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A REMARK ON THE STANDARD FORM PROBLEM
FOR F,(2*%), n>1

HiroMICHI YAMADA

In [10] Miyamoto showed that if a finite group G has a standard subgroup L isomorphic to
2F,(22»+1), n>1, such that LO(G) G and a Sylow 2-subgroup of Cs(L) is cyclic, then O*G)#
G. He obtained much more information. In this paper we proceed to construct a sub-
group G, isomorphic to F,(q) or 2F,(q) X 2Fy(q), q=2*"*1. More precisely the following
theorem is proved.

THEOREM. Let G be a finite group with F*(Q) simple and suppose L is a standard subgroup
of G isomorphic to 2F,(q), q=2%""1>8. Assume that a Sylow 2-subgroup of Ce(L) is cyclic
and that LAG. Then OXG) possesses a subgroup G, of odd index which is isomorphic to F(q)
or *Fy(q) X *Fy(q).

By a further fusion argument it might be possible to show that G, is normal in G and
then F*(G)=~F,(g). But such an effort is no longer important. The simplicity of F*(G)
in the hypothesis of the theorem is necessary since we use, in the proof of the theorem, the
unbalanced group theorem to determine the structure of certain 2-local subgroups of G.
The proof of this fundamental theorem has been completed by the work of many authors.
The detailed description of the theorem can be found in Harris [8), Solomon [16], Walter [18].

UNBALANCED GROUP THEOREM. Let X be a finite group with F*(X) simple. Assume
that O(Nx(T))#1 for some 2-subgroup T of X. Then F*(X) is isomorphic to one of the
known finite simple groups.

Our notation is fairly standard. Possible exceptions are the use of the following: For
a subset D of a group, ¥ (D) denotes the set of involutions in D and for a 2-group P,
& *(P) denotes the set of maximal elementary abelian subgroups of P.

1. Preliminary Lemmas

(1.1) Let G be a group acting on a group X and let A and B be subgroups of G. If B
normalizes Cx(A), then {[A4, B], Cx(4)]=1.

Proor. See[19, (2.4)].
The following lemma is due to Bender [4, 1.1(i")].
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(1.2) Let P be a p-group acting on a p’-group K. Suppose X=X <« K=XY with Y=Y7%.
Then CK(P)= Cx(P)Y(P)

The following lemma can be easily verified.

(1.3) Suppose K=SL,(2"), n=3, acts naturally on an elementary abelian group V of
order 22, Let H be a subgroup of K which corresponds to a diagonal subgroup of SL,(2") and
w an involution of Nx(H). Then V has precisely two H-invariant proper subgroups. They
are of order 2™ and interchanged by w.

II. Properties of *Fy(2*+")

For convenience we summarize some properties of L=2F,(q), g=2%"*1>8, which can be
found in Parrott [12], Ree {13], Shinoda [15], or verified by direct computation.

Let a:i(?), 1<i<12, and ¢ be as in [13]. Then

(D) =a,(t + Wa(tu?®),  afDa()=alt+)as(tu??),
as(Das(t) =as(t + oo (8129,  as(t)as(t) =ae(t + oy, (1u*),
aifl)as@)=a:(t+u) for i=2,3,7,8,9, 10, 11, 12.

The nontrivial commutator relations are as follows, where [x, y]=x"1y~1xy.

[2y(2), as()]=as(t)as(2+ 12 ) (£20 2)ory, (140 3020+ D o (£40F 30204 2),
[ai(D), a0l =as(112®)aa(t22u)arr(£20* oo (120 + oy o (1 20+ 1120+ ) (1204 20420+ V) (120413526 +2),
[a'l(t), ae(u)]zm(tu),

[ax(D), as()]=as(t1e)ay, (£20* 21)cry o 120+ 120),

la1(2), as()]=a1o(t* )iy (127 ")y o(11:%7),

[a:(8), aro()]=ayi(tu),

las(t), aa(@)]=as(tt®)as(t)ar(t*1)as(1t2* Vo (£ u2*1),
[ao(), as(@)]=ar(t)a; (220U o (120 +2),

lax(?), as(t)]=ayo(t)ay (¥ u)as (1%,

[a(2), cro(u)]=ar;1(tu),

[ors(1), as()]=as(tu),

[a3(t), are()]=as(t21)as(tut?) ey (tu20+Y),

[as(8), ar()]=as(t¥wla,(tu??),

[as(t), ani(W)]=ars(tne),

[as(t), as(@)]=as(tu),

[aa(®), az(t)]=a;o(t¥t)ay 1 ((12)ays(1210),

[aq(?), arW)]=ayo(t0),

[as(2), as(u)]=ao(tu),

[as(2), ar(@)]=ay\(tu),

lae(), as(u)]=eryo(tu),

larr(2), as(u)]=a.(tu).
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ReMARK. The commutator formulas of [ay(1),a,(#)] in [12, Section 2] and [ay(£),as(n)]
in [15, (2.3)] are incorrect. In fact

[a,,(t), a’l(u)]:a'b(t2””)(16([1120)0’7(“420+1)a9(t20+1u)a11(t2B+1142B+2)a’12(t20+2u20+1).
Using the notation of [13] we set

r=wsgwzg=ay(Das (Day (1)1
S=w1pg g0y =ag(ag (Das(1).

Then [r|=|s|=2, |rs|=8, and

az(t) =ar(t), ay(t) =au(?), as(t) =as(t),
as(t) =ay(1), as(t) =ay(?), apa(B) =as(t);
a (1) =ay(1), (1) =as(t), as(t) =ae(t).
ar(ty =as(t), (1) =ao(t), ay (1) =ays(t).

Let A; and V; be as in [10, Section 2]. By using [13, (3.16)] we can verify that

Cr(Hy)=H; x N, with Ny=<Vy, Hy, r)=8z(q),
Cr(Hs)=H;x Ny with Ny=<V3, Hyg, 59 =SLy(9).

III. Some 2-local subgroups of G

From now on assume the hypothesis of the theorem. We will continue the notation
of Miyamoto [10]. Moreover, let A;=W;A4, and B=W,W,B,. Fori=1,3,4,5,6,7,9, 10,
note that W; is the unique Sylow 2-subgroup of M; containing V; and so H-invariant. Fur-
thermore (t) Wi ESyl,(C(H;)) and Co(Hy)=W;. For i=2,3,7,8,9, 10, 11, 12, the map
W.[Vi—Vy; xVielt, x] is an H-isomorphism. Similarly, for i=1, 4, 5, 6, W,/V;Z(W;) and
Vi/Z(V;) are H-isomorphic. By [10, (2.5)],

W:sr: Wv’ W4r: Ws, Wer= Ws, We=Wy,, W= Wlﬂ’ Wl?.T: Wm;
Wie=W,, Wyl=Ws, We*=Ws, WiP=Wy, Wi*=Wiyp, Wi'=Wp,.

G.D 1) Z(Q=Wis Zo(Q)=By, Z(Q)=Bs, Co(B))=B, Co(By)=B,, Co(4)=A,, and
A'=A4,.

() M,B<N(B) and My~SLy(q) x SLi(q).

Proor. By (3.9) (2) and (5) of [10], 4, <AB,. Hence A4, <{AB,,N;>=M;4. [10,(3.9)
(4)] gives Cuya(A))=A, and Z(4)=Wy,. By [10, 3.4) ()], [M1,W,]=1, so Z(Q)=W1,.
We have Z,(0)=> B, since A< C(A4,/W,,) and [Wy, W ]=[W,,Wl*=1. Now tBi=_# (tB))=
1S, and E*(t)B)={{1DSy, By}, so N({t>B))=B,N¢(B,). Thus Z,(P)==5, forces Z,(Q)N
N({t)B))=B,. Hence Z;(Q)=B58,. Similarly [W,, W |=[W, Wi ]:=W,; and N(t>By)=
B,N¢(B,), s0 Z;(Q)=B,. In the proof of [10, (3.10)] it is shown that C({t>B,/B,)=B,N¢(B,).
Then since Cp(S;)==S, and [10, (3.8) (3)] give ByNe(B,)N Co(By)=Cx,r(Bs)=B,, Co(Bs)=28,.
As Wi=W_;, Co(B)=B. Moreover Cuw,(B)NC()<Cr(S;)=1 implies Cwy(B;)=1 and
1Q:Co(B))| 24" So Co(B)=B. ' _ _

Let 0=Q/B,. Then O W ,=Cx(H,), for W,B,=Cu(Zy(Q))B,. AsW,=[W,, HJ], (1.1)
shows B=W, x W,, which is elementary abelian. Now Ci(t)=S=[B, t]. Applying[10, (1.3)]
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to the series 1<B,<B,<B, we have C({¢t)B/B)=BN(B)=BK. Let N(B)=N(B)/B. Then
NB)NC(t)=K, so N, is a standard subgroup of N(B) and {z)=Syl,(N(B)NC(N,)). Now
N(B)={(W,, s>=M,, so E(N(B))=M, by [7] and [6, (1])], whence M;B<AN(B). Suppose
M3=SL,(¢? and let I be a complement of W in Na,(W,) containing H,,. Then I normalizes
WaB=Q and H<H,xI, so I normalizes E(C(H,))=M, and W;. Now B;<(Q, s)=M,B
and Wy=[W,, H,] centralizes W ,=Cs(H,) by (1.1), so [19, (2.7)] shows that Cz(W,)=W, and
I acts transitively on the nonidentity elements of B,/W,~W,/W,. If M,~Sz(q)x Sz(q), {
normalizes each component of M, for |I| is odd. If M;~Sp,(q), W; has exactly two ele-
mentary abelian subgroup of order g* and so they are normalized by I. In any case I is not
transitive on (W,/W,)¥, a contradiction. Thus (2) holds.

Let 0=QJA,. [10, (3.8) (3)] gives B,< Q. Then W,<Z(Q) by (1.1), for By=W ,=Cx(H,).
Similarly, Q> Co(A)=A,=Cg(H;) and 4,<Z(0). Hence A is abelian by [10, (3.9)(1)]
and the action of N;. Now [W, Wyl=W,, and [W, W l=[W,, W, =W, so B,<A" and thus
A'=A, by [10, (3.6) (1)].

By the above lemma we can write M=K, x K3 with K;~SL,(g). Let v be an element of
K such that vwt=s. Set Yo=W;3NK;and Z=Cy,,(K,). Note that H normalizes K3, Y3, and
Z, for HEHy;x N;.  Note also that Q=W;,B.

(32) MyB,=K;Cs (Ke) % Ko'Cry(Ky), KoCiy(Ks)=NyS,, and Wyy=Z x Zt.

Proor. Since Y, Y3* is a 2-group, Cr,(Y3)NCp(Yy)*"=1. Then Wi,N W' =W;,N
Wy=1 implies Cp,(Y3)# Wy, Thus Cs(Kp)#1, for Ky3=(¥;3Y,*>. By [10, (3.5)], N, is
irreducible on B,/S,~=S,, so Cp,(Kg)N Cp,(K3")=1. As Cu,p,(t)=N,S;, the lemma holds.

Let Dy=C4(A4,/Z), Yi=DyNW; for i=4, 6, and Y,=7Y,". These subgroups are H-
invariant. Note that Dy < M, 4, for [M,,W;,]=1.

(3.3) (1) Dy=YgY,YoY:Ay, AJAy=Dy/Ayx Dyt[Adg, DyNW;=Yy, DyNW,=Y,, and
IK|=q3 with Ww,=Y:Y;it and Y:n Y¢‘=Z(Wi)f0r I=4, 6.

(2) B/B,= CB/34(K3‘) X CB/34(K3), K3CB/B4(K3l):N3S/S4, and K, centralizes DOB4/B4.

ProOOF. By (3.2), Cw(By/Z)=Y,'. Then as Wy ,"=W; and Wy =W,, Cw (W W,/Z)=
Y, Now A,=WyA4,nB,) and By=W,(4,NB;). Thus Y,<Dy by [10, (3.8) (2)]. Since
ZNZ'=1 and [4,,A]#1, we have Dy# A and by [10, (2.4) (2), (3.9) (1)], | Dol =¢%4,]. More-
over Y, Y, =W, 50 DyDi=A. Thus A/Aq=Dy/Ayx Dyi/Ay, DyN W,3==Yy!, and DN W=7,

Let Nf(\B;)zN(BAl)/B‘,. As shown in the proof of (3.1), B=W,xW, and [W,, W ]=1.
Then as in (3.2) we get M B=RK,C5(Kst) x K Co(Ky), KsCo(Ky)=Cir,5(t)=N,S, and W,=
Cin (K x Cip(Ky). Since Co(By/Z)=Y4'B, Dy<Y¢BNALYyW,B,. By (3.1), DyB,<
C(B,/Z), 50 [V, Vil=V1s and ZNZt=1 imply W,<D;B;. Now Y,!<Dy<Q and every H-
invariant proper subgroup of W, is of order q. Thus D= ¥,:Ci,(K3), proving (2). Since
ANB,=W,W,4, and [We,W=1, DyN B, <WW,AyN C(WW1,)Z)=W,Y,4, and so DyN
B,=Y,Y,A, Thus |Ys/Wy|=q. As Wy=W,, Y=Y, and (1) holds.

(3.4)  By/By=Cp,/p,(Ky") X Cpy/n,(K3) and K3Cpyp,(K3") = N3Ss/ S,

PrOOF. Note that B,<1<Q, sy=M,B and WyB,=A,N B3< Q, so Wy=[W3, Hy] centralizes
WoB,/B,. Now Wy=W, and WyB,N W,B,=B,. Hence as in (3.2) the lemma holds.
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(3.5) QES8yl,(0%(G)).

Proor. In the proof of [10, (3.11)} it is shown that _#(:Q)=19, so te=¢¥«OQ and
NKtYQ)=0No({t>Q). Thus <)Q is a Sylow 2-subgroup of G and (3.5) holds.

IV. The Case M,~Sp,(q)

In this section we assume that M;=>~Sp,(g). Let J; be a complement of Y; in Nx (Y5)
such that H,,<J,J;*. ThenJ,*=J,. As O=W,Band H,J,J, is an abelian group containing
H, Jgnormalizes Co( Hy)=W, fori=1,3,4,5,6,7,9, 10. Let D=D,NDy? and Y,=DN W,
Let Y;=Z(D)N W; for i=8§, 9, 10, 11.

A1) () D=Y3!Y,Y Y Y, A4, <940, My, K, Hy, E*(W,)={Y;, Y}, A/A,=D]A, x Dt/ A,,
and A|D~D'/A,~R[R, as HN,-modules.

(2) DJZ is elementary abelian of order ¢".

() Z(D)=Y ;Y Y Y, Y1, Wy, Z(D) is elementary abelian of order q°, |Y.|=q for i=8,
9, 10, 11, and Ayf/W,,=2Z(D)/ Wy, x Z(D){ Wis,.

(4) WsBs n (WsBs)”:Ba-

Proor. By the definition Z is J,J,t-invariant, so is D,. The element v normalizes J;J/,¢
and Hj, whence HyJJ i< N(D). By (3.1), B,<{Q, s)=M,B and as Dy<Q, Y,;/B,<D<1QnN
O°=YyB. Set I=ANB,. Then Qv I=WW,4, and Y I<DI<D,JJ=Y,;YJ If DI=
Y, (Y8, Wl<DINB=I and so [W,, W{]<I. But [V, V111, a contradiction. Thus DI=
Dyl, for each H-invariant proper subgroup of W,/W, is of order g. Then as C;(H)=Wj,,
(1.2) gives Cpo(H)W=Cpy(H))=Y,;. Now Cy(H,)=W, and each H-invariant proper
subgroup of Wy is of order ¢, so Cp(H)=DNW, and |DN Wy|=q or D>W, Suppose
DN Wel=g. Then DN Wy=D'N Wy or Wy=(DN W) x(D:NWy). If the latter holds, then
as (DNWYWy=Y, and Z(W)=W,, (3.3) forces W,=(DNW)x(D'NW,). But Wy=W,e
Syly(My) and M,~=Sp,(q), a contradiction. If ¢ normalizes DN W, then W,/DN W, is abelian,
contrary to W,/=W, Hence DNW,=Y,, so Y iY,W,A,<DW,A,<D,W, 1If D<
Yt Y, Wody, (Y58, Wol<DNB,<W,4, As W,A,=B;A4,<Q, this gives [W,,W,|<W,4,. But
[V Vol WoA,, a contradiction. Hence DW,A4,=D,W,, for H is irreducible on Y /W,,. As
W,A,NC(Hg)=Wy, and DoW,NC(H)=Ys, DN Ws=Cp(H;)=Y, Then Y 'Y, Y,A;<DA,<
Dy If YgY,YeA,=DA, B>B,NDAy=Y4, and as W,=Y,Yy, B> W4, But then
[Ws, Wi]< WyA,, which conflicts with [V, V]=V,. Hence D4,=D, by the action of H. As
Cu(H)=1, DNW,=Cp(H;)=Y, by (1.2). We have D>[V,,Vi]B,=V,B, since B=V;.
Then as Dy> Wy B,, (3.4) shows D>WyB,. Therefore D=Y,'Y,Y,Y,Y,4,. Now[D, 4,4,"]<
Z by the definition of D, so [D, 4,4,°A,"]<W,,. Moreover 4,4,°4,”>B,>W, by (3.4), for
A1 >WyB,. As [V, V< W,,, we have Y= W,. If Y;=W,,, [Y S, W,|<DNB,=Y Y,4,<
WeW,A;. By (3.1), Y Yi=W,<AD W W, Ay, s0 [Wo, W< W W, A,. But [V, VL W W, A4,
a contradiction. Hence | Y;|=¢® by the action of H.

As A, <D, D4AB=Q by (3.1). Thus D<{Q,v)=(Q,K;>. By (3.4), W,W,"B,=DNB,.
Let N(B;)=N(B:)/B,., Then B, is elementary abelian of order ¢® by [10, (3.9)(5)] and
DNB,=Y YW, is of order qt. As &E*({tDBy)={Bs, {t>Ss} and tFs=t1S,, N({t)By)=
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ByNo(Ss)=B3No(S) and N(By) N C(t)=N¢(S). By [10, (3.9) (4)], [W3, Wsl=1, so K, centralizes
WeNW . Suppose W NWgo=1 and put X=B,NC(Ky"). Then X is M-invariant and as
Hy <M, XnX:<B,NC(Hy)=1. Now N, is irreducible on B,N C(t)=>S8,~S,/Ss, so the
action of N; on XX¢NC(r)=X gives M B,=K,X x Ky Xt and K,X =M B,N C(1)=N,S4/Ss.
Then as Z(VyS,/Ss)=VSs/Ss We—=Cx(Yy)x Cx(Yy) and (WFsy=XCxz(Yy). This is
impossible since K, normalizes DN B,. Thus W NW =1 and DNB,=W W ¢, 50 (4,53 =
DNB, Then DNB,Z is an elementary abelian subgroup of Z(D/Z) by [10, (3.8) (2)].
Note that W,=W,sr*. By [6, (2B)], there are subgroups U; and U, of order g such that W,=
U,U, and W,—(U,UU,) is the set of square involutions of W;. As U;NU,=1, U, and U,
are the only subgroups of order ¢ contained in U;UU,. Thus J3J4¢ normalizes U, and U,
so Z=U, or U, by (3.2). As Y,<DNB,, Y;/Z is elementary abelian. Hence Y;& €*(W5)
by [6, (2B) (1), (3)]. As M =M;*"*, the action of ¢ on M, shows & *(Wy)={Y,Y'}.
then as A'=A,, we have A/4,=D/A, x D}/A,. Now Y,/Z<Z(D|Z), Cw(Ys/Z)=Y;, and
D,=DW;, Thus D=C.(Y;4,/Z), which is My-invariant since M, centralizes 4,/4,. Since
LH(YA)={4;, DR} and t41=tR,, N({t>A)=A,No(R)=ANo(R). Hence Dfd;~
(4/4)NC(t)=RA,/A,~R/R, as N,-modules. Then N, is irreducible on D/Y;4,~R/V;R,,
so D/Z is elementary abelian. Thus (1) and (2) hold.

As Co(d)=4, A, LZ(D)<DNA,=Y;4,. Moreover, W;,Wy,* is a subgroup of
Y Wy of order g3 by (3.2). By [10, (3.6) (1)], N, is irreducible on A;/R, W1y=2 Ry Wys/ W1, 8O
|Z(D)N A/ Wisl=q% As Wy, £ Z(D), the action of H gives W, W1,°= Y1, Wip and Wy =Y, X
Yi'. So Wy=W,"=Ysx Y¢&. By (4), Z(D){ A4, and the action of H gives Z(D)4,=Y;4,;.
Then as Cu(Hy))=Wy,, Z(D)=Y, by (1.2) and Z(D)=Y4(Z(D)N4,). Now A,/Wy,=
Z(DYN Ay/ Wy x Z(D)*N A,/ Wy, by the action of Ny. As Co(H)=W; for i=9, 10, we get
Z(DYN A=Y Y, Y, Y, Wi,, proving (3).

(4.2) Z(Q/D)=WsW,D/D and Z(BD|D) is a subgroup of WyW,W.D[D of order ¢>.
Moreover Z(D)]Z(D)N By and B,D|Z(BD mod D) are natural modules for K.

PROOF. As Z(D)N A,=Y4(Z(D)N B,), Y,centralizes Y B,/B;. Hence by (4.1) (4), Z(D)B,/B,
~Z(D)/Z(D)N By is a natural module for K, Let N(D)=N(D)/D. Then 4\ B,=W W ,<
Z(Q). Now 4 is self-centralizing in M;A4 and Cp/r,(V1)=VV,Ry/Ry, so (4.1) (1) implies
Z(O)=W W, AsZ(Q|A)=W,A/A, Z(B)<W (A0 B)=W ,B,. Then (3.3)(2) gives Z(B)<
W, B,<N(W B,)'=B, As K, does not normalize 4,D=D,, it does not centralize Z(Q).
So Z(0)# Z(B). As Vy<B,and Crz,(V1)=VsVsR/Ry, ANZ(B)=2Z(0) by (4.1) (1). Thus
W oZ(0) = Z(BYW (Z(Q)< B,=W W Z(0). If Z(B)YW Z(Q)=W ., then as W Z(Q)NC(Hy)
=1, Z(B)=>W , by (1.2). But Crjz,(Vo)=V;VsV4R,/Ry, so Ca(Vy)=AN B, by (4.1) (1), a con-
tradiction. Hence |Z(B)NW | =q by the action of H. As Y, <W,and Y@< W,, we see
that B,=Z(Dy*Z(B) and B,/Z(B)=Z(D)'B,/B, is a natural module for Ky'=Kj; by the
above.

Denote by U, and U, the maximal elementary abelian subgroups of W;. As SF(AW)=
"1, it follows from [6, (2.3), (2B) (1)] that U;t=U,. As HJ,J,* is of odd order, it normalizes
U, and U, Then U,W,B,/By>Cz5,(Kg) or CgsfKs) by (3.3) (2). Replacing U; and
U, if necessary, we may assume that U,W,B,/B,>Cps,(Ks). Then U,W,B,/B,=
Cp/3,(Ks")Cw ,8,8K3), s0 K3 normalizes U; W,B,. Since H, is fixed-point-free on W,B,/B,,
(1.2) shows UpB,y/B;<Cs/s,(K,¥). Thus K, normalizes U,B,. We can choose involutions u,
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and u, as generators of the Weyl group of M, such that u,*=u,, (4;u,)?=r, and %, normalizes
Ui, i=1, 2. Set Y\=W,NW,™, Y,=W NW;"*2, and K;=<(Y:, w;> for i=1, 2. Then
U,=Y,W,, Uy=YW,, K;!=K,, and K;=~SLy(g) with Y;€Syl,(K;). Let J, be a complement
of W, in Nu,(W,) containing H; and set ;=K;NJ,, i=1,2. Thenu, and u, normalize J,. As
H,J,is an abelian group containing A and normalizes Q, it normalizes W, 1<i<12, Yy, and
Y,. Set F,=U,(ANB)D and F,=Uy{ANB,)D. Note that B,=W,(ANB)<F,NF,.

(4.3) (1) Cayp(Uy)=WsW,D[D and Ca;p(Up)=W,WW,D[D..

Q) Fi<L0, uy, vy, Fo<(Q, u,, vy, C(F/D)=Z(BD/D), F,/Z(F, mod D) is elementary
abelian of order g4, and F,/D is elementary abelian of order q°.
(3) AF,/F, is a natural module for K, and BF,/F, is a natural module for K.

Proor. Note that Fy=U,W,B,D is K,invariant and F,<<Q, v), for Q'<F,. Let
N(D)=N(D)/D. Then F,/B,~F,/B,D is a natural module for K;. As Ca(Vy)=ANB, by
4.1) (1), ENC(B)=B, Now Z(B)<B,<F,<B and Kj is irreducible on B,/Z(B) by (4.2),
so Z(F)=2Z(B). As V,<U, we get Ca(UD)=ANZ(F)=W W, As V,<U, Z(Q)=W W,
LCi(U)<ANB=W W W, If Ca(U)=2Z(Q), M, normalizes Z(0). But N, is irreducible
on A/W,D=RJV;R, by (4.1) (1). Hence Cx(U,)=W W, by the action of H. Then
F,=U,C3(U,) is elementary abelian of order ¢% and normalized by u,. As F,—U,B,D and
Y,B=0, it follows that F,<{(Q,u, v>. Set I/W W,=(A/W W )NCU,). Then as
RIVVR)NC(V)=V,VVeVoRyVSV,R, and O W W, (4.1) (1) shows W W W,<
I<ANB=W W W W, If =W ,WW, then M, normalizes I, contrary to the action of N,
on A/WD. Thus I=ANB, which is u;-invariant. Hence F, <{Q, u;, v>. If K, centralizes
AF,/F,, then as Q=AF,Y,, OQ'<F,. But (Q/B) =W,B,/B, by (3.3) (2). As W,{F,, this is
a contradiction. Thus AF,/F, is a natural module for K, by [6, (1K)]. Finally, BF,/F, is a
natural module for Kj by (3.3) (2).

(4.4) (uv)°EF,.

PROOF. As D<F,<DB, Y, Wyu,<Z(F)<Z(D)NB, If Z(Fy)=Yy Wiy C(Z(F))=AB
=0 by (4.3) (3), contrary to Z(Q)=W,,. Thus Z(F;)=Z(D)N B, by the action of . Then
Co(Z(F,))=F, by (4.3) (2) and (3). It follows from (3.2) that ¥;;W1,/Z is a natural module
for K5, AsJgr=J,, Wi,'=Y,,Z by (1.3). Now K, centralizes Z(F,)/ Y11 Wi, 50 [Z(Fy)/Z, J,])=
Y1uWio/Z and Y, Z|Z=(Z(Fy)/Z)N C(J,), which is v-invariant. Thus v centralizes Y;,Z/Z.
If K, centralizes Z(F,)/Wy,, then as [M;, Wi]=1, [K;, Z(F;)]=1. But Co(Z(F,))==F,, a con-
tradiction. Thus Z(F,)/ W, is a natural module for K; by [6, (1K)]. Then [Z(F), J)}]= Y13 Y11
and Yyy*2=1Yy, by (1.3) since J,*2=J,. For xEY,Z/Z, we have x*:?&€W,/Z, so x 2=
x¥2® and x¥2°%?=x%2., Then as x*=x, [(u,v)%,x]=1. Similarly (u,v)® centralizes Y;,Z/Z and
Wi/Z. Hence [(uyv)?, Z(FI<Z.

K, centralizes Z(D)N By/Z(F,). By (4.2), J, is fixed-point-free on Z(D)'/Z(D)ﬂB3 and
(1.3) shows Y,"(Z(D)NBy)=Y(Z(D)NB,). Then [Z(D)/Z(F,), J,|=Y;Y:Z(F,)/Z(Fy) is v-
invariant and Y*Z(F)=Y,Z(F,). If K, centralizes Z(D)N A,/Z(F>), [K., Z(D)|<Z(F,). By
[10, (3.9) ()], C(Z(D)/Z(F,))><{DB,, K,». Now ANF,=ANDB, and A/ANF, is a natural
module for K, by (4.3) (3). But then A< C(Z(D)/Z(F,)), contrary to the action of K; on
Z(D)/Z(D)NB;. Thus Z(D)NA4,/Z(F,) is a natural module for K, and Y*2Z(F,)="Y,Z(F})
by (1.3). J, centralizes Z(D)/Z(D)NA4,, so (Z(D)/Z(F))NC(J)=Y.Z(F,)/Z(F,). Hence
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[y, YsZ(F)IS Y Z(F)N A, =Z(F,). Now as in the first paragraph we have [(1,v)3, Z(D)]<
Z(Fy).

We argue that F,'=DN B, Z(F,Y)=Z(D)B,, and [F,’, F,]=Y,Y,¢B,. By[10, (3.9) (4), (5)],
W<B/<B,. As Z(D)/Wy=(Ao/ W) C(1)=V,RiWy/W,, and as [V, V=V, and
[Vs, Vi]=V10, We get B,=B,'<F,’. By (4.3) 2), F,’<DNB, so F,'(DNBy)=DNB by the
definition of U,. Now D/A;=(A/A)NC(t)=R/R,, so by considering [V,,V;] and [F,,V,], we
have F,’4,>DNB,. Thus F,,4,=DNB. As K, centralizes Z(D)N\ By/B,=YyB,/B,, (3.4)
shows Y B,=[Y,, W,]B,<F,. Then Z(D)<F," by the action of {(Kj, K3>. As C.,(H;)=1,
Y,=DNBNC(H)LF, by(1.2). Then(3.4)shows Y, W,B,<F,’. If[Y;, Y{1<Z(D)W,B,, then
as Y;<Z(D), [Yy!, Y:1< Z(D)W,ByN Z(DY=W,B;,. Now Y4#<D, so [Yy, W< W,B,. As
WeB, 1 Q and W,=Y,Y, this implies [W,, W ]< W B,. But[V;, Vi]< WyB,, a contradiction.
Therefore F,'=DNB. By(3.1), Z(D)B,K<Z(F,)<F,/ NC(A)=Y;A4,. As Cu4(Y;)=YsWyB,,
Z(F,Y<Z(D)WyB,. Similarly Z(D)W,B,NC(Y)=Z(D)B, since [V, Vel=1l. Moreover
[V Vigl# 1 implies Z(D)B,N C(Y,)=Z(D)B,. Hence Z(F,)=Z(D)B,. As Y, W,<F,,(4.1)(1)
and (4.3) (2) show [Y,, Y 1<Z(F, mod D)ND'=Y;Y;!4,. Then [Y,, Y, ]<Y;Y,4, since Yy
=Y, Let 0=0Q/Y,Y,4,. Then Z(D)NB,=¥,<Z(Q) and Y, centralizes ¥,¥Y,=F'>
[¥,, ¥3]. For each a=(Y,t) the map ¢q: Y,—[¥y, ¥4]; x—[%,4] is a homomorphism com-
mutable with the action of H,. As W, /W,=U,/W,x U,/W,, Y, and V,/V, are H-isomorphic.
Thus H, is irreducible on Y;. By the definition, [Y;,Y4!]< B, and so [¥,,a]=1. Hence ¥;~
[Y,,a] as Hy-modules. Now ¥,~V,/V, and Y=~ V,/V,, as H-modules, so it follows from [10,
Q@.D]that[¥7.3]=F, Thus[¥,, ¥s]=F,. Since H, isirreducible on ¥,, this implies [5, ¥;{]=
¥, for each €Yt So Y,<[b, Y3]Y;Y,4,. Since Y,4,=(DNBy)A,<40Q, Y Y,4,/4,<
Z(Q/A,). Moreover [D, b, b]< A, since |b|=2. Thus [b, Y,]<A4,, so [Y,, ¥,]<A;. By the
action of M, Z(B/B;)=B,/B;. So [F,, DBJ]<B; by (4.1) (2). Then as F,=Y,DB, and
F,’=Y,(DN B,), the above shows [F,’, F,]< 4,B;. Thus by (4.1) (4), [}/, Fol< DN\ By=Y,W,B,.
On the other hand [W,, W= W,, so Z(F,)<[F,’, F,] by the action of (K, K;»>. Considering
[Ve, Vsl and [Vs, V], we get B,<[F,,F,). (4.3) (1) implies [Y,, Wel<€ D, so [Yy, YI'=[Y,, Y]
Ay Thus [Fy,Fld,=Y,4;. As Ca(H)=1, Y;=Cra(H)<[F,F,] by (1.2). Then
Y, Y B, <[F,, F,] by 3.4). If W,<[F,,F,], the action of {K,, K3> forces Z(D)X[F,', F,], a
contradiction. Hence [F,, Fol=Y, Y B;.

As Z(F,YN[Fy, Fol=Y 4By, <K;, K3 centralizes Y;,B,/Z(F;). As [Fy,F]JNA,=YyB,,
K, centralizes [F,’, F,)/ Yo' B,. If K, centralizes Y4B,/ Y,By, it centralizes [Fy', F,)/ Y oB,. Note
that [Fy,Fy)/B,=Czyn,(Ks"). Then as D=Y(DNB), (4.3)(3) shows A<K,D,B)<
C(F, ,F,)/By). But Y,<A and [Fy, F,}/B, is a natural module for Kj, a contradiction. Thus
Y, B,/ Y1,B, is a natural module for K,. Moreover, K centralizes By/Y,oB;. Hence arguing
as in the first paragraph we obtain [(uzv)3, [Fy, Foll< YioB;.

We have shown that (u,v)® stabilizes Z(D)=Z(F,)>Z=1 and [F,', Fo)]= Y (B, = Z(F,).
Thus O((u,v)%)) centralizes I=Z(D)[F,,F,]. By (4.1) (1), (Q/AyBs)NC(t)=PA,By/A,B;.
Then Cp(V,ySs)=V;R,S; implies Co(WyBs)=A4yB;, 50 Co(I)<AB3NC(Yg)=Y,4,. More-
over [V5, Vo=V, s0 (Y74 W) NC(Y)=Y;Y,4:/ Wy, and Y Y,4,NC(Y,)=1. Thus Co(J)
=]. Now I 4Q€ESyl,(0%G)) and O(0*(G)NC(1))=1 by the unbalanced group theorem, so
OYG)NC(I)=1 Then as O({(uz)*»))< C(I), (uyv)® is a 2-element. (4.3) (3) and the action
of (K, K,> on Z(F,)|Z show Co(Z(F,)/Z)=F,. Let X={0,K,,K;». Then Cx(Z(F,)/Z) is
2-closed with F, the unique Sylow 2-subgroup. As (uv)*€ Cx(Z(F,)/Z), (4.4) holds.
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(4.5) <Q, Kz, Ko»|Fy=PSLy(9).

PROOF. Let X=(0Q, K,, K and X—X/F,. Then QESyly(X). We have gNQu=4
and ONQ°=8, so 0“NONQ*=W, As Jy2=J, and Jy'=Jj, it follows from (1.3) and
(4.3) (3) that W a=¥, and W ,»=7,. Thus gNQ@*»NQ"2=Y; and ONg NP =7, so

(1 0=4A0NQ0*NG*)=B@NG"NJ™).
As Wpv'=Y,,Z and Y %=1y, QNQ""< Co(Yyp). By [10, 3.9) @), Wy, Wil=Wie
and [Wa, Wyl =[Wo,Wel'=1 and as Y;(<Z(Fy), Co(Y10W1af W)= U,A. Then as [V,Vi]=

Vit CQ_( Y10Wial Wi2)=U,A by the action of H.  As Cyw (Y10)="Y,, we get Cof Yy0)=U.W3Y,B,.
Thus O NQ*1< ¥y, Now Quevan ¥y=(0¥2N ¥)*»2 and §*2N Y,=AnN ¥,=1. Therefore

(2) Q—ﬂQ-u20“2=Q- nQ-vuzuzl

since i, ¥ii,=7i,7 by (4.4). Note that J, normalizes Kj, for H,J, is an abelian group of odd
order containing H,. As J; normalizes (N (Uz))'=KyUs, it normalizes Nx,v,(2)0=/.0.
Set E=J,J,0, which normalizes K,4F, and K3BF;. Ki~SLy(q), i=2, 3, so Q acts transitively
on Syl,(EK:)— {Q}. As Nzx(Q)=E, this implies E=Q(ENE*")=Q(ENE”), EK,=
EUEmE, and EK,=EUEvE. By (1), g»=A4(0NQ")", so Eva=0u(ENE")=
A(E*an E*). Similarly Ev=B(E nE*). As Q"2=(4 7,)me=A4¥; and A<ENE™,
we get Evse=0va(EN Evsyrue= Y (Evwsn E***2).  Similarly Euw—= Y, (E»»N E**2%). Then

E=Q(ENE*)=Q(ENA(E*N Evea)=0(ENE*NE™)
=Q(Em E-uz N Y3(E—W'Z N Euguuz))zQ(E-'n E_'u2 N E_vu2 N E‘ugvuz)_

Thus E=0(EN E“w). By (2), |[EN E*2**1| is odd, whence
E-n E-'uzvu2=E-n E_'uz N E-'vuzn E“Z"“Z,

By symmetry we have
En Evvar=EN EvN Evav ) Evvar,

Set f— N E» where w ranges over {uy,vy. As (i, 7> = {1, i, ¥, 57, Vily, it,¥it,} , it follows that
J—=EnN Evema— EN Evuav,  Set N=IKiz,, 7). Suppose §=0 for some w&uz, v) —F, and
choose X (u,, v> such that wi—il,yil,, Then §=0** and so QNQ*=1 by (2), contrary
to (1). Hence NN E=I and N/I~=<a,, 7). Note that i, Eil,< EU Eit,E and 7E3<EU EvE.
As Q=AB, 7,07=Ai,B. Then #,Er=,0lv=i,QvI<EavE. By (1), 0<AA» and so
ity Evity=i1,Qvit, | < Ai,pit, AI< Epvii, E. Then for w=?v or ¥i, i, En,w< EwU Ei,Ew<
EwU Ea,wE. Hence #,Ew< Ea,w EU EwE for all WE (ity, 7). By symmetry yEw< EywwEU EwE
for all we (ity, 7).

We have shown that (E, N) is a BN-pair of X whose Weyl group is dihedral of order 6.
Thus X~ PSL,(q) by Fong and Seitz[5].

4.6) [Ky, K)<F;.

PrROOF. Let X=<(0,K;,K,>. Inthe proof of (4.4) we have shown that Z(F,)=Z(D)N\ B,.
As F,<DB, a similar argument gives Z(F})=Z(Fy) or Y Wi, Then F,F,>B implies
Z(F)=YuWi As [K, Wil=1, [K,Z(F)]=1 and thus [(,)2 Z(F)l=1. Recall that
[Fy, Fol=Y,Yy¢B,, so K, normalizes [F,', Fol'N A;=1Y,B, and (Z(D)N By)B,=Y,B,<4X. As K,
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centralizes By/By, it centralizes YoBo/Z(F) and [(1,v)%Y,B,]< Z(F,). Furthermore
[(u1v)?, Z(D)B,]< Y, B, since K, centralizes Ay/A,.

As Z(F\/D)NU,D/{D=Z(F,/D)NW,D|D and Z(F,/D)NA/D=2Z(Q/D), it follows that
[Ky, Z(Fy/D)]=1. If K, centralizes Z(F,/D)/(B,D/D), then as |B3D[D|=gq, [K;, Z(F/D)}=1.
But Y, Y,F,=0 and Z(F,/D)# Z(Q/D), a contradiction. Thus Z(F,/D)/(B3D/D) is a natural
module for K. ‘

Let E=Co(YyBy). By (3.1) (1), Co(B))<Fy, 50 E=Cr (YyBy)<X. We have Y dyBy<
ENASCa(B)=WAyB;. As [VgVil1, it follows that End=Y,4,B; and END=
Y;YsY;4,. The action of K, gives ED/D=Z(F,/D). As Cyp(H)< Cs,(H)=W,, E=
(ENWXENA). Now Y,Ys=W, and no nonidentity element of V, centralizes V.
Thus W,=(ENWy) x (ENW,). Let E;=END. Then E,< Cx(Z(D)By)< E=(EN W,)Y,4A,Bs.
If Ce(Z(D)B,)N C(Hy)# 1, Cx(Z(D)B,)=EN W, since H is irreducible on EN W,. (1.3) and
the action of X; and K, on E/E,~ED/D=Z(F,/D) show [E/E,, J)=(EN WyA,Ey/E, and
(ENWo) Ey=AyE,. So A,<Cz(Z(D)B,), contrary to Cwy(Y5)=Y; Thus Cz(Z(D)B,)<
[E, H]=EN4, 50 Cx(Z(D)B)S(ENAN(ENAP=Y,Y,A,B,, As Cy (Y=Y, we get
Ce(Z(D)By)=E,. _

Let BE,=CENW,, Y', Y;/>Z(D)B, and E=E/Z(D). Then E=E,E, E,NE,=Z(D)B,
and E; <9 E by [10, 3.9) (5)). By (4.1) (2), E,=Y,¥,¥ 7B, is elementary abelian of order
q°. Note that [Wo, Wel=[Wy, W' =1, [Way, W |=[We, W,J =1, and [W,, Wil=[ Wy, W, —1.
Thus E,;=(ENW)Y ¥ ,'B, is elementary abelian of order g°. [Wo, W =[We, W =Wy,
so the action of # gives [¥5,Y;]= Y}, since [, ¥,]=1 and Y, Y'=W,. If[Yy,Y,|<Z(D)B,,
then [Y;%, Y]<Z(D)B, N Z(D)=Yy,* Wy, As Y;<Z(D), [Y,,Y,]=1. But then [Ws, Wel< By,
contrary to [V, Vil=Vy. Thus Ca(Y)=T¢TE. If [ENW, Y ]=1, [EN W, W,]=1.
But then W,=(ENW,)(ENW,) centralizes W,, a contradiction. Thus [ENW,, Y=Y,
for [Wo, Wo|=[W, W =W,. As shown before (EN Wo)Ey=AE,. Moreover [4,°,Z(D)]
=27 50 [ENW,,Ye|<B,. If [ENW,,Y#<Z(D)B,, then [EN W,, Y£I<Z(D)B,NZ(D)<B,.
As Wy=Y,Yy, this implies [W,, W< B, contrary to [V,,Vg]=V,,. Thus Czx¥HNCT )
=F,.

Let I=Cg(O({(u;v)?)). By the first paragraph (u,v)? stabilizes Z(D)By> YoB,>
Z(F))>1, so I>Z(D)B, and Cs(I)<E, As K, centralizes E/E,, [(u,v)?, E]<E, and thus
E=EJ. Now Cg(E)=E, by the above and E=EE. Sc E,N C(hHh=E,NE =B, and
Cx(I)<SZ(D)B,. Note that Z(D)B,N C(Wy)=Y,Y,B, and Y,Y,B,\C(W,)=Y,B, As E,l
2{Ws, W:> and Z(E¢)=>Z(D)B,, we conclude that Cg(I)=Y,B,. By (3.5), E is a Sylow 2-
subgroup of O¥G)NC(Y,yB,). Moreover I<E by [10, (3.9) (5)] and oOHGHNCD)=1 by
the unbalanced group theorem. Thus O%G)N C(J)=Y,B,, so (uyv)?is a 2-element. As Q/F,
Is elementary abelian of order ¢2, Bender [3] shows (X/F)/O(X|Fy)~=SLy(q) x SLy(q) and
[K;, K3]<O(X mod F;). Hence (uv)*€F,. Now K; centralizes AF,/F, and K, centralizes
F\Fy[F, with AF,=Y,F, and F,F,=Y,F,, so the lemma holds.

(4.7) Let Gy=<Q, My, Myy. Then Gy=Fy(g).

Proor. Recall that {K;, K;) =M, K;*=K,, and [K,, Kf]=1 By (4.5) and (4.6) we can
apply Theorem B of Niles [11] to the subgroups P,=K,F,A, Py=P, Py=K,Y;B, and P,=
P4 and conclude that G has a BN-pair of rank 4. Hence Gy=Fy(g) by Tits [17].

REMARK. It remains of course to prove that G, is normal in G. The first step toward
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this purpose may be to show that if 7€ N(Gy) for an element gEG then gEN(G,). Indeed,
J normalizes M, A by [10, (3.9) (1), (3.10)] and K normalizes M,B by (3.1) and [10, (3.5)], so
C(H)<N(G,). Suppose t?EN(G,). Since C(t))=L, neither ¢ nor ¢ lies in G,C(Gy). Then
by [2, (19.5)], Co,(t)=Coy(t?)=L and t=1°* for some xEG,C(G,). Hence gx&C(t) and we
have gEN(Gy).

V. The Case M,~Sz(q) x Sz(q)

In this section we assume that M,=Sz(g) x Sz(g). Let M=K, x K;* with K =S5z(q)
and Y,=W,NK,. By (3.3), N;=Cux(?) is irreducible on Dyl Ag=Caja(t)=R/VR,. Since
Cpya(YD#1 is K -invariant, K’ centralizes Cpga,(Yy) or [Y1, Do/de]=1 by [5, 4F)]. In
the former the action of K, on Cnyj,(K:?) yields [Ky, Do/ Ao]=1 and in the latter {K;, Do/ 4o}=1.
Replacing K; and K;* if necessary, we may assume that K, centralizes Dof4,. Then

(5.1)  MyA]Ag=K Dyl Ay x KiDot[Ag and Ki*Do A= N1R[VR;.

(5.2) Let D;=0,(K{'Dy)'4,). Then Ki*D, < M, A and K*Dy/ A, is perfect with |Dy/4,|=
9>

PrOOF. Set D=D,ND,’. Arguing as in the proof of (4.1) we obtain Q> DA;=
Y ¥, Yo Yo(DALN We)Ay with |DA,N Wyl=g* and HSN(D). Let NA)=N(A)/A, Let T
be a complement of DA, N W; in W;. Then ¥,*Dy=¥,D x U since M, centralizes W By
Gaschiitz’s theorem [9, p. 121] there is a subgroup X such that KtDy=XxU, so (K+!Dy)=
. If XNWy=1, M\A=X'xX'"*xW, by (5.1). But Ca,a(t)=N,R=N,R/R,, a con-
tradiction. Now |¥NW j=q and every proper H-invariant subgroup of W is of order gq.
Thus | ¥'NW 4 =q. A similar argument shows that X' is perfect. By the definition X'=
K.*D,, so the lemma holds.

(5.3) Let D2=02((K15D1), le). Theﬂ M]_A/ W12=K1tD2/ W12 X KIDZE/ ng and
K\*Dy/ W13 = N1 R/ V1,

ProoF. Let D be as in the proof of (5.2). Then DAy=Dy>D,, so MA> Z(D)NWA >
Wi Wip# Wy, Since Co(dy)=4, and N, is irreducible on A;/R;Wis=R W1,/ Wy, by {10,
(3.6) (D], |Z(DPNA,;|=¢° Let N(Wy)=N(Wy,)| Wy Then Ca,(K)N Ca,(Ky)=1 and Ky
acts on (Z(D)NA)NC(Yy)=1. Hence as in the proof of (5.1), M A, =K' Ca,(Ky) x
K,C3,(Ky*) and Ifl‘C,—ql(Kl):lezl(t)=]\711?1.

Let J, be a complement of Y; in Ng,(¥y) such that H;<JJi*. Then J, centralizes
A/ A,, so it centralizes D,/4, by (5.1). Moreover Cryvy(Hs)=1 implies Cz,(K)N C(JH=
1. Then as Z(A)> A, KD, =Ky'Cp,(J) x[Dy,J;].  Since Ky*D,/A, is perfect, we get KiD,=
(RpDY =R }Cpy(J) A<M, A. Recall that N({t>B)=BNo(By), s0 Coj,(t)y=PB,/B,. Then
as Z(P|V12) =5/ Vs, (Z(Q)/BYNC(t)=1 and so Z(0)=B,. We have D,NA4,=C(K)), so
Z(0)N DN Dyt < Ca (KN Cay(K)=1. As D, <1, this implies D,ND,t=1and thus M, A=
R Dy x B Dy with K, Dy~ Crz,a(t)=N,R.

(5.4) Let I,/B,=Cpia(Ky). Then Y3',=Y,'DyB, with Yo¢< D, and Y'<1,.

PROOF. We have Dy=D,Aq, 50 DyBy=D;B,. (1.2)and Ca(Hy)=1give Yt =Copy(Hy)=
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Coy(Hg). By (3.3)(2), Coin(Y))=LWy/B, As Y,<Dy, (5.3) shows Csi5,(Y3)=> Y, W,B,/B,.
Hence ¥!<Crw (H)<I, by (1.2). Now the lemma follows from (3.3) (2).

(5.5) Let D3=04((K\*Dy)"). Then MyA=K,*Dyx K\Dgt.  Furthermore there is a normal
subgroup I of MyB such that MyB=K,'I, x K,I.* and Y. V' Dg=Y4 1.

PROOF. Let N(By)=N(B,)/B;. As Yy#<D,, (5.3) shows [C3,(Y,H)>g¢* Thus Cp,(K;%) =+
1, for Ky=<Y; Y3*>. By [10, (3.8)(1)], Cz,(Ny=1, so B> Cp(K3) x Cp,(K3). Now N,
is irreducible on Cp,(t)=S,~S5,/S,, whence M sBi=Ky C5,(Ky) x KyCp(Kat) and Kyt Cp(Ky)~
Ca1,8,(1)=N,S,. Let J, be as in the first paragraph of section 4. Then Cp (KHN C(Jy)=1
since Cs,(Hy)=1. Now Z(B)>B,, so setting L/By;=C1,5,(J5) we have Kpl=KgI,x
Cp,(Ky"). Since Ky is irreducible both on f,/B, and on Cg(K,), (Kt =K, and M4B/B,=—
Kt/ By x Ky1,t/ B,

Set I;/B,=Cr,s,(J5). Then by (3.4) we have (Ky'L/B,)' =K,'I,/B, and M,B/B,=
K313/ By x Kyl3/B,.

Let J; be as in the proof of (5.3). Then H,J,J; is an abelian group containing H=H, H,
and normalizes Q, so J; normalizes W;, 1<i<12. Note that J, normalizes K, since M,=
E(C(H;)). Now IL=LB, Cr(H)=Y{Y,, and Co(H)=W,=Y,"Y/. So C,(H)=
Cr (H)W, by (1.2). Then Y,*=C,(H,) < Cr,(H,), whence Yi¥y'=Cr(H)x Yy'. Since
Jy is transitive both on (Y3/¥;')* and on Y%, Cr (H))/Y," has exactly two J,J,t-invariant
subgroup of order g. Hence Y,'=C; (H,). By (5.4), Y tl,< Y *DyBy, so [10, (3.9) (5)] im-
plies (Y;¢l3/B,) < Y,*DyB,/B,. Now Y3'13/ By~ Coy5,(t)=P/S, by the above paragraph and
we have (Y,“By/B,)(Yy'1s/By) =1/ By, 50 I,< Y,*D;B,.  Thus Y,'Iy= Yy D,B,. Then Y,tI,/B,—
Y1'DyBy/B, x (Dy*N By)By/B, by (5.3) and we can write Kt/ By =X[B, x (D, N B,)B,/B, for
some subgroup X by Gaschiitz’s theorem since M,B centralizes B,/B,. Setting I,=
Ou((K4'I3) By) we have MyB/B,=K,tI,/B, x K,I,t/B,.

Set I,=Cr,(J5). Then (Ky'l))' =Kyl and M3B=KtI; x K,I¢ by (3.2).

Set 0,=VYy'l;, so that Q=0,x Q' and Q;=Cy(t)=P. As O, <YyD,B, and B, is
abelian, Q,'<Y;*D,. Moreover Y;/<I,=I.B, and Cy,(H)=1, so Y,!<I; by (1.2). Thus
O=Ys'V)'Q/<YiD, and Y,'D,=0,x(Q,'N Wy,). By Gaschiitz’s theorem KtD,=X, x
(O'NWy,) for some subgronp X, Hence M,A=K,D,x KDy, Now Q,<Y,D,=
Y'D3Wy, so QV<Y,*D,. (1.2) and D,=D,W,, give Yf=Cp,(H) <D, Thus Q,=Y;'D,
and the lemma is proved.

Let O,=Y"Dy;=Yl; and G,=(Q,,K;’, Ks*>. Define an H-homomorphism ¢: G,—
C=C{(#) by x>xx*. Under this homomorphism K,tD,=~ Cu,4(t)=N,R and Ky'I,=Cu s(t)=
N;S. Let U=WiNQ,, 1<i<12. Then U,=Yy, Uy=Yy, and Wi=U;x Uy, 1<i<12.
Note that Z(Uy)=U,, Z(U)=Us, Z(U;)=U,,, Z(Ug)=U,,, Ui=Cp,(H;) for i=3,4, 5, 6, 7,
9, 10, and U;=C,(H;) for j=1,4, 5,6,7,9, 10. By the first paragraph of Section 3,

U =U,, Uy =Us, Uyr=U,, Uy =U,y;
Uyp=U, Ug=U,, U= U,, Uws:Ulo-
(5.6) Let Gy=<Q, My, Myy. Then Gy=G, x Gy* and G,~2Fy(q).
Proof. Since Q;NQ,"=D; and Q,NQ,* =1,
0)) 0,'NEN Q132D3015:U4U5U6U7U9U10-
Transforming this equation by r and s respectively, we have
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2 0N O,"N Q" =U,U,UsUgUy Uy,
(3) o:.NG:*N 0,7 =U,U;UU,Uy Uy,
By (1) and (2), 0:*N Q1N Q"N QY " =U,UsUgUgUye, 50

01N NO N O =U,UsUgUy Uy
By (1) and (3), 01" N Q1N Q' N Q" =UsUsUyUgUye, 50

a,NoN 0, NQ = UsU,UsUpUy,.
Arguing similarly, we get
(4) an er N ler n eru‘ n lenr n ersrsr N lersrsr n ersrsrsr: Ua’
(5) Ql n QI, n ers N lers N ersrs N lerars n ers'rsrs N lersrsr.&: Ul'
Since ¥, is transitive on Syl,(N,)— {V1}, rEV,7 for some a€V,;. Take an involution uEK,*
such that r=uut. Then u€U,®, for reW o=U,*x U, and Uy7°<Kt. By (4), U,<
Dy#7375r, s0 U< D% By (5), Up<Iy#mmrs, so Uy<[Lem™*=[9* since |rs|=8. Thus
(U7, U <0y, 0,419 =1. Take b€ U, such that a=bbt. Then as Uy<K,, Uy*=U,".
Since [b, Uy ]<[Uy, Ky]l=1, we have [Uy¢, Ug*]=1. Moreover [U;, I}]<[K, Qf]=1 and
O =Ug'ly, Thus[u,0,*]<[U%, 0*]=1. As Q,"=0,", this gives [0, 0,*]=[01, 0,*]*<
[Ka'ls, Kol =1.  Now [Q;, 0:1=[01, 0:**]=1 and [Q)", O)'I<[K\Ds, KiDyf]=1.  Hence
[G,GY]=1 and G,=G,%G,*=L. Let L, denote the image of ¢ and set X=G;NG.
Then Cg,(t)=LyCx(?). Since K;’Dy and Ky'l; are perfect, so is G;. Thus Ly=L, and as
C()>)=L, Ly=L. The kernel of ¢ is contained in X and the Schur multiplier of 2Fy(q) is
trivial. Hence (5.6) holds.

ReMARK. If one wishes to show that G, < G, a key point may be to establish that ¥(Q))<
N(G,) (see [14, (14.7)]). We can verify that Z,(P)=V,V1oV11V12s Zs(P)=V:VZy(P)=R;Ss,
EHZ(P)= (R, S5}, Cp(RY=V;Ry, and Cp(S5)=S;. Since 0=0; x Q,* with Q= P, Z(Q)
=A,B; and & *(Z4Q)) consists of four members, two of which are 4, and B; and the
remaining two members are interchanged by 7. Moreover |Co(4,)|>|Co(E)| for each E€
EHZAQN— {41}, As Z(Q)=Wy,, we get A=Co(4,/W1))AN(Q). Also B=Co(Z5(Q))
by (3.1) (1). It then follows from [10, (3.10)] and (3.1) (2) that N(Q)=N(A)NN(B)< N(G,).
By [10, (3.1)(2)], (t>ESyly(C(L)). So |C(Gy)| is odd since C(Gy)AC(L)YNN(Gy). Note
that 2F,(q) has two conjugacy classes of involutions (see [12]) and that the outer automorphism
group of 2F,(g) is of odd order. Note also that N({t>P)=W,No(P) since Z({t)P)=
(Ve and tNOP=¢%12,  Arguing as in [19, (7.22)] we see that if t EN(G,)? for an element
gEG then gEN(G,). Hence as in [19, (7.23)] we have N(Q)<N(G).
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