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Abstract

This dissertation consists of four essays related to political competition and preference

aggregation in representative democracy.

The first essay presents a model of two-party electoral competition where only

parties know the cost of a public project. In the election, the parties choose platforms

from two alternatives: implementing the project or not. In this setting, the parties’

choices of platforms influence voters’ behavior not only through voters’ preferences,

but also through formation of their expectations on the cost. Each party’s objective is

to maximize vote. The model has two types of perfect Bayesian equilibrium (PBE)

outcomes: in the first, both parties always choose the same fixed policy irrespective of

the cost; in the second, one party always chooses not to implement the project while

the other party switches the platform around a unique threshold of the cost. To examine

which of the equilibria are plausible, we introduce a perturbation concept which we call

“conjectural perturbation.” We show that only the PBE outcomes of the second type are

robust to all conjectural perturbations. This is in contrast with the typical conclusion

from Downsian models that two parties behave identically in equilibrium.

The second essay modifies the model in the first essay by assuming that each party

only observes a private signal of the cost. Each party now infers from its private signal

what signal the opponent has received. Despite this additional structure, we show that

the model’s PBE outcomes are similar to those in the previous chapter. In particular,

there are PBE outocmes in which one party always announces not to implement the
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project while the other party switches the platform around a unique threshold of its

private signal.

In the third essay, we consider a multi-dimensional probabilistic voting model

where each party maximizes its expected vote share. In contrast to existing models,

we allow the parties to hold different prior beliefs about the profile of voters’ ideal

policies. We first observe that (at least in part) due to the discontinuity of the party’s

payoffs, a Nash equilibrium rarely exists even in a one-dimensional policy space. We

then characterize “approximate equilibria” (i.e., a platform pair at which the parties

almost best respond to each other). The condition characterizing approximate equi-

libria is quite weaker than that characterizing Nash equilibria. In particular, for one-

dimensional policy spaces, approximate equilibria exist generally. Nonetheless, we

show that if the policy space has multiple dimensions, and if the parties’ beliefs are

close enough, then an approximate equilibrium typically fails to exist. Thus, the ex-

istence of an approximate political equilibrium requires that the parties’ beliefs differ

sufficiently.

In the fourth essay, we study the range of social preference relations over policies

that a legislature with at most three parties can realize through majority voting. Here, a

party means a group of representatives with identical transitive preferences over poli-

cies. By limiting attention to three-party systems, we try to understand the minimal

effect arising from the absence of a single-majority party. We show that this range con-

tains all social preference relations that involve no “closed path” consisting of 3-cycles.

This condition reveals a set of social preference relations that can be realized by some

three-party legislature, but cannot be realized by any legislature with a single-party

majority.
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Chapter 1

Introduction

1.1 Background of the thesis

Majority voting is the primary method of political decision in a democratic society. In

such a society, referendums where citizens directly vote for policies are relatively rare.

More often, a policy realizes via congressional (and presidential) elections, followed by

legislative voting. In elections, parties or candidates announce their platforms, which

may constrain their post-election legislative behaviors. Observing the platforms, cit-

izens make their voting decisions. The elected legislature makes final decisions on

what policies to implement. What platforms do parties choose? Is there any relation-

ship between the chosen policies and citizens’ preferences? Can legislative voting with

a limited number of parties substitute for referendums?

Consider a group of voters with preferences over a set of policies. A “core” policy

refers to a policy that defeats all other policies in pairwise majority comparisons. The

well-known “Median Voter Theorem (MVT)” (Black, 1958) shows a case where the

existence of a unique core policy is guaranteed. The theorem says that if all policies

can be aligned on a straight line and all voters’ preferences are single-peaked on the

line, then the median of the peaks, if it is unique, is the unique core policy. For ex-

ample, suppose a legislature must determine the rate of some tax levied on citizens.
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The legislature comprises three parties each having about 1/3 of the seats. Each party,

representing some group of citizens, has a single-peaked preference over possible tax

rates. In this case, the theorem says that the middle one among the best tax rates for

the three parties is the core policy; once the legislature arrives at this policy, it cannot

reject the policy by proposing any other alternative.

In fact, a more stronger conclusion has been drawn regarding majority decision

in single-peaked environments. That is, under the same hypothesis as in the MVT,

the binary relation formed by pairwise majority comparisons of policies is transitive

(Arrow, 20121). The majority preference relation in such cases is therefore “rational”

in the standard sense of economics. The existence of a core policy in the MVT can be

understood as a consequence of the rationality since a rational preference always has a

maximal element.

The MVT also gives some insights into behaviors of parties (or candidates) in elec-

tions. Downs (1957) constructed a model of party competition that would become a

prototype of many subsequent models. In his model, two parties compete in an elec-

tion. Each party wants to maximize its vote share. The parties choose their platform

policies from a one-dimensional policy space.2 Each citizen has a single-peaked pref-

erence over policies, and votes for the party with the preferred platform. Then it fol-

lows from the definition of a core policy and the MVT that at the equilibrium of this

game, both parties will choose the core policy, namely, the median of the citizens’ ideal

points. This provides a logical background for the argument that in a two-party system

the parties tend to be similar to each other, both converging to a central point in the

distribution of citizens’ political positions.

However, in contrast to this “policy convergence” result, empirical data suggests

that parties or candidates often adopt different platforms. This gap between theory and

reality led some researchers to develop alternative models. Wittman (1983), Calvert

1The first edition was published in 1951.
2Downs assumed that the parties choose ideological positions rather than policies. For convenience, we

interpret his model as concerning policy choices.
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(1985), and Roemer (1994) analyzed models where parties have different preferences

over policies and are uncertain about voters’ preferences.3 They show that at any equi-

librium of such a model (if it exists) the parties choose different platforms. In particular,

Roemer (1994) provides a natural case with a uni-dimensional policy space for which

an equilibrium exists for sure. Roemer (2001) also constructs a model where each party

comprises factions with different motivations, but we will come back to this later. Pal-

frey (1984) considers a uni-dimensional model of two-party competition with potential

third party entry. Although the parties in his model are interested only in their vote

shares, an equilibrium exists at which the established parties take distinct positions.

Our first two essays (Chapters 2 and 3) are another attempt to account for platform

divergences in real elections.

So far we have limited our attention to single-peaked environments where policies

are ordered on a line and each voter has a preference peak on the line. We have seen

that in this case a core policy exists, and hence an equilibrium of the Downsian model

also exists. What occurs in other political settings?

The so-called “Paradox of Voting” illustrates a simple situation where majority

voting lacks both transitivity and a core policy. Consider a group of three voters with

preferences over three policies, A �1 B �1 C, B �2 C �2 A, and C �3 A �3 B.

Pairwise majority comparisons of policies constitute a cycle: A beats B, B beats C,

and C beats A. Moreover, since any policy is majority-dominated by another policy,

there is no core policy. Arrow (2012) extended this observation far beyond majority

voting. He specified properties of the majority rule that seem reasonable to require

for a general social decision rule. His “General Possibility Theorem” shows that not

only the majority rule, but any social decision rule satisfying these seemingly minimal

requirements is necessarily intransitive.

For multi-dimensional policy spaces, the existence of a core policy is extremely

3Wittman and Calvert consider “candidates” instead of “parties.” Throughout, we stick to the term “par-
ties” only to avoid unnecessary complication.
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rare even if we restrict voters’ preferences to some reasonable class. A policy in such

a space may be interpreted as specifying positions on various political issues, or as

specifying redistribution of income or wealth among various socio-economic classes

of citizens. Plott (1967) assumes that voters have differentiable utility functions, and

characterizes core policies by some “symmetry” condition in terms of voters’ prefer-

ences. His condition indicates that if there are two or more dimensions, a core point

exists only in exceptional cases.4 This implies that when the policy space has multiple

dimensions, the standard Downsian model typically lacks a political equilibrium.

The nonexistence result directly extends to some “probabilistic voting model” in

which parties only have probabilistic beliefs about voters’ preferences. In particular,

suppose that each voter’s preference over policies is characterized by an ideal policy.

Suppose furthermore that the parties have the same prior belief about the profile of vot-

ers’ ideal policies, and want to maximize their expected vote shares.5 Then the resulting

model may be viewed as a deterministic Downsian model by simply interpreting the

expected distribution of voters’ ideal policies as a deterministic distribution. Therefore,

again, typically no equilibrium exists for a multi-dimensional policy space. A natural

question at this point is whether this result depends critically on the assumption that

the parties have exactly the same prior, because it is this assumption that allows us to

exploit the analogy with the deterministic model. Our third essay (Chapter 4) studies

this question.

The Paradox of Voting and Arrow’s Possibility Theorem tell us that the choice pat-

terns made by an individual and by a group of individuals are generally quite different.

In particular, the Paradox shows that the range of possible majority preference rela-

tions over three alternatives induced by three voters (each with a transitive preference)

4Rubinstein (1979) proves, under the assumption of continuous preferences, but without any assumption
on the dimensionality, that the set of profiles of voters’ preferences for which a core policy exists is very
“small” (in a topological sense).

5This type of model is studied by Duggan (2006) for the uni-dimensional case. Another kind of proba-
bilistic voting model was developed by Hinich, Ledyard, and Ordeshook (1972) and Lindbeck and Weibull
(1993) in which voters have partisan biases that are unobservable for parties.
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includes cyclic relations, and thus is broader than those induced by one or two vot-

ers. Several researchers have generalized the Paradox by looking at how the range of

majority preference relations changes with the numbers of voters and of alternatives.

McGarvey (1953) showed that any (transitive and complete) relation over n alternatives

is realized by some set of n(n − 1) voters. Stearns (1959) and Erdös and Moser (1964)
provided estimates for the minimum number of voters required to realize any relation

on n alternatives for large n, which have the form cn/ logn for some constant c.

We can interpret these observations as indicating that the majority decision of the

entire society (i.e., referendums) may be quire different from that of any legislature

with a limited number of representatives. That is, there is only limited possibility for a

legislature to “represent” the society even if it can freely choose the composition of the

legislature. Note that here our notion of “representation” is in the very narrow sense

that legislative voting realizes a given social preference relation over policies. While

the above studies initiated by McGarvey do not assume any bound on the number of

voters, a typical situation in the real politics is that each representative in the legislature

belongs to some party, and there are only a limited number of parties. The results of

these studies imply that in such cases, when the number of policies is sufficiently large,

not all preference relations over policies can be realized. Given a fixed number of

parties, what type of preference relations are realizable through legislative voting? Our

fourth essay (Chapter 5) explores this problem, focusing on the case where at most

three parties may form.

1.2 Structure of the thesis

Chapter 2 presents a model of electoral competition where only parties know the cost

of a public project. In the election, the parties choose platforms from two alternatives:

implementing the project or not. In this setting, the parties’ choices of platforms influ-

ence voters’ behavior not only through voters’ preferences, but also through formation
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of their expectations about the cost. Each party’s objective is to maximize vote. The

model has two types of perfect Bayesian equilibrium (PBE) outcomes: in the first, both

parties always choose the same fixed policy irrespective of the cost; in the second, one

party always chooses not to implement the project while the other party switches the

platform around a unique threshold of the cost. To examine which of the equilibria

are plausible, we introduce a perturbation concept which we call “conjectural pertur-

bation.” We show that only the PBE outcomes of the second type are robust to all

conjectural perturbations. This is in contrast with the typical conclusion from Down-

sian models that the two parties behave identically in equilibrium.

Chapter 3 modifies the model in the previous chapter by assuming that each party

only observes a private signal of the cost. As a result, each party now infers from its

private signal what signal the opponent has received. Despite this additional structure,

we show that the PBE outcomes in this extended model are similar to those in the

previous model. In particular, there are PBE outcomes in which one party always

announces not to implement the project while the other party switches the platform

around a unique threshold of its private signal.

Some researchers have already studied models of electoral competition in which

party platforms play the role of a signal for voters, and derived equilibria with policy

divergence. Kartik and McAfee (2007) consider a model where voters do not know

whether a candidate has a “character” or not. Callaner (2008) assumes that candidates

commit to their platforms but after the election they will choose the level of effort for

implementing the policy; voters do not know whether a candidate will exert high effort

or not. Both models have an equilibrium at which candidates offer distinct platforms,

due to either distinct policy preferences or private information (or randomized choices)

of the two candidates. In our model, the parties play quite different strategies, even

when they have no exogenous differences.

In Chapter 4, we consider a multi-dimensional probabilistic voting model where
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each party maximizes its expected vote share. In contrast to existing models, we allow

the parties to hold different prior beliefs about the profile of voters’ ideal policies. We

first observe that (at least in part) due to the discontinuity of the parties’ payoffs, a Nash

equilibrium rarely exists even if the policy space is one-dimensional. We then charac-

terize “approximate equilibria” (i.e., a platform pair at which the parties almost best

respond to each other). The condition characterizing approximate equilibria is quite

weaker than that characterizing Nash equilibria. In particular, for one-dimensional

policy spaces, approximate equilibria exist generally. Nonetheless, we show that if the

policy space has multiple dimensions, and if the parties’ beliefs are close enough, then

an approximate equilibrium typically fails to exist. Thus, the existence of an approxi-

mate political equilibrium requires that the parties’ beliefs differ sufficiently.

There are some recent papers that address similar problems. Banks and Duggan

(2006) show that if a deterministic Downsian model has no (Nash) equilibrium, which

is the typical case in a multi-dimensional setting, then introduction of slight uncertainty

about voters’ preferences where the parties have the same belief does not create an equi-

librium. Duggan and Fey (2005) analyze a deterministic model with policy-motivated

candidates and a multi-dimensional policy space. They show that if the model has no

equilibrium, which is the typical case when the number of dimensions is more than

two,6 then small amounts of probabilistic voting and of office motivation do not gener-

ate an equilibrium. In this essay, we focus on the effects of slight differences between

the parties’ beliefs, rather than the effect of slight uncertainty with a common belief.

Our main finding is a negative result on the existence of political equilibrium, and

does not answer the important question of under what assumptions a multi-dimensional

model has a political equilibrium. Roemer (2001) takes a novel approach to this ques-

tion. He assumes that a party consists of “factions” with different objectives: “oppor-

tunists” want to win elections; “reformists” want to maximize their payoffs from the

6For two-dimensional policy spaces, they identify a class of equilibria that are not necessarily the con-
vergence to a core point, and show that this class of equilibria is robust to small perturbations of the model.
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realized policy; and “militants” want to announce their most preferred policy. He in-

troduces a concept called “party-unanimity Nash equilibrium (PUNE)” where no party

has unanimous agreement among its factions to change the platform. This formulation

is in contrast with Downs’ (1957) and Wittman’s (1983) models that regard a party as

a team with a single goal. Roemer shows that in some two-dimensional cases, PUNEs

exist.

In Chapter 5, we study the range of social preference relations over policies that a

legislature with at most three parties can realize through majority voting. Here, a party

means a group of representatives with identical transitive preferences over policies.

By limiting attention to three-party systems, we try to understand the minimal effect

arising from the absence of a single-majority party. We show that this range contains all

social preference relations that involve no “closed path” consisting of 3-cycles. This

condition identifies a set of social preference relations that can be realized by some

three-party legislature, but cannot be realized by any legislature with a single-party

majority.

Recently, Brandt, Harrenstein, Kardel, Seedig (2013) provided a full characteriza-

tion of social preference relations compatible with some three-party system. Although

their characterization is logically stronger, our sufficient condition may be useful as it

is easy to check.
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Chapter 2

Downsian political competition with asymmetric

information: possibility of policy divergence

2.1 Introduction

The Median Voter Theorem (MVT), a well-known theoretical result in the classical

Downsian model of political competition, states that under some natural assumptions,

two office-seeking political parties will announce the same platform: the median voter’s

ideal policy (Downs, 1957). Despite the wide acceptance of the model, the inconsis-

tency between the conclusion of MVT and the real political phenomena is pointed

out frequently. Most empirical studies observe policy divergences, rather than conver-

gence, between the parties. In this paper, we construct a model to explain why policy

divergences emerge in real politics.

We focus on the fact that in actual elections, voters are unfamiliar with data nec-

essary for evaluating policies, while parties obtain richer knowledge, for example,

through research activities. In such cases, voters infer useful information from the

observed party platforms. For example, consider an election in which the main issue

is fiscal policy. Two competing parties choose their platform policies on the amount of

fiscal deficit. Voters’ preferences over these policies depend on the costs of the deficit,
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such as future tax increases and the possibility of a fiscal crisis. The parties are better

informed of the costs than the voters. Since the parties formulate their policies on the

basis of their information, the voters infer the costs from the announced platforms in

order to determine which policy to support.

As another example, when income redistribution is at issue, the extent to which

taxation on income affects efficiency of the economy by lowering labor incentives de-

pends on the average income elasticity ϵl of labor. Parties know the value of ϵl , whereas

voters only have the information on its prior distribution. Suppose that party 1’s strat-

egy has a higher threshold of ϵl at which it switches its policy from progressive tax to

regressive tax. Now, suppose that parties 1 and 2 announce progressive and regressive

tax policies as their respective platforms. Voters will then infer that ϵl is somewhere

between the two parties’ thresholds.

In this paper, we present a simple Downsian election model with two alternative

policies: implementing a public project or not. If the project is implemented, each

voter incurs a per capita cost of c. However, voters do not perfectly know the cost, and

only have a prior expectation that the project is quite costly. Two parties observe the

cost c and then simultaneously announce their platforms. Observing these platforms,

each voter votes for a party. Each party is motivated to maximize vote. In this setting,

the two parties’ choices of platforms influence voters’ behavior not only through voters’

preferences but also through the formation of expectation about the cost.

In this political game with asymmetric information, we identify the class of perfect

Bayesian equilibria in which the parties’ strategies satisfy a monotonicity condition.

We interpret monotonicity as the requirement that a party’s strategy be not only opti-

mal in terms of vote but also compatible with the incentives of expert members who

hold the information of the cost. There are two types of PBE outcome: in the first,

both parties announce the same fixed platform a irrespective of the cost (there are two

such outcomes corresponding to the choices of platform a); in the second, one party al-
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ways chooses not to implement the project, while the other party switches the platform

around a unique threshold of the cost (there are two such outcomes corresponding to

the choices of the party playing each role).

We then discuss which of the equilibrium outcomes are plausible. We introduce

slight perturbations of the model which we call “conjectural perturbations,” and exam-

ine whether the equilibria are robust to them. Under a conjectural perturbation, each

party has a small chance of making a wrong conjecture about the electorate’s response

to the parties’ platforms. We assume that the probability of such a mistake in conjec-

tures is relatively high for platform pairs that almost never realize in equilibrium. Our

use of conjectural perturbation is motivated by the fact that while the PBE concept as-

sumes that each party correctly expects voters’ actions after any possible platform pairs,

the party has no opportunity to learn voters’ actions after out-of-equilibrium platform

pairs. The concept of self-confirming equilibrium of Fudenberg and Levine (1993) has

a similar motivation. Robustness to a conjectural perturbation is also similar in spirit

to the notion of stability against mistake probabilities as formulated by Selten (1975),

in that both make all platform pairs realize with positive probabilities thereby enabling

voters to update their beliefs about the cost by Bayes’ rule.

We show that the two PBE outcomes at which one party is irresponsive to the

cost level while the other party switches the platform around a threshold are robust

to all conjectural perturbations. The other two PBE outcomes at which the parties’

platforms always coincide are fragile if, for instance, either party tends to overestimate

the electorate’s support for the project especially when the true cost is very low. This

result is in contrast with the conclusion of policy convergence in MVT and more widely

with the typical conclusion from many Downsian models that two parties or candidates

play identical strategies.

Many authors have studied incomplete information in two-party political games.

Schultz (1996) and Heidhues and Lagerlöf (2003) already consider models with a ba-
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sic structure similar to out model where parties are better informed than voters about

the effectiveness of alternative policies. Martinelli (2001) studies a model where both

parties and voters receive private information about the state of the world. Banks (1990)

and Callander and Wilkie (2007) allow for the possibility of candidates’ lies and study

a situation where voters infer from the announced platforms the policies that the candi-

dates will actually implement when elected to the office. Callander (2008) assumes that

the candidates commit to their platforms but after the election they will choose the level

of effort for implementing the policy. Kartik and McAfee (2007) construct a model in

which voters do not know whether a candidate has “character” or not (i.e., whether he

is of the type who commits to a particular platform or he is just acting strategically) but

infer it from the observed platforms.

There are also papers that study policy divergences in elections. Wittman (1983),

Calvert (1985), and Roemer (1994) show that if the parties are interested in realizing

different policies but imperfectly know the profile of voters’ preferences, they adopt

different platforms. Palfrey (1984) considers a model with vote-maximizing parties in

which there is threat of third-party entry. He shows that the model has an equilibrium

at which the two established parties take different positions.

Except for Palfrey’s work, most of previous studies have explained policy diver-

gences as a result of differences in the parties or candidates’ characteristics such as

policy preferences or private information. Our result does not depend on such exoge-

nous differences between the parties, although we will also allow one party to have

some advantage over the other.

In Section 2.2, we construct the model. In Section 2.3, we characterize the PBEs

of the model. In Section 2.4, we study robustness of the PBE outcomes to conjectural

perturbations. Finally, in Section 2.5, we conclude.
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Figure 2.1: The game tree with only two cost levels.

2.2 Model

We consider two-party electoral competition. Each party can choose a platform from

two alternatives, “implement a public project” (Y ) or “not implement the project” (N ).

If the project is implemented, each voter incurs a per capita cost of c. To decide on

his vote, the voter needs the information of c. However, this information is asymmetric

between the parties and voters. Only the parties know c.

The model is a signaling game (see Figure 2.1). First, the (per capita) cost c ran-

domly realizes according to a prior distribution p. Observing c, parties 1 and 2 simul-

taneously announce platforms a1 and a2 from {Y ,N }. Observing the pair (a1,a2) of
announced platforms, but without observing c, each voter votes for either party. We

assume that the prior p is an absolutely continuous distribution with support C = [c, c̄].

Each voter k has a valuation vk of the project, and a non-policy preference relation

�k between the two parties. Let F be the population distribution function of valuations

vk (i.e., F (v ) is the fraction of voters k with vk ≤ v). We assume that F is continuous
and has support C. Thus there is a continuum of voters. For each γ ∈ [0,1], let Qγ

13



denote the γ -quantile of F , i.e., the point such that F (Qγ ) = γ . Non-policy preferences

�k are determined by exogenous characteristics of the parties that are unrelated to their

positions regarding the public project, such as their fixed positions on other political

issues. For each party i, we call a voter k an i-partisan if i �k j, j � i; and we call him
a nonpartisan if 1 ∼k 2. We denote by α the proportion of nonpartisans. For each party
i(� j), let ϕi denote the proportion of i-partisans among all partisans; thus ϕ1 +ϕ2 = 1.

Throughout the paper, we assume that

α > 0 and Q (1−α )ϕi+α < E (c ) for i = 1,2. (2.1)

For example, this is satisfied in the following situation: ex ante, a majority of voters

prefer not to implement the project (i.e., Q1/2 < E (c )); the abstention rate α is positive

but sufficiently small; and each ϕi is sufficiently close to 1/2.

Each voter compares the two parties lexicographically, first according to his policy

preference, and second according to his non-policy preference. If the parties announce

distinct platforms (ai ,aj ) = (Y ,N ), then conditional on c voter k prefers to vote for

party i if and only if vk > c.1 If the parties announce the same platform (a1 = a2), only

partisans participate in voting and nonpartisans abstain; in this case, (1−α )ϕi of voters
vote for party i while α of voters abstain.

Each party i’s payoff is the number of votes that it obtains. An aggregate vot-

ing plan is a vector π = (πi (a1,a2))i=1,2, (a1,a2 )∈{Y ,N }2 which specifies the proportion

πi (a1,a2) of voters who will vote for party i after the platforms (a1,a2) are announced.

The above assumptions imply that: if a1 � a2 then π1 (a1,a2) + π2 (a1,a2) = 1; and if

a1 = a2 then πi (a1,a2) = (1 − α )ϕi for each party i. Thus, with abuse of notation,
we also refer to a two-dimensional vector π = (π1 (Y ,N ),π1 (N ,Y )) ∈ [0,1]2 as an
aggregate voting plan. Let Π = [0,1]2 be the set of such vectors.

A (pure) strategy for a party i is a function σi : C → {Y ,N } that assigns to each cost
1Since the distribution function F of voters’ values is continuous, the measure of voters with vk = c is

zero.
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level c a platform. A strategy for a voter k is a function τk : {(Y ,N ), (N ,Y )} → {1,2}
that assigns to each pair of distinct platforms a1 � a2 a party. The value τk (a1,a2)

represents the party for which the voter votes when (a1,a2) are announced. A belief

system for a voter k is a pair βk = (βk (·| a1,a2))a1�a2 of distributions on C, where
βk (·| a1,a2) represents the belief about c that the voter holds after observing the plat-
form pair (a1,a2).2 Given a profile τ = (τk ) of voters’ strategies, we denote by π τ the

aggregate voting plan induced by the profile.

A strategy σi for party i is called monotonic if for any two cost levels c < c ′,

σi (c ) = N implies σi (c ′) = N . Each monotonic strategy has a threshold xi ∈ C such
that

σi (c ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪
⎩

Y if c < xi

N if c > xi .

We identify all monotonic strategies with the same threshold xi and call them simply

the monotonic strategy with threshold xi . Note that the two completely pooling strate-

gies, “always choose Y” and “always choose N ,” belong to the class of monotonic

strategies.

In this paper, we analyze perfect Bayesian equilibria (PBEs) of the model in which:

(i) each party plays a monotonic strategy; and (ii) voters have the same belief system.

Condition (i) may be interpreted as the requirement that each party’s equilibrium

strategy be not only optimal in terms of vote but also compatible with its members’

incentives. Suppose that a party i employs a group Ei of expert members in which each

k ∈ Ei knows the true cost c and has some personal valuationvk of the project. Given a
best-response strategy σi in terms of vote, the party devices some mechanism to elicit

information about c from these members so that it can always choose the platform

ai = σi (c ) specified by the strategy. Assume, however, that each member k ∈ Ei wants
the party to choose as its platform the the policy he prefers (i.e., Y if vk > c and N if

2We abbreviate the voter’s belief and action when the platforms converge, because we have specified
them exogenously.
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Table 2.1: The platform choice gameGβ .
Y N

Y (1 − α )ϕ1, (1 − α )ϕ2 1 − F (Eβ (c |Y ,N )),F (Eβ (c |Y ,N ))
N F (Eβ (c | N ,Y )),1 − F (Eβ (c | N ,Y )) (1 − α )ϕ1, (1 − α )ϕ2

vk < c).3 A well-known result in implementation theory implies that the party can find

such a mechanism only if the strategy σi is monotonic.4 On the other hand, whether

a given monotonic strategy σi is implemented by some mechanism depends on the

valuation profile (vk )k ∈Ei of the experts. We assume that given any monotonic strategy

σi , the party can appoint an appropriate group Ei of experts to implement σi .5

We impose condition (ii) only for analytical convenience. If all voters have the

same belief system β , then given any pair of distinct platforms (ai ,aj ) = (Y ,N ), the

electorate is divided into the groups of supporters for the two parties in the following

simple manner: voters k with vk > Eβ (c | ai ,aj ) vote for party i and voters with vk <
Eβ (c | ai ,aj ) vote for party j, where Eβ (·| ai ,aj ) denotes expectation with respect to
belief β (·| ai ,aj ). While this assumption restricts voters’ equilibrium behaviors, it does
not restrict the set of the strategy pairs for the parties that may arise in equilibrium.

To summarize, our basic solution concept is defined as follows.

Definition. A combination (σ1,σ2,τ ,β ) of strategies and a common belief system is

called a perfect Bayesian equilibrium (PBE) if the following E1-E4 hold.

E1: For each i, σi is a monotonic strategy.

E2: For each i and each c, ai = σi (c ) maximizes π τi (ai ,σj (c )).

3Thus we exclude the possibility that a member cares about the effect of the platform choice on the voting
outcome.

4σi may be seen as a social choice function for the group Ei where the only variable parameter for the
preference profile is c ∈ [0, 1] and the possible outcomes are {Y , N }. As well known, σi is implementable
in Nash equilibrium only if it is a Maskin monotonic social choice function. This is equivalent to that σi is
a monotonic strategy.

5Of course, if σi is the monotonic strategy with threshold xi , then choosing Ei = {k } with vk = xi
suffices for this purpose.
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Figure 2.2: Point x∗i .

E3: For each voter k and each pair (ai ,aj ) = (Y ,N ) of distinct platforms, τk (ai ,aj ) =

i if and only if Eβ (c | ai ,aj ) < vk .

E4: For each (ai ,aj ) = (Y ,N ), the belief β (·| ai ,aj ) is obtained by Bayes-updating
the prior belief p whenever (ai ,aj ) is realizable under the strategies (σ1,σ2).

Given a common belief system β , E3 implies that for the platform pair (ai ,aj ) =

(Y ,N ), π τi (ai ,aj ) = 1−F (Eβ (c | ai ,aj )). Hence, the belief system β induces the platform

choice game between parties 1 and 2, denotedGβ , as summarized in Table 2.1.

2.3 Perfect Bayesian equilibrium

We now characterize PBEs of the model. For each party i, let x∗i denote the point in C

satisfying

E (c | c < x∗i ) = Q1−(1−α )ϕi . (2.2)

See Figure 2.2. Since 1− (1−α )ϕi = (1−α )ϕ j +α for j � i, assumption (2.1), together
with the continuity and support assumptions on p and F , implies that x∗i is a unique

interior point in C.

Proposition 2.1. All PBE outcomes are as follows:
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1. Both parties always choose the same fixed platform a ∈ {Y ,N } irrespective of
the cost c, and each party i obtains a vote share of (1 − α )ϕi .6

2. Party i always chooses N while party j(� i) plays the monotonic strategy with

threshold x∗j . If c < x∗j , party i obtains a vote share of (1 − α )ϕi + α while
party j obtains (1 − α )ϕ j ; if c > x∗j , the parties obtain (1 − α )ϕi and (1 − α )ϕ j ,
respectively.7

Proof. We first show that each strategy pair (σ1,σ2) for the parties described in the

proposition consists in a PBE. Note that the strategy pair is a PBE with voters’ belief

system β if and only if every platform pair (a1,a2) that is realizable under (σ1,σ2) is a

(Nash) equilibrium of the platform choice gameGβ of Table 2.1.

Both parties always choose platform a, a = N ,Y . If both parties always announce

N , E4 imposes no constraints on β . (N ,N ) is an equilibrium of Gβ if each belief

β (·| a1,a2), a1 � a2, has a sufficiently high expected cost. The proof for a = Y is

similar.

Party i always chooses N , and party j plays the strategy with threshold x∗j . We only

consider the strategy pair for (i, j ) = (1,2). If the parties play these strategies then the

platform pair (N ,Y ) realizes when c < x∗2, and the platform pair (N ,N ) realizes when

c > x∗2. Voters’ belief system β satisfies E4 if and only if β (·| N ,Y ) is the conditional
distribution of c given c < x∗2. Take such a belief system β and consider the game Gβ .

By the definition (2.2) of x∗2, we have π
τ
1 (N ,Y ) = F (Eβ (c | N ,Y )) = (1 − α )ϕ1 + α , and

hence π τ1 (N ,Y ) > (1 − α )ϕ1 = π τ1 (Y ,Y ). Recalling that ϕ1 + ϕ2 = 1, we also have

π τ2 (N ,Y ) = π
τ
2 (N ,N ) = (1 − α )ϕ2. (2.3)

Thus (N ,Y ) is an equilibrium ofGβ . Finally, (N ,N ) is also an equilibrium ofGβ if we

choose β (·|Y ,N ) so that Eβ (c |Y ,N ) ≥ Q (1−α )ϕ2+α .
6There are two such outcomes corresponding to the choices of a ∈ {Y , N }.
7There are two such outcomes corresponding to the choices of i ∈ {1, 2}.
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Next we show that there is no other strategy pairs for the parties that consist in a

PBE. Note that in order for a strategy pair of the form (σ1,σ2) =(always N , threshold

x2) with an interior point x2 inC to be a PBE with β , condition (2.3) is necessary, and it

implies that x2 = x∗2. Hence there is no other PBE in which the parties play strategies of

this form. Similarly, there is no other equilibrium strategy pair having the same form

as (threshold x∗1, always N ). It only remains to check the following three classes of

strategy pairs.

Each party i plays the strategy with an interior threshold xi . Without loss of

generality consider any (x1,x2) with c < x1 ≤ x2 < c̄. Suppose voters have a

belief system β . If the parties play these strategies, they both announce Y when

c < x1 and they both announce N when c > x2. Suppose that (Y ,Y ) is an equilib-

rium of the game Gβ played when c < x1. Party 1’s deviation to N is unprofitable,

i.e., π τ1 (Y ,Y ) = (1 − α )ϕ1 ≥ π τ1 (N ,Y ). However, since α > 0, this implies that

π τ2 (N ,N ) = (1 − α )ϕ2 = (1 − α ) (1 − ϕ1) < 1 − (1 − α )ϕ1 ≤ 1 − π τ1 (N ,Y ) = π τ2 (N ,Y ).
That is, when c > x2, party 2’s choice of platform N is not optimal.

Party i plays the strategy with an interior threshold xi and party j always chooses

Y . We only consider such a strategy pair for (i, j ) = (1,2). The platform pair (N ,Y )

realizes when c > x1. E4 implies that Eβ (c | N ,Y ) = E (c | c > x1). From the assumption
(2.1), we have E (c | c > x1) > E (c ) > Q (1−α )ϕ1+α > Q (1−α )ϕ1 . Thus, when c < x1, party

1 can obtain a higher vote share by deviating to N .

Party i always chooses N while party j always choosesY . Consider the strategy pair

for (i, j ) = (1,2). The platform pair (N ,Y ) realizes irrespective of c. E4 implies that

β (·| N ,Y ) coincides with the prior belief p, and hence, by (2.1), we have Eβ (c | N ,Y ) =
E (c ) > Q (1−α )ϕ2 . Thus party 2 can obtain a higher vote share by deviating to N . �
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2.4 Robustness to imperfect conjectures

We now discuss which of the PBE outcomes are plausible. The notion of PBE leaves

a great degree of freedom in voters’ beliefs after the announcement of unexpected

platform pairs. Yet the optimality of a party’s strategy depends critically on voters’

reactions to such out-of-equilibrium platform pairs. One difficulty in interpreting the

PBE concept is that the parties have no opportunity to learn the electorate’s out-of-

equilibrium responses, although they are assumed to conjecture these responses cor-

rectly. Motivated by this fact, we attempt to incorporate into out model a small possi-

bility of wrong conjectures about the voting outcome due to limited chances of learn-

ing. We argue that a plausible equilibrium should not be disturbed discontinuously by

such a modification of the model.

We define a conjectural perturbation to describe a situation where each party has

a small chance of making a wrong conjecture about the electorate’s aggregate behav-

ior. Suppose that voters’ strategies τ induces the “true” aggregate voting plan π τ . For

any a1 � a2, each party i randomly and independently forms a conjecture π i1 (a1,a2)

about the actual vote share π τ1 (a1,a2),8 from past experiences of similar situations in

elections. We assume that π i1 (Y ,N ) and π i1 (N ,Y ) are also independent. Given the

cost c, the conjecture π i1 (a1,a2) correctly coincides with π
τ
1 (a1,a2) with probability

1 − ηi (c,r (a1,a2)), where r (a1,a2) is the realizability of (a1,a2), i.e., the frequency
with which the platform pair appears. Otherwise the conjecture is either too low, say

π i1 (a1,a2) = 0, or too high, say π
i
1 (a1,a2) = 1, each with probability ηi (c,r (a1,a2))/2.9

We assume that ηi (c,r (a1,a2)) is decreasing in r (a1,a2) and, in particular, the proba-

bility is relatively very high when r (a1,a2) = 0.

Definition. For ϵ > 0, an (ϵ-)conjectural perturbation is a pair η = (ηi )i=1,2 of func-

8Recall that if a1 � a2, party 2’s vote share is given by π2 (a1, a2) = 1 − π1 (a1, a2).
9For simplicity, we will stick with the assumption that the support of π i1 (a1, a2) is {0, π τ1 (a1, a2), 1}.

The following arguments will hold even under a weaker assumption (e.g., that the lowest and highest values
of π i are more intermediate than 0 and 1). It will be also understood that the assumption that the extreme
values 0 and 1 have equal probabilities is not essential for our results.
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tions ηi : C × [0,1]→ (0,ϵ ) with the following property:

P1: ηi (c,r (a1,a2)) is jointly continuous, and differentiable with respect to r (a1,a2)

with ∂ηi
∂r (a1,a2 )

< 0.

P2: If r (a1,a2) > ϵ , then supc ηi (c,r (a1,a2)) < ϵ infc ηi (c,0) and | ∂ηi (c,r (a1,a2 ))∂r (a1,a2 )
| < ϵ .

In any ϵ-conjectural perturbation, the probability of a wrong conjecture is positive

but less than ϵ . P1 requires some well-behavedness condition and that the probability

of a wrong conjecture about voters’ aggregate response π τi (a1,a2) to platforms (a1,a2)

decreases with the frequency of (a1,a2). P2 further says that an error in conjecture on

π τi (a1,a2) occurs mostly when the platform pair (a1,a2) is extremely unlikely, and its

probability is almost constant and close to zero when the platform pair appears with

probability more than ϵ .

Let R = {r = (r (a1,a2))a1�a2 ∈ [0,1]2 : r (Y ,N ) + r (N ,Y ) ≤ 1} be the set of
realizability vectors. Any r ∈ R represents a possible probability that each pair of

distinct platforms realizes.

A response strategy for party i is a function ρi that assigns to each (c,π i ) ∈ C × Π

a platform ρi (c,π
i ) ∈ {Y ,N }. A response strategy describes a way in which the party

chooses a platform given the observed cost c and the expected voting pattern π i . As

ηi describes a distribution of π i (which depends on the true aggregate voting plan π τ

as well as (c,r )), any combination (c,ρi ,ηi ,π
τ ,r ) induces the probability distribution

σi (·| c,ρi ,ηi ,π τ ,r ) over {Y ,N } of party i’s platform conditional on c. We call the func-
tion that assigns to each c the distribution σi (·| c,ρi ,ηi ,π τ ,r ) themixed strategy induced
by (ρi ,ηi ,π τ ,r ).

Definition. An equilibrium under conjectural perturbation η is a combination

(ρ1,ρ2,τ ,β ,r ) of response strategies for the parties, strategies for voters, a common

belief system, and a realizability vector that satisfies E3, E4, and the following condi-

tions:
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E1’: Each ρi is a response strategy.

E2’: For each party i(� j) and each (c,π i ) ∈ C × Π, ai = ρi (c,π
i ) maximizes

∑
aj=Y ,N σj (aj | c,ρ j ,ηj ,π τ ,r )π ii (ai ,aj ).

E5’: For each a1 � a2, r (a1,a2) =
∫ ∏

i=1,2 σi (ai | c,ρi ,ηi ,π τ ,r )p (dc ).

E1’ and E2’ say that given any c each party i maximizes expected vote, where the

opponent’s platform choice depends on its randomly formed conjecture π j about vot-

ers’ behavior. Recall that, although π j mostly coincides with the true voting pattern π τ

induced by voters’ strategies τ , the expectation is less precise for a less often realized

platform pair; hence the parties’ behaviors depend also on the realizability vector r .

E5’ requires that this r be consistent with the actual frequencies with which the parties

announce each platform.

Definition. A PBE (σ1,σ2,τ ,β ) is called robust to a sequence (ηn )∞n=1 of ϵ
n-conjectural

perturbations with ϵn → 0 if there exists a sequence (ρn1 ,ρ
n
2 ,τ

n ,βn ,rn )∞
n=1 of equilib-

ria under the perturbations such that for each party i, σi (·| ·,ρni ,ηni ,π τ
n

,rn ) converges

pointwise to the strategy σi and voters’ strategies τn converge to τ . A PBE outcome

is called robust to a perturbation sequence if some PBE that induces the outcome is

robust to the sequence.

Our notion of robustness is similar in spirit to the notion of stability against mis-

take probabilities as formulated by Selten (1975). Indeed we may view those platform

choices by a party that have only small probabilities as its mistakes. Taking the pos-

sibility of such errors into account, the opponent maximizes expected vote. However,

while in contrast to Selten’s formulation, the error probabilities in conjectural pertur-

bations are explicitly related to the equilibrium strategies for the parties and voters.

In particular, as we have assumed in P1, the parties are more likely to make wrong

conjectures about the consequence of a platform pair if it realizes less frequently.
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To state our result, we strengthen the assumption (2.1) by adding the following:

x∗i > Q1−(1−α )ϕ j for each i � j. (2.4)

This is satisfied if, for any given α , ϕi is sufficiently close to 1/2, since the the definition

(2.2) already implies that x∗i > Q1−(1−α )ϕi .

Proposition 2.2. For each i � j, the PBE outcome in which party i always chooses

N and the other party plays the monotonic strategy with threshold x∗j is robust to any

sequence of conjectural perturbations.

Proof. See Appendix. �

Here we sketch the proof of the proposition for (i, j ) = (1,2). Note that for the

strategy pair (σ1,σ2) = (always N , threshold x∗2), the platform pair (a1,a2) = (Y ,N ) is

out-of-equilibrium. There are two key observations in the proof: (i) When the parties’

mixed strategies approach (σ1,σ2), after observing (Y ,N ) voters expect that the cost

c is so high that party 1’s deviation to Y becomes indeed unprofitable; (ii) under any

conjectural perturbation, when party 2 plays a mixed strategy close to the strategy σ2,

party 1’s choice of Y is more likely roughly when c > x∗2 than when c < x
∗
2.

We can show (i) as follows: As the strategies approach (σi )i=1,2, platforms (Y ,N )

appear almost only when party 1 makes an error while party 2 follows the origi-

nal strategy; this occurs almost only if c > x∗2. Since voters infer this, by (2.4),

Eβ (c |Y ,N ) > x∗2 > Q1−(1−α )ϕ1 ; hence π τ1 (Y ,N ) < (1 − α )ϕ1 = π τ1 (N ,N ). Fact

(ii) follows from property P2 of perturbation. As the platform pair (Y ,N ) almost never

realizes, party 1 makes a wrong conjecture about π τ1 (Y ,N ) much more often than about

π τ1 (N ,Y ). Consequently, when party 2 mostly announces N , i.e., when c > x
∗
2, party 1

is more likely to choose Y based on a wrong conjecture.

Given (i), it only remains to ensure that there exist party 2’s strategy near σ2 that

is best response even when it takes into account the possibility of errors by the oppo-
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nent. This is done as follows. As party 2’s threshold10 x2 decreases slightly from x∗2,

Eβ (c |,N ,Y ) becomes lower than Q1−(1−α )ϕ2 . For such x2, when c < x2, as far as party
2’s conjecture is correct, the choice of Y becomes a strictly better response to party 1,

which mostly chooses N . On the other hand, it follows from (ii) that when c > x2, it

is relatively more likely that party 1 announces Y driven by a wrong conjecture; hence

in this case, in terms of expected vote, party 2’s choice of N is still a strictly better

response.

Proposition 2.3. The two PBE outcomes where both parties always announce the same

fixed platform is not robust to sequences of conjectural perturbations in which either

party is sufficiently more likely to make a wrong conjecture about the aggregate voting

plan when c is extremely low or high.

Proof. We show the statement for the PBE outcome with platform N . For small

ϵ > 0, let η be a conjectural perturbation. Suppose that there exists an equilibrium

under η that is close to the situation of the PBE outcome. At the equilibrium, party

1 always chooses N with probability close 1. Then the choice of N is optimal for

party 2 in the platform game only if its conjecture π 2 satisfies approximately that

π 22 (N ,Y ) = 1 − π 21 (N ,Y ) ≤ (1 − α )ϕ2. Conversely, Party 2 chooses Y if π 21 (N ,Y )
is too low, which occurs probability η2 (c,r (N ,Y ))/2. By assumption the probability

of party 2’s choice of Y is close to 0; hence at the true π τ it is indeed optimal for

the party to choose N . It thus follows that party 2 chooses Y with probability of the

same order as η2 (c,r (N ,Y ))/2. Thus, conditional on (a1,a2) = (N ,Y ) voters’ belief

is approximately given by β (dc | N ,Y ) ∼ η2 (c,r (N ,Y ))p (dc )/
∫
η2 (c

′,r (N ,Y ))p (dc ′).

Hence if η2 (c,r (N ,Y )) is sufficiently higher for lower cost levels c, then Eβ (c | N ,Y ) is
small enough. This contradicts the fact that for the true aggregate voting plan π τ , a

deviation to Y is unprofitable. �

10In the perturbed situation, we may think of a threshold as a cost level until which the party announces Y
with probability close to 1.
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For example, consider the PBE outcome at which both parties always announce

N . Suppose that party 1 tends to overestimate the electorate’s support for Y especially

when the true cost c is very low. This may be the case if the party believes that when

the cost is extremely low or high, voters somehow understand it. In this case, voters

will infer from party 1’s announcement of Y that the cost is very low; consequently

party 1 deviates to Y .

It is easy to establish that all four PBE outcomes are trembling-hand perfect in the

sense that for some small mistake probability for each player, there exists a nearby

equilibrium. However, as Proposition 2.3 suggests, the two completely pooling PBE

outcomes are fragile to those sequences in which some party’s mistake probabilities

are relatively high at extreme levels of cost.

2.5 Conclusion

We analyzed a model of electoral competition in which parties are better informed

than voters about the cost of a public project. We showed that there are two types of

PBE outcomes: in the first, both parties always choose the same fixed platform; in the

second, one party always chooses not to implement the project while the other party

switches the platform around a threshold of the cost. To examine which of the equi-

libria are plausible, we introduced the notion of conjectural perturbation. We showed

that only the PBE outcomes of the second type are robust to all conjectural pertur-

bations, while the outcomes of the first type are fragile to some class of conjectural

perturbations.

We have assumed that both parties have complete information of the cost. In the

next chapter, we will investigate the case where each party receives a noisy private

information. Our analysis has been also limited to the case with two available policies.

It is not obvious how the result in this paper extends to the case with three or more

alternatives. This issue may be addressed in future research.
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2.6 Appendix: Proof of Proposition 2.2

Proof. We only show the statement for (i, j ) = (1,2). Let η be an ϵ-conjectural pertur-

bation for small ϵ > 0. Suppose that both parties are playing some response strategies.

For convenience, we take an interior point x2 in C, and describe the situation as if the

“correct” platform choice for party 1 given any c is N , and that for party 2 is the same

as the choice specified by the monotonic strategy with an interior threshold x2 (i.e., Y

for c < x2 and N for c > x2). The underlying response strategy for party i then induces

the “wrong” platform choice with some probability δi (c,r ) given the cost c and the

realizability vector r .

We construct the error probabilities as follows, and show that these probabilities

(and hence the underlying response strategies) consist in an equilibrium:

δ1 (c,r ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪
⎩

η1 (c,r (N ,Y ))
2 if c < x2

η1 (c,r (Y ,N ))
2 if c > x2

and

δ2 (c,r ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪
⎩

η2 (c,r (N ,Y ))
2 if c < x2

η2 (c,r (N ,Y ))
2 +

(1−η2 (c,r (N ,Y )))η2 (c,r (Y ,N ))
2 if c > x2.

The requirement of E5’ is written as follows:

r (Y ,N ) =

∫
c<x2

δ1 (c,r )δ2 (c,r )p (dc ) +

∫
c>x2

δ1 (c,r )(1 − δ2 (c,r ))p (dc )

r (N ,Y ) =

∫
c<x2

(1 − δ1 (c,r )) (1 − δ2 (c,r ))p (dc ) +
∫
c>x2

(1 − δ1 (c,r ))δ2 (c,r )p (dc ).

(2.5)

Since δi ’s are continuous in r , by Brouwer’s fixed point theorem, (2.5) has a solu-

tion r . Since all δi ’s are close to zero (less than ϵ/2), the above equations indicate

roughly that r (Y ,N ) ∼ 0, r (N ,Y ) ∼ p{c < x2} > ϵ . Property P2 of the perturba-
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tion then implies that ηi (c, ·)’s are almost constantly decreasing around r (N ,Y ) while
they are relatively sharply decreasing around r (Y ,N ). Thus we may rewrite (2.5) ap-

proximately as follows: r (Y ,N ) =
∫
c>x2

η1 (c,r (Y ,N ))
2 p (dc ) and r (N ,Y ) =

∫
c<x2

(1 −
η1 (c,r (N ,Y ))+η2 (c,r (N ,Y ))

2 )p (dc )+
∫
c>x2

η2 (c,r (Y ,N ))+η2 (c,r (N ,Y ))
2 p (dc ). Since the right-hand

side of the first equation is relatively sharply decreasing in r (Y ,N ), we observe that

it has a unique solution r (Y ,N ) that may depend only very weakly on r (N ,Y ). Tak-

ing this r (Y ,N ) as given, the right-hand side of the second equation is almost constant

since ηi (c,r (N ,Y )) are almost irresponsive to r (N ,Y ); hence its solution is also unique.

Therefore the solution r to (2.5) is unique, for a given x2. We write r ∗ for this unique

solution, which implicitly depends on x2. Since the right-hand sides in (2.5) are con-

tinuous in r and x2, the vector r ∗ continuously changes with x2.

Let

π̄ = (1 − α )ϕ1.

Each party makes an error when its correct platform (i.e., party 1’s choice of N for all

c, and party 2’s choice of Y for c < x2 and N for c > x2) is not optimal in the platform

choice game, given the opponent’s error probability. That is, the optimality condition

E2’ for party 1 is satisfied if δ1 (c,r ∗) equals the probability of

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪
⎩

(1 − δ2 (c,r ∗)) (π 11 (N ,Y ) − π̄ ) ≤ δ2 (c,r ∗) (π 11 (Y ,N ) − π̄ ) if c < x2

δ2 (c,r
∗)(π 11 (N ,Y ) − π̄ ) ≤ (1 − δ2 (c,r ∗)) (π 11 (Y ,N ) − π̄ ) if c > x2;

similarly E2’ for party 2 is satisfied if δ2 (c,r ∗) equals the probability of

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪
⎩

(1 − δ1 (c,r ∗)) (π 21 (N ,Y ) − π̄ − α ) ≥ δ1 (c,r ∗)(π 21 (Y ,N ) − π̄ − α ) if c < x2

(1 − δ1 (c,r ∗)) (π 21 (N ,Y ) − π̄ − α ) ≤ δ1 (c,r ∗)(π 21 (Y ,N ) − π̄ − α ) if c > x2,

where π i = (π i1 (Y ,N ),π i1 (N ,Y )) is party i’s random conjecture about the aggregate
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Figure 2.3: The solutions sets to the inequalities for π i . The slopes of the lines are:
(A) δ1 (cL,r

∗ )
1−δ1 (cL,r ∗ ) ∼

η1 (cL,r
∗ (N ,Y ))
2 ; (B) δ1 (cH ,r

∗ )
1−δ1 (cH ,r ∗ ) ∼

η1 (cH ,r
∗ (Y ,N ))
2 ; (C) δ2 (cL,r

∗ )
1−δ2 (cL,r ∗ ) ∼

η2 (cL,r
∗ (N ,Y ))
2 ; (D) 1−δ2 (cH ,r

∗ )
δ2 (cH ,r ∗ ) ∼

η2 (cH ,r
∗ (N ,Y ))+η2 (cH ,r

∗ (Y ,N ))
2 .

voting plan π τ .11 Figure 2.3 illustrates possible configurations of the solution sets to

these inequalities, for two representative cost levels cL < x2 < cH , where we have not

yet determined the location of π τ .

Note that supc<x2 δ1 (c,r
∗) ≤ supc ∈C η1 (c,r ∗ (N ,Y ))/2 =: sNY and infc>x2 δ1 (c,r ∗) ≥

infc ∈C η1 (c,r ∗ (Y ,N ))/2 =: sYN . The inequality for π 2 at c < x2 implies that π 21 (N ,Y )−
(π̄ +α ) ≥ − δ1 (c,r

∗ )
1−δ1 (c,r ∗ ) (π̄ +α ) ≥ −

sNY

1−sNY
(π̄ +α ). The inequality for π 2 at c > x2 implies

that, if π 21 (Y ,N ) ≤ π̄ , then π 21 (N ,Y ) − (π̄ + α ) ≤ − δ1 (c,r
∗ )

1−δ1 (c,r ∗ )α ≤ −
sYN
1−sYN α . Recall that

P2 implies that sNY /sYN is very close to 0. Hence we have − sYN
1−sYN α < −

sNY

1−sNY
(π̄+α ).

Thus, letting

q := (π̄ + α ) − sYN
1 − sYN α > π̄ and q̄ := (π̄ + α ) − sNY

1 − sNY
(π̄ + α ) < π̄ + α ,

11To express the condition for party 2 in terms of π 21 and π̄ , we used the fact that π
2
1 (a1, a2)+π

2
2 (a1, a2) =

1 for a1 � a2 and ϕ1 + ϕ2 = 1.
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the inequality for π 2 at any c excludes the non-empty region

Π∗ = (0, π̄ ) × (q,q̄).

In Figure 2.3, Π∗ is a subregion of (0, π̄ ) × (π̄ , π̄ + α ) that is sandwiched by lines A

and B regardless of the choice of (cL ,cH ). It is easy to see also that the inequalities

for π 1 (indicated by lines C and D) at any c exclude the region (0, π̄ ) × (π̄ , π̄ + α ).

Thus, none of the above inequalities for π i , i = 1,2, has a solution in Π∗. Since η1 is

continuous and r ∗ is continuous in x2, by the Maximum Theorem, the boundaries (q,q̄)

are continuous in x2.

We now claim that for a given x2, voters’ belief system satisfies approximately

that Eβ (c | N ,Y ) ∼ E (c | c < x2) and Eβ (c |Y ,N ) > x2, and that both expectations are

continuous in x2. First, Eβ (c | N ,Y ) ∼ E (c | c < x2) follows immediately from the fact

that the parties announce platforms (a1,a2) = (N ,Y ) with probability close to 1 when

c < x2, but with probability close to 0 when c > x2. On the other hand, if c < x2

then (a1,a2) = (Y ,N ) arises only as a result of both parties’ errors, while if c > x2

then only party 1’s mistake suffices to generate (Y ,N ). Comparing the orders of the

likelihoods of these two cases as ϵ → 0, we obtain Eβ (c |Y ,N ) > x2. Finally, note that

the expectations Eβ (c | a1,a2) depend on x2 also via the error probabilities δi (c,r ∗) since
r ∗ depends on x2. Since r ∗ is continuous in x2 and δi are continuous, the expectations

are indeed continuous in x2.

As x2 moves from c to c̄, E (c | c < x2) continuously increases from c to E (c ) > Qπ̄+α

where the inequality is due to (2.1). It thus follows that π τ1 (N ,Y ) = F (Eβ (c | N ,Y )) ∼
F (E (c | c < x2)) also continuously changes approximately from 0 to F (E (c )). Since

q < q̄ < π̄ + α and the boundaries (q,q̄) are continuous in x2, there exists x2 for

which π τ1 (N ,Y ) ∈ (q,q̄). As ϵ → 0, both q and q̄ converge to the point π̄ + α ; hence

π τ1 (N ,Y ) ∼ F (E (c | c < x2)) → π̄ + α , and from the definition (2.2) of x∗2 we have

x2 → x∗2. By (2.4), for sufficiently small ϵ , Eβ (c |Y ,N ) > x2 > Q1−π̄ . Thus we also
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have π τ1 (Y ,N ) ∼ 1 − F (E (c | c > x2)) < π̄ . Therefore, for the above x2, we have

π τ ∈ Π∗.
Given these x2 and τ , the solution sets to the inequalities for π i are exactly as in

Figure 2.3 for any two cost levels cL < x2 < cH . In the figure, the response strategies

ρi for the parties that underlie the error probabilities δi are defined as follows: for

any c ∈ {cL ,cH }, party i chooses the platform according to the correct strategy (i.e.,
“always N ” for party 1 and “threshold x2” for party 2) if and only if its conjecture

π i falls outside the solution set of the inequality determined by δ j , j � i, at the cost

level c. By identifying those points in the support {0,π τ1 (Y ,N ),1} × {0,π τ1 (N ,Y ),1}
of the variable π i that lie in each solution set,12 we confirm that for such τ , the error

probabilities (δi )i=1,2 indeed satisfy the equilibrium condition E2’. �

12See Figure 2.3. For example, the solution set of the inequality for π 2 at cL shares with the sup-
port of π 2 the following four points: {(0, 0), (π τ1 (Y , N ), 0), (1, 0), (1, π τ1 (N , Y )) }. The probability
of {(0, 0), (π τ1 (Y , N ), 0), (1, 0) } is η2 (cL, r ∗ (N , Y ))/2 and the probability of {(1, π τ1 (N , Y )) } is (1 −
η2 (cL, r

∗ (N , Y )))η2 (cL, r
∗ (Y , N ))/2; the sum equals the definition of δ2 (cL, r ∗).
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Chapter 3

Privately informed parties and policy divergence

3.1 Introduction

Elections often involve uncertainty about the effects of alternative policies. In such

situations, parties may take advantage of expertise offered by private think tanks or

government officials, whereas most voters only have publicly accessible information

such as that provided by the mass media.

In Chapter 2 we constructed a model of political competition where two vote-

maximizing parties (that is, “Downsian” parties) have complete information about the

cost of a public project, while voters have incomplete information. In this setting we

showed that there exist two perfect Bayesian equilibrium (PBE) outcomes that are ro-

bust to certain perturbations. At the equilibria the parties play different strategies: one

party always announces not to implement the project while the other party switches its

platform around some threshold of the cost. We contrasted this result with standard

Downsian models where parties behave identically in equilibrium.

This chapter modifies the previous model by assuming that each party only ob-

serves a noisy private signal of the cost. An interpretation of the model is that parties

have different sources of policy-relevant information which are unavailable to voters.

For example, the Democratic and the Republican parties in the United States rely on
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different think tanks for policy research.

As in the previous model, there is informational asymmetry between the parties and

the electorate. Hence party platforms may transmit useful information of the cost to

voters. Unlike the previous model, however, there is now also informational asymmetry

between the parties. A new feature of the model is therefore that each party infers from

its private signal what signal the opponent has received.

We are particularly interested in whether this additional structure overturns the re-

sults in the preceding chapter. We show that in fact the PBE outcomes in the model

with privately informed parties are similar to those in the previous model. That is,

there are two types of PBE outcomes: in the first, both parties always announce the

same fixed platform; in the second, one party always announces not to implement the

project while the other switches the platform around a unique threshold of its signal.

Thus, it is still true that although both parties are purely motivated to maximize vote,

they play quite different strategies at an equilibrium. We do not attempt to refine the

four PBE outcomes using a perturbation notion like the one we adopted in the previous

chapter, as it seems a quite complicated task.

There are other papers that study political competition between privately informed

parties. Among them, a study by Heidhues and Lagerlöf (2003) presents a model

closest to ours. The only difference between their and our settings is that they assume

a binary signal space, while we assume a continuous signal space. In their model, at

the only pure-strategy equilibria that satisfy a condition called “symmetric voting,” the

parties choose the same fixed policy irrespective of their private signals. In contrast,

our model possesses equilibria satisfying symmetric voting at which the parties play

different pure strategies. For more detailed literature review, see Section 2.1.

The rest of this chapter is organized as follows. In Section 3.2, we construct the

model of political competition with privately informed parties. In Section 3.3, we study

PBEs of the model. In Section 3.4, we conclude.
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3.2 Model

The model in this chapter has the same basic structure as the model in the previous

chapter (see Section 2.2). The only difference is that now each party does not perfectly

know the cost of the public project, and instead observes a noisy private signal. The

game proceeds as follows: (i) the cost c realizes; (ii) each party i receives a private

signal si of the cost; (iii) knowing only its own signal si , each party i announces a

platform ai ; and (iv) after observing the announced platforms (a1,a2), each voter votes

for a party. Except the addition of stage (ii), we maintain all the notations and the

assumptions in Chapter 2.

As in the previous chapter, the cost c has an (absolutely continuous) prior distri-

bution p with support C = [c, c̄]. We assume that the signals si have the following

properties:

S1: Conditional on cost c, signals si , i = 1,2, are independent and distributed accord-

ing to densitiesψi (·| c ) with support C.

S2: ψi satisfies the strict monotone likelihood ratio property (SMLRP), i.e., for any

si ,s
′
i ,c,c

′ ∈ C, [s ′i > si , c ′ > c] implies [ψi (s ′i | c ′)/ψi (s ′i | c ) > ψi (si | c ′)/ψi (si | c )].

S2 says roughly that a higher signal indicates a higher cost. (See Milgrom (1981)

for implications of SMLRP.) It is stronger than the assumption that if c < c ′ then

ψi (·| c ′) first-order stochastically dominatesψi (·| c ). Let Ψi (·| c ) denote the distribution
function of densityψi (·| c ). For each party i(� j), letψi j (si | sj ) be the density of signal si
conditional on signal sj , and Ψi j (·| sj ) the distribution function ofψi j (·| sj ). In addition
to (2.1), we assume the following:

E (c | si = c ) < Q (1−α )ϕi+α for i = 1,2. (3.1)

That is, the expected cost conditional on the lowest signal for any party is sufficiently

low.
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A perfect Bayesian equilibrium (PBE) is defined in the same manner as in the

previous chapter, with the only exception that we now must define a strategy for a party

as a function of its private signal. A strategy for party i is a function σi : C → {Y ,N }
that assigns to each signal si ∈ C a platform σi (si ) ∈ {Y ,N }.1 We still impose the
monotonicity condition E1 on equilibrium strategies for the parties. Each monotonic

strategy σi has a threshold xi ∈ C such that

σi (si ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪
⎩

Y if si < xi

N if si > xi

Since by property S2 the signals are positively correlated with the cost c, we can still

interpret monotonicity as the requirement that the equilibrium strategy for a party i

be not only optimal in terms of vote but also compatible with the incentives of some

“expert members” who provide the information si for the party.

3.3 Perfect Bayesian equilibrium

For each party i, define y∗i to be the unique point in C satisfying

E (c | si < y∗i ) = Q1−(1−α )ϕi ,

an analogue of x∗i in the previous model. It is easy to see that, by the SMLRP of the

signal, E (c | si < x ) is continuously increasing in x . Hence by (3.1) the point y∗i is a

unique interior point in C.

Proposition 3.1. All PBE outcomes are as follows:

1. Both parties always choose the same fixed platform a ∈ {Y ,N } irrespective of
their signals, and each party i obtains a vote share of (1 − α )ϕi .2

1Since the support of si is C , we define σi as a function on C .
2There are two such outcomes corresponding to the choices of a ∈ {Y , N }.
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2. Party i always chooses N while party j(� i) plays the monotonic strategy with

threshold y∗j . If sj < y∗j , party i obtains a vote share of (1 − α )ϕi + α while
party j obtains (1 − α )ϕ j ; if sj > y∗j , the parties obtain (1 − α )ϕi and (1 − α )ϕ j ,
respectively.3

Proof. The two outcomes of the first type are PBE outcomes. If both parties always

announce the same platform, say N , then voters’ beliefs given any pair of distinct

platforms are arbitrary. The parties’ strategies of always choosing N are therefore PBE

with any belief system β in which β (·| a1,a2) has a sufficiently high expected cost for
any a1 � a2.

The two outcomes of the second type are PBE outcomes. We only consider the

strategy pair (σ1,σ2) = (always N , threshold y∗2). Given that party 2 switches the

platform around the signal s2 = y∗2, party 1’s choice of N is optimal for any s1 if and

only if for any s1,

Ψ21 (y
∗
2 | s1)π τ1 (N ,Y ) + (1 − Ψ21 (y

∗
2 | s1))π̄ ≥ Ψ21 (y

∗
2 | s1)π̄ + (1 − Ψ21 (y

∗
2 | s1))π τ1 (Y ,N ),

where π̄ is the fraction of 1-partisans in the electorate:

π̄ = (1 − α )ϕ1.

The above condition is satisfied for all s1 if

π τ1 (N ,Y ) ≥ π̄ ≥ π τ1 (Y ,N ).

Now, given that party 1 always chooses N , party 2’s choice of Y when s2 < y∗2 is

optimal if π τ2 (N ,Y ) ≥ (1 − α )ϕ2, i.e., if π τ1 (N ,Y ) ≤ π̄ + α ; similarly its choice of N

when s2 > y∗2 is optimal if π
τ
1 (N ,Y ) ≥ π̄ + α . That is, optimality of party 2’s strategy

3There are two such outcomes corresponding to the choices of i ∈ {1, 2}.
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is equivalent to that π τ1 (N ,Y ) = π̄ + α . Thus the strategies for the parties consist in a

PBE if and only if voters’ strategies τ satisfy

π τ1 (Y ,N ) ≤ π̄ < π̄ + α = π τ1 (N ,Y ).

Since (Y ,N ) is not realizable, we can choose β (·|Y ,N ) to have a sufficiently high

expected cost so that the first inequality is satisfied. The last equation π τ1 (N ,Y ) = π̄ +α

holds if and only if Eβ (c | N ,Y ) = E (c | s2 > y∗2 ) = Qπ̄+α = Q1−(1−α )ϕ2 , which is

satisfied by the definition of y∗2.

Now we show that no strategy pair in which each party i plays a strategy with an

interior threshold xi consists in a PBE. The proofs for other remaining strategy pairs

are similar as in the proof of Proposition 2.1 in the previous model, and we thus omit

them. Given that party 2 switches the platform around s2 = x2, party 1’s choice of Y

when s1 < x1 is optimal if and only if for any s1 < x1,

Ψ21 (x2 | s1)π̄ + (1 − Ψ21 (x2 | s1))π τ1 (Y ,N ) ≥ Ψ21 (x2 | s1)π τ1 (N ,Y ) + (1 − Ψ21 (x2 | s1))π̄ ,

which is simplified to that

(1 − Ψ21 (x2 | s1)) (π τ1 (Y ,N ) − π̄ ) ≥ Ψ21 (x2 | s1) (π τ1 (N ,Y ) − π̄ ) for all s1 < x1.

Similarly, party 1’s choice of N when s1 > x1 is optimal if and only if for any s1 > x1,

(1 − Ψ21 (x2 | s1)) (π τ1 (Y ,N ) − π̄ ) ≤ Ψ21 (x2 | s1) (π τ1 (N ,Y ) − π̄ ) for all s1 > x1.

By continuity of distributions, the two conditions imply that π τ locates on the line L∗

defined by

(1 − Ψ21 (x2 | x1)) (π τ1 (Y ,N ) − π̄ ) = Ψ21 (x2 | x1) (π τ1 (N ,Y ) − π̄ ).
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Since the signals si are positively correlated, Ψ21 (x2 | s1) is decreasing in s1. Thus the
above inequality at s1 < x1 is satisfied only by those π τ ∈ L∗ with

π τ1 (N ,Y ) ≤ π̄ .

By similar considerations, optimality of party 2’s strategy is expressed as follows:

Ψ12 (x1 | s2)(π τ1 (Y ,N ) − π̄ − α ) ≥ (1 − Ψ12 (x1 | s2)) (π τ1 (N ,Y ) − π̄ − α ) for all s2 < x2
Ψ12 (x1 | s2)(π τ1 (Y ,N ) − π̄ − α ) ≤ (1 − Ψ12 (x1 | s2)) (π τ1 (N ,Y ) − π̄ − α ) for all s2 > x2.

This implies that π τ locates on the line L∗∗ defined by

Ψ12 (x1 | x2)(π τ1 (Y ,N ) − π̄ − α ) = (1 − Ψ12 (x1 | s2)) (π τ1 (N ,Y ) − π̄ − α ).

Since Ψ12 (x1 | s2) is decreasing in s2, the above inequality at s2 < x2 is satisfied only by
those π τ ∈ L∗∗ with

π τ1 (N ,Y ) ≥ π̄ + α .

This is incompatible with the optimality condition for party 1. �

3.4 Conclusion

In this chapter, we extended the model of the previous chapter to the case where the

parties have noisy private information of the state. Despite this difference, we showed

that the extended model has four PBE outcomes similar to those in the previous model.

In particular, a PBE exists at which the parties play quite different strategies. An impor-

tant next step in this research would be to refine the PBEs by some analog of conjectural

perturbation which we introduced in chapter 2.
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Chapter 4

Multi-dimensional political competition with

non-common beliefs

4.1 Introduction

Studies of electoral competition often assume that parties’ (or candidates’) beliefs

about the electorate’s preference distribution coincide. In standard “Downsian models”

(Downs, 1957), two parties know the preference distribution. In “probabilistic voting

models” where parties are uncertain about the preference distribution, the parties often

hold the same probabilistic belief. One interesting question would be whether results

obtained for these models change drastically as the parties’ beliefs slightly diverge.

In this chapter, we explore the above question, focusing on a particular probabilistic

voting model. In the model, two parties have to choose their platforms in an election.

Each voter has an ideal policy, and votes for a party whose platform is closer to the ideal

policy. Each party has a probabilistic belief about the profile of ideal policies, and seeks

to maximize expected vote share. The parties’ beliefs are common knowledge.

When the policy space is one-dimensional and the parties’ beliefs are identical, our

model is a special case of Duggan’s (2006) model. In this case, Duggan shows that

there exists a unique equilibrium; at the equilibrium, both parties locate at the median
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of the average of marginal distributions of voters’ ideal policies.1

When the policy space has multiple dimensions and the parties’ beliefs are iden-

tical, it is known that a (pure strategy) equilibrium rarely exists.2 More precisely, in

the general case with d dimensions, due to our specification of the shapes of voters’

preferences, the above characterization for the one-dimensional case simply extends as

follows: if an equilibrium exists, it is unique; at the equilibrium, both parties locate

at the “median (in all directions)” of the average distribution of ideal policies (i.e., the

policy such that every hyperplane passing through it divides the policy space into half-

spaces with equal masses).3 For d ≥ 2, the existence of a median is rare, and so is the
existence of an equilibrium.

We investigate whether the above characterization of equilibria of the model is

robust to slight differences in beliefs. In particular, does the restrictiveness of the exis-

tence of equilibria in multi-dimensional policy spaces depend heavily on the assump-

tion that the parties have the same belief? Of course, without a common belief, it is

possible that each party simultaneously expects that given the opponent’s platform, its

platform will achieve a vote share above 1/2. One might speculate, furthermore, that it

is possible that each party simultaneously expects a vote share very close to the maxi-

mum possible given the opponent’s platform, even when the model is very close to the

one with a common belief where no equilibrium exists.

After describing the model formally, in Section 4.4 we first check that in the ex-

tended model where the parties may have different beliefs, the characterization of equi-

libria becomes more severe. The non-existence stems, at least in part, from the fact that

the parties’ payoff functions are discontinuous and, as a result, their best response cor-

respondences are generically empty. In such situations, it is plausible that each party

makes do with a platform that will achieve a sufficiently high expected vote share.

1Duggan (2006) proves that this is a unique mixed strategy equilibrium.
2Duggan’s (2007) existence result for a voting model with a continuum of voters implies that in our

model, when the parties have a common belief, a mixed strategy equilibrium exists. In this paper we focus
on pure strategies of the parties.

3See Plott (1967) and Calvert (1985) for related results.
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This observation leads us to study “ϵ-equilibria,” where an ϵ-equilibrium is defined

to be a platform pair for which each party’s expected vote share lies in the ϵ-range

below the maximum that the party can attain given the opponent’s platform.4 Indeed,

as we see in Section 4.5, even when the model has no exact equilibrium, it may have

an ϵ-equilibrium for any ϵ > 0.

However, in Section 4.6, we demonstrate that as the beliefs of the parties converge

to a common belief, all “limit equilibria,” defined to be limits of ϵ-equilibria as ϵ → 0,

must converge to the median of average distributions for the common belief. As a

corollary, we show that if a model with a common belief has no equilibrium, then for

some ϵ > 0 and for any pair of the parties’ beliefs that are sufficiently close to the

common belief, no ϵ-equilibrium exists.

4.2 Related literature

There are works that address the issue of robustness of deterministic voting models

to slight uncertainty about voting behavior. Banks and Duggan (2006) provide sev-

eral robustness results for equilibria in probabilistic voting models and the determin-

istic Downsian model, both with plurality-maximizing candidates. In particular, they

show that if the Downsian model has no equilibrium, then introduction of slight uncer-

tainty does not create an equilibrium.5 Duggan and Fey (2005) consider a model with

policy-motivated candidates. They show that when the policy space has more than

two dimensions, the model has an equilibrium only under some restrictive condition.

Furthermore, if the model has no equilibrium, the non-existence persists under small

amounts of probabilistic voting and of office motivation. In both papers, the candidates

are assumed to have the same belief about voters’ preferences.

Bernhardt, Duggan, and Squintani (2007) construct a one-dimensional model in

4I thank Yasuhiro Shirata for suggesting me to study ϵ -equilibria.
5Banks and Duggan (2006) study a probabilistic voting model that is different from the one studied in

this paper. Moreover, they also provide a similar robustness result that allow for mixed strategy equilibria.
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which each candidate observes a private signal of the median ideal policy, and max-

imizes the probability of winning the election. They show that while a pure strategy

Bayesian equilibrium may not exist, a mixed strategy Bayesian equilibrium exists gen-

erally. They also demonstrate that equilibria of two symmetric-information versions

of the model, namely, the Downsian model and the probabilistic voting model, are ro-

bust to a small amount of private information. Informational asymmetry and mixed

strategies, which feature their analysis, are not considered in our work.

Bade (2011) presents a multi-dimensional probabilistic voting model where parties

are uncertainty averse. In the model, each party has multiple beliefs about the elec-

torate’s preference distribution.6 Given the opponent’s platform, each party chooses a

platform that maximizes the minimum possible expected vote share, where the min-

imum is taken over the party’s set of beliefs. She shows that under some conditions

on the parties’ belief sets, a pure strategy equilibrium exists. The existence results are

valid even if the parties have different sets of beliefs. Thus, the assumption of uncer-

tainty averse parties provides a possible way out of the non-existence of equilibria in

multi-dimensional policy spaces.

4.3 Model

We consider a model of electoral competition between two parties (parties 1 and 2).

A finite number (m) of voters participate in voting. Without knowing the exact prefer-

ences of voters, the parties simultaneously choose their electoral platforms. Comparing

the two platforms, each voter decides his vote.

The model is a triple (X ,P ,Q ).

X is a compact convex subset of Rd with non-empty interior, called the policy

space.

6Bade (2011) considers a richer class of beliefs than considered in our model. A belief in her model is
defined over preference profiles of voters in which a voter’s preferences are characterized not only by the
voter’s ideal policy but also by the shapes of his indifference curves.
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Each voter i votes according to the Euclidean preference with an ideal policy vi =

(vi1, ...,vid ) ∈ X : if the two parties’ platforms are x and y with ‖x − vi ‖ < ‖y − vi ‖,
voter i votes for the party with platform x .

P andQ are two prior joint distributions of the ideal policies (v1, ...,vm ) defined on

R
dm , called the beliefs of parties 1 and 2, respectively, with the following properties:

(a) P and Q are absolutely continuous relative to Lebesgue measure on Rdm .

(b) For each i, the supports of Pi and Qi , the marginal distributions of voter i’s ideal

policies, are X .

Each party seeks to maximize expected vote share. For each pair (x , y) of platforms

of parties 1 and 2, let πP (x , y) denote party 1’s expected vote share, and let πQ (y,x )

denote party 2’s expected vote share. We assume that

πP (x , y) = πQ (y,x ) = 1/2 whenever x = y. (4.1)

The political game is defined to be the game played by the two parties with a

common strategy space X and payoff functions πP and πQ .

4.4 Definitions of equilibrium and median

A Nash equilibrium of the political game is defined as a pure strategy Nash equilibrium

in the usual sense.

Given ϵ > 0, a party 1’s platform x is called an ϵ-best response to party 2’s platform

y if πP (x , y) ≥ supz∈X πP (z, y) − ϵ . Party 2’s ϵ-best responses are similarly defined. A
platform pair (x , y) is called an ϵ-equilibrium if the parties’ platforms are best responses

to each other.

A platform pair (x , y) is called a limit equilibrium if there exists a sequence (xn , yn ,ϵn )

in X × X × (0,1) such that (xn , yn ) is an ϵn-equilibrium for every n, (xn , yn ) → (x , y),
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and ϵn ↓ 0.
A limit equilibrium (x , y) is said to have a direction s ∈ S , where S = {t ∈ Rd :

‖t ‖ = 1}, if there exists a sequence (xn , yn ,ϵn ) for which, in addition to the above

properties, the following condition holds:

xn � yn for every n and ‖xn − yn ‖−1 (xn − yn ) → s .

For z ∈ Rn and s ∈ Rn \ {0}, let Hz,s denote the closed half-space

Hz,s = {x ∈ Rd | s · x ≥ s · z}.

For an absolutely continuous distribution Λ on Rd with convex support, a point z is

called a median in all directions of Λ if

Λ(Hz,s ) = 1/2 for every s ∈ S . (4.2)

Such a distribution Λ has at most one median in all directions.

4.5 Basic properties of expected vote share functions

In the following lemma, we collect key properties of expected vote share function πP .

(Of course, πQ has the same properties.)

Given a belief P , let P̄ denote the average of the marginal distributions P1, ...,Pm :

P̄ = 1
m
(P1 + ... + Pm ).

Under our assumptions (a) and (b) on the belief, P̄ is an absolutely continuous distri-

bution on Rd with support X .

Lemma 4.1. The expected vote share function πP has the following properties:
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(i) If x � y, then πP (x , y) = P̄ (H (x+y )/2,x −y ).

(ii) πP is continuous on {(x , y) : x � y}.

(iii) For any s ∈ S and z ∈ X such that z + αs ∈ X for some α > 0, as α ↓ 0,
πP (z + αs,z) strictly increases and converges to P̄ (Hz,s ).

(iv) For any y ∈ X , supx ∈X πP (x , y) = maxs ∈S P̄ (Hy,s ).

(v) supx ∈X πP (x , y) is a continuous function of y.

Proof. (i) Voter i strictly prefers x to y if and only if vi ∈ H (x+y )/2,x −y . He is indif-

ferent with probability 0 by the absolute continuity of P . Hence voter i votes for can-

didate 1 with probability Pi (H (x+y )/2,x −y ). Thus candidate 1’s expected vote share is

EP (�{i : vi ∈ H (x+y )/2,x −y }/m) = P̄ (H (x+y )/2,x −y ).

(ii) This follows directly from the expression (i) and the absolute continuity of P

(and hence of P̄).

(iii) Since P̄ has convex support, with the expression (i), πP (z+αs,z) = P̄ (Hz+(α /2)s,s )

strictly increases as α ↓ 0. The limit is P̄ (Hz,s ) by absolute continuity.

(iv) The expression supx ∈X πP (x , y) = maxs ∈S P̄ (Hy,s ) follows from (iii). (See

Caplin and Nalebuff (1988) for a more detailed proof.)

(v) By absolute continuity, P̄ (Hy,s ) is continuous in (y,s ), where s is a variable in

the compact set S . The Maximum Theorem shows that maxs ∈S P̄ (Hy,s ) is continuous

in y. �

Part (i) says that for x � y, party 1’s expected vote share is the expected fraction of

ideal points in the halfspace comprising those points that are closer to x than to y. Part

(iii) says that locating closer to the opponent’s platform strictly increases the party’s

expected vote share. Thus, the maximum possible expected vote share is achieved

by choosing an appropriate direction from which the party approaches the opponent’s

location (part (iv)).
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4.6 Nash equilibrium

We begin with the following observation about the best responses for the parties.

Lemma 4.2. Party 1’s platform x is a best response to party 2’s platform y if and only

if x = y and y is a median in all directions of P̄ .

Proof. “If.” By assumption (4.1), πP (y, y) = 1/2. By Lemma 4.1 (iv) and the definition

of a median in all direction, 1/2 is candidate 1’s maximum payoff against y.

“Only if.” First suppose x � y. By Lemma 4.1 (iii), πP (y + α (x − y), y) > πP (x , y)

for small α > 0, and thus x is not a best response to y. Suppose now that x = y but y

is not a median in all directions of P̄ . Then for some direction s, P̄ (Hy,s ) > 1/2. By

continuity (Lemma 4.1 (ii)), for small α > 0, πP (x + αs, y) > 1/2 = πP (x , y). Thus

x = y is not a best response to y. �

The following theorem is a direct consequence of the above lemma.

Theorem 4.1. (x , y) is a Nash equilibrium if and only if x = y =: z and z is a median

in all directions of both P̄ and Q̄ .7

Thus, the existence of a Nash equilibrium is rare. It requires not only that both

parties’ beliefs have a median in all directions but also that these two medians coincide.

In particular, even when the policy space is unidimensional, no Nash equilibrium exists

if the two beliefs have different medians.

4.7 ϵ-Equilibria and limit equilibira

We now turn to the analysis of ϵ- and limit equilibria. We first provide basic facts about

limit equilibria and ϵ-equilibrium sequences converging to them.

7This is similar to Duggan’s (2006) characterization of equilibria in a one-dimensional model where
voters’ preferences are not restricted to Euclidean preferences. Clearly, our characterization depends on the
assumption of Euclidean preferences.
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Lemma 4.3.

(i) If (x , y) is a limit equilibrium, then x = y.

(ii) Let (x , y) be a limit equilibrium that is not a Nash equilibrium. Let (xn , yn ,ϵn )

be a sequence as in the definition of limit equilibrium. Then xn � yn eventually.

(iii) If (x , y) is a Nash equilibrium, then it is a limit equilibrium with any direction.

Proof. (i) Suppose x � y. Let (xn , yn ,ϵn ) be a sequence as in the definition of limit

equilibrium. Given (xn , yn ), by moving straight toward yn , party 1 can increase his

payoff by approximately P̄ (Hyn,xn −yn )− P̄ (H (xn+yn )/2,xn −yn ), which, by absolute con-

tinuity, converges to P̄ (Hy,x −y ) − P̄ (H (x+y )/2,x −y ) > 0. Thus (xn , yn ) is not an ϵn-

equilibrium for all large n. Hence (x , y) is not a limit equilibrium.

(ii) By (i), x = y =: z. By Proposition 4.1, z is not a median in all directions of

P̄ . Thus for some s, P̄ (Hz,s ) > 1/2. Suppose xni = yni for some subsequence. Given

(xni , yni ), by deviating slightly in the direction s, party 1 can increase his payoff by

approximately P̄ (Hyni ,s ) − 1/2, which converges to P̄ (Hz,s ) − 1/2 > 0. Thus (xni , yni )
is not an ϵni -equilibrium for large i, a contradiction.

(iii) By Proposition 4.1, x = y =: z and z is a median in all directions of both P̄ and

Q̄ . Clearly, z is an interior point of X . Fix any s ∈ Sd−1. Consider a platform pair of the
form (z + αs,z − αs ) with α > 0. Given (z + αs,z − αs ), party 1’s gain from deviation
is bounded by maxt ∈Sd−1 P̄ (Hz−αs,t ) − P̄ (Hz,s ) = maxt ∈Sd−1 P̄ (Hz−αs,t ) − 1/2, which,
by Lemma 4.1 (v), converges to 0 as α → 0. Thus there is a sequence of ϵ-equilibria

of the form (z + αs,z − αs ) converging to (z,z). �

The following theorem provides a full characterization of limit equilibria.

Theorem 4.2. A platform pair (x , y) is a limit equilibrium with direction s if and only

if x = y =: z and

P̄ (Hz,s ) = max
t ∈Sd−1

P̄ (Hz,t ) and Q̄ (Hz,s ) = min
t ∈Sd−1

Q̄ (Hz,t ).
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Proof. “If.” Fix ϵ > 0. As in the proof of Lemma 4.3 (iii), consider a platform pair of

the form (z+αs,z−αs ). Party 1’s maximum gain from deviation is P̄ (Hz−αs,s )−P̄ (Hz,s ),

which converges to 0 as α → 0. Thus there is a sequence of ϵ-equilibria of this form

converging to (z,z).

“Only if.” By Lemma 4.3 (i), we know that x = y =: z. Let (xn , yn ) be a sequence

of ϵn-equilibria with (xn , yn ) → (z,z) and ϵn ↓ 0. By Lemma 4.3 (ii) and (iii), we only
have to consider the case where xn � yn eventually. Since xn is an ϵn-best response to

yn ,

max
s ∈Sd−1

P̄ (Hyn,s ) − P̄ (H (xn+yn )/2, ‖xn −yn ‖−1 (xn −yn ) ) ≤ ϵn .

Suppose ‖xn − yn ‖−1 (xn − yn ) → s for some s ∈ Sd−1, and let n → ∞ on both sides
of the inequality. By the continuity of P̄ (Ha,t ) in (a,t ) and Lemma 4.1 (iv), we have

maxt ∈Sd−1 P̄ (Hz,t ) = P̄ (Hz,s ). In the same way, we can show that mint ∈Sd−1 Q̄ (Hz,t ) =

Q̄ (Hz,s ). �

Intuitively, at any ϵ-equilibrium for small ϵ > 0 each party locates very close to the

opponent. Thus, at any limit equilibrium the parties choose the same policy z. If z is a

median in all directions, the condition in the theorem holds trivially. Otherwise, when

ϵ is close to zero, both parties almost best respond to z by adopting slightly different

platforms. This is possible if and only if the condition of the theorem holds.

In contrast with the characterization of Nash equilibrium, the condition in Theo-

rem 4.2 for limit equilibrium does not even mention a median in all directions. Yet, it

follows that if some party’s belief has a median in all direction, then it is a limit equilib-

rium that both parties locate at this median. Moreover, in the case of a unidimensional

policy space, a limit equilibrium exists generally.

Corollary 4.1. (i) If z is a median in all directions of either P̄ or Q̄ , then (z,z) is a

limit equilibrium.
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(ii) If the policy space is unidimensional, then (z,z) is a limit equilibrium if and only

if z lies between the medians of P̄ and Q̄ .

Proof. (i) Suppose P̄ has a median in all directions z. Let s ∈ S be any direction that
minimizes Q̄ (Hz,s ). Then s also maximizes P̄ (Hz,s ), and Theorem 4.2 establishes that

(z,z) is a limit equilibrium.

(ii) If the medians of P̄ and Q̄ satisfy μP̄ ≥ μQ̄ , then for any z ∈ [μQ̄ ,μP̄ ], s = 1
maximizes P̄ (Hz,s ) and minimizes Q̄ (Hz,s ), and Theorem 4.2 establishes that (z,z) is a

limit equilibrium. �

4.8 Robustness of non-existence of equilibrium

Theorem 4.2 fully characterizes the set of limit equilibria. But it is still unclear whether

this set is generally non-empty or not. In this section, we study this question, focusing

on the case where the parties’ beliefs are very close.

The following is a merely technical lemma.

Lemma 4.4. Let (Λn ) be a sequence of distributions on Rd converging weakly to an

absolutely continuous distribution Λ. Let (zn ,sn ) be a sequence in Rd × Sd−1 converg-
ing to (z,s ). Then Λn (Hzn,sn ) → Λ(Hz,s ).

Proof. See Appendix. �

We now prove that if the parties have a common belief with no median in all di-

rections, then for some ϵ > 0, any slight divergence of the parties’ beliefs around the

initial common belief does not generate an ϵ-equilibrium.

Theorem 4.3. Let F be a belief for which F̄ does not have a median in all directions.

Then, there exists ϵ > 0 such that for any sequence (Pn ,Qn ) of belief pairs in which Pn

and Qn converge weakly to F , for some N and for all n > N , the political game with

beliefs (Pn ,Qn ) has no ϵ-equilibrium.
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Proof. Suppose the contrary. Then for every natural number k, there exists a sequence

(Pn
k
,Qn

k
) of belief pairs such that Pn

k
and Qn

k
converge weakly to F as n → ∞, and

a k−1-equilibrium (xn
k
, yn

k
) exists for the belief pair (Pn

k
,Qn

k
) for all n. Obviously we

may assume that xn
k
� yn

k
for all n. Since X and S are compact, for every k, without

loss of generality we assume that (xn
k
, yn

k
) → (xk , yk ) for some (xk , yk ) and snk :=

(xn
k
− yn

k
)/‖xn

k
− yn

k
‖ → sk for some sk ∈ S .

Now, consider the k−1-best response conditions for the strategy pair (xn
k
, yn

k
) in the

game with beliefs (Pn
k
,Qn

k
):

P̄nk (H (xn
k
+yn

k
)/2,sn

k
) ≥ max

t ∈S P̄nk (Hyn
k
,t ) − k−1

Q̄n
k (H (xn

k
+yn

k
)/2,−sn

k
) ≥ max

t ∈S Q̄
n
k (Hxn

k
,t ) − k−1.

By Lemma 4.4 and Maximum Theorem, as n → ∞ we have

F̄ (H (xk+yk )/2,sk ) ≥ max
t ∈S F̄ (Hyk ,t ) − k−1

F̄ (H (xk+yk )/2,−sk ) ≥ max
t ∈S F̄ (Hxk ,t ) − k−1.

Take a subsequence (xki , yki ) of (xk , yk ) such that (xki , yki ) → (x , y) for some (x , y)

and ski → s for some s ∈ S . As i → ∞ in the above inequalities, we have

F̄ (H (x+y )/2,s ) ≥ max
t ∈S F̄ (Hy,t ) and F̄ (H (x+y )/2,−s ) ≥ max

t ∈S F̄ (Hx,t ).

By Lemma 4.1 (iii), this means that x = y, which in turn implies that x (= y) is a

median in all directions of F̄ . �

Intuitively, if for any ϵ > 0 there is a sequence of belief pairs converging to (F ,F )

along which an ϵ-equilibrium (xnϵ , y
n
ϵ ) exists, then we can find a convergent subse-

quence (with respect to n and then to ϵ). The limit (x , y) turns out to be a median in all

directions of F̄ .
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4.9 Conclusion

We have constructed a multidimensional model of political competition where parties

may have different probabilistic beliefs about voters’ ideal policies. Our primary inter-

est has been in whether the well-known nonexistence of equilibrium is a consequence

of the special assumption that the parties have completely the same belief. We have

shown that at least when the parties have sufficiently similar beliefs, the non-existence

is still a typical case. This is true even if we allow for approximate equilibria at which

the parties imperfectly best respond to each other. An essential assumption in our

model is that each party maximizes the expected vote share. We do not know whether

the conclusion of this chapter would be valid even if we instead assumed that the parties

care other variables such as the winning probabilities. This question may be addressed

in future research.

4.10 Appendix: Proof of Lemma 4.1

Write En = Hzn,sn and E = Hz,s . Let FN =
⋂

n≥N En . we have for all n ≥ N ,

Λn (En ) ≥ Λn (FN ). Since Λn → Λ weakly,

lim inf
n

Λn (En ) ≥ Λ(FN ).

Since FN ↑ lim infn En as N → ∞,

lim inf
n

Λn (En ) ≥ lim
N

Λ(FN ) = Λ(lim inf
n

En ).

Take any x ∈ E◦ := {y : s · y > s · z}. Then clearly x ∈ En = {y : sn · y ≥ sn · zn }
eventually. Thus E◦ ⊂ lim infn En . By absolute continuity, Λ(E◦) = Λ(E). Hence

lim infn Λn (En ) ≥ Λ(E). Similarly, we can prove that lim supn Λn (En ) ≤ Λ(E) by

noting that lim supn En ⊂ E. �
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Chapter 5

On the realizability of social preferences in three-party

legislatures

5.1 Introduction

A widely held view about parliamentary systems is that while a single majority party

makes decisions more quickly, a multi-party system achieves more precise represen-

tation of society. But the scope of such an advantage that a multi-party system has is

rarely discussed.

In this chapter we limit the notion of representation of society to the sense that a

legislature realizes a given social preference relation over alternative policies. A social

preference relation is possibly intransitive. For example, it may represent cyclic social

majority preferences as illustrated by the well-known “Paradox of Voting.” Thus a

legislature that perfectly represents the society may induce cyclic decisions when it

deals with multiple agenda.

We focus on legislatures with at most three parties where policy is chosen through

majority voting. Each party is assumed to have transitive preferences. We study the

range of social preferences such a legislature can realize. By limiting attention to three-

party systems, we try to understand the minimal effect arising from the absence of
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a single-party majority. As we will see below, it has been shown that without any

constraint on the number of parties, representation of society is always possible. But it

seems unrealistic to expect that arbitrarily many parties may form.1

We provide a sufficient condition for a social preference relation to be compatible

with some three-party system. The condition says that the social preference relation

has no “closed path of 3-cycles.” This reveals a region of social preference relations

that is induced by some three-party legislature, but cannot be induced by any legislature

with a single-party majority.

The topic of this chapter is closely related to the well-known Paradox of Voting.

The Paradox states that three or more voters may induce cyclic majority preferences

over a set of alternatives even when each voter has transitive preferences. Thus the

social majority preference relation may be intransitive.2 An intransitive social prefer-

ence relation cannot be realized if the legislature consists of at most two parties with

transitive preferences (except under a special tie-breaking rule). Three is therefore the

minimum number of parties that can realize an intransitive social preference relation.

McGarvey (1953) demonstrates that the Paradox of Voting can be formulated in a

more general way. He shows that any preference relation over n alternatives is gener-

ated by some set of voters with transitive preferences. Stearns (1959) provides a lower

bound for the minimum number of voters necessary to induce all preference relations

over n alternatives. The lower bound is of the form c1n/ logn, with some constant c1.

Erdös and Moser (1964) provide a sharp upper bound of the form c2n/ logn.

These results have two implications for our study. On the one hand, if we wish

to count all possible social majority preference relations as potential social preference

relations (and if the population of society is large enough relative to the number of

alternatives), we should admit all preference relations. This is why we put no a priori

1Lijphart (1994) reports the effective numbers of parties for 70 electoral systems in 27 countries between
1945 and 1990. The average effective number of parliamentary parties over these systems is 3.4.

2DeMeyer and Plott (1970), Gehrlein and Fishburn (1975), Jones, Radcliff, Taber, and Timpone (1995),
and Tangian (2000) compute the probability that the majority voting by a random set of voters induces a
cycle.
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restriction on the social preference relation. On the other hand, when the number n of

policies is sufficiently large, there exists a preference relation that cannot be induced

by any set of three parties.

A recent paper by Brandt, Harrenstein, Kardel, and Seedig (2013) provides a full

characterization of preference relations that are realized by some three parties (voters,

in their framework). Based on Dushnik and Miller’s (1941) characterization of partial

orders having dimension ≤ 2, they show that a preference relation is compatible with
some three parties if and only if it is partitioned (“arc-disjointly”) into two sub-relations

such that one is a partial order and the other is an acyclic relation which is a reorienta-

tion of some partial order. Although our result is only a sufficient condition, it may be

useful as it is easy to check.

Alon, Brightwell, Kierstead, Kostochka, and Winkler (2006) provide a necessary

condition for a preference relation to be compatible with some three-party system.3 A

“dominating set” is defined as a subset A of policies such that for each policy x , some

policy a ∈ A is majority-preferred to x . Alon et al. show that every three-party majority
preference relation over policies has a dominating set containing at most three policies.

After describing the model (Section 5.2), we characterize the relation between a

social preference relation and a three-party system that realizes it (Sections 5.3 and

5.4). We then show a sufficient condition for a social preference relation to be realized

by some three-party system (Section 5.5). The proof of the sufficient condition provides

a procedure to construct a three-party system from a given social preference relation.

5.2 Model

Consider a society in which policy is chosen through majority voting in a legislature.

The society has a collective preference relation over the set of policies. It seeks to send

a set of representatives to the legislature in such a way that they will realize policy

3Their original result is written in different (graph-theoretic) terminology.
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choices in accordance with the social preference relation. Suppose that the society can

only choose a set of representatives that is partitioned into at most three parties.

Let X be a finite set of policies.

The social preference relation is a complete and asymmetric binary relation �S on
X . An example is the majority preference relation derived for individuals’ preferences.

A 3-party system is a triple �P= (�1,�2,�3) in which each party i has a complete,
asymmetric, and transitive preference relation �i over X . A 3-party system represents
a possible composition of a legislature, where the parties together occupy all seats,

and no single party has a majority of seats. (Thus a 3-party system can be interpreted

simply as a profile of three voters each having one vote.)

A 3-party system �P is said to represent the social preference relation �S if the
majority preference relation generated by �P coincides with �S (i.e., if for every pair
{x , y} ⊂ X of distinct policies,4 x �i y for two or three parties i ∈ {1,2,3} if and only
if x �S y). The social preference relation �S is called 3-party representable if some
3-party system represents �S .

Example 5.1. (The Paradox of Voting) Let X = {a,b,c}, and consider the cyclic social
preference relation a �S b �S c �S a. Define a 3-party system �P as follows: a �1
b �1 c and a �1 c; b �2 c �2 a and b �2 a; and c �3 a �3 b and c �3 b. Then �P
represents �S . �

Remark 5.1. A legislature with a single-party majority (e.g., a 2-party system without

majority ties) can be expressed as a 3-party system. For example, a 2-party system

(�1,�2) where party 1 is a majority in the legislature is defined as the 3-party system
(�1,�1,�2). �

4Throughout the chapter, an expression of the form “{x, y }” always represents an unordered pair of
distinct elements.
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5.3 3-party representation and labeling

Given a preference relation �i for party i, the disagreement set D (�i ,�S ) is defined as
the set of policy pairs on which the party and the society disagree:

D (�i ,�S ) = {{x , y} ⊂ X : (x �i y and y �S x) or (y �i x and x �S y)}.

Given a 3-party system �P , let D (�P ,�S ) denote the family of disagreement sets:

D (�P ,�S ) = (D (�i ,�S ))i=1,2,3.

A labeling of the social preference relation �S is a family of three subsets of policy
pairs L = (Li )i=1,2,3 (where we say “a policy pair {x , y} has label i” if {x , y} ∈ Li ) such
that:

L1: each policy pair has at most one label; and

L2: the three policy pairs in each 3-cycle of �S have distinct labels.5

Figures 5.1 and 5.2 illustrate examples of labeling, where “a → b” indicates the

relation a �S b.
Note that a labeling L determines a unique triple �= (�i )i=1,2,3 of (not necessarily

transitive) preferences, via the equation D (�,�S ) = L. Thus each label i may be seen
as specifying policy pairs on which “party i” (with a possibly intransitive preference

relation) disagrees with society. From this view, condition L1 ensures that at least

two parties agree with society on each policy pair. Condition L2, then, says that each

party disagrees with society on exactly one policy pair in each 3-cycle of the social

preferences.

5A labeling can be formulated as a vertex 3-coloring of the graph G (�S ) = (V , E ) defined as follows:
the vertex set V is the set of all policy pairs; the edge set E is defined so that two policy pairs are connected
if and only if they belong to the same 3-cycle of �S . Up to the colors assigned to policy pairs that do not
belong to any 3-cycle, a labeling of �S is naturally represented by a 3-coloring of G (�S ). There is a large
literature on the problem of 3-colorability especially for planar graphs.
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Theorem 5.1. Suppose that the social preference relation �S is 3-party representable.
Then, for any 3-party system �P that represents �S , the family D (�P ,�S ) of disagree-
ment sets is a labeling of �S .

Proof. Since �P represents �S , for each policy pair {x , y}, at most one party can dis-
agree with the society on {x , y}. Thus L1 holds. For each party i, since �i is transitive,
�i disagree with �S on at least one policy pair contained in each 3-cycle of �S . Thus
for each 3-cycle C, the map that assigns to each policy pair {x , y} in C the party that
disagrees with �S on {x , y} must be one-to-one. Thus L2 holds. �

Remark 5.2. The converse of Proposition 5.1 does not hold: for some social pref-

erence relation �S and some labeling L of �S , the triple �= (�i )i=1,2,3 defined by
D (�,�S ) = L is not a 3-party system satisfying the transitivity assumption. Consider

the labeling illustrated in Figure 5.2. Then for the triple � defined as above, (a,c,e,a) is
a cycle of �1 (and (a,e,c,a) is a cycle of �2). This example indicates that while a label-
ing is designed so that each label eliminates cycles that exists in the social preferences,

it may give rise to a new preference cycle. �

Remark 5.3. Let n̄ be the maximum number of policies such that any social preference

relation is 3-party representable. We do not know the exact value of n̄. Shepardson and

Tovey (2009) shows n̄ ≤ 7 by explicitly showing a digraph over 8 vertices such that
any tournament (i.e., a graph expression for a complete asymmetric relation) having

this as a subdigraph is not 3-party realizable. Another tournament that is not 3-party

realizable is called the “Paley tournament” on 19 vertices, denoted T19. Recall the

necessary condition for 3-party representability provided by Alon et al. (2006) which

we mentioned in Introduction. It can be checked (as Graham and Spencer (1971) claim)

that T19 does not satisfy the condition. �
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Figure 5.1: Oriented labeling
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Figure 5.2: Non-oriented labeling

5.4 Oriented labeling

Remark 5.2 says that while every 3-party system representing a social preference re-

lation can be constructed as the outcome of a labeling, some labeling fails to produce

a 3-party system satisfying the transitivity condition on the parties’ preferences. This

occurs because when the social ordering on a policy pair is reversed according to the

labeling, a new cycle may arise. In this section, we show that such effects will offset

each other if we impose an additional condition on the labeling.

A labeling L of the social preference relation �S is called oriented if:

O1: whenever both (a,b,c,a) and (a,b,d,a) are 3-cycles of �S , policy pairs {b,c} and
{b,d } (and hence pairs {c,a} and {d,a}) have the same label; and

O2: a policy pair has a label only if it belongs to some 3-cycle of �S .

The labeling in Figure 5.1 is oriented, but the labeling in Figure 5.2 is not oriented.

As before, we interpret a labeling L as determining, through the equation D (�P ,�S
) = L, a 3-party system �P with possibly intransitive preferences. Recall that in the
definition of a labeling, L1 requires that each party disagrees with society on exactly

one policy pair in each 3-cycle. Condition O1 says that, moreover, such assignments

of anti-social parties have the same order for any two adjacent 3-cycles. Condition O2
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just says that the legislature unanimously agree with society on any policy pair that

does not belong to any 3-cycle of the social preference relation.

Theorem 5.2. Suppose that there exists an oriented labeling L of the social preference

relation �S , and let �= (�i )i=1,2,3 be the triple of binary relations determined by D (�
,�S ) = L. Then �i is transitive for each i. Thus, if a social preference relation �S has
an oriented labeling, then it is 3-party representable.

Proof. By L1, for any policy pair {x , y}, there are at least two i’s such that �i and �S
agree on {x , y}.
Thus it remains to show that each party’s preference relation is transitive. It suffices

to check that �1 is transitive. Suppose on the contrary that �1 has a 3-cycle in three
policies {x , y,z}.
The three policies {x , y,z} cannot constitute a cycle of �S : indeed, if (x , y,z,x ) or

(x ,z, y,x ) is a 3-cycle of �S , by L2, �1 and �S disagree on exactly one policy pair in
{x , y,z} so that �1 is transitive on {x , y,z}.
Thus suppose without loss of generality that

x �S y �S z and x �S z.

There are two possibilities (Figures 5.3 and 5.4):

(a) pair {x ,z} is labeled 1, but pairs {x , y} and {y,z} are not; or

(b) pairs {x , y} and {y,z} are labeled 1, but pair {x ,z} is not.

Case (a). Because pair {x ,z} is labeled 1, by O2, there is a policy u � {x , y,z} such
that Cu = (x ,z,u,x ) is a 3-cycle of �S .
Suppose y �S u. Then (x , y,u,x ) is also a 3-cycle of �S . Since pair {x ,z} is labeled

1 in 3-cycle Cu = (x ,z,u,x ), by O1, pair {x , y} is labeled 1, a contradiction.
Now suppose u �S y. Then (y,z,u, y) is a 3-cycle of �S . Since pair {x ,z} is labeled

1 in 3-cycle Cu = (x ,z,u,x ), by O1, pair {y,z} is labeled 1, a contradiction.
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Figure 5.4: Case (b)

Thus, case (a) is impossible.

Case (b). Since pairs {x , y} and {y,z} are labeled 1, by O2, there are two policies
v,w � {x , y,z} such that Cv = (x , y,v,x ) and Cw = (y,z,w , y) are 3-cycles of �S . In
particular, y �S v,w �S y, and hence v � w .

Suppose v �S w . Then (w , y,v,w ) is a 3-cycle of �S . Since pair {x , y} is labeled 1
in 3-cycle Cv = (x , y,v,x ), by O1, pair {w , y} is labeled 1. This is impossible, because
it implies that 3-cycleCw = (y,z,w , y) contains two pairs labeled 1, which violates L2.

Now supposew �S v.
First consider the case where w �S x . In this case, (x ,z,w ,x ) is a 3-cycle of �S .

Since pair {y,z} is labeled 1 in 3-cycle Cw = (y,z,w , y), by O1, pair {x ,z} is labeled 1,
which contradicts (b).

Now suppose x �S w . Then (x ,w ,v,x ) is a 3-cycle of �S . Then since Cv =
(x , y,v,x ) is a 3-cycle of �S , by O1, pair {w ,x } is labeled 1. Then, since x �S z �S w ,
x �S w , and only pair {x ,w } is labeled 1 in {x ,z,w } (because {x ,z} is not labeled 1 by
the assumption of case (b) and {z,w } belongs to Cw in which {y,z} is labeled 1), this
falls into case (a) for the triple {w ,x ,z}.
Thus, case (b) is also impossible. Hence, �1 has no 3-cycle, and is therefore tran-

sitive. �

Remark 5.4. The existence of an oriented labeling is not necessary for 3-party rep-

resentability. Consider the social preference relation �S illustrated in Figure 5.5. It
can be checked that no labeling of �S is oriented. Figure 5.5 illustrates a non-oriented
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Figure 5.5: Social preference relation having no oriented labeling

labeling. Yet, this labeling defines a 3-party system representing �S . �

Remark 5.5. Proposition 5.2 shows that an oriented labeling, if it exists, provides

a method to construct a set of three voters that induces a given preference. Erdös

and Moser (1964) present a different construction that needs more voters, but always

succeeds. �

5.5 A sufficient condition for 3-party representability

We have seen that the existence of an oriented labeling is sufficient for 3-party rep-

resentability. In this section we provide a sufficient condition for the existence of an

oriented labeling. The condition restricts more explicitly the structure of the social

preference relation.

A closed path of 3-cycles of the social preference relation �S is a cyclic sequence
of distinct 3-cycles of �S , C = (C1,C2, ...,Ck ,C1) with k ≥ 2, such that:

C1: for each j, Cj and Cj+1 share a policy pair (denoted {x j , yj }); and

C2: {x j , yj } � {xh , yh } for j � h.6

6Here all subscripts are mod k .
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The social preference relation illustrated in Figure 5.5 contains the closed path

of 3-cycles ((a,b,c,a), (b,c,d ,b), (c,d ,e,c ), (d,e,a,d ), (e,a,b,e ), (a,b,c,a)). In contrast,

in Figure 5.1, the sequence ((a,b,c,a), (a,b,d ,a), (a,b,c,a)) is not a closed path of 3-

cycles: indeed, it does not satisfy C2.

Theorem 5.3. If the social preference relation �S has no closed path of 3-cycles, then
�S has an oriented labeling, and hence is 3-party representable.

Proof. The set of 3-cycles of �S is partitioned so that two 3-cycles belong to the same
class if they share a policy pair. Fix a class C. We show that we can implement an
oriented labeling for policy pairs belonging to 3-cycles in C as follows:

• Step 1. Choose any 3-cycle C1 ∈ C and label the policy pairs of C1 (of course,
subject to L1 and L2).

• Step t ≥ 2. For each 3-cycle Ct ∈ C which has been partially labeled at Step
t − 1, label the remaining policy pairs of Ct in such a way that O1 holds for the

labels assigned so far.

• Continue until the policy pairs of all 3-cycles in C are labeled.

Assume that all Steps j ≤ t − 1 (t ≥ 2) have successfully done, and we are at Step
t . Take Ct ∈ C for which Step t applies. It remains to check that Ct has two unlabeled

policy pairs for which we have full degree of freedom to assign labels (so that labeling

subject to O1 is possible); that is,

(a) Ct has two unlabeled policy pairs; and

(b) there is no C ′t � Ct in C sharing a policy pair with Ct for which Step t applies.

We only prove (a). (The proof of (b) is similar.) Suppose on the contrary thatCt has

two labeled policy pairs, {x , y} and {y,z}. Then there are two sequences of 3-cycles,
P = (C1,C2, ...,Ct −1,Ct ) and P ′ = (C1,C

′
2, ...,C

′
t −1,Ct ), such that: Step j applies to Cj
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and C ′j ; any two consecutive 3-cycles in each sequence share a policy pair; and {x , y}
and {y,z} belong to Ct −1 and C ′t −1, respectively.

Let {x j , yj } ({x ′j , y′j }) be the policy pair shared by the j-th and (j + 1)-th elements in
sequence P (P ′). Then, for sequence P , {x j , yj } � {xh , yh } for j < h, because otherwise
all policy pairs of Ch+1 would be labeled at Step j + 1. (The same is true for sequence

P ′.)

Now, Ct −1 and C ′t −1 are distinct because otherwise they would coincide with Ct .

Moreover, {xt −1, yt −1} = {x , y} � {y,z} = {x ′t −1, y′t −1}. Thus letting s be the maximum
j such that Cj = C

′
j or {x j , yj } = {x ′j , y′j }, we have 1 ≤ s ≤ t − 2. If {xs , ys } = {x ′s , y′s },

then, sinceCs+1 andC ′s+1 share {xs , ys }, the cyclic sequence (Cs+1, ...,Ct ,C
′
t −1, ...,C

′
s+1,Cs+1)

is a closed path of 3-cycles. If {xs , ys } � {x ′s , y′s }, then, since Cs = C ′s , the cyclic

sequence (Cs ,Cs+1, ...,Ct ,C
′
t −1, ...,C

′
s+1,Cs ) is a closed path of 3-cycles. Both cases

contradict the assumption of the proposition. �

5.6 Conclusion

Thus, a cyclic social preference relation is realized by some three-party system, unless

3-cycles constitute a closed path. This condition reveals a region of social preference

relations that are compatible with some three-party legislature but not with a legislature

having a single-party majority.

We have imposed no restriction on the composition of a legislature, apart from

the bound on the number of parties. But in reality a society is endowed with a set of

established parties. The preferences and seat shares of these parties may be limited

to certain ranges, irrespective of institutional arrangements the society makes. Under

such constraints, which type of party system achieves a better representation of society

is not obvious. Future research may extend the framework of this paper to include such

cases.
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