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Abstract

We prove the existence of a competitive equilibrium for an economy with an atomless

measure space of agents and an infinite dimensional commodity space. The commodity space is

a separable Banach space with a non-empty interior in its positive cone. We dispense with

convexity and completeness assumptions on preferences. We employ a saturated probability

space for the space of agents which enables us to utilize the convexifying effect on aggregation.

By applying the Gale-Nikaido-Debreu lemma, we provide a direct proof of the existence of a

competitive equilibrium.
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I. Introduction

In this paper, we prove the existence of a competitive equilibrium in an economy with an

infinite dimensional commodity space and an atomless measure space of agents whose

preferences are not necessarily convex and complete.

A convexifying effect on aggregation or the convexity of the integral of a correspondence

over an atomless measure space enables one to prove the existence of a competitive equilibrium

without convex preferences. For a finite dimensional space valued correspondence, the

convexity of the integral is a result of the Lyapunov theorem on the range of an atomless

vector measure. By appealing to this convexifying effect Aumann (1966) showed the existence

of a competitive equilibrium for an economy with a finite dimensional commodity space and an
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atomless measure space of agents whose preferences are non-convex. Schmeidler (1969)

extended the existence result to an economy without complete preferences.

Since the Lyapunov theorem holds only in finite dimensional spaces,
1
the extension of the

convexifying effect to infinite dimensional spaces had been open. To address this issue,

Rustichini and Yannelis (1991) suggested the ʻmany more agents than commoditiesʼ requirement

on the set of agents. Podczeck (2008) remarked that this requirement is “stronger than

necessary.” Podczeck (1997) introduced the ʻmany agents of every typeʼ requirement on the set

of agents to achieve the convexifying effect. He added agentsʼ types and sharpened the atomless

measure on the set of agents by decomposing it into a family of atomless measures on the types

of agents.

On the other hand, Sun (1997) proved a number of desirable properties such as convexity,

compactness and preservation of upper semicontinuity of the integral of Banach space valued

correspondences. He worked with these correspondences over Loeb measure spaces. Recently,

Podczeck (2008) showed convexity and compactness of the integral of these correspondences

on a super-atomless measure space. Sun and Yannelis (2008) showed that the results in Sun

(1997) are valid on an arbitrary saturated probability space. As Sun and Yannelis (2008) wrote,

a probability space is saturated if and only if it is super-atomless.
2, 3

Our commodity space is a separable Banach space with a non-empty interior in its positive

cone. Khan and Yannelis (1991), Podczeck (1997), Martins-da-Rocha (2003) used this space

and provided the existence of a competitive equilibrium in an economy with an atomless

measure space of agents. Due to the lack of the convexifying effect, Khan and Yannelis (1991)

assumed convex as well as complete preferences. With his convexifying effect, Podczeck

(1997) dropped the convex preferences assumption from the modelof Khan and Yannelis

(1991). Both papers applied the infinite dimensional version of the Gale-Nikaido-Debreu lemma

for their proofs. Martins-da-Rocha (2003) extended Khan and Yannelis (1991) and Podczeck

(1997) to a large production economy. He proved the existence of competitive equilibria for

economies with non-ordered but convex preferences as well as possibly incomplete but non-

convex preferences. In his proof, the author appealed to the approximation of finite economies

with a finite number of agents. He took advantage of the Edgeworth equilibria existence result

reported by Florenzano (1990) and obtained a sequence of competitive equilibria for such finite

economies. It was proved that the limit of the sequence is the equilibrium for the large

economy.

We employ a saturated probability space for the space of agents which enables us to

utilize the results in Sun and Yannelis (2008). Therefore, we do not need any additional

conditions such as the ʻmany more agents than commoditiesʼ in Rustichini and Yannelis (1991)

and the ʻmany agents of every typeʼ in Podczeck (1997) to revive the convexifying effect.
Moreover, we do not rely on the approximation method as in Martins-da-Rocha (2003). Hence,

in this paper we show that one can have the convexifying effect in a separable Banach space

with a proper formulation of economic negligibility, and provide a proof of competitive
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equilibrium existence without completeness of preferences. In this respect, this paper can be

seen as an extension of Schmeidler (1969) to infinite dimensional commodity spaces. For

exchange economies with possibly incomplete and non-convex preferences, this paper directly

obtained the same result as in Theorem 3.1 of Martins-da-Rocha (2003) by applying the Gale-

Nikaido-Debreu lemma.

This paper proceeds as follows. In section II, we provide notation and definitions. Section

III contains our model. An existence theorem is stated in section IV.

II. Notation and Definitions

We denote by 2A the set of all non-empty subsets of the set A and / denotes the set

theoretic subtraction. Let X be a Banach space ordered by its positive cone X . If A⊂X, clA

denotes the norm closure of A . The dual space of X is denoted by X ′ which is the set of all

continuous linear functionals on X. If p∈X ′ and x∈X, the value of p at x is denoted by p⋅x.
We denote by X ′ the set p∈X ′ : p⋅x≥0 ∀x∈X.

Let X and Y be topological spaces. A correspondence F : X2Y is said to be weakly upper

semicontinuous if xn converges to x, yn∈F(xn) for each n and yn weakly converges to y, then

y∈F (x). The graph of F is denoted by GF=(x, y)∈X×Y : y∈F (x).
Let (T, , μ) be a finite measure space and Y be a Banach space. A function

f : (T, , μ)  Y is said to be μ -measurable if there exists a sequence of simple functions

fn : T  Y such that limn fn(t)−f (t)dμ=0 for almost all t∈T. A μ-measurable function f is

called Bochner integrable if there exists a sequence of simple functions  fnn1, 2, … such that

lim
n T  fn(t)−f (t)dμ=0.

Then we define for each A∈ the integral to be A f (t)dμ=limnA fn(t)dμ. It can be shown

that if f : T  Y is a μ-integrable then f is Bochner integrable if and only if T  f (t)dμ<∞.
4

We denote by ℒ 1(μ, Y) the space of equivalence class of Y-valued Bochner integrable functions

f : T  Y normed by  f =T  f (t)dμ. A correspondence F : T  2Y is said to be integrably

bounded if there is a real-valued integrable function h on (T, , μ) such that for μ-almost all

t∈T, sup  y  : y∈F(t)≤h(t) . The correspondence F is said to have a measurable graph if

GF belongs to product σ -algebra ⊗ℬ(Y), where ℬ(Y) denotes the Borel σ -algebra on Y. The

correspondence F is said to be lower measurable if for every open subset U of Y, the set

t∈T : F(t)∩U≠�∈ . A measurable function f from (T, , μ) to Y is called a measurable

selection of the correspondence F if f (t)∈F(t) for almost all t∈T. We denote by SF the set of

all Y-valued Bochner integrable selections for the correspondence F : T2Y, i.e.,

SF= f∈ℒ 1(μ, Y) : f (t)∈F(t) μ−a.e..

The integral of the correspondence F : T  2Y is defined by

T F(t)dμ=T f (t)dμ : f ∈SF.
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Let X and Y be complete separable metric spaces and ℳ(X) the space of all Borel

probability measures on X with the Prohorov metric ρ. For each λ∈ℳ(X×Y), we denote by λX

the marginal of λ in ℳ(X) . Let (T, , μ) be a countably additive complete probability space

and L0(T, X) the space of all measurable functions f : T  X with the metric of convergence in

probability. For f∈L0(T, X), the law (or distribution) of f is defined by law( f )(B)=μ( f 1(B))

for each Borel set B in X. A probability space (T, , μ) is said to be saturated if (T, , μ) is
atomless, and for any complete separable metric spaces X and Y, any λ∈ℳ(X×Y), any

f∈L0(T, X) with law( f )=λX, there exists g∈L0(T, Y) such that law( f, g)=λ.5

III. The Model

The commodity space E is an ordered separable Banach Space with an interior point v in

its positive cone E .
6

We employ a saturated probability space (T, T, μ) for the space of

agents. Let X be a correspondence from T to E . The consumption set of agent t is given by

X(t)⊂E . The initial endowment of each agent is given by a Bochner integrable function

e : T  E and e(t)∈X(t) for all t∈T . The aggregate initial endowment is T e(t)dμ . An

economy ℰ is a pair (T, , μ), (X(t), ≻t, e(t))tT where ≻t⊂X(t)×X(t) is the preference

relation of agent t.

An allocation for the economy ℰ is a Bochner integrable function f : T  E such that

f (t)∈X(t) for all t∈T and T f (t)dμ≤T e(t)dμ. A price is p∈E′0. The budget set of agent

t at a price p is B(p, t)=x∈X(t) : p⋅x≤p⋅e(t) and the demand set is defined by D(p, t)=
x∈B(p, t) : ytt x ∀y∈B(p, t).

A competitive equilibrium for the economy ℰ is a price-allocation pair (p, f ) if

f (t)∈D(p, t) for almost all t∈T.

We assume that the economy E satisfies the following assumptions:

A.1 X(t) is non-empty, convex, integrably bounded and weakly compact for all t∈T.

A.2 There is an element w(t)∈X(t) such that e(t)−w(t) is in the norm interior of E, ∀t∈T.

A.3 ≻ t is irreflexive and transitive ∀t∈T.

A.4 y∈X(t) : y≻t x and y∈X(t) : x≻t y are weakly open in X(t) for each x∈X(t) and t∈T.

A.5 ≻ t is measurable, i.e., (t, x, x′)∈T×E×E : x≻t x′∈⊗ℬ(E)⊗ℬ(E).

A.6 The correspondence X : T2E is measurable, i.e., (t, x)∈T×E : x∈X(t)∈⊗ℬ(E).
A.7 If x∈X(t) is a satiation point for ≻t, then x≥e(t) ∀t∈T.

A.8 If x∈X(t) is not a satiation point for ≻t, then x is an element of the weak closure of

x′∈X(t) : x′ ≻t x, ∀t∈T.

Notice that in A.1 we make the consumption set bounded. This assumption is used in

Khan and Yannelis (1991), Rustichini and Yannelis (1991), Podczeck (1997) and Martins-da-

Rocha (2003). As Martins-da-Rocha (2003) pointed out, this assumption is a “natural
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framework” to deal with Banach spaces. With this assumption, we can appeal to the results on

the integral of correspondences. By A.2, budget sets are non-empty. Notice that in A.3 we do

not assume convexity nor completeness of preferences. A.4 is about continuity of preferences.

A.5 and A.6 are the measurability conditions. Following Podczeck (1997) we employ A.7 and

A.8 whose meanings are clear.

IV. Results

The following theorem is our main result 1.6

Theorem 1. Suppose that the economy ℰ satisfies A. 1-A. 8. Then there exists a competitive

equilibrium in ℰ.

For the proof of Theorem 1, we first define a price space. Let Δ=p∈E'0 : p⋅v=1
be a price space. Clearly, Δ is convex and it is easy to see that Δ is bounded and weak* closed.

Then by Alaogluʼs theorem
7
we have the following result.

Lemma 1. Δ is weak* compact.

As is well known the evaluation map is not jointly continuous if E is equipped with the

weak topology and and Δ with the weak* topology.
8

To avoid this problem, we follow

Podczeck (1997) to construct the better-than-set C(p, t) of agent t∈T for a given p∈Δ:

C(p, t)=X(t)x∈X(t) : ∃y∈D(p, t) such that y ≻t x.

Note that C(p, t)=X(t)∩(Ex∈X(t) : ∃y∈D(p, t) such that y ≻t x and thus, from A.4 and

the fact that X(t) is weakly closed, C(p, t) is weakly closed. Since X(t) is weakly compact and

integrably bounded, C(p, t) is also weakly compact and integrably bounded. It is clear that

D(p, t)⊂C(p, t) for all p∈Δ and t∈T. The following lemma shows the existence of maximal

elements in a weakly compact set. The proof of the following lemma is similar to that of

Lemma 2 in Schmeidler (1969).

Lemma 2. If K is a non-empty weakly compact subset of X(t), then the set M=x∈K :
yx ∀y∈K is non-empty.

Observe that B(p, t) is a weakly closed subset of X(t) and hence, it is weakly compact.

Then by Lemma 2, D(p, t) is not empty. It follows that C(p, t) is not empty either for all p∈Δ
and for all t∈T.

Lemma 3. For each t∈T, C(⋅, t) is weakly upper semicontinuous in p.

Proof. This proof is analogous to the proof of Lemma 6 in Schmeidler (1969). Consider pnp

in the weak* topology and xn  x in the weak topology with xn∈C(pn, t) for all n. We want to

prove x∈C(p, t). Suppose x∉C(p, t). Then there is y∈X(t) such that y≻t x and p⋅y≤p⋅e(t).
From A.2 and A.4, there exists z sufficiently close to y such that z≻t x and p⋅z<p⋅e(t) . For
sufficiently large n, we have pn⋅z≤pn⋅e(t) and again from A.4, z≻t xn which contradicts
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xn∈C(pn, t). Thus C(⋅, t) is weakly upper semicontinuous. ■

Lemma 4. For given p, C(p, ⋅) has a measurable graph.

Proof. See Appendix. ■

Lemma 5. For any p∈Δ, T C(p, ⋅)dμ is non-empty, convex, weakly compact and weakly

upper semicontinuous in p.

Proof. From Lemma 4, C(p, ⋅) has a measurable graph for all p∈Δ and recall that it is non-

empty. By Aumannʼs (1969) measurable selection theorem, there exists a measurable function

gp : TE such that gp(t)∈C(p, t) for almost all t∈T. Since C(p, t) is integrably bounded, gp is

Bochner integrable. Hence, T gp(t)dμ∈T C(p, ⋅)dμ. It follows from Proposition 1 in Sun and

Yannelis (2008) that T C(p, ⋅)dμ is convex for any p in Δ. As we already mentioned, C(p, ⋅)

is weakly compact for each p∈Δ. By Lemma 3, C(⋅, t) is weakly upper semicontinuous in p

for each t∈T . Recall that for fixed p∈Δ, C(p, t)⊂X(t) for all t∈T and that, by A.1, X(t) is

integrably bounded and weakly compact for all t∈T. Then it follows from Proposition 1 in Sun

and Yannelis (2008) that T C(p, ⋅)dμ is weakly compact and weakly upper semicontinuous in

p. ■

We now consider a correspondence ζ : Δ2E defined by

ζ(p)=T C(p, t)dμ−T e(t)dμ.
Proposition 1. ζ is non-empty, convex-valued, weakly compact-valued and weakly upper

semicontinuous in p.

Proof. This is a direct consequence of Lemma 5. ■

The following is the Gale-Nikaido-Debreu Lemma for infinite dimensional spaces proved

by Yannelis (1985).

Lemma 6. Let E be a Hausdorff locally convex linear topological space whose positive cone

E has an interior point v. Let P=p∈E′0 : p⋅v=1. Suppose that the correspondence

ϕ : P2E satisfies the following conditions:

(i) For all p∈P, there exists z∈φ( p) such that p⋅z≤0;

(ii) φ : P  2E is upper semi-continuous in the weak* topology (i.e., φ : (P, w)  2E is

upper semi-continuous);

(iii) for all p∈P, φ( p) is non-empty, convex and compact.

Then there exists p∈P, such that φ(p)∩(−E)≠０.

We now turn to the proof of Theorem 1.

Proof of Theorem 1. We first show that there exists z∈ζ(p) such that p⋅z≤0 for all p∈Δ .
Since D(p, t) is non-empty and has a measurable graph (see the proof of Lemma 4 in

Appendix), we appeal to Aumannʼs (1969) measurable selection theorem to have a measurable

function gp : T  E such that gp(t)∈D(p, t) for each p∈Δ and for all t∈T. Then by definition
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of D(p, t), we obtain p⋅gp(t)≤p⋅e(t) which implies T p⋅gpdμ≤T p⋅e(t)dμ. Since E⊂E″(dual

of E′) and gp is Bochner integrable,
9
we have p⋅(T gp(t)dμ−T e(t)dμ)≤0. Since D(p, t)

⊂C(p, t), it is clear that (T gp(t)dμ−T e(t)dμ)∈ζ(p).

Proposition 1 assures that ζ is non-empty, convex-valued, weakly compact-valued and

weakly upper semicontinuous. Consequently ζ satisfies all the assumptions of Lemma 6 and

therefore there exists p∈Δ and a Bochner integrable function f such that z∈ζ(p) with

z=T f(t)dμ−T e(t)dμ≤0 (1)

where f(t)∈C(p, t) for almost all t∈T.

Notice that for any x∈C(p, t),

p⋅x≥p⋅e(t). (2)

Consider the case where x is a satiation point. Then by A.7, x≥e(t). With p∈Δ being positive,

we can assert p⋅x≥p⋅e(t) . Now consider the case where x is not a satiation point. Suppose

p⋅x<p⋅e(t). By A.8,we know that x belongs to a weak closure of x′∈X(t) : x′≻t x. Note that

x∈B(p, t) and thus there exists z∈B(p, t) such that z≻t x which implies x∉C(p, t), a

contradiction. Observe that D(p, t)=C(p, t)∩x∈E : p⋅x=p⋅e(t). By Combining (1) and (2)

and with the fact that p∈E', we have

p⋅f(t)=p⋅e(t) and f(t)∈D(p, t)

for almost all . Hence (p, f) is a competitive equilibrium. ■
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APPENDIX

Proof of Lemma 4

Proof. The following proof is based on the proof in Khan and Yannelis (1991). We will show that

C(p, ⋅) is has a measurable graph. We first show that the budget set B(p, ⋅) has a measurable graph, i.e.,

(t, x)∈T×X(t) : p⋅x≤p⋅e(t)∈⊗ℬ(E) . Let gp : T×E−∞, ∞ defined by gp(t, x)=p⋅x−p⋅e(t).

Then gp is measurable in t because e(⋅) is measurable in t. In addition, gp is continuous in x since the map

x  p⋅x is continuous in x . Hence by Lemma III.14 in Castaing and Valadier (1977), gp is jointly

measurable, i.e., g1
p ((−∞, 0)∈⊗ℬ(E). It can be shown that

GB(p, ⋅)=(t, x)∈T×X(t) : p⋅x≤p⋅e(⋅)=g1
p ((−∞, 0)∩GX

where GX is the graph of X(t) . By A.6, GX∈⊗ℬ(E) . It now follows that for each p∈Δ, GB(p, ⋅)∈

⊗ℬ(E).

We now show that D(p, ⋅) has a measurable graph. Let H(p, t)=x∈B(p, t) : ∃y∈B(p, t) suchthat

y≻t x. Observe that GD (p, ⋅), the graph of D(p, ⋅), can be written as

GD(p, ⋅)=GB(p, ⋅)GH(p, ⋅)

where GH(p, ⋅) is the graph of H(p, ⋅) . Since (T, , μ) is a measure space and B(p, ⋅) has a measurable

graph and is weakly closed valued and, thus, norm closed, we can appeal to Lemma 3.1 in Yannelis

(1991) to assert that for each p∈Δ, B(p, ⋅) is lower measurable. Therefore, by Castaingʼs Representation

Theorem,10 there exists a family  fn : n=1, 2, … of measurable functions fn : TE such that for all t∈T,

cl fn(t) : n=1, 2, …=B(p, t) . For n(=1, 2, …), let Hn(p, t)=x∈B(p, t) : fn(t)≻t x . Note that B(p, ⋅)

and, by A.5, ≻t have measurable graphs. Therefore Hn(p, ⋅) also has a measurable graph. We shall prove

H(p, t)=∪
n1Hn(p, t) for any t∈T . It is clear that Hn(p, t)⊂H(p, t) for each n so that

∪
n1Hn(p, t)⊂H(p, t). We now show H(p, t)⊂∪

n1Hn(p, t). Suppose otherwise. Then there exists z∈E

such that z∈H(p, t) and z∉∪
n1Hn(p, t). Then there exists y∈B(p, t) such that y≻t z but there does not

exist n such that fn(t)≻t z. Since the family fn(t) : n=1, 2, … is norm dense in B(p, t), we can find an n0

such that fn0(t)∈B(p, t) and fn0(t) is sufficiently close to y in the norm topology and hence in the weak

topology. Then with the continuity of preference, we have fn0(t)≻t z, a contradiction. Thus

H(p, t)=∪
n1Hn(p, t). Since for each p∈Δ, Hn(p, ⋅)(n=1, 2, …) has a measurable graph, so does

H(p, ⋅). Hence we conclude GD(p, ⋅)=GB(p, ⋅)GH(p, ⋅)∈⊗ℬ(E).

We now turn to C(p, ⋅). Let J(p, t)=x∈X(t) : ∃y∈D(p, t) suchthat y≻t x . Then GC(p, ⋅)=

GXGJ(p, ⋅) . Recall that B(p, t) is weakly closed. By A.4, ∪
n1Hn(p, t) is weakly open and thus, so is

H(p, t). It is clear that D(p, t)=B(p, t)H(p, t). It follows that D(p, t) is weakly closed and hence norm

closed. The similar argument in the above applies to D(p, ⋅) to assert that D(p, ⋅) is lower measurable.

Then again by Castaingʼs Representation Theorem, there exists a family gn : n=1, 2, … of measurable

function gn : T  E such that for all t∈T, clgn(t) : n=1, 2, …=D(p, t) . For n(=1, 2, …), let

Jn(p, t)=y∈X(t) : gn(t)≻t y . By the similar argument above, we have J(p, t)=∪
n1Jn(p, t) . It follows

that GJ(p, ⋅)∈⊗ℬ(E). Therefore, GC(p, ⋅)∈⊗ℬ(E). ■
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