A REMARK ON THE STANDARD FORM PROBLEM FOR ${}^2F_4(2^{2n+1})$, $n \ge 1$

HIROMICHI YAMADA

In [10] Miyamoto showed that if a finite group G has a standard subgroup L isomorphic to ${}^2F_4(2^{2n+1})$, $n \ge 1$, such that $LO(G) \triangleleft G$ and a Sylow 2-subgroup of $C_0(L)$ is cyclic, then $O^2(G) \ne G$. He obtained much more information. In this paper we proceed to construct a subgroup G_0 isomorphic to $F_4(q)$ or ${}^2F_4(q) \times {}^2F_4(q)$, $q = 2^{2n+1}$. More precisely the following theorem is proved.

THEOREM. Let G be a finite group with $F^*(G)$ simple and suppose L is a standard subgroup of G isomorphic to ${}^2F_4(q)$, $q=2^{2n+1}\geq 8$. Assume that a Sylow 2-subgroup of $C_G(L)$ is cyclic and that $L \not = G$. Then $O^2(G)$ possesses a subgroup G_0 of odd index which is isomorphic to $F_4(q)$ or ${}^2F_4(q) \times {}^2F_4(q)$.

By a further fusion argument it might be possible to show that G_0 is normal in G and then $F^*(G) \simeq F_4(q)$. But such an effort is no longer important. The simplicity of $F^*(G)$ in the hypothesis of the theorem is necessary since we use, in the proof of the theorem, the unbalanced group theorem to determine the structure of certain 2-local subgroups of G. The proof of this fundamental theorem has been completed by the work of many authors. The detailed description of the theorem can be found in Harris [8], Solomon [16], Walter [18].

Unbalanced Group Theorem. Let X be a finite group with $F^*(X)$ simple. Assume that $O(N_X(T)) \neq 1$ for some 2-subgroup T of X. Then $F^*(X)$ is isomorphic to one of the known finite simple groups.

Our notation is fairly standard. Possible exceptions are the use of the following: For a subset D of a group, $\mathcal{I}(D)$ denotes the set of involutions in D and for a 2-group P, $\mathcal{E}^*(P)$ denotes the set of maximal elementary abelian subgroups of P.

I. Preliminary Lemmas

(1.1) Let G be a group acting on a group X and let A and B be subgroups of G. If B normalizes $C_X(A)$, then $[[A, B], C_X(A)]=1$.

PROOF. See [19, (2.4)].

The following lemma is due to Bender [4, 1.1(i'')].

(1.2) Let P be a p-group acting on a p'-group K. Suppose $X^p = X \triangleleft K = XY$ with $Y = Y^p$. Then $C_K(P) = C_K(P)_Y(P)$.

The following lemma can be easily verified.

(1.3) Suppose $K \simeq SL_2(2^n)$, $n \ge 3$, acts naturally on an elementary abelian group V of order 2^{2n} . Let H be a subgroup of K which corresponds to a diagonal subgroup of $SL_2(2^n)$ and W an involution of $N_K(H)$. Then V has precisely two H-invariant proper subgroups. They are of order 2^n and interchanged by W.

II. Properties of ${}^{2}F_{4}(2^{2n+1})$

For convenience we summarize some properties of $L={}^2F_4(q)$, $q=2^{2n+1}\geq 8$, which can be found in Parrott [12], Ree [13], Shinoda [15], or verified by direct computation.

Let $\alpha_i(t)$, $1 \le i \le 12$, and θ be as in [13]. Then

$$\alpha_1(t)\alpha_1(u) = \alpha_1(t+u)\alpha_2(tu^{2\theta}), \quad \alpha_4(t)\alpha_4(u) = \alpha_4(t+u)\alpha_8(tu^{2\theta}), \\
\alpha_5(t)\alpha_5(u) = \alpha_5(t+u)\alpha_{12}(tu^{2\theta}), \quad \alpha_6(t)\alpha_5(u) = \alpha_6(t+u)\alpha_{11}(tu^{2\theta}), \\
\alpha_i(t)\alpha_i(u) = \alpha_i(t+u) \quad \text{for } i=2, 3, 7, 8, 9, 10, 11, 12.$$

The nontrivial commutator relations are as follows, where $[x, y] = x^{-1}y^{-1}xy$.

```
[\alpha_1(t), \alpha_3(u)] = \alpha_4(tu)\alpha_5(t^{2\theta+1}u^{2\theta})\alpha_7(t^{2\theta+2}u)\alpha_{11}(t^{4\theta+3}u^{2\theta+1})\alpha_{12}(t^{4\theta+3}u^{2\theta+2}).
[\alpha_1(t), \alpha_4(u)] = \alpha_5(tu^{2\theta})\alpha_6(t^{2\theta}u)\alpha_7(t^{2\theta+1}u)\alpha_9(tu^{2\theta+1})\alpha_{10}(t^{2\theta+1}u^{2\theta+1})\alpha_{11}(t^{2\theta+2}u^{2\theta+1})\alpha_{12}(t^{2\theta+1}u^{2\theta+2}),
[\alpha_1(t), \alpha_6(u)] = \alpha_7(tu),
[\alpha_1(t), \alpha_8(u)] = \alpha_9(tu)\alpha_{11}(t^{2\theta+2}u)\alpha_{12}(t^{2\theta+1}u^{2\theta}),
[\alpha_1(t), \alpha_9(u)] = \alpha_{10}(t^{2\theta}u)\alpha_{11}(t^{2\theta+1}u)\alpha_{12}(tu^{2\theta}),
[\alpha_1(t), \alpha_{10}(u)] = \alpha_{11}(tu),
[\alpha_2(t), \alpha_3(u)] = \alpha_5(tu^{2\theta})\alpha_6(tu)\alpha_7(t^{2\theta}u)\alpha_8(tu^{2\theta+1})\alpha_9(t^{2\theta}u^{2\theta+1}),
[\alpha_2(t), \alpha_4(u)] = \alpha_7(tu)\alpha_{11}(t^{2\theta}u^{2\theta+1})\alpha_{12}(tu^{2\theta+2}),
[\alpha_2(t), \alpha_8(u)] = \alpha_{10}(tu)\alpha_{11}(t^{2\theta}u)\alpha_{12}(tu^{2\theta}),
[\alpha_2(t), \alpha_9(u)] = \alpha_{11}(tu),
[\alpha_3(t), \alpha_5(u)] = \alpha_8(tu),
[\alpha_3(t), \alpha_{\theta}(u)] = \alpha_8(t^{2\theta}u)\alpha_9(tu^{2\theta})\alpha_{12}(tu^{2\theta+1}),
[\alpha_3(t), \alpha_7(u)] = \alpha_9(t^{2\theta}u)\alpha_{10}(tu^{2\theta}),
[\alpha_3(t), \alpha_{11}(u)] = \alpha_{12}(tu),
[\alpha_4(t), \alpha_5(u)] = \alpha_9(tu),
[\alpha_4(t), \alpha_7(u)] = \alpha_{10}(t^{2\theta}u)\alpha_{11}(tu^{2\theta})\alpha_{12}(t^{2\theta+1}u),
[\alpha_4(t), \alpha_{10}(u)] = \alpha_{12}(tu),
[\alpha_{\mathfrak{b}}(t), \alpha_{\mathfrak{b}}(u)] = \alpha_{10}(tu),
[\alpha_5(t), \alpha_7(u)] = \alpha_{11}(tu),
[\alpha_6(t), \alpha_9(u)] = \alpha_{12}(tu),
[\alpha_7(t), \alpha_8(u)] = \alpha_{12}(tu).
```

REMARK. The commutator formulas of $[\alpha_4(t),\alpha_1(u)]$ in [12, Section 2] and $[\alpha_2(\xi),\alpha_3(\eta)]$ in [15, (2.3)] are incorrect. In fact

$$[\alpha_{\delta}(t), \alpha_{1}(u)] = \alpha_{\delta}(t^{2\theta}u)\alpha_{\delta}(tu^{2\theta})\alpha_{7}(tu^{2\theta+1})\alpha_{9}(t^{2\theta+1}u)\alpha_{11}(t^{2\theta+1}u^{2\theta+2})\alpha_{12}(t^{2\theta+2}u^{2\theta+1}).$$

Using the notation of [13] we set

$$r = \omega_{34}'\omega_{34} = \alpha_1(1)\alpha_2'(1)\alpha_1(1)^{-1},$$

 $s = \omega_{12'3'4'}\omega_{23'} = \alpha_3(1)\alpha_3'(1)\alpha_3(1).$

Then |r|=|s|=2, |rs|=8, and

$$\begin{array}{lll} \alpha_3(t)^r = \alpha_7(t), & \alpha_4(t)^r = \alpha_6(t), & \alpha_5(t)^r = \alpha_5(t), \\ \alpha_8(t)^r = \alpha_{11}(t), & \alpha_9(t)^r = \alpha_{10}(t), & \alpha_{12}(t)^r = \alpha_{12}(t); \\ \alpha_1(t)^s = \alpha_4(t), & \alpha_2(t)^s = \alpha_8(t), & \alpha_5(t)^s = \alpha_6(t), \\ \alpha_7(t)^s = \alpha_9(t), & \alpha_{10}(t)^s = \alpha_{10}(t), & \alpha_{11}(t)^s = \alpha_{12}(t). \end{array}$$

Let H_i and V_i be as in [10, Section 2]. By using [13, (3.16)] we can verify that

$$C_L(H_1) = H_1 \times N_1$$
 with $N_1 = \langle V_1, H_5, r \rangle \simeq S_Z(q)$,
 $C_L(H_3) = H_3 \times N_3$ with $N_3 = \langle V_3, H_{10}, s \rangle \simeq SL_2(q)$.

III. Some 2-local subgroups of G

From now on assume the hypothesis of the theorem. We will continue the notation of Miyamoto [10]. Moreover, let $A_0 = W_5 A_1$ and $B = W_1 W_4 B_4$. For i = 1, 3, 4, 5, 6, 7, 9, 10, note that W_i is the unique Sylow 2-subgroup of M_i containing V_i and so H-invariant. Furthermore $\langle t \rangle W_i \in \operatorname{Syl}_2(C(H_i))$ and $C_Q(H_i) = W_i$. For i = 2, 3, 7, 8, 9, 10, 11, 12, the map $W_i/V_i \rightarrow V_i$; $xV_i \mapsto [t, x]$ is an H-isomorphism. Similarly, for $i = 1, 4, 5, 6, W_i/V_iZ(W_i)$ and $V_i/Z(V_i)$ are H-isomorphic. By [10, (2.5)],

$$W_3^r = W_7$$
, $W_4^r = W_6$, $W_5^r = W_5$, $W_8^r = W_{11}$, $W_9^r = W_{10}$, $W_{12}^r = W_{12}$; $W_1^s = W_4$, $W_2^s = W_8$, $W_5^s = W_6$, $W_7^s = W_9$, $W_{10}^s = W_{10}$, $W_{11}^s = W_{12}$.

(3.1) (1) $Z(Q) = W_{12}$, $Z_2(Q) = B_1$, $Z_3(Q) = B_2$, $C_Q(B_1) = B$, $C_Q(B_2) = B_4$, $C_Q(A_1) = A_0$, and $A' = A_1$.

(2) $M_3B \triangleleft N(B)$ and $M_3 \simeq SL_2(q) \times SL_2(q)$.

PROOF. By (3.9) (2) and (5) of [10], $A_1 \triangleleft AB_4$. Hence $A_1 \triangleleft \langle AB_4, N_1 \rangle = M_1A$. [10, (3.9) (4)] gives $C_{M_1A}(A_1) = A_0$ and $Z(A) = W_{12}$. By [10, (3.4) (2)], $[M_1, W_{12}] = 1$, so $Z(Q) = W_{12}$. We have $Z_2(Q) \geq B_1$ since $A \leq C(A_1/W_{12})$ and $[W_1, W_{11}] = [W_4, W_{12}]^s = 1$. Now $t^{B_1} = \mathscr{I}(tB_1) = tS_1$ and $\mathscr{E}^*(\langle t \rangle B_1) = \{\langle t \rangle S_1, B_1 \}$, so $N(\langle t \rangle B_1) = B_1 N_c(B_1)$. Thus $Z_2(P) = S_1$ forces $Z_2(Q) \cap N(\langle t \rangle B_1) = B_1$. Hence $Z_2(Q) = B_1$. Similarly $[W_1, W_{10}] = [W_4, W_{10}]^s = W_{11}$ and $N(\langle t \rangle B_2) = B_2 N_c(B_2)$, so $Z_3(Q) = B_2$. In the proof of [10, (3.10)] it is shown that $C(\langle t \rangle B_4/B_4) = B_4 N_c(B_4)$. Then since $C_P(S_2) = S_4$ and [10, (3.8) (3)] give $B_4 N_c(B_4) \cap C_2(B_2) = C_{B_4 P}(B_2) = B_4$, $C_2(B_2) = B_4$. As $W_1 = W_4^s$, $C_2(B_1) \geq B$. Moreover $C_{W_3}(B_1) \cap C(t) \leq C_{V_3}(S_1) = 1$ implies $C_{W_3}(B_1) = 1$ and $|Q:C_2(B_1)| \geq q^2$. So $C_2(B_1) = B$.

Let $\tilde{Q} = Q/B_4$. Then $\tilde{Q} \triangleright \tilde{W}_4 = C_{\tilde{B}}(H_4)$, for $W_4B_4 = C_A(Z_2(Q))B_4$. As $\tilde{W}_1 = [\tilde{W}_1, H_4]$, (1.1) shows $\tilde{B} = \tilde{W}_1 \times \tilde{W}_4$, which is elementary abelian. Now $C_{\tilde{B}}(t) = \tilde{S} = [\tilde{B}, t]$. Applying [10, (1.3)]

to the series $1 \le B_2 \triangleleft B_4 \triangleleft B$, we have $C(\langle t \rangle B/B) = BN_C(B) = BK$. Let $\overline{N(B)} = N(B)/B$. Then $\overline{N(B)} \cap C(t) = \overline{K}$, so $\overline{N_3}$ is a standard subgroup of $\overline{N(B)}$ and $\langle t \rangle \in \operatorname{Syl}_2(\overline{N(B)} \cap C(\overline{N_3}))$. Now $N(B) \ge \langle W_3, s \rangle = M_3$, so $E(\overline{N(B)}) = \overline{M_3}$ by [7] and [6, (1J)], whence $M_3B \triangleleft N(B)$. Suppose $M_3 \cong SL_2(q^2)$ and let I be a complement of W_3 in $N_{M_3}(W_3)$ containing H_{10} . Then I normalizes $W_3B = Q$ and $H \le H_3 \times I$, so I normalizes $E(C(H_1)) = M_1$ and W_1 . Now $B_4 \triangleleft \langle Q, s \rangle = M_3B$ and $W_3 = [W_3, H_4]$ centralizes $\widetilde{W}_4 = C_{\widetilde{B}}(H_4)$ by (1.1), so [19, (2.7)] shows that $C_{\widetilde{B}}(W_3) = \widetilde{W}_4$ and I acts transitively on the nonidentity elements of $\widetilde{B_4}/\widetilde{W_4} \cong W_1/W_2$. If $M_1 \cong Sz(q) \times Sz(q)$, I normalizes each component of M_1 , for |I| is odd. If $M_1 \cong Sp_4(q)$, W_1 has exactly two elementary abelian subgroup of order q^3 and so they are normalized by I. In any case I is not transitive on $(W_1/W_2)^{\sharp}$, a contradiction. Thus (2) holds.

Let $\bar{Q} = Q/A_1$. [10, (3.8) (3)] gives $B_3 \triangleleft Q$. Then $\bar{W}_7 \leq Z(\bar{Q})$ by (1.1), for $\bar{B}_3 = \bar{W}_7 = C_{\bar{Q}}(H_7)$. Similarly, $\bar{Q} \triangleright \overline{C_Q(A_1)} = \bar{A}_0 = C_{\bar{Q}}(H_5)$ and $\bar{A}_0 \leq Z(\bar{Q})$. Hence \bar{A} is abelian by [10, (3.9)(1)] and the action of N_1 . Now $[W_6, W_9] = W_{12}$ and $[W_5, W_7] = [W_6, W_9]^s = W_{11}$, so $B_1 \leq A'$ and thus $A' = A_1$ by [10, (3.6) (1)].

By the above lemma we can write $M_3 = K_3 \times K_3^t$ with $K_3 \simeq SL_2(q)$. Let v be an element of K_3 such that $vv^t = s$. Set $Y_3 = W_3 \cap K_3$ and $Z = C_{W_{12}}(K_3)$. Note that H normalizes K_3 , Y_3 , and Z, for $H \le H_3 \times N_3$. Note also that $Q = W_3 B$.

(3.2) $M_3B_1 = K_3C_{B_1}(K_3^t) \times K_3^tC_{B_1}(K_3), K_3C_{B_1}(K_3^t) \cong N_3S_1, \text{ and } W_{12} = Z \times Z^t.$

PROOF. Since $Y_3Y_3^{st}$ is a 2-group, $C_{B_1}(Y_3) \cap C_{B_1}(Y_3)^{st} \neq 1$. Then $W_{12} \cap W_{12}^s = W_{12} \cap W_{11} = 1$ implies $C_{B_1}(Y_3) \neq W_{12}$. Thus $C_{B_1}(K_3) \neq 1$, for $K_3 = \langle Y_3, Y_3^s \rangle$. By [10, (3.5)], N_3 is irreducible on $B_1/S_1 \simeq S_1$, so $C_{B_1}(K_3) \cap C_{B_1}(K_3^t) = 1$. As $C_{M_3B_1}(t) = N_3S_1$, the lemma holds.

Let $D_0=C_A(A_1/Z)$, $Y_i=D_0\cap W_i$ for i=4, 6, and $Y_7=Y_3^{tr}$. These subgroups are *H*-invariant. Note that $D_0\triangleleft M_1A$, for $[M_1,W_{12}]=1$.

- (3.3) (1) $D_0 = Y_3^t Y_4 Y_6 Y_7 A_0$, $A/A_0 = D_0/A_0 \times D_0^t/A_0$, $D_0 \cap W_3 = Y_3^t$, $D_0 \cap W_7 = Y_7$, and $|Y_i| = q^3$ with $W_i = Y_i Y_i^t$ and $Y_i \cap Y_i^t = Z(W_i)$ for i = 4, 6.
 - (2) $B/B_4 = C_{B/B_4}(K_3^t) \times C_{B/B_4}(K_3)$, $K_3C_{B/B_4}(K_3^t) \simeq N_3S/S_4$, and K_3 centralizes D_0B_4/B_4 .

PROOF. By (3.2), $C_{W_3}(B_1/Z) = Y_3^t$. Then as $W_{11}^r = W_8$ and $W_3^r = W_7$, $C_{W_7}(W_8W_{12}/Z) = Y_7$. Now $A_1 = W_8(A_1 \cap B_3)$ and $B_3 = W_7(A_1 \cap B_3)$. Thus $Y_7 \le D_0$ by [10, (3.8) (2)]. Since $Z \cap Z^t = 1$ and $[A_1, A] \ne 1$, we have $D_0 \ne A$ and by [10, (2.4) (2), (3.9) (1)], $|D_0| = q^4 |A_0|$. Moreover $Y_7 Y_7^t = W_7$, so $D_0 D_0^t = A$. Thus $A/A_0 = D_0/A_0 \times D_0^t/A_0$, $D_0 \cap W_3 = Y_3^t$, and $D_0 \cap W_7 = Y_7$.

Let $N(B_4) = N(B_4)/B_4$. As shown in the proof of (3.1), $\tilde{B} = \tilde{W}_1 \times \tilde{W}_4$ and $[W_3, \tilde{W}_4] = 1$. Then as in (3.2) we get $\tilde{M}_3 \tilde{B} = \tilde{K}_3 C_{\tilde{B}}(K_3^t) \times \tilde{K}_3^t C_{\tilde{B}}(K_3)$, $\tilde{K}_3 C_{\tilde{B}}(K_3^t) \simeq C_{\tilde{M}_3 \tilde{B}}(t) = \tilde{N}_3 \tilde{S}$, and $\tilde{W}_4 = C_{\tilde{W}_4}(K_3^t) \times C_{\tilde{W}_4}(K_3^t)$. Since $C_Q(B_1/Z) = Y_3^t B$, $D_0 \leq Y_3^t B \cap A \leq Y_3^t W_4 B_4$. By (3.1), $D_0 B_4 \leq C(B_2/Z)$, so $[V_4, V_{10}] = V_{12}$ and $Z \cap Z^t = 1$ imply $W_4 \leq D_0 B_4$. Now $Y_3^t \leq D_0 \triangleleft Q$ and every H-invariant proper subgroup of \tilde{W}_4 is of order q. Thus $\tilde{D}_0 = \tilde{Y}_3^t C_{\tilde{W}_4}(K_3)$, proving (2). Since $A \cap B_4 = W_6 W_7 A_0$ and $[W_6, W_8] = 1$, $D_0 \cap B_4 \leq W_6 W_7 A_0 \cap C(W_8 W_{12}/Z) = W_6 Y_7 A_0$ and so $D_0 \cap B_4 = Y_6 Y_7 A_0$. Thus $|Y_6/W_{11}| = q$. As $W_6^r = W_4$, $Y_6^r = Y_4$ and (1) holds.

(3.4) $B_3/B_2 = C_{B_3/B_2}(K_3^t) \times C_{B_3/B_2}(K_3)$ and $K_3C_{B_3/B_2}(K_3^t) \simeq N_3S_3/S_2$.

PROOF. Note that $B_3 \triangleleft \langle Q, s \rangle = M_3 B$ and $W_9 B_2 = A_1 \cap B_3 \triangleleft Q$, so $W_3 = [W_3, H_9]$ centralizes $W_9 B_2 / B_2$. Now $W_9^s = W_7$ and $W_9 B_2 \cap W_7 B_2 = B_2$. Hence as in (3.2) the lemma holds.

(3.5) $Q \in \text{Syl}_2(O^2(G))$.

PROOF. In the proof of [10, (3.11)] it is shown that $\mathcal{I}(tQ) = t^Q$, so $t^Q = t^{N(\langle t \rangle Q)}$ and $N(\langle t \rangle Q) = QN_c(\langle t \rangle Q)$. Thus $\langle t \rangle Q$ is a Sylow 2-subgroup of G and (3.5) holds.

IV. The Case $M_1 \simeq Sp_4(q)$

In this section we assume that $M_1 \simeq Sp_4(q)$. Let J_3 be a complement of Y_3 in $N_{K_3}(Y_3)$ such that $H_{10} \leq J_3J_3^t$. Then $J_3^v = J_3$. As $Q = W_3B$ and $H_3J_3J_3^t$ is an abelian group containing H, J_3 normalizes $C_Q(H_i) = W_i$ for i = 1, 3, 4, 5, 6, 7, 9, 10. Let $D = D_0 \cap D_0^v$ and $Y_5 = D \cap W_5$. Let $Y_i = Z(D) \cap W_i$ for i = 8, 9, 10, 11.

- (4.1) (1) $D = Y_3^t Y_4 Y_5 Y_6 Y_7 A_1 \triangleleft \langle Q, M_1, K_3, H \rangle$, $\mathscr{E}^*(W_5) = \{Y_5, Y_5^t\}$, $A/A_1 = D/A_1 \times D^t/A_1$, and $A/D \cong D^t/A_1 \cong R/R_1$ as HN_1 -modules.
 - (2) D/Z is elementary abelian of order q^{14} .
- (3) $Z(D) = Y_5 Y_8 Y_9 Y_{10} Y_{11} W_{12}$, Z(D) is elementary abelian of order q^7 , $|Y_i| = q$ for i = 8, 9, 10, 11, and $A_0/W_{12} = Z(D)/W_{12} \times Z(D)^t/W_{12}$.
 - (4) $W_8B_3 \cap (W_8B_3)^v = B_3$.

PROOF. By the definition Z is $J_3J_3^t$ -invariant, so is D_0 . The element v normalizes $J_3J_3^t$ and H_3 , whence $H_3I_3I_3^t \le N(D)$. By (3.1), $B_2 \triangleleft \langle Q, s \rangle = M_3B$ and as $D_0 \triangleleft Q$, $Y_3^tB_2 \le D \triangleleft Q \cap$ $Q^v = Y_3^t B$. Set $I = A \cap B_4$. Then $Q \triangleright I = W_6 W_7 A_0$ and $Y_3^t I \le DI \le D_0 I = Y_3^t Y_4 I$. If $DI = Q \triangleright I = Y_3^t Y_4 I$. $Y_3^t I$, $[Y_3^t, W_1] \le DI \cap B = I$ and so $[W_3, W_1] \le I$. But $[V_3, V_1] \le I$, a contradiction. Thus DI = I D_0I , for each H-invariant proper subgroup of W_4/W_8 is of order q. Then as $C_I(H_4)=W_8$, (1.2) gives $C_D(H_4)W_8=C_{D_0I}(H_4)=Y_4$. Now $C_Q(H_4)=W_4$ and each H-invariant proper subgroup of W_8 is of order q, so $C_D(H_4)=D\cap W_4$ and $|D\cap W_8|=q$ or $D\geq W_8$. Suppose $|D \cap W_8| = q$. Then $D \cap W_8 = D^t \cap W_8$ or $W_8 = (D \cap W_8) \times (D^t \cap W_8)$. If the latter holds, then as $(D \cap W_4)W_8 = Y_4$ and $Z(W_4) = W_8$, (3.3) forces $W_4 = (D \cap W_4) \times (D^t \cap W_4)$. But $W_4^s = W_1 \in$ $Syl_2(M_1)$ and $M_1 \simeq Sp_4(q)$, a contradiction. If t normalizes $D \cap W_8$, then $W_4/D \cap W_8$ is abelian, contrary to $W_4' = W_8$. Hence $D \cap W_4 = Y_4$, so $Y_3^t Y_4 W_7 A_0 \le DW_7 A_0 \le D_0 W_7$. If $D \le$ $Y_3^t Y_4 W_7 A_0$, $[Y_3^t, W_2] \le D \cap B_4 \le W_7 A_0$. As $W_7 A_0 = B_3 A_0 \triangleleft Q$, this gives $[W_3, W_2] \le W_7 A_0$. But $[V_3, V_2] \leq W_7 A_0$, a contradiction. Hence $DW_7 A_0 = D_0 W_7$, for H is irreducible on Y_6/W_{11} . As $W_7A_0 \cap C(H_6) = W_{11}$ and $D_0W_7 \cap C(H_6) = Y_6$, $D \cap W_6 = C_D(H_6) = Y_6$. Then $Y_3^tY_4Y_6A_0 \le DA_0 \le C_D(H_6) = Y_6$. D_0 . If $Y_3^t Y_4 Y_6 A_0 = DA_0$, $B \triangleright B_4 \cap DA_0 = Y_6 A_0$ and as $W_6 = Y_6 Y_6^t$, $B \triangleright W_6 A_0$. But then $[W_6, W_1] \le W_6 A_0$, which conflicts with $[V_1, V_6] = V_7$. Hence $DA_0 = D_0$ by the action of H. As $C_{A_0}(H_7)=1$, $D\cap W_7=C_{D_0}(H_7)=Y_7$ by (1.2). We have $D\geq [V_1,V_8]B_2=V_9B_2$ since $B\geq V_1$. Then as $D_0 \ge W_9 B_2$, (3.4) shows $D \ge W_9 B_2$. Therefore $D = Y_3^t Y_4 Y_5 Y_6 Y_7 A_1$. Now $[D, A_1 A_1^v] \le$ Z by the definition of D, so $[D, A_1A_1^{v}A_1^{v}] \leq W_{12}$. Moreover $A_1A_1^{v}A_1^{v} \geq B_3 \geq W_7$ by (3.4), for $A_1 \ge W_9 B_2$. As $[V_5, V_7] \le W_{12}$, we have $Y_5 \ne W_5$. If $Y_5 = W_{12}$, $[Y_5', W_2] \le D \cap B_4 = Y_6 Y_7 A_1 \le$ $W_6W_7A_1$. By (3.1), $Y_3Y_3 = W_3 \le A > W_6W_7A_1$, so $[W_2, W_3] \le W_6W_7A_1$. But $[V_2, V_3] \le W_6W_7A_1$, a contradiction. Hence $|Y_5| = q^3$ by the action of H.

As $A_1 \leq D$, $D \triangleleft AB = Q$ by (3.1). Thus $D \triangleleft \langle Q, v \rangle = \langle Q, K_3 \rangle$. By (3.4), $W_9 W_9 v_B = D \cap B_3$. Let $\overline{N(B_3)} = N(B_3)/B_3$. Then \overline{B}_4 is elementary abelian of order q^8 by [10, (3.9)(5)] and $\overline{D \cap B_4} = \overline{Y}_5 \overline{Y}_6 \overline{W}_8$ is of order q^4 . As $\mathscr{E}^*(\langle t \rangle B_3) = \{B_3, \langle t \rangle S_3\}$ and $t^{B_3} = tS_3$, $N(\langle t \rangle B_3) = tS_3$

 $B_2N_G(S_2) = B_2N_G(S)$ and $\overline{N(B_2)} \cap C(t) = \overline{N_G(S)}$. By [10, (3.9) (4)], $[W_3, W_8] = 1$, so K_3 centralizes $\bar{W}_8 \cap \bar{W}_{8}^{v}$. Suppose $\bar{W}_8 \cap \bar{W}_{8}^{v} \neq 1$ and put $\bar{X} = \bar{B}_4 \cap C(K_3^{t})$. Then \bar{X} is M_3 -invariant and as $H_{10} \leq M_3$, $\bar{X} \cap \bar{X}^i \leq \bar{B}_4 \cap C(H_{10}) = 1$. Now N_3 is irreducible on $\bar{B}_4 \cap C(t) = \bar{S}_4 \simeq S_4/S_3$, so the action of N_3 on $\bar{X}\bar{X}^t \cap C(t) \simeq \bar{X}$ gives $\bar{M}_3\bar{B}_4 = \bar{K}_3\bar{X} \times \bar{K}_3^t\bar{X}^t$ and $\bar{K}_3\bar{X} \simeq \bar{M}_3\bar{B}_4 \cap C(t) \simeq N_3S_4/S_3$. Then as $Z(V_3S_4/S_3) = V_8S_3/S_3$, $\bar{W}_8 = C_{\bar{X}}(Y_3) \times C_{\bar{X}}(Y_3)^t$ and $\langle \bar{W}_8^{K_3} \rangle = \bar{X}C_{\bar{X}}(Y_3)^t$. This is impossible since K_3 normalizes $\overline{D \cap B_4}$. Thus $\overline{W}_8 \cap \overline{W}_8^v = 1$ and $\overline{D \cap B_4} = \overline{W}_8 \overline{W}_8^v$, so $\langle A_1^{K_3} \rangle =$ $D \cap B_4$. Then $D \cap B_4/Z$ is an elementary abelian subgroup of Z(D/Z) by [10, (3.8) (2)]. Note that $W_5 = W_1^{srs}$. By [6, (2B)], there are subgroups U_1 and U_2 of order q such that $W_{12} =$ U_1U_2 and $W_{12}-(U_1\cup U_2)$ is the set of square involutions of W_5 . As $U_1\cap U_2=1$, U_1 and U_2 are the only subgroups of order q contained in $U_1 \cup U_2$. Thus $J_3 J_3^t$ normalizes U_1 and U_2 , so $Z=U_1$ or U_2 by (3.2). As $Y_5 \le D \cap B_4$, Y_5/Z is elementary abelian. Hence $Y_5 \in \mathscr{C}^*(W_5)$ by [6, (2B) (1), (3)]. As $M_5 = M_1^{srs}$, the action of t on M_1 shows $\mathscr{C}^*(W_5) = \{Y_5, Y_5^t\}$. then as $A' = A_1$, we have $A/A_1 = D/A_1 \times D^1/A_1$. Now $Y_5/Z \le Z(D/Z)$, $C_{W_5}(Y_5/Z) = Y_5$, and $D_0 = DW_5$. Thus $D = C_A(Y_5A_1/Z)$, which is M_1 -invariant since M_1 centralizes A_0/A_1 . Since $\mathscr{C}^*(\langle t \rangle A_1) = \{A_1, \langle t \rangle R_1\}$ and $t^{A_1} = tR_1, N(\langle t \rangle A_1) = A_1 N_c(R_1) = A_1 N_c(R)$. Hence $D/A_1 \simeq$ $(A/A_1) \cap C(t) = RA_1/A_1 \simeq R/R_1$ as N_1 -modules. Then N_1 is irreducible on $D/Y_5A_1 \simeq R/V_5R_1$, so D/Z is elementary abelian. Thus (1) and (2) hold.

As $C_Q(A_1) = A_0$, $A_1 \le Z(D) \le D \cap A_0 = Y_5 A_1$. Moreover, $W_{12}W_{12}^v$ is a subgroup of $Y_{11}W_{12}$ of order q^3 by (3.2). By [10, (3.6) (1)], N_1 is irreducible on $A_1/R_1W_{12} \simeq R_1W_{12}/W_{12}$, so $|Z(D) \cap A_1/W_{12}| = q^4$, As $W_{11} \le Z(D)$, the action of H gives $W_{12}W_{12}^v = Y_{11}W_{12}$ and $W_{11} = Y_{11} \times Y_{11}^t$. So $W_8 = W_{11}^r = Y_8 \times Y_8^t$. By (4), $Z(D) \le A_1$ and the action of H gives $Z(D)A_1 = Y_5A_1$. Then as $C_{A_1}(H_5) = W_{12}$, $Z(D) \ge Y_5$ by (1.2) and $Z(D) = Y_5(Z(D) \cap A_1)$. Now $A_1/W_{12} = Z(D) \cap A_1/W_{12} \times Z(D)^t \cap A_1/W_{12}$ by the action of N_1 . As $C_Q(H_t) = W_t$ for t = 9, 10, we get $Z(D) \cap A_1 = Y_8Y_8Y_{10}Y_{11}W_{12}$, proving (3).

(4.2) $Z(Q/D) = W_5 W_7 D/D$ and Z(BD/D) is a subgroup of $W_2 W_5 W_7 D/D$ of order q^3 . Moreover $Z(D)/Z(D) \cap B_3$ and $B_4 D/Z(BD \mod D)$ are natural modules for K_3 .

PROOF. As $Z(D) \cap A_1 = Y_8(Z(D) \cap B_3)$, Y_3 centralizes Y_8B_3/B_3 . Hence by (4.1)(4), $Z(D)B_3/B_3 \simeq Z(D)/Z(D) \cap B_3$ is a natural module for K_3 . Let $\overline{N(D)} = N(D)/D$. Then $\overline{A}_0 \overline{B}_3 = \overline{W}_5 \overline{W}_7 \leq Z(\overline{Q})$. Now \overline{A} is self-centralizing in $\overline{M}_1 \overline{A}$ and $C_{P/R_1}(V_1) = V_5 V_7 R_1/R_1$, so (4.1) (1) implies $Z(\overline{Q}) = \overline{W}_5 \overline{W}_7$. As $Z(Q/A) = W_2 A/A$, $Z(\overline{B}) \leq \overline{W}_2(\overline{A} \cap \overline{B}) = \overline{W}_4 \overline{B}_4$. Then (3.3) (2) gives $Z(\overline{B}) \leq \overline{W}_4 \overline{B}_4 \leq \cap (\overline{W}_4 \overline{B}_4)^v = \overline{B}_4$. As K_3 does not normalize $A_0 D = D_0$, it does not centralize $Z(\overline{Q})$. So $Z(\overline{Q}) \neq Z(\overline{B})$. As $V_1 \leq B_4$ and $C_{P/R_1}(V_1) = V_5 V_7 R_1/R_1$, $\overline{A} \cap Z(\overline{B}) = Z(\overline{Q})$ by (4.1) (1). Thus $\overline{W}_6 Z(\overline{Q}) \neq Z(\overline{B}) \overline{W}_6 Z(\overline{Q}) \leq \overline{B}_4 = \overline{W}_2 \overline{W}_6 Z(\overline{Q})$. If $Z(\overline{B}) \overline{W}_6 Z(\overline{Q}) \geq \overline{W}_2$, then as $\overline{W}_6 Z(\overline{Q}) \cap C(H_1) = 1$, $Z(\overline{B}) \geq \overline{W}_2$ by (1.2). But $C_{R/R_1}(V_2) = V_5 V_6 V_7 R_1/R_1$, so $C_{\overline{A}}(V_2) = \overline{A} \cap \overline{B}_4$ by (4.1) (1), a contradiction. Hence $|Z(\overline{B}) \cap \overline{W}_2| = q$ by the action of H. As $Y_5^* \leq W_6$ and $Y_8^* \leq W_2$, we see that $\overline{B}_4 = \overline{Z(D)}^* Z(\overline{B})$ and $\overline{B}_4/Z(\overline{B}) \simeq Z(D)^* B_3/B_3$ is a natural module for $K_3^* = K_3$ by the above.

Denote by U_1 and U_2 the maximal elementary abelian subgroups of W_1 . As $\mathscr{I}(tW_1)=t^{W_1}$, it follows from [6, (2.3), (2B) (1)] that $U_1^t=U_2$. As $HJ_3J_3^t$ is of odd order, it normalizes U_1 and U_2 . Then $U_1W_4B_4/B_4>C_{B/B_4}(K_3)$ or $C_{B/B_4}(K_3^t)$ by (3.3) (2). Replacing U_1 and U_2 if necessary, we may assume that $U_1W_4B_4/B_4>C_{B/B_4}(K_3^t)$. Then $U_1W_4B_4/B_4=C_{B/B_4}(K_3^t)C_{W_4B_4/B_4}(K_3)$, so K_3 normalizes $U_1W_4B_4$. Since H_1 is fixed-point-free on W_4B_4/B_4 , (1.2) shows $U_1B_4/B_4 \le C_{B/B_4}(K_3^t)$. Thus K_3 normalizes U_2B_4 . We can choose involutions u_1

and u_2 as generators of the Weyl group of M_1 such that $u_1^t = u_2$, $(u_1u_2)^2 = r$, and u_i normalizes U_i , i = 1, 2. Set $Y_1 = W_1 \cap W_1^{ru_1}$, $Y_2 = W_1 \cap W_1^{ru_2}$, and $K_i = \langle Y_i, u_i \rangle$ for i = 1, 2. Then $U_1 = Y_2W_2$, $U_2 = Y_1W_2$, $K_1^t = K_2$, and $K_i \simeq SL_2(q)$ with $Y_i \in \operatorname{Syl}_2(K_i)$. Let J_0 be a complement of W_1 in $N_{M_1}(W_1)$ containing H_2 and set $H_1 = I_1 = I_2 = I_2$

- (4.3) (1) $C_{A/D}(U_1) = W_5 W_7 D/D$ and $C_{A/D}(U_2) = W_5 W_6 W_7 D/D$.
- (2) $F_1 \triangleleft \langle Q, u_1, v \rangle$, $F_2 \triangleleft \langle Q, u_2, v \rangle$, $C(F_1/D) = Z(BD/D)$, $F_1/Z(F_1 \mod D)$ is elementary abelian of order q^4 , and F_2/D is elementary abelian of order q^6 .
 - (3) AF_2/F_2 is a natural module for K_2 and BF_2/F_2 is a natural module for K_3 .

PROOF. Note that $F_1=U_1W_4B_4D$ is K_3 -invariant and $F_1 \triangleleft \langle Q, v \rangle$, for $Q' \leq F_1$. Let $\overline{N(D)}=N(D)/D$. Then $\overline{F}_1/\overline{B}_4\simeq F_1/B_4D$ is a natural module for K_3 . As $C_{\overline{A}}(V_2)=\overline{A}\cap \overline{B}_4$ by (4.1) (1), $\overline{F}_1\cap C(\overline{B}_4)=\overline{B}_4$. Now $Z(\overline{B})\leq \overline{B}_4\leq \overline{F}_1\leq \overline{B}$ and K_3 is irreducible on $\overline{B}_4/Z(\overline{B})$ by (4.2), so $Z(\overline{F}_1)=Z(\overline{B})$. As $V_2\leq U_1$, we get $C_{\overline{A}}(U_1)=\overline{A}\cap Z(\overline{F}_1)=\overline{W}_5\overline{W}_7$. As $V_2\leq U_2$, $Z(\overline{Q})=\overline{W}_5\overline{W}_7$ $\leq C_{\overline{A}}(U_2)\leq \overline{A}\cap \overline{B}_4=\overline{W}_5\overline{W}_6\overline{W}_7$. If $C_{\overline{A}}(U_2)=Z(\overline{Q})$, M_1 normalizes $Z(\overline{Q})$. But N_1 is irreducible on $A/W_5D\simeq R/V_5R_1$ by (4.1) (1). Hence $C_{\overline{A}}(U_2)=\overline{W}_5\overline{W}_6\overline{W}_7$ by the action of H. Then $\overline{F}_2=\overline{U}_2C_{\overline{A}}(U_2)$ is elementary abelian of order q^6 and normalized by u_2 . As $F_2=U_2B_4D$ and $\overline{Y}_3\overline{B}=\overline{Q}$, it follows that $F_2 \triangleleft \langle Q, u_2, v \rangle$. Set $\overline{I}/\overline{W}_5\overline{W}_7=(\overline{A}/\overline{W}_5\overline{W}_7)\cap C(U_1)$. Then as $(R/V_5V_7R_1)\cap C(V_2)=V_4V_5V_6V_7R_1/V_5V_7R_1$ and $\overline{Q}\rhd \overline{W}_5\overline{W}_6\overline{W}_7$, (4.1) (1) shows $\overline{W}_5\overline{W}_6\overline{W}_7\leq \overline{I}\leq \overline{A}\cap \overline{B}=\overline{W}_4\overline{W}_5\overline{W}_6\overline{W}_7$. If $\overline{I}=\overline{W}_5\overline{W}_6\overline{W}_7$, then M_1 normalizes \overline{I} , contrary to the action of N_1 on A/W_5D . Thus $\overline{I}=\overline{A}\cap \overline{B}$, which is u_1 -invariant. Hence $F_1 \triangleleft \langle Q, u_1, v \rangle$. If K_2 centralizes AF_2/F_2 , then as $Q=AF_2Y_2$, $Q'\leq F_2$. But $(Q/B_4)'=W_4B_4/B_4$ by (3.3) (2). As $W_4 \not\leq F_2$, this is a contradiction. Thus AF_2/F_2 is a natural module for K_2 by [6,(1K)]. Finally, BF_2/F_2 is a natural module for K_3 by (3.3) (2).

$(4.4) (u_2v)^3 \in F_2$.

PROOF. As $D \le F_2 \le DB$, $Y_{11}W_{12} \le Z(F_2) \le Z(D) \cap B_2$. If $Z(F_2) = Y_{11}W_{12}$, $C(Z(F_2)) \ge AB = Q$ by (4.3) (3), contrary to $Z(Q) = W_{12}$. Thus $Z(F_2) = Z(D) \cap B_2$ by the action of H. Then $C_Q(Z(F_2)) = F_2$ by (4.3) (2) and (3). It follows from (3.2) that $Y_{11}W_{12}/Z$ is a natural module for K_3 . As $J_3^v = J_3$, $W_{12}^v = Y_{11}Z$ by (1.3). Now K_3 centralizes $Z(F_2)/Y_{11}W_{12}$, so $[Z(F_2)/Z, J_3] = Y_{11}W_{12}/Z$ and $Y_{10}Z/Z = (Z(F_2)/Z) \cap C(J_3)$, which is v-invariant. Thus v centralizes $Y_{10}Z/Z$. If K_2 centralizes $Z(F_2)/W_{12}$, then as $[M_1, W_{12}] = 1$, $[K_2, Z(F_2)] = 1$. But $C_Q(Z(F_2)) = F_2$, a contradiction. Thus $Z(F_2)/W_{12}$ is a natural module for K_2 by [6, (1K)]. Then $[Z(F_2), J_2] = Y_{10}Y_{11}$ and $Y_{10}^{u_2} = Y_{11}$ by (1.3) since $J_2^{u_2} = J_2$. For $X \in Y_{10}Z/Z$, we have $X^{u_2v} \in W_{12}/Z$, so $X^{u_2vu_2} = X^{u_2v}$ and $X^{u_2vu_2v} = x^{u_2}$. Then as $X^v = x$, $[(u_2v)^3, x] = 1$. Similarly $(u_2v)^3$ centralizes $Y_{11}Z/Z$ and W_{12}/Z . Hence $[(u_2v)^3, Z(F_2)] \le Z$.

 K_3 centralizes $Z(D) \cap B_3/Z(F_2)$. By (4.2), J_3 is fixed-point-free on $Z(D)/Z(D) \cap B_3$ and (1.3) shows $Y_5^{\text{v}}(Z(D) \cap B_3) = Y_8(Z(D) \cap B_3)$. Then $[Z(D)/Z(F_2), J_3] = Y_5Y_8Z(F_2)/Z(F_2)$ is v-invariant and $Y_5^{\text{v}}Z(F_2) = Y_8Z(F_2)$. If K_2 centralizes $Z(D) \cap A_1/Z(F_2)$, $[K_2, Z(D)] \leq Z(F_2)$. By [10, (3.9) (5)], $C(Z(D)/Z(F_2)) \geq \langle DB_4, K_2 \rangle$. Now $A \cap F_2 = A \cap DB_4$ and $A/A \cap F_2$ is a natural module for K_2 by (4.3) (3). But then $A \leq C(Z(D)/Z(F_2))$, contrary to the action of K_3 on $Z(D)/Z(D) \cap B_3$. Thus $Z(D) \cap A_1/Z(F_2)$ is a natural module for K_2 and $Y_8^{u_2}Z(F_2) = Y_9Z(F_2)$ by (1.3). J_2 centralizes $Z(D)/Z(D) \cap A_1$, so $(Z(D)/Z(F_2)) \cap C(J_2) = Y_5Z(F_2)/Z(F_2)$. Hence

 $[u_2, Y_5Z(F_2)] \le Y_5Z(F_2) \cap A_1 = Z(F_2)$. Now as in the first paragraph we have $[(u_2v)^3, Z(D)] \le Z(F_2)$.

We argue that $F_2' = D \cap B$, $Z(F_2') = Z(D)B_1$, and $[F_2', F_2] = Y_7 Y_9^t B_2$. By [10, (3.9) (4), (5)], $W_{12} \le B_4' \le B_2$. As $Z(D)/W_{12} \simeq (A_0/W_{12}) \cap C(t) = V_5 R_1 W_{12}/W_{12}$ and as $[V_5, V_7] = V_{11}$ and $[V_5, V_6] = V_{10}$, we get $B_2 = B_4' \le F_2'$. By (4.3) (2), $F_2' \le D \cap B$, so $F_2'(D \cap B_4) = D \cap B$ by the definition of U_2 . Now $D/A_1 \simeq (A/A_1) \cap C(t) \simeq R/R_1$, so by considering $[V_2, V_3]$ and $[V_2, V_4]$, we have $F_2/A_1 \ge D \cap B_4$. Thus $F_2/A_1 = D \cap B$. As K_3 centralizes $Z(D) \cap B_3/B_2 = Y_9B_2/B_2$, (3.4) shows $Y_9B_2=[Y_3^t, W_7]B_2 \le F_2^t$. Then $Z(D) \le F_2^t$ by the action of $\langle K_2, K_3 \rangle$. As $C_{A_1}(H_7)=1$, $Y_7 = D \cap B \cap C(H_7) \le F_2'$ by (1.2). Then (3.4) shows $Y_7 W_9 B_2 \le F_2'$. If $[Y_3^i, Y_5^i] \le Z(D) W_9 B_2$, then as $Y_5 \le Z(D)$, $[Y_3^t, Y_5^t] \le Z(D)W_9B_2 \cap Z(D)^t = W_9B_2$. Now $Y_3^t \le D$, so $[Y_3^t, W_5] \le W_9B_2$. As $W_9B_2 \triangleleft Q$ and $W_3 = Y_3Y_3^t$, this implies $[W_3, W_5] \leq W_9B_2$. But $[V_3, V_5] \leq W_9B_2$, a contradiction. Therefore $F_2' = D \cap B$. By (3.1), $Z(D)B_1 \le Z(F_2') \le F_2' \cap C(A_1) = Y_5 A_1$. As $C_{A_1}(Y_2) = Y_8 W_9 B_2$, Similarly $Z(D)W_9B_2 \cap C(Y_6) = Z(D)B_2$ since $[V_6, V_9] \neq 1$. $Z(F_2) \leq Z(D)W_9B_2$. $[V_4, V_{10}] \neq 1$ implies $Z(D)B_2 \cap C(Y_4) = Z(D)B_1$. Hence $Z(F_2) = Z(D)B_1$. As $Y_2W_4 \leq F_1$, (4.1) (1) and (4.3) (2) show $[Y_2, Y_4^t] \le Z(F_1 \mod D) \cap D^t = Y_5^t Y_7^t A_1$. Then $[Y_1, Y_4] \le Y_5 Y_7 A_1$ since $Y_1^t = Y_5^t Y_7^t A_1$. $=Y_2$. Let $\vec{Q}=Q/Y_5Y_7A_1$. Then $\vec{Z(D)}\cap \vec{B_4}=\vec{Y}_6\leq Z(\vec{Q})$ and Y_1 centralizes $\vec{Y}_4\vec{Y}_6=\vec{F}_2'\geq$ $[\bar{Y}_1, \bar{Y}_3^t]$. For each $a \in (Y_3^t)^*$ the map $\phi_a \colon Y_1 \to [\bar{Y}_1, \bar{Y}_3^t]; x \mapsto [\bar{x}, \bar{a}]$ is a homomorphism commutable with the action of H_3 . As $W_1/W_2 = U_1/W_2 \times U_2/W_2$, Y_1 and V_1/V_2 are H-isomorphic. Thus H_3 is irreducible on Y_1 . By the definition, $[Y_1, Y_3^t] \leq B_4$ and so $[\bar{Y}_1, \bar{a}] \neq 1$. Hence $Y_1 \simeq$ $[\bar{Y}_1,\bar{a}]$ as H_3 -modules. Now $\bar{Y}_4 \simeq V_4/V_8$ and $\bar{Y}_6 \simeq V_6/V_{11}$ as H-modules, so it follows from [10, (2.1)] that $[\bar{Y}_1,\bar{a}] = \bar{Y}_4$. Thus $[\bar{Y}_1,\bar{Y}_3^t] = \bar{Y}_4$. Since H_1 is irreducible on \bar{Y}_4 , this implies $[\bar{b},\bar{Y}_3^t] = \bar{Y}_4$. \bar{Y}_4 for each $b \in Y_1^*$. So $Y_4 \le [b, Y_3^*] Y_5 Y_7 A_1$. Since $Y_7 A_1 = (D \cap B_3) A_1 \triangleleft Q$, $Y_5 Y_7 A_1 / A_1 \le A_1 = (D \cap B_3) A_1 \triangleleft Q$, $Y_5 Y_7 A_1 / A_1 \le A_1 = (D \cap B_3) A_1 \triangleleft Q$, $Y_5 Y_7 A_1 / A_1 \le A_1 = (D \cap B_3) A_1 \triangleleft Q$, $Y_5 Y_7 A_1 / A_1 \le A_1 = (D \cap B_3) A_1 \triangleleft Q$, $Y_5 Y_7 A_1 / A_1 \le A_1 = (D \cap B_3) A_1 \triangleleft Q$, $Y_5 Y_7 A_1 / A_1 \le A_1 = (D \cap B_3) A_1 \triangleleft Q$, $Y_5 Y_7 A_1 / A_1 \le A_1 = (D \cap B_3) A_1 \triangleleft Q$, $Y_5 Y_7 A_1 / A_1 \le A_1 = (D \cap B_3) A_1 \triangleleft Q$, $Y_5 Y_7 A_1 / A_1 \le A_1 = (D \cap B_3) A_1 \triangleleft Q$, $Y_5 Y_7 A_1 / A_1 \le A_1 = (D \cap B_3) A_1 \triangleleft Q$, $Y_5 Y_7 A_1 / A_1 \le A_1 = (D \cap B_3) A_1 \triangleleft Q$, $Y_5 Y_7 A_1 / A_1 \le A_1 = (D \cap B_3) A_1 \triangleleft Q$, $Y_5 Y_7 A_1 / A_1 \le A_1 = (D \cap B_3) A_1 \triangleleft Q$, $Y_5 Y_7 A_1 / A_1 \le A_1 = (D \cap B_3) A_1 \triangleleft Q$, $Y_5 Y_7 A_1 / A_1 \le A_1 = (D \cap B_3) A_1 \triangleleft Q$, $Y_5 Y_7 A_1 / A_1 \le A_1 = (D \cap B_3) A_1 \triangleleft Q$, $Y_5 Y_7 A_1 / A_1 \le A_1 = (D \cap B_3) A_1 \triangleleft Q$, $Y_5 Y_7 A_1 / A_1 \le A_1 = (D \cap B_3) A_1 \triangleleft Q$, $Y_5 Y_7 A_1 / A_1 \le A_1 = (D \cap B_3) A_1 \triangleleft Q$, $Y_5 Y_7 A_1 / A_1 \le A_1 = (D \cap B_3) A_1 \triangleleft Q$, $Y_5 Y_7 A_1 / A_1 \le A_1 = (D \cap B_3) A_1 \triangleleft Q$, $Y_5 Y_7 A_1 / A_1 \le A_1 = (D \cap B_3) A_1 \triangleleft Q$, $Y_5 Y_7 A_1 / A_1 \le A_1 = (D \cap B_3) A_1 \triangleleft Q$, $Y_5 Y_7 A_1 / A_1 \le A_1 = (D \cap B_3) A_1 \triangleleft Q$, $Y_5 Y_7 A_1 / A_1 \le A_1 = (D \cap B_3) A_1 \triangleleft Q$, $Y_5 Y_7 A_1 / A_1 \le A_1 = (D \cap B_3) A_1 \triangleleft Q$, $Y_5 Y_7 A_1 / A_1 = (D \cap B_3) A_1 \triangleleft Q$, $Y_5 Y_7 A_1 / A_1 = (D \cap B_3) A_1 \triangleleft Q$, $Y_5 Y_7 A_1 / A_1 = (D \cap B_3) A_1 \triangleleft Q$, $Y_5 Y_7 A_1 / A_1 = (D \cap B_3) A_1 \triangleleft Q$, $Y_5 Y_7 A_1 / A_1 = (D \cap B_3) A_1 \triangleleft Q$, $Y_5 Y_7 A_1 / A_1 = (D \cap B_3) A_1 \triangleleft Q$, $Y_5 Y_7 A_1 / A_1 = (D \cap B_3) A_1 \triangleleft Q$, $Y_5 Y_7 A_1 / A_1 = (D \cap B_3) A_1 \triangleleft Q$, $Y_5 Y_7 A_1 / A_1 = (D \cap B_3) A_1 \triangleleft Q$, $Y_5 Y_7 A_1 / A_1 = (D \cap B_3) A_1 \triangleleft Q$, $Y_5 Y_7 A_1 / A_1 = (D \cap B_3) A_1 \triangleleft Q$, $Y_5 Y_7 A_1 / A_1 = (D \cap B_3) A_1 \triangleleft Q$, $Y_5 Y_7 A_1 / A_1 = (D \cap B_3) A_1 \triangleleft Q$, $Y_5 Y_7 A_1 / A_1 = (D \cap B_3) A_1 \triangleleft Q$, $Y_5 Y_7 A_1 / A_1 = (D \cap B_3) A_1 \triangleleft Q$, $Y_5 Y_7 A_1 / A_1 = (D \cap B_3) A_1 \triangleleft Q$, $Y_5 Y_7 A_1 / A_1 = (D \cap B_3) A_1 \triangleleft Q$, $Y_5 Y_7 A_1 = (D \cap B_3$ $Z(Q/A_1)$. Moreover $[D, b, b] \le A_1$ since |b| = 2. Thus $[b, Y_4] \le A_1$, so $[Y_1, Y_4] \le A_1$. By the action of M_3 , $Z(B/B_3) \ge B_4/B_3$. So $[F_2', DB_4] \le B_3$ by (4.1) (2). Then as $F_2 = Y_1DB_4$ and $F_2' = Y_4(D \cap B_4)$, the above shows $[F_2', F_2] \le A_1B_3$. Thus by (4.1) (4), $[F_2', F_2] \le D \cap B_3 = Y_7W_9B_2$. On the other hand $[W_6, W_9] = W_{12}$, so $Z(F_2) \le [F_2', F_2]$ by the action of $\langle K_2, K_3 \rangle$. Considering $[V_2, V_8]$ and $[V_2, V_9]$, we get $B_2 \le [F_2', F_2]$. (4.3) (1) implies $[Y_2, W_6] \le D$, so $[Y_1, Y_6]^t = [Y_2, Y_6^t] \le D$ A_1 . Thus $[F_2', F_2]A_1 = Y_7A_1$. As $C_{A_1}(H_7) = 1$, $Y_7 = C_{Y_7A_1}(H_7) \le [F_2', F_2]$ by (1.2). Then $Y_7Y_9^tB_2 \leq [F_2', F_2]$ by (3.4). If $W_9 \leq [F_2', F_2]$, the action of $\langle K_2, K_3 \rangle$ forces $Z(D) \leq [F_2', F_2]$, a contradiction. Hence $[F_2', F_2] = Y_7 Y_9^t B_2$.

As $Z(F_2') \cap [F_2', F_2] = Y_{10}B_1$, $\langle K_2, K_3 \rangle$ centralizes $Y_{10}B_1/Z(F_2)$. As $[F_2', F_2] \cap A_1 = Y_9^t B_2$, K_2 centralizes $[F_2', F_2]/Y_9^t B_2$. If K_2 centralizes $Y_9^t B_2/Y_{10}B_1$, it centralizes $[F_2', F_2]/Y_{10}B_1$. Note that $[F_2', F_2]/B_2 = C_{B_3/B_2}(K_3^t)$. Then as $D = Y_3^t(D \cap B)$, (4.3)(3) shows $A \leq \langle K_2, D, B \rangle \leq C([F_2', F_2]/B_2)$. But $Y_3 \leq A$ and $[F_2', F_2]/B_2$ is a natural module for K_3 , a contradiction. Thus $Y_9^t B_2/Y_{10}B_1$ is a natural module for K_2 . Moreover, K_3 centralizes $B_2/Y_{10}B_1$. Hence arguing as in the first paragraph we obtain $[(u_2v)^3, [F_2', F_2]] \leq Y_{10}B_1$.

We have shown that $(u_2v)^3$ stabilizes $Z(D) \ge Z(F_2) \ge Z \ge 1$ and $[F_2', F_2] \ge Y_{10}B_1 \ge Z(F_2)$. Thus $O(\langle (u_2v)^3 \rangle)$ centralizes $I = Z(D)[F_2', F_2]$. By (4.1) (1), $(Q/A_0B_3) \cap C(t) = PA_0B_3/A_0B_3$. Then $C_P(V_9S_2) = V_5R_1S_3$ implies $C_Q(W_9B_2) = A_0B_3$, so $C_Q(I) \le A_0B_3 \cap C(Y_8) = Y_7A_0$. Moreover $[V_5, V_7] = V_{11}$, so $(Y_7A_0/W_{12}) \cap C(Y_7) = Y_5Y_7A_1/W_{12}$ and $Y_5Y_7A_1 \cap C(Y_7) = I$. Thus $C_Q(I) = I$. Now $I \triangleleft Q \in \mathrm{Syl}_2(O^2(G))$ and $O(O^2(G) \cap C(I)) = 1$ by the unbalanced group theorem, so $O^2(G) \cap C(I) = I$. Then as $O(\langle (u_2v)^3 \rangle) \le C(I)$, $(u_2v)^3$ is a 2-element. (4.3) (3) and the action of $\langle K_2, K_3 \rangle$ on $Z(F_2)/Z$ show $C_Q(Z(F_2)/Z) = F_2$. Let $X = \langle Q, K_2, K_3 \rangle$. Then $C_X(Z(F_2)/Z)$ is 2-closed with F_2 the unique Sylow 2-subgroup. As $(u_2v)^3 \in C_X(Z(F_2)/Z)$, (4.4) holds.

(4.5) $\langle Q, K_2, K_3 \rangle / F_2 \simeq PSL_3(q)$.

PROOF. Let $X = \langle Q, K_2, K_3 \rangle$ and $\bar{X} = X/F_2$. Then $Q \in \text{Syl}_2(X)$. We have $\bar{Q} \cap \bar{Q}^{u_2} = \bar{A}$ and $\bar{Q} \cap \bar{Q}^v = \bar{B}$, so $\bar{Q}^{u_2} \cap \bar{Q} \cap \bar{Q}^v = \bar{W}_4$. As $J_2^{u_2} = J_2$ and $J_3^v = J_3$, it follows from (1.3) and (4.3) (3) that $\bar{W}_4^{u_2} = \bar{Y}_3$ and $\bar{W}_4^v = \bar{Y}_2$. Thus $\bar{Q} \cap \bar{Q}^{u_2} \cap \bar{Q}^{vu_2} = \bar{Y}_3$ and $\bar{Q} \cap \bar{Q}^v \cap \bar{Q}^{u_2v} = \bar{Y}_2$, so

(1)
$$\bar{Q} = \bar{A}(\bar{Q} \cap \bar{Q}^{v} \cap \bar{Q}^{u_2v}) = \bar{B}(\bar{Q} \cap \bar{Q}^{u_2} \cap \bar{Q}^{vu_2}).$$

As $W_{12}^{u_2v} = Y_{11}Z$ and $Y_{11}^{u_2} = Y_{10}$, $Q \cap Q^{u_2vu_2} \le C_Q(Y_{10})$. By [10, (3.9) (4)], $[W_4, W_{10}] = W_{12}$ and $[W_3, W_{10}] = [W_7, W_9]^r = 1$ and as $Y_{10} \le Z(F_2)$, $C_Q(Y_{10}W_{12}/W_{12}) \ge U_2A$. Then as $[V_1, V_{10}] = V_{11}$, $C_Q(Y_{10}W_{12}/W_{12}) = U_2A$ by the action of H. As $C_{W_4}(Y_{10}) = Y_4$, we get $C_Q(Y_{10}) = U_2W_3Y_4B_4$. Thus $\bar{Q} \cap \bar{Q}^{u_2vu_2} \le \bar{Y}_3$. Now $\bar{Q}^{u_2vu_2} \cap \bar{Y}_3 = (\bar{Q}^{u_2} \cap \bar{Y}_2)^{vu_2}$ and $\bar{Q}^{u_2} \cap \bar{Y}_2 = \bar{A} \cap \bar{Y}_2 = 1$. Therefore

(2)
$$\bar{Q} \cap \bar{Q}^{u_2vu_2} = \bar{Q} \cap \bar{Q}^{vu_2v} = 1$$

since $\bar{u}_2\bar{v}\bar{u}_2=\bar{v}\bar{u}_2\bar{v}$ by (4.4). Note that J_2 normalizes K_3 , for H_1J_0 is an abelian group of odd order containing H_3 . As J_3 normalizes $(N_{M_1}(U_2))'=K_2U_2$, it normalizes $N_{K_2U_2}(Q)Q=J_2Q$. Set $E=J_2J_3Q$, which normalizes K_2AF_2 and K_3BF_2 . $K_4\simeq SL_2(q)$, i=2,3, so Q acts transitively on $\mathrm{Syl}_2(EK_i)-\{Q\}$. As $N_{EK_i}(Q)=E$, this implies $E=Q(E\cap E^{u_2})=Q(E\cap E^v)$, $EK_2=E\cup Eu_2E$, and $EK_3=E\cup EvE$. By (1), $\bar{Q}^{u_2}=\bar{A}(\bar{Q}\cap\bar{Q}^v)^{u_2}$, so $\bar{E}^{u_2}=\bar{Q}^{u_2}(\bar{E}\cap\bar{E}^v)^{u_2}=\bar{A}(\bar{E}^{u_2}\cap\bar{E}^{v_2})$. Similarly $\bar{E}^v=\bar{B}(\bar{E}^v\cap\bar{E}^{u_2v})$. As $\bar{Q}^{vu_2}=(\bar{A}\bar{Y}_2)^{vu_2}=\bar{A}^{vu_2}\bar{Y}_3$ and $\bar{A}\leq\bar{E}\cap\bar{E}^{u_2}$, we get $\bar{E}^{vu_2}=\bar{Q}^{vu_2}(\bar{E}\cap\bar{E}^{u_2})^{vu_2}=\bar{Y}_3(\bar{E}^{vu_2}\cap\bar{E}^{u_2v_2})$. Similarly $\bar{E}^{u_2v}=\bar{Y}_2(\bar{E}^{u_2v}\cap\bar{E}^{vu_2v})$. Then

$$\begin{split} & \bar{E} \! = \! \bar{Q}(\bar{E} \cap \bar{E}^{u_2}) \! = \! \bar{Q}(\bar{E} \cap \bar{A}(\bar{E}^{u_2} \cap \bar{E}^{vu_2})) \! = \! \bar{Q}(\bar{E} \cap \bar{E}^{u_2} \cap \bar{E}^{vu_2}) \\ & = \! \bar{Q}(\bar{E} \cap \bar{E}^{u_2} \cap \bar{Y}_3(\bar{E}^{vu_2} \cap \bar{E}^{u_2vu_2})) \! = \! \bar{Q}(\bar{E} \cap \bar{E}^{u_2} \cap \bar{E}^{vu_2} \cap \bar{E}^{u_2vu_2}). \end{split}$$

Thus $\bar{E} = \bar{Q}(\bar{E} \cap \bar{E}^{u_2vu_2})$. By (2), $|\bar{E} \cap \bar{E}^{u_2vu_2}|$ is odd, whence

$$\bar{E} \cap \bar{E}^{u_2vu_2} = \bar{E} \cap \bar{E}^{u_2} \cap \bar{E}^{vu_2} \cap \bar{E}^{u_2vu_2}.$$

By symmetry we have

$$\vec{E} \cap \vec{E}^{vu_2v} = \vec{E} \cap \vec{E}^v \cap \vec{E}^{u_2v} \cap \vec{E}^{vu_2v}.$$

Set $\bar{I} = \bigcap_{w} \bar{E}^{w}$ where w ranges over $\langle u_{2}, v \rangle$. As $\langle \bar{u}_{2}, \bar{v} \rangle = \{1, \bar{u}_{2}, \bar{v}, \bar{u}_{2}\bar{v}, \bar{v}\bar{u}_{2}, \bar{u}_{2}\bar{v}\bar{u}_{2}\}$, it follows that

$$\begin{split} &\tilde{I} = \vec{E} \cap \vec{E}^{u_2vu_2} = \vec{E} \cap \vec{E}^{vu_2v}. \quad \text{Set } \vec{N} = \vec{I}\langle \vec{u}_2, \vec{v} \rangle. \quad \text{Suppose } \vec{Q} = \vec{Q}^w \text{ for some } w \in \langle u_2, v \rangle - F_2 \text{ and choose } x \in \langle u_2, v \rangle \text{ such that } \vec{w}\vec{x} = \vec{u}_2 \vec{v}\vec{u}_2. \quad \text{Then } \vec{Q}^x = \vec{Q}^{wx} \text{ and so } \vec{Q} \cap \vec{Q}^x = 1 \text{ by (2), contrary to (1).} \quad \text{Hence } \vec{N} \cap \vec{E} = \vec{I} \text{ and } \vec{N} / \vec{I} \simeq \langle \vec{u}_2, \vec{v} \rangle. \quad \text{Note that } \vec{u}_2 \vec{E} \vec{u}_2 \leq \vec{E} \cup \vec{E} \vec{u}_2 \vec{E} \text{ and } \vec{v} \vec{E} \vec{v} \leq \vec{E} \cup \vec{E} \vec{v} \vec{E}. \\ \text{As } \vec{Q} = \vec{A} \vec{B}, \ \vec{u}_2 \vec{Q} \vec{v} = \vec{A} \vec{u}_2 \vec{v} \vec{B}. \quad \text{Then } \vec{u}_2 \vec{E} \vec{v} = \vec{u}_2 \vec{Q} \vec{I} \vec{v} = \vec{u}_2 \vec{Q} \vec{v} \vec{I} \leq \vec{E} \vec{u}_2 \vec{v} \vec{E}. \quad \text{By (1), } \vec{Q} \leq \vec{A} \vec{A}^v \text{ and so } \vec{u}_2 \vec{E} \vec{v} \vec{u}_2 = \vec{u}_2 \vec{Q} \vec{v} \vec{u}_2 \vec{I} \leq \vec{E} \vec{u}_2 \vec{v} \vec{u}_2 \vec{A} \vec{I} \leq \vec{E} \vec{u}_2 \vec{v} \vec{u}_2 \vec{E}. \quad \text{Then for } \vec{w} = \vec{v} \text{ or } \vec{v} \vec{u}_2, \ \vec{u}_2 \vec{E} \vec{u}_2 \vec{v} \leq \vec{E} \vec{w} \cup \vec{E} \vec{u}_2 \vec{E} \vec{w} \leq \vec{E} \vec{w} \cup \vec{E} \vec{u}_2 \vec{E} \vec{w} \leq \vec{E} \vec{v} \vec{w} \vec{E} \cup \vec{E} \vec{w} \vec{E} \text{ for all } \vec{w} \in \langle \vec{u}_2, \vec{v} \rangle. \quad \text{By symmetry } \vec{v} \vec{E} \vec{w} \leq \vec{E} \vec{v} \vec{w} \vec{E} \cup \vec{E} \vec{w} \vec{E} \text{ for all } \vec{w} \in \langle \vec{u}_2, \vec{v} \rangle. \quad \text{By symmetry } \vec{v} \vec{E} \vec{w} \leq \vec{E} \vec{v} \vec{w} \vec{E} \cup \vec{E} \vec{w} \vec{E} \text{ for all } \vec{w} \in \langle \vec{u}_2, \vec{v} \rangle. \end{aligned}$$

We have shown that (\bar{E}, \bar{N}) is a *BN*-pair of \bar{X} whose Weyl group is dihedral of order 6. Thus $\bar{X} \simeq PSL_3(q)$ by Fong and Seitz[5].

(4.6)
$$[K_1, K_3] \leq F_1$$
.

PROOF. Let $X = \langle Q, K_1, K_3 \rangle$. In the proof of (4.4) we have shown that $Z(F_2) = Z(D) \cap B_2$. As $F_1 \leq DB$, a similar argument gives $Z(F_1) = Z(F_2)$ or $Y_{11}W_{12}$. Then $F_1F_2 \geq B$ implies $Z(F_1) = Y_{11}W_{12}$. As $[K_1, W_{12}] = 1$, $[K_1, Z(F_1)] = 1$ and thus $[(u_1v)^2, Z(F_1)] = 1$. Recall that $[F_2', F_2] = Y_7Y_9^tB_2$, so K_1 normalizes $[F_2', F_2]^t \cap A_1 = Y_9B_2$ and $(Z(D) \cap B_3)B_2 = Y_9B_2 \triangleleft X$. As K_3

centralizes B_2/B_1 , it centralizes $Y_9B_2/Z(F_1)$ and $[(u_1v)^2, Y_9B_2] \le Z(F_1)$. Furthermore $[(u_1v)^2, Z(D)B_2] \le Y_9B_2$ since K_1 centralizes A_0/A_1 .

As $Z(F_1/D) \cap U_1D/D = Z(F_1/D) \cap W_2D/D$ and $Z(F_1/D) \cap A/D = Z(Q/D)$, it follows that $[K_1, Z(F_1/D)] = 1$. If K_3 centralizes $Z(F_1/D)/(B_3D/D)$, then as $|B_3D/D| = q$, $[K_3, Z(F_1/D)] = 1$. But $Y_1Y_3F_1 = Q$ and $Z(F_1/D) \neq Z(Q/D)$, a contradiction. Thus $Z(F_1/D)/(B_3D/D)$ is a natural module for K_3 .

Let $E=C_Q(Y_9B_2)$. By (3.1) (1), $C_Q(B_2) \le F_1$, so $E=C_{F_1}(Y_9B_2) \triangleleft X$. We have $Y_6A_0B_3 \le E \cap A \le C_A(B_2) = W_6A_0B_3$. As $[V_6,V_9] \ne 1$, it follows that $E \cap A = Y_6A_0B_3$ and $E \cap D = Y_5Y_6Y_7A_1$. The action of K_3 gives $ED/D=Z(F_1/D)$. As $C_E(H_1) \le C_{B_4}(H_1) = W_2$, $E=(E \cap W_2)(E \cap A)$. Now $Y_9Y_9^t = W_9$ and no nonidentity element of V_2 centralizes V_9 . Thus $W_2 = (E \cap W_2) \times (E \cap W_2)^t$. Let $E_0 = E \cap D$. Then $E_0 \le C_E(Z(D)B_2) \le E = (E \cap W_2)Y_6A_0B_3$. If $C_E(Z(D)B_2) \cap C(H_1) \ne 1$, $C_E(Z(D)B_2) \ge E \cap W_2$ since H is irreducible on $E \cap W_2$. (1.3) and the action of K_1 and K_3 on $E/E_0 \cong ED/D = Z(F_1/D)$ show $[E/E_0, J_3] = (E \cap W_2)A_0E_0/E_0$ and $(E \cap W_2)^v E_0 = A_0E_0$. So $A_0 \le C_E(Z(D)B_2)$, contrary to $C_{W_5}(Y_5) = Y_5$. Thus $C_E(Z(D)B_2) \le [E, H_1] = E \cap A$, so $C_E(Z(D)B_2) \le (E \cap A) \cap (E \cap A)^v = Y_5Y_6A_1B_3$. As $C_{W_7}(Y_8) = Y_7$, we get $C_E(Z(D)B_2) = E_0$.

Let $E_1 = \langle E \cap W_2, Y_5{}^t, Y_7{}^t \rangle Z(D)B_2$ and $\bar{E} = E/Z(D)$. Then $E = E_0E_1$, $E_0 \cap E_1 = Z(D)B_2$, and $E_1 \triangleleft E$ by [10, (3.9) (5)]. By (4.1) (2), $\bar{E}_0 = \bar{Y}_6 \bar{Y}_7 \bar{Y}_8{}^t \bar{Y}_9{}^t \bar{B}_2$ is elementary abelian of order q^6 . Note that $[W_2, W_6] = [W_8, W_6]^s = 1$, $[W_2, W_7] = [W_8, W_9]^s = 1$, and $[W_2, W_5] = [W_{11}, W_4]^{rs} = 1$. Thus $\bar{E}_1 = (\bar{E} \cap W_2) \bar{Y}_5{}^t \bar{Y}_7{}^t \bar{B}_2$ is elementary abelian of order q^5 . $[W_5, W_7] = [W_6, W_9]^s = W_{11}$, so the action of H gives $[\bar{Y}_5{}^t, Y_7] = Y_{11}{}^t$, since $[Y_5, Y_7] = 1$ and $Y_5 Y_5{}^t = W_5$. If $[Y_5{}^t, Y_6] \leq Z(D)B_1$, then $[Y_5{}^t, Y_6] \leq Z(D)B_1 \cap Z(D)^t = Y_{11}{}^t W_{12}$. As $Y_5 \leq Z(D)$, $[Y_5, Y_6] = 1$. But then $[W_5, W_6] \leq B_1$, contrary to $[V_5, V_6] = V_{10}$. Thus $C_{\bar{E}}(\bar{Y}_5{}^t) = \bar{Y}_8{}^t \bar{Y}_9{}^t \bar{E}_1$. If $[E \cap W_2, Y_9{}^t] = 1$, $[E \cap W_2, W_9] = 1$. But then $W_2 = (E \cap W_2)(E \cap W_2)^t$ centralizes W_9 , a contradiction. Thus $[E \cap W_2, Y_9{}^t] = Y_{11}{}^t$, for $[W_2, W_9] = [W_8, W_7]^s = W_{11}$. As shown before $(E \cap W_2)E_0 = A_0{}^vE_0$. Moreover $[A_0{}^v, Z(D)] = Z^v$, so $[E \cap W_2, Y_8] \leq B_1$. If $[E \cap W_2, Y_8{}^t] \leq Z(D)B_1$, then $[E \cap W_2, Y_8{}^t] \leq Z(D)B_1 \cap Z(D)^t \leq B_1$. As $W_8 = Y_8 Y_8{}^t$, this implies $[W_2, W_8] \leq B_1$, contrary to $[V_2, V_8] = V_{10}$. Thus $C_{\bar{E}}(\bar{Y}_5{}^t) \cap C(\bar{Y}_8{}^t) = E_1$.

Let $I=C_E(O(\langle (u_1v)^2\rangle))$. By the first paragraph $(u_1v)^2$ stabilizes $Z(D)B_2>Y_9B_2>Z(F_1)>1$, so $I\geq Z(D)B_2$ and $C_E(I)\leq E_0$. As K_1 centralizes E/E_0 , $[(u_1v)^2,E]\leq E_0$ and thus $E=E_0I$. Now $C_{\overline{E}}(\overline{E_1})=\overline{E_1}$ by the above and $\overline{E}=\overline{E_0}\overline{E_1}$. So $\overline{E_0}\cap C(\overline{I})=\overline{E_0}\cap \overline{E_1}=\overline{B_2}$ and $C_E(I)\leq Z(D)B_2$. Note that $Z(D)B_2\cap C(W_5)=Y_8Y_9B_2$ and $Y_8Y_9B_2\cap C(W_7)=Y_9B_2$. As $E_0I\geq \langle W_5,W_7\rangle$ and $Z(E_0)\geq Z(D)B_2$, we conclude that $C_E(I)=Y_9B_2$. By (3.5), E is a Sylow 2-subgroup of $O^2(G)\cap C(Y_9B_2)$. Moreover $I\triangleleft E$ by [10, (3.9) (5)] and $O(O^2(G)\cap C(I))=1$ by the unbalanced group theorem. Thus $O^2(G)\cap C(I)=Y_9B_2$, so $(u_1v)^2$ is a 2-element. As Q/F_1 is elementary abelian of order Q^2 , Bender [3] shows $(X/F_1)/O(X/F_1)\simeq SL_2(q)\times SL_2(q)$ and $[K_1,K_3]\leq O(X \mod F_1)$. Hence $(u_1v)^2\in F_1$. Now K_1 centralizes AF_1/F_1 and K_3 centralizes F_1F_2/F_1 with $AF_1=Y_3F_1$ and $F_1F_2=Y_1F_1$, so the lemma holds.

(4.7) Let $G_0 = \langle Q, M_1, M_3 \rangle$. Then $G_0 \simeq F_4(q)$.

PROOF. Recall that $\langle K_1, K_2 \rangle = M_1, K_1^t = K_2$, and $[K_3, K_3^t] = 1$ By (4.5) and (4.6) we can apply Theorem B of Niles [11] to the subgroups $P_1 = K_1 F_1 A$, $P_2 = P_1^t$, $P_3 = K_3 Y_3^t B$, and $P_4 = P_3^t$ and conclude that G_0 has a BN-pair of rank 4. Hence $G_0 \cong F_4(q)$ by Tits [17].

REMARK. It remains of course to prove that G_0 is normal in G. The first step toward

this purpose may be to show that if $t^g \in N(G_0)$ for an element $g \in G$ then $g \in N(G_0)$. Indeed, J normalizes M_1A by [10, (3.9) (1), (3.10)] and K normalizes M_3B by (3.1) and [10, (3.5)], so $C(t) \leq N(G_0)$. Suppose $t^g \in N(G_0)$. Since $C(t)^{(\infty)} = L$, neither t nor t^g lies in $G_0C(G_0)$. Then by [2, (19.5)], $C_{G_0}(t) = C_{G_0}(t^g) = L$ and $t = t^{gx}$ for some $x \in G_0C(G_0)$. Hence $gx \in C(t)$ and we have $g \in N(G_0)$.

V. The Case $M_1 \simeq Sz(q) \times Sz(q)$

In this section we assume that $M_1 \cong Sz(q) \times Sz(q)$. Let $M_1 = K_1 \times K_1^t$ with $K_1 \cong Sz(q)$ and $Y_1 = W_1 \cap K_1$. By (3.3), $N_1 = C_{M_1}(t)$ is irreducible on $D_0/A_0 \cong C_{A/A_0}(t) \cong R/V_5 R_1$. Since $C_{D_0/A_0}(Y_1) \neq 1$ is K_1^t -invariant, K_1^t centralizes $C_{D_0/A_0}(Y_1)$ or $[Y_1, D_0/A_0] = 1$ by [5, (4F)]. In the former the action of K_1 on $C_{D_0/A_0}(K_1^t)$ yields $[K_1^t, D_0/A_0] = 1$ and in the latter $[K_1, D_0/A_0] = 1$. Replacing K_1 and K_1^t if necessary, we may assume that K_1 centralizes D_0/A_0 . Then

- (5.1) $M_1A/A_0 = K_1^t D_0/A_0 \times K_1 D_0^t/A_0$ and $K_1^t D_0/A_0 \simeq N_1 R/V_5 R_1$.
- (5.2) Let $D_1 = O_2((K_1^*D_0)'A_1)$. Then $K_1^*D_1 \triangleleft M_1A$ and $K_1^*D_1/A_1$ is perfect with $|D_1/A_1| = q^5$.

PROOF. Set $D=D_0\cap D_0{}^v$. Arguing as in the proof of (4.1) we obtain $Q\triangleright DA_1=Y_3{}^tY_4Y_6Y_7(DA_1\cap W_5)A_1$ with $|DA_1\cap W_5|=q^3$ and $H\leq N(D)$. Let $\overline{N(A_1)}=N(A_1)/A_1$. Let \overline{U} be a complement of $\overline{DA_1\cap W_5}$ in \overline{W}_5 . Then $\overline{Y}_1{}^t\overline{D}_0=\overline{Y}_1{}^t\overline{D}\times \overline{U}$ since M_1 centralizes \overline{W}_5 . By Gaschütz's theorem [9, p. 121] there is a subgroup \overline{X} such that $\overline{K}_1{}^t\overline{D}_0=\overline{X}\times \overline{U}$, so $(\overline{K}_1{}^t\overline{D}_0)'=\overline{X}'$. If $\overline{X}'\cap \overline{W}_5=1$, $\overline{M}_1\overline{A}=\overline{X}'\times \overline{X}'^t\times \overline{W}_5$ by (5.1). But $C_{\overline{M}_1\overline{A}}(t)=\overline{N}_1\overline{R}\simeq N_1R/R_1$, a contradiction. Now $|\overline{X}\cap \overline{W}_5|=q$ and every proper H-invariant subgroup of \overline{W}_5 is of order q. Thus $|\overline{X}'\cap \overline{W}_5|=q$. A similar argument shows that \overline{X}' is perfect. By the definition $\overline{X}'=\overline{K}_1{}^t\overline{D}_1$, so the lemma holds.

(5.3) Let $D_2 = O_2((K_1{}^tD_1)'W_{12})$. Then $M_1A/W_{12} = K_1{}^tD_2/W_{12} \times K_1D_2{}^t/W_{12}$ and $K_1{}^tD_2/W_{12} \simeq N_1R/V_{12}$.

PROOF. Let *D* be as in the proof of (5.2). Then $DA_0 = D_0 > D_1$, so $M_1A > Z(D_1) \cap A_1 \ge W_{12}W_{12}^{v} \ne W_{12}$. Since $C_Q(A_1) = A_0$ and N_1 is irreducible on $A_1/R_1W_{12} \simeq R_1W_{12}/W_{12}$ by [10, (3.6) (1)], $|Z(D_1) \cap A_1| = q^6$. Let $\overline{N(W_{12})} = N(W_{12})/W_{12}$. Then $C_{\overline{A}_1}(K_1) \cap C_{\overline{A}_1}(K_1^{t}) = 1$ and K_1^{t} acts on $\overline{(Z(D_1) \cap A_1)} \cap C(Y_1) \ne 1$. Hence as in the proof of (5.1), $\overline{M}_1 \overline{A}_1 = \overline{K}_1^{t} C_{\overline{A}_1}(K_1) \times \overline{K}_1 C_{\overline{A}_1}(K_1^{t})$ and $\overline{K}_1^{t} C_{\overline{A}_1}(K_1) \simeq C_{\overline{M}_1 \overline{A}_1}(t) = \overline{N}_1 \overline{K}_1$.

Let J_1 be a complement of Y_1 in $N_{K_1}(Y_1)$ such that $H_5 \leq J_1 J_1^t$. Then J_1 centralizes A_0/A_1 , so it centralizes D_1/A_1 by (5.1). Moreover $C_{R_1/V_{12}}(H_5) = 1$ implies $C_{\overline{A}_1}(K_1) \cap C(J_1^t) = 1$. Then as $Z(\overline{A}) \geq \overline{A}_1$, $\overline{K}_1^t \overline{D}_1 = \overline{K}_1^t C_{\overline{D}_1}(J_1) \times [\overline{D}_1, J_1]$. Since $K_1^t D_1/A_1$ is perfect, we get $\overline{K}_1^t \overline{D}_2 = (\overline{K}_1^t \overline{D}_1)' = \overline{K}_1^t C_{\overline{D}_1}(J_1) \triangleleft \overline{M}_1 \overline{A}$. Recall that $N(\langle t \rangle B_1) = B_1 N_C(B_1)$, so $C_{Q/B_1}(t) = PB_1/B_1$. Then as $Z(P/V_{12}) = S_1/V_{12}$, $(Z(\overline{Q})/\overline{B}_1) \cap C(t) = 1$ and so $Z(\overline{Q}) = \overline{B}_1$. We have $\overline{D}_2 \cap \overline{A}_1 = C_{\overline{A}_1}(K_1)$, so $Z(\overline{Q}) \cap \overline{D}_2 \cap \overline{D}_2^t \leq C_{\overline{A}_1}(K_1) \cap C_{\overline{A}_1}(K_1^t) = 1$. As $\overline{D}_2 \triangleleft \overline{Q}$, this implies $\overline{D}_2 \cap \overline{D}_2^t = 1$ and thus $\overline{M}_1 \overline{A} = \overline{K}_1^t \overline{D}_2 \times \overline{K}_1 \overline{D}_2^t$ with $\overline{K}_1^t \overline{D}_2 \simeq C_{\overline{M}_1 \overline{A}}(t) = \overline{N}_1 \overline{R}$.

(5.4) Let $I_1/B_4 = C_{B/B_4}(K_3)$. Then $Y_3^t I_1 = Y_1^t D_2 B_4$ with $Y_3^t \le D_2$ and $Y_1^t \le I_1$.

PROOF. We have $D_0 = D_2 A_0$, so $D_0 B_4 = D_2 B_4$. (1.2) and $C_{A_0}(H_3) = 1$ give $Y_3^t = C_{D_0}(H_3) = 0$

 $C_{D_2}(H_3)$. By (3.3) (2), $C_{B/B_4}(Y_3) = I_1 W_4/B_4$. As $Y_3 \le D_2^t$, (5.3) shows $C_{B/B_4}(Y_3) \ge Y_1^t W_4 B_4/B_4$. Hence $Y_1^t \le C_{I_1 W_4}(H_1) \le I_1$ by (1.2). Now the lemma follows from (3.3) (2).

(5.5) Let $D_3 = O_2((K_1^t D_2)')$. Then $M_1 A = K_1^t D_3 \times K_1 D_3^t$. Furthermore there is a normal subgroup I_5 of $M_3 B$ such that $M_3 B = K_3^t I_5 \times K_3 I_5^t$ and $Y_1^t D_3 = Y_3^t I_5$.

PROOF. Let $\overline{N(B_3)} = N(B_3)/B_3$. As $Y_3{}^t \le D_2$, (5.3) shows $|C_{\bar{B}_4}(Y_3{}^t)| > q^4$. Thus $C_{\bar{B}_4}(K_3{}^t) \ne 1$, for $K_3 = \langle Y_3, Y_3{}^s \rangle$. By [10, (3.8)(1)], $C_{\bar{B}_4}(N_3) = 1$, so $\bar{B}_4 \ge C_{\bar{B}_4}(K_3) \times C_{\bar{B}_4}(K_3{}^t)$. Now N_3 is irreducible on $C_{\bar{B}_4}(t) = \bar{S}_4 \cong S_4/S_3$, whence $\bar{M}_3\bar{B}_4 = \bar{K}_3{}^tC_{\bar{B}_4}(K_3) \times \bar{K}_3C_{\bar{B}_4}(K_3{}^t)$ and $\bar{K}_3{}^tC_{\bar{B}_4}(K_3) \cong C_{\bar{M}_3\bar{B}_4}(t) = \bar{N}_3\bar{S}_4$. Let J_3 be as in the first paragraph of section 4. Then $C_{\bar{B}_4}(K_3{}^t) \cap C(J_3) = 1$ since $C_{\bar{S}_4}(H_{10}) = 1$. Now $Z(\bar{B}) \ge \bar{B}_4$, so setting $I_2/B_3 = C_{I_1/B_3}(J_3)$ we have $\bar{K}_3{}^t\bar{I}_1 = \bar{K}_3{}^t\bar{I}_2 \times C_{\bar{B}_4}(K_3{}^t)$. Since $K_3{}^t$ is irreducible both on I_1/B_4 and on $C_{\bar{B}_4}(K_3)$, $(\bar{K}_3{}^t\bar{I}_1)' = \bar{K}_3{}^t\bar{I}_2$ and $M_3B/B_3 = K_3{}^tI_2/B_3 \times K_3I_2{}^t/B_3$.

Set $I_3/B_2 = C_{I_2/B_2}(J_3)$. Then by (3.4) we have $(K_3^t I_2/B_2)' = K_3^t I_3/B_2$ and $M_3B/B_2 = K_3^t I_3/B_2 \times K_3 I_3^t/B_2$.

Let J_1 be as in the proof of (5.3). Then $H_1J_1J_1^t$ is an abelian group containing $H=H_1H_5$ and normalizes Q, so J_1 normalizes W_i , $1 \le i \le 12$. Note that J_1 normalizes K_3 since $M_3=E(C(H_3))$. Now $I_1=I_3B_4$, $C_{I_1}(H_1)=Y_1^tY_1'$, and $C_{B_4}(H_1)=W_2=Y_1'^tY_1'$. So $C_{I_1}(H_1)=C_{I_3}(H_1)W_2$ by (1.2). Then $Y_1'^t=C_{I_1}(H_1)' \le C_{I_3}(H_1)$, whence $Y_1^tY_1'=C_{I_3}(H_1) \times Y_1'$. Since J_1 is transitive both on $(Y_1/Y_1')^{\sharp}$ and on $Y_1'^{\sharp}$, $C_{I_1}(H_1)/Y_1'$ has exactly two $J_1J_1^{t_1}$ -invariant subgroup of order q. Hence $Y_1^t=C_{I_3}(H_1)$. By (5.4), $Y_3^tI_3 \le Y_1^tD_2B_4$, so [10, (3.9) (5)] implies $(Y_3^tI_3/B_2)' \le Y_1^tD_2B_2/B_2$. Now $Y_3^tI_3/B_2 \simeq C_{Q/B_2}(t) \simeq P/S_2$ by the above paragraph and we have $(Y_1^tB_2/B_2)(Y_3^tI_3/B_2)' = I_3/B_2$, so $I_3 \le Y_1^tD_2B_2$. Thus $Y_3^tI_3 = Y_1^tD_2B_2$. Then $Y_3^tI_3/B_1 = Y_1^tD_2B_1/B_1 \times (D_2^t \cap B_2)B_1/B_1$ by (5.3) and we can write $X_3^tI_3/B_1 = X/B_1 \times (D_2^t \cap B_2)B_1/B_1$ for some subgroup X by Gaschütz's theorem since M_3B centralizes B_2/B_1 . Setting $I_4 = O_2((K_3^tI_3)'B_1)$ we have $M_3B/B_1 = K_3^tI_4/B_1 \times K_3I_4^t/B_1$.

Set $I_5 = C_{I_4}(I_3)$. Then $(K_3^t I_4)' = K_3^t I_5$ and $M_3 B = K_3^t I_5 \times K_3 I_5^t$ by (3.2).

Set $Q_1 = Y_3 i I_5$, so that $Q = Q_1 \times Q_1 i$ and $Q_1 \simeq C_Q(t) = P$. As $Q_1 \le Y_1 i D_2 B_2$ and B_2 is abelian, $Q_1 \le Y_1 i D_2$. Moreover $Y_1 i \le I_3 = I_5 B_2$ and $C_{B_2}(H_1) = 1$, so $Y_1 i \le I_5$ by (1.2). Thus $Q_1 = Y_3 i Y_1 i Q_1 \le Y_1 i D_2$ and $Y_1 i D_2 = Q_1 \times (Q_1 i \cap W_{12})$. By Gaschütz's theorem $K_1 i D_2 = X_1 \times (Q_1 i \cap W_{12})$ for some subgroup X_1 . Hence $M_1 A = K_1 i D_3 \times K_1 D_3 i$. Now $Q_1 \le Y_1 i D_2 = Y_1 i D_3 W_{12}$, so $Q_1 i \le Y_1 i D_3$. (1.2) and $Q_2 = Q_3 W_{12}$ give $Y_3 i = C_{D_2}(H_3) \le D_3$. Thus $Q_1 = Y_1 i D_3$ and the lemma is proved.

Let $Q_1 = Y_1{}^tD_3 = Y_3{}^tI_5$ and $G_1 = \langle Q_1, K_1{}^t, K_3{}^t \rangle$. Define an *H*-homomorphism $\phi \colon G_1 \to C = C(t)$ by $x \mapsto xx^t$. Under this homomorphism $K_1{}^tD_3 \cong C_{M_1A}(t) = N_1R$ and $K_3{}^tI_5 \cong C_{M_3B}(t) = N_3S$. Let $U_i = W_i \cap Q_1$, $1 \le i \le 12$. Then $U_1 = Y_1{}^t$, $U_3 = Y_3{}^t$, and $W_i = U_i \times U_i{}^t$, $1 \le i \le 12$. Note that $Z(U_1) = U_2$, $Z(U_4) = U_8$, $Z(U_5) = U_{12}$, $Z(U_6) = U_{11}$, $U_i = C_{D_3}(H_i)$ for i = 3, 4, 5, 6, 7, 9, 10, and $U_j = C_{I_6}(H_j)$ for j = 1, 4, 5, 6, 7, 9, 10. By the first paragraph of Section 3,

$$U_3^r = U_7$$
, $U_4^r = U_6$, $U_5^r = U_5$, $U_9^r = U_{10}$;
 $U_1^s = U_4$, $U_5^s = U_6$, $U_7^s = U_9$, $U_{10}^s = U_{10}$.

(5.6) Let $G_0 = \langle Q, M_1, M_3 \rangle$. Then $G_0 = G_1 \times G_1^t$ and $G_1 \simeq {}^2F_4(q)$.

PROOF. Since $Q_1 \cap Q_1^r = D_3$ and $Q_1 \cap Q_1^s = I_5$,

$$Q_1^r \cap Q_1 \cap Q_1^s = D_3 \cap I_5 = U_4 U_5 U_6 U_7 U_9 U_{10}.$$

Transforming this equation by r and s respectively, we have

(2)
$$Q_{1} \cap Q_{1}^{rr} \cap Q_{1}^{sr} = U_{3}U_{4}U_{5}U_{6}U_{9}U_{10},$$
(3)
$$Q_{1} \cap Q_{1}^{s} \cap Q_{1}^{rs} = U_{1}U_{5}U_{6}U_{7}U_{9}U_{10}.$$
By (1) and (2),
$$Q_{1}^{s} \cap Q_{1} \cap Q_{1}^{r} \cap Q_{1}^{sr} = U_{4}U_{5}U_{6}U_{9}U_{10}, \text{ so }$$

$$Q_{1} \cap Q_{1}^{s} \cap Q_{1}^{rs} \cap Q_{1}^{srs} = U_{1}U_{5}U_{6}U_{7}U_{10}.$$
By (1) and (3),
$$Q_{1}^{r} \cap Q_{1} \cap Q_{1}^{s} \cap Q_{1}^{rs} = U_{5}U_{6}U_{7}U_{9}U_{10}, \text{ so }$$

$$Q_{1} \cap Q_{1}^{r} \cap Q_{1}^{sr} \cap Q_{1}^{rsr} = U_{3}U_{4}U_{5}U_{9}U_{10}.$$

Arguing similarly, we get

$$Q_1 \cap Q_1^r \cap Q_1^{sr} \cap Q_1^{rsr} \cap Q_1^{srsr} \cap Q_1^{srsr} \cap Q_1^{rsrsr} \cap Q_1^{rsrsr} \cap Q_1^{rsrsrsr} = U_3,$$

 $Q_1 \cap Q_1 \cap Q_1$

Since V_1 is transitive on $\mathrm{Syl}_2(N_1) - \{V_1\}$, $r \in V_1^{ra}$ for some $a \in V_1$. Take an involution $u \in K_1^t$ such that $r = uu^t$. Then $u \in U_1^{ra}$, for $r \in W_1^{ra} = U_1^{ra} \times U_1^{rat}$ and $U_1^{ra} \le K_1^t$. By (4), $U_3 \le D_3^{rsrsrsr}$, so $U_3^s \le D_3^{(rs)^4}$. By (5), $U_1 \le I_5^{srsrsrs}$, so $U_1^r \le I_5^{(sr)^4} = I_5^{(rs)^4}$ since |rs| = 8. Thus $|U_1^r, U_3^{st}| \le |Q_1, Q_1^t|^{(rs)^4} = 1$. Take $b \in U_1$ such that $a = bb^t$. Then as $U_1^r \le K_1$, $U_1^{ra} = U_1^{rb}$. Since $[b, U_3^{st}] \le [U_1, K_3] = 1$, we have $[U_1^{ra}, U_3^{st}] = 1$. Moreover $[U_1^{ra}, I_5^t] \le [K_1^t, Q_1^t] = 1$ and $Q_1^s = U_3^s I_5$. Thus $[u, Q_1^{st}] \le [U_1^{ra}, Q_1^{st}] = 1$. As $Q_1^r = Q_1^u$, this gives $[Q_1^r, Q_1^{st}] = [Q_1, Q_1^{st}] \le [K_3^t I_5, K_3 I_5^t]^u = 1$. Now $[Q_1, Q_1^{st}] = [Q_1, Q_1^{st}] = 1$ and $[Q_1^r, Q_1^t] \le [K_1^t D_3, K_1 D_3^t] = 1$. Hence $[G_1, G_1^t] = 1$ and $G_0 = G_1 * G_1^t \ge L$. Let L_0 denote the image of ϕ and set $X = G_1 \cap G_1^t$. Then $C_{G_0}(t) = L_0 C_X(t)$. Since $K_1^t D_3$ and $K_3^t I_5$ are perfect, so is G_1 . Thus $L_0 = L_0^r$ and as $C(t)^{(\infty)} = L$, $L_0 = L$. The kernel of ϕ is contained in X and the Schur multiplier of ${}^2F_4(q)$ is trivial. Hence (5.6) holds.

REMARK. If one wishes to show that $G_0 \triangleleft G$, a key point may be to establish that $N(Q_1) \le N(G_0)$ (see [14, (14.7)]). We can verify that $Z_4(P) = V_9 V_{10} V_{11} V_{12}$, $Z_5(P) = V_7 V_8 Z_4(P) = R_1 S_3$, $\mathscr{E}^*(Z_5(P)) = \{R_1, S_3\}$, $C_P(R_1) = V_5 R_1$, and $C_P(S_3) = S_3$. Since $Q = Q_1 \times Q_1^t$ with $Q \cong P$, $Z_5(Q) = A_1 B_3$ and $\mathscr{E}^*(Z_5(Q))$ consists of four members, two of which are A_1 and B_3 and the remaining two members are interchanged by t. Moreover $|C_Q(A_1)| > |C_Q(E)|$ for each $E \in \mathscr{E}^*(Z_5(Q)) - \{A_1\}$. As $Z(Q) = W_{12}$, we get $A = C_Q(A_1/W_{12}) \triangleleft N(Q)$. Also $B = C_Q(Z_2(Q))$ by (3.1) (1). It then follows from [10, (3.10)] and (3.1) (2) that $N(Q) = N(A) \cap N(B) \le N(G_0)$. By [10, (3.1)(2)], $\langle t \rangle \in \operatorname{Syl}_2(C(L))$. So $|C(G_0)|$ is odd since $C(G_0) \triangleleft C(L) \cap N(G_0)$. Note that ${}^2F_4(q)$ has two conjugacy classes of involutions (see [12]) and that the outer automorphism group of ${}^2F_4(q)$ is of odd order. Note also that $N(\langle t \rangle P) = W_{12}N_C(P)$ since $Z(\langle t \rangle P) = \langle t \rangle V_{12}$ and $t^{N(\langle t \rangle P)} = t^{W_{12}}$. Arguing as in [19, (7.22)] we see that if $t \in N(G_0)^g$ for an element $g \in G$ then $g \in N(G_0)$. Hence as in [19, (7.23)] we have $N(Q_1) \le N(G_0)$.

HITOTSUBASHI UNIVERSITY

REFERENCES

- [1] Aschbacher, M. "The Tits group as a standard subgroup," *Mathematische Zeitschrift* 181(1982), 229–252.
- [2] Aschbacher M. and G. Seitz, "Involutions in Chevalley groups over fields of even order," *Nagoya Mathematical Journal* 63(1976), 1–91.
- [3] Bender, H. "On groups with abelian Sylow 2-subgroups," Mathematishe Zeitschrift 117(1970), 164-176.
- [4] Bender, H. "Goldschmidt's 2-signalizer functor theorem," *Israel Journal of Mathematics* 22(1975), 208-213.
- [5] Fong P. and G. Seitz, "Groups with a (B,N)-pair of rank 2," I, *Inventiones Mathematicae* 21(1973), 1-57.
- [6] Gomi, K. "Finite groups with a standard subgroup isomorphic to $Sp(4,2^n)$," Japanese Journal of Mathematics 4 (1978), 1-76.
- [7] Griess, R., D. Mason, and G. Seitz, "Bender groups as standard subgroups," Transactions of the American Mathematical Society 238 (1978), 179-211.
- [8] Harris, M., "On Chevalley groups over fields of odd order, the unbalanced group conjecture and the B(G)-conjecture," Proceedings of Symposia in Pure Mathematics, American Mathematical Society 37 (1980), 75-79.
- [9] Huppert, B. "Endliche Gruppen I," Springer-Verlag, Berlin/New York, 1967.
- [10] Miyamoto, I., "Standard subgroups isomorphic to ${}^2F_4(2^n)$," Journal of Algebra 77 (1982), 261–273.
- [11] Niles, R., "BN-pairs and finite groups with parabolic-type subgroups," Journal of Algebra 75 (1982), 484–494.
- [12] Parrott, D., "A characterization of the Ree groups ${}^{2}F_{4}(q)$," Journal of Algebra 27(1973), 341-357.
- [13] Ree, R., "A family of simple groups associated with the simple Lie algebra of type (F_4) ," American Journal of Mathematics 83 (1961), 401-420.
- [14] Seitz, G., "Chevalley groups as standard subgroups," III, *Illinois Journal of Mathematics* 23(1979), 554–578.
- [15] Shinoda, K., "A characterization of odd order extensions of the Ree groups ${}^{2}F_{4}(q)$," Journal of the Faculty of Science, University of Tokyo, Section IA 22 (1975), 79–102.
- [16] Solomon, R., "The maximal 2-component approach to the B(G)-conjecture," Proceedings of Symposia in Pure Mathematics, American Mathematical Society 37 (1980), 67–70.
- [17] Tits, J., "Buildings of spherical type and finite BN-pairs," Lecture Notes in Mathematics 386, Springer-Verlag, Berlin/New York, 1974.
- [18] Walter, J., "the B-conjecture: 2-components in finite simple groups," Proceedings of Symposia in Pure Mathematics, American Mathematical Society 37 (1980), 57-66.
- [19] Yamada, H., "Finite groups with a standard subgroup isomorphic to $G_2(2^n)$," Journal of the Faculty of Science, University of Tokyo, Section IA 26 (1979), 1–52.