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Chapter 1

Introduction

Public procurement consists a substantial part of economic activity. The OECD (2012)

reports that governments in OECD member countries spend on average 12% of their GDP

on public procurement. A government procures a wide range of goods, works and services

from private firms. Physical facilities such as railways, schools or hospitals and public

services such as transportation, education or medical service have direct impacts on the

society and the economy. There are potentially many ways to conduct the procurement:

competitive bidding, negotiations, posted prices, and so on. A procurement authority

must find an efficient procedure of procurement. In this thesis, we study the optimal

design of procurement mechanisms in some economic environments.

A large economic literature has addressed the issue of the optimal design of procure-

ment mechanisms. The book by Laffont and Tirole (1993) offers a comprehensive analysis

of the issue and provides an excellent reference on related theoretical models. The key

aspect of these studies is that suppliers have some private information to which a buyer

has only a limited access. A procurement mechanism is then used to elicit suppliers’

information about their types and determine the terms of trade. Although the buyer has

full bargaining power to design a mechanism, suppliers with informational advantages

can obtain positive information rents. The buyer then faces a tradeoff between allocative

efficiency and rent extraction. On the one hand, the buyer aims to increase the gains

from trade. On the other hand, the buyer aims to reduce suppliers’ information rents.

In order to justify the assumption that a planner dislikes monetary transfers to firms,

Laffont and Tirole (1986) refer to an inefficient tax system.

The previous studies have characterized the buyer’s optimal (direct) mechanism in

many procurement environments. The optimal mechanism is defined as a mechanism

that maximizes the buyer’s expected payoff among those in which suppliers’ truth-telling

strategies form a Bayesian Nash equilibrium and any supplier obtains nonnegative ex-

pected payoff. The so-called “Revelation Principle” guarantees that the optimal direct

mechanism yields to the buyer the maximum payoff among all Bayesian Nash equilibria

in any procurement mechanism. The buyer’s optimal direct mechanism is determined to
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balance the tradeoff between allocative efficiency and rent extraction. Under some reg-

ularity conditions, it is shown that, for any type profile, the buyer’s optimal mechanism

determines the terms of trade to maximize virtual surplus not social surplus. Here, the

virtual surplus is defined as social surplus minus suppliers’ information rents.

Given the characterization results, we have a more practical question: whether and

under what conditions procurement mechanisms used in practice can implement the same

equilibrium outcome as the optimal direct mechanism. By answering these questions,

we can provide useful policy guidelines. In Chapter 2, we analyze a new method of

procurement, scoring auction, recently introduced in the whole world. Also, there may

be legal constraints which restrict the class of available procurement mechanisms. For

instance, procurement authorities in the United States are bound to award contracts

through competitive bidding under the Federal Acquisition Rules. In Chapter 3, we

investigate whether the buyer should procure two kinds of tasks through a single auction

or two sequential auctions. In the two chapters, we assume that the buyer has no private

information in contrast with suppliers. In Chapter 4, we remove the strong assumption.

We will study three models in non-cooperative game theory:

1. Scoring auctions with multi-dimensional quality,

2. Sequential procurement auctions with risk-averse suppliers,

3. Bilateral trade in which a seller with private information selects a mechanism.

Optimal Design of Scoring Auctions with Multidimen-

sional Quality

In Chapter 2, we study the optimal design of scoring auctions. In the procurement

auction mechanism, suppliers offer not only price but also quality they promise to ensure

in a project. Hence bids are multi-dimensional. Suppliers’ bids are evaluated by a scoring

rule so that a supplier with the highest score wins a contract. There are many examples

of scoring rules adopted by state departments of transportation in the United States.

For instance, the rule of “weighted criteria” puts a weight on each of price and quality

attributes (e.g. delivery date, safety level) and gives a supplier’s offer a weighted sum

of subscores. We say that a scoring rule is optimal if a scoring auction with the rule

implements the buyer’s optimal direct mechanism. The purpose of this chapter is to

construct an optimal scoring rule in an environment with various quality attributes.

We extend the model of Che (1993) by allowing for multi-dimensional quality. In

an environment where quality is one-dimensional, Che derives a symmetric equilibrium

bidding strategy in a game induced by the scoring auction, and constructs an optimal

scoring rule. Although many scoring rules used in practice apply multiple quality criteria,
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there are no theoretical studies investigating how to construct an optimal scoring rule

when quality is multi-dimensional. In the model of multi-dimensional quality, it will be

anticipated that the interaction among quality attributes significantly affects the optimal

form of scoring rules.

We consider two classes of scoring rules: a rule which is supermodular in quality

and a rule which is additively separable in quality. The rule of “weighted criteria” is

included in the latter class. First, we show that there exists an optimal scoring rule

which is supermodular in quality if the virtual surplus is quasisupermodular in quality.

These properties of supermodularity and quasisupermodularity represent the concept of

complementarity between quality attributes. Second, we derive a necessary condition

and a sufficient condition for the existence of an optimal scoring rule which is additively

separable in some quality attributes. An example shows that an extension of Che (1993)’s

scoring rule cannot implement the buyer’s optimal direct mechanism. The scoring rule is

additively separable in quality.

Sequential Procurement Auctions with Risk-Averse

Suppliers1

In Chapter 3, we compare two procurement mechanisms, bundling and unbundling, in

a two-stage auction model with risk-averse suppliers. They differ in whether two kinds

of tasks of investment and production are procured through a single auction or two

sequential auctions. For instance, in many construction projects, a procurement authority

has the option of choosing between a bundling method called “design-build” and an

unbundling method called “design-bid-build.” Under the design-build method, a private

party is responsible for performing both tasks of design and construction. Under the

design-bid-build method, the two tasks are separated. The purpose of this chapter is

to compare the performance of the two procurement mechanisms, and to investigate the

buyer’s choice problem of a mechanism.

Hart (2003) compares a bundling method with an unbundling method in an incomplete

contract model. He shows that a bundling mechanism gives a supplier strong investment

incentives. His model is so simple that the issues of suppliers’ private information and

production risks are not addressed. We formalize an auction model with these two ele-

ments. A risk-neutral buyer procures a public infrastructure from risk-averse suppliers.

The investment stage is followed by the production stage. In a bundling mechanism, the

buyer holds a single auction. In an unbundling mechanism, the buyer holds two sequential

auctions.

1Published in Journal of Economics. The final publication is available at link.springer.com. Direct
link: http://link.springer.com/article/10.1007%2Fs00712-013-0381-1
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An important feature of our model is that there are two categories of production

risks. The first category is an aggregate risk. The risk is common to all suppliers. The

second one is an idiosyncratic risk. The risk is specific to each supplier. Each supplier’s

production cost is affected by the two risk factors as well as the cost-reducing investment.

After the cost-reducing investment is made, the realized value of the aggregate risk is

commonly known to all suppliers, and each supplier privately knows the realized value of

the idiosyncratic risk to him.

The main result of this chapter is as follows. The choice of a bundling mechanism is

optimal for the buyer if the aggregate risk is below certain threshold. The result may not

hold true for the idiosyncratic risk. Key factors leading to the result are the differences of

risk sharing, information rents, and investment incentives between the two mechanisms.

In the bundling mechanism, all the risks are taken by a single supplier. The buyer has to

pay a high risk premium to the supplier, while the mechanism implements the efficient

investment. In contrast, the unbundling mechanism provides little incentives for the

investment due to a moral hazard problem. The buyer must pay risk premia for the

idiosyncratic risk, indirectly through the payment of information rents. The buyer pays

no risk premium for the aggregate risk because the risk is transferred from the suppliers

to the buyer through the second-stage auction. Therefore, a decrease in the aggregate

risk is beneficial to the buyer and the society only in the bundling mechanism, unlike the

idiosyncratic risk. A decrease in the idiosyncratic risk may reduce the information rents

in the unbundling mechanism.

Informed Principal Problems in Bilateral Trading

In the above two chapters, we have assumed that the procurement authority has no pri-

vate information. This assumption is too restrictive in many situations. For instance,

the state Department of Transportation in the United States may possess superior in-

formation about the economic value of a new highway. Moreover, the department may

have private information about political issues which affect a contractor’s construction

costs. In Chapter 4, we consider a bilateral trade environment where a seller with private

information proposes a trading mechanism to a buyer with private information. The

seller’s selection of a mechanism may convey information about her type to the buyer.

Although we assume that the seller has full bargaining power, we can exchange the roles.

The purpose of this chapter is to prove the existence of a separating equilibrium, and to

investigate allocative efficiency and distributional consequences in the equilibrium.

Our model belongs to the informed-principal literature. In the case of interdepen-

dent values, Maskin and Tirole (1992) characterize the set of mechanisms selected in

equilibrium. Their analysis rests on a fundamental concept called an “RSW (Rothschild-

Stiglitz-Wilson)” mechanism. They define it as a mechanism that maximizes the prin-
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cipal’s interim payoff for each type within the class of mechanisms which are interim

incentive compatible for the principal and both ex post incentive compatible and individ-

ually rational for the agent. They show that the set of mechanisms selected in equilibrium

consists of incentive-feasible mechanisms which weakly dominate the RSW mechanism.

After showing the result in the case where only the principal has private information,

they extend it to the case where the agent also has private information. The extension,

however, requires specific assumptions on the payoff functions.

We introduce a concept called an LCS (least-cost-separating) mechanism. The defi-

nition differs from the RSW mechanism in that the interim incentive compatibility con-

strains for the principal are replaced by the interim upward incentive compatibility con-

straints. Although the constraints are weakened in the LCS mechanism, the LCS and

RSW mechanisms are equivalent in our model.

First, we show that there exists a separating equilibrium, and the seller’s interim

payoff vector in any separating equilibrium is uniquely determined by that in the LCS

mechanism. A simple observation shows that the seller’s interim payoff vector in the

LCS mechanism is the minimum of the set of equilibrium payoff vectors. Therefore, our

existence theorem implies the same characterization result as Maskin and Tirole (1992).

Next, we investigate allocative efficiency and distributional consequences in the LCS

mechanism. We provide sufficient conditions on the seller’s cost function under which

the allocation rule is distorted upward or downward compared to the optimal mechanism

when the seller’s type is common knowledge. Accordingly, the buyer is weakly better

off or worse off than in the optimal mechanism. This is in contrast to the case where

the buyer with no private information cannot obtain any information rent in the LCS

mechanism. The privacy of the seller’s information weakens her monopolistic power. The

effect may be socially desirable in our model.

Organization of This Thesis

The rest of the thesis is organized as follows. In Chapter 2, we study the optimal design

of scoring auctions. We construct scoring rules which implement the optimal direct mech-

anism. In Chapter 3, we compare the performance of the bundling mechanism with that

of the unbundling mechanism. We provide conditions on parameters under which each

choice is optimal for the buyer. In Chapter 4, we address an informed principal problem

in a bilateral trade environment. We prove the existence of a separating equilibrium, and

investigate the efficiency properties of the LCS mechanism. Chapter 5 concludes.
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Chapter 2

Optimal Design of Scoring Auctions

with Multidimensional Quality

2.1 Introduction

Auction rules of public procurement have changed from one-dimensional bidding to multi-

dimensional bidding. In contrast with the former traditional rule in which each supplier

submits only a price-bid, the latter auction rule requires suppliers to offer not only price

but also quality they promise to ensure in a project. For instance, in the EU, Article 53

of Directive 2004/18/EC specifies the “Most Economically Advantageous Tender.” In the

tendering procedure, procurement authorities award contracts based on various criteria

such as price, technical merit, aesthetic characteristics, delivery date, and so on. The

design of multi-dimensional auctions is a matter of great concern to the procurement

authorities, reflecting the fact that public procurement accounts for about 16% of GDP

in OECD member countries (OECD, 2008). The purpose of this chapter is to study

the optimal design of multi-dimensional auctions in an environment with various quality

attributes.

The essential element of the multi-dimensional auction is a scoring rule. The rule,

which evaluates suppliers’ offers and gives them scores, should be carefully designed be-

cause it considerably affects suppliers’ decisions what offers to make. There are many

examples of scoring rules adopted by state departments of transportation in the United

States: “A+B bidding” (Arizona, etc.), “weighted criteria” (Delaware, Idaho, Mas-

sachusetts, Oregon, Utah, Virginia, etc.), “adjusted bid” (Arizona, Maine, Michigan,

North Carolina, South Carolina, South Dakota, etc.), and so on. See Molenaar and

Yakowenko (2007) for the detail. For instance, the rule of “weighted criteria” puts a

weight on each of price and quality attributes (e.g. delivery date, safety level) and evalu-

ates each attribute individually. A total score of each offer is a weighted sum of subscores

and a supplier with the highest total score wins a contract.
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In this chapter, we extend the model of Che (1993) by allowing for multi-dimensional

quality. In the seminal work, Che shows that a scoring auction with a properly designed

scoring rule implements the buyer’s optimal mechanism. Although many scoring rules

used in practice apply multiple quality criteria, there are no theoretical studies investigat-

ing whether a scoring auction can implement the optimal mechanism in an environment

where quality is multi-dimensional. It is by no means trivial to answer the question and

show what form of scoring rule succeeds in the implementation, at least from the “Rev-

elation Principle.” In the model of multi-dimensional quality, it will be anticipated that

the interaction among quality attributes significantly affects the optimal form of scoring

rule. These observations motivate our analysis.

A scoring rule announced by the buyer induces the following auction game. First,

all suppliers’ (one-dimensional) cost parameters are realized. Each supplier is privately

informed about his own cost parameter. Second, each supplier simultaneously offers both

price and quality. A single supplier wins if the score of his offer is the highest among

suppliers and higher than the predetermined reserve score.1 The winner’s offer becomes

a binding contract. We say that a scoring rule is optimal if a scoring auction with the

rule implements the optimal mechanism.

We obtain two sets of results. First, we show that there exists an optimal scoring rule

which is supermodular in quality if the so-called “virtual surplus” is quasisupermodular

in quality. These properties of supermodularity and quasisupermodularity represent the

concept of complementarity between quality attributes. They are specific to the model

of multi-dimensional quality. In particular, it will be shown that the scoring rule should

evaluate all quality attributes as a whole (not separately) to give a total score in a

complementary way. Second, we derive a necessary condition and a sufficient condition

for the existence of an optimal scoring rule which is additively separable in some quality

attributes. Our results show that when the buyer establishes some sets of subcriteria to

use the additively separable rule, each pair of quality attributes in the distinct sets should

be complementary in terms of the production cost.

In a seminal article, Che (1993) shows that a scoring auction with a properly designed

scoring rule implements the buyer’s optimal mechanism characterized by Laffont and

Tirole (1987), McAfee and McMillan (1987), and Riordan and Sappington (1987). Branco

(1997) extends this result to an environment where each supplier’s production cost has

a common-cost component, so that his cost is correlated with the other suppliers’ costs.

Che and Branco assume that both quality and each supplier’s type are one-dimensional.

In contrast, Asker and Cantillon (2008) consider a fully general environment. They

allow that both elements are multi-dimensional. The main results of Asker and Can-

tillon are the characterization of equilibrium bidding behavior and the expected utility

equivalence between some formats of scoring auction. They also show that the scoring

1The introduction of reserve score is also an extension of Che (1993).

9



auction outperforms some other mechanisms from the buyer’s viewpoint. On the other

hand, they have not investigated whether a scoring auction can implement the optimal

mechanism. The likely reason is that it is extremely difficult to characterize the opti-

mal mechanism when the supplier has multi-dimensional private information. Asker and

Cantillon (2010), however, characterize the optimal mechanism in a specific environment.

In the environment, quality is one-dimensional, each supplier’s type consists of two pa-

rameters (fixed cost and marginal cost) and each parameter is a binary random variable.

They show that the scoring auction yields a performance close to that of the optimal

mechanism, taking a numerical simulation approach.

All of the above studies including the current one focus on “quasi-linear” scoring rules.

Under the rule, a total score of supplier’s offer is given by a quality score minus price. A

typical example of quasi-linear rule is “weighted criteria.” In a recent study, Hanazono

et al. (2011) consider “price-quality ratio” scoring rules under which a total score is given

by price divided by a quality score, and analyze the equilibrium bidding behavior.

In addition to these theoretical studies, there is some experimental evidence support-

ing the high performance of scoring auctions compared to that of traditional price-only

auctions (Bichler, 2000; Chen-Ritzo et al., 2005).

Our analysis contributes to the literature on scoring auctions in two ways. First,

we construct the optimal scoring rule in a new way. When quality is one-dimensional,

the scoring rule constructed by Che (1993) and Branco (1997) provides suppliers with

incentives to offer the appropriate quality level. On the other hand, our example shows

that when quality is multi-dimensional, an extension of their scoring rule may induce

unsuitable quality offers from the buyer’s viewpoint. To resolve this problem, we construct

the optimal scoring rule by applying the method of monotone comparative statics. The

constructed rule satisfies supermodularity in quality to deter a suppliers’ deviation from

the desirable quality offer for the buyer. Also, as a by-product of using the monotone

comparative statics method, we require no assumptions of concavity (or convexity) and

differentiability in quality of the value and cost functions. Second, we provide a useful

guide to designing scoring rules which are additively separable in some quality attributes.

The result has important policy implications. Additively separable scoring rules (e.g.

“weighted criteria”) are widely adopted, and it must be easier for procurement authorities

to administer those rules.

This chapter is organized as follows. Section 2.2 presents the model which generalizes

that of Che (1993). Section 2.3 derives the equilibrium bidding strategy. Section 2.4

shows how to design a scoring rule to implement the optimal mechanism. Section 2.5

investigates how the buyer should classify quality attributes when using a scoring rule

which is additively separable in the attributes. Section 2.6 concludes. All proofs are in

the Appendix.
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2.2 The Model

Consider a buyer who procures a single product from one of N suppliers. A contract

between the buyer and supplier i ∈ {1, ..., N} is denoted by (pi, qi) ∈ R+ × Q. Under

the contract, supplier i must deliver a product of quality qi = (q1i , ..., q
M
i ) ∈ Q ⊂ R

M in

exchange for price pi ∈ R+.
2 For each m ∈ {1, ...,M}, qmi represents a level of quality

attribute. Supplier i’s cost parameter is given by θi ∈ [θ, θ̄] ⊂ R. Suppliers’ types

(θ1, ..., θN) are random variables which are independent across suppliers. The cumulative

distribution function of θi is given by F , with a density function f that is strictly positive

everywhere. Each supplier has private information about his realized type respectively.

The prior probability distribution is common knowledge.

Supplier i of type θi earns profits p− c(q, θi) from a contract (p, q). Here, c(q, θi) > 0

is his production cost. The buyer’s utility from a contract (p, q) with a supplier of type θi

is a weighted sum of consumers’ surplus and profits, i.e. v(q)− p+α(p− c(q, θi)). Here,

v(q) is the valuation for a product of quality q, and α ∈ [0, 1] is a weight on profits. We

make the following assumptions.

Assumption 2.1. Q = ×M
m=1Qm. Here, Qm ⊂ R is a closed interval or a finite set.

Assumption 2.2. v is continuous in q.

Assumption 2.3. c is continuous in (q, θ) and increasing in q. c is differentiable and

increasing in θ. cθ := ∂c/∂θ is continuous in (q, θ) and nondecreasing in θ.

Assumption 2.4. c has strictly increasing differences in (q, θ), i.e. c(q′, θ) − c(q, θ) is

increasing in θ for each q′ > q in Q. cθ has increasing differences in (q, θ), i.e. cθ(q
′, θ)−

cθ(q, θ) is nondecreasing in θ for each q′ > q in Q.

Assumption 2.5. F
f
is nondecreasing in θ.

We will apply the monotone comparative statics method. See Topkis (1998) for some

notions. Assumption 2.1 ensures that Q is a compact lattice. Assumptions 2.4 and 2.5

ensure that the “virtual surplus” defined later has strictly decreasing differences in (q, θ).

There is an auction rule (mechanism) that is available to the buyer: a scoring auction.

We first define a scoring rule as a real-valued function S : R+ ×Q → R. In the scoring

auction, each supplier offers both price and quality. The scoring rule S assigns a score

S(p, q) to each offer (p, q). With a reserve score normalized to zero, supplier i wins only

if his score is nonnegative and the highest among suppliers.3 We consider a first-score

format. In the format, winner i is awarded a binding contract (pi, qi) he offered in the

auction. This format corresponds to the first-price sealed-bid format in standard auctions.

We focus on a quasi-linear scoring rule. The rule takes a form of S(p, q) = s(q)− p. We

2Bold letters denote some vectors: q ≥ q̂ means qm ≥ q̂m for each m; q > q̂ means q ≥ q̂ and q �= q̂;
q � q̂ means qm > q̂m for each m.

3We assume that if there is a nonnegative tie score, then each supplier achieving the highest score
wins with equal probability. All results hold for any other tie-breaking rule.
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also call a function s : Q → R a scoring rule. We assume that s is upper semicontinuous

in q, and s has a cost parameter θ̄s ∈ (θ, θ̄] which satisfies maxq∈Q[s(q)− c(q, θ̄s)] = 0.

A scoring rule s publicly announced by the buyer induces the following auction game.

First, all suppliers’ types θ = (θ1, ..., θN) are realized. Each supplier is privately informed

about his own type respectively. Second, supplier i submits an offer (pi, qi) as a sealed

bid. Then, the game ends. If supplier i of type θi who offers (pi, qi) wins, then he

receives pi − c(qi, θi). The other suppliers receive zero payoffs, and the buyer receives

v(qi)− pi + α(pi − c(qi, θi)). If no supplier wins, then the buyer and all suppliers receive

zero payoffs.

We consider a Bayesian Nash equilibrium in the auction game. In the following, we

simply call it an equilibrium. With a slight abuse of notation, we denote supplier i’s

bidding strategy by (pi, qi) : [θ, θ̄] → R+ × Q. We assume that no supplier uses weakly

dominated strategies.

2.3 Equilibrium Bidding Strategy

In this section, we derive the equilibrium bidding strategy. The following lemma char-

acterizes a symmetric equilibrium, where all suppliers use the same bidding strategy.

Although our environment is substantially more general than Che (1993) and there are

slight technical difficulties, we can apply his technique to prove the lemma.

Lemma 2.1. The auction game induced by a scoring rule s has the following symmetric

equilibrium (p∗, q∗).

(i) The bidding strategy is as follows. For any θ ∈ [θ, θ̄s],

q∗(θ) ∈ argmax
q∈Q

[s(q)− c(q, θ)] (2.1)

p∗(θ) = c(q∗(θ), θ) +
∫ θ̄s

θ

cθ(q
∗(z), z)

(
1− F (z)

1− F (θ)

)N−1

dz. (2.2)

For any θ ∈ (θ̄s, θ̄], (p∗(θ), q∗(θ)) is an arbitrary offer which satisfies s(q∗(θ))−p∗(θ) < 0.

(ii) A supplier of type θi wins only if θi = min{θ1, ..., θN , θ̄s}. For any θ ∈ [θ, θ̄s], any

offer (p′, q′) with q′ �∈ argmaxq∈Q [s(q)− c(q, θ)] is weakly dominated by (p, q∗(θ)) with

s(q∗(θ))− p = s(q′)− p′.

It is worth emphasizing that any supplier who wins with positive probability chooses

quality so as to maximize a quality score minus his production cost, as in (2.1). Actually,

any offer which does not maximize s(q)− c(q, θ) is weakly dominated by the quality offer

q∗(θ) with some price offer. Given the optimal quality offer q∗(θ), the optimal price offer

p∗(θ) is determined by (2.2). The price offer is greater than the production cost.
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Lemma 2.1 also implies that in equilibrium the most efficient supplier wins provided

that his type is lower than θ̄s. Let θ(N) := min{θ1, ..., θN} be the lowest cost parameter

among suppliers. We denote the cumulative distribution function of θ(N) by F(N)(·) :=
1−(1−F (·))N . Then, the buyer’s expected utility from announcing a quasi-linear scoring

rule s is

F(N)(θ̄
s)E
[
v(q∗(θ(N)))− p∗(θ(N)) + α[p∗(θ(N))− c(q∗(θ(N)), θ(N))] | θ(N) ≤ θ̄s

]
=

∫ θ̄s

θ

[
v(q∗(θ))− c(q∗(θ), θ)− (1− α)cθ(q

∗(θ), θ)
F (θ)

f(θ)

]
dF(N)(θ),

where the equality follows from the substitution of p∗(θ(N)) and the interchange of the

order of integration. We now define the virtual surplus as a function Φ := v−c−(1−α)cθ
F
f
.

Its value Φ(q, θ) = v(q)− c(q, θ)− (1−α)cθ(q, θ)
F (θ)
f(θ)

times the density f(θ) is the social

surplus generated by trading a product of quality q between the buyer and a supplier of

type θ, minus the sum of information rents paid to the more efficient supplier than θ.

Using this virtual surplus, the buyer’s expected utility can be rewritten as

∫ θ̄s

θ

Φ(q∗(θ), θ)dF(N)(θ).

2.4 Optimal Scoring Rule

In this section, we study the implementation problem. The analysis proceeds in two

steps. First, we characterize an optimal mechanism. We use the standard mechanism-

design approach with the envelope theorem of Milgrom and Segal (2002). Second, we

find the condition under which a scoring auction implements the optimal mechanism.

We investigate how the scoring rule should be designed.

In a first step, we use the Revelation Principle to focus on “incentive compati-

ble direct mechanisms.” A direct mechanism is an 3N -tuple of measurable functions

(Pi,Qi, Xi)i∈{1,...,N}. Here, (Pi,Qi, Xi) : [θ, θ̄]
N → R×Q× [0, 1] for each i. Now, fix any

profile of types θ̂ = (θ̂1, ..., θ̂N) reported by suppliers. The payment schedule Pi specifies

the expected payment Pi(θ̂) from the buyer to supplier i. The quality schedule Qi spec-

ifies quality Qi(θ̂) supplier i must ensure when delivering the product. The function Xi

specifies the trading probability Xi(θ̂) between the buyer and supplier i. Since no trade

is allowed,
∑N

i=1 Xi(θ̂) ≤ 1. A direct mechanism (P ∗
i ,Q

∗
i , X

∗
i )i∈{1,...,N} is optimal (for the
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buyer) if it solves the following problem:

max
ρ=(Pi,Qi,Xi)i∈{1,...,N}

N∑
i=1

E [Xi(θ)v(Qi(θ))− Pi(θ) + α[Pi(θ)−Xi(θ)c(Qi(θ), θi)]]

s.t. Πρ
i (θi | θi) ≥ Πρ

i (θ̂i | θi) for any θi, θ̂i ∈ [θ, θ̄], i ∈ {1, ...N} (2.3)

Πρ
i (θi | θi) ≥ 0 for any θi ∈ [θ, θ̄], i ∈ {1, ...N} (2.4)

Here, Πρ
i (θ̂i | θi) := Eθ−i

[Pi(θ̂i,θ−i)−Xi(θ̂i,θ−i)c(Qi(θ̂i,θ−i), θi)]. The first constraint is

the interim incentive compatibility (IC) constraint for each supplier, and the second one

is the interim individual rationality (IR) constraint for each supplier.

The next lemma characterizes an optimal mechanism. To explain the hypothesis of

the lemma and the related notions, we introduce some definitions. Denote q ∧ q̂ :=

(min{q1, q̂1}, ...,min{qM , q̂M}) and q∨ q̂ := (max{q1, q̂1}, ...,max{qM , q̂M}). Here, q, q̂ ∈
Q implies q∧q̂, q∨q̂ ∈ Q because Q is a lattice. The virtual surplus Φ is quasisupermodu-

lar in quality if, for any q, q̂ ∈ Q and θ, Φ(q∧q̂, θ) ≤ Φ(q, θ) implies Φ(q̂, θ) ≤ Φ(q∨q̂, θ),
and Φ(q ∧ q̂, θ) < Φ(q, θ) implies Φ(q̂, θ) < Φ(q ∨ q̂, θ). The virtual surplus Φ is super-

modular in quality if, for any q, q̂ ∈ Q and θ, Φ(q, θ)−Φ(q∧ q̂, θ) ≤ Φ(q∨ q̂, θ)−Φ(q̂, θ).

We apply the same definition to a scoring rule s. It is easy to show that if Φ is super-

modular in quality, then Φ is quasisupermodular in quality. Thus, quasisupermodularity

is a weaker notion than supermodularity. These notions express the concept of comple-

mentarity between quality attributes.

Lemma 2.2. Suppose that the virtual surplus Φ is quasisupermodular in quality. Then,

the following direct mechanism (P ∗
i ,Q

∗, X∗
i )i∈{1,...,N} is optimal for the buyer:

X∗
i (θ) :=

⎧⎪⎨
⎪⎩

1 if θi < min{θ1, ..., θi−1, θi+1, ..., θN , θ̄
∗}

1
�{j|θj=θi} if θi = min{θ1, ..., θi−1, θi+1, ..., θN , θ̄

∗}
0 if θi > min{θ1, ..., θi−1, θi+1, ..., θN , θ̄

∗}
(2.5)

Q∗(θi) ∈ argmax
q∈Q

Φ(q, θi) for any i (2.6)

P ∗
i (θ) := X∗

i (θ)

[
c(Q∗(θi), θi) +

∫ θ̄∗

θi

cθ(Q
∗(z), z)

(
1− F (z)

1− F (θi)

)N−1

dz

]
(2.7)

Here, θ̄∗ ∈ [θ, θ̄] is a cost parameter such that Φ(Q∗(θ), θ) ≥ 0 iff θ ∈ [θ, θ̄∗]. In the

mechanism, Q∗(θi) ≥ Q∗(θ′i) for any θi, θ
′
i with θi < θ′i.

The quasisupermodularity of the virtual surplus, which is trivially satisfied if quality

is one-dimensional, plays a key role in determining the property of the optimal quality

schedule Q∗. The proof shows that a necessary and sufficient condition for the IC con-

straints (2.3) is given by the two conditions. With these conditions, we can rewrite the
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buyer’s maximization problem as follows:

max
(Qi,Xi)i∈{1,...,N}

N∑
i=1

E [Xi(θ)Φ(Qi(θ), θi)]

s.t. For each θ, θ̂ ∈ [θ, θ̄] with θ < θ̂ and each i ∈ {1, ...N},∫ θ̂

θ

Eθ−i
[Xi(z,θ−i)cθ(Qi(z,θ−i), z)−Xi(θ̂,θ−i)cθ(Qi(θ̂,θ−i), z)]dz ≥ 0. (2.8)

The condition (2.8), which we call the monotonicity condition, is automatically satisfied if

bothQi andXi are nonincreasing in θi. The proof shows that the quasisupermodularity of

the virtual surplus together with Assumptions 2.4 and 2.5 implies that a quality schedule

Qi which maximizes the virtual surplus Φ(q, θi) is nonincreasing in θi. The proof also

shows that the maximized virtual surplus Φ(Q∗(θi), θi) is nonincreasing in θi. As a result,

the quality schedule Q∗ and the trading probability X∗
i defined in Lemma 2.2 satisfy the

monotonicity condition (2.8). The optimal mechanism prescribes that the more efficient

a supplier is, the higher levels of all quality attributes he is required to achieve. On the

other hand, without the quasisupermodularity, the optimal quality schedule Q∗ may be

nonmonotonic in θi. Even ifQm∗ is increasing in θi for somem, the monotonicity condition

(2.8) can be satisfied when cθ(Q(θi), z) is decreasing in θi. The following example shows

that this is the case.4

Example 2.1. Assume that M = 2, Q1 = Q2 = {1, 2}, v(q1, q2) = 0 if q1 = q2 = 1 and

v(q1, q2) = 100 otherwise. Assume also that c(q1, q2, θ) = 6θq1 + (3θ + 9)q2 − q1q2, θ

is uniformly distributed on [1, 3], and α = 0. Then, one can show that Φ(q1, q2, θ) =

v(q1, q2) − (12θ − 6)q1 − (6θ + 6)q2 + q1q2, and Φ is not quasisupermodular in quality.

Actually, Φ is submodular in quality, i.e. −Φ is supermodular in quality. The following

levels of quality attributes maximizes Φ(q1, q2, θ) for any θ:

Q∗(θ) = (Q1∗(θ), Q2∗(θ)) :=

{
(2, 1) if θ ∈ [1, 2)

(1, 2) if θ ∈ [2, 3]

The quality schedule Q∗ together with X∗
i defined in Lemma 2.2 and θ̄∗ = θ̄ = 3 satisfies

the monotonicity condition (2.8) because cθ(Q
∗(θ), z) = 15 if θ ∈ [1, 2) and cθ(Q

∗(θ), z) =

12 if θ ∈ [2, 3]. Thus, cθ(Q
∗(θ), z) is decreasing in θ. Therefore, the optimal quality

schedule Q∗ is nonmonotonic in θ because Q1∗ is decreasing whereas Q2∗ is increasing.

Remark 2.1. We now give primitive conditions which guarantee that the virtual sur-

plus is quasisupermodular in quality. For simplicity, suppose that there are two qual-

ity attributes. We also assume that the quality space Qm is a compact interval for

each m, the functions v and c are twice differentiable, and θ > 0. We specify the

4This can occur even in a single-agent screening model. See Laffont and Martimort (2002).
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valuation function by v(q1, q2) = v1(q1) + βq1q2 + v2(q2), and the cost function by

c(q1, q2, θ) = (c1(q1) + γq1q2 + c2(q2))θ. Here, β ∈ R and γ ∈ R represent the de-

grees of complementarity between the two quality attributes in terms of the valuation

and the production cost, respectively. The virtual surplus is then given by

Φ(q1, q2, θ) =

[
β −

(
θ + (1− α)

F (θ)

f(θ)

)
γ

]
q1q2 +

2∑
m=1

[
vm(qm)−

(
θ + (1− α)

F (θ)

f(θ)

)
cm(qm)

]
.

It follows from Topkis (1998) that, for any θ, Φ is supermodular on Q if and only if

the coefficient of the cross term is nonnegative. Hence, if both the valuation function

and the cost function exhibit complementarity (i.e., β ≥ 0 and γ ≤ 0), then the virtual

surplus is supermodular and thus quasisupermodular in quality. More generally, if β ≥(
θ + (1− α)F (θ)

f(θ)

)
γ for any θ, then the virtual surplus is quasisupermodular in quality.

For some practical example of quality attributes, we can judge whether the cost (or

valuation) function exhibits complementarity or not. For instance, assume that quality

consists of the durability of the highway and the maintenance service level after delivery.

In the example, it is natural for the cost function to exhibit complementarity. Further-

more, it might be possible to estimate the complementarity parameters β and γ for each

procurement project by empirical analysis.5

In a second step, we study the implementation of the optimal mechanism via a scoring

auction. We say that a scoring rule s is optimal or implements the optimal mechanism if

the auction game induced by s has a Bayesian Nash equilibrium which yields the same

outcome as (P ∗
i ,Q

∗, X∗
i )i∈{1,...,N} for any realization of θ. Lemmas 2.1 and 2.2 imply that

the buyer’s goal is to construct a scoring rule s so that each supplier’s equilibrium offer

q∗(θ) is equal to Q∗(θ) for any θ ∈ [θ, θ̄∗] and the inefficient suppliers (θ ∈ (θ̄∗, θ̄]) are

excluded by the reserve score. The next proposition demonstrates how the scoring rule

should be constructed under the same condition as Lemma 2.2.

Proposition 2.1. Suppose that the virtual surplus Φ is quasisupermodular in quality.

Then, there exists an optimal scoring rule s∗ which is supermodular in quality.

In the construction of the optimal scoring rule s∗, we fully utilize the monotonicity of

the optimal quality schedule Q∗. The monotonicity is guaranteed by the quasisupermod-

ularity of the virtual surplus in quality. Comparing the two problems (2.1) and (2.6), we

see that if a weight α on profits is equal to one so that the buyer does not care about

information rents, then the scoring rule s which is equal to her valuation v succeeds in the

implementation. In general, however, we must carefully devise the optimal scoring rule.

Figure 2.1 shows how the rule s∗ is constructed. Suppose that quality is two-dimensional.

5In the environment where quality is one-dimensional, Tsuruoka (2013) identifies and estimates the
cost function by using a dataset of price-only auctions in Japan. Then, using the method of counterfactual
simulations, he quantifies the welfare gain of switching from price-only auctions to scoring auctions.
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In the left figure, the solid curve represents the qualities which the optimal quality sched-

ule Q∗ requires suppliers to ensure for any type θ ∈ [θ, θ̄∗]. Lemma 2.2 implies that this

curve is upward sloping due to the monotonicity of Q∗. The rule s∗ is constructed so

that a score remains constant even if, starting from any point on the curve, the level of

only one attribute increases, and a score falls to zero if the level of at least one attribute

is lower than Qm∗(θ̄∗). Thus, any supplier who wishes to win has no incentive to make a

quality offer other than offers on the solid curve. In the right figure, the three solid curves

below the dotted curve represent the production costs for some cost parameters. These

production costs have the “single-crossing property” due to the monotonicity of Q∗ with

the assumption that the incremental cost is increasing in a cost parameter. Thus, there

exists a “lower envelope” of the cost curves shifted up, which is described by the dotted

curve. The envelope is given by the following function of θ̂:

c(Q∗(θ̂), θ̂) +
∫ θ̄∗

θ̂

cθ(Q
∗(z), z)dz.

This is used as a score of the quality offer Q∗(θ̂) with θ̂ ∈ [θ, θ̄∗]. The second term is a

score added to the production cost c(Q∗(θ̂), θ̂) to facilitate the separation of types. Then,

a supplier of type θ optimally makes the quality offer Q∗(θ̂) = Q∗(θ) so as to maximize

a quality score s∗(Q∗(θ̂)) minus his production cost c(Q∗(θ̂), θ).

iso-score curve

score on quality

score, cost lower envelope 

Figure 2.1: Construction of the optimal scoring rule

Proposition 2.1 states that the quasi-linear scoring rule s∗, which is supermodular in

quality, implements the optimal mechanism. The supermodularity is derived from the

Leontief-like shape of s∗. With the quasisupermodularity of the virtual surplus in quality,

the buyer desires a more efficient supplier to achieve higher levels of all quality attributes.

Then, a scoring rule which gives a score in a complementary way works well. On the other

hand, without the quasisupermodularity, a supermodular scoring rule s may fail in the

implementation. This problem arises from the nonmonotonicity of the optimal quality
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schedule, as shown in Example 2.1. The next example shows that this is the case.

Example 2.2. We make the same assumptions as Example 2.1. Suppose that a quasi-

linear scoring rule s which is supermodular in quality implements the optimal mechanism.

Because the optimal quality schedule satisfiesQ∗(θ) = (1, 2) for θ = 2, Lemma 2.1 implies

that s(2, 2) − s(1, 2) ≤ c(2, 2, θ = 2) − c(1, 2, θ = 2) = 10. Now, c(2, 1, θ) − c(1, 1, θ) =

6θ − 1 > 10 for any θ > 11/6. Because s is supermodular in quality, s(2, 1) − s(1, 1) ≤
s(2, 2)− s(1, 2). Hence, c(2, 1, θ)− c(1, 1, θ) > s(2, 1)− s(1, 1) for any θ > 11/6, and thus

a supplier of type θ ∈ (11/6, 2) never chooses Q∗(θ) = (2, 1) in any equilibrium. This

contradicts the hypothesis that s implements the optimal mechanism.

We construct the scoring rule s∗ in a different way from Che (1993) (and Branco

(1997)). We now show that a scoring rule a la Che (1993) which is extended to an

environment where quality is multi-dimensional may fail in the implementation. Suppose

first that quality is one-dimensional and a continuous variable, and the optimal quality

schedule Q∗ is decreasing in θ. Then, a scoring rule s constructed by Che is

s(q) = v(q)− (1− α)

∫ q

0

∂2c

∂q∂θ
(y, (Q∗)−1(y))

F ((Q∗)−1(y))

f((Q∗)−1(y))
dy.

Here, (Q∗)−1 is the inverse function of Q∗. The rule underrewards quality relative to the

valuation because the quality level which maximizes the social surplus v(q) − c(q, θ) is

excessive from the buyer’s viewpoint. With some differentiability assumptions and Inada

conditions, the first-order condition of the problem maxq[s(q)− c(q, θ)] is given by

dv

dq
(q)− (1− α)

∂2c

∂q∂θ
(q, (Q∗)−1(q))

F ((Q∗)−1(q))

f((Q∗)−1(q))
− ∂c

∂q
(q, θ) = 0,

which is satisfied if q = Q∗(θ). Together with the assumptions in this chapter, the

assumptions that v, −c and −cθ are concave in quality imply that s is also concave, as

shown by Che (1993). Thus, q = Q∗(θ) is a global optimal solution to maxq[s(q)−c(q, θ)].

Suppose now that quality is multi-dimensional. Consider the following scoring rule:

s(q) = v(q)− (1− α)
M∑

m=1

∫ qm

0

∂2c

∂qm∂θ
(y,Q−m∗(θm(y)), θm(y))

F (θm(y))

f(θm(y))
dy. (2.9)

Here, θm is the inverse function of Qm∗. With some differentiability assumptions and

Inada conditions, the first-order conditions of maxq[s(q)− c(q, θ)] are given by

∂v

∂qm
(q)− (1− α)

∂2c

∂qm∂θ
(qm,Q−m∗(θm(qm)), θm(qm))

F (θm(qm))

f(θm(qm))
− ∂c

∂qm
(q, θ) = 0

for each m The conditions are satisfied if q = Q∗(θ). However, even if v, −c and −cθ

are concave in quality, the scoring rule s defined by (2.9) may not be concave and cannot
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implement the optimal mechanism. The next example shows that this is the case.

Example 2.3. Assume that M = 2, Q1 = Q2 = [0, 1], v(q) = q1 + q2 + 100, c(q, θ) =

θ((q1)2 + (q2)2) + q1q2, θ is uniformly distributed on [1, 2], and α = 0. Notice that

because v is linear in q and both −c and −cθ are strictly concave in q, Φ is strictly

concave in q. One can show that Φ(q, θ) = (q1+ q2)+100− (2θ−1)((q1)2+(q2)2)− q1q2,

Q∗(θ) = (1/(4θ − 1), 1/(4θ − 1)), and θ̄∗ = θ̄ = 2. The scoring rule s defined by (2.9) is

s(q) = v(q)−
2∑

m=1

∫ qm

0

2y

(
1

4y
− 3

4

)
dy =

1

2
(q1 + q2) +

3

4
((q1)2 + (q2)2) + 100.

Then, for some θ, s − c is not concave in q. Hence, the quality offer Q∗(θ) = (1/(4θ −
1), 1/(4θ− 1)) may not be a global optimal solution to maxq[s(q)− c(q, θ)]. Actually, for

θ = 1, s(Q∗(θ))− c(Q∗(θ), θ) = 100 + 1/6 < 100 + 1/4 = s(1, 0)− c(1, 0, θ).

2.5 Additively Separable Scoring Rule

In this section, we investigate whether a scoring rule which is additively separable in some

quality attributes can implement the optimal mechanism.

The scoring rule s∗ constructed in Proposition 2.1 is supermodular in quality. Then,

a question arises: Can an additively separable scoring rule such as “weighted criteria”

mentioned in the Introduction implement the optimal mechanism? To answer this ques-

tion, we introduce a definition. We assume that the set of quality attributes {1, ...,M}
is partitioned into two nonempty subsets M1 and M2 of criteria.6 A quasi-linear scor-

ing rule s is additively separable if the rule takes a form of s(q) = s1(q1) + s2(q2) for

each q = (q1, q2) with q1 ∈ ×m∈M1Qm and q2 ∈ ×m∈M2Qm. In the next example, an

additively separable scoring rule can never implement the optimal mechanism.

Example 2.4. Assume that M = 2, Q1 = Q2 = {1, 2}, v(q1, q2) = 9(q1 + q2) + 100,

c(q1, q2, θ) = 3θ(q1 + q2) + (3 − θ)q1q2, θ is uniformly distributed on [1, 3], and α = 0.

Then, one can show that Φ(q1, q2, θ) = (12− 6θ)(q1 + q2)− (4− 2θ)q1q2 + 100, and Φ is

quasisupermodular in quality. The optimal quality schedule is given by

Q∗(θ) = (Q1∗(θ), Q2∗(θ)) :=

{
(2, 2) if θ ∈ [1, 2)

(1, 1) if θ ∈ [2, 3]

and θ̄∗ = θ̄ = 3. Suppose that a quasi-linear scoring rule s which is additively separable

implements the optimal mechanism. BecauseQ∗(θ) = (1, 1) for θ = 2, Lemma 2.1 implies

that s(1, 2) − s(1, 1) ≤ c(1, 2, θ = 2) − c(1, 1, θ = 2) = 7. Now, c(2, 2, θ) − c(2, 1, θ) =

6 + θ > 7 for any θ > 1. Hence, c(2, 2, θ) − c(2, 1, θ) > 7 ≥ s(1, 2) − s(1, 1) = [s1(1) −
6Our analysis can be extended to the case of more than two subsets at the expense of notational

complexity.
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s1(1)] + [s2(2)− s2(1)] = [s1(2)− s1(2)] + [s2(2)− s2(1)] = s(2, 2)− s(2, 1) for any θ > 1,

and thus a supplier of type θ ∈ (1, 2) never chooses Q∗(θ) = (2, 2) in any equilibrium.

This contradicts the hypothesis that s implements the optimal mechanism.

We now provide a class of scoring rules which implement the optimal mechanism in

this example. Consider a scoring rule given by a CES function s(q1, q2) = 15(1
2
(q1)ρ +

1
2
(q2)ρ)1/ρ, where ρ ∈ R \ {0} is a constant elasticity of substitution. When ρ = 1, the

rule s is additively separable in quality. Hence, the above argument shows that the rule

with ρ = 1 cannot implement the optimal mechanism. Since s(2, 2)− s(1, 1) = 15 for any

ρ, any supplier with θ ∈ [1, 2) has no incentive to deviate from (q1, q2) = (2, 2) to (1, 1),

and any supplier with θ ∈ [2, 3] has no incentive to deviate from (q1, q2) = (1, 1) to (2, 2).

Finally, the scoring rule s converges to the Leontief function 15min{q1, q2} as ρ → −∞,

so that if ρ is sufficiently small, then the rule s implements the optimal mechanism.

What is the cause of the failure of additively separable rules to implement the optimal

mechanism? One can find the answer in the functional form of the production cost in

the above example. For any type except θ = 3, the incremental cost for each attribute

is increasing in the level of the other attribute. That is, the two quality attributes are

substitutable in terms of the production cost. Now, the set of types can be partitioned

into two groups: From the buyer’s point of view, any type in the efficient group [1, 2)

should offer the greatest quality (2, 2), and any type in the inefficient group [2, 3] should

offer the least quality (1, 1). Then, given any additively separable rule which deters the

inefficient suppliers’ deviations, an incentive for a supplier of type θ = 2 to deviate from

the quality offer (1, 1) to (1, 2) is weaker than that for a supplier of type θ ∈ (1, 2) to

deviate from the quality offer (2, 2) to (2, 1) because of the substitutability. This means

that any additively separable rule causes deviations of some types in either group. As

one would expect, if the production cost has decreasing differences in (q1, q2), then we

can construct an additively separable scoring rule which is immune to the deviation.

We can obtain the more general results although the underlying structure is the same

as Example 2.4. Here, the notion of increasing (decreasing) differences expresses the

concept of complementarity (substitutability) between some quality attributes in terms of

the production cost. The following proposition gives a necessary condition and a sufficient

condition for the existence of an additively separable scoring rule which implements the

optimal mechanism.

Proposition 2.2. Suppose that the virtual surplus Φ is quasisupermodular. Then:

(i) If c has increasing differences in (q1, q2) and there exists (m,m′) ∈ M1×M2 such that

c has strictly increasing differences in (qm, qm
′
), Qm∗(θ−) > Qm∗(θ+) and Qm′∗(θ−) >

Qm′∗(θ+) for some θ ∈ (θ, θ̄∗), then there is no additively separable scoring rule which

implements the optimal mechanism.

(ii) If c has decreasing differences in (q1, q2) and Qm is finite for each m, then there is
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an additively separable scoring rule which implements the optimal mechanism.

This proposition has several implications. First, the implementation possibility via

an additively separable scoring rule heavily depends on whether the cost function has

increasing differences or decreasing differences in quality attributes in the distinct sets of

subcriteria, rather than the property of the value function. In particular, Example 2.4

shows that an additively separable scoring rule cannot implement the optimal mechanism

even if the value function is additively separable in quality.

Second, the results of Proposition 2.2 provide a useful guide to designing additively

separable scoring rules. Consider an example of the highway construction. Suppose

that the quality attributes represent delivery date (m = 1), durability of the highway

(m = 2), maintenance service after delivery (m = 3), respectively. Moreover, we consider

the following plausible scenario: as the delivery date is earlier, it is more costly to increase

the durability level; as the durability level is higher, it is less costly to increase the level

of maintenance service; the incremental cost for the maintenance service is independent

of the delivery date. That is, the production cost has strictly increasing differences in

(q1, q2), decreasing differences in (q2, q3), and is additively separable in (q1, q3). Thus,

the cost function has decreasing differences in (q1, q2) with M1 = {1, 2} and M2 = {3}
whereas the cost function has increasing differences in (q1, q2) with M1 = {1} and M2 =

{2, 3}. Proposition 2.2 then implies that the buyer should classify quality attributes so

that s(q) = s1(q1, q2) + s2(q3) not s(q) = s1(q1) + s2(q2, q3). When the buyer establishes

some sets of subcriteria to use the additively separable rule, each pair of quality attributes

in the distinct sets should be complementary in terms of the production cost.

2.6 Concluding Remarks

We have studied the optimal design of scoring auctions in an environment where quality

is multi-dimensional. Our main result shows that if the virtual surplus is quasisuper-

modular in quality, then there exists an optimal scoring rule which is supermodular in

quality. Thus, when the virtual surplus exhibits a kind of complementarity between qual-

ity attributes, a scoring rule which gives a quality score in a complementary way works

well. This in turn implies that the buyer should carefully design scoring rules which are

additively separable in some quality attributes.

One may wonder why suppliers should offer all quality attributes in a scoring auction.

Alternatively, the buyer can require suppliers to offer only one quality attribute (with

price). Then, with a scoring rule a la Che (1993), the most efficient supplier achieves the

highest score, and the winner’s type is revealed to the buyer. If the levels of the remaining

quality attributes are properly specified based on the winner’s type, then this modified

auction mechanism can implement the optimal mechanism. The mechanism or procedure,
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however, requires the buyer to prespecify the levels of the remaining quality attributes

for any cost parameter. In practice, it may be prohibitively costly for the buyer to do so.

For instance, the buyer may not be able to specify aesthetic and functional characteristics

of highway although suppliers with expertise can offer these characteristics. Therefore,

when there are at least two such quality attributes, this study is of significance.

Finally, we should point out a potential limitation of the analysis. In our model, a

more efficient supplier (i.e. a supplier with less cost parameter) has a superior technology

of increasing the levels of all quality attributes. Thus, our model does not cover the

following case: one type of supplier has a superior technology of increasing the level of

one quality attribute to another type of supplier whereas the latter type has a superior

technology of increasing the level of another quality attribute to the former type. To cover

the case, we need to allow the supplier’s type to be multi-dimensional. It is interesting

and challenging to study the optimal design of scoring auctions in an environment where

both quality and a supplier’s type are multi-dimensional. This is left for future research.

2.7 Appendix

Proof of Lemma 2.1. (i) First, note that argmaxq∈Q[s(q)− c(q, θ)] is nonempty for any

θ because Q is compact and s − c is upper semicontinuous in q. (See, for example,

Kolmogorov and Fomin (1975).) We now show that in equilibrium a supplier of type

θ ∈ [θ, θ̄s] never offers (p′, q′) such that q′ �∈ argmaxq̂∈Q[s(q̂)− c(q̂, θ)]. Suppose, on the

contrary, that a supplier of type θ ∈ [θ, θ̄s] makes such an offer (p′, q′). Consider another

offer (p, q) such that q ∈ argmaxq̂∈Q[s(q̂)− c(q̂, θ)] and s(q)− p = s(q′)− p′. The score

of (p, q) is equal to that of (p′, q′), so that both offers yield the same winning probability

given the other suppliers’ strategies. The supplier’s expected profit from (p′, q′) is not

higher than his expected profit from (p, q) because

[p′ − c(q′, θ)]Prob[win | S(p′, q′)]

≤ [p′ − c(q′, θ) + (s(q)− c(q, θ)− (s(q′)− c(q′, θ)))]Prob[win | S(p′, q′)]

= [p− c(q, θ)]Prob[win | S(p, q)],

where the inequality follows from the hypothesis that q′ �∈ argmaxq̂∈Q[s(q̂) − c(q̂, θ)] �
q, and the equality follows from the construction of (p, q). The inequality is strict if

Prob[win | S(p, q)] > 0, which occurs for some strategies of the other suppliers. This

contradicts the assumption that no supplier uses weakly dominated strategies. Thus, the

latter statement holds, and we can assume that a symmetric equilibrium bidding strategy

(p, q∗) satisfies q∗(θ) ∈ argmaxq∈Q[s(q)− c(q, θ)] for any θ ∈ [θ, θ̄s].

Second, consider the following change of variable: k(θ) := s(q∗(θ)) − c(q∗(θ), θ) for

any θ ∈ [θ, θ̄s]. Because cθ is continuous and thus bounded on [θ, θ̄], it follows from the
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integral form envelope theorem of Milgrom and Segal (2002) (see also Theorem 3.1 of

Milgrom (2004)) that k is absolutely continuous, and is given by

k(θ) = k(θ)−
∫ θ

θ

cθ(q
∗(z), z)dz.

Finally, we show that the bidding strategy (p∗, q∗) in the lemma constitutes a sym-

metric equilibrium. For each θ ∈ [θ, θ̄s], the score s(q∗(θ))− p∗(θ) is given by

s(q∗(θ))− p∗(θ) = s(q∗(θ))− c(q∗(θ), θ)− [p∗(θ)− c(q∗(θ), θ)]

= k(θ)−
∫ θ̄s

θ

cθ(q
∗(z), z)

1− F(N−1)(z)

1− F(N−1)(θ)
dz.

Note that s(q∗(θ̄s))− p∗(θ̄s) = s(q∗(θ̄s))− c(q∗(θ̄s), θ̄s) = 0 by assumption. Because k is

continuous in θ ∈ [θ, θ̄s], so is s(q∗(θ)) − p∗(θ). Moreover, the score s(q∗(θ)) − p∗(θ) is

decreasing in θ ∈ [θ, θ̄s] because for any θ, θ′ ∈ [θ, θ̄s] with θ < θ′,

[s(q∗(θ))− p∗(θ)]− [s(q∗(θ′))− p∗(θ′)]

= (k(θ)− k(θ′))−
[∫ θ̄s

θ

cθ(q
∗(z), z)

1− F(N−1)(z)

1− F(N−1)(θ)
dz −

∫ θ̄s

θ′
cθ(q

∗(z), z)
1− F(N−1)(z)

1− F(N−1)(θ′)
dz

]

> (k(θ)− k(θ′))−
∫ θ′

θ

cθ(q
∗(z), z)

1− F(N−1)(z)

1− F(N−1)(θ)
dz

> (k(θ)− k(θ′))−
∫ θ′

θ

cθ(q
∗(z), z)dz

=

∫ θ′

θ

[cθ(q
∗(z), z)− cθ(q

∗(z), z)] dz = 0.

When the other suppliers follow the strategy (p∗, q∗), the expected profit of a supplier of

type θ ∈ [θ, θ̄s] from offering (p, q∗(θ)) such that s(q∗(θ))− p = s(q∗(θ̂))− p∗(θ̂) for some

θ̂ ∈ [θ, θ̄s] can be written as

[p− c(q∗(θ), θ)]Prob[win | S(p, q∗(θ))]

= [s(q∗(θ))− c(q∗(θ), θ)− s(q∗(θ̂)) + p∗(θ̂)]Prob[win | S(p∗(θ̂), q∗(θ̂))]

= [k(θ)− s(q∗(θ̂)) + p∗(θ̂)](1− F(N−1)(θ̂))

= (k(θ)− k(θ̂))(1− F(N−1)(θ̂)) +

∫ θ̄s

θ̂

cθ(q
∗(z), z)(1− F(N−1)(z))dz.

The second equality follows from the observation that the score S(p∗(θ̂), q∗(θ̂)) = s(q∗(θ̂))−
p∗(θ̂) is decreasing in θ̂. The supplier cannot obtain a higher expected profit by deviating

from (p∗(θ), q∗(θ)) to (p, q∗(θ)) such that s(q∗(θ)) − p = s(q∗(θ̂)) − p∗(θ̂) because the
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difference between the expected profits is given by

− (k(θ)− k(θ̂))(1− F(N−1)(θ̂)) +

∫ θ̂

θ

cθ(q
∗(z), z)(1− F(N−1)(z))dz

=

∫ θ̂

θ

[
−cθ(q

∗(z), z)(1− F(N−1)(θ̂)) + cθ(q
∗(z), z)(1− F(N−1)(z))

]
dz

=

∫ θ̂

θ

cθ(q
∗(z), z)(F(N−1)(θ̂)− F(N−1)(z))dz ≥ 0.

It is easy to show that the supplier cannot obtain a higher expected profit by deviating

from (p∗(θ), q∗(θ)) to (p, q∗(θ)) such that s(q∗(θ)) − p �∈ [0, s(q∗(θ)) − p∗(θ)]. Also, a

supplier of type θ ∈ (θ̄s, θ̄] obtains a negative expected profit if he offers (p, q) such

that s(q) − p ≥ 0 whereas he obtains zero profit by offering (p∗(θ), q∗(θ)) such that

s(q∗(θ))− p∗(θ) < 0. This completes the proof of part (i).

(ii) In the above equilibrium, the score s(q∗(θi)) − p∗(θi) is decreasing in θi ∈ [θ, θ̄s]

with s(q∗(θ̄s))− p∗(θ̄s) = 0, and is negative for any θi ∈ (θ̄s, θ̄]. Thus, a supplier of type

θi wins only if θi = min{θ1, ..., θN , θ̄s}.

Proof of Lemma 2.2. (i) We show that a necessary and sufficient condition for the IC

constraints (2.3) is given by the two conditions: envelope condition and monotonicity

condition. We say that a direct mechanism ρ satisfies the envelope condition if for any i

and θ,

Πρ
i (θ) = Πρ

i (θ̄) +

∫ θ̄

θ

Eθ−i
[Xi(z,θ−i)cθ(Qi(z,θ−i), z)]dz.

Here, Πρ
i (θ) := Πρ

i (θ | θ). We say that a direct mechanism ρ satisfies the monotonicity

condition if for any i, θ and θ̂ with θ̂ > θ,

∫ θ̂

θ

Eθ−i
[Xi(z,θ−i)cθ(Qi(z,θ−i), z)−Xi(θ̂,θ−i)cθ(Qi(θ̂,θ−i), z)]dz ≥ 0.

Because c has (strictly) increasing differences in (q, θ), it must hold that for any q, q′ ∈ Q
with q ≤ q′ and any z, z′ ∈ [θ, θ̄] with z ≤ z′, c(q′, z)− c(q, z) ≤ c(q′, z′)− c(q, z′), and

thus cθ(q
′, z) ≥ cθ(q, z) > 0. Therefore, if both Xi(θi,θ−i) and Qi(θi,θ−i) are nonin-

creasing in θi for each θ−i, then the monotonicity condition is automatically satisfied.

First, we prove sufficiency. Suppose that supplier i’s IC constraint is not satisfied.

Then, there exist θ and θ̂ such that Πρ
i (θ̂ | θ) > Πρ

i (θ). Hence, Eθ−i
[Xi(θ̂,θ−i)c(Qi(θ̂,θ−i), θ̂)−

Xi(θ̂,θ−i)c(Qi(θ̂,θ−i), θ)] > Πρ
i (θ) − Πρ

i (θ̂) by definition of Πρ
i . Rewriting the left-hand

side as the definite integral and applying the envelope condition to the right-hand side,
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we obtain

∫ θ̂

θ

Eθ−i
[Xi(θ̂,θ−i)cθ(Qi(θ̂,θ−i), z)]dz >

∫ θ̂

θ

Eθ−i
[Xi(z,θ−i)cθ(Qi(z,θ−i), z)]dz.

This contradicts the monotonicity condition.

Next, we prove necessity. Using the integral form envelope theorem of Milgrom and Se-

gal (2002), the IC constraints (2.3) imply that for any i and θ, Πρ
i (θ) = maxθ̂ Eθ−i

[Pi(θ̂,θ−i)−
Xi(θ̂,θ−i)c(Qi(θ̂,θ−i), θ)] is given by

Πρ
i (θ) = Πρ

i (θ̄)−
∫ θ̄

θ

∂Πρ
i

∂θ
(z | z)dz = Πρ

i (θ̄) +

∫ θ̄

θ

Eθ−i
[Xi(z,θ−i)cθ(Qi(z,θ−i), z)]dz.

We thus obtain the envelope condition. Also, the IC constraints (2.3) imply that for any

i, θ and θ̂, Eθ−i
[Xi(θ̂,θ−i)c(Qi(θ̂,θ−i), θ̂)−Xi(θ̂,θ−i)c(Qi(θ̂,θ−i), θ)] ≤ Πρ

i (θ)− Πρ
i (θ̂).

Rewriting the left-hand side as the definite integral and applying the envelope condition

to the right-hand side, we obtain the monotonicity condition.

(ii) We solve the optimization problem. The IC constraints (2.3) imply that for each

i, Πρ
i (θ) is nonincreasing in θ because Πρ

i (θ) ≥ Πρ
i (θ

′ | θ) ≥ Πρ
i (θ

′) for each θ < θ′.

The second inequality follows from the assumption that c is increasing in θi. Hence,

the IR constraints (2.4) are replaced by Πρ
i (θ̄) ≥ 0 for each i. Using the result (i), the

IC constraints (2.3) are replaced by the envelope and monotonicity conditions. By the

envelope condition and the interchange of the order of integration, E[Πρ
i (θi)] is given by

∫ θ̄

θ

Πρ
i (θi)f(θi)dθi = Πρ

i (θ̄) +

∫ θ̄

θ

∫ θ̄

θi

Eθ−i
[Xi(z,θ−i)cθ(Qi(z,θ−i), z)]dzf(θi)dθi

= Πρ
i (θ̄) +

∫ θ̄

θ

Eθ−i
[Xi(z,θ−i)cθ(Qi(z,θ−i), z)]

F (z)

f(z)
f(z)dz.

Hence, the buyer’s objective function is rewritten as

N∑
i=1

E [Xi(θ)v(Qi(θ))− Pi(θ) + αΠρ
i (θi)]

=
N∑
i=1

E [Xi(θ)[v(Qi(θ))− c(Qi(θ), θi)]− (1− α)Πρ
i (θi)]

=
N∑
i=1

E

[
Xi(θ)

[
v(Qi(θ))− c(Qi(θ), θi)− (1− α)cθ(Qi(θ), θi)

F (θi)

f(θi)

]
− (1− α)Πρ

i (θ̄)

]

=
N∑
i=1

E
[
Xi(θ)Φ(Qi(θ), θi)− (1− α)Πρ

i (θ̄)
]
.

Note that argmaxq∈Q Φ(q, θi) is nonempty for any θi because Q is compact and Φ is
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continuous in q. The above objective function is maximized when Πρ
i (θ̄) = 0, and Qi(θ)

and Xi(θ) are respectively given by Q∗(θi) and X∗
i (θ) in the lemma. This is because

Q∗(θi) maximizes Φ(q, θi) and the maximized value Φ(Q∗(θi), θi) is decreasing in θi. The

latter fact follows from Φ(Q∗(θ), θ) ≥ Φ(Q∗(θ′), θ) > Φ(Q∗(θ′), θ′) for any θ < θ′. The

second inequality follows from the assumptions that c is increasing in θi, and both cθ and

F/f are increasing in θi.

Finally, we show that the direct mechanism ρ∗ = (P ∗
i ,Q

∗
i , X

∗
i )i∈{1,...,N} satisfies the

ignored monotonicity condition. Now, Φ is quasisupermodular in q by hypothesis, and

has strictly increasing differences in (q,−θi) from Assumptions 2.4 and 2.5. It then

follows from Theorem 4’ of Milgrom and Shannon (1994) that Q∗(θi) ≥ Q∗(θ′i) for any

θi < θ′i. Also, X
∗
i is decreasing in θi. These facts imply that ρ∗ satisfies the monotonicity

condition.

Proof of Proposition 2.1. (i) We first show that there exists a quasi-linear scoring rule

which implements the optimal mechanism. From Lemmas 2.1 and 2.2, it suffices to

show that there exists an upper semicontinuous function s∗ : Q → R which satisfies

Q∗(θ) ∈ argmaxq∈Q[s∗(q)− c(q, θ)] for any θ ∈ [θ, θ̄∗] and s∗(Q∗(θ̄∗))− c(Q∗(θ̄∗), θ̄∗) =

0. Lemma 2.2 implies that Qm∗ is nonincreasing in θ. Hence, Qm∗ : [θ, θ̄] → R can

have no more than countably many points of discontinuity. Let {θ1, θ2, ..., θl, ...} be the

discontinuous points of Q∗ in [θ, θ̄∗]. For each l with θl ∈ (θ, θ̄∗), there exist some m

such that Qm∗(θl+) := limθ→θl+ Qm∗(θ) ≤ Qm∗(θl) ≤ limθ→θl− Qm∗(θ) =: Qm∗(θl−) with

either or both inequalities being strict.

First, we define a function σ : [θ, θ̄∗] → R as follows: For any θ ∈ [θ, θ̄∗],

σ(θ) = c(Q∗(θ), θ) +
∫ θ̄∗

θ

cθ(Q
∗(z), z)dz.

Note that if Q∗(θ) = Q∗(θ′), and thus Q∗(θ) = Q∗(θ′′) for any θ′′ ∈ [θ, θ′], then σ(θ) =

σ(θ′). Using the function σ, we construct s∗ in the following way. (a) If q �≥ Q∗(θ̄∗),

then let s∗(q) = 0. (b) If there exists θ′ ∈ (θ, θ̄∗) \ {θ1, θ2, ..., θl, ...} or θ′ ∈ {θ, θ̄∗} such

that q ≥ Q∗(θ′) and there exists no θ < θ′ which satisfies q ≥ Q∗(θ) > Q∗(θ′), then let

s∗(q) = σ(θ′).7 (c) If there exists l such that θl ∈ (θ, θ̄∗), q ≥ Q∗(θl+) and q �≥ Q∗(θl),

then let s∗(q) = σ(θl+). (d) If there exists l such that θl ∈ (θ, θ̄∗), q ≥ Q∗(θl) and

q �≥ Q∗(θl−), then let s∗(q) = σ(θl). (e) If there exists l such that θl ∈ (θ, θ̄∗) and there

exists no θ < θl which satisfies q ≥ Q∗(θ) > Q∗(θl−), then let s∗(q) = σ(θl−).

Second, we show that s∗(Q∗(θ̄∗))−c(Q∗(θ̄∗), θ̄∗) = 0 and s∗ is upper semicontinuous on

Q. The former is trivial because s∗(Q∗(θ̄∗)) = σ(θ̄∗) = c(Q∗(θ̄∗), θ̄∗). By construction,

the function σ is continuous in [θ, θ̄∗] \ {θ1, θ2, ..., θl, ...}. Also, σ(θ) = σ(θ′) for any

7For some q, there may exist another θ( �= θ′) which satisfies the condition. However, because it then
follows that Q∗(θ) = Q∗(θ′), the equality s∗(q) = σ(θ) = σ(θ′) holds.
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θ, θ′ ∈ [θ, θ̄∗] with θ < θ′ if Q∗(θ) = Q∗(θ′) and thus Q∗(θ) = Q∗(θ′′) = Q∗(θ′) for any

θ′′ ∈ [θ, θ′]. Hence, for any q ∈ Q and ε > 0, there exists a neighborhood of q in which

s∗(q′) ≤ s∗(q) + ε. This means that the function s∗ is upper semicontinuous on Q.

Finally, we show that Q∗(θ) ∈ argmaxq∈Q[s∗(q) − c(q, θ)]. By construction of s∗,

q �∈ {Q∗(θ) | θ ∈ [θ, θ̄∗]} ∪ {Q∗(θl+) | l = 1, 2, ...} ∪ {Q∗(θl−) | l = 1, 2, ...} cannot

maximize s∗(q)− c(q, θ) for any θ ∈ [θ, θ̄∗] because s∗(Q∗(θ))− c(Q∗(θ), θ) ≥ 0 whereas

s∗(q) − c(q, θ) < 0 for any q �≥ Q∗(θ̄∗), and c is increasing in q. Hence, it suffices to

show that for any θ, θ̂ ∈ [θ, θ̄∗], σ(θ) − c(Q∗(θ), θ) ≥ σ(θ̂) − c(Q∗(θ̂), θ), and for each l,

σ(θ)−c(Q∗(θ), θ) ≥ σ(θl+)−c(Q∗(θl+), θ), σ(θ)−c(Q∗(θ), θ) ≥ σ(θl−)−c(Q∗(θl−), θ).

First, for any θ ∈ [θ, θ̄∗], it is shown that θ̂ = θ maximizes σ(θ̂)− c(Q∗(θ̂), θ) because for

any θ̂ �= θ,

[σ(θ)− c(Q∗(θ), θ)]− [σ(θ̂)− c(Q∗(θ̂), θ)]

=

∫ θ̄∗

θ

cθ(Q
∗(z), z)dz −

[
c(Q∗(θ̂), θ̂) +

∫ θ̄∗

θ̂

cθ(Q
∗(z), z)dz − c(Q∗(θ̂), θ)

]

=

∫ θ̂

θ

[cθ(Q
∗(z), z)− cθ(Q

∗(θ̂), z)]dz ≥ 0.

The inequality holds because Lemma 2.2 implies that Q∗(z) ≥ Q∗(θ̂) for each z <

θ̂, and the assumption that c has (strictly) increasing differences in (q, θ) implies that

cθ(Q
∗(z), z) ≥ cθ(Q

∗(θ̂), z). Second, for any θ ∈ [θ, θ̄∗] and l, σ(θ) − c(Q∗(θ), θ) ≥
σ(θl+)− c(Q∗(θl+), θ) because

[σ(θ)− c(Q∗(θ), θ)]− [σ(θl+)− c(Q∗(θl+), θ)]

=

∫ θ̄∗

θ

cθ(Q
∗(z), z)dz −

[
lim

θ̂→θl+
c(Q∗(θ̂), θ̂) + lim

θ̂→θl+

∫ θ̄∗

θ̂

cθ(Q
∗(z), z)dz − c(Q∗(θl+), θ)

]

=

∫ θ̄∗

θ

cθ(Q
∗(z), z)dz −

[
c(Q∗(θl+), θl) +

∫ θ̄∗

θl
cθ(Q

∗(z), z)dz − c(Q∗(θl+), θ)

]

=

∫ θl

θ

[cθ(Q
∗(z), z)− cθ(Q

∗(θl+), z)]dz ≥ 0.

The first equality follows from the construction of σ. The second equality follows from the

continuity of c in (q, θ). The last inequality holds because Lemma 2.2 and Assumption

2.3 imply that cθ(Q
∗(z), z) ≥ cθ(Q

∗(θl+), z) for any z ≤ θl. Similarly, we can show that

σ(θ)− c(Q∗(θ), θ) ≥ σ(θl−)− c(Q∗(θl−), θ).

(ii) We now claim that the function s∗ is supermodular in quality. First, we show

that s∗ is nondecreasing in q. Note that σ is nonincreasing in θ because for any θ, θ′ with
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θ < θ′,

σ(θ)− σ(θ′) = c(Q∗(θ), θ) +
∫ θ̄∗

θ

cθ(Q
∗(z), z)dz − c(Q∗(θ′), θ′)−

∫ θ̄∗

θ′
cθ(Q

∗(z), z)dz

≥ c(Q∗(θ′), θ)− c(Q∗(θ′), θ′) +
∫ θ′

θ

cθ(Q
∗(z), z)dz

=

∫ θ′

θ

[cθ(Q
∗(z), z)− cθ(Q

∗(θ′), z)]dz ≥ 0.

Take any q, q′ ∈ Q with q′ > q. If q �≥ Q∗(θ̄∗), then s∗(q′) ≥ s∗(q) = 0. If q ≥ Q∗(θ̄∗)

and q′ �≥ Q∗(θ), then s∗(q′) ≥ s∗(q) because there exist θ and θ′ with θ ≥ θ′ such that

s∗(q) is equal to σ(θ−), σ(θ) or σ(θ+) and s∗(q′) is equal to σ(θ′−), σ(θ′) or σ(θ′+).

Here, s∗(q) = σ(θ′−) implies that s∗(q′) ≥ σ(θ′−), and s∗(q) = σ(θ′) implies that

s∗(q′) ≥ σ(θ′). If q′ ≥ Q∗(θ), then s∗(q′) = σ(θ) ≥ s∗(q).

Second, we show that the function s∗ is supermodular in q. Fix any unordered

pair q and q̂ in Q, so that qm > q̂m and qm̂ < q̂m̂ for some m, m̂. Because s∗ is

nondecreasing in q, s∗(q ∨ q̂) ≥ s∗(q̂) and s∗(q) ≥ s∗(q ∧ q̂). Thus, if s∗(q) = s∗(q ∧ q̂),

then s∗(q ∨ q̂)− s∗(q̂) ≥ 0 = s∗(q)− s∗(q ∧ q̂). We claim that if s∗(q) > s∗(q ∧ q̂), then

s∗(q̂) = s∗(q∧ q̂). Suppose, on the contrary, that s∗(q) > s∗(q∧ q̂) and s∗(q̂) > s∗(q∧ q̂).

Then, by construction of s∗, there exist m, m̂, θ, θ̂ such that qm ≥ Qm∗(θ) > min{qm, q̂m}
with qm̂ ≥ Qm̂∗(θ), and q̂m̂ ≥ Qm̂∗(θ̂) > min{qm̂, q̂m̂} with q̂m ≥ Qm∗(θ̂). This contradicts

the result that Q∗ is nondecreasing in θ because Qm∗(θ) > Qm∗(θ̂) and Qm̂∗(θ) < Qm̂∗(θ̂),

so thatQ∗(θ) andQ∗(θ̂) are unordered. Thus, if s∗(q) > s∗(q∧q̂), then s∗(q∨q̂)−s∗(q̂) =

s∗(q ∨ q̂)− s∗(q ∧ q̂) ≥ s∗(q)− s∗(q ∧ q̂). This completes the proof.

Proof of Proposition 2.2. (i) Suppose thatQm∗(θ−) > Qm∗(θ+) andQm′∗(θ−) > Qm′∗(θ+)

with (m,m′) ∈ M1×M2 and θ ∈ (θ, θ̄∗). Then, (Qm∗(θ−))m∈M1 > (Qm∗(θ+))m∈M1 and

(Qm∗(θ−))m∈M2 > (Qm∗(θ+))m∈M2 . Because c has increasing differences in (q1, q2) and

strictly increasing differences in (qm, qm
′
), we obtain c(Q∨Q̂, θ)−c(Q̂, θ) > c(Q, θ)−c(Q∧

Q̂, θ), whereQ = ((Qm∗(θ+))m∈M1 , (Qm∗(θ−))m∈M2) and Q̂ = ((Qm∗(θ−))m∈M1 , (Qm∗(θ+))m∈M2),

so that Q ∨ Q̂ = Q∗(θ−) and Q ∧ Q̂ = Q∗(θ+). Let ε be a positive real number

such that 2ε < [c(Q ∨ Q̂, θ) − c(Q̂, θ)] − [c(Q, θ) − c(Q ∧ Q̂, θ)]. Fix any θ′, θ′′ with

θ′′ < θ < θ′ such that [c(Q ∧ Q̂, θ) − c(q ∧ q̂, θ′)] − [c(Q, θ) − c(q, θ′)] < ε and [c(Q ∨
Q̂, θ)−c(q∨ q̂, θ′′)]− [c(Q̂, θ)−c(q̂, θ′′)] < ε, where q = ((Qm∗(θ′))m∈M1 , (Qm∗(θ′′))m∈M2)

and q̂ = ((Qm∗(θ′′))m∈M1 , (Qm∗(θ′))m∈M2), so that q ∨ q̂ = Q∗(θ′′) and q ∧ q̂ = Q∗(θ′).

The existence of such θ′ and θ′′ is guaranteed by the continuity of c in (q, θ).

Suppose that a scoring rule s implements the optimal mechanism. Then, it follows

from Lemma 2.1 that the inequality s(q) − c(q, θ′) ≤ s(q ∧ q̂) − c(q ∧ q̂, θ′) must hold
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because q ∧ q̂ = Q∗(θ′) whereas q �= Q∗(θ′). Hence, we obtain

s(q)− s(q ∧ q̂) ≤ c(q, θ′)− c(q ∧ q̂, θ′)

< c(Q, θ)− c(Q ∧ Q̂, θ) + ε

< c(Q ∨ Q̂, θ)− c(Q̂, θ)− ε

< c(q ∨ q̂, θ′′)− c(q̂, θ′′).

Now, if the scoring rule s is additively separable, then s(q)−s(q∧ q̂) = s2(q2)−s2(q̂2) =

s(q∨q̂)−s(q̂) because q1 = q1∧q̂1 = (Qm∗(θ′))m∈M1 and q̂1 = q1∨q̂1 = (Qm∗(θ′′))m∈M1 .

Then, s(q∨ q̂)−s(q̂) < c(q∨ q̂, θ′′)−c(q̂, θ′′), and thus a supplier of type θ′′ never chooses

q ∨ q̂ = Q∗(θ′′) from Lemma 2.1. Therefore, there is no additively separable scoring rule

which implements the optimal mechanism.

(ii) It follows from Lemma 2.1 that Qm∗ is nonincreasing in θ. Because Qm is finite,

Qm∗ : [θ, θ̄] → R can have no more than finitely many points of discontinuity. Suppose,

without loss of generality, that the discontinuous points of Q∗ in [θ, θ̄∗] are indexed in

decreasing order, i.e. θ1 > θ2 > ... > θL. Note that Q∗(θl+1+) = Q∗(θ) = Q∗(θl−) for

any θ ∈ (θl+1, θl), and Qm∗(θl−) ≥ Qm∗(θl+). Assume for simplicity that θ̄ > θ1 and

θL > θ. Without this assumption, the proof proceeds with some notational complexity.

First, we define functions σ1 : [θ, θ̄∗] → R and σ2 : [θ, θ̄∗] → R: For any θ ∈ [θ, θ̄∗]

such that θ ∈ (θl+1, θl] for some l or θ ∈ [θ, θl] for l = L,

σ1(θ) =
1

2
c(Q∗(θ̄∗), θ̄∗) +

l−1∑
r=1

[c((Qm∗(θr−))m∈M1 , (Qm∗(θr+))m∈M2 , θr)− c(Q∗(θr+), θr)]

+ [c((Qm∗(θ))m∈M1 , (Qm∗(θl+))m∈M2 , θl)− c((Qm∗(θl+))m∈M1 , (Qm∗(θl+))m∈M2 , θl)],

σ2(θ) =
1

2
c(Q∗(θ̄∗), θ̄∗) +

l−1∑
r=1

[c(Q∗(θr−), θr)− c((Qm∗(θr−))m∈M1 , (Qm∗(θr+))m∈M2 , θr)]

+ [c((Qm∗(θl−))m∈M1 , (Qm∗(θ))m∈M2 , θl)− c((Qm∗(θl−))m∈M1 , (Qm∗(θl+))m∈M2 , θl)],

and for any θ ∈ (θ1, θ̄∗], σ1(θ) = σ2(θ) = 1
2
c(Q∗(θ̄∗), θ̄∗). Using these functions, we

construct a function sa : ×m∈MaQm → R for each a = 1, 2 in the following way. (a)

If qa �≥ (Qm∗(θ̄∗))m∈Ma , then let sa(qa) = −maxq∈Q c(q, θ̄). (b) If there exists θ′ ∈
[θ, θ̄∗] such that qa ≥ (Qm∗(θ′))m∈Ma and there exists no θ < θ′ which satisfies qa ≥
(Qm∗(θ))m∈Ma > (Qm∗(θ′))m∈Ma , then let sa(qa) = σa(θ′). It is easy to show that

s1((Qm∗(θ̄∗))m∈M1) + s2((Qm∗(θ̄∗))m∈M2) − c(Q∗(θ̄∗), θ̄∗) = 0. Moreover, the function

s+ s̄ is trivially upper semicontinuous on Q because Q is finite.

Next, we show that Q∗(θ) ∈ argmaxq∈Q[s1(q1) + s2(q2) − c(q, θ)]. By construction

of s1 and s2, q �∈ {(Qm∗(θ))m∈M1 | θ ∈ [θ, θ̄∗]} × {(Qm∗(θ))m∈M2 | θ ∈ [θ, θ̄∗]} cannot be

the maximizer. Hence, it suffices to show that for any θ, θ′, θ′′ ∈ [θ, θ̄∗], σ1(θ) + σ2(θ) −
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c(Q∗(θ), θ) ≥ σ1(θ′) + σ2(θ′′) − c((Qm∗(θ′))m∈M1 , (Qm∗(θ′′))m∈M2 , θ). Suppose first that

θ ∈ (θl+1, θl) and θ′ ∈ (θl
′+1, θl

′
) with l ≥ l′. Then, we obtain

σ1(θ)− σ1(θ′)

=
l∑

r=l′+1

[c((Qm∗(θr−))m∈M1 , (Qm∗(θr+))m∈M2 , θr)− c(Q∗(θr+), θr)]

≥
l∑

r=l′+1

[c((Qm∗(θr−))m∈M1 , (Qm∗(θ))m∈M2 , θr)− c((Qm∗(θr+))m∈M1 , (Qm∗(θ))m∈M2 , θr)]

≥
l∑

r=l′+1

[c((Qm∗(θr−))m∈M1 , (Qm∗(θ))m∈M2 , θ)− c((Qm∗(θr+))m∈M1 , (Qm∗(θ))m∈M2 , θ)]

= c(Q∗(θ), θ)− c((Qm∗(θ′))m∈M1 , (Qm∗(θ))m∈M2 , θ).

The first equality follows from the observation that Qm∗(θl−) = Qm∗(θ) and Qm∗(θl
′−) =

Qm∗(θ′). The first inequality follows from the hypothesis that c has decreasing differences

in (q1, q2) with the observation that Qm∗(θr+) ≤ Qm∗(θ) for each r ∈ {l′ + 1, ..., l}. The
second inequality follows from the assumption that c has (strictly) increasing differences

in (q, θ). The last equality follows from the observation that Qm∗(θr−) = Qm∗(θr+1+),

Qm∗(θl−) = Qm∗(θ) and Qm∗(θl
′+1+) = Qm∗(θ′). Suppose next that θ′′ ∈ (θl

′′+1, θl
′′
) with

l ≤ l′′. Then, the same argument as above yields

σ2(θ)− σ2(θ′′)

= −
l′′∑

r=l+1

[c(Q∗(θr−), θr)− c((Qm∗(θr−))m∈M1 , (Qm∗(θr+))m∈M2 , θr)]

≥ −
l′′∑

r=l+1

[c((Qm∗(θ))m∈M1 , (Qm∗(θr−))m∈M2 , θr)− c((Qm∗(θ))m∈M1 , (Qm∗(θr+))m∈M2 , θr)]

≥ −
l′′∑

r=l+1

[c((Qm∗(θ))m∈M1 , (Qm∗(θr−))m∈M2 , θ)− c((Qm∗(θ))m∈M1 , (Qm∗(θr+))m∈M2 , θ)]

= −[c((Qm∗(θ))m∈M1 , (Qm∗(θ′′))m∈M2 , θ)− c(Q∗(θ), θ)]

≥ −[c((Qm∗(θ′))m∈M1 , (Qm∗(θ′′))m∈M2 , θ)− c((Qm∗(θ′))m∈M1 , (Qm∗(θ))m∈M2 , θ)].

The last inequality follows from the hypothesis that c has decreasing differences in (q1, q2)

with the observation that Qm∗(θ′) ≤ Qm∗(θ). Therefore, we obtain

[σ1(θ)− σ1(θ′)] + [σ2(θ)− σ2(θ′′)] ≥ c(Q∗(θ), θ)− c((Qm∗(θ′))m∈M1 , (Qm∗(θ′′))m∈M2 , θ),

for any θ, θ′, θ′′ ∈ [θ, θ̄∗] such that θ ∈ (θl+1, θl), θ′ ∈ (θl
′+1, θl

′
) and θ′′ ∈ (θl

′′+1, θl
′′
) with

l′′ ≥ l ≥ l′. A similar argument applies to the other combinations of θ, θ′ and θ′′.
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Chapter 3

Sequential Procurement Auctions

with Risk-Averse Suppliers

3.1 Introduction

Governments delegate the provision of a wide range of public infrastructure to the private

sector. Such infrastructure consists of physical facilities (e.g., railways, schools, hospi-

tals) and public services (e.g., transportation, education, medical services). An essential

aspect of infrastructure provision is that it is a multi-stage process. A public facility is

designed, built, and operated over a long period of time as it delivers services to the pub-

lic. Inevitably, an infrastructure project involves many kinds of uncertainty. Risk sharing

between public authorities and private contractors is thus a key factor for a successful

project. The government must find an efficient procedure for procurement. The purpose

of this chapter is to compare the performance of two procurement mechanisms, bundling

and unbundling, and to investigate the choice problem of a mechanism.

In many construction projects, a public authority has the option of choosing between

a bundling method called “design-build” and an unbundling method called “design-bid-

build.” Under the design-build method, a private party called a design-builder, which may

be organized by a group of companies, is responsible for performing tasks of both design

and construction.1 Similarly, contractual arrangements called “public-private partner-

ships (PPPs)” are characterized by bundled tasks. Under the design-bid-build method,

the two tasks are separated. Architects draw the initial design, and then bidders are in-

vited to submit bids for the construction. While unbundling methods have been employed

traditionally in public procurement, there is a recent trend towards bundling methods.

There is an ongoing debate about the two methods. It is often said that the bundling

method transfers risks from public authorities to private parties so that the private par-

ties are motivated to invest more. However, the risk transfer may become excessive and,

1Engineering News-Record (ENR) annually reports the top 100 design-build firms (ENR, 2012).
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as a result, the public authority must pay a higher risk premium in exchange for shifting

the burden of risk to private parties. See Gibson et al. (2007) and Iossa et al. (2007) for

more about these methods and detailed arguments in the debate. It remains an open

question, theoretically and practically, which of the bundling and unbundling methods is

most desirable for a public authority and for society.

We analyze the procurement problem in a two-stage auction model with risks. A

risk-neutral buyer procures a public infrastructure project from risk-averse suppliers.

The investment stage is followed by the production stage. In a bundling mechanism, the

buyer holds a single auction. In an unbundling mechanism, the buyer holds two sequential

auctions. Each auction adopts a first-price format. A distinctive feature of our model

is that it has two categories of production risks. The first category is an aggregate risk.

The risk is common to all suppliers. The second one is an idiosyncratic risk. The risk

is specific to each supplier. Each supplier’s production cost is affected by the two risk

factors as well as by the cost-reducing investment. After the cost-reducing investment is

made, the realized value of the aggregate risk is commonly known to all suppliers, and

each supplier privately knows the realized value of the idiosyncratic risk to him.

Yescombe (2007) provides many examples of aggregate risk and idiosyncratic risk

in construction projects. He classifies risks into several categories related to sites, con-

struction, and completion. Site risks including ground conditions are typical examples

of aggregate risk. If the geology of a site turns out not to be as expected, then piling is

required for foundations. Design risks in the category of completion are other examples

of aggregate risk. If there is a flaw in the design drawings, then all builders are dam-

aged. Market uncertainty such as fluctuations in material prices, political uncertainty,

and climate conditions are other examples of aggregate risk. Many uncertain elements in

economic, financial, labor and organizational conditions of construction companies con-

stitute idiosyncratic risk to them. For instance, a construction company may be uncertain

of the technical ability of its hired subcontractors. If the subcontractors are not able to

do the construction work properly, then the constructor must bear additional costs.

The main result of this chapter is as follows. The bundling mechanism is optimal

for the buyer and also socially desirable if the aggregate risk is below certain thresholds.

The result may not hold true for the idiosyncratic risk. Key factors leading to the result

are the differences in risk sharing, information rents, and investment incentives between

the bundling and unbundling mechanisms. In the bundling mechanism, all the risks are

assumed by a single supplier, the winner of the auction. The buyer has to pay a high

risk premium to the winner, while the mechanism implements the efficient investment.

In contrast, the unbundling mechanism provides little incentive for the investment due

to a moral hazard problem. The buyer must pay risk premia for the idiosyncratic risk

indirectly through the payment of information rents. The buyer pays no risk premium for

the aggregate risk because the risk is transferred from the suppliers to the buyer through
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the second-stage auction. Therefore, a decrease in the aggregate risk is beneficial to

the buyer and society only in the bundling mechanism, unlike the idiosyncratic risk.

A decrease in the idiosyncratic risk reduces the information rents in the unbundling

mechanism if the idiosyncratic risk is exponentially distributed.

Based on the result above, we can provide the following policy recommendation on the

choice of procurement mechanisms: A public authority should not lump all possible risks

together, but classify them into aggregate risks and idiosyncratic risks. A low aggregate

risk for a project is a strong reason to choose a bundling method from the viewpoints of

both the public authority and society. On the contrary, when a project’s idiosyncratic

risk is low, it may be recommended for the authority to choose an unbundling method

rather than a bundling method.

Kay (2009) reports a real case of a construction project that is relevant for our result.

During 1996–2004, a new metro system called Tren Urbano was constructed in Puerto

Rico. The 10.7-mile metro line connects the cities of San Juan, Guaynabo, and Bayamón.

The Puerto Rico Highway and Transit Authority (PRHTA) split the civil work into seven

sections, and employed design-build methods (i.e., bundling) in all sections. Prior to

requesting proposals for the design-build contract, the PRHTA investigated geotechnical

conditions significantly. The research outcome was shared by prospective bidders, and it

reduced aggregate risks to them.

This chapter is related to several previous studies in the literature which also consid-

ered the choice problem of bundling and unbundling mechanisms. Hart (2003) presents

an incomplete contract model and shows that a bundling mechanism gives a supplier

strong incentives for socially productive and unproductive investments. His result is sup-

ported experimentally by Hoppe et al. (2013). Li and Yu (2011) present an auction model

similar to ours, and examine how the optimality of a bundling mechanism is affected by

the competition among suppliers. Martimort and Pouyet (2008) show that the buyer’s

optimal choice is a bundling mechanism if a quality-enhancing effort in the first stage

reduces production costs. In a second-price auction model, Grimm (2007) shows that

the buyer always prefers a bundling mechanism with subcontracting to an unbundling

mechanism in the case of risk-neutral suppliers. Unlike all works mentioned above, this

chapter focuses on risk sharing between the buyer and suppliers in the choice of a pro-

curement mechanism, and shows that aggregate risk and idiosyncratic risk have different

effects on the choice of mechanism. Finally, our result is closely related to the “yardstick

competition effect” studied by Auriol and Laffont (1992). As in their regulation model,

the unbundling mechanism in our model has the yardstick competition effect in the sense

that information on aggregate risk is revealed to the buyer through the second-stage auc-

tion. Owing to the information revelation, the unbundling mechanism becomes beneficial

to the buyer.

This chapter is organized as follows. Section 2 presents a two-stage auction model.
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Sections 3 and 4 characterize an equilibrium of the model under each mechanism. Section

5 gives the main results. Section 6 discusses an extension of the model. Section 7 is the

conclusion. All proofs are given in the Appendix.

3.2 The Model

Consider a buyer who must procure one unit of public infrastructure (a physical facility

or public service) from one of n suppliers. The buyer is risk-neutral. Each supplier

i ∈ N := {1, ..., n} is risk-averse, and has a CARA utility function u(π) := 1− exp(−rπ).

Here, π ∈ R is a profit from trade, and r > 0 is the coefficient of absolute risk aversion.

The procurement process involves two tasks: investment and production. First, one of

the suppliers invests in design. The supplier incurs a cost ψ(a) if he makes an investment

a ∈ [0, ā]. Second, one of the suppliers develops the infrastructure based on the design.

Supplier i’s production cost c(a, θi, ω) depends on three elements. The investment a is

common to all suppliers. Namely, it is a “public good.” Here, θi ∈ [θ, θ̄] is supplier i’s

private parameter,2 and ω ∈ [ω, ω̄] is a common parameter among all suppliers. The

buyer’s valuation for the infrastructure is v > 0.

We assume that (θ1, ..., θn, ω) are independent random variables, and the θi’s are

identically distributed. In the following, we call the random variable θi idiosyncratic

risk to supplier i and the random variable ω aggregate risk common to all suppliers.

The cumulative distribution functions of θi and ω are, respectively, given by F and

G, with F ′ = f > 0.3 The distribution F is parameterized by κ > 0 so that F (·;κ)
second-order stochastically dominates F (·;κ′) if κ′ > κ.4 Similarly, the distribution G

is parameterized by λ > 0 so that G(·;λ) second-order stochastically dominates G(·;λ′)

if λ′ > λ. We set E[θi] = E[ω] = 0 for normalization. As the parameter κ (resp. λ)

converges to zero, the distribution F (·;κ) (resp. G(·;λ)) converges in law to a degenerate

distribution which takes zero with probability one.5 Let θ(n) := min{θ1, ..., θn} denote the

lowest value of n cost parameters. The cumulative distribution function of θ(n) is given

by F(n)(θ) := 1 − (1 − F (θ))n, and the probability density function of θ(n) is given by

f(n)(θ) := n(1− F (θ))n−1f(θ). All suppliers are ex ante symmetric.

We assume for simplicity that the cost function c is linear in θi, ω, a as

c(a, θi, ω) = θi + ω − δa. (3.1)

2We allow the case that θ̄ = ∞. In this case, we also assume that E[exp(rθi)] < ∞, which guarantees
that an associated risk premium is finite. Here, E[·] is the expectation operator.

3We write f > 0 if f(θi) > 0 for any θi ∈ [θ, θ̄]. We use the same notation for other functions.
4We allow θ and θ̄ to depend on κ. We also assume that if θ̄ = ∞ for some κ, then there exists m > 0

such that f(θ;κ′) ≤ f(θ;κ) for any θ ≥ m and any κ′ with κ′ < κ. See Hanoch and Levy (1969) for the
definition of second-order stochastic dominance.

5That is, F (θ;κ) → 0 as κ → 0 for any θ < 0, and F (θ;κ) → 1 as κ → 0 for any θ > 0.

34



Here, δ > 0 is the marginal benefit of investment. The investment reduces all suppliers’

production costs to the same degree. The positive externality of investment arises in a

situation where the public facility is constructed based on the same design, or the public

service is provided using the same facility. We make the following assumption about the

investment cost function.

Assumption 3.1. ψ : [0, ā] → R+ is twice continuously differentiable, ψ is increasing in a,
dψ
da
(0) = 0, d2ψ

da2
> 0, and lima→ā

dψ
da
(a) = ∞.

There are two kinds of procurement mechanisms: bundling and unbundling. In a

bundling mechanism, the buyer bundles two sequential tasks of investment and produc-

tion, and awards a contract for both tasks to a single supplier via an auction. In an

unbundling mechanism, the buyer separates those tasks, and sequentially awards a con-

tract for each task via an auction. Each auction adopts a first-price sealed-bid format.

The winner is a supplier who bids the lowest price.6

The game proceeds as follows. At date 0, the buyer chooses either a bundling or an

unbundling mechanism. At date 1, each supplier i ∈ N simultaneously submits a bid

p1i ∈ R in the first-stage auction. At date 2, a winner in the first-stage auction chooses an

investment level a ∈ [0, ā]. At date 3, (θ1, ..., θn, ω) are realized. In the case of a bundling

mechanism, the game ends. At date 4, which occurs only in the case of an unbundling

mechanism, each supplier j ∈ N submits a bid p2j ∈ R in the second-stage auction. The

winner performs the task.

The player payoffs are defined as follows. When the game ends at date 3 under

a bundling mechanism, the winner obtains u(p1i − ψ(a) − c(a, θi, ω)), while the other

suppliers obtain u(0) = 0, and the buyer obtains v − p1i . When the game ends at date

4 under an unbundling mechanism, each supplier i obtains u(π1
i + π2

i ), and the buyer

obtains v − (p1j + p2k). Here, (p1j , p
2
k) are winning prices in the auctions, and (π1

i , π
2
i ) are

supplier i’s profits in the auctions. If i wins in the first stage, then π1
i = p1i − ψ(a). If

i wins in the second stage, then π2
i = p2i − c(a, θi, ω). If i wins in both stages, then i

receives π1
i + π2

i . If i loses in the first (second) stage, then π1
i = 0 (π2

i = 0).

The information structure of the game is as follows. The buyer’s bundling decision is

commonly known to all players. The realized values of θi and c(a, θi, ω) become supplier

i’s private information, and that of ω becomes common knowledge among all suppliers.

No supplier can observe the other suppliers’ decisions. The winner’s investment level a can

be estimated perfectly by all suppliers at date 3 through the one-to-one correspondence

between the production cost c(a, θi, ω) and a, given (θi, ω).

Every player’s (pure) strategy is defined in a standard way. The buyer’s strategy is

the choice of a mechanism. Each supplier’s strategy is represented by a triple (p1, a, p2).

A bidding strategy p1 in the first-stage auction is a function from {bundling, unbundling}
6We assume that if there is a tie, then the supplier submitting the lowest bid wins with equal proba-

bility. All results hold for any other tie-breaking rule.
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to R, a : {bundling, unbundling} → [0, ā] is a choice of investment level conditional on

winning, and p2 : [0, ā] × [θ, θ̄] × [ω, ω̄] → R is a bidding strategy in the second-stage

auction.7 We consider a symmetric perfect Bayesian equilibrium in which all suppli-

ers use the same strategies. In the following, we simply call it an equilibrium. Since

(θ1, ..., θn, ω) are independent, no supplier updates his belief about the other suppliers’

types in equilibrium.

The social welfare is defined as the buyer’s expected utility plus the sum of each

supplier’s certainty equivalent which gives the same utility as his expected utility.8 The

investment level ã is efficient if it minimizes a total expected cost ψ(a)+E[θ(n)+ω]− δa.

Finally, we remark that the investment level a and the realized values of (θ1, ..., θn, ω)

are unverifiable in the model. If these values are verifiable, then the buyer can initially

offer a contract in which prices are contingent on the investment level and the cost param-

eters without any incentive constraints. In this verifiable case, the buyer can implement

the ex ante efficient outcome in a straightforward manner. The buyer pays the investment

cost ψ(ã) to an arbitrary supplier for the efficient investment ã, and pays the production

cost θ(n)+ω− δã to a supplier with the lowest private parameter θ(n) for the production.

The buyer then obtains the first-best utility v − {ψ(ã) + E[θ(n) + ω]− δã}.

3.3 A Bundling Mechanism

In this section, we characterize an equilibrium when the buyer chooses a bundling mecha-

nism. Applying backward induction, we analyze suppliers’ equilibrium bidding strategies

at date 1 and the winner’s optimal investment.

By investing a, a winner in the auction obtains the expected utility E[u(p1i − ψ(a)−
c(a, θi, ω))]. The certainty equivalent is p1i − ψ(a) + δa− ρ∗. Here, the risk premium is

ρ∗ =
1

r
lnE[exp(rθi)] +

1

r
lnE[exp(rω)]. (3.2)

Notice that the investment a has no effect on the risk premium when a supplier has a

CARA utility function.

The next proposition characterizes the equilibrium under bundling.

Proposition 3.1. Let ã be the efficient investment level and ρ∗ be the risk premium in

(3.2). In a bundling mechanism, the unique symmetric equilibrium is characterized as

follows. Every supplier submits the same bid ψ(ã)−δã+ρ∗. A winner chooses the efficient

investment level ã.

7It will be shown that the first-stage bid and the identity of the first-stage winner have no effect on
either the investment level or the second-stage bid in equilibrium.

8For any random variable π, the certainty equivalent E[π]− ρ with the risk premium ρ is determined
by u(E[π]− ρ) = E[u(π)]. The risk premium is calculated as ρ = E[π] + 1

r lnE[exp(−rπ)].
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This proposition shows the following properties of a bundling mechanism. First, the

efficient level ã of investment can be attained in equilibrium. The contractual obligation

under bundling motivates a winner to make an efficient investment. This result provides

partial support for the OECD (2008) policy favoring risk be transferred to the party best

able to carry it. Second, the buyer exploits the social welfare W ∗. That is, her expected

utility EU∗
B is given by

EU∗
B = W ∗ = v − {ψ(ã)− δã+ ρ∗} . (3.3)

This result stems from the fact that all suppliers are ex ante symmetric and have no

private information. The first-stage auction has the same structure as the Bertrand

competition game with complete information. No supplier can earn a positive rent in

the auction. Third, the bundling leads to two types of costs for both the buyer and

society. The first one is the risk premium for the production risk. Every supplier adds

the risk premium to his bid. The second one is the opportunity cost of not being able to

switch to a more efficient supplier. The buyer cannot change suppliers under a bundling

mechanism. If the parameters κ and λ of the risks converge to zero, then the buyer can

obtain the first-best utility. In the limit, the risk premium ρ∗ converges to zero and the

“sampling effect” asymptotically disappears (i.e., E[θ(n)] → E[θi] as κ → 0). This will be

formally shown in the proof of Theorem 3.1.

3.4 An Unbundling Mechanism

In this section, we characterize an equilibrium when the buyer chooses an unbundling

mechanism. Similarly to Section 3, we analyze suppliers’ equilibrium bidding strategies

at dates 1 and 4 and the winner’s optimal investment, applying backward induction.

Since the second stage of the model is the first-price auction with symmetric risk-

averse bidders, a symmetric equilibrium of the second stage is given by the work of Holt

(1980) as follows.

Lemma 3.1. In an unbundling mechanism, given an investment level a and a common

parameter ω, the following bidding strategy p2(a, ·, ω) constitutes a symmetric equilibrium

in the second-stage auction:

p2(a, θi, ω) = b(θi) + ω − δa. (3.4)

Here, b(θi) := −1
r
lnEθ(n−1)

[exp(−rθ(n−1)) | θ(n−1) > θi].

The lemma has the following four implications to our analysis. (1) The bidding

strategy is significantly affected by the information structure of the game. It can be seen

that b(θi) > θi for every θi < θ̄. This property is due to the so-called “bid shading”
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by supplier i who has private information about his idiosyncratic risk θi. On the other

hand, the aggregate risk ω is commonly known to all suppliers, and thus the second term

in the equilibrium bid is exactly equal to ω. This bidding behavior of suppliers has an

interesting effect in that, although the aggregate risk ω is unverifiable, the information

rent with respect to ω is zero as if the information on ω was revealed to the buyer

through competition. This effect is similar to the “yardstick competition effect” studied

by Auriol and Laffont (1992). Since suppliers are risk-averse in our model, the effect

has an additional consequence for risk sharing. The aggregate risk is transferred from

risk-averse suppliers to the risk-neutral buyer, whereby the winner’s profit p2(a, θi, ω) −
c(a, θi, ω) = b(θi)− θi no longer depends on ω. The effect improves the efficiency of risk

sharing, which is a crucial advantage of the unbundling mechanism over the bundling

mechanism. These results hold for a general class of cost functions which have no cross-

term between θi and ω. (2) The equilibrium bidding strategy p2(·) is independent of the
identity of the winner in the first-stage auction. Since the CARA utility function has

no wealth effect, the winner’s bidding behavior is independent of p1i and his sunk cost

ψ(a) of investment. (3) The most efficient supplier wins because the equilibrium bidding

strategy p2(·) is increasing in θi. (4) The effect of the investment on the second-stage

bidding strategy is given by

∂p2

∂a
(a, θi, ω) =

∂c

∂a
(a, θi, ω) = −δ. (3.5)

Each supplier’s bid in the second stage is decreasing in the first-stage winner’s investment,

and the marginal effect is equal to that of cost reduction. This is because the winner’s

cost-reducing investment reduces all suppliers’ production costs to the same degree, and

thus induces aggressive bidding by all of them.

By investing a, a winner in the first-stage auction obtains the expected utility E[(1−
F(n−1)(θi))u(p

1
i −ψ(a)+p2(a, θi, ω)−c(a, θi, ω))+F(n−1)(θi)u(p

1
i −ψ(a))]. The first term in

the expectation corresponds to the event whereby the supplier also wins the second-stage

auction; the second term corresponds to the event that he loses. The certainty equivalent

is given by

p1i − ψ(a) + E[(1− F(n−1)(θi))(b(θi)− θi)]− ρ∗∗, (3.6)

where the risk premium ρ∗∗ is

ρ∗∗ =
1

r
lnE[(1− F(n−1)(θi)) exp(−r(b(θi)− θi)) + F(n−1)(θi)]

+ E[(1− F(n−1)(θi))(b(θi)− θi)]. (3.7)

The winner makes no investment in equilibrium because he cannot obtain any benefit
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from investment.

The next proposition characterizes an equilibrium under unbundling.

Proposition 3.2. Let ρ∗∗ be the risk premium in (3.7). In an unbundling mechanism,

there exists an equilibrium characterized as follows. (i) All suppliers employ the bidding

strategy p2(·) with b(·) in Lemma 3.1 in the second-stage auction. A winner in the first-

stage auction chooses the investment level 0. Every supplier submits the same bid ψ(0)

in the first-stage auction. (ii) The buyer’s expected utility, EU∗∗
B , supplier i’s expected

utility, EU∗∗
i , and the social welfare, W ∗∗, are respectively given by

EU∗∗
B = v − {ψ(0) + E[θ(n)] + nE[(1− F(n−1)(θi))(b(θi)− θi)]

}
,

EU∗∗
i = u(E[(1− F(n−1)(θi))(b(θi)− θi)]− ρ∗∗),

W ∗∗ = v − {ψ(0) + E[θ(n)] + nρ∗∗
}
.

This proposition shows the following properties of an unbundling mechanism. First,

the equilibrium investment level is lower than the efficient level ã. In fact, a winner has

no incentive to invest due to a moral hazard problem.

Second, in contrast to a bundling mechanism, the buyer’s utility is less than the

social welfare. This is because suppliers have private information about their private

cost parameters in the second-stage auction. Every supplier can earn information rents.

Notice that even if a supplier loses in the first stage, he has an option to participate in the

second-stage auction. Hence, every supplier’s reservation utility in the first-stage auction

is endogenously determined by the expected utility in the second-stage auction.

Third, an unbundling mechanism causes two types of costs to the buyer and soci-

ety. The first one is the risk premium. Each supplier bears a fraction of the risk of the

production cost because each wins with positive probability in the second-stage auction.

Moreover, each supplier must bear another risk associated with competition. Participa-

tion in the second-stage auction means each supplier faces a risky outcome (i.e., winning

or losing, and a winning bid price). The buyer must pay the premium indirectly be-

cause the expected information rent E[(1−F(n−1)(θi))(b(θi)− θi)] is greater than the risk

premium ρ∗∗. The second one is an efficiency loss from underinvestment.

3.5 Bundling versus Unbundling

This section presents the main results. By analyzing the equilibrium outcomes in Sections

3 and 4, we investigate how changes in the risk parameters λ, κ and the marginal benefit

δ of investment affect the buyer’s choice of mechanism and the social welfare. We say

that the bundling (resp., unbundling) mechanism is socially desirable if W ∗ > W ∗∗ (resp.,

W ∗ < W ∗∗). To choose a mechanism, the buyer must take into account three factors:
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risk premia, information rents, and investment incentives.

The following theorem shows how the change of the aggregate risk affects the buyer’s

optimal choice and the social welfare.

Theorem 3.1. Assume that λ ∈ (0, 1) represents the level of aggregate risk. (i) Fixing

all parameters other than λ, there exist two thresholds λ, λ̄ ∈ [0, 1] with λ ≤ λ̄ such that

the buyer’s optimal choice is the bundling mechanism iff λ < λ̄, and it is socially desirable

iff λ < λ. (ii) λ > 0 in the limit as κ → 0. λ̄ < 1 in the limit as δ → 0 and n → ∞.

The main result implies that the bundling mechanism is optimal for the buyer and

also socially desirable if the aggregate risk is below certain thresholds. The intuition

is simple. As explained after Lemma 3.1, no supplier bears the aggregate risk in the

unbundling mechanism because the risk is transferred to the risk-neutral buyer. In the

bundling mechanism, a winner bears all the risk. Therefore, a decrease in the aggregate

risk is beneficial to both the buyer and society only with the bundling mechanism.

The theorem also states that the thresholds λ and λ̄ are bounded away from the

endpoints of [0, 1] for some values of the parameters κ, δ and n. On the one hand,

the bundling mechanism implements the efficient investment, but requires the buyer

to pay a risk premium for all the risks. The disadvantage in terms of the premium

for the idiosyncratic risk vanishes as κ → 0 so that the risk is negligible. Then, the

bundling mechanism becomes optimal for the buyer and socially desirable for sufficiently

small λ. On the other hand, the unbundling mechanism causes underinvestment, and

requires the buyer to pay information rents. These disadvantages vanish as δ → 0 and

n → ∞ so that the underinvestment problem is less serious and the market is competitive.

Then, the unbundling mechanism becomes optimal for the buyer and socially desirable

for sufficiently large λ. Figure 1 illustrates the result. We can see that the bundling

mechanism chosen by the buyer is not socially desirable for λ ∈ (λ, λ̄). This happens

because the buyer cannot exploit the social welfare in the unbundling mechanism.

Next, we examine the effect of a change in the idiosyncratic risk. One may expect

that a decrease in the idiosyncratic risk also encourages the buyer to choose the bundling

mechanism. Interestingly, this is not always the case. Although a decrease in the id-

iosyncratic risk reduces a risk premium under bundling, it may reduce the suppliers’

information rents under unbundling by changing the competition structure. An example

is provided in the following.

Example 3.1. Assume that the idiosyncratic risks θi’s are exponentially distributed on

[−κ,∞) with F (θi;κ) = 1 − exp(−θi/κ − 1) for each θi ≥ −κ. For the distribution,

E[θi] = 0 for each κ > 0, and F (·;κ) second-order stochastically dominates F (·;κ′) if

κ′ > κ. The distribution also satisfies the assumption in footnote 4. Then, each supplier’s

40



First-best
utility

Level of the 
aggregate risk

Figure 3.1: Illustration of Theorem 3.1

expected information rent is

E[(1− F(n−1)(θi))(b(θi)− θi)] =
1

nr
(ln(κr + n− 1)− ln(n− 1)) .

Obviously, the rent is increasing in κ. Assuming that κr ∈ (0, 1), a calculation shows

that the risk premium ρ∗ in the bundling mechanism is higher than the risk premia nρ∗∗

in the unbundling mechanism. The calculations are given in the proof of Example 3.1 in

the Appendix.

Moreover, assume that ω is distributed on {−2, 0, 2} with equal probability, v = 10,

r = 1, κ ∈ (0, 1), δ = 2, n = 2 and ψ(a) = a2. Then, the buyer’s expected utility under

bundling is

EU∗
B = v − {ã2 − 2ã+ ρ∗} = 11 + κ+ ln (1− κ)− ln

(
exp(−2) + 1 + exp(2)

3

)
.

The buyer’s expected utility under unbundling is

EU∗∗
B = v − {E[θ(2)] + 2E[(1− F(1)(θi))(b(θi)− θi)]} = 10 +

κ

2
− ln(1 + κ).

Figure 2 depicts the buyer’s expected utilities under bundling and unbundling. In this

example, one can see that a decrease in the idiosyncratic risk κ changes the buyer’s op-

timal choice from bundling to unbundling.

The next proposition examines the effect of the marginal benefit δ of investment on

the mechanism choice.

Proposition 3.3. There exist two thresholds δ, δ̄ ≥ 0 with δ ≤ δ̄ such that the buyer’s

optimal choice is the bundling mechanism iff δ > δ, and it is socially desirable iff δ > δ̄.
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Figure 3.2: Illustration of Example 3.1.

Proposition 3.3 implies that the bundling mechanism is optimal and socially desirable

when the marginal benefit of investment is sufficiently high. It follows from Lemma

3.1 that the second-stage winner’s profit p2(a, θi, ω)− c(a, θi, ω) does not depend on the

marginal benefit δ. The cost-reduction effect is exactly offset by the price-reduction effect.

On the other hand, an increase in the marginal benefit provides a winner under bundling

with stronger investment incentives. Figure 3 illustrates this result.

First-best
utility

Marginal benefit 
of investment

Figure 3.3: Illustration of Proposition 3.3.

Remark 3.1. The following comment may be helpful to understand our results further.

The buyer could implement the efficient investment by an unbundling mechanism with

a more sophisticated contract than the first-price auction. The mechanism is as follows.

The buyer holds the first-price auction at date 1 as in the unbundling mechanism. A

winner of the auction chooses an investment level at date 2. After all values of risks θi

and ω are realized at date 3, all suppliers submit reports on the investment level. The

second auction for production is held at date 4. The winner is chosen by the same rule as

in the original unbundling mechanism, that is, the first-price auction. In addition to this,

all suppliers incur infinite penalties if there are different reports. Even if all suppliers make
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the same reports, the first-stage winner incurs an infinite penalty if that report is not equal

to the efficient investment level ã. It can be shown that there exists an equilibrium under

the sophisticated contract such that the first-stage winner chooses the efficient investment

level, and every supplier truthfully reports it. Thus, the sophisticated contract solves the

moral hazard problem regarding investment in the unbundling mechanism. The social

welfare under the sophisticated contract is given by

v − {ψ(ã)− δã+ E[θ(n)] + nρ∗∗
}
. (3.8)

Example 3.1 shows that ρ∗ > nρ∗∗ if the idiosyncratic risks θi’s are exponentially dis-

tributed. Then, the unbundling mechanism with the sophisticated contract always yields

a higher social welfare than the bundling mechanism.

However, even if the sophisticated contract above is implementable, the buyer still

faces a tradeoff between risk premia and information rents in the mechanism choice.

The buyer pays the risk premium ρ∗ under bundling, and does the information rents

nE[(1 − F(n−1)(θi))(b(θi) − θi)] under unbundling. When the idiosyncratic risks θi’s are

exponentially distributed as in Example 3.1, the buyer’s optimal choice is a bundling

mechanism for sufficiently small λ, κ and n. The proof is given in the Appendix. There-

fore, we can conclude that the optimality of a bundling mechanism still holds true for

some values of the parameters even when the sophisticated contract is implementable.

Finally, we consider the issue of ex post efficiency of contract allocation. The contrac-

tual flexibility of the unbundling mechanism allows the buyer to select the most efficient

supplier, whereas the contractual rigidity of the bundling mechanism does not. The latter

is a harmful effect of the buyer’s commitment not to switch suppliers under bundling.

Thus, with respect to the ex post efficiency of contract allocation, the unbundling mech-

anism is superior to the bundling mechanism. We discuss further the issue in the next

section.

3.6 A Bundling Mechanism with Subcontracting

In this section, we discuss how our main results in Section 5 can be generalized to a

situation where subcontracting is possible under a bundling mechanism.

A crucial difference between bundling and unbundling is that the buyer commits at

the outset to the production contract in the bundling mechanism. In particular, the

buyer has an incentive to change suppliers under bundling if the contract allocation is ex

post inefficient. Suppose, for example, that the buyer can change suppliers at date 4 by

the first-price auction. In this case, the equilibrium outcome of bundling is equivalent to

that of unbundling. The difference between the two mechanisms disappears.
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Instead, we consider another scenario in which the buyer allows a first-stage winner

to hire a subcontractor. We assume that, at date 4, a winner under bundling selects a

subcontractor by the first-price auction with a reserve price being equal to the winner’s

production cost.9 We call the modified mechanism bundling with subcontracting, and the

auction held by the first-stage winner a subcontracting auction. For simplicity of analysis,

we consider the case that all n− 1 suppliers participate in the subcontracting auction.10

The following lemma characterizes a symmetric equilibrium in the subcontracting

auction. Since the lemma can be proved in the same way as Lemma 3.1, we have omitted

the proof in this text.

Lemma 3.2. In a bundling mechanism with subcontracting, given the investment level

a, a common parameter ω and the reserve price c(a, θ, ω), the following bidding strategy

p(a, ·, ω, θ) constitutes a symmetric equilibrium in the subcontracting auction: For any

θi ∈ [θ, θ],

p(a, θi, ω, θ) = b(θi, θ) + ω − δa,

where b(θi, θ) := −1
r
lnEθ(n−2)

[max{exp(−rθ(n−2)), exp(−rθ)} | θ(n−2) > θi]. For any

θi ∈ (θ, θ̄], p(a, θi, ω, θ) is any bid higher than c(a, θ, ω).

Lemma 3.2 implies that the contract allocation is ex post efficient in the bundling

mechanism with subcontracting because the bidding strategy p(·) increases in each sup-

plier’s private parameter and the reserve price is given by the first-stage winner’s pro-

duction cost. Notice that the first-stage winner bears the aggregate risk ω in any state.

The fact that the payment p(a, θi, ω, θ) is a subcontracting cost to the first-stage winner,

not the buyer, is crucial to our result.

By investing a, a winner in the first-stage auction obtains the expected utility E[(1−
F(n−1)(θi))u(p

1
i −ψ(a)− c(a, θi, ω))+F(n−1)(θi)u(p

1
i −ψ(a)− p(a, θ(n−1), ω, θi))]. The first

term in the expected utility corresponds to the event that no subcontracting occurs, and

the second term corresponds to the event that subcontracting does occur. The certainty

equivalent is

p1i − ψ(a)− E

[
(1− F(n−1)(θi))θi +

∫ θi

θ

b(s, θi)f(n−1)(s)ds

]
+ δa− ρw. (3.9)

9Under this assumption, all suppliers know the first-stage winner’s private parameter from the an-
nounced reserve price with the investment level and the realized value of the aggregate risk.

10We implicitly assume that n ≥ 3. However, even if n = 2, all results are still valid, assuming that a
first-stage winner offers a price equal to his production cost to the other supplier.
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The winner’s risk premium is given by

ρw =
1

r
lnE

[
(1− F(n−1)(θi)) exp(rθi) +

∫ θi

θ

exp(rb(s, θi))f(n−1)(s)ds

]

− E

[
(1− F(n−1)(θi))θi +

∫ θi

θ

b(s, θi)f(n−1)(s)ds

]
+

1

r
lnE[exp(rω)].

As in the case of unbundling, even if a supplier loses in the first stage, he has an outside

option to participate in the subcontracting auction. A first-stage loser wins the subcon-

tracting auction if and only if he has the lowest private parameter among all the suppliers.

Thus, his expected profit is E
[
F (θj)Eθi [(1− F(n−2)(θi))(p(a, θi, ω, θj)− c(a, θi, ω)) | θi < θj]

]
,

and his risk premium is

ρl = E
[
F (θj)Eθi [(1− F(n−2)(θi))(b(θi, θj)− θi) | θi < θj]

]
+

1

r
lnE

[
F (θj)Eθi [(1− F(n−2)(θi)) exp(−r(b(θi, θj)− θi)) + F(n−2)(θi) | θi < θj] + (1− F (θj))

]
.

Next, we characterize an equilibrium under bundling with subcontracting.

Lemma 3.3. In a bundling mechanism with subcontracting, the following equilibrium

exists: (i) Every supplier submits the same bid

ψ(ã)− δã+ E

[
n

n− 1

∫ θi

θ

b(s, θi)f(n−1)(s)ds

]
+ ρw − ρl

in the first-stage auction. The winner chooses the efficient investment level ã. The

other n − 1 suppliers employ the bidding strategy p(·) with b(·, ·) given in Lemma 3.2 in

the subcontracting auction. (ii) The buyer’s expected utility, EU s
B, supplier i’s expected

utility, EU s
i , and the social welfare, W s, are respectively given by the following:

EU s
B = v −

{
ψ(ã)− δã+ E

[
n

n− 1

∫ θi

θ

b(s, θi)f(n−1)(s)ds

]
+ ρw − ρl

}
,

EU s
i = u

(
E
[
F (θj)Eθi [(1− F(n−2)(θi))(b(θi, θj)− θi) | θi < θj]

]− ρl
)
,

W s = v − {ψ(ã)− δã+ E[θ(n)] + ρw + (n− 1)ρl
}
.

As previously indicated, this lemma shows the properties of the bundling mechanism

with subcontracting. As in the case of unbundling, each supplier obtains positive utility

from his information rent. The allocation of the production contract is ex post efficient.

An efficient investment level can be attained in equilibrium. The suppliers must bear

some risks of production and subcontracting.

Finally, the following proposition shows that essentially the same results as Theorem

3.1 and Proposition 3.3 hold true even if subcontracting is possible in a bundling mech-

anism. The reasoning behind the result is that a first-stage winner who is responsible
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for the production as a prime contractor always bears the aggregate risk but has strong

investment incentives. In the proof, we also show that each supplier’s expected utility

EU s
i in the bundling mechanism with subcontracting is equal to that in the unbundling

mechanism. This implies that EU s
B > EU∗∗

B if and only if W s > W ∗∗. Thus, we can

obtain a single threshold λ̂ with respect to the aggregate risk and a single threshold δ̂

with respect to the marginal benefit of investment.

Proposition 3.4. (i) Assume that λ ∈ (0, 1) represents the level of aggregate risk. Then,

there exists a threshold λ̂ ∈ [0, 1] such that EU s
B > EU∗∗

B iff λ < λ̂, and W s > W ∗∗ iff

λ < λ̂. Also, λ̂ > 0 in the limit as κ → 0; λ̂ < 1 in the limit as δ → 0 and n → ∞. (ii)

There exists a threshold δ̂ ≥ 0 such that EU s
B > EU∗∗

B iff δ > δ̂, and W s > W ∗∗ iff δ > δ̂.

3.7 Concluding Remarks

We have compared the performance of a bundling method with that of an unbundling

method in an auction model with two risk factors, aggregate risk and idiosyncratic risk.

Through the classification of risks in infrastructure projects, we provide a new perspective

to the debate regarding the choice between the two methods. In particular, our findings

show that each risk factor has a different effect on a public authority’s optimal choice.

As recognized by many practitioners, a public authority must pay a high risk premium in

exchange for the burden of risks on a private party in the bundling method. As a result,

the associated low aggregate risk is a strong reason for the public authority to choose the

bundling method. A decrease in the idiosyncratic risk may reduce information rents for

private parties and thus may encourage the public authority to choose the unbundling

method.

Appendix

Proof of Proposition 3.1. First, the efficient investment level ã minimizes ψ(a)+E[θ(n)+

ω]− δa; thus, the level is uniquely determined by the first-order condition

dψ

da
(ã) = δ. (3.10)

In the bundling mechanism, a winner chooses an investment level to maximize the cer-

tainty equivalent p1i − ψ(a) + δa − ρ∗. Since the risk premium ρ∗ does not depend on

a, the equilibrium investment level is the same as the efficient level ã. Next, the auc-

tion is equivalent to the Bertrand competition among symmetric suppliers. Thus, in any

symmetric equilibrium, all suppliers submit the same bid ψ(ã)− δã+ ρ∗.
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Proof of Lemma 3.1. We must show that for any a and ω, a supplier with θ cannot gain

by deviating from a bid p2(a, θ, ω) when the other suppliers follow the strategy p2(·).
Note that p2(·) is increasing and continuous in θ.

First, we can assume without loss of generality that no supplier submits a bid p �∈
[p2(a, θ, ω), p2(a, θ̄, ω)]. If a supplier bids p > p2(a, θ̄, ω), then he loses with probability

one. By bidding p2(a, θ̄, ω), he can obtain the same utility. If a supplier bids p <

p2(a, θ, ω), then he wins with probability one. By bidding p2(a, θ, ω), he can win with

probability one and obtain higher utility.

Second, we show that it is optimal for a supplier with θ to bid p = p2(a, θ, ω). Consider

the following two cases: The supplier wins or loses in the first stage. If the supplier loses

in the first-stage auction, then his expected utility from bidding p2(a, θ̂, ω) is

(1− F(n−1)(θ̂))u(p
2(a, θ̂, ω)− c(a, θ, ω)) + F(n−1)(θ̂)u(0)

= (1− F(n−1)(θ̂))

∫ θ̄

θ̂

[1− exp(−r(s− θ))]
f(n−1)(s)

1− F(n−1)(θ̂)
ds

=

∫ θ̄

θ̂

u(s− θ)f(n−1)(s)ds.

The equalities follow from the definitions of u(·) and p2(·). The difference between the

expected utility from bidding p2(a, θ, ω) and that from bidding p2(a, θ̂, ω) �= p2(a, θ, ω) is

∫ θ̂

θ

u(s− θ)f(n−1)(s)ds > 0.

In contrast, if the supplier wins with a bid p1 in the first-stage auction, then his

expected utility from bidding p2(a, θ̂, ω) is given by

(1− F(n−1)(θ̂))u(p
1 − ψ(a) + p2(a, θ̂, ω)− c(a, θ, ω)) + F(n−1)(θ̂)u(p

1 − ψ(a))

= u(p1 − ψ(a)) + exp(−r(p1 − ψ(a)))

{∫ θ̄

θ̂

u(s− θ)f(n−1)(s)ds

}
.

The equality follows from some additional calculations. The difference between the ex-

pected utility from bidding p2(a, θ, ω) and that from bidding p2(a, θ̂, ω) �= p2(a, θ, ω) is

exp(−r(p1 − ψ(a)))

{∫ θ̂

θ

u(s− θ)f(n−1)(s)ds

}
> 0.

Therefore, it is optimal for a supplier with θ to bid p = p2(a, θ, ω) regardless of whether

he wins or loses in the first stage.

Proof of Proposition 3.2. (i) First, Lemma 3.1 implies that p2(·) constitutes a symmetric
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equilibrium in the second-stage auction. Second, a winner in the first-stage auction

chooses an investment level to maximize the certainty equivalent (3.6). Since the certainty

equivalent decreases in a, the winner optimally chooses a = 0. Third, in the first-stage

auction, every supplier submits a bid which makes him indifferent between winning and

losing, in any symmetric equilibrium. Even if a supplier loses the first-stage auction,

he can obtain the positive expected utility in the second-stage auction. The certainty

equivalent is given by E[(1−F(n−1)(θi))(b(θi)− θi)]−ρ∗∗. Hence, all suppliers submit the

same bid ψ(0) in the first-stage auction.

(ii) Since a supplier with θ(n) wins the second-stage auction in equilibrium, the buyer’s

expected utility is EU∗∗
B = v − ψ(0) − E[p2(0, θ(n), ω)]. The expected payment in the

second-stage auction E[p2(0, θ(n), ω)] can be rewritten as

E[b(θ(n))] + E[ω] =

∫ θ̄

θ

b(s)f(n)(s)ds+ E[θ(n)]−
∫ θ̄

θ

sf(n)(s)ds

= E[θ(n)] +

∫ θ̄

θ

[b(s)− s] · n(1− F(n−1)(s))f(s)ds

= E[θ(n)] + nE[(1− F(n−1)(θi))(b(θi)− θi)].

The second equality follows from the definition of f(n)(·). Thus, EU∗∗
B = v − {ψ(0) +

E[θ(n)]+nE[(1−F(n−1)(θi))(b(θi)−θi)]
}
. Since every supplier wins the first-stage auction

with equal probability, his equilibrium expected utility is given by EU∗∗
i = u(E[(1 −

F(n−1)(θi))(b(θi) − θi)] − ρ∗∗). Finally, the social welfare is given by W ∗∗ = EU∗∗
B + n ·

u−1(EU∗∗
i ) = v − {ψ(0) + E[θ(n)] + nρ∗∗

}
.

Proof of Theorem 3.1. (i) It follows from the first-order condition (3.10) that ã does not

depend on λ. Since G(·;λ) second-order stochastically dominates G(·;λ′) if λ′ > λ, the

risk premium ρ∗ under bundling increases in λ. Thus, both EU∗
B and W ∗ decrease in λ.

On the other hand, under unbundling, the second-stage winner’s profit b(θi) − θi does

not depend on λ; therefore, the risk premium ρ∗∗ is invariant to λ. Thus, both EU∗∗
B and

W ∗∗ are invariant to λ. Proposition 3.2 (ii) also implies that EU∗∗
B < W ∗∗.

Then, we have thresholds λ and λ̄ with the properties in part (i) of the theorem. If

EU∗
B > EU∗∗

B (resp. W ∗ > W ∗∗) for each λ ∈ (0, 1), then we set λ̄ = 1 (resp. λ = 1). If

EU∗
B < EU∗∗

B (resp. W ∗ < W ∗∗) for each λ ∈ (0, 1), then we set λ̄ = 0 (resp. λ = 0).

(ii) First, we claim that λ is greater than zero in the limit as κ → 0. We show

that as κ → 0 and λ → 0, the difference between W ∗(= EU∗
B) and the first-best utility

v−{ψ(ã)+E[θ(n)]−δã} converges to zero. According to the definition of the convergence in

law, for any θ > 0, F (θ;κ) → 1 as κ → 0. Also, for any κ, limm→∞
∫∞
m

exp(rθ)dF (θ;κ) =

0. This implies that, for any ε > 0, there exist positive numbers δ,m with 0 < δ < m
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and κ̄ > 0 such that for any κ < κ̄, the following inequalities remain true:11

∫ θ̄

θ

exp(rθ)dF (θ;κ) =

∫ δ

−∞
exp(rθ)dF (θ;κ) +

∫ m

δ

exp(rθ)dF (θ;κ) +

∫ ∞

m

exp(rθ)dF (θ;κ)

< exp(rδ) + exp(rm)[F (m;κ)− F (δ;κ)] +

∫ ∞

m

exp(rθ)f(θ;κ)dθ

<
(
1 +

ε

3

)
+

ε

3
+

ε

3
= 1 + ε.

Since E[exp(rθi)] > exp(rE[θi]) = 1 always remains true, lnE[exp(rθi)] → 0 as κ → 0.

Similarly, lnE[exp(rω)] → 0 as λ → 0. Hence, the risk premium ρ∗ converges to zero

as κ, λ → 0. Also, according to the definition of the convergence in law, for any θ < 0,

F (θ;κ) → 0 as κ → 0. Hence, a similar argument shows that E[θ(n)] → 0 as κ → 0. On

the other hand, the difference between W ∗∗ and the first-best utility is strictly smaller

than zero even in the limit as κ, λ → 0. This is because 0 < ã. Therefore, λ > 0 in the

limit as κ → 0.

Next, we claim that λ̄ is smaller than one in the limit as n → ∞ and δ → 0. Using

integration by parts, we transform the bidding function b(·) in Lemma 3.1 into

b(θi) = −1

r
ln

{
−
[
exp(−rs)

1− F(n−1)(s)

1− F(n−1)(θi)

]θ̄
θi

− r

∫ θ̄

θi

exp(−rs)
1− F(n−1)(s)

1− F(n−1)(θi)
ds

}

= −1

r
ln

{
exp(−rθi)− r

∫ θ̄

θi

exp(−rs)

(
1− F (s)

1− F (θi)

)n−1

ds

}
. (3.11)

Lebesgue’s dominated convergence theorem implies that as the number n of suppliers

goes to infinity, the term b(θi) converges to θi for each θi. Based on this fact, we can

easily verify that E[n(1− F(n−1)(θi))(b(θi)− θi)] converges to zero as n → ∞. Moreover,

E[θ(n)] converges to θ as n → ∞. Thus, EU∗∗
B converges to v − {ψ(0) + θ} as n → ∞.

In contrast, EU∗
B is invariant to n. It follows from the first-order condition (3.10) that

ã → 0 as δ → 0. Therefore, λ̄ = 0 for sufficiently large n and small δ. This establishes

the claim.

Proof of Example 3.1. Assume that F (θi;κ) = 1 − exp(−θi/κ − 1) for each θi ≥ −κ.

From the distribution, the bidding function b(·) in the second-stage auction is given as

follows:

b(θi) = −1

r
ln

∫ ∞

θi

exp(−rs)
n− 1

κ
exp
(
−(n− 1)

( s
κ
+ 1
))

exp

(
(n− 1)

(
θi
κ
+ 1

))
ds

= θi +
1

r
(ln(κr + n− 1)− ln(n− 1)) .

11Even if θ̄ = ∞, we can find such number m using the assumption detailed in footnote 4.
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Therefore, a simple calculation shows that

E[(1− F(n−1)(θi))(b(θi)− θi)] =
1

nr
(ln(κr + n− 1)− ln(n− 1)) ,

which increases in κ. The equality follows from E[(1− F(n−1)(θi))] = 1/n.

We next show that ρ∗ > nρ∗∗. From the distribution of θi, ρ
∗ is given as follows:

ρ∗ =
1

r
ln

∫ ∞

−κ

exp(rs)
1

κ
exp
(
− s

κ
− 1
)
ds+

1

r
lnE[exp(rω)]

= −1

r
ln(1− κr)− κ+

1

r
lnE[exp(rω)].

This is well-defined because κr ∈ (0, 1). We can compute nρ∗∗ as follows:

nρ∗∗ =
n

r
lnE

[
(1− F(n−1)(θi))

n− 1

κr + n− 1
+ F(n−1)(θi)

]

+ nE[(1− F(n−1)(θi))]
1

r
(ln(κr + n− 1)− ln(n− 1))

=
n− 1

r
[ln(n− 1)− ln(κr + n− 1)] +

n

r
[ln(κr + n)− ln(n)] .

It is easy to show that ρ∗ → 1
r
lnE[exp(rω)] > 0 and nρ∗∗ → 0 as κ → 0. Also, a simple

calculation shows that

∂ρ∗

∂κ
=

κr

1− κr
>

κr

(κr + n)(κr + n− 1)
=

∂(nρ∗∗)
∂κ

for each κ, r with κr ∈ (0, 1) and n ≥ 2. Therefore, it holds that ρ∗ > nρ∗∗.

Proof of Remark 3.1. We claim that if the idiosyncratic risks θi’s are exponentially dis-

tributed as in Example 3.1, then for sufficiently small λ, κ and n, the buyer’s expected

utility EU∗
B in the bundling mechanism is greater than the following expected utility in

the unbundling mechanism with the sophisticated contract; i.e.,

v − {ψ(ã)− δã+ E[θ(n)] + nE[(1− F(n−1)(θi))(b(θi)− θi)]
}

= v −
{
ψ(ã)− δã−

(
n− 1

n

)
κ+

1

r
(ln(κr + n− 1)− ln(n− 1))

}
. (3.12)

The difference between the expected utility (3.12) and the first-best utility converges to

zero as κ → 0. For the expected utility (3.12), the derivative with respect to κ is given

by

n− 1

n
− 1

κr + n− 1
. (3.13)

As shown in the proof of Theorem 3.1, the difference between the buyer’s expected utility
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EU∗
B in the bundling mechanism and the first-best utility converges to zero as λ → 0 and

κ → 0. The derivative with respect to κ is

∂EU∗
B

∂κ
= −∂ρ∗

∂κ
= − κr

1− κr
. (3.14)

The derivative (3.14) is greater than (3.13) when κ is close to zero and n = 2. Therefore,

EU∗
B is greater than the expected utility (3.12) for sufficiently small λ, κ and n = 2.

Proof of Proposition 3.3. First, using the envelope theorem, we can show that
∂EU∗

B

∂δ
=

∂W ∗
∂δ

= ã. Next, the assumption of additively separable production cost implies that nei-

ther the second-stage winner’s profit b(θi)−θi nor the risk premium ρ∗∗ under unbundling

depends on δ. Hence,
∂EU∗∗

B

∂δ
= ∂W ∗∗

∂δ
= 0. Since ã > 0,

∂EU∗
B

∂δ
= ∂W ∗

∂δ
= ã > 0 =

∂EU∗∗
B

∂δ
=

∂W ∗∗
∂δ

. Proposition 3.2 (ii) also implies that EU∗∗
B < W ∗∗.

Then, we have thresholds δ and δ̄ with the properties in the proposition. If EU∗
B >

EU∗∗
B (resp. W ∗ > W ∗∗) for any δ > 0, then we set δ = 0 (resp. δ̄ = 0). Also, δ, δ̄ < ∞

because W ∗
B > W ∗∗

B and EU∗
B > EU∗∗

B for some sufficiently large δ. This completes the

proof.

Proof of Lemma 3.3. (i) First, Lemma 3.2 implies that p(·) is an equilibrium bidding

strategy in the subcontracting auction. Second, a first-stage winner chooses an investment

level to maximize the certainty equivalent (3.9). Differentiating the certainty equivalent

yields the first-order condition (3.10). Hence, the winner chooses the efficient investment

level. Third, in the first-stage auction, every supplier submits a bid which makes him

indifferent between winning and losing, in any symmetric equilibrium. Even if supplier

i loses the first-stage auction, he can obtain the positive expected utility in the subcon-

tracting auction. The certainty equivalent is given by

E
[
F (θj)Eθi [(1− F(n−2)(θi))(b(θi, θj)− θi) | θi < θj]

]− ρl.

Hence, all suppliers submit the following bid:

ψ(ã) + E

[
(1− F(n−1)(θi))θi +

∫ θi

θ

b(s, θi)f(n−1)(s)ds+ ω − δã

]
+ ρw

+ E

[∫ θi

θ

(1− F(n−2)(s))(b(s, θi)− s)f(s)ds

]
− ρl

= ψ(ã)− δã+ E

[
n

n− 1

∫ θi

θ

b(s, θi)f(n−1)(s)ds

]
+ ρw − ρl.

The equality follows from the interchange of the integrals.

(ii) It is obvious that EU s
B and EU s

i are the same as in the proposition. The social
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welfare W s = EU s
B + n · u−1(EU s

i ) can be rewritten as

v −
{
ψ(ã)− δã+ E

[
n

n− 1

∫ θi

θ

b(s, θi)f(n−1)(s)ds

]
+ ρw − ρl

}

+ nE

[∫ θi

θ

(1− F(n−2)(s))(b(s, θi)− s)f(s)ds

]
− nρl

= v − {ψ(ã)− δã+ E[θ(n)] + ρw + (n− 1)ρl
}
.

Proof of Proposition 3.4. As a preliminary, we prove that EU s
i = EU∗∗

i ; thus, W s −
EU s

B = W ∗∗ − EU∗∗
B . From Proposition 3.2 (ii) and equation (3.11), the supplier’s

expected utility EU∗∗
i in the unbundling mechanism can be rewritten as

1− E[(1− F(n−1)(θi)) exp(−r(b(θi)− θi)) + F(n−1)(θi)]

= 1−
∫ θ̄

θ

{
(1− F(n−1)(θi))

[
1− r

∫ θ̄

θi

exp(−rs)

exp(−rθi)

(
1− F (s)

1− F (θi)

)n−1

ds

]
+ F(n−1)(θi)

}
f(θi)dθi

= r

∫ θ̄

θ

∫ θ̄

θi

exp(−rs)

exp(−rθi)
(1− F (s))n−1 f(θi)dsdθi. (3.15)

Using integration by parts, we transform the bidding function b(·, ·) in Lemma 3.2 into

b(θi, θ) = −1

r
ln

{∫ θ

θi

exp(−rs)
f(n−2)(s)

1− F(n−2)(θi)
ds+

∫ θ̄

θ

exp(−rθ)
f(n−2)(s)

1− F(n−2)(θi)
ds

}

= −1

r
ln

{∫ θ

θi

exp(−rs)
f(n−2)(s)

1− F(n−2)(θi)
ds+ exp(−rθ)

(
1− F (θ)

1− F (θi)

)n−2
}

= −1

r
ln

{
exp(−rθi)− r

∫ θ

θi

exp(−rs)

(
1− F (s)

1− F (θi)

)n−2

ds

}
. (3.16)

From Lemma 3.3 (ii) and equation (3.16), the supplier’s expected utility EU s
i in the

bundling mechanism with subcontracting can be rewritten as

1− E
[
F (θj)Eθi [(1− F(n−2)(θi)) exp(−r(b(θi, θj)− θi)) + F(n−2)(θi) | θi < θj] + (1− F (θj))

]
=

1

2
−
∫ θ̄

θ

∫ θj

θ

{
(1− F(n−2)(θi))

[
1− r

∫ θj

θi

exp(−rs)

exp(−rθi)

(
1− F (s)

1− F (θi)

)n−2

ds

]
+ F(n−2)(θi)

}

f(θi)dθif(θj)dθj

= r

∫ θ̄

θ

∫ θj

θ

∫ θj

θi

exp(−rs)

exp(−rθi)
(1− F (s))n−2 f(θi)f(θj)dsdθidθj

= r

∫ θ̄

θ

∫ θ̄

θi

exp(−rs)

exp(−rθi)
(1− F (s))n−1 f(θi)dsdθi. (3.17)
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The first two equalities follows from E[1 − F (θj)] = 1/2, and the third equality follows

from Fubini’s theorem. Hence, it follows from (3.15) and (3.17) that EU∗∗
i = EU s

i .

(i) It follows from the first-order condition (3.10) and the definition of the first-stage

loser’s risk premium ρl that neither ã nor ρl depends on the parameter λ of the aggregate

risk ω. According to the definition of the second-order stochastic dominance, the first-

stage winner’s risk premium ρw increases in λ. Hence, both EU s
B and W s decrease in λ.

Now, the above preliminary result implies that EU s
B > EU∗∗

B iff W s > W ∗∗. Therefore,

we have a threshold λ̂ such that EU s
B > EU∗∗

B iff λ < λ̂, and W s > W ∗∗ iff λ < λ̂.

Now, we claim that λ̂ > 0 in the limit as κ → 0. From equation (3.16), it is easy to see

that b(θi, θ) increases in θi and b(θ, θ) = θ for each θ. Using this fact, a similar argument

to that for the proof of Theorem 3.1 shows that as κ → 0 and λ → 0, the difference

between W s and the first-best utility converges to zero. The difference between W ∗∗ and

the first-best utility is strictly smaller than zero, even in the limit, because 0 < ã. Hence,

it holds that λ̂ > 0 in the limit as κ → 0.

Next, we claim that λ̂ < 1 in the limit as δ → 0 and n → ∞. From equation (3.16),

Lebesgue’s dominated convergence theorem implies that as the number of suppliers, n,

goes to infinity, the term b(θi, θ) converges to θi for any θi and θ with θi ≤ θ. In the limit

as n → ∞, subcontracting occurs with probability one, and the subcontracting cost is

θ + ω − δã. Hence, as n → ∞, ρl → 0 and ρw → 1
r
lnE[exp(rω)], so that EU s

B converges

to v − {ψ(ã) − δã + θ + 1
r
lnE[exp(rω)]}. The proof of Theorem 3.1 shows that EU∗∗

B

converges to v − {ψ(0) + θ} as n → ∞. Also, it follows from the first-order condition

(3.10) that ã → 0 as δ → 0. Since 1
r
lnE[exp(rω)] > 0, it holds that λ̂ = 0 for sufficiently

large n and small δ. Thus, this establishes the claim.

(ii) The envelope theorem implies that
∂EUs

B

∂δ
= ∂W s

∂δ
= ã. It follows from the proof of

Proposition 3.3 that
∂EU∗∗

B

∂δ
= ∂W ∗∗

∂δ
= 0. Therefore, we can obtain the threshold δ̂ in the

same way as part (i) of this proposition.
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Chapter 4

Informed Principal Problems in

Bilateral Trading

4.1 Introduction

In this chapter, we study an informed principal problem in a bilateral trade environment.

A privately informed seller trades with a privately informed buyer. The two traders’

private information directly affects their ex post payoffs in both ways. There are multiple

units of goods to be traded. The strategic situation is modeled as a noncooperative game,

called the mechanism-selection game. The seller has full bargaining power to design a

trading mechanism. The model thus has both aspects of signaling and (monopolistic)

screening.1 The purpose of this chapter is to prove the existence of a separating equilib-

rium and investigate how the seller’s “signaling activity” through the choice of mechanism

affects allocative efficiency and distributional consequences.

Since the seminal work of Myerson and Satterthwaite (1983), a number of studies have

discovered the efficiency properties of various mechanisms in bilateral trade environments.

The central questions are whether efficient trade between two informed traders is possible

or not, and which mechanism is optimal for a particular party. Most previous studies

have implicitly assumed that the trading mechanism is designed by a third party (e.g.,

social planner, broker) with no private information.2 In contrast, we assume that the seller

with private information designs a trading mechanism with the same level of generality as

previous studies.3 Then, our model belongs to the informed-principal literature developed

by Myerson (1983) and Maskin and Tirole (1990, 1992).

We analyze the following mechanism-selection game. At the outset, both the seller

and buyer have private information about payoff-relevant types. Their types are inde-

1Riley (2001) provides an excellent survey of the literature on screening and signaling.
2Two exceptions are Yilankaya (1999) and Mylovanov and Tröger (2012b). They analyze the case of

private values, defined shortly.
3Conversely, we can presume that the buyer designs a trading mechanism.
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pendently distributed. Next, the seller announces a direct mechanism. The mechanism

induces a game in which each player reports her/his own type. The buyer can also opt

out. Given the reported types, the mechanism determines the (randomized) quantity to

be traded and a payment.

There are two cases to be distinguished. The first one is the case of private values. In

this case, the seller’s information does not directly affect the buyer’s payoff. As Maskin

and Tirole (1990) have shown in the case of quasi-linear payoff functions, we can ver-

ify that the mechanism-selection game has a unique equilibrium outcome.4 The seller’s

interim payoff is the same as in the optimal screening mechanism when her type is com-

monly known. The second one is the case of interdependent values.5 In this case, the

seller’s information directly affects the buyer’s payoff. Some type of seller may no longer

select the optimal screening mechanism to avoid being mistaken for the other types and

prevent an unfavorable outcome. This observation raises an issue which mechanism the

seller selects in equilibrium.

Our focus is on the case of interdependent values. In particular, we assume that

the so-called virtual valuation is monotonic in the seller’s type. First, we prove the

existence of a separating equilibrium in the mechanism-selection game. In the equilibrium,

the buyer’s posterior belief about the seller’s type is reasonable in some sense. In any

separating equilibrium, the seller’s interim payoff vector is uniquely determined by the

vector in the LCS (least-cost-separating) mechanism. The mechanism is defined so that

it yields to any type of seller the maximum interim payoff among mechanisms which

satisfy the interim upward incentive compatibility constraints for the seller and is both

ex post incentive compatible and individually rational for the buyer. Next, we investigate

the efficiency properties of the LCS mechanism in comparison with the seller’s optimal

screening mechanism when her type is commonly known. It is obvious that the seller

is weakly worse off due to the signaling cost. We provide sufficient conditions on the

seller’s cost function under which the allocation rule is distorted upward or downward.

Accordingly, the buyer’s ex post payoff is weakly higher or lower than in the optimal

screening mechanism.

Myerson (1983) develops a general theory of how an informed principal should design

a mechanism to interact with informed agents. Myerson discovers the “Inscrutability

Principle.” The theorem states that any equilibrium outcome of the mechanism-selection

game arises from some pooling equilibrium. The principle is so general that it holds true

in our model. However, in order for the seller to obtain a strictly higher payoff than in

the LCS mechanism, some pooling must occur in equilibrium.

In the case of interdependent values, Maskin and Tirole (1992) characterize the set of

4Example 2 in Mylovanov and Tröger (2012a) shows that this may not be the case in a partnership
dissolution model à la Cramton et al. (1987). In some equilibrium of the example, the principal benefits
from the privacy of her information.

5Maskin and Tirole (1992) call it the case of common values.
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mechanisms selected in equilibrium. They show that the set consists of incentive-feasible

mechanisms which weakly dominate the “RSW (Rothschild-Stiglitz-Wilson)” mechanism.

Their analysis mainly focuses on the case in which only the principal has private infor-

mation. By making relatively strong assumptions, they show that the characterization

result holds true in a model with an informed agent. A contribution of this chapter is to

generalize their result in many aspects. Since the LCS and RSW mechanisms are equiv-

alent in our model, our existence theorem of separating equilibrium implies the same

characterization result as Maskin and Tirole. Moreover, we investigate the properties

of the agent’s payoffs in the separating equilibrium as well as the principal’s payoff. In

Section 4.5, we will discuss the relation between the LCS mechanism and other solution

concepts developed in the literature on informed principal problems.

The following studies analyze games in which a seller offers a price in trading envi-

ronments with interdependent values. In all models, a seller as well as buyers has private

information, and there is a single object to be traded. Shneyerov and Xu (2013) consider

a bilateral trade environment. They provide a sufficient condition that ensures existence

and uniqueness of a separating equilibrium. Jullien and Mariotti (2006) and Cai et al.

(2007) consider auction environments. A seller offers a reserve price to buyers. The

seller can signal her type through the proposal of prices. In the above three studies, they

exogenously restrict the class of available mechanisms to one-dimensional prices. In con-

trast, we endogenously show that a mechanism in which the seller has no opportunity to

choose actions can be selected in a separating equilibrium. Therefore, our result provides

a justification for assuming that a seller with monopolistic power selects a (non-linear)

pricing mechanism for screening purposes, which is often observed in practice, even when

she has some private information.

This chapter is organized as follows. Section 4.2 presents the model. Section 4.3

provides some preliminary observations. Section 4.4 proves the existence of a separating

equilibrium and investigates the allocations of goods and the players’ payoffs in the sep-

arating equilibrium. Section 4.5 discusses the results. Section 4.6 concludes. All proofs

are in the Appendix.

4.2 The Model

Consider a seller (principal) who sells some indivisible goods to a buyer (agent). The

seller’s type is denoted by s ∈ S := {1, ..., s̄}. The buyer’s type is denoted by t ∈
T := {1, ..., t̄}.6 We denote by q ∈ {0, 1, ..., q̄} the quantity of goods to be traded. Let

c : {0, 1, ..., q̄}× S × T → R+ be a cost function,7 and v : {0, 1, ..., q̄}× S × T → R+ be a

6A bilateral-trading model in which each player’s type is binary is analyzed by Matsuo (1989).
7If we interpret the environment as a pure exchange economy, then c(q, s, t) is an opportunity cost.

If we interpret the environment as a production economy, then c(q, s, t) is a production cost.

56



valuation function. They are normalized so that c(q, s, t) ≡ 0 and v(q, s, t) ≡ 0 for q = 0.

We denote by Δ the set of all lotteries over {0, 1, ..., q̄}. With a slight abuse of notation,

for any lottery Q ∈ Δ, we let c(Q, s, t) :=
∑

q Qqc(q, s, t) and v(Q, s, t) :=
∑

q Qqv(q, s, t)

be the expected cost and the expected valuation respectively.8 Let ≥FSD be the partial

order on Δ such that Q′ ≥FSD Q if Q′ first-order stochastically dominates Q. Let

M ∈ R be a monetary transfer from the buyer to the seller. We call (Q,M) ∈ Δ×R an

outcome. Given any type profile (s, t) and outcome (Q,M), the seller’s ex post payoff is

M − c(Q, s, t), and the buyer’s ex post payoff is v(Q, s, t)−M .

The types (s, t) are random variables which are independent across players. The prior

distribution of s is given by (ps)s∈S with
∑

s∈S p
s = 1 and ps > 0 for each s. The

prior distribution of t is given by (pt)t∈T with
∑

t∈T pt = 1 and pt > 0 for each t. Let

P (t) :=
∑t

t′=1 pt′ be the cumulative distribution function of t. The prior distributions are

common knowledge.

For instance, in a used-car market studied by Akerlof (1970), a seller’s type s rep-

resents quality of her car, and a buyer’s type t represents his preference parameter for

the car. In a labor market studied by Spence (1973), a manager’s type s represents her

productivity, and an employer’s type t represents his capacity to pay. In a monopolistic

market studied in the literature on non-linear pricing, a monopolist’s type s represents

how innovative a new product is, and a retailer’s type t represents local demands for the

product. In each case, the seller’s type variable s can directly affect the buyer’s ex post

payoff.

As in standard screening models, we define the virtual valuation9 by

ψ(q, s, t) := v(q, s, t)− 1− P (t)

pt
[v(q, s, t+ 1)− v(q, s, t)] .

We may extend the function ψ to Δ×S × T so that ψ(Q, s, t) :=
∑

q Qqψ(q, s, t) for any

Q ∈ Δ. Throughout the chapter, we maintain the following assumptions.

Assumption 4.1.

(i) (single-crossing condition in screening) v has strictly increasing differences in (q, t).10

(ii) ψ has strictly increasing differences in (q, t).

(iii) c has decreasing differences in (q, t).

Notice that Assumption 4.1 (i) together with v(0, s, t) ≡ 0 implies that v is increasing

in t for any q > 0. Assumptions 4.1 (ii) and (iii) imply that the virtual surplus ψ(q, s, t)−
c(q, s, t) has strictly increasing differences in (q, t). For instance, Assumptions 4.1 (i) and

8Here, Qq ∈ [0, 1] is a probability with which the seller supplies q units of goods. So,
∑q̄

q=0 Qq = 1.
9For any q and s, let v(q, s, t̄+ 1) be a real value.

10Let f be a real-valued function on {0, ..., q̄} × S × T . We say that f has strictly increasing (resp.,
decreasing) differences in (q, t) if f(q, s, t)−f(q−1, s, t) is increasing (resp., decreasing) in t for any q > 0
and s ∈ S. We say that f has increasing (resp., decreasing) differences in (q, t) if the above difference is
nondecreasing (resp., nonincreasing) in t. The conditions with respect to (q, s) and (s, t) are analogous.
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(ii) are satisfied if v(q, s, t) = (s+ t)q and (1− P (t))/pt is nonincreasing in t.

The seller has full bargaining power to design a trading mechanism. In our framework,

a (direct) mechanism G := (Q,M) consists of a pair of functions. Here, Q : S × T → Δ

is an allocation rule, and M : S × T → R is a payment rule. We thus allow a mechanism

to be stochastic. Let G ⊂ [0, 1]s̄t̄q̄ × R
s̄t̄ be the set of all mechanisms. The restriction to

direct mechanisms is justified by the “Revelation Principle.” The statement and proof

are presented in Proposition 4.7 in the Appendix.

Themechanism-selection game proceeds as follows. First, a type profile (s, t) of players

is realized according to the prior distributions. Each player is privately informed about

her/his own type. Second, the seller announces a mechanism (Q,M) ∈ G. Third, the

seller makes some report ŝ ∈ S, and, simultaneously, the buyer either makes some report

t̂ ∈ T or opts out. If the buyer opts out, then each player obtains zero payoff. If not,

then the game ends with the outcome (Q(ŝ, t̂),M(ŝ, t̂)). Each player obtains her/his ex

post payoff associated with the outcome and the realized types.

A (behavior) strategy for each player is defined in a standard manner. The seller’s

strategy consists of a (possibly randomized) mechanism-selection plan and a function

σ : S ×G → Δ(S).11 Here, σ(ŝ | s,G) is a probability of reporting ŝ ∈ S in a mechanism

G given her type s. The buyer’s strategy is a function τ : T × G → Δ(T ∪ {out}). Here,
τ(t̂ | t, G) is a probability of reporting t̂ ∈ T in a mechanism G or opting out for t̂ = out,

given his type t.

The buyer’s posterior belief about the seller’s type is denoted by ρ(· | G) ∈ Δ(S) for

any mechanism G ∈ G announced by the seller. We assume that the posterior belief does

not depend on the buyer’s own type t because (s, t) are stochastically independent.

We now define some kinds of incentive compatibility (IC) conditions on mechanisms.

To this end, we define the players’ payoffs associated with a mechanism G = (Q,M) and

a posterior belief ρ(· | G) as follows. We define

Π(ŝ | s) :=
∑
t∈T

pt [M(ŝ, t)− c (Q(ŝ, t), s, t)] (4.1)

as the seller’s interim payoff when she reports ŝ given her own type s,

U(t̂ | s, t) := v(Q(s, t̂), s, t)−M(s, t̂) (4.2)

as the buyer’s ex post payoff when he reports t̂ given the realized type profile (s, t), and

U(t̂ | t) :=
∑
s∈S

ρ(s | G)U(t̂ | s, t) (4.3)

as the buyer’s interim payoff when he reports t̂ given his own type t. In each definition,

11For any countable set X, let Δ(X) be the set of all probability distributions on the set X.
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the other player is supposed to report her/his type truthfully.

Definition 4.1. Let G ∈ G be a mechanism, ρ(· | G) ∈ Δ(S) be a posterior belief, and

Π(ŝ | s), U(t̂ | s, t), U(t̂ | t) be the associated payoff functions defined by (4.1), (4.2) and

(4.3).

(i) The mechanism G is interim IC for the seller if

Π(s | s) ≥ Π(ŝ | s) for any s, ŝ ∈ S. (4.4)

(ii) The mechanism G with ρ(· | G) is interim IC for the buyer if

U(t | t) ≥ U(t̂ | t) for any t, t̂ ∈ T. (4.5)

(iii) The mechanism G is ex post IC for the buyer if

U(t | s, t) ≥ U(t̂ | s, t) for any t, t̂ ∈ T, s ∈ S. (4.6)

Next, we define some kinds of individually rationality (IR) conditions on mechanisms.

Definition 4.2. Let G ∈ G be a mechanism, ρ(· | G) ∈ Δ(S) be a posterior belief, and

U(t̂ | s, t), U(t̂ | t) be the associated payoff functions defined by (4.2) and (4.3).

(i) The mechanism G with ρ(· | G) is interim IR for the buyer if U(t | t) ≥ 0 for any t.

(ii) The mechanism G is ex post IR for the buyer if U(t | s, t) ≥ 0 for any s and t.

We have some remarks about the IC and IR conditions. A mechanism G with the

buyer’s posterior belief (ρ(s | G))s∈S (and the seller’s belief (pt)t∈T ) induces a finite

incomplete information game. We may simply call it a continuation game induced by G

with ρ. For any mechanism G with ρ which is interim IC for both players and interim

IR for the buyer, truth-telling forms a Bayesian equilibrium in the continuation game.

Given the same mechanism G, however, this need not be the case with another posterior

belief ρ′(· | G). We say that a mechanism G is incentive feasible if G is interim IC for the

seller and G with the prior belief (ps)s∈S is both interim IC and IR for the buyer.

The solution concept applied to the mechanism-selection game is perfect Bayesian

equilibrium. In the following, we simply call it an equilibrium. For some mechanism

G ∈ G, there may be multiple Bayesian equilibria in the continuation game. Following

Maskin and Tirole (1992), we suppose that players can coordinate over these Bayesian

equilibria by means of some public randomizing device such as a coin flip. The device is

formulated as (N, π), where N is the set of natural numbers and π ∈ Δ(N). Then, the

players’ strategies (σ, τ) are extended so that σ : S×N×G → Δ(S) and τ : T ×N×G →
Δ(T ∪ {out}). Formally, a profile ((Gs∗)s∈S, σ∗, τ ∗, ρ) of strategies and a belief system is

a perfect Bayesian equilibrium if the profile satisfies the following three conditions. (i)

Take any mechanism G ∈ G. Then, there exists a public randomizing device πG ∈ Δ(N)
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such that for any public signal ω ∈ N drawn according to πG, the strategy profile (σ∗(· |
·, ω,G), τ ∗(· | ·, ω,G)) forms a Bayesian equilibrium in the continuation game induced by

G with ρ. (ii) Any type of seller has no incentive to deviate from the mechanism Gs∗ to

another mechanism G �= Gs∗. That is, defining the seller’s interim payoff function ΠG in

a mechanism G = (Q,M) by

ΠG(s) :=
∑
t∈T

pt
∑
ŝ∈S

∑
t̂∈T∪{out}

∑
ω∈N

πG(ω)σ∗(ŝ | s, ω,G)τ ∗(t̂ | t, ω,G)
[
M(ŝ, t̂)− c(Q(ŝ, t̂), s, t)

]
,

(4.7)

it must hold that ΠGs∗
(s) ≥ ΠG(s) for any s ∈ S and G ∈ G.12 (iii) The belief system ρ

is consistent in the sense that, for any mechanism G such that G = Gs∗ for some s ∈ S,

ρ(s | G) =
ps∑

s′:Gs′∗=G ps′
if G = Gs∗, ρ(s | G) = 0 if G �= Gs∗.

The buyer may infer from the seller’s selection of a mechanism G that the seller cannot

be a particular type s. We focus on equilibria where each player adopts a truth-telling

strategy in any mechanism G which is interim IC for the seller and both ex post IC and

IR for the buyer.13

The ex post efficient allocation maximizes social surplus for any type profile (s, t):

Q̃(s, t) ∈ argmax
Q∈Δ

[v(Q, s, t)− c (Q, s, t)] . (4.8)

We call such a function Q̃ : S × T → Δ an efficient allocation rule.

Finally, we introduce the concept of “domination.”

Definition 4.3. A mechanism (Q,M) weakly dominates another mechanism (Q′,M ′) if

∑
t∈T

pt [M(s, t)− c(Q(s, t), s, t)] ≥
∑
t∈T

pt [M
′(s, t)− c(Q′(s, t), s, t)] (4.9)

for each s ∈ S. A mechanism (Q,M) dominates another mechanism (Q′,M ′) if the

above inequalities are satisfied for each s ∈ S, with strict inequality for some s ∈ S. A

mechanism (Q,M) is undominated if it is incentive feasible and there exists no incentive-

feasible mechanism which dominates (Q,M).

It is worth mentioning that the concept is defined in reference to the seller’s interim

payoffs only. Thus, even if a mechanism G dominates another mechanism G′, some type

of buyer with some posterior belief may be strictly worse off by a change from G′ to G.

12Here, (Q(ŝ, out),M(ŝ, out)) = (0, 0) is a no-trade outcome. Note that c(0, s, t) ≡ 0, v(0, s, t) ≡ 0.
13The buyer’s truth-telling strategy is defined by τ such that τ(t | t, ω,G) = 1 for any t ∈ T and

ω ∈ N. The seller’s truth-telling strategy is defined in the same way.
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4.3 Preliminary Results

This section provides some preliminary observations.

First, we provide sufficient conditions for the buyer’s IC conditions. The inequalities

(4.10) and (4.11) are called the interim and ex post local downward ICs for the buyer,

respectively.

∑
s∈S

ρ(s | G)U(t | s, t) ≥
∑
s∈S

ρ(s | G)U(t− 1 | s, t) for any t > 1. (4.10)

U(t | s, t) ≥ U(t− 1 | s, t) for any t > 1 and s ∈ S. (4.11)

The inequalities (4.12) and (4.13) are called the imterim and ex post local upward ICs for

the buyer, respectively.

∑
s∈S

ρ(s | G)U(t | s, t) ≥
∑
s∈S

ρ(s | G)U(t+ 1 | s, t) for any t < t̄. (4.12)

U(t | s, t) ≥ U(t+ 1 | s, t) for any t < t̄ and s ∈ S. (4.13)

The inequalities (4.14) are called the monotonicity conditions.

Q(s, t′) ≥FSD Q(s, t) for any t′ > t and s. (4.14)

Since we allow an allocation rule to be stochastic, the monotonicity conditions are in

general stronger than necessary.

Lemma 4.1. (i) A mechanism (Q,M) with a posterior belief ρ is interim IC for the

buyer if the interim payoff function U(·) defined by (4.3) satisfies both the interim lo-

cal downward and upward ICs for the buyer, and the allocation rule Q(·) satisfies the

monotonicity conditions.

(ii) A mechanism (Q,M) is ex post IC for the buyer if the ex post payoff function U(·)
defined by (4.2) satisfies both the ex post local downward and upward ICs for the buyer,

and the allocation rule Q(·) satisfies the monotonicity conditions.

The following lemma provides a version of the “revenue equivalence.”

Lemma 4.2. Let G = (Q,M) be a mechanism, and ρ be the buyer’s posterior belief.

Suppose that (Q,M) with ρ satisfies the interim local downward ICs for the buyer with

equality, and
∑

s∈S ρ(s | G)[v(Q(s, 1), s, 1) − M(s, 1)] = K for some K ∈ R. Then, it

must hold that

∑
s∈S

ρ(s | G)
∑
t∈T

ptM(s, t) =
∑
s∈S

ρ(s | G)
∑
t∈T

ptψ(Q(s, t), s, t)−K. (4.15)
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Consider now a hypothetical situation in which the seller’s type s is common knowl-

edge. The buyer’s type t is, however, still his private information. We say that a mech-

anism Ḡ = (Q̄, M̄) is an optimal screening mechanism if, for each s, the mechanism is a

solution to the following problem:

max
(Q,M)∈G

∑
t∈T

pt [M(s, t)− c (Q(s, t), s, t)] (4.16)

s.t. (Q,M) with ρ(s | (Q,M)) = 1 is interim IC for the buyer.

(Q,M) with ρ(s | (Q,M)) = 1 is interim IR for the buyer.

It is shown that the following mechanism (Q̄, M̄) is optimal:

Q̄(s, t) ∈ argmax
Q∈Δ

[ψ(Q, s, t)− c (Q, s, t)] , (4.17)

M̄(s, t) := v
(
Q̄(s, t), s, t

)− t−1∑
t′=1

[
v
(
Q̄(s, t′), s, t′ + 1

)− v
(
Q̄(s, t′), s, t′

)]
. (4.18)

The buyer’s optimal allocation maximizes the virtual surplus for any realization of the

types. We assume that the maximization problem (4.17) has a unique deterministic

solution for any type profile (s, t). In fact, the assumption is satisfied generically in the

space of functions (ψ, c). The maximum expected payoff is given by

Π̄(s) :=
∑
t∈T

pt
[
ψ
(
Q̄(s, t), s, t

)− c
(
Q̄(s, t), s, t

)]
. (4.19)

The next proposition summarizes these results.

Proposition 4.1. The mechanism (Q̄, M̄) given by (4.17) and (4.18) is the optimal

screening mechanism.

The next proposition states that the optimal allocation rule Q̄ inevitably entails un-

dersupply of goods, compared with the efficient rule Q̃.

Proposition 4.2 (Undersupply problem). Let Q̄ be the optimal allocation rule and Q̃

be the efficient allocation rule. Then, for each s, Q̄(s, t) ≤FSD Q̃(s, t) for any t < t̄ and

Q̄(s, t̄) = Q̃(s, t̄).

The undersupply problem is caused by the seller’s incentive to reduce the buyer’s

information rents. However, the allocation Q̄(s, t̄) for the highest type t̄ is ex post efficient.

That is, there is “no distortion at the top.”

In the remaining sections, we maintain the following assumptions.

Assumption 4.2.

(i) The virtual valuation ψ(q, s, t) is increasing in s for each q > 0.

62



(ii) (single-crossing condition in signaling) c has strictly decreasing or strictly increasing

differences in (q, s).

(iii) c(q, s, t)− c(q − 1, s, t) has decreasing differences in (s, t) for each q > 0.

(iv)
∑

t∈T pt[ψ(q̄, s̄, t)− c(q̄, s, t)] ≤ 0 for each s.

By Assumption 4.2 (i), the optimal screening mechanism may no longer be interim IC

for the seller. Some type of seller has an incentive to pretend to be higher type, in order

to “screw” money from the buyer. Then, the seller with higher type has an incentive to

reveal her type by selecting a mechanism different from the optimal screening mechanism.

By analogy with Spence’s model, Assumption 4.2 (i) can be described as a situation where

a “wage” acceptable to an “employer” when facing a “high-productivity worker” is higher

than an acceptable wage when facing a “low-productivity worker.”

Assumption 4.2 (ii) is a single-crossing condition in signaling. By analogy with

Spence’s model, the former condition of Assumption 4.2 (ii) can be described as a situ-

ation where the marginal cost of raising an “education level” for the high-productivity

worker is lower than that for the low-productivity worker. We also cover the opposite

case. This is in contrast to Maskin and Tirole (1992) because they focus on the one-sided

case. See Assumption S in their article.

Assumption 4.2 (iii) makes the seller’s signaling activity worthwhile in a monotonic

way with respect to the buyer’s types. This assumption together with Assumptions 4.1

(ii) and (iii) is used to make the monotonicity conditions (4.14) nonbinding in some

maximization problems defined later.14 Finally, Assumption 4.2 (iv) means that the “full

production” q̄ is too costly for each type of seller.

Finally, the following proposition demonstrates the “Inscrutability Principle” discov-

ered by Myerson (1983).

Proposition 4.3 (Inscrutability Principle). For any equilibrium (γ, σ, τ, ρ) such that

γ(· | s) is a probability measure on G for each s ∈ S, there exists a pooling equilibrium

(G∗, σ∗, τ ∗, ρ∗) which is outcome-equivalent to the original equilibrium.

The principle states that any equilibrium outcome of the mechanism-selection game

arises from some pooling equilibrium. Myerson (1983) also shows that, in a more gen-

eral model than ours, the mechanism-selection game has an equilibrium. The game thus

has a pooling equilibrium. The Inscrutability Principle, however, tells us nothing about

whether the mechanism-selection game has a separating equilibrium. This issue is exam-

ined in the next section.

14In the proof of Proposition 4.1, we have already used Assumptions 4.1 (ii) and (iii) to make the
monotonicity condition (4.14) nonbinding in the problem of the optimal screening mechanism.
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4.4 Separating Equilibrium

In this section, we show the existence of a separating equilibrium. Each type of seller

reveals her type through the selection of a mechanism. In any separating equilibrium,

the seller’s interim payoff vector is uniquely determined by the vector in a particular

mechanism. The existence theorem is used to characterize the set of mechanisms selected

in equilibrium. We then show how the privacy of the seller’s information affects the

allocations and the players’ payoffs in the separating equilibrium.

We define a mechanism which plays a crucial role in our analysis. Now, the following

inequalities are called the interim upward and downward ICs for the seller, respectively:

Π(s | s) ≥ Π(ŝ | s) for any s, ŝ ∈ S with s < ŝ. (4.20)

Π(s | s) ≥ Π(ŝ | s) for any s, ŝ ∈ S with s > ŝ. (4.21)

Definition 4.4. A mechanism (Q∗,M∗) is an LCS (least-cost-separating) mechanism if it

is a solution to the following maximization problem for each s ∈ S:

max
(Q,M)∈G

Π(s | s) =
∑
t∈T

pt [M(s, t)− c (Q(s, t), s, t)] (4.22)

s.t. (Q,M) satisfies the interim upward ICs (4.20) for the seller.

(Q,M) is ex post IC for the buyer.

(Q,M) is ex post IR for the buyer.

The LCS mechanism is required to be both ex post IC and IR for the buyer. Moreover,

Lemma 4.5 in the Appendix shows that the LCS mechanism is interim IC for the seller

because it also satisfies the interim downward ICs (4.21). Hence, a simple observation is

that, for each type of seller, the maximum payoff in the problem (4.22) is a lower bound

of the set of equilibrium payoffs in the mechanism-selection game. If any type of seller

obtains a strictly lower payoff, then she can profitably deviate to the LCS mechanism,

regardless of the buyer’s posterior belief. Indeed, whatever the seller’s type, the buyer is

willing to report truthfully in the LCS mechanism.

Remark 4.1. Maskin and Tirole (1992) define the LCS (least-cost-separating) allocation

in the case where only the principal has private information.15 Since the agent has no

private information, the associated maximization problems impose no IC constraint for

the agent. In addition, a difference from the LCS mechanism is that the upward ICs for

the principal is weakened to the local upward ones in the LCS allocation.

It is worth pointing out that the LCS mechanism is closely related to the “RSW

(Rothschild-Stiglitz-Wilson)” mechanism defined by Maskin and Tirole (1992). The

15The allocation in their model is defined as a direct mechanism in our model.
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RSW mechanism is defined as a mechanism which is a solution to the problem (4.22)

for each s ∈ S with an additional constraint that (Q,M) satisfies the interim down-

ward ICs (4.21) for the seller. Using the RSW mechanism, Maskin and Tirole (1992)

characterize the set of mechanisms selected in equilibrium. They show that the set of

equilibrium mechanisms consists of incentive-feasible mechanisms that weakly dominate

the RSW mechanism, provided that the RSW mechanism is “interim efficient” for some

strictly positive beliefs about the principal’s type. In our framework, the LCS and RSW

mechanisms are equivalent. This equivalence may not hold in other environments.

Our first main result is that the mechanism-selection game has a separating equi-

librium. In the equilibrium, each type of seller reveals the type through her choice of

mechanism. Moreover, the buyer’s posterior belief is “reasonable” in the following sense.

Let BE(ρ,G) be the set of Bayesian equilibria in the continuation game induced by a

mechanism G = (Q,M) with a posterior belief (ρ(s | G))s∈S. For any subset S ′ of S, de-

fine BE(S ′, G) := ∪ρ∈Δ(S′)BE(ρ,G).16 Denote by (ΠGs∗
(s))s∈S the seller’s interim payoff

vector in a candidate equilibrium. Then, define for any G ∈ G the set S(G) as follows:

S(G) := {s ∈ S | condition (4.24) holds}. (4.23)

ΠGs∗
(s) > sup

(σ,τ)∈BE(S,G)

∑
t∈T

pt
∑
ŝ∈S

∑
t̂∈T∪{out}

σ(ŝ | s)τ(t̂ | t) [M(ŝ, t̂)− c(Q(ŝ, t̂), s, t)
]
. (4.24)

That is, S(G) is the set of the seller’s types for which the selection of the mechanism G

is “dominated by the equilibrium payoff.” Using the set S(G), we define the criterion of

reasonableness. It is easy to verify that the criterion in the following definition is stronger

than the “intuitive criterion” by Cho and Kreps (1987). See also Mas-Collel et al. (1995).

Definition 4.5. Let ((Gs∗)s∈S, σ∗, τ ∗, ρ) be an equilibrium of the mechanism-selection

game. Let (ΠGs∗
(s))s∈S be the seller’s equilibrium payoff vector defined by (4.7), and

define the set S(G) by (4.23) for any mechanism G. Then, the belief system ρ is reason-

able if ρ(s | G) = 0 for any G ∈ G with S(G) �= ∅ and s ∈ S(G).

Theorem 4.1. The mechanism-selection game has a separating equilibrium. In the equi-

librium, the belief system ρ is reasonable.

Theorem 4.1 is proved in the following way. First, Lemma 4.7 in the Appendix shows

16Define the set Δ(S′) by Δ(S′) := {ρ ∈ Δ(S) | ρ(s) = 0 for any s �∈ S′}.
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that any LCS mechanism is a solution to the following problem.

max
(Q,M)∈G

∑
s∈S

∑
t∈T

pt [M(s, t)− c (Q(s, t), s, t)] (4.25)

s.t. (Q,M) satisfies the interim upward ICs (4.20) for the seller.

(Q,M) satisfies the ex post local downward ICs (4.11) for the buyer.

v(Q(s, 1), s, 1)−M(s, 1) ≥ 0 for any s ∈ S.

Thus, the LCS mechanism is not dominated by any other mechanism which satisfies

the constraints in the problem (4.25). Lemmas 4.4, 4.6 and 4.7 in the Appendix imply

that the LCS mechanism satisfies the ex post local downward ICs for the buyer and the

constraints v(Q(s, 1), s, 1) − M(s, 1) ≥ 0 for any s in the problem (4.25) with equality.

Using this fact, we make a weak assumption that the Lagrange multipliers associated

with those constraints are strictly positive.

Next, Theorem 4.1 is proved using the following two propositions. The proof of

Proposition 4.5 shows that, for any s, the type-s seller selects Gs∗ := (Q∗(s, ·),M∗(s, ·))
where (Q∗,M∗) is an LCS mechanism, and thus Gs∗ no longer depends on the seller’s

report ŝ.

Proposition 4.4. Let (Q∗,M∗) be an LCS mechanism and λ be a vector of Lagrange

multipliers such that ((Q∗,M∗), λ) satisfies the Kuhn-Tucker conditions for the problem

(4.25). Let (λs,ŝ)s∈S,ŝ>s be components of λ associated with the seller’s interim upward

ICs. Define the buyer’s belief (ρ(s))s∈S by ρ(s) := (1 +
∑

ŝ>s λ
s,ŝ −∑ŝ<s λ

ŝ,s)/s̄. Then,

ρ(s) > 0 for any s, and the LCS mechanism (Q∗,M∗) is not dominated by any other

mechanism which is interim IC for both players and interim IR for the buyer with respect

to ρ.

Proposition 4.5. Suppose that there exists a belief (ρ′(s))s∈S of the buyer such that

ρ′(s) > 0 for any s and the LCS mechanism is not dominated by any other mechanism

which is interim IC for both players and interim IR for the buyer with respect to ρ′.

Then, the mechanism-selection game has a separating equilibrium ((Gs∗)s∈S, σ∗, τ ∗, ρ). In

the equilibrium, the belief system ρ is reasonable in the sense of Definition 4.5.

The next theorem together with Theorem 4.1 implies that the seller’s payoff vector in

the LCS mechanism is the minimum of the set of equilibrium payoff vectors. This means

that the set of equilibrium mechanisms consists of incentive-feasible mechanisms that

weakly dominate the LCS mechanism. In order for the seller to obtain a strictly higher

payoff than in the LCS mechanism, some pooling must occur in equilibrium. Since the

LCS and RSW mechanisms are equivalent, we obtain the same characterization result as

Maskin and Tirole (1992) in our environment.
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Theorem 4.2. In any separating equilibrium of the mechanism-selection game, the seller’s

interim payoff vector is uniquely determined by that in the LCS mechanism.

The following theorem provides sufficient conditions under which the privacy of the

seller’s information mitigates or worsens the undersupply problem.

Theorem 4.3. Let (Q∗,M∗) be an LCS mechanism and Q̄ be the optimal allocation rule.

Then: Q∗(s, ·) = Q̄(s, ·) for s = 1, and the following inequalities hold for any s > 1.

(i) If the marginal cost is decreasing in s, then Q∗(s, t) ≥FSD Q̄(s, t) for each t.

(ii) If the marginal cost is increasing in s, then Q̄(s, t) ≥FSD Q∗(s, t) for each t.

In order to obtain some intuition, we consider the economic implications of the condi-

tions on the cost function. We now interpret the seller as a firm and her type as the level

of product innovation (high or low). When a high-level innovation occurs, the quality of

the product improves, so that the virtual valuation becomes higher. We then consider two

situations. The first one is a situation where the innovation also improves the production

process. Then, the high-type seller can effectively convey the fact that the high-level

innovation occurs by offering a contract with which large supplies are expected. The

second one is a situation where the innovation raises the marginal cost because the seller

must produce high-quality products. In this situation, the high-type seller can effectively

convey the fact by offering a contract with which limited supplies are expected.

Since the problem (4.22) is more constrained than the problem (4.16) for each s, the

seller’s interim payoff in any separating equilibrium is weakly lower than that in the

optimal screening mechanism. That is, the seller is weakly worse off due to the signaling

cost, except for the lowest type. The next theorem shows how the privacy of the seller’s

information changes the buyer’s ex post payoffs. The result has policy implications for

antitrust laws. In case (i) of the theorem, a regulator who oversees the seller (e.g.,

monopolistic firm) and aims at maximizing consumer surplus should not disclose the

seller’s information to the buyer.

Theorem 4.4. Fix any separating equilibrium, and any realization of the players’ types.

(i) If the marginal cost is decreasing in s, then the buyer’s ex post payoff is weakly higher

than that in the optimal screening mechanism.

(ii) If the marginal cost is increasing in s, then the buyer’s ex post payoff is weakly lower

than that in the optimal screening mechanism.

Remark 4.2. In a mechanism-selection game where the buyer, instead of the seller, designs

a trading mechanism, we can obtain similar results to those in Sections 4.3 and 4.4 by

changing Assumptions 4.1 and 4.2. Let φ(q, s, t) := c(q, s, t)+
1−∑s

s′=1 p
s′

ps
[c(q, s, t)−c(q, s+

1, t)] be the “virtual cost.” Then, Assumptions 4.1 and 4.2 should be replaced with the

following assumptions.

Assumption 4.1’
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(i) c has strictly decreasing differences in (q, s).

(ii) φ has strictly decreasing differences in (q, s).

(iii) v has increasing differences in (q, s).

Assumption 4.2’

(i) φ is decreasing in t for each q > 0.

(ii) v has strictly decreasing or strictly increasing differences in (q, t).

(iii) v(q, s, t)− v(q − 1, s, t) has increasing differences in (s, t) for each q > 0.

(iv)
∑

s∈S p
s[v(q̄, s, t)− φ(q̄, s, t̄)] ≤ 0 for each t.

4.5 Discussion

We discuss several implications of our results. First, we explain the significance of our

results in the literature on screening and signaling. The LCS allocation defined by Maskin

and Tirole (1992) had been of crucial importance for the theory of information economics.

In a competitive screening model of an insurance market, Rothschild and Stiglitz (1976)

show that there exists at most one market equilibrium, and the equilibrium outcome

is determined by the LCS allocation. In a signaling model of a labor market, Spence

(1973) shows that there exist multiple market equilibria. Cho and Kreps (1987) establish

a number of equilibrium refinement criteria, and illustrate that a noncooperative game

of the Spence signaling model has a unique equilibrium outcome, which is determined by

the LCS allocation. Based on these previous studies, Maskin and Tirole (1992) formulate

an informed-principal model, and show that, under some conditions, there exists an

equilibrium in which the outcome is determined by the LCS allocation. While Maskin

and Tirole provide a general and thorough analysis in the case where only the principal

has private information, they make relatively strong assumptions to show that their main

result holds true in the case where the agent also has private information. They then

conjecture that the analysis carries over to much more general environments. Our results

provide an affirmative answer to the conjecture. Moreover, Theorems 4.3 and 4.4 in

this chapter show the efficiency properties of the LCS mechanism in comparison with

the optimal screening mechanism. These theorems help us to better understand the

interaction between screening and signaling.

Second, we discuss the relation between the LCS mechanism and other solution con-

cepts developed in the literature. Myerson (1983) proposes many solution concepts

(strong solution, core mechanism, neutral optimum) in informed principal problems. In

our model, the strong solution is defined as an undominated mechanism which is interim

IC for the seller and ex post IC and IR for the buyer. A drawback of the concept is that

it does not always exist. In a model with a principal and an agent, a strong solution

exists if and only if the RSW mechanism is undominated. Myerson then introduces two

weaker concepts, the core mechanism and the neutral optimum, and proves the existence.
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Mylovanov and Tröger (2012a) define the concept of a strong neologism proof allocation

in a private-values environment which is more general than Maskin and Tirole (1990).

Among the above mechanisms, the core mechanism is shown to be the logically weakest

one. Since the core mechanism is by definition undominated, so are the other mecha-

nisms. Balestrieri and Izmalkov (2012) construct a Hotelling model where an informed

seller trades with an informed buyer. They characterize the optimal selling mechanism,

which maximizes the seller’s ex ante expected payoff among incentive-feasible mecha-

nisms. Balkenborg and Makrisz (2013) define the concept of an assured mechanism in

an interdependent-values environment where only the principal has private information.

They show that if either the principal’s type is binary or the primitives of the model

satisfy a condition which ensures that there is no bunching in the assured allocation,

then the assured allocation is a neutral optimum and thus undominated.

Contrary to all the above mechanisms, the LCS mechanism may be dominated by

another incentive-feasible mechanism. Even then, however, the LCS mechanism can be

interim incentive efficient in the sense of Holmström and Myerson (1983). The reason is

that a change from the LCS mechanism may reduce the interim payoff for some type of

buyer, as noted at the end of Section 4.2. Then, the selection of the LCS mechanism is

admitted based on the normative criterion. This is in stark contrast with the result that

the agent with no private information obtains no rent in the LCS allocation, and thus

the LCS allocation is never interim incentive efficient provided that it is dominated by

another incentive-feasible mechanism; see Proposition 2 of Maskin and Tirole (1992).

Finally, we consider the implications for the bilateral-trading problem studied by

Hagerty and Rogerson (1987). They argue that a trading mechanism be “robust” in the

sense that it should be ex post IC and IR for both traders. Their argument is based on

the idea that a trading institution such as a stock exchange is used by a variety of traders

over a long period of time, and thus a social planner should design a robust mechanism to

changes in the information structure of the market. They show that, in a private-values

environment with an indivisible good, posted-price mechanisms are essentially the only

mechanisms which satisfy the two requirements. Our Theorems 4.1 and 4.2 imply that a

mechanism which is ex post IC and IR for the buyer can be endogenously chosen by the

seller in equilibrium. In many cases, however, the LCS mechanism is neither ex post IC

nor ex post IR for the seller herself. For instance, assume that q̄ = 1, T = S = {1, 2},
p1 = p2 = 1/2, v(q, s, t) = 4(s+ t)q and c(q, s, t) = (17− 2s)q. The prior distribution of s

is arbitrary. Then, the LCS mechanism (Q∗,M∗) is given by Q∗
1(1, t) ≡ 0, M∗(1, t) ≡ 0,

Q∗
1(2, 1) = 1/7, M∗(2, 1) = 12/7, Q∗

1(2, 2) = 1 and M∗(2, 2) = 108/7. Truth-telling

strategies yield the negative ex post payoff −1/7 to the seller when (s, t) = (2, 1), and

the seller can be better off by reporting ŝ = 1 when (s, t) = (2, 1) and ŝ = 2 when

(s, t) = (1, 2). Therefore, our result suggests that it might be costly for a trader with

power of the mechanism selection to restrict a class of mechanisms to those which are ex

69



post IC and IR for both traders.

4.6 Concluding Remarks

In this chapter, we have proved that, in a bilateral trade environment, the mechanism-

selection game has a separating equilibrium with a reasonable posterior belief. It is shown

that the seller’s interim payoff vector in any separating equilibrium is uniquely determined

by that in the LCS (lease-cost-separating) mechanism. We have also investigated alloca-

tive efficiency and the distributional consequences of the LCS mechanism.

Our existence theorem implies that the set of mechanisms selected in equilibrium

consists of incentive-feasible mechanisms which weakly dominate the LCS mechanism.

Therefore, unless the LCS mechanism is undominated, there exist multiple equilibria in

the mechanism-selection game. In the case where only the principal has private infor-

mation, Maskin and Tirole (1992) apply the equilibrium refinement of Cho and Kreps

(1987). They show that, under some conditions, the RSW allocation is a unique mecha-

nism which passes the Cho-Kreps criterion. It is an important topic for future research

to investigate whether some equilibrium refinements can rule out equilibria other than

the separating equilibrium in our model.

Appendix

We first prove the following lemma to use the monotone comparative statics. See Topkis

(1998) for the related definitions and conditions.

Lemma 4.3. Let f be a real-valued function on {0, ..., q̄} × S × T , and f(Q, s, t) :=∑
q Qqf(q, s, t) for any Q ∈ Δ. (i) The partially ordered set (Δ,≥FSD) is a lattice. (ii)

If f(q, s, t) has increasing (resp. strictly increasing) differences in (q, s), then f(Q, s, t)

has increasing (resp. strictly increasing) differences in (Q, s) on Δ × S. If f(q, s, t) has

increasing (resp. strictly increasing) differences in (q, t), then f(Q, s, t) has increasing

(resp. strictly increasing) differences in (Q, t) on Δ × T . (iii) The function f(·, s, t) is

both supermodular and submodular on Δ.

Proof of Lemma 4.3. (i) Take any two cumulative distribution functions Q,Q′ ∈ Δ. It

is easy to show that the distribution function min{Q,Q′} ∈ Δ is a least upper bound

of {Q,Q′} and the distribution function max{Q,Q′} ∈ Δ is a greatest lower bound of

{Q,Q′}. Hence, Δ is a lattice. (ii) Take any Q,Q′ ∈ Δ with Q′ >FSD Q, s, s′ ∈ S with

s′ > s and t ∈ T . Suppose that f(q, s, t) has strictly increasing differences in (q, s). Then,
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we can show by induction on q̄ that

q̄∑
q=0

Q′
q [f(q, s

′, t)− f(q, s, t)] >

q̄∑
q=0

Qq [f(q, s
′, t)− f(q, s, t)] .

This implies that f(Q′, s′, t) − f(Q, s′, t) > f(Q′, s, t) − f(Q, s, t). The proof for the

other case is analogous. (iii) Take any Q,Q′ ∈ Δ, s ∈ S and t ∈ T . Let Q ∨ Q′ and

Q ∧ Q′ be the cumulative distribution functions defined by Q ∨ Q′ := min{Q,Q′} and

Q∧Q′ := max{Q,Q′}. It is easy to show that the reduced lottery 1
2
◦(Q∨Q′)+ 1

2
◦(Q∧Q′)

is equal to 1
2
◦Q+ 1

2
◦Q′. It follows that

1

2
f(Q ∨Q′, s, t) +

1

2
f(Q ∧Q′, s, t) =

1

2
f(Q, s, t) +

1

2
f(Q′, s, t).

This implies that f(·, s, t) is both supermodular and submodular on Δ.

Proof of Lemma 4.1. (i) The proof is by induction on t̄. The proof is obvious for t̄ = 2.

Now assume that the statement is true for t̄ = k with k ≥ 2. We must show that the

interim payoff function U(·) defined by (4.3) satisfies the following inequalities:

∑
s∈S

ρ(s | G)U(k + 1 | s, k + 1) ≥
∑
s∈S

ρ(s | G)U(t | s, k + 1) for each t ≤ k. (4.26)

∑
s∈S

ρ(s | G)U(t | s, t) ≥
∑
s∈S

ρ(s | G)U(k + 1 | s, t) for each t ≤ k. (4.27)

The inequality (4.26) is satisfied for t = k because the buyer’s interim local downward

IC for t̄ = k + 1 implies that

∑
s∈S

ρ(s | G) [v(Q(s, k + 1), s, k + 1)− v(Q(s, k), s, k + 1)] ≥
∑
s∈S

ρ(s | G) [M(s, k + 1)−M(s, k)] .

Take any t ≤ k − 1. By the induction hypothesis, the following inequality is satisfied:

∑
s∈S

ρ(s | G) [v(Q(s, k), s, k)− v(Q(s, t), s, k)] ≥
∑
s∈S

ρ(s | G) [M(s, k)−M(s, t)] .

Summing up the above two inequalities, we obtain the following inequality:

∑
s∈S

ρ(s | G) [v(Q(s, k + 1), s, k + 1)− v(Q(s, k), s, k + 1) + v(Q(s, k), s, k)− v(Q(s, t), s, k)]

≥
∑
s∈S

ρ(s | G) [M(s, k + 1)−M(s, t)] . (4.28)

Since Q(s, k) ≥FSD Q(s, t) for any s by the monotonicity condition and v has (strictly)
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increasing differences in (q, t), it follows from Lemma 4.3 (ii) that

∑
s∈S

ρ(s | G) {[v(Q(s, k), s, k + 1)− v(Q(s, t), s, k + 1)]− [v(Q(s, k), s, k)− v(Q(s, t), s, k)]} ≥ 0.

The above two inequalities imply that

∑
s∈S

ρ(s | G) [v(Q(s, k + 1), s, k + 1)− v(Q(s, t), s, k + 1)] ≥
∑
s∈S

ρ(s | G) [M(s, k + 1)−M(s, t)] .

Therefore, the inequality (4.26) is satisfied for each t ≤ k. The proof for the inequality

(4.27) is analogous.

(ii) From part (i), both the ex post local downward and upward ICs for the buyer

together with the monotonicity conditions imply that, for any s ∈ S and posterior belief

ρ such that ρ(s | G) = 1, the mechanism G with ρ(· | G) is interim IC for the buyer. This

means that the mechanism G is ex post IC for the buyer.

Proof of Lemma 4.2. Since (Q,M) with ρ satisfies the inequalities (4.10) with equality

for each t > 1, we can obtain

∑
s∈S

ρ(s | G) [v(Q(s, t), s, t)−M(s, t)] =
∑
s∈S

ρ(s | G)
t−1∑
t′=1

[v (Q(s, t′), s, t′ + 1)− v (Q(s, t′), s, t′)] +K

for each t ∈ T . Taking the expectation with respect to t, it is shown by an interchange

of summations that

∑
s∈S

ρ(s | G)
∑
t∈T

ptM(s, t) =
∑
s∈S

ρ(s | G)
∑
t∈T

ptψ(Q(s, t), s, t)−K.

Proof of Proposition 4.1. Fix any s ∈ S, We first claim that the mechanism (Q̄, M̄) given

by (4.17) and (4.18) is a solution to the following problem:

max
(Q,M)∈G

∑
t∈T

pt [M(s, t)− c (Q(s, t), s, t)]

s.t. U(t | s, t) ≥ U(t− 1 | s, t) for any t > 1, and U(1 | s, 1) ≥ 0.

It is easy to verify that any solution to the above problem must satisfy all the con-

straints with equality. By construction, the mechanism (Q̄, M̄) satisfies this condition.

Letting ρ(s | (Q̄, M̄)) = 1 and K = 0, it follows from Lemma 4.2 that
∑

t∈T ptM̄(s, t) =∑
t∈T ptψ(Q̄(s, t), s, t). Substituting the expected payment into the objective function

shows that the mechanism (Q̄, M̄) is a solution to the above problem.

Since the above problem is less constrained than the problem (4.16), it remains to show
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that (Q̄, M̄) satisfies all the constraints in the latter problem. It follows from Theorem

2.8.4 of Topkis (1998) together with Lemma 4.3 that the allocation rule Q̄ given by

(4.17) satisfies the monotonicity condition. Then, since (Q̄, M̄) with ρ(s | (Q̄, M̄)) = 1

satisfies the interim local downward ICs with equality, Assumption 4.1 (i) with Lemma

4.3 (ii) implies that it also satisfies the interim local upward ICs for the buyer. Therefore,

Lemma 4.1 implies that the mechanism (Q̄, M̄) with ρ(s | (Q̄, M̄)) = 1 is interim IC for

the buyer. Then, U(t | s, t) ≥ U(1 | s, t) ≥ U(1 | s, 1) = 0 for any t > 1, where the

second inequality follows from the monotonicity of v in t. Thus, the mechanism (Q̄, M̄)

with ρ(s | (Q̄, M̄)) = 1 is interim IR for the buyer. This completes the proof.

Proof of Proposition 4.2. Fix any s ∈ S and t < t̄. Let f be a real-valued function such

that, for Q ∈ Δ and α ∈ {0, 1}, f(Q,α) := v(Q, s, t)− c(Q, s, t)− (1−α)1−P (t)
pt

[v(Q, s, t+

1) − v(Q, s, t)]. Then, f(Q, 1) is the objective function of (4.8), and f(Q, 0) is that of

(4.17). Take any Q,Q′ with Q′ >FSD Q. Lemma 4.3 (iii) implies that f is supermodular

on Δ. Lemma 4.3 (ii) also implies that v has strictly increasing differences in (Q, t).

Hence, if f(Q′, 0) ≥ f(Q, 0), then f(Q′, 1) > f(Q, 1). This implies that the function f

satisfies the strict single crossing property in (Q,α) in the sense of Milgrom and Shannon

(1994). Therefore, Theorem 4’ in their article implies that Q̄(s, t) ≤FSD Q̃(s, t).

The latter statement is trivial because we assume that the maximization problem

(4.17) has a unique deterministic solution for t = t̄.

Proof of Proposition 4.3. We first construct a candidate equilibrium (G∗, σ∗, τ ∗, ρ∗) in

which every type of seller selects the same mechanism G∗. Define the mechanism G∗ :=

(Q∗,M∗) ∈ G to be

Q∗
q(s, t) :=

∫
G

∑
ŝ∈S

∑
t̂∈T∪{out}

∑
ω∈N

πG(ω)σ(ŝ | s, ω,G)τ(t̂ | t, ω,G)Qq(ŝ, t̂)γ(dG | s),

M∗(s, t) :=
∫
G

∑
ŝ∈S

∑
t̂∈T∪{out}

∑
ω∈N

πG(ω)σ(ŝ | s, ω,G)τ(t̂ | t, ω,G)M(ŝ, t̂)γ(dG | s).

Here, for any G ∈ G, πG is a public randomizing device associated with the original

equilibrium. Define the buyer’s posterior belief ρ∗ as follows: ρ∗(s | G∗) := ps for any

s ∈ S, and ρ∗(· | G) := ρ(· | G) for any G ∈ G with G �= G∗. If the mechanism G∗ is

selected, then both players adopt truth-telling strategies so that σ∗(s | s, ω,G∗) := 1 and

τ ∗(t | t, ω,G∗) := 1 for any s ∈ S, t ∈ T and ω ∈ N. If any other mechanism G �= G∗ is

selected, then both players adopt the original strategies so that σ∗(·, G) := σ(·, G) and

τ ∗(·, G) := τ(·, G). For any G ∈ G, we use the original public randomizing device πG.

By construction, the mechanism G∗ with the posterior belief ρ∗(· | G∗) is interim IC

for both players and interim IR for the buyer. Since for any G �= G∗, the original strategy

profile (σ(·, G), τ(·, G)) forms a Bayesian equilibrium in a continuation game induced by
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G with ρ∗(· | G), so does (σ∗(·, G), τ ∗(·, G)). The linearity of the expected utility function

in probabilities implies that, by selecting the mechanism G∗, any type of seller obtains

the same interim payoff as in the original equilibrium (γ, σ, τ, ρ). So, the seller has no

incentive to deviate to any other mechanism G �= G∗. By construction, the belief system

ρ∗ is consistent. Finally, the construction of G∗ implies that the pooling equilibrium

(G∗, σ∗, τ ∗, ρ∗) is outcome-equivalent to the original equilibrium (γ, σ, τ, ρ).

Proposition 4.6. Let (Q∗,M∗) be an LCS mechanism, and (Q̄, M̄) be the optimal screen-

ing mechanism. Then, Q∗(1, t) = Q̄(1, t) and M∗(1, t) = M̄(1, t) for any t ∈ T .

Proof of Proposition 4.6. First, we claim that the maximum payoff of the problem (4.22)

for s = 1 is bounded by the maximum payoff Π̄(1) when the seller’s type is common

knowledge. This is because the maximization problem of the seller’s optimal screening

mechanism is less constrained than the problem (4.22).

Next, define a mechanism (Q,M) so that (Q(1, t),M(1, t)) := (Q̄(1, t), M̄(1, t)) and

(Q(s, t),M(s, t)) := (q̄, 0) for any s, t with s > 1. By construction, the mechanism (Q,M)

satisfies the interim upward ICs for the seller and both ex post IC and IR for the buyer.

Hence, the payoff Π̄(1) can be achieved in the problem (4.22) for s = 1. By assumption,

the problem (4.17) has a unique solution. By definition, the LCS mechanism (Q∗,M∗) is

a solution to the problem (4.22) for s = 1. Thus, (Q∗,M∗) must satisfy Q∗(1, t) = Q̄(1, t)

and M∗(1, t) = M̄(1, t). This completes the proof.

Lemma 4.4. For any s ∈ S, let (Q,M) be a solution to the following problem:

max
(Q,M)∈G

∑
t∈T

pt [M(s, t)− c (Q(s, t), s, t)] (4.29)

s.t. (Q,M) satisfies the interim upward ICs for the seller.

(Q,M) satisfies the ex post local downward ICs (4.11) for the buyer.

v(Q(s, 1), s, 1)−M(s, 1) ≥ 0 for each s ∈ S.

Then, the mechanism (Q,M) satisfies the buyer’s ex post local downward ICs (4.11) for

s with equality, and v(Q(s, 1), s, 1)−M(s, 1) = 0.

Proof of Lemma 4.4. Take any s ∈ S. Let (Q,M) be a solution to (4.29). By way of

contradiction, suppose that v(Q(s, t), s, t)−M(s, t) > v(Q(s, t− 1), s, t)−M(s, t− 1) for

some t ∈ T with t ≥ 2, or v(Q(s, 1), s, 1) −M(s, 1) > 0. In the following, we construct

a new mechanism (Q′,M ′) which leads to a contradiction. There are two cases to be

considered.

(i) First, assume that c(q, s, t) has strictly decreasing differences in (q, s). Then, the

following inequality holds for any allocation rule Q′ such that Q′(s, t) ≥FSD Q(s, t) with
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strict inequality for some t:

∑
t∈T

pt [c(Q
′(s, t), s, t)− c(Q(s, t), s, t)] <

∑
t∈T

pt [c(Q
′(s, t), s′, t)− c(Q(s, t), s′, t)]

for any s′ < s. Thus, by continuity of the payoff functions on Δ, there exists (Q′(s, t),M ′(s, t))t∈T
such that Q′(s, t) ≥FSD Q(s, t) with strict inequality for some t,

∑
t∈T

pt [c(Q
′(s, t), s, t)− c(Q(s, t), s, t))] <

∑
t∈T

pt [M
′(s, t)−M(s, t)] (4.30)

∑
t∈T

pt [c(Q
′(s, t), s′, t)− c(Q(s, t), s′, t)] ≥

∑
t∈T

pt [M
′(s, t)−M(s, t))] (4.31)

for any s′ < s, and (Q′(s, t),M ′(s, t))t∈T satisfies both the ex post local downward

ICs for the buyer and the constraint v(Q′(s, 1), s, 1) − M ′(s, 1) ≥ 0. Then, fix such

(Q′(s, t),M ′(s, t))t∈T . For any s′ < s, define (Q′(s′, ·),M ′(s′, ·)) := (Q(s′, ·),M(s′, ·)). For
any s′ > s, define (Q′(s′, ·),M ′(s′, ·)) := (q̄, 0). By the construction of the new mech-

anism (Q′,M ′), (Q′(s, ·),M ′(s, ·)) satisfies both the ex post local downward ICs for the

buyer and the constraint v(Q′(s′, 1), s′, 1) −M ′(s′, 1) ≥ 0 for any s′ ∈ S. Now, the new

mechanism (Q′,M ′) satisfies the inequality (4.31) for any s′ < s. Thus, since the orig-

inal mechanism (Q,M) satisfies the interim upward ICs for the seller, so does the new

mechanism (Q′,M ′).

However, the inequality (4.30) means that the type-s seller is strictly better off by

selecting the new mechanism (Q′,M ′). This contradicts the hypothesis that the original

mechanism (Q,M) is a solution to the problem (4.29) for s.

(ii) Assume that c(q, s, t) has strictly increasing differences in (q, s). In a similar way

to case (i), we can obtain a contradiction.

Lemma 4.5. Suppose that a mechanism (Q,M) is a solution to the problem (4.29) for

each s ∈ S. Then, the mechanism (Q,M) satisfies the interim downward ICs for the

seller, and thus it is interim IC for the seller.

Proof of Lemma 4.5. Take any mechanism (Q,M) which is a solution to the problem

(4.29) for each s ∈ S. It follows from Lemmas 4.2 and 4.4 that, for each s, the expected

payment
∑

t∈T ptM(s, t) is equal to
∑

t∈T ptψ(Q(s, t), s, t). Now, the proof proceeds by

induction on s: For each s ∈ S, we claim that

∑
t∈T

pt [ψ(Q(s, t), s, t)− c(Q(s, t), s, t))] ≥
∑
t∈T

pt [ψ(Q(ŝ, t), ŝ, t)− c(Q(ŝ, t), s, t))] (4.32)

for any ŝ < s. For s = 1, the claim is vacuously true. Suppose now that, for any s ≤ k

with k ≥ 1, (Q(s, ·),M(s, ·)) satisfies the above inequalities. Take s := k + 1. By way of
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contradiction, suppose that

∑
t∈T

pt [ψ(Q(s, t), s, t)− c(Q(s, t), s, t))] <
∑
t∈T

pt [ψ(Q(ŝ, t), ŝ, t)− c(Q(ŝ, t), s, t))] (4.33)

for some ŝ < s. Fix such ŝ. Then, it must be the case that, for some t, the lottery

Q(ŝ, t) assigns positive probability to some q > 0. Also, since (Q,M) is a solution to

the problem (4.29) for the type ŝ, Assumption 4.2 (iv) guarantees that, for some t, the

lottery Q(ŝ, t) assigns positive probability to some q < q̄. In the following, we construct

a new mechanism (Q′,M ′) which leads to a contradiction. There are two cases to be

considered.

(i) First, assume that c(q, s, t) has strictly increasing differences in (q, s). Since ψ is

increasing in s by Assumption 4.2 (i), the intermediate value theorem implies that there

exist allocations (Q′(s, t))t∈T such that Q′(s, t) ≤FSD Q(ŝ, t) with strict inequality for

some t, and

∑
t∈T

pt [c(Q
′(s, t), s, t)− c(Q(ŝ, t), s, t)] =

∑
t∈T

pt [ψ(Q
′(s, t), s, t)− ψ(Q(ŝ, t), ŝ, t)] . (4.34)

Since c(Q, s, t) has strictly increasing differences in (Q, s), the above equality implies the

following inequality:

∑
t∈T

pt [c(Q
′(s, t), s′, t)− c(Q(ŝ, t), s′, t)] ≥

∑
t∈T

pt [ψ(Q
′(s, t), s, t)− ψ(Q(ŝ, t), ŝ, t)] (4.35)

for any s′ < s. Now, define the payment rule M as in (4.18). For any s′ < s, define

(Q′,M ′) to be (Q′(s′, ·),M ′(s′, ·)) := (Q(s′, ·),M(s′, ·)). For any s′ > s, define (Q′,M ′)

to be (Q′(s′, ·),M ′(s′, ·)) := (q̄, 0). By the construction of the new mechanism (Q′,M ′),

(Q′(s, ·),M ′(s, ·)) satisfies both the ex post local downward ICs for the buyer and the

constraint v(Q′(s′, 1), s′, 1) − M ′(s′, 1) ≥ 0 for any s′ ∈ S. Now, the new mechanism

(Q′,M ′) satisfies the inequality (4.35) for any s′ < s. Moreover, the induction hypothesis

implies that the original mechanism (Q,M) satisfies the following inequalities

∑
t∈T

pt [M(s′, t)− c(Q(s′, t), s′, t)] ≥
∑
t∈T

pt [M(ŝ, t)− c(Q(ŝ, t), s′, t)]

for any s′, ŝ ∈ S with s′ < s and ŝ < s. Hence, the new mechanism (Q′,M ′) also satisfies

the above inequality with ŝ = s for any s′ < s. Therefore, the new mechanism is feasible

in the problem (4.29).

However, the inequality (4.33) with the equality (4.34) means that the type-s seller

is strictly better off by selecting the new mechanism (Q′,M ′). This contradicts the

hypothesis that the original mechanism (Q,M) is a solution to the problem (4.29) for s.
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(ii) Second, assume that c(q, s, t) has strictly decreasing differences in (q, s). In a

similar way to case (i), we can obtain a contradiction.

Lemma 4.6. A mechanism (Q,M) is an LCS mechanism if and only if it is a solution

to the problem (4.29) for each s ∈ S.

Proof of Lemma 4.6. Fix any s ∈ S, and take any solution (Q,M) to the problem (4.29)

for s. First, we claim that the mechanism (Q,M) satisfies the monotonicity condition

(4.14) for s. Define the Lagrangian function L as follows:

L(Q,M, λ) :=
∑
t∈T

pt [M(s, t)− c(Q(s, t), s, t)]

+
∑
s∈S

∑
t≥2

λs
t [v(Q(s, t), s, t)−M(s, t)− v(Q(s, t− 1), s, t) +M(s, t− 1)]

+
∑
s∈S

λs
1 [v(Q(s, 1), s, 1)−M(s, 1)]

+
∑
s∈S

∑
ŝ>s

λs,ŝ
∑
t∈T

pt [M(s, t)− c(Q(s, t), s, t)−M(ŝ, t) + c(Q(ŝ, t), s, t)]

+
∑
s∈S

∑
t∈T

λ̄s
t

[
1−

q̄∑
q=0

Qq(s, t)

]
,

where λ = (λs
t , λ

s,ŝ, λ̄s
t)s∈S,ŝ>s,t∈T ∈ R

s̄t̄+s̄(s̄−1)/2
+ × R

s̄t̄. Since (Q,M) is a solution to the

problem (4.29), there exist Lagrange multipliers λ such that a triple ((Q,M), λ) satisfies

the Kuhn-Tucker conditions. Notice that since the problem (4.29) is a linear programming

problem which satisfies the Slater constraint qualification, the Kuhn-Tucker conditions

are necessary and sufficient for the solution. Fix any such λ. Then, the first-order

condition ∂L
∂M(s,t̄)

(Q,M, λ) = 0 implies that

pt̄

(
1 +
∑
ŝ>s

λs,ŝ −
∑
ŝ<s

λŝ,s)

)
= λs

t̄ .

Let α := 1 +
∑

ŝ>s λ
s,ŝ −∑ŝ<s λ

ŝ,s. Since λs
t̄ ≥ 0, so is α. Lemma 4.4 shows that

(Q,M) satisfies the buyer’s ex post local downward ICs (4.11) for s with equality and

v(Q(s, 1), s, 1) − M(s, 1) = 0. Thus, Lemma 4.2 implies that the expected payment is

given by
∑

t∈T ptM(s, t) =
∑

t∈T ptψ(Q(s, t), s, t). By substituting the expected payment

into the Lagrangian function L, we can show that Q(s, ·) must be a solution to the

following maximization problem:

max
Q(s,·)∈Δt̄

∑
t∈T

pt

{
α [ψ(Q(s, t), s, t)− c(Q(s, t), s, t)] +

∑
ŝ<s

λŝ,s [c(Q(s, t), ŝ, t)− c(Q(s, t), s, t)]

}
.
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Thus, for each t ∈ T , the allocation Q(s, t) is a solution to

max
Q′∈Δ

α [ψ(Q′, s, t)− c(Q′, s, t)] +
∑
ŝ<s

λŝ,s [c(Q′, ŝ, t)− c(Q′, s, t)] .

It follows from Lemma 4.3 that ψ(Q, s, t) has strictly increasing differences in (Q, t),

c(Q, s, t) has decreasing differences in (Q, t), and ψ and c are both supermodular and

submodular on Δ. Moreover, for any ŝ < s, c(Q, ŝ, t)−c(Q, s, t) has increasing differences

in (Q, t) by Assumption 4.2 (iii). If α > 0, then Theorem 2.8.4 of Topkis (1998) implies

that Q(s, t) ≥FSD Q(s, t′) for each t > t′. If α = 0, then λŝ,s > 0 for some ŝ < s. Then,

Q(s, t) assigns probability 1 to either q = 0 for each t or q = q̄ for each t because c(Q, s)

has either strictly increasing differences or strictly decreasing differences in (Q, s). Thus,

the allocation rule Q satisfies the monotonicity condition (4.14) for s.

Second, we claim that the solution (Q,M) to the problem (4.29) for s is both ex

post IC and ex post IR for the buyer with respect to s. The above arguments show

that (Q,M) satisfies the buyer’s ex post local downward ICs (4.11) for s with equality

and the monotonicity condition (4.14) for s. Thus, since v(Q, s, t) has strictly increasing

differences in (Q, t),

v(Q(s, t+ 1), s, t)− v(Q(s, t), s, t) ≤ v(Q(s, t+ 1), s, t+ 1)− v(Q(s, t), s, t+ 1) = M(s, t+ 1)−M(s, t)

for each t ≤ t̄ − 1. Hence, (Q,M) satisfies the ex post local upward ICs (4.13) for s.

Lemma 4.1 (i) then implies that the mechanism (Q,M) is ex post IC for the buyer for s.

Also, (Q,M) is ex post IR for the buyer for s because v is increasing in t, (Q,M) is ex

post IC for the buyer for s and v(Q(s, 0), s, 0)−M(s, 0) = 0.

Finally, we prove the statement in the lemma. The proof of the “only-if-part” is as

follows. By way of contradiction, suppose that an LCS mechanism is not a solution to the

problem (4.29) for some s′ ∈ S. Fix such s′. By definition, the LCS mechanism is feasible

in the problem (4.29). So, there exists another feasible mechanism (Q′,M ′) in which the

buyer with s′ obtains strictly higher payoff. Then, the above claim implies that (Q′,M ′) is

both ex post IC and IR for the buyer with respect to s′. In a similar way to Lemma 4.5, we

can construct a new mechanism (Q′′,M ′′) with (Q′′(s′, ·),M ′′(s′, ·)) := (Q′(s′, ·),M ′(s′, ·))
which satisfies the interim upward ICs for the seller and is both ex post IC and IR for the

buyer. This is a contradiction because the LCS mechanism is a solution to the problem

(4.29) for s′. The proof of the “if-part” is as follows. By the above claim, if a mechanism

is a solution to the problem (4.29) for each s, then it is both ex post IC and IR for the

buyer. The mechanism also satisfies the interim upward ICs for the seller. Thus, it must

be an LCS mechanism.

Lemma 4.7. Any LCS mechanism (Q∗,M∗) is a solution to the problem (4.25).

Proof of Lemma 4.7. Take any LCS mechanism (Q∗,M∗). It follows from Lemma 4.6 that
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(Q∗,M∗) is a solution to the problem (4.29) for each s ∈ S. By way of contradiction,

suppose that (Q∗,M∗) is not a solution to the problem (4.25). Then, there exists another

mechanism (Q,M) which satisfies the interim upward ICs for the seller, and the ex post

local downward ICs for the buyer and the constraint v(Q(s, t), s, t)−M(s, t) ≥ 0 for any

s and

∑
t∈T

pt [M(s, t)− c (Q(s, t), s)] >
∑
t∈T

pt [M
∗(s, t)− c (Q∗(s, t), s)] (4.36)

for some s ∈ S. If the inequality is also satisfied in a weak sense for any s′ �= s, then we

have a contradiction. So, we assume that the reverse inequality holds for some s′ �= s. Let

S ′ be the set of the seller’s types for which the reverse inequality holds in a weak sense.

Hence, s′ ∈ S ′. We construct a mechanism (Q′,M ′) as follows: (Q′(s, ·),M ′(s, ·)) :=

(Q(s, ·),M(s, ·)) for any s ∈ S \ S ′ and (Q′(s, ·),M ′(s, ·)) := (Q∗(s, ·),M∗(s, ·)) for any

s ∈ S ′. By construction, for any s ∈ S \ S ′ and s′ ∈ S ′,

∑
t∈T

pt [M
′(s, t)− c (Q′(s, t), s, t)] >

∑
t∈T

pt [M
∗(s, t)− c (Q∗(s, t), s, t)] ≥

∑
t∈T

pt [M
∗(ŝ, t)− c (Q∗(ŝ, t), s, t)]

∑
t∈T

pt [M
′(s′, t)− c (Q′(s′, t), s′, t)] >

∑
t∈T

pt [M(s′, t)− c (Q(s′, t), s′, t)] ≥
∑
t∈T

pt [M(ŝ′, t)− c (Q(ŝ′, t), s′, t)]

for any ŝ > s and ŝ′ > s′. The two weak inequalities follow from the hypotheses that the

original mechanisms (Q∗,M∗) and (Q,M) satisfy the interim upward ICs for the seller.

Since (Q∗,M∗) and (Q,M) satisfy the ex post local downward ICs for the buyer and the

constraint v(Q(s, t), s, t) −M(s, t) ≥ 0 for any s, so does (Q′,M ′). This contradicts the

fact that (Q∗,M∗) is a solution to the problem (4.29) for s which satisfies the inequality

(4.36).

Proof of Proposition 4.4. Take any LCS mechanism (Q∗,M∗). For the problem (4.25),

define the Lagrangian function L as in Lemma 4.6. Let λ∗ := (λs∗
t , λs,ŝ∗, λ̄s∗

t )s∈S,ŝ>s,t∈T
be a vector of Lagrange multipliers such that ((Q∗,M∗), λ∗) satisfies the Kuhn-Tucker

conditions. The first-order conditions ∂L
∂M(s,t)

(Q∗,M∗, λ∗) = 0 imply that

λs∗
t =

t̄∑
t′=t

pt′

(
1 +
∑
ŝ>s

λs,ŝ −
∑
ŝ<s

λŝ,s

)

for each s and t. Summing over s, it is shown that
∑

s∈S λ
s∗
t = s̄

∑t̄
t′=t pt′ for each t. We

now define a belief ρ so that ρ(s) := λs∗
t /
∑

s′∈S λ
s′∗
t = (1+

∑
ŝ>s λ

s,ŝ−∑ŝ<s λ
ŝ,s)/s̄. Since

Lemmas 4.4 and 4.6 imply that λs∗
t > 0, we obtain ρ(s) > 0 for any s. Let λ∗

t :=
∑

s∈S λ
s∗
t .

By construction, λ∗
tρ(s) = λs∗

t for each s and t.
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Now, consider the following maximization problem:

max
(Q,M)∈G

∑
s∈S

∑
t∈T

pt [M(s, t)− c (Q(s, t), s, t)] (4.37)

s.t. (Q,M) satisfies the interim upward ICs for the seller.

(Q,M) with ρ satisfies the interim local downward ICs (4.10) for the buyer.∑
s∈S

ρ(s) [v(Q(s, 1), s, 1)−M(s, 1)] ≥ 0.

Define the Lagrangian function L′ as follows:

L′(Q,M, λ)

:=
∑
s∈S

∑
t∈T

pt [M(s, t)− c(Q(s, t), s, t)]

+
∑
t≥2

λt

∑
s∈S

ρ(s) [v(Q(s, t), s, t)−M(s, t)− v(Q(s, t− 1), s, t) +M(s, t− 1)]

+ λ1

∑
s∈S

ρ(s) [v(Q(s, 1), s, 1)−M(s, 1)]

+
∑
s∈S

∑
ŝ>s

λs,ŝ
∑
t∈T

pt [M(s, t)− c(Q(s, t), s, t)−M(ŝ, t) + c(Q(ŝ, t), s, t)]

+
∑
s∈S

∑
t∈T

λ̄s
t

[
1−

q̄∑
q=0

Qq(s, t)

]
,

where λ = (λt, λ
s,ŝ, λ̄s

t)s∈S,ŝ>s,t∈T ∈ R
t̄+s̄(s̄−1)/2
+ × R

s̄t̄. By the construction of ρ and λ∗
t ,

the mechanism (Q∗,M∗) with the multipliers (λ∗
t , λ

s,ŝ∗, λ̄s∗
t )s∈S,ŝ>s,t∈T satisfies the Kuhn-

Tucker conditions. Hence, (Q∗,M∗) is a solution to the problem (4.37). This implies that

the LCS mechanism (Q∗,M∗) is not dominated by any other mechanism which is interim

IC for both players and interim IR for the buyer with respect to ρ.

Proof of Proposition 4.5. Let (Q∗,M∗) be an LCS mechanism. For each s ∈ S, define a

mechanism by Gs∗ := (Q∗(s, t̂),M∗(s, t̂))t̂∈T so that the mechanism Gs∗ no longer depends

on the seller’s report ŝ. We assume without loss of generality that Gs∗ �= Gs∗ for any s, s′

with s �= s′.17 For any s, denote the type-s seller’s interim payoff in the mechanism Gs∗

by Π∗(s) :=
∑

t∈T pt[M
∗(s, t)− c(Q∗(s, t), s, t)].

We claim that there exists a separating equilibrium in which, for any s, the type-s

seller selects the mechanism Gs∗. Since the LCS mechanism is both ex post IC and IR

for the buyer, given any s, it is sequentially rational for the buyer with a posterior belief

ρ(s | Gs∗) = 1 to report his type truthfully in the mechanism Gs∗. Then, the type-s seller

has no incentive to deviate to the mechanism Gs′∗ of another type s′ �= s because the

17If not, then we redefine (Gs∗)s∈S so that (Qs∗(ŝ, ·),Ms∗(ŝ, ·)) := (Q∗(s, ·),M∗(s, ·)) if ŝ = s and
(Qs∗(ŝ, ·),Ms∗(ŝ, ·)) := (0,−s) if ŝ �= s.
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LCS mechanism is interim IC for the seller by Lemmas 4.5 and 4.6. Hence, to prove the

claim, it suffices to show that, for any mechanism G different from (Gs∗)s∈S, there exists

some posterior belief (ρ(s | G))s∈S and some randomizing device π such that the seller’s

equilibrium payoff ΠG(s) defined by (4.7) in the continuation game is weakly lower than

Π∗(s) for any s.

In the following, fix any mechanism G = (Q,M) with G �= Gs∗ for each s ∈ S. Lemma

4.7 implies that there exists a vector of Lagrange multipliers λ such that ((Q∗,M∗), λ)

satisfies the Kuhn-Tucker conditions for the problem (4.25). Let (λs,ŝ)s∈S,ŝ>s be compo-

nents of λ associated with the interim upward ICs for the seller. For the interim payoff

vector (Π∗(s))s∈S, let S(G) be the set of the seller’s types defined by (4.23). We can as-

sume S(G) �= S because if S(G) = S, then any type of seller has no incentive to deviate

to G, no matter what equilibrium is played in the continuation game.

For any belief ρ ∈ Δ(S \S(G)) about the seller’s type, let F (ρ) ⊂ R
s̄ be the set of the

seller’s equilibrium payoff vectors in the continuation game induced by the mechanism G

with the belief ρ. Since the set of outcomes is finite in the mechanism G, both F (ρ) and

∪ρ∈Δ(S\S(G))F (ρ) are nonempty and bounded. Also, since we permit public randomizing

devices, the set F (ρ) is convex for any ρ. Let F be a compact and convex set containing

∪ρ∈Δ(S\S(G))F (ρ). For any s ∈ S, Π(·) ∈ R
s̄ and δ ∈ [0, 1], define a correspondence

Φs
δ by Φs

δ(Π(s)) := {r̃ | r̃ ∈ argmaxr∈[δ,1] [rΠ(s) + (1− r)Π∗(s)]} for s �∈ S(G) and

Φs
δ(Π(s)) := {0} for s ∈ S(G), and let Φδ(Π) := Φ1

δ(Π(1)) × · · · × Φs̄
δ(Π(s̄)). Obviously,

the correspondences Φs
δ and Φδ are convex-valued. Now, take any belief ρ′ ∈ Δ(S) with

ρ′(s) > 0 for any s. For any s ∈ S, t ∈ T and r ∈ [0, 1]s̄ with r �= (0, ..., 0), define a

function φs by

φs(r) :=
r(s)ρ′(s)∑

s′∈S r(s
′)ρ′(s′)

,

which is well-defined because ρ′(s′) > 0 for each s′. Let φ(r) := (φs(r))s∈S.

By the above arguments, the following self-correspondence

(F,Φδ, φ) : Δ(S \ S(G))×F ×
(
[δ, 1]S\S(G) × {0}S(G)

)
⇒ F ×

(
[δ, 1]S\S(G) × {0}S(G)

)
×Δ(S \ S(G))

is convex-valued. Also, the correspondence has a closed graph. The domain of the

correspondence is nonempty, compact and convex. Then, the Kakutani fixed point the-

orem implies that the correspondence (F,Φδ, φ) has a fixed point (Πδ, rδ, ρδ) ∈ F (ρδ) ×
Φδ(Πδ) × φ(rδ) for any δ ∈ (0, 1]. Let (Π, r, ρ) ∈ F × [0, 1]s̄ × Δ(S \ S(G)) be a subse-

quential limit of the sequence (Π 1
k
, r 1

k
, ρ 1

k
)∞k=1, the existence of which is guaranteed by the

compactness of F× [0, 1]s̄×Δ(S \S(G)). Since the correspondence F has a closed graph,

Π ∈ F (ρ). Hence, for some randomizing device π, for any ω ∈ N, the continuation game

induced by the mechanism G with the belief (ρ(s | G))s∈S has a Bayesian equilibrium
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(σ∗(·, ω,G), τ ∗(·, ω,G)) such that Π(s) = ΠG(s) for any s ∈ S, where

ΠG(s) :=
∑
t∈T

pt
∑
ŝ∈S

∑
t̂∈T∪{out}

∑
ω∈N

π(ω)σ∗(ŝ | s, ω,G)τ ∗(t̂ | t, ω,G)
[
M(ŝ, t̂)− c(Q(ŝ, t̂), s, t)

]
.

Fix such a strategy profile (σ∗(·, G), τ ∗(·, G)), using the Axiom of Choice. Also, for any

s, let (σ∗(·, Gs∗), τ ∗(·, Gs∗)) be truth-telling strategies and ρ(s | Gs∗) = 1.

Finally, we claim that the profile ((Gs∗)s∈S, σ∗, τ ∗, ρ) defined above is a separating

equilibrium which has the properties in the theorem. Since rδ(s) = 0 and φs(rδ) = 0 for

any s ∈ S(G) and δ ∈ (0, 1], we obtain ρ(s | G) = 0 if s ∈ S(G). Now, we show that

ΠG(s) ≤ Π∗(s) for any s ∈ S. By way of contradiction, suppose not. Then, there exists

s ∈ S(G) such that ΠG(s) > Π∗(s). We now construct a new mechanism (Q′,M ′) as

follows:

Q′(s, t) := r(s)

⎛
⎝∑

ŝ∈S

∑
t̂∈T∪{out}

∑
ω∈N

π(ω)σ∗(ŝ | s, ω,G)τ ∗(t̂ | t, ω,G)Q(ŝ, t̂)

⎞
⎠+ (1− r(s))Q∗(s, t),

M ′(s, t) := r(s)

⎛
⎝∑

ŝ∈S

∑
t̂∈T∪{out}

∑
ω∈N

π(ω)σ∗(ŝ | s, ω,G)τ ∗(t̂ | t, ω,G)M(ŝ, t̂)

⎞
⎠+ (1− r(s))M∗(s, t).

Since the correspondence Φδ with δ = 0 has a closed graph, we obtain r(·) ∈ Φ0(Π(·)).
Thus, r(s) = 0 if ΠG(s) < Π∗(s) and r(s) = 1 if ΠG(s) > Π∗(s). By the hypothesis,

the latter case occurs for some s. Hence, (Q′,M ′) dominates (Q∗,M∗). By definition,

the LCS mechanism (Q∗,M∗) is both ex post IC and IR for the buyer, and interim

IC for the seller by Lemma 4.5. Moreover, for any ω ∈ N, (σ∗(·, ω,G), τ ∗(·, ω,G)) is a

Bayesian equilibrium in the continuation game induced by G with ρ. Here, ρ(s | G) =

r(s)ρ′(s)/
∑

s′∈S r(s
′)ρ′(s′) for each s because ρ(·) = φ(r(·)) by the continuity of φ on

[0, 1]s̄ \ {0, ..., 0}. Therefore, it must be the case that the mechanism (Q′,M ′) with ρ′ is

interim IC for both players, and interim IR for the buyer. This contradicts the hypothesis

in the proposition. Thus, ((Gs∗)s∈S, σ∗, τ ∗, ρ) is a separating equilibrium which has the

properties in the theorem.

Proof of Theorem 4.2. Fix any s ∈ S. Take any separating equilibrium of the mechanism-

selection game, and let Π(s) be the seller’s interim payoff in the equilibrium. Let Π∗(s) be

the seller’s interim payoff in the LCS mechanism. Since Π∗(s) is a lower bound of the set

of equilibrium payoffs by the definition of the LCS mechanism, we obtain Π∗(s) ≤ Π(s).

We claim that Π∗(s) ≥ Π(s). By way of contradiction, suppose that Π∗(s) < Π(s). This

contradicts the fact that the LCS mechanism is a solution to the problem (4.22) for s.

Therefore, Π∗(s) = Π(s) as desired.

Proof of Theorem 4.3. Proposition 4.6 implies that Q∗(s, ·) = Q̄(s, ·) for s = 1. Now, let
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λ be a vector of Lagrange multipliers such that ((Q∗,M∗), λ) satisfies the Kuhn-Tucker

conditions for the problem (4.25). Let (λs,ŝ)s∈S,ŝ>s be components of λ associated with

the interim upward ICs for the seller. Fix any s ∈ S and t ∈ T . In a similar way to the

proof of Lemma 4.6, it is shown that Q∗(s, t) is a solution to the following problem:

max
Q∈Δ

(
1 +
∑
ŝ>s

λs,ŝ −
∑
ŝ<s

λŝ,s

)
[ψ(Q, s, t)− c(Q, s, t)] +

∑
ŝ<s

λŝ,s [c(Q, ŝ, t)− c(Q, s, t)] .

By Lemmas 4.4 and 4.6, we obtain 1 +
∑

ŝ>s λ
s,ŝ −∑ŝ<s λ

ŝ,s > 0.

(i) Take any Q,Q′ with Q′ >FSD Q. Suppose that the marginal cost is decreasing in

s. Then, c(Q′, ŝ, t) − c(Q′, s, t) > c(Q, ŝ, t) − c(Q, s, t) for any ŝ < s. Assume first that

λŝ,s = 0 for any ŝ < s. Since the problem maxq[ψ(q, s, t)− c(q, s, t)] has a unique solution

by assumption, we obtain Q∗(s, t) = Q̄(s, t). Assume next that λŝ,s > 0 for some ŝ < s.

If ψ(Q′, s, t)− c(Q′, s, t) ≥ ψ(Q, s, t)− c(Q, s, t), then

(
1 +
∑
ŝ>s

λs,ŝ −
∑
ŝ<s

λŝ,s

)
[ψ(Q′, s, t)− c(Q′, s, t)] +

∑
ŝ<s

λŝ,s [c(Q′, ŝ, t)− c(Q′, s, t)]

>

(
1 +
∑
ŝ>s

λs,ŝ −
∑
ŝ<s

λŝ,s

)
[ψ(Q, s, t)− c(Q, s, t)] +

∑
ŝ<s

λŝ,s [c(Q, ŝ, t)− c(Q, s, t)] .

This implies that the objective function satisfies the strict single crossing property in

(Q,
∑

ŝ<s λ
ŝ,s) in the sense of Milgrom and Shannon (1994). Therefore, Theorem 4’ in

their article implies that Q∗(s, t) ≥FSD Q̄(s, t). (ii) The proof is similar to that of (i).

Proof of Theorem 4.4. It follows from Proposition 4.6 and Theorem 4.2 that the state-

ments are trivially satisfied for s = 1. So, fix any s ≥ 2 and t ∈ T . Take any LCS

mechanism (Q∗,M∗). Let Q̄ be the optimal allocation rule.

(i) Assume that the marginal cost is decreasing in s. Lemmas 4.2 and 4.4 imply that

in the mechanism (Q∗,M∗), the type-t buyer’s ex post payoff is

t∑
t′=2

[v (Q∗(s, t′ − 1), s, t′)− v (Q∗(s, t′ − 1), s, t′ − 1)] .

Since the marginal cost is decreasing in s, Theorem 4.3 implies that Q∗(s, t′) ≥FSD Q̄(s, t′)

for each t′. Hence, Lemma 4.3 (ii) implies that

t∑
t′=2

[v (Q∗(s, t′ − 1), s, t′)− v (Q∗(s, t′ − 1), s, t′ − 1)]

≥
t∑

t′=2

[
v
(
Q̄(s, t′ − 1), s, t′

)− v
(
Q̄(s, t′ − 1), s, t′ − 1

)]
.
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Therefore, the buyer’s ex post payoff is weakly higher than that in the optimal screening

mechanism. (ii) The proof is similar to that of (i).

The following proposition presents the statement and proof of the “Revelation Princi-

ple.” We call Ḡ := ((A,B), (Q̄, M̄)) a generalized mechanism, where A,B are nonempty

action sets of the seller and the buyer, Q̄ : A × B → Δ is an allocation rule and

M̄ : A × B → R is a payment rule. We assume that Q̄0(a, out) ≡ 1 and M̄(a, out) ≡ 0.

For any generalized mechanism Ḡ, let ρ(· | Ḡ) ∈ Δ(S) be the buyer’s posterior belief

about the seller’s type. For any s ∈ S and t ∈ T , define α(· | s) and β(· | t) to be

probability measures on A and B ∪ {out} endowed with some sigma-fields, respectively.

Proposition 4.7 (Revelation Principle). Let Ḡ be a generalized mechanism, and ρ(· | Ḡ)

be the buyer’s posterior belief. Denote by (α, β) a Bayesian equilibrium in a continuation

game induced by Ḡ with ρ(· | Ḡ). Then, there exists a direct mechanism G ∈ G which has

the following two properties. (i) The mechanism G with ρ(· | Ḡ) is interim IC for both

players, and interim IR for the buyer. (ii) The outcomes of the truth-telling strategies in

G are equivalent to those of (α, β).

Proof of Proposition 4.7. We construct a direct mechanism G := (Q,M) as follows:

Qq(s, t) :=

∫
A

∫
B∪{out}

Q̄q(a, b)α(da | s)β(db | t),

M(s, t) :=

∫
A

∫
B∪{out}

M̄(a, b)α(da | s)β(db | t).

In the continuation game induced by G with ρ(· | Ḡ), the buyer has no incentive to tell

a lie when the seller truthfully reports her type, because for each t, t̂ ∈ T ,

∑
s∈S

ρ(s | Ḡ) [v(Q(s, t), s, t)−M(s, t)]

=
∑
s∈S

ρ(s | Ḡ)

∫
A

∫
B∪{out}

[
v(Q̄(a, b), s, t)− M̄(a, b)

]
α(da | s)β(db | t)

≥
∑
s∈S

ρ(s | Ḡ)

∫
A

∫
B∪{out}

[
v(Q̄(a, b), s, t)− M̄(a, b)

]
α(da | s)β(db | t̂)

=
∑
s∈S

ρ(s | Ḡ)
[
v(Q(s, t̂), s, t)−M(s, t̂)

]
.

The inequality follows from the hypothesis that (α, β) is a Bayesian equilibrium in the

continuation game induced by Ḡ with ρ(· | Ḡ). The hypothesis also implies that the

buyer has no incentive to opt out. In a similar way, we can show that the seller has no

incentive to tell a lie when the buyer truthfully reports his type. Finally, the construction

of G proves part (ii). This completes the proof.
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Chapter 5

Conclusion

In the previous chapters, we have analyzed three game-theoretic models.

In Chapter 2, we have studied the optimal design of scoring auctions in an environment

with various quality attributes. We show that if the virtual surplus is quasisupermodular

in quality, then there exists an optimal scoring rule which is supermodular in quality. As

an optimal scoring rule, we have constructed a Leontief-like function. An example shows

that an extension of Che (1993)’s scoring rule cannot implement the buyer’s optimal

direct mechanism. The scoring rule is additively separable in quality. This implies that

the buyer should carefully design scoring rules which are additively separable in quality

attributes.

In Chapter 3, we have compared the performance of a bundling method with that of

an unbundling method in an auction model with risks. An important feature of our model

is that the risk factors are categorized into two groups: aggregate risk and idiosyncratic

risk. Our results show that each risk factor has a different effect on a public authority’s

optimal choice between the two methods. In the bundling method, a public authority

must pay a high risk premium in exchange for the burden of risks on a private party. As a

result, a low aggregate risk is a strong reason to choose the bundling method. A decrease

in the idiosyncratic risk may encourage the public authority to choose the unbundling

method, by reducing information rents of private parties.

In Chapter 4, we have proved that, in a bilateral trade environment, the mechanism-

selection game has a separating equilibrium with a reasonable posterior belief. A funda-

mental notion in our analysis is the LCS (lease-cost-separating) mechanism. In our model,

the LCS mechanism is equivalent to the RSW (Rothschild-Stiglitz-Wilson) mechanism

defined by Maskin and Tirole (1992). We show that the seller’s interim payoff vector in

any separating equilibrium is uniquely determined by that in the LCS mechanism. We

also provide sufficient conditions on the seller’s cost function under which the allocation

rule is distorted upward or downward compared to the optimal direct mechanism when

the seller’s type is commonly known. Accordingly, the buyer is weakly better off or worse

off than in the optimal direct mechanism. This is in contrast to the case in which only
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the principal has private information.

An important question for future research is whether it is optimal for the buyer to

choose negotiations rather than auctions. Indeed, as shown in Section 2.5, a scoring

auction may not implement the optimal outcome for the buyer. Then, some form of

negotiations can outperform auctions. Bulow and Klemperer (1996) address the issue

and show that the principal prefers an auction with no reserve price to an optimally-

structured negotiation with one less bidder. Bajari et al. (2009) consider several possible

determinants which may influence the choice of auctions versus negotiations, and test

their hypotheses using a data set of private sector building contracts. Addressing the

issue based on the previous studies is left for future research.

Finally, I hope that our analyses in this thesis make some progress in game theory.

86



References

G.A. Akerlof. The market for “lemons”: Quality uncertainty and the market mechanism.

Quarterly Journal of Economics, 84(3):488–500, 1970.

J. Asker and E. Cantillon. Properties of scoring auctions. RAND Journal of Economics,

39(1):69–85, 2008.

J. Asker and E. Cantillon. Procurement when price and quality matter. RAND Journal

of Economics, 41(1):1–34, 2010.

E. Auriol and J.J Laffont. Regulation by duopoly. Journal of Economics & Management

Strategy, 1(3):507–533, 1992.

P. Bajari, R. McMillan, and S. Tadelis. Auctions versus negotiations in procurement:

An empirical analysis. Journal of Law, Economics, and Organization, 25(2):372–399,

2009.

F. Balestrieri and S. Izmalkov. Informed seller in a hotelling market. mimeo, 2012.

D. Balkenborg and M. Makrisz. An undominated mechanism for a class of informed

principal problems with common values. mimeo, 2013.

M. Bichler. An experimental analysis of multi-attribute auctions. Decision Support

Systems, 29(3):249–268, 2000.

F. Branco. The design of multidimensional auctions. RAND Journal of Economics, 28

(1):63–81, 1997.

J. Bulow and P. Klemperer. Auction versus negotiation. American Economic Review, 86

(1):180–194, 1996.

H. Cai, J. Riley, and L. Ye. Reserve price signaling. Journal of Economic Theory, 135

(1):253–268, 2007.

Y.K. Che. Design competition through multidimensional auctions. RAND Journal of

Economics, 24(4):668–680, 1993.

87



C.H. Chen-Ritzo, T.P. Harrison, A.M. Kwasnica, and D.J. Thomas. Better, faster,

cheaper: An experimental analysis of a multiattribute reverse auction. Management

Science, 51(12):1753–1762, 2005.

I.K. Cho and D.M. Kreps. Signaling games and stable equilibria. Quarterly Journal of

Economics, 102(2):179–221, 1987.

P. Cramton, R. Gibbons, and P. Klemperer. Dissolving a partnership efficiently. Econo-

metrica, 55(3):615–632, 1987.

ENR. The top 100 design-build firms, 2012. http://enr.construction.com/toplists/

DesignBuild/001-100.asp.

G.E.J. Gibson, J.T. O’Connor, G. Migliaccio, and J. Walewski. Key implementation is-

sues and lessens learned with design-build projects. American Society of Civil Engineers,

2007.

V. Grimm. Sequential versus bundle auctions for recurring procurement. Journal of

Economics, 90(1):1–27, 2007.

K.M. Hagerty and W.P. Rogerson. Robust trading mechanisms. Journal of Economic

Theory, 42(1):94–107, 1987.

M. Hanazono, J. Nakabayashi, and M. Tsuruoka. A theoretical analysis of scoring auctions

with a general form of scoring rules. mimeo, 2011.

G. Hanoch and H. Levy. The efficiency analysis of choices involving risk. Review of

Economic Studies, 36(3):335–346, 1969.

O. Hart. Incomplete contracts and public ownership: Remarks, and an application to

public-private partnerships. Economic Journal, 113:C69–C76, 2003.

B. Holmström and R.B. Myerson. Efficient and durable decision rules with incomplete

information. Econometrica, 51(6):1799–1819, 1983.

C. Holt. Competitive bidding for contracts under alternative auction procedures. Journal

of Political Economy, 88(3):433–445, 1980.

E.I. Hoppe, D.J. Kusterer, and P.W. Schmitz. Public-private partnerships versus tradi-

tional procurement: An experimental investigation. Journal of Economic Behavior &

Organization, 89:145–166, 2013.

E. Iossa, G. Spagnolo, and M. Vellez. Contract design in public-private partnerships.

Report for the World Bank, 2007.

88



B. Jullien and T. Mariotti. Auction and the informed seller problem. Games and Eco-

nomic Behavior, 56(2):225–258, 2006.

M. Kay. Transportation megaproject procurement: Benefits and challenges for PPPs and

alternative delivery strategies, and the resulting implications for Crossrail. PhD thesis,

Massachusetts Institute of Technology, 2009.

A.N. Kolmogorov and S.V. Fomin. Introductory real analysis. Dover Publications, 1975.

J.J. Laffont and D. Martimort. The theory of incentives: The principal-agent model.

Princeton Univ Press, 2002.

J.J. Laffont and J. Tirole. Using cost observation to regulate firm. Journal of Political

Economy, 94(3):614–641, 1986.

J.J. Laffont and J. Tirole. Auctioning incentive contracts. Journal of Political Economy,

95(5):921–937, 1987.

J.J. Laffont and J. Tirole. A theory of incentives in procurement and regulation. MIT

press, 1993.

S. Li and J. Yu. Bundling decisions in procurement auctions with sequential tasks. mimeo,

2011.

D. Martimort and J. Pouyet. To build or not to build: Normative and positive theories

of public-private partnerships. International Journal of Industrial Organization, 26(2):

393–411, 2008.

A. Mas-Collel, M.D Whinston, and J. Green. Microeconomic theory. Oxford university

press, 1995.

E. Maskin and J. Tirole. The principal-agent relationship with an informed principal:

The case of private values. Econometrica, 58(2):379–409, 1990.

E. Maskin and J. Tirole. The principal-agent relationship with an informed principal, II:

Common values. Econometrica, 60(1):1–42, 1992.

T. Matsuo. On incentive compatible, individually rational, and ex post efficient mecha-

nisms for bilateral trading. Journal of Economic Theory, 49(1):189–194, 1989.

R.P. McAfee and J. McMillan. Competition for agency contracts. RAND Journal of

Economics, 18(2):296–307, 1987.

P. Milgrom. Putting auction theory to work. Cambridge University Press, 2004.

89



P. Milgrom and I. Segal. Envelope theorems for arbitrary choice sets. Econometrica, 70

(2):583–601, 2002.

P. Milgrom and C. Shannon. Monotone comparative statics. Econometrica, 62(1):157–

180, 1994.

K.R. Molenaar and G. Yakowenko. Alternative project delivery, procurement, and con-

tracting methods for highways. American Society of Civil Engineers, 2007.

R.B. Myerson. Mechanism design by an informed principal. Econometrica, 51(6):1767–

1797, 1983.

R.B. Myerson and M.A. Satterthwaite. Efficient mechanisms for bilateral trading. Journal

of Economic Theory, 29(2):265–281, 1983.
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