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VANISHING THEOREMS IN ASYMPTOTIC ANALYSIS
AND THEIR APPLICATIONS TO
DIFFERENTIAL EQUATIONS*

HIDEYUKI MAJIMA

About one century ago, H. Poincaré[22] obtained the concept of asymptotic expansions
of holomorphic functions in one-dimensional sectors. He proved the existence of a solu-
tion to an ordinary differential equation of ‘Poincaré rank 1’ which has an asymptotic
expansion. Since then, the asymptotic expansions of one-variable functions have been
used to express local behavior of solutions to functional equations (cf. Wasow[30], Olver[21]).
Among the works, on the ordinary differential equations with singular points, the theorem
of existence of asymptotic solutions is significant, which is due to Pioncaré[22], Birkhoff[1],
Trjitzinsky[27], Malmquist]19], Hukuhara[8], Turrittin[28], Iwanof10], and Sibuya[24]. In
the former 1970’s, the index theorems of linear ordinary differential equations were proved by
several authors: Deligne[3], Malgrange[17], Komatsu[13]. Moreover, the notion of regular
singularity of linear ordinary differential equations was characterized by validity of the com-
parison theorem or cohomology vanishing theorem[3,17,13]. These well suggested that there
was an absence of a tool in the theory of asymptotic expansions of one-variable func-
tions. In the middle 1970’s, via Sibuya[25], Malgrange[17] introduced the sheaf of germs of
functions having asymptotic expansions and proved a kind of vanishing theorem for it.
Thereafter, the theory of asymptotic expansions of one-variable functions became more power-
ful. As is written in the encyclopedical dictionary of mathematics by the Mathematical
Society of Japan, there are many ways to define the notion of asymptotic expansions of several-
variable functions. Hukuhara[9] gave a definition for the study of non-linear ordinary
differential equations. In the latter 1970’s, some works on the Pfaffian systems with certain
kind of irregular singularities appeared: Gérard-Sibuya[7], Takano[26]. In these articles, the
asymptotic expansions of several-variable functions were adopted as in [9]. In 1981,
there appeared another theory of asymptotic expansions of several-variable functions[14].
1t is considered as powerful as the asymptotic theory of one-variable functions.

1. Definition of Asymptotic Developability of Functions

Let S[9,8,r] and S(6,8,r) be a closed and an open sector with summit at the origin in C.

* Dedicated to Professor Sigeru Mizohata on the occasion of his sixtieth birthday. This article is a
revised version of the article written in Japanese which appeared in Sugaku, 37 (1985), 33-52.
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We say that a holomorphic function f(x) in S[4,4,r] is asymptotically developable as x tends
to O if there exists a formal power series f(x)=X,_,>f;x? such that for any non-negative
integer N the following inequality is satisfied

N-
sup (X177 1/(9)— 3, fixt; x=S10,8.r) < + <. (R)

By using the Cauchy’s integral formula, this condition is translated to the following con-
dition that for any N there exists a limit

lim (d/dx)" f(x)(xE (6,8, 7], x—0)=N!fx (1.2)

Then, f(x) is called the asymptotic series for f(x), and f(x) is asymptotically developable to
f(x) as x tends to 0. A function in S(8,3,r) is said to be asymptoticaily developable as x
tends to 0 if f(x) is holomorphic and asymptotically developable in any closed subsector
S’ in the open sector. Now, let 8:,0:,(i=1, . .., k) and r:(i=1, . . ., n) be real numbers and
positive real numbers, respectively. The subset of C»

k n
SI: H S[ﬁi,gi,ri] X H D[rf] (1'3)
i=1 J=k+1

is called an n-dimensional closed polysector with theedge in ¥'= {(x,,..., X»)EC™; x;+++ xx=0},
where D[r;] denotes the closed disc at the origin with the radius r, in x,-plane. Let [1,#]
denote the subset {i=1,...,n} in N. For a subset J of [1, k], N7 denotes the set of all
gs=(97)ses. Put x;=(x;) and put x;%=[];esx;% for g;EN’. For the complement I of
Jin [1,n], put S'tnn=Tliernw,e800:, 01, 7] X [j-ra™Dlrs), X1 =(x)seq.  Write x for xiy, a.

DeriNiTiON 1.1, A holomorphic function in S’ is said to be asymptotically developable
as x tends to V if there exists a family of functions

F={f(x:; 95); = JC[1,k], ;€N I=[1,n] - J} (1.4)
such that f(x;; g;) is holomorphic in S';1;, and for any N=(Ny, ... N, 0, . . ., 0)EN=,
sup {|x~¥(f(x)— Appn(x; F))|; xES'} < + o0 (1.5)
is satisfied, where
Appal; )= 3 (=1 55 flxrs qup 16

This condition is equivalent to the existence of the limit
lim (3/3x,)Vf(x)(xES’, x,—0)=q.f(x7,97) (1.7
for any non-empty subset J of [1,k] and any ¢q,EN’. Then, Fis called the family of the

total coefficients of asymptotic expansion for f and f(x1;q,) is called the coefficient of the
degree g, with respect to J. These are denoted by TA(f), TA(f)q,, respectively. The series

FA(f) quZE:Nf (15 gr)xs9 (1.8)

is called the asymptotic series of f with respect to J. Appx(x; TA(f)) is called the approx-
imate function of the degree N. If the above condition is satisfied, then the function f(xr;qs)
in S’;; satisfies the same type of condition as (1.5) for
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F(gr)={f(xx; qru1); ¢ LC[1,k]—J,qrENE, K=[1,n]—J U L} (1.9)

as x tends to V= {x7; scrunux:i=0}.
DEerINITION 1.2. A holomorphic function f(x) in an open polysector with the edge in V'

L

il

S=TI S(8+,0:,r) x TI D(ry) (1.10)
=1 J=k+1
is said to be asymptrotically developable as x tends to V, if f(x) is asymptotically developable
in any closed subpolysector S” in the sence of the definition 1.1, where D(r;) denotes the
open disc at the origin in the x;-plane.

If the function f(x) is asymptotically developable in .S, for any non-empty subset J in
[1,%] and for any ¢, there exists a holomorphic f(x;, ;) in the open polysector

Sav= TI  8(6:,8:,r)x I D(ry)
1€ N1,k j=k+1
with respect to I=[1,n]—J such that the family of the restrictions to S'¢;, satisfies the con-
dition (1.5). And, as for the closed polysector, TA(f)o,=f(x1;4qs), TA(f), FALS),
Appx(x; TA(f)) are defined.
DerFiNITION 1.3.  Let be given a family of functions

F= {f(xla qJ); ¢:‘F:Jc[lak]’ qJENJ, I=[l’n]_']} (111)

in an open or closed polysector S with the edge in ¥, where f(x;; qs) is holomorphic in Sz,
or Sr3. The family Fis said to be a consistent family if, for any non-empty subset J in [1, ]
and for any q,€N’, f(x;; qs) is asymptotically developable and the family of the total coef-
ficients TA(f(xr; q1)) is equal to {f(xx; qsuz); o LC[Lk]—J, g ENE, K=[1,n]—J UL}.

THEOREM 1.1. Let S be an n-dimensional open or closed polysector with the edge in V
and let F be a consistent family in S. Then, there exists a holomorphic function f(x) such
that it is asymptotically developable in S and TA(f)=F.

Let f(x) be a asymptotically developable function with the family of the total coefficients
TA(f) in an n-dimensional polysector S with the edge in V. If the function f(x;q,) is holo-
morphic in a disc including St,; or S¢r, for any non-empty subset J in [1, k] and for any g, NV,

S(xz; q.l):q EZNLf(xK; gruL)XLor (1.12)

for any non-empty subset L in [1,k]—J, the approximate function Appx(x;F) of the degree
N is holomorphic in a disc including S and

APPN(x5 F): Z e Zf(xk+19 sy Xns G ey qk)xlql' . XiTE
q1=0 q:=0
— 2 e 0 fKhars s X3 Gas e e s QXL L. XiTE, (1.13)
=N =N

Put D;=D[r;} or D(r;). Denote by Z(IlI;=:D;)[x:]] the ring of formal power series
with respect to x; with coefficients in <”(IT;%:DP;). Then, the formal power series
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FAn(N)=% ... Zof(xkﬂ, e X Gy - e s QE)X T L L XiTE (1.14)

q1=0 %=
belongs to the intersection of &7 (I =:DH[[xli=1, ..., k). Namely, let ¢ be the sheaf
of germs of holomorphic functions and let ﬁ=proj limyoee@/(xy . . . x)¥ & be the formal
completion of ¢ along V. Then, FApu(f) is a section of 2%; on D=IT;,_;*D; and f(x)

is said to be asymptotically developable to f(x)=FAy u(f)(x) in &(D) as x tends to V.
THEOREM 1.2. Let S be an n-dimensional open or closed polysector with the edge in V

and let f(x)E &I(D). Then, there exists a holomorphic function in S which is asymptotically
developable to f(x) as x tends to V.

Denote by A4(S) the set of all functions asymptotically developable in S. Then,
A(S) is closed by fundamental operations: addition, substitution, multiplication and in-
tegration. If S is open then A(S) is also closed by differentiation. Moreover, the opera-
tions commute with F4;. Denote by 4°(S) ad A44(S) be the set of all functions asympto-

tically developable to some formal power series in 2} and to the formal power series O,
respectively. Then, A(S)CA'(S)TA(S) and A4KS), A'(S) are closed by the fundamental
operations.

II. Sheaves of Asymptotically Developable Functions and
Vanishing Theorems

Let M be a complex analytic manifold and let #” be the sheaf of germs of holomorphic
functions on M. Let H be an union of a finite number of non-singular hypersurfaces in
M and let &3\u be the formal completion of £ along H. Namely, let & be the defining
ideal of H, then i jy=proj limy .7/ Px¥. Suppose that singular points of H are
normal crossings. Namely, for any point 2 on H, there exist a neighborhood U of 4 and

local coordinates xy, ..., x, such that HNU={(x;, ..., x2)EU; xy . . . x4=0} (k<n).
Define the real blowing-up (U-, pry) of U along HNU by
U—={(x, 2)€EU x (SV*; Im(x:z9)=0, Re(x:z;) =0, i=1, ..., k}, 2.1

where pry is the natural projection from U~ to U and S'= {z€C; |z|=1}. If U=II;-1"U;,
then

U-= 1 (Usi— (0} USH % 1T Uy, 2.2)
{=1 i=k+1

where U;— {0} US! is the space constructed by pulling the origin from U; and inserting S™.
Let {U.} <4 be an open covering of M, and let (U, pr;) be the real blowing-up of U, along
HN U, Then, by patching U, together, the real blowing-up of M along H is constructed.
For an open set U~ in M-, put S~(U)="~(U")=. ~(U-)=P(pr(U-)), if the closure
of pr(U-) has no intersection with H. If the closure of pr(U-) has intersection with H,
then denote by 7-(U-) the ring of functions asymptotically developable in any a-dimen-
sional polysector in pr(U~)— H with the edge in H, and denote by &"~(U-) and 4~(U-) the
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rings of functions asymptotically developable to some formal power series in Zifjw (pr(U-))
and to the formal power series 0 in any n-dimentional polysector in pr(U-)—H with the
edge in H, respectively. Then, in a natural way we can define the sheaves .=, "~ and
%~ whose sets of sections on U~ are equal to 7~(U-), &"~(U-) and &4~(U~), respec-
tively. The vanishing theorems in asymptotic analysis are stated as follows:

THEOREM 2.1.  For any point h on H, put h—=pr=1(h), then

_ 1y 0, g1
Hi(h, )= o g, 23)
THEOREM 2.2. If H{M, 2)=HYM, 7 %)=0 for g=1, then,
|
{0, g=1
Hq(M, '—SYO)_{HO(M’ ﬁ/I/I\H)/HO(M, ﬁ), q=1 (2-4)

These theorems can be stated in anotehr way. Note that Theorem 1.2 means the follow-
ing:
THEOREM 2.3. The following sequence of sheaves is exact:

0— & " — pr1 i u—0, (2.5)
where i is the canonical inclusion mapping and, on pr—'(H), j assigns to f the asymptotic
series and outside j is the zero mapping. From the short exact sequence, we have the long
exact sequences:

0—H%h~, 57|n-)—>HY (b=, 7 |n-)—HOh™, prot Gifule-)

- H\(h~, |-y H (I, 7 |n)— H' (b, prot Ghiula-)

—H¥h, & h)— ..., (2.6)
0—HY M-, ;) H (M-, 7" ~)—HYM-~, pr= ifiu)

—H\(M-, ") > H\(M~, ")~ H'(M~, pr=' Ciiin)

—SHX M-, S )— ..., 2.7
The first three terms are easily calculated:
HY(hm, 7]n-)=0, H(h=, "~ |n-)=, H(h™, pr= Oaiuln-)=(aiiun (2.8)

H(M=, £77)=0, HM~, "7)=H(M, &), H\M~, pr=* Giitw)=HM, Zifjn)  (2.9)

Therefore, we can translate Theorems 2.1-2 as follows:

THEOREM 2.4. For any point h on H, (i) iy,» is a zero mapping and (ii) j,,n(qg2 1) are
isomorphisms.

THEOREM 2.5. If HY(M, &)=HYM, Ci\n)=0g=1), then i, is a zero mapping
and j (g2 1) are isomorphisms.

More precisely, we can assert the following:

THEOREM 2.6. (i) If HY(M, &)=0 then i, is a zero mapping, i.e. H(M-, o747 )=
HYM, Gifiw)/H'(M, &), (i) If H(M, 7)=0 (1=q=)), H(M, Ciw)=0 (1=q=j-1)
then j(1 £q < j) are isomorphisms, i.e. H(M~-, S7;7)=0 2<g=<j).

Denote by #7(*H) the sheaf of germs of meromorphic functions which are holomor-
phic in M — H and have poles on H, and put ZAu(*H)= i (u&®, 7 (*H). By the second
isomorphism theorem, we have

(O] n= G (CH)rf F(FH)a, (2.10)
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H"M, Oinu)H(M, &)=H"M, Gifiu(*H))/H'(M, Z(*H)). (2.11)

Put Z=pr'¢ and ¥ (*H)="Q,pr*c?(*H), we have the short exact
sequence analogous to (2.5):

0— %4— "~ (*H)—pr-(Sinu(*H))—0. 2.12)

Therefore, we have another verison of the vanishing theorem:
COROLLARY 2.1. For any point h on H, put h-=pr='(h), then

HY(h~, 7 |n-)= Oaiu(*H)a| O H)n, (2.13)
He(h, &7~ (*H)\w-)= Ho(hm, pr* Giiiu(FH)|w), g1 2149
COROLLARY 2.2. (i) If H(M, &)=0 then,
HY(M~, &)= HYAM, Ginu(*H)/H(M, T(*H)), (2.15)
@) If H(M, &)=0 (1=g<)), H(M, Siu)=0 (1=<g=<j—1) then,
Hy(M-, &7'-(*H))=H{M-, pr*Ou(*H)), 1=q=j. (2.16)

For a positive integer m and E=._~(U-), &' ~(U-) and Zifu(pr(U-)), denote by
GL(m,E) the ring of invertible m-by-m matrices whose elements belong to £. As above,
we obtain the sheaves GL(m, &), GL(m, ") and GL(m, Zifju)- Denote by GL(m, 7-);
the subsheaf of GL(m, &7"~) of germs of matricial functions asymptotically developable to
the identity matrix 7,,. Then, we have the short exact sequence:

I,—GL(m, ) 1—GL(m, 7" )—pr-*GL(m, Oifiu)— In, (2.17)

THEOREM 2.7. For any point h on H, put h-=pr=1(h), then

@) i: HW(h~, GL(m, 7 )1|p-)—= HY W, GL(m, &7 N|»-)
is a trivial mapping.

(if) Hl(/l—, GL(m, M‘)zlh_)zGL(m, ﬁM/FH)n/GL(m, ﬁ)h,

@iy j: HYh, GL(m, ") t|n-)—HYh~, pr-'GL(m, Cifjw)|r-)
is injective.

By the long exact sequence deduced from (2.17), (i), (i) and (iii) are equivalent.

Let & be a locally free sheaf of #”-modules of rank m. Put

=SSR O, S H) =S R, O(H), Fiu(*H)=SR. Oinu(*H),  (2.18)

S =pr SR, N, L =pr SR, S H)=pr S H)Qo 7 (219)

THEOREM 2.8. The statements obtained by replacing .7 and 7 with &7 from Theorems
2.1-6 and Corollaries 2.1-2 are valid.

In the theory of asymptotic expansions the origin of this kind of vanishing theorem

is ‘Preliminary Theorem’ in Birkhoff[2] (p. 533). Sibuya[25] obtained (/) and (iii) of Theorem

2.7 and Malgrange[18] obtained (i) of Theorem 2.7 and Theorem 2.1 in the one-variable case.

III. Existence of Asymptotically Developable Solutions to
Systems of Differential Equations

Let S be an n-dimensional polysector with the edge in V in C* with coordinates xy, . . .,
x, and let U be a polydisc at the origin in C™ with a coordinate system u="*(u,, . . . , tn).
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Then, Sx U is an (nxm)-dimensional polysector with the edge in ¥'x C= Consider a
system of partial differential equations of the first order

xpPiefoxJu=ai(x, w), i=1,...,#n, 3.1
where

ai(x, W= au(x, w), . . ., ams(x, 0), i=1,...,n (Zn),
pi=Dits - oy P, 0, ..., 0), ei=xy, i=1, ..., k, es=1, i=k+1,...,n.

Suppose that this system satisfies the integrability condition
(8fax)(x~Piay(x, u)) + x5/ du)a;(x, wa(x, u)

=(8/ax)(x~Pia(x, w)) +x~ 2 2:(0/ow)as(x, Waix, w), i,j=1,...,n, 3.2
where
(0/ow)ay(x, W)=((3/dur)a,(x, u), . . . , (3/0xm)ax(x, u)) (3.3)
By the holomorphy of a.(x,1) with respect to u, these functions have the Taylor’s expansions
ai(x, Wy=a,o(x)+ A:i(xX)u+ Zz:v aig(ue, i=1,...,#n, 3.4
enym .
qi>1

where a;(x)(geN™, |q]x1), Ai(x) are asymptotically developable in the polysector S with
the edge in V. If u(x) is a holomorphic solution to (3.1) in a subsector of S, then, for a
nonempty subset J of [1,k],

xJPﬂxzP'Iei(a/axi)FAJ(u)———FAJ(aio)+FAJ(A,-)FAJ(u)+ X FAJ(a,-q)(FAJ(u))q, i=1,...,n,

fasi (3.5)
where I=[1, n]—J, pir=(puer, pis=(pis)jes. Therefore, for g;EN’, TA(u),, satisfies the
equation obtained by formally operating (8/9x,)¢7 and substituting x;=0, i.e., put

giw (pi=0,i€J)
) _ ei(a/axi)w (piZO, lqEJ)
LHSi(9,)= 0 (pi*0, piy=0) ° (3.6)

XrP2(x;0/0x)w (pi=0, piy=0)
then, w=TA(u),, satisfies the non-linear differential equation
LHS(05)=TA(a:y)o, + TA(A)o,w+ Z)N TA(aig)o,w, i=1,...,#x, 3.7
fa>1
and w=TA(u),,(¢9,=0,) satisfies the non-homogeneous linear differential equations
LHS(9.)=((8/0w)a(x, Wluucop,z,=0)W + terms determined by TA(u)s,(|ss|<lqs) (3.8)
DErFINITION 3.1. A consistent family
F= {f(x13 q-’): ¢#JC[1, k]3 (IJGNJ, I=[ls n]—J}
is said to be a family of coefficients of a formal solution to (3.1) if for any non-empty sub-
set J of [1, k], w=f(x1; Oy) satisfies (3.7) and w=f(x:; q) satisfies (3.8) for g;=0;.

DerINITION 3.2. A formal power series ﬁe(&’\y)om is a formal power-series solution to
(3.1) if 4 satisfies (3.5) instead of FAq s(u).
In the following, suppose that lim a;o(x)=0 (i=1, . . ., #') and put lim 4;(x)=4:(i=1,
z—0 r—0

., n).
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THEOREM 3.1. Suppose that p;=0 for an i in [1,kIN[1,n'). (1) If Fis a family of total
coefficients of solution to (3.1) in a subsector S’ of S, then there exists a unique solution u to
(3.1) in S’ whose family of total coefficients is equal to F. (2) If 4 is a formal power-series
solution to (3.1), then there exists a unique solution to (3.1) in any subsector S" with a suffi-
ciently small radius in S which is asymptotic to @. (3) If ai’s are holomorphic in a polydisc,
then a formal power-series solution to (3.1) is convergent.

THEOREM 3.2. Suppose that p;=0 and A; has no eigenvalues of integers for some i in
[LLEIN[I,n"). Then, there exists a unique family F of total coefficienst of formal solution to
(3.1 in any subsector S’ of S with f(0; Or,x)=0. If ai’s are asymptotic to formal power
series, then there exists a unique formal power series solution # to (3.1) with #(0)=0. For
F and 4, Theorem 3.1 is valid.

If p;+0, then the domain of existence of asymptotically developable solutions to (3.1)
could be smaller than the whole sector S. For example, consider a ordinary differential
equation of the first order

t2*(d/dtyu= — ppu+a(t, u). (3.9)

Sclutions to this equation satisfy the integral equation

u(t)=exp(ut=?) exp(— pty™ P)u(ty) + exp(‘ut‘l’)g:oexp( — us~P)a(s, u(s))s~?ds. (3.10)

So, exp(ut—?) dominates the domain of existence of asymptotically developable solutions
to (3.9).

DerINITION 3.3. An n-dimensional sector S with the edge in V is said to be a proper
domain of the function

k
lexp(px~?)|=exp Re(ux~7)=exp(|px~7| cos(arg p— 3 ps arg x:)) G.1D)

if {xeS; Re(ux~#)>0} has at most one connected component in S, i.e., for some integer
k and for all xS

k
—iz<argp— > prarg xi+2kn< 3 (3.12)
i=1

2 2"

Then, D— V is covered by a finite number of proper sectors.

THEOREM OF EXISTENCE OF ASYMPTOTIC SOLUTIONS. Suppose that ai’s are holomorphic
in an (n+m)-dimentional polydisc, and that p;;>0 and all eigenvalues di; of A, (i=1, . . .,
k<n',j=1,...,m)arenot zero. Then, for any direction  tends to 0 in D and for an adequate
proper domain S; containing | with respect to |exp(—putdix—29)| (i=1, ...k, j=I1,...,
m), there exists a solution u to (3.1) which is holomorphic and asymptotically developable
toitin S

This theorem is proved by using the method of Hukuhara[8], cf. Majima[15].
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IV. Structure of Local Solution Matrices to Integrable
Pfaffian Systems and Riemann-Hilbert-Birkhoff Problem
of Local Version

Consider a completely integrable system of partial differential equations in D at the
origin in C?, :

xPie(3/ax:v=Ci(x)v, i=1,...,n, “.0n
where, pi=(puyy . . ., Pir, 0, . . ., 0), es=xy,i=1, ..., k,es=1, i=k+1,...,7, and Ci(x)

(i=1, ..., n) are m-by-m matrices of holomorphic functions in D such that

€i1(8/3x:)(x™2:C4(x)) + x~ 257 21Cy(x) Ci(x)
=e,(8/0x)(x~2:Cy(x)) + x~2-2iCy(X)Cy(x), Jj,i=1,...,n 4.2)
Put
Q= f} x~Pig; LCy(x)dx;, 4.3)
t=1

then 2 is an m-by-m matrix of meromorphic 1-forms which is holomorphic in D— ¥ and have
poles on V, the system (4.1) is re-written as the linear Pfaffian system (d—Q)u=0 and the
condition (4.2) means d2=0QAR, called the integrability condition of (d—2)u=0, where
d is the exterior derivative and A is the exterior product. The system (4.1) or (d—Q2u=0
have no singular points in D — ¥ and so for each point in D — V there exist m linearly independ-
ent holomorphic solutions to (4.1). Therefore, by analytic continuation, there exists a
fundamental matrix of solutions of the type &(x)=P(x)x,1. .. x:™* to (4.1) in D, where
P(x) is an invertible m-by-m matrix of functions holomorphic in D— ¥ and eventually essen-
tially singular on V, and M; (i=1,. . ., k) are m-by-m constant matrices such that M;M;=
M;M;. In general, it is difficult to calculate M;’s and P(x) and to estimate the singularity
of P(x). If p;=0 for some i, then (4.1) is reduced as follows:

ProrosiTiON 4.1.  If pi=0 for some i€[k+1,n), then there exists a holomorphic trans-
Jormation v=0(x)w in D such that (4.1) is transformed to

x%ied/ox)w=B(x)w, j¥Ii,
{ (8/8x)w=0,

where By(x)(j=i) are independent of xi. .
ProrosITION 4.2.  Suppose that p;=0 and that the eigenvalues of Ci(0) are pi+ Ay I=1,
<5 8 j=1, ..., s whose multiplicities are m.;, where 4,;’s are positive integers and p — pu’s

are not integer if I=1'. Then, there exist an invertible matrix Q(x) of holomorphic functions
and a diagonal matrix D(x;) of momonials of x; such that (4.1) is transformed to

{ (x:0/0x)w=(D1=1*(preT i + Ni))w
x%5(es0/ax)w=(D1,* Bs (X)W, j=i,

by the transformation v=0Q(x)D(xi)w, where Iy, is the unit matrix of the order my=my +

- -« +muy, Ni's are strictly upper triangular matrices of the order my, ;=(qsy, - - - , q1,3-1, 0,

Gs41 0, . . ., 0), Bu(x)’s are my-by-m, matrices of holomorphic functions, respectively.
COROLLARY 4.1.  If py= ... =pr=0, then there exists a fundamental matrix of solutions

4.4
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of the type @(x)=P(x)x,¥1 ... x:¥ to (4.1) in D, where P(x) is holomorphic in D and
P-I(x) has at most poles on V.

If p;=%0 for some i=1, . . ., k, in general, (4.1) is not reduced to a simpler system by
a holomorphic transformation in D. However, there is a case that it is transformed to a
simpler system by an asymptotic transformation. By Proposition 4.2 and the condition

(4.2), we can suppose that C(0)Cy(0)=C;(0)C:(0) (i,j=1, ..., n). Suppose that C,(0) has
at least two different eigenvalues p;,; with the multiplicity m;; (!=1, ..., s). Then, there
exists an invertible constant matrix 7,

TG0 T=®:*(ps,fm + Nsp), j=1,...,n, (4.5)

where p;,.’s are eigenvalues of C;(0) and N,,; are strictly upper triangular matrix of the order
my. For simplicity, suppose that C;(0) is of the form of the right hand side in (4.5). Pose
the question whether (4.1) is reduced to a decomposed form as (4.5). If (4.1) is transformed
to

x?i{e;0/ax)w=(D:_1* B (), j=1, ..., &, 4.6)
by a transformation v=(I,, — (Py(x)))w, then
—x24(e0/0x;)(Pu)=Cj(In—(Pu)) — (In— (Pu-))Di_* By, j=1,...,n 4.7
Put P,=0(/=1, ..., s), then
Bj,L=C,,u—h§lC,,um, j=1,...,n I=1,...,s, 4.8)

x”f(e,-a/axj)sz Z Cj,u.,PM’—P”/Bj’V—Cj,u', ]=1, e Ny l,l,=1, [ l#l, (49)
hxl’
Therefore, Py-’s satisfy the system of partial differential equations
xPi(e,-a/axj)PW=hZ CiinPrir—PuCine+ 3 PurCyinPri—Chouv,
=i/ hal’

j=1,...,s LI'=l,...,s I=I. (4.10)

Denote by u the column vector obtained by arranging P;;-’s in an adequate order, u satisfies
a completely integrable system of partial differential equations of the form

x;74(e;0/ox u=a;(x)+ Aj(xX)u+ Qsx, u), j=1,....,n, T@.11)
where the eigenvalues of 4,0) are pj:—pj, LI'=1, ..., s, [%]" whose multiplicities are
numy., respectively. Therefore, in a proper domain S’ with respect to

]exp(—p“‘l(‘uu—p”r)x—m)](i——-l, ok LI=1, ..., s, li?ll) (412)

(4.1) is reduced to a decomposed form by an asymptotically developable transformation.
Suppose that (4.1) satisfies the following condition (4.13): for all i=1, . . ., k, pu>0

and Ci(0) has m different eigenvalues or p.=0, Ci(0) has m different eigenvalues and the dif-

Jference of any two eigenvalues is not integer.

Then, (4.1) has a fundamental matrix of formal solutions of the form

O(x) exp(x~94(x))x; 71 . . . x5Tx. 4.14)

Therefore, by Theorem of existence of asymptotic solutions, there exists an open cover-
ing {S.;z=1, ..., ¢} of D—V such that S.’s are open sectors with edge in }" and in it
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Q.(x) exp(x—24(x)x,T1 . . . XiTe=D(x) (4.15)

forms a fundamental matrix of solutions to (4.1) for z=1, ..., q. If S.NS. ¢, there exists
an invertible constant matrix C..., called a connection matrix, such that @.(x)=0.(x)C..-.
Then,

0.7 Yx) Q. (x) =exp(x~2A(X)x, 71 . . . XxT*Cerr(eXp(x~A(X)) 2,72 . . . XT*) ™ (4.16)
is asymptotically developatble to I, in S.NS.+, and the 1-cocycle condition
C.orCortConre=1In, §:N SN Stu#gb (417)

is satisfied. Conversely, let be given exp(x~24(x))x,71. . . x7*, an open covering {S:;7=1,
., o} of D—V and a system {C..; r,z'=1, . . ., ¢} of connection matrices such that (4.17)
is satisfied and
Foor(x)=exp(x24(x))x;71 . . . X7 Cer(exp(x~24(x))x, 71 . . . XxTE) 7 (4.18)
is asymptotically developable to I in S:NS... Then, does there exist an integrable linear
Paffian system (d— 2)v=0 or (4.1) such that exp(x~24(x))x,7 . . . x,"+ forms the essentially
singular part of the fundamental matrices of solutions to the system and that {C...;7,7'=]1,
., a,} forms the family of connection matrices for the covering? This is called the Rie-
mann-Hilbert-Birkhoff problem of local version. By using Theorem 2.7, we can solve
this problem.

V. Riemann-Hilbert-Birkhoff Problem of Global Version
and Meromorphic Integrable Connections

Let M and H be as in II. Consider a linear integrable Pfaffian system
(d—2v=0, dR=2NSR (CR)Y)

where 2 is an m-by-m matrix of meromorphic 1-forms which are holomorphic in M—H and
has poles on H. For any point 4 on H, there exist an adequate neighborhood Us and local
coordinates such that 2 is represented as (4.3). If 2 satisfies the condition (4.13), then,
for each point /# on H, there exist a matrice E, of essentially singular functions represented
as exp(x—94(x))x,7t . . . xx7* by an adequate local coordinates and a finite open covering
{Shen;tn=1, . . ., o} of Un—H such that Q. E» forms a fundamental matrix of solutions
to (5.1) in Sh., for some matrice Qu., of asymptotically developable functions. Fora point
in M~ H, there exists a fundamental matrix O of solutions to (5.1) which is holomorphic
in a sufficiently small neighborhood U,. Then, put Ep=1In, Snu=U, and r=g=1. If
ShenN Synseps ¥ there exists an invertible matrix Creynreys Satisfying Onse, Enr=Qne, EnChepnrey .

{C’Lrnhm’; h, hHeM, o=1,...,adn, =1, ..., on}
satisfies the 1-cocycle condition. And, if 4, /'€ H and Sn., N Shrr, ¢, then
anh—IQh'rh'=Ehchrhh’rh’Eh,_1 (5.2)

is asymptotically developable to a formal power series, in particular, to I, for A=#". Con-
versely, let be given E, for each 4 in M, a covering {Sh.,; ta=1, ..., 02} of M—H and

{C"'fhh'fh'; /’l, /’l'EM, Tp,,=1, v voy Ohy T;.,I:l, Ve ey O'h,/}
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satisfying the 1-cocycle condition. Suppose that EyCh.ynre,-En-—rs satisfy the same asymp-
totic property as (5.2). Then, does there exist an integrable Pfaffian system (5.1) over M
such that, for each point 4 on H, E, forms the essential singular part of the fundamental
matrix of formal solutions, and that {Cj.,a-.,/} forms the family of connection matrices for
the covering? By the result in IV, for each 4 in M, there exists a local linear integrable
Pfaffian system (d—2,)v=0 in a neighborhood U, of # for the local problem. Moreover,
by the construction and the 1-cocycle condition, if U,N Un-%¢ for h,h' in M, there exists
an invertible matrix of holomorphic functions satisfying

dGh;.,IZ.QhGMII — th'.Qh,', le .th=Gm.,'_1(.QhG),,n' —_— dth'). (53)

The family {Guns; b, A’'EM} is a 1-cocycle of the covering {U,; h€ M} with coefficients in
GL(m, 7). If there exists a O-cochain {R.; hEM} of the covering {Un; hAEM} with co-
efficients in GL(m, ¢7(*H)) such that, Grn=Rp Rp.,h,i'EM, then the problem can be
solved. However, in general, it is impossible. Though it is possible to decompose G-
as above in M a Stein or projective manifold, R,’s may have poles outside H.

The family {(d—2,)v=0;h€M} of local linear integrable Pfaffian systems with the
family {Gpn-; B,A’EM} of transformation matrices is a representation of a meromorphic
integrable connection.

Denote by @' and by Q'(*H) the sheaf of germs of holomorphic 1-forms in M and the
sheaf of germs of meromorphic 1-forms which are holomorphic in M—H and have poles
on H, respectively. Let & be a locally free sheaf of £ -modules of rank m and put
S F*H)=®,7(*H). A meromorphic connection V on S (*H) is by definition a
C-linear mapping

V: S(*H)- SR, QY H) (5.4)

satisfying the Leibniz rule, i.e., take an open set U in M, then, for f in £ (*H)U) and for
ein Z(*H)(U).

V(fe)=fVe+eQ,df. (5.5)

For a free basis ey={(ey,, . . . , ezm) of & on U, there exist Ci;€EHYU, 2 (*H)) such that
Vey,=l§1CUem, ]=1, PN U (56)
The matrix 2.,=(C:;) is called a meromorphic connection matrix of Vv with respect to the
free basis ey. For u="(u, . . . , nm)E(HYU, Z(*H)))™ and for evu=iey, + ... +uney,,
V(evu)=ey(d+ 2.,)u, .7

and so V(eyu)=0 means (d+0.,)=0. Let fy={fy,, ..., fum> be another free basis of
& on U, and let 2., be the meromorphic connection matrix of ¥ with respect to fy. De-
note by Py, the transformation matrix from ey to fy, then

' Qey=P 25, Pre—dPye), (5.8)

ie. (d+2,,)w=0 is transformed to (d+£2,,)v=0 by the transformation v=P,w. The
meromorphic connection V is integrable if, for any open set U in M, the corresponding
Pfaffian systems are integrable.

Therefore, the family {(d—2,)v=0; €M} of local linear integrable Pfaffian systems
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constructed as above defines a meromorphic integrable connection. The Riemann-Hilbert-
Birkhoff problem can be always solved in the sense of existence of meromorphic integrable
connections satisfying the condition.

VL. Cohomologies of de Rham Complexes deduced from
Meromorphic Integrable Connections

Let 2¢g=0, . . ., n) be the sheaf of germs of holomorphic g-forms on M. Denote
by 24(* H) the sheaf of germs of meromorphic g-forms which are holomorphic in M — H and
have poles on H. We write <7(*H) for Q°(*H). Let & be a locally free sheaf of -
modules of rank m and put FRU(*H)=Q,2¢*H). Consider a meromorphic in-
tegrable connection ¥ on .&Q%*H)=S”(*H), from which we can define naturally

Voo FPO(*H)» F 2 (*H), q=1,...,n 6.1)

For an open set U of M and a free basis ey of &7 on U, take the meromorphic con-
nection matrix 2., of v, then

Vo(evw)=ep(dow + 2ey\w), 6.2)
where o=, - - - , W) EHN(U,2(FH))™ and epo=w,e0?+ . . . +onlum. By the integr-
ability condition Vo Ve-, =0(g=1, . . . , n, Vo=V), therefore

FCEH)—FSP(H)— ... F(*H) -0 (6.3)

becomes a complex of sheaves, denoted by (S72'(*H), V) and called the de Rham complex
deduced from y. Put

N H) = Q(*H)Q s Giiu, 6.4
F-(*H)=pr 1 SN H)Q, 5, (6.5)

-1 H)y=pr SO H)Qs ", (6.6)

W =pr L Q(*H)Q 4~ =pr (LR, 29K 74, 6.7)

then we can define naturally the complexes (4w (*H), V), (&~ 2'(*H),V), (& ~2(*H),V),
and (%2, V). In the sequel, we suppose that V satisfies the following condition: for any
point # on H, an adequate neighborhood U and an adequate free basis ey of & on U,
the meromorphic connection matrix (2 is represented as

13 n
Q=Y xPa ., xe P tA(X)+ D XL L PR A(X) (6.8)
i=1 1=k+1
with respect to adequate local coordinates x,, . . . , X, and pi is positive and 4:(0) is inver-
tible, or, piyy= . . . =px=0 and A4,(0) has no eigenvalues of integer, for i=1, ..., k, where
UNH={x;x, ...x=0} and the point 4 corresponds to x,= . . . =x,=0.

Under this condition, we can assert the following:

THEOREM 6.1.  For the complexes (SAfu (*H), V), (&P~2(*H), V), (&'~ (*H), V),
(%59, V), Poincaré lemma holds. Namely, denote by (92, V) one of the complexes,
then the g-th cohomology sheaf S#°( 2", V)=0 for gz 1.
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Moreover, by calculating the hypercohomologies of the complexes and by using The-
orems 6.1 and 2.8, we have the following isomorphism theorems:
THEOREM 6.2.  For any point h on H,

HO( S a2 CH)a) S 2 (H), V=HY(h™, S6(F2, D), g=1,...,n, (6.9)

H(S 2 (*H)n), V=H(, S50, Vla), ¢=0,1,...,n (6.10)

THeoREM 6.3. If HY(M, Q,02")=HUM, A u®,27)=0 for g=1 and r=0, then
HEHHM, Fiu (FH)H(M, S (*H)), V)= H(M-, S5 Fy 2, V) (g=1,...,n),
6.11)

HY(H M, @ (H)), N=H(M~, S8y 2, V) (9=0, ..., n). (6.12)

More precisely, if HY(M, S®,0)=0 (g+r<j,q=1,r=0), H(M, Fu®R-92M=0 (g+
r<j—1,921,rz0), then (6.11) and (6.12) are valid for g <.

VII.  Characterization of Regular Singularities for
Integrable Connections

At first, consider the integrable Pfaffian system (d— 2)u=0, in D with singularities on
Vasin IV. Let P(x)x,1 ... xi¥* be a fundamental matrix of solutions to the system in
D. The system is said to be regular singular along V, if P(x) has at most poleson V. Now,
consider a meromoprhc integrable connection ¥ on .o~ with singularities on H over M as
in VI. ¥ is said to be regular singular along H, if for any point /1 on H, there exists a neigh-
borhood Us, of & such that the integrable Pfaffian system of v with respect to a free basis
ey, of & on U, is regular singular along HN U, in the above sense. Let H, be the set of
non-singular points on H.

THEOREM 7.1. If a meromorphic integrable connection V is regular singular along H,
then for any point h on H

GGG, Vla-=0, (7.1)
HYh, 27(.% 2", V)|a-)=0, (71.2)
Hi(h~, S22, V)ln)=0, ¢=0,1,...,n, (7.3)
HA AN a2 (*H)n) 2 (*H)a, V)=0, (7.4
HA A2 (*H)o| S 2 H)n, V)=0, ¢=0, 1, ..., n, (1.5)
FENS L (FH), V= U Siu2 (*H), Vn, ¢=0,1,...,n, (7.6)

ﬁ_o(- V)edime SP(S2(*H), V),
p2

=§0(‘ 1Yedimc( Sy (H), Wy, q=0, 1, . . ., n, .7

where h==pr=(h). Conversely, V is regular singular along H, if there exists an open desne
set H' of H, such that one of (7.1-7) is satisfied for each point h on H'.
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The equivalence among (7.2-7) is proved by using the following:

THEOREM 7.2. There exists an open dense set H' of H, such that (6.9) is valid at any
point h on H'. Moreover, the terms are null for g=2.

It is deduced from the following theorem that (7.1) or (7.2) means the regular singul-
arities of V.

THEOREM 7.3. There exists an open dense set H' of H, such that for any point h on H'
we have

dimcHY(h~, S£°(S52", V)|n-)
:% (Total Variation of the function (dn: § Eh~—dime SFNSH42", V))o))- (7.8)

REMARK 7.1. Denote by (7.4), . . ., (7.7) the conditions obtained from (7.4), ...,
(7.7) by replacing a2 (*H) with i,i~($®,2"), where i is the canonical inclusion
from M — H to M. Then, (7.4-7)" also characterize the regular singularities of V.

REMARK 7.2. The number given by (7.8) may be called the irregularity at 4 of y.

The notion of regular singularity of ordinary differential equation was introduced essen-
tially by Riemann and definitively by Fuchs. It was characterized by conditions with respect
to the order of coefficients by Fuchs, Moser, Lutz, Jurkat, etc. (cf. Kohno-Okubo[12]). By
Deligne[3] (Proposition II. 6.20), it was characterized by (7.6-7)' i.e. the validity of compari-
son theorem. Malgrange[17] characterized it by (7.4-7), (7.4-7)'. Komatsu[l13] obtained
the characterization by conditions analogous to (7.4) and (7.6) between hyperfunctions
and distribuitions. Gérard-Levelt[6] investigated measures of irregular singularity. In the
several-variable case, the definition of regular singularity was due to Gérard[4] for Pfaffian
systems, to Deligne[3] for meromorphic connections and to Kawai-Kashiwara[l11], Ramis[23],
(Mebkhout[20]) and Van den Essen[29] for ZZy-modules. Nowaday, we know the equi-
valence (cf.. Ramis[23].) Our conditions (7.1-2), (7.4), (7.2)" and (7.4)" are apparently week
(Majimal16]).
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