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Abstract

In this paper, we analyze feasible bias-reduced versions of point estimates for predictive

regressions: The plug-in estimates, which are based on the augmented regressions proposed by

Amihud and Hurvich (2004) and Amihud, Hurvich and Wang (2010), and the grouped

jackknife estimate by Quenouille (1949, 1956). We also derive the correct standard errors

associated with these point estimates. The methods thus allow for a unified inferential

framework, where point estimates and statistical inference are based on the same methods.

Using the new estimates, we investigate U.S. stock returns and find that some variables are

able to predict stock returns.
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JEL Classification Codes: C13, C22, C58, G17

I. Introduction

Predictive regressions have long been studied in the financial and econometric literature.

One of the difficulties in predicting stock returns by financial variables is that the ordinary least

squares (OLS) estimate is severely biased, as pointed out by Mankiw and Shapiro (1986) and
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Elliott and Stock (1994). This bias comes from the fact that typical predictor variables are

strongly serially correlated and also contemporarily correlated with prediction errors. In the case

of the following model,

rt=μr+βxt1+ut, (1)

xt=μx+ϕ1xt1+⋯+ϕp x tp+et, (2)

the typical case is that ρ=ϕ1+⋯+ϕp is close to one while Cov(ut, et) is close to −1. Because

of the upward bias, the usual t -test suffers from over-size distortions, and hence, we tend to

erroneously find evidence of strong predictability.

In order to overcome the problem of the over-size distortions, many efforts have been

made and testing procedures have been developed in the literature. Elliott and Stock (1994)

considered approximating the distribution of test statistics by the Bayesian mixture procedure,

while Cavanagh, Elliott and Stock (1995) proposed to construct test statistics that are free from

the true value of ρ by using three intervals̶sup-bound, Bonferroni, and Scheffe-type. The

latter methods have been applied to stock returns by Torous, Valkanov and Yan (2004), who

found evidence of predictability only at short horizons. Stambaugh (1999) tackled this problem

from the Bayesian point of view and based on his theory, Lewellen (2004) developed the bias

adjustment of the OLS estimate of β. He found stock returns predictability using new tests by

combining the t-tests based on the OLS estimate of β and the bias-adjusted estimate. Campbell

and Yogo (2006) discussed the optimality of predictive regressions. Theoretically, we can

construct conditional optimal tests as developed by Jansson and Moreira (2006), which

investigated the optimality in the class of location invariant tests, but such tests require

advanced computational methods. Instead, Campbell and Yogo (2006) proposed Bonferroni

intervals based on conditionally optimal tests and found stock return predictability. Amihud,

Hurvich and Wang (2008) considered the augmented regressions with the bias corrected least

squares estimates of the AR coefficients, while Chen and Deo (2009) developed the restricted

likelihood-based test using the Bartlett-correction. On the other hand, Lanne (2002) tested

predictability not by estimating (1) but by applying stationarity tests, and found it difficult to

predict stock returns.

Once the evidence of predictability is observed, it is often the case that we need the point

estimate of β. For example, we need the point estimate when actually forecasting future returns

by predictive regressions. Another example is the case where a change in predictability is

observed, as is often the case with the U.S. stock returns. In this case, we may want to examine

the magnitude of change in predictability, which can be measured by using the point estimates

of β in two subsamples. Note that although the existing testing methods may give the

confidence intervals of β, they do not necessarily give the point estimates of β. Therefore, new

estimation methods for the predictive regressions have been developed recently. Amihud and

Hurvich (2004) developed the unbiased estimate of β based on the least squares method for

possibly multiple AR(1) predictors under the assumption of normality, which is extended to the

AR (p) model by Amihud, Hurvich and Wang (2010). Eliasz (2004) proposed the median

unbiased estimate for a single AR(1) predictor by inverting the Jansson and Moreira (2006) test

statistic, while Chen and Deo (2009) developed the estimate for multiple predictors based on

the restricted likelihood, which is free of location parameters and possesses small curvature.

Chiquoine and Hjalmarsson (2009) applied the jackknife method, which was originally
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developed by Quenouille (1949, 1956), to the predictive regressions.

In this paper, we investigate the finite sample properties of the existing estimates and show

that the augmented regressions considered by Amihud and Hurvich (2004) and Amihud,

Hurvich and Wang (2010) and the jackknife estimates by Chiquoine and Hjalmarsson (2009)

are useful and easy to implement. We also derive the correct standard errors accosted with

these point estimates. As a result, the estimation and inference can be made in a unified

framework where point estimates and statistical inference are based on the same method, which

is obviously the usual case but is not necessarily so in the case of predictive regressions; the

tests are often based on some conservative method that does not produce a unique point

estimates and the reported point estimates is often a simple OLS estimate. The important finite

sample properties of the estimates are (i) the grouped jackknife method is quite useful to reduce

the bias of the estimate, (ii) one of the plug-in estimates proposed in this paper has correct

coverage rates of the confidence intervals. Considering these favorable finite sample properties,

our unified framework will complement the existing testing methods to investigate the

predictability of stock returns.

In the empirical analysis, we first apply our methods to the U.S. monthly and annual stock

returns investigated by Campbell and Yogo (2006). We find the predictability of stock returns

using the same predictor variables as observed by Campbell and Yogo (2006). In addition, we

also find strong evidence of predictability by the dividend-price ratio, which is not considered

as a statistically significant predictor. We then investigate the same stock returns by extending

the sample period. Again, we clearly observe the predictability of stock returns by the dividend-

price ratio.

The rest of the paper is organized as follows. Section 2 reviews the augmented regressions

by Amihud and Hurvich (2004) and Amihud, Hurvich and Wang (2010), the jackknife estimate

used by Chiquoine and Hjalmarsson (2009) and the restricted maximum likelihood method by

Chen and Deo (2009). We also propose versions of the augmented regression estimate and

derive the standard errors of the point estimates. We investigate the finite sample properties of

the estimates in Section 3. The predictability of the U.S. stock returns is investigated in Section

4, and the concluding remarks are given in Section 5. The technical derivations are relegated to

the Appendix.

II. Estimation Methods for Predictive Regressions

1. The Feasible Augmented Regression

Let us first briefly review the bias corrected estimates based on the feasible augmented

regression. For model (1)‒ (2), we assume that ut~i.i.d.(0, σ 2
u), et~i.i.d.(0, σ 2

e ), ut and et are

contemporaneously correlated with covariance σue, and the AR coefficients ϕ1, ⋯, ϕp satisfy the

stationary condition. In this case, it is well known that the OLS estimate of β,

β̂=
∑

T

t1
x t1rt

∑
T

t1
x 2
t1

=β+
∑

T

t1
x t1ut

∑
T

t1
x 2
t1

, (3)
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where x t1=xt1−∑
T

t1
xt1T, is shifted and skewed to the right when σue is negative, and

hence, β̂ is positively biased.

In the case of infeasible regressions with known ϕ1, ⋯, ϕp, model (1) can be transformed

into

rt=μ*
r+βxt1+

σue

σ 2
e

(xt−ϕ1xt1−⋯−ϕp x tp)+ut−
σue

σ 2
e

e t, (4)

where μ*
r=μr−(σueσ

2
e )μx. Then, by regressing rt on a constant, xt1 and (xt−ϕ1xt1−

⋯−ϕp x tp), the OLS estimate of β, denoted by β̂ *, becomes

β̂ *=β+
∑

T

t1
x t1ut−

σue

σ 2
e

e t
∑

T

t1
x 2
t1

+op
1

 T . (5)

Since the asymptotic variance of β̂ * is (σ 2
u−σ 2

ueσ
2
e )Var(xt), which is smaller than the

asymptotic variance of β̂ given by σ 2
uVar(xt), we can see that β̂ * is more efficient than β̂ .

Moreover, Amihud and Hurvich (2004) showed that for the AR(1) case, β̂ * is unbiased under

the assumption of normality
1
.

Although augmented regression (4) is desirable, it is infeasible in practice because we do

not know the true values of ϕ1, ⋯, ϕp. Instead, Amihud and Hurvich (2004) proposed to plug-

in the bias corrected estimate of ϕ1 in the AR (1) case and proposed the following feasible

augmented regression:

rt=μr+βxt1+γ(x t−ϕ̂1, c x t1)+vt, (6)

where ϕ̂1, c=ϕ̂1+(1+3ϕ̂1)T+3(1+3ϕ̂1)T
2 with ϕ̂1 being the OLS estimate for (2) with p=1

and vt represents the regression error. This bias corrected estimate of ϕ1 is motivated from the

well-known fact that Eϕ̂1=ϕ1−(1+3ϕ1)T+O(1T2) . The expression of ϕ̂1, c is obtained by

repeatedly replacing ϕ1 with ϕ̂1 in the expression of Eϕ̂1. Amihud, Hurvich and Wang (2010)

extended model (1) ‒ (2) to the AR (p) model for xt and the multiple predictors given by

xt1, ⋯, xtp and proposed the similar feasible augmented regression.

2. Other Versions of the Plug-in Estimate

Note that regression (6) proposed by Amihud and Hurvich (2004) is only one feasible

version of regression (4) and there might be other estimates whose finite sample property is

better than the Amihud-Hurvich estimate. In the following, we consider several estimates of
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2
e )et is an i.i.d. sequence uncorrelated with a sequence of et, which

drives xt, so that the limiting distribution of β̂ * is mixed normal.



ϕ1, ⋯, ϕp and propose to plug-in them into infeasible regression (4).

Since the infeasible efficient estimate is expressed as (5), the feasible version can be

defined as, by replacing the unknown parameters with some estimates and omitting the

op(1 T ) term,

β

≡β+
∑

T

t1
x t1ut−

σ̂ ue

σ̂ 2
e

e t
∑

T

t1
x 2
t1

=β̂−
σ̂ ue

σ̂ 2
e

∑
T

t1
x t1e t

∑
T

t1
x 2
t1

, (7)

where σ̂ ue and σ̂ 2
e are consistent estimates of σue and σ 2

e , which can be constructed from the

regression residuals in (1) and (2), and e t=x t−ϕ


1 x t1−⋯−ϕ

p x tp, where x tj= xtj−

∑
T

tj1
xtj(T−j ) for j=1, ⋯, p−1, is the estimated residual with ϕ


1, ⋯, ϕ


p being some

estimates. From (7), it is observed that the feasible estimate is based on the OLS estimate β̂ but

the bias is adjusted by the second term on the right hand side of (7). We can also see that bias

adjustment based on the least squares estimate is meaningless because it is well known that ê t,

the least squares residual, is orthogonal to x t1, that is, ∑
T

t1
x t1ê t1=0, which implies that

β

=β̂ in this case. We call β


the plug-in estimate.

In a special case of p=1, the plug-in estimate can be expressed in more compact form.

Since

∑
T

t1
x t1e t

∑
T

t1
x 2
t1

=
∑

T

t1
x t1(x t−ϕ


1 x t1)

∑
T

t1
x 2
t1

=
∑

T

t1
x t1et−(ϕ


1−ϕ1)x t1

∑
T

t1
x 2
t1

=(ϕ̂1−ϕ1)−(ϕ


1−ϕ)

=ϕ̂1−ϕ


1,

where we used the fact that ϕ̂1−ϕ1=∑
T

t1
x t1et∑

T

t1
x 2
t1, we can see that

β

=β̂−

σ̂ ue

σ̂ 2
e

(ϕ̂1−ϕ


1),

so that the bias adjustment term can be expressed as the difference between the OLS estimate

ϕ̂1 and the other estimate in the AR(1) case.

(a) Cauchy estimate

To construct the plug-in estimate, we need e t or ϕ


1, ⋯, ϕ

p. The first estimate we consider
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is the Cauchy estimate proposed by So and Shin (1999)
2
. This estimate is obtained by the

instrumental variable method with a special instrument and by a detrending method other than

the usual demeaning. The advantage of this method is that the t -statistic is asymptotically

normal irrespective of whether the process is stationary, nearly integrated or integrated,

although the estimate is median unbiased but biased in a usual sense in the nearly integrated

and integrated cases.

To estimate the model, we first express model (2) as the recursive OLS mean adjustment

form given by

xt−xt1=ρ(xt1−xt1)+ψ1Δxt1+⋯+ψp1Δxtp1+εt, (8)

where xt1=∑
t1

s1
xs(t−1), εt denotes the error term, ρ=ϕ1+⋯+ϕp and ψj=−∑

p

ij1
ϕi for

j=1, ⋯, p−1. Usually, we subtract the sample mean of x and (8) would be expressed using x t

and x t1. However, So and Shin (1999) recommended subtracting the recursive OLS mean xt1

because of the nice finite sample property of the estimate; this method is called the recursive

OLS mean adjustment. From (8) we obtain the instrumental variable estimates ρ̂c, rols,

ψ̂1, c, rols, ⋯, ψ̂p1, c, rols with sign(xt−xt1) and Δxt1, ⋯, Δxtp1 as the instruments and denote the

estimate of the p×p variance-covariance matrix of the estimated coefficients as Σ̂ c, rols . The

plug-in estimate of β is obtained by replacing e t in (7) with e c, rols, t=x t−ρ̂c, rolsx t1−

ψ̂1, c, rolsΔxt1−⋯−ψ̂p1, c, rolsΔxtp1 and denoted by β

c, rols.

We may be able to consider another version of the Cauchy estimate by changing the

demeaning method. It is often the case for the financial time series that the autoregressive root

or ρ is close to one and in such a case, the GLS detrending method by Elliott, Rothenberg and

Stock (1996) may be useful to obtain the efficient estimates of the coefficients. In the case of

the Cauchy estimate, we used the recursive GLS detrending method and estimate the following

regression,

xt−m̂x, ls, t1=ρ(xt1−m̂x, ls, t1)+ψ1Δxt1+⋯+ψp1Δxtp1+εt (9)

by the instrumental variable method with the instruments given by sign(xt−m̂x, ls, t1) and

Δxt1, ⋯, Δxtp1, where

m̂x, ls, t=
∑

t

s1
1qd

s xqd
s

∑
t

s1
(1qd

s )
2

with xqd
t =

x1 : t=1

xt−
7

T
xt1 : t≥2,

1qd
t =

1 : t=1

7

T
: t≥2.

Using the instrumental variable estimates denoted as ρ̂c, rls, ψ̂1, c, rls, ⋯, ψ̂p1, c, rls, we construct

e c, rls, t=x t−ρ̂c, rls x t1−ψ̂1, c, rlsΔxt1−⋯−ψ̂p1, c, rlsΔxtp1 and obtain the plug-in estimate β

c, rls

by replacing e t with e c, rls, t in (7). We denote the estimate of the p×p variance-covariance
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matrix of the estimated coefficients as Σ̂ c, rls, which will be used later to construct the

confidence interval of β

c, rls. We will see in the next section that the recursive GLS detrending

is effective to reduce the MSE in finite samples.

(b) Grouped jackknife estimate

The second method we considered is the grouped jackknife estimate by Quenouille (1949,

1956), which is also applied to the option prices by Phillips and Yu (2005) and to the

predictive regressions by Chiquoine and Hjalmarsson (2009). Let us express model (2) as

xt=μx+φ′zt1+et,

where φ=ϕ1, ⋯, ϕp′ and zt1=xt1, ⋯, xtp′. Let φ̂=ϕ̂1, ⋯, ϕ̂p′ be the OLS estimate of φ

using the whole sample. Next, we split the whole sample into two subsamples (t=1, ⋯, T2

and t=T2+1, ⋯, T) and estimate the model in each subsample. let φ̂1 and φ̂2 be the OLS

estimates from the first and the second subsamples, respectively. Then, the grouped jackknife

estimate of φ is defined as

φ̂j, 2=2φ̂−
φ̂1+φ̂2

2
.

The jackknife method is motivated from the fact that φ̂j, 2 does not have the first order bias

and Eφ̂j, 2=φ+O(1T2) in our case. To see this, recall that, the first order bias is proportional

to 1T such that Eφ̂=φ+C1T+O(1T2) where C1 is a constant independent of the sample

size, which is also used in Amihud and Hurvich (2004). Since φ̂1 and φ̂2 are obtained from the

half of the whole sample, we can see that Eφ̂1=Eφ̂2=φ+2C1T+O(1T2) . From these

relations, we can easily see that Eϕ̂j, 2=ϕ+O(1T2).

In general, we can split the whole sample into m subsamples for m≥2 and denote the

OLS estimates in the subsamples as φ̂j, 1, ⋯, φ̂j, m. Then, the grouped jackknife estimate of ϕ is

defined as

φ̂j, m=
m

m−1
φ̂−

1

m(m−1)
(φ̂1+⋯+φ̂m).

Again, it can be shown that the first order bias disappears from φ̂j, m and Eφ̂j, m=φ+O(1T2).

Then, the plug-in estimate is obtained by replacing e t in (7) with e j, m, t=x t−φ̂' j, m z t1 where

z t1=x t1, ⋯, z tp′. We denote this estimate as β

j, m.

It is known that the jackknife method with larger number of sub-groups may reduce the

MSE of the estimate whereas the bias might increase because we cannot ignore the higher order

bias if the number of observations in subsamples are too small. We consider m=2, 3 and 4 in

the following section.

3. Direct Application of the Jackknife Method

We have so far considered to reduce the bias of the least squares estimate β̂ through the

estimation of the AR parameter in (2). However, the formula of the plug-in estimate is
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available only when model (1) ‒ (2) is assumed and we need to change this formula if the

underlying model has been changed. For example, as discussed in Amihud and Hurvich (2004),

Amihud, Hurvich and Wang (2008) and Chen and Deo (2009), if we consider predictive

regressions with multiple predictors, the modification may be straightforward if the coefficient

matrices associated with the vector autoregressive representation of the predictors are assumed

to be diagonal. However, this is not the case in general and then the modification would be

more complicated if the off-diagonal elements are taken into account. On the other hand, if a

single predictor variable is used but several lagged variables are included as predictors as

considered in Amihud, Hurvich and Wang (2010), the modification may be different from those

considered in the standard multiple predictors case. Moreover, there is no guarantee that the

predictor variables are well characterized as AR(p) models but we may have to consider more

general models. In such cases, we have to investigate how to reduce the bias of the estimate

and have to find the bias correction formula depending on the models, which is tedious in

practice. In this sense, the plug-in estimate considered in the previous subsections is limited,

although it is useful in some cases because some financial time series is known to be well

approximated by autoregressive processes.

On the other hand, we can directly apply the jackknife method for the estimation of β

without assuming specific models for the predictor variables as is considered in Chiquoine and

Hjalmarsson (2009). To see this, let us consider general multiple predictors model given by

rt=μr+β 'x t1+et, (10)

where x t1 is a q -dimensional predictor variable uncorrelated with et and β is an associated

coefficient. As explained before, let β̂ be the least squares estimate using the whole sample

while β̂1, ⋯, β̂m be the subsample estimates when the whole sample is split into m-subsamples.

Then, the grouped jackknife estimate is defined by

β̂j, m=
m

m−1
β̂−

1

m(m−1)
(β̂1+⋯+β̂m). (11)

As long as x t1 is stationary, which is often assumed in the literature, it is known that the

first order bias of the least squares estimate is proportional to 1T and hence we can see that

β̂j, m has only the second order bias. This is a great advantage over the other estimates because

we do not have to assume any specific structure for x t1, so that we can apply the jackknife

method in various situations. We will investigate the difference in finite samples between the

plug-in estimate with the jackknife method and the direct jackknife estimate in the next section.

4. Restricted Likelihood Estimate

Instead of relying on the least squares principle, Chen and Deo (2009) proposed to

estimate the predictive regression using the likelihood method. They first pointed out that the

maximum likelihood estimate behaves very well when there is no constant whereas it behaves

badly with a constant. They then proposed to estimate the model by maximizing the restricted

likelihood function, which is free of the nuisance intercept parameter. They also found the bias

expression for the restricted maximum likelihood (REML) estimate and proposed the bias

corrected version of the REML estimate. We omit the exact expression of the estimate because
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it is complicated. See Chen and Deo (2009) for details. Chen and Deo (2009) showed that their

estimate is less biased than the Amihud and Hurvich (2004) estimate. Further, their test based

on the restricted likelihood function is more powerful than the test proposed by Campbell and

Yogo (2006) and Jansson and Moreira (2006).

Although the REML method is theoretically interesting and the bias corrected REML

estimate is less biased according to Chen and Deo (2009), its finite sample property is much

affected by the true distribution of the error term and the initial value condition on the predictor

variable. In fact, our preliminary simulation (which is not reported to save space) shows that

the bias corrected REML estimate is less biased when the error term is normal with stationary

initial values whereas it is more biased either when the distribution of the error term is log-

normal or when the initial value of xt is fixed at x0=0. Our simulation shows that neither the

REML estimate nor the Amihud-Hurvich estimate dominate the other estimate; their finite

sample performance depends on the distributions of the error terms and the initial value

condition on xt.

5. Confidence Intervals

The estimates considered in this section, except for the REML estimate
3
, are shown to be

asymptotically normal as long as the predictor variable in (2) is stationary and we can construct

the confidence intervals based on those estimates. Since the plug-in estimate is given by (7),

what we need is the variance estimate of β

.

As explained in the Appendix, the variance estimate of β

c, rols is given by


Var(β


c, rols)=


Var(β̂ * )+
σ̂ ue

σ̂ 2
e


2

J ′ Σ̂ c, rols J, (12)

where Var(β̂ * )=
σ̂ 2

e σ̂
2
u−σ̂ 2

ue

σ̂ 2
e∑

T

t1
x 2
t1

and J=1,
∑

T

t1
x t1Δxt1

∑
T

t1
x 2
t1

, ⋯,
∑

T

t1
x t1Δxtp1

∑
T

t1
x 2
t1 

'
.

Similarly, when we plug-in the Cauchy estimate with the recursive GLS detrending method, the

variance estimate is given by (12) with Σ̂ c, rols replaced by Σ̂ c, rls.

Expression for the variance estimate of the plug-in estimate using the jackknife method is

expressed as


Var(β


j, m)=


Var(β̂ * )+
σ̂ ue

σ̂ 2
e


2

K′Σ̂ j, mK , (13)

where Σ̂ j, m is the variance estimate of φ̂j, m and

K=1,
∑

T

t1
x t1x t2

∑
T

t1
x 2
t1

, ⋯,
∑

T

t1
x t1x tp

∑
T

t1
x 2
t1 
'
.
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3 Although the REML estimate is expected to be asymptotically normal, its limiting distribution is not derived by

Chen and Deo (2009).



The estimate Σ̂ j, m is obtained as follows. Note that

E(φ̂j, m−φ)(φ̂j, m−φ)'=E(φ̂−φ)+(φ̂j, m−φ̂)(φ̂−φ)+(φ̂j, m−φ̂)'

=Var(φ̂)+E(φ̂j, m−φ̂)(φ̂j, m−φ̂)'

+E(φ̂−φ)(φ̂j, m−φ̂)+E(φ̂j, m−φ̂)(φ̂−φ)'.

Since φ̂ is efficient while φ̂j, m is inefficient, we can see from Lemma 2.1 in Hausman (1978)

that the last two terms asymptotically equal zero. Then, the variance estimate of φ̂j, m is given

by

Σ̂ j, m=


Var(φ̂)+(φ̂j, m−φ̂)(φ̂j, m−φ̂)', (14)

where

Var (φ̂) is the variance estimate of the OLS estimate using the whole sample. The same

expression is obtained by Yamamoto and Kurozumi (2005) in a different manner in a different

situation.

Note that both (12) and (13) are expressed as the sum of the variance estimate of the

infeasible efficient estimate β̂ * and the additional term, which is nonnegative. In other words,

the plug-in estimate cannot be as efficient as the infeasible estimate β̂ * because of the uncertain

variation of the estimated AR coefficients unless σ̂ ue=0. We can also show that when p=1 and

ϕ


1 is plugged-in, the variance estimate becomes in simpler form as


Var(β


)=


Var(β̂ * )+
σ̂ ue

σ̂ 2
e


2
Var(ϕ


1).

In exactly the same way as (14), the variance estimates for (11) is given by

Var(βj, m)= Var (β )+(β̂j, m−β̂ )(β̂j, m−β̂ )', (15)

where Var(β ) is the OLS estimate of the variance of β̂ using the whole sample.

In any case, because the limiting distribution of the point estimates considered in this

paper is normal, we can easily construct the confidence intervals in a standard way using the

variance estimates.

III. Finite Sample Properties

In this section, we investigate the finite sample properties of the estimates considered in the

previous section by Monte Carlo simulations. The data generating process is the same as (1)‒

(2) with p=1, ut~i.i.d.N(0, 1), et~i.i.d.N(0, 1), Cov(ut, et)=σue, and x0=0. We set μr=μx=0,

β=0, ρ=0.7, 0.8, 0.9, 0.95, and 0.99; σue=−0.95 and −0.55; and T=50, 100, 250, and 500.

Although the true values of μr and μx equal zero, the models are estimated with a constant term.

For the jackknife method, we consider m=2, 3 and 4 in this simulation. The number of

replications is 10, 000 and all computations are conducted by using the GAUSS matrix

language.

Table 1 summarizes the biases of the various estimates when σue=−0.95. In the table, the
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third to the eighth columns correspond to the plug-in estimates, including the Amihud-Hurvich

estimate, while the biases of the direct jackknife estimates are given in the ninth to the eleventh

columns. The bias of the bias corrected REML estimate is given in the last column. As a

whole, the biases of all the estimates tend to become smaller as T gets larger or as ϕ1 goes

away from 1, except for β

c, rols, β


c, rls and β̂reml, those of which have smaller biases when ϕ1 is

very close to 1. Among the estimates, the two plug-in estimates using the Cauchy method have

larger biases compared with the other estimates except for the case where ϕ1=0.99; in this

case, the biases of these two estimates are almost the same as the bias of the Amihud-Hurvich

estimate. On the other hand, we can see that the jackknife method is very effective to reduce

the bias. It seems that the larger number of groups for the jackknife method tends to result in

slightly larger biases, although this is not always the case. Comparing the plug-in estimate with

the jackknife method with the direct jackknife estimate with the same number of groups, the

performance of β

j, m and β̂j, m is very similar. This implies that as long as the bias is concerned,

the information about the AR structure is not so important for the jackknife method to reduce

the bias.

Table 2 shows the MSE of the estimates. In this case, β

ah and β


reml perform better than the

other estimates in many cases. As expected in the previous section, β

c, rls has small MSE when

ϕ1 is close to one. In fact, its MSE is smaller than that of the Amihud-Hurvich estimate for

ϕ1=0.99. On the other hand, the jackknife method tends to result in the larger MSE. However,

as the number of groups (m) increases, the MSE of the jackknife estimate decreases. For

example, when ϕ1=0.95 and T=500, the MSEs of β

j, 2, β


j, 3 and β


j, 4 are 0.0327, 0.0296, 0.0287,

respectively. As in the case of the bias, we can observe that the performance of β

j, m and β̂j, m is
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very similar for the same number of m.

Figure 1 shows the probability density functions
4

of the estimates in the representative case

where ρ=0.95, σue=−0.95 and T=250 . As in Figure 1 (a), the plug-in estimates using the

Amihud-Hurvich method and the Cauchy method and the REML estimate are skewed to the

right, whereas the plug-in estimates using the jackknife estimates and the direct estimates based

on the jackknife method are almost symmetric around the origin, as is observed in Figure 1(b)

and (c).

Table 3 reports the coverage rates of the 90% confidence intervals.
5

When the predictor

variable is moderately persistent with ϕ1=0.7, all the confidence intervals tend to have correct

coverage rates as the sample size increases. As ϕ1 approaches 1, the confidence interval based

on the Amihud-Hurvich estimate tends to be liberal whereas the jackknife method leads to a

slightly larger coverage rate. Of interest is that β

c, rols and β


c, rls have correct coverage rates

irrespective of the true values of ϕ1 and T . In fact, the q-q plots of the t -statistics based on

these two plug-in estimates against N(0, 1) are shown to be straight lines, which implies that

their finite sample distributions are well approximated by a standard normal distribution,

although the distributions of the estimates themselves are skewed to the right as is seen in

Figure 1(a) (we omit the figure to save space).

To summarize, as long as the bias is concerned, the jackknife method works quite well
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4 These densities are drawn for the range of 1% to 99% points by the kernel method with a Gaussian kernel. The

smoothing parameter, h, is decided by equation (3.31) in Silverman (1986): h=0.9AT15 where A=min (standard

deviation, interquartile range1.34).
5 We do not report the confidence intervals based on the bias corrected REML estimate because Chen and Deo

(2009) do not show how to construct the standard error of the estimate.
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FIG. 1. THE PROBABILITY DENSITY FUNCTIONS OF THE ESTIMATES
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whereas the AH and the REML estimates perform better in view of the MSE. However, the

MSE of the estimates based on the jackknife method can be reduced if we use larger number of

groups. Finally, although the plug-in estimates based on the Cauchy estimates do not

necessarily perform well in view of the bias and the MSE, the confidence intervals based on

them have correct coverage rates and hence, the latter estimates could be useful for the

hypothesis testing.

IV. Predictability of U.S. Stock Returns

In this section, we implement the estimation methods considered in the previous section on

U.S. equity data for model (1)‒(2), taking the previous findings of Campbell and Yogo (2006)

as the benchmark of the comparison.

1. Description of Data

We use five different series of the U.S. stock returns. The first three series are the returns

on the annual S&P 500 index, the monthly and annual Center for Research in Security Prices

(CRSP) data. These return data, along with the financial ratio variables ̶ the dividend-price

ratio and the earnings-price ratio ̶ are used as the predictor variables. The series and the

sample period are the same as in Campbell and Yogo (2006)
6
. The estimation results using
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6 We use the 1880-2002 and 1880-1994 samples for the annual S&P 500 index; the 1926M12-2002M12, 1926M12-

1994M12, and 1952M1-2002M12 samples for the monthly CRSP data; and the 1926-2002, 1926-1994, and 1952-2002

0.8

0.9

0.95

0.99

0.9056

β

ah β


c,ols β


c,ls β


j,2 β


j,3 β


j,4 β̂j,2 β̂j,3 β̂j,4

0.7

ϕ1

0.9041 0.9050 0.9034 0.9031 0.9034 0.9013

0.8744 0.8911 0.8955 0.9049 0.9094 0.9108 0.9044 0.9056

0.9000

0.8911 0.8968 0.8971 0.9001 0.8987 0.8986 0.8989 0.8998 0.8990

0.8851

TABLE 3. COVERAGE RATE OF CONFIDENCE INTERVAL

0.8898 0.8930

0.9097 0.9167 0.9205 0.9063 0.9115 0.9132

0.8950 0.8965 0.8998 0.8990 0.9007 0.9000 0.8994 0.9013

0.9050 0.9054

0.8766 0.8860 0.8948 0.9113 0.9142 0.9114 0.9115 0.9109 0.9110

0.8655 0.8906 0.8998

0.8908 0.8978 0.9020 0.9029 0.9039 0.9018 0.9042 0.9034

0.8875 0.8920 0.9017 0.9043 0.9057 0.9062 0.9042

0.9302 0.9205 0.9229 0.9318

0.8490 0.8921 0.9081 0.9051 0.9225 0.9273 0.9036 0.9126 0.9188

0.8960

0.8809 0.8898 0.9026 0.9131 0.9168 0.9168 0.9128 0.9172 0.9160

0.8618 0.8860 0.9006 0.9228 0.9275

0.8851 0.9123 0.9218 0.8836 0.9023 0.9112

0.8952 0.8888 0.9018 0.9108 0.9121 0.9132 0.9108 0.9128 0.9130

0.9322 0.9329

0.8493 0.8924 0.9163 0.9194 0.9333 0.9411 0.9199 0.9287 0.9421

0.8434 0.9016 0.9096

0.8904 0.9071 0.9210 0.9245 0.9265 0.9207 0.9238 0.9254

0.8663 0.8895 0.9018 0.9227 0.9344 0.9346 0.9232

0.9276 0.8659 0.9036 0.9238

0.8229 0.9064 0.9026 0.8395 0.8939 0.9154 0.8400 0.8831 0.9010

0.8878

0.8476 0.9056 0.9039 0.9003 0.9303 0.9447 0.8976 0.9264 0.9397

0.8340 0.9099 0.9081 0.8697 0.9117

100

50

500

250

100

50

T

0.8552 0.9007 0.9095 0.9202 0.9391 0.9515 0.9196 0.9373 0.9506500

250

100

50

500

250

100

50

500

250

100

50

500

250



these data series are presented in Panels A, B, and C of Table 4, respectively. In addition, we

also use the updated annual return on the S&P 500 index and the monthly data
7
. The estimation

results using these data series are presented in Panels D and E of Table 4, respectively.

To compute the excess returns of stocks over risk-free return, we use the one-month T-

bill rate for monthly series and roll over the one-month T-bill rate for the annual series. In our

analysis, we use two additional predictor variables, the three month T-bill rate and the long-

short yield spread, following Campbell and Yogo (2006). As in Fama and French (1989) and

other previous researches, the long yield used to compute the yield spread is Moodyʼs seasoned

Aaa corporate bond yield. The short rate is the one-month T-bill rate
8
. Following the usual

convention, the excess returns and the predictor variables are in logs.

2. Persistence of the Predictor Variables

In the fifth column of Table 4, we report the estimated coefficient for the autoregressive

root ρ=ϕ1+⋯+ϕp with the standard error in parentheses for the log dividend-price ratio (d-

p), the log earnings-price ratio (e-p), the three-month T-bill rate (3my), and the long-short yield

spread (ys) using the (direct) jackknife method with the number of groups equal to 3 for annual

data and 4 for monthly data. From Subsection 2.2, the estimated coefficient is denoted by

ρ̂j, m=ϕ̂1, j, m+⋯+ϕ̂p, j, m . The autoregressive lag length p∈1, p for the predictor variable is

determined by the Bayesian information criterion (BIC). We set the maximum lag length p as

four for annual data and eight for monthly data. The estimated lag lengths are reported in the

fourth column of Table 4.

As discussed in the literature, the high persistence of these typical predictor variables

suggests that the first-order asymptotics, that is, the t-statistic based on the OLS estimate being

approximately normal in large samples, can possibly lead to misleading results. It should also

be noted that whether or not the conventional inference based on the t-test is reliable depends

on the correlation (δ) between the innovations to the excess returns and to the predictor

variable, in addition to the true value of ρ . We report the point estimates of δ in the sixth

column of Table 4. The correlations of the innovations to stock returns with the financial ratios

are negative and large, but those with the interest rate variables (3my and ys) are much smaller.

The former result indicates that the movements in stock returns and in financial ratios mostly

come from the movements in the stock price. The latter finding suggests that for the interest

rate variables, the conventional t -test perhaps provides approximately valid inference. These

findings are essentially the same as those obtained by Campbell and Yogo (2006).

3. Estimating and Testing the Predictability of the U.S. Stock Returns

Following the methodology discussed in Section 2, we calculate the point estimate of β by

the direct application of the jackknife method (β̂j, m) to see the magnitude of the predictability
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samples for the annual CRSP data. These data are taken from MotohiroYogoʼs website: http://www.nber.org/ ˜myogo/
7 These data and the financial ratio variables are taken from Robert Shillerʼs website : http: //www.econ.yale.edu/

˜shiller/data.htm
8 The T-bill rates and the Moodyʼs seasoned Aaa corporate bond yield are from Yogoʼs and FRBʼs websites: http:

//www.federalreserve.gov/releases/h15/data.htm



HITOTSUBASHI JOURNAL OF ECONOMICS [December246

0
.1
7
1

0
.9
8
8
(0
.0
9
2
)

3
1
9
2
6
-
2
0
0
9

3
m
y

(-
0
.0
1
0
,

0
.0
0
3
)

(-
0
.0
1
0
,

0
.0
0
3
)

(-
0
.0
1
2
,
0
.0
0
3
)

-
0
.0
0
5
(0
.8
5
9
)

0
.0
1
1

0
.9
9
5
(0
.0
0
6
)

2
1
9
2
6
.1
2
-
2
0
0
9
.1
2

3
m
y

C
Y
(C
R
S
P
,
M
)

ρ̂
j
m
(s
td
)

P
an
el

C

C
Y
(C
R
S
P
,Y
)

β̂
j
m
(
p
-
v
al
u
e)

P
an
el

D

U
S
(M

)

C
I
b
y
β
c
r
ls

P
an
el

E

U
S
(Y

)

C
I
b
y
B
F
-
Q

C
Y
(S
P
＆
5
0
0
,Y
)

(-
0
.0
9
9
,

0
.0
4
5
)

(-
0
.1
0
3
,

0
.0
5
2
)

(-
0
.1
1
7
,
0
.0
4
0
)

-
0
.0
3
8
(0
.7
8
9
)

(0
.0
4
7
,

0
.3
0
1
)

(-
0
.0
1
7
,

0
.2
3
6
)

1
8
8
0
-
1
9
9
4

0
.9
2
1
(0
.1
2
5
)

0
.1
1
9
(0
.0
3
6
)

(-
0
.0
1
2
,
0
.1
5
5
)

(0
.0
3
5
,

0
.2
4
8
)

1
8
8
0
-
2
0
0
2

1
.0
0
4
(0
.0
8
8
)

0
.0
7
2
(0
.0
7
8
)

(-
0
.0
2
0
,

0
.1
4
2
)

C
I
b
y
β̂
j
m

sa
m
p
le

r
t

P
an
el

B
(-
0
.0
0
6
,

0
.0
1
2
)

(-
0
.0
0
5
,

0
.0
1
1
)

1
9
2
6
.1
2
-
1
9
9
4
.1
2

0
.9
7
8
(0
.0
0
7
)

0
.0
1
1
(0
.0
6
9
)

(0
.0
9
9
,
0
.2
9
1
)

(0
.0
7
9
,

0
.3
3
2
)

1
9
2
6
.1
2
-
2
0
0
2
.1
2

0
.9
9
2
(0
.0
0
6
)

0
.0
0
7
(0
.0
9
6
)

(0
.0
9
2
,

0
.3
2
3
)

(0
.0
1
0
,
0
.2
2
7
)

1
8
8
0
-
1
9
9
4

0
.8
1
3
(0
.0
6
1
)

0
.1
9
5
(0
.0
0
0
)

(0
.0
1
8
,

0
.0
7
0
)

(0
.0
2
0
,

0
.0
7
2
)

1
9
2
6
-
1
9
9
4

0
.9
0
5
(0
.1
0
1
)

0
.1
7
6
(0
.0
1
3
)

(-
0
.0
0
1
,
0
.0
2
3
)

(-
0
.0
1
1
,

0
.0
1
2
)

1
9
2
6
-
2
0
0
2

1
.0
1
9
(0
.1
0
0
)

0
.0
5
1
(0
.2
8
1
)

(-
0
.0
0
7
,

0
.0
1
7
)

(-
0
.0
0
2
,
0
.0
1
6
)

1
9
5
2
.0
1
-
2
0
0
2
.1
2T

A
B
L
E
4
.

E
M
P
IR
IC
A
L
R
E
S
U
L
T
S
F
O
R
S
T
O
C
K
R
E
T
U
R
N
S

0
.9
3
3
(0
.0
1
7
)

0
.0
3
5
(0
.0
3
7
)

(0
.0
4
7
,

0
.2
9
1
)

(0
.0
5
9
,

0
.3
3
3
)

1
9
2
6
.0
1
-
2
0
0
9
.1
2

0
.9
9
4
(0
.0
0
4
)

0
.0
3
5
(0
.0
0
0
)

(-
0
.0
9
4
,
0
.1
9
7
)

(0
.0
3
5
,

0
.2
1
1
)

1
9
2
6
.0
1
-
2
0
0
9
.1
2

0
.9
9
8
(0
.0
0
5
)

0
.0
3
9
(0
.0
0
0
)

(0
.0
1
3
,

0
.1
8
5
)

(0
.0
0
3
,
0
.0
6
7
)

1
9
5
2
-
2
0
0
2

0
.7
7
7
(0
.2
1
9
)

P
an
el

A

-
0
.0
5
1
(0
.5
9
2
)

-
0
.0
4
4
(0
.6
9
9
)

(0
.0
2
6
,

0
.0
3
7
)

(0
.0
2
6
,

0
.0
3
8
)

1
8
8
1
-
2
0
0
9

0
.9
0
3
(0
.0
4
4
)

0
.0
5
7
(0
.1
0
3
)

(-
0
.4
1
6
,
0
.3
1
3
)

(-
0
.0
4
3
,

0
.3
5
6
)

1
8
8
1
-
2
0
0
9

0
.9
6
7
(0
.0
6
9
)

0
.0
2
3
(0
.3
0
3
)

(-
0
.0
7
3
,

0
.3
5
4
)

(0
.0
4
6
,
0
.3
0
6
)

1
9
2
6
.0
1
-
2
0
0
9
.1
2

0
.9
8
7
(0
.0
0
3
)

0
.1
3
7
(0
.0
0
0
)

(-
0
.1
6
4
,

0
.0
8
9
)

(-
0
.0
1
7
,
0
.1
3
2
)

(-
0
.0
2
3
,

0
.1
4
3
)

(-
0
.0
0
7
,

0
.1
5
6
)

(-
0
.0
5
0
,
0
.0
9
5
)

(0
.0
1
6
,

0
.1
9
9
)

(-
0
.0
5
5
,

0
.1
1
5
)

(0
.0
8
4
,
0
.1
9
1
)

(0
.1
0
0
,

0
.1
1
0
)

(0
.1
0
0
,

0
.1
1
0
)

(0
.0
2
5
,
0
.0
4
6
)

(0
.0
2
2
,

0
.0
3
3
)

(0
.0
2
1
,

0
.0
3
4
)

(0
.0
2
8
,
0
.0
5
0
)

1
9
1
9
-
2
0
0
9

0
.7
3
8
(0
.1
4
1
)

2
d
-
p

-
0
.9
5
8

1

-
0
.8
4
2

3

-
0
.8
5
1

3
d
-
p

δ̂
p

x
t

(-
0
.1
8
4
,
0
.0
9
5
)

(-
0
.1
6
9
,

0
.0
7
0
)

-
0
.2
4
3

1
y
s

-
0
.6
9
3

1

-
0
.7
2
1

1
d
-
p

-
0
.0
6
6

1
y
s

-
0
.9
4
9

2

-
0
.9
5
1

y
s

-
0
.9
3
2

1
e-
p

-
0
.8
3
5

3
d
-
p

0
.0
1
8

8
y
s

-
0
.5
5
6

3
e-
p

-
0
.5
6
0

2
d
-
p

2
1
9
5
2
.0
1
-
2
0
0
2
.1
2

3
m
y

(0
.0
4
3
,

0
.2
2
5
)

(0
.0
5
5
,

0
.2
6
6
)

(0
.0
3
4
,
0
.1
9
7
)

0
.1
1
6
(0
.0
1
0
)

-
0
.9
6
2

0
.8
8
6
(0
.0
5
3
)

1
1
8
8
0
-
2
0
0
2

e-
p

-
0
.2
6
8

2

(-
0
.0
0
4
,

0
.0
1
2
)

(-
0
.0
0
6
,

0
.0
1
1
)

(-
0
.0
0
6
,
0
.0
1
5
)

0
.0
0
5
(0
.2
3
7
)

-
0
.9
8
2

0
.9
9
5
(0
.0
0
6
)

1
1
9
5
2
.0
1
-
2
0
0
2
.1
2

(-
0
.0
2
9
,
-
0
.0
0
6
)

(-
0
.0
3
0
,
-
0
.0
0
6
)

(-
0
.0
2
8
,
0
.0
1
8
)

-
0
.0
0
5
(0
.6
3
6
)

-
0
.0
7
1

0
.9
9
3
(0
.0
1
3
)

-
0
.9
8
7

0
.9
9
1
(0
.0
0
5
)

1
1
9
2
6
.1
2
-
2
0
0
2
.1
2

e-
p

(0
.0
0
6
,

0
.0
2
9
)

(0
.0
0
0
,

0
.0
2
6
)

(0
.0
0
9
,
0
.0
3
2
)

0
.0
2
0
(0
.0
0
2
)

-
0
.9
8
4

0
.9
8
0
(0
.0
0
7
)

2
1
9
2
6
.1
2
-
1
9
9
4
.1
2

3
m
y

(-
0
.0
0
4
,

0
.0
1
0
)

(-
0
.0
0
2
,

0
.0
1
1
)

(-
0
.0
0
5
,
0
.0
1
9
)

0
.0
0
7
(0
.1
7
5
)

-
0
.9
6
7

0
.9
9
8
(0
.0
0
8
)

1
1
9
5
2
.0
1
-
2
0
0
2
.1
2

(0
.0
0
1
,

0
.0
1
8
)

(0
.0
0
0
,

0
.0
1
9
)

(0
.0
0
1
,
0
.0
2
0
)

0
.0
1
1
(0
.0
3
4
)

(-
0
.2
3
4
,
0
.2
1
9
)

-
0
.0
0
8
(0
.5
2
2
)

-
0
.9
5
5

0
.9
8
9
(0
.1
1
9
)

1
1
9
5
2
-
2
0
0
2

(-
0
.2
2
8
,

0
.0
3
9
)

(-
0
.2
2
8
,

0
.0
4
0
)

(-
0
.2
1
7
,
0
.0
5
5
)

-
0
.0
8
1
(0
.8
3
7
)

0
.0
0
6

0
.8
6
3
(0
.0
8
8
)

1
1
9
5
2
-
2
0
0
2

1
1
9
2
6
-
2
0
0
2

e-
p

(0
.1
3
1
,

0
.4
5
5
)

(0
.1
3
8
,

0
.4
6
8
)

(0
.0
7
4
,
0
.3
8
5
)

0
.2
2
9
(0
.0
0
8
)

-
0
.9
5
9

0
.7
9
8
(0
.0
8
8
)

1
1
9
2
6
-
1
9
9
4

(-
0
.0
3
2
,

0
.2
2
5
)

(-
0
.0
2
9
,

0
.2
2
6
)

(-
0
.0
0
6
,

0
.1
7
9
)

(-
0
.0
3
7
,

0
.1
3
9
)

(-
0
.0
7
2
,
0
.1
9
7
)

0
.0
6
2
(0
.2
2
3
)

-
0
.7
4
9

1
.0
0
1
(0
.0
8
1
)

1
1
9
5
2
-
2
0
0
2

(0
.0
4
1
,

0
.2
7
2
)

(0
.0
8
0
,

0
.3
3
2
)

(-
0
.0
2
5
,
0
.2
4
9
)

0
.1
1
2
(0
.0
8
9
)

-
0
.9
5
7

0
.9
1
9
(0
.0
8
8
)



on the U.S. stock returns, because it is less biased compared to the other estimates. On the

other hand, we check the statistical significance of the predictability by obtaining the 90%

confidence intervals (CI) based on not only the direct jackknife estimate (β̂j, m) but also the

plug-in estimate with the Cauchy estimate using the GLS detrending method (β

c, rls), because

the latter has a correct coverage rate irrespective of the strength of the persistence. As shown

by the Mote Carlo simulations in the previous section, the confidence interval based on β̂j, m

tends to be conservative (the coverage rate tends to be larger than expected) while the latter is

more accurate, so that we expect that, in some cases, the confidence interval based on β̂j, m

includes β=0 whereas the lower bound of the confidence interval based on β

c, rls is greater than

0. For the purpose of comparison, we also calculate the confidence interval based on the

Bonferroni procedure (BF-Q test) proposed by Campbell and Yogo (2006). The point estimate

and the confidence intervals are multiplied by σ̂ eσ̂ u for the normalization.

For annual S&P 500 index, we see from Panel A that the 90% confidence intervals based

on the jackknife method in the eighth column and the BF-Q test in the last column include

β=0 for the log dividend-price ratio (d-p) in the whole sample (1880-2002) whereas the

confidence interval based on β

c, rls implies the predictability. In this case, the point estimate of

β is 0.072 so that one point increase in the dividend-price ratio can predict the 7.2% increase in

the future stock return. When the sample period is shortened up to 1994, the confidence interval

based β̂j, m, in addition to the confidence interval based on β

c, rls, also shows the predictability

and the point estimate becomes 0.119, which is greater than 0.072 in the whole sample period.

This implies that the predictability is more evident before 1994 and the predictive power

decreases recently, as is often pointed out in the existing literature. For the log earnings-price

ratio (e-p), all the three confidence intervals imply the consistent results; the annual S&P 500 is

predictable by the earnings-price ratio and again, it is more strongly predictable before 1994.

For the monthly CRSP series with the Campbell and Yogo (2006) sample, reported in

Panel B, all the three methods result in similar confidence intervals and only the log earnings-

price ratio and the log-short yield spread (ys) has return predictability at the 5% significance

level. These findings are almost the same as those observed by Campbell and Yogo (2006). As

in the case of annual data, the estimate of β for the log earnings-price ratio before 1994 is

greater and almost double compared with the estimate in the whole sample period; it is 0.020

and significant at the 1% significance level.

In panel C, we report the result for the annual CRSP series with the Campbell and Yogo

(2006) sample. We see that the log dividend-price ratio and the log earnings-price ratio have

return predictability from the confidence intervals based on β

c, rls and the BF-Q test for the

1926-2002 and the 1926-1994 samples. In particular, we observe the strong predictability from

the fact that the p -values based on β̂j, m are almost 1% and the estimated coefficients in the

subsample are almost triple and double compared with those in the whole sample for the log

dividend-price ratio and the log earnings-price ratio, respectively. However, both the predictor

variables do not have predictive power for the 1952-2002 sample.

For the longer and more recent monthly sample, reported in Panel D, we reject the null

hypothesis of no predictability at the 1% level based on the jackknife point estimates for the

log dividend-price ratio (d-p), the log earnings-price ratio (e-p), and the long-short yield spread
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(ys). According to the three 90% confidence intervals, we also reject the null hypothesis for

these three series. Note that there is no difference between the confidence intervals based on

β

c, rls and the BF-Q test. Judging from these findings, we observe that the log dividend-price

ratio (d-p) and the log earnings-price ratio (e-p) are more likely to have predictability on this

monthly sample. However, as to the long-short yield spread (ys), there is room for

reconsidering the interpretation, as stated above.

For the updated longer annual sample reported in Panel E, we reject the null at the 5%

level by the confidence interval based on β

c, rls for the log dividend-price ratio whereas the BF-

Q test fails to reject the null. We cannot find the significant predictive power for the other three

predictor variables.

V. Conclusion

In this paper, we have investigated several point estimates for predictive regressions. Most

of them are easily obtained by the least squares and the instrumental variable methods. Those

estimates have the nice finite sample properties such as small biases and the correct coverage

rates of the confidence intervals. In particular, the direct jackknife estimate has an advantage

over the existing plug-in estimates and the REML estimate in that the former does not require

the specification of the model for the predictor variables. Based on our unified framework, we

have investigated the U.S. stock returns and found that some variables, which have not been

statistically detected as useful predictors in the literature, are able to predict stock returns.

Because of their nice properties, the methods considered in this paper complement the existing

statistical tests for predictability to investigate the relations between stock returns and economic

variables.

APPENDIX: Derivation of the Estimate of the Variance-covariance Matrix

For the case of the jackknife estimate, we first note that

∑
T

t1

x t1e j, m, t=∑
T

t1

x t1(x t−φ̂′ j, m z t1)

=∑
T

t1

x t1et−(φ̂j, m−φ)′z t1

=∑
T

t1

x t1et−∑
T

t1

x t1 z′ t1(φ̂j, m−φ).

Then, from the definition of β

given in (7), we can see that

β


j, m=β+
∑

T

t1
x t1ut−

σ̂ ue

σ̂ 2
e

e j, m, t
∑

T

t1
x 2
t1

=β+
∑

T

t1
x t1ut−

σ̂ ue

σ̂ 2
e

e t
∑

T

t1
x 2
t1 + σ̂ ue

σ̂ 2
e

∑
T

t1
x t1 z′ t1

∑
T

t1
x 2
t1

(φ̂j, m−φ)
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=β
 *+

σ̂ ue

σ̂ 2
e

K′(φ̂j, m−φ),

where β
 * is defined as β̂ by replacing σueσ

2
e with σ̂ ueσ̂

2
e and then β

 * is the asymptotically efficient

estimate. Since ut−(σueσ
2
e )et is an uncorrelated sequence with et, we can see that β

 * is asymptotically

independent of (φ̂j, m−φ) while K converges in probability. Hence, the variance estimate of β


j, m is given

by


Var(β



j, m)=

Var(β̂ * )+

σ̂ ue

σ̂ 2
e

2

J*′ Σ̂ j, m J
*,

where


Var(β̂ * ) is the variance estimate of the infeasible efficient estimate, which can be easily shown to

be

Var(β̂ * )=
σ̂ 2
e σ̂

2
u−σ̂ 2

ue

σ̂ 2
e∑

T

t1
x 2
t1

and Σ̂ j, m is the estimate of the variance-covariance matrix of φ̂j, m.

Similarly, for the case of the Cauchy estimate, we can see that

∑
T

t1

x t1e c, rols, t=∑
T

t1

x t1(x t−ρ̂c, rols x t1−φ̂1, c, rolsΔxt1−⋯−φ̂p1, c, rolsΔxtp1)

=∑
T

t1

x t1et−∑
T

t1

x t1(ρ̂c, rols−ρ)x t1+(φ̂1, c, rols−ψ1)Δxt1

−⋯−(φ̂p1, c, rols−ψp1)Δxtp1).

Then, we obtain expression (12) in exactly the same man ner as


Var(β


j, m).
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