Neither ϕCongB nor ϕCongB exists if tΔ<0, which holds if and only if c3<0. Rewriting c3 as a function of

αH, we obtain c3=a4(αH)
2
+b4αH+c4, where

a4=
1

2 
γμ

σ 
2

>0,

b4=−
2γ 2μ

σ
+γ2+

μ2

σ(σ−1)
−

μ

σ 
2

<0,

c4=
1

2 
μ

σ−1 
2

+
2μ2

σ(σ−1) 1+
2γμ

σ +
μ

σ 4γ+
μ

σ
(1+4γ 2)>0.

There are two possible roots of equation a4(αH)
2
+b4αH+c4=0 with respect to αH. The larger root

(−b4+ (b4)
2
−4a4c4 )(2a4) is always larger than 1 since 2a4+b4<0< (b4)

2
−4a4c4 . Therefore,

the smaller root (−b4− (b4)
2
−4a4c4 )(2a4) is the only possible solution of the economic system.

Then, tΔ<0 if and only if

αH>
−b4− (b4)

2
−4a4c4

2a4
≡ 2

=
2σ(σ+γμ)

γμ2
+

1

γ(σ−1)
−
2

γμ2 
(σ 2−μ2)(σ+γμ)μ2+(σ−1)(σ+γμ)

σ−1
.

In addition, we obtain the result 2.

III. When 1<αH< 2, Δ2>0 holds if and only if t<tΔ, and we obtain the result 3.
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