THE POSITION OF QUALITY ASSURANCE
CONTRIBUTORS IN FREE/LIBRE OPEN SOURCE
SOFTWARE COMMUNITIES

BARHAM, Adina

Doctoral Dissertation
Graduate School of Social Sciences
Hitotsubashi University

—IE R A AL L

Y
MEREDOBEMREN 7V — e =T V=AY T T -
I 2=T 4 I HD BHAEICEET D FERENIT
IN—IND e T T 4T
—ER RGP e R L1 B RR

SD112005

i

Abstract

The Free/Libre Open Source Software (FLOSS) has created new ways for
end users to interact with software. However, with the growth of FLOSS and
diversification of its user base, communities are having to implement a more
rigorously controlled development process in order to produce high quality
products. Such a process includes verification steps and implementing formal
quality assurance (QA) procedures that are increasingly present in FLOSS
development. These changes in development affect the community structure
as new groups of contributors emerge. Although FLOSS communities have
been the main focus of many studies, little research has been done on how
this emerging group of indiwiduals performing QA tasks is integrated in the
community structure. This study aims to start filling this gap by answering
whether this emerging group is a separate layer of contributors in the commu-
nity. In addition, considering the correlation between access to information
and productivity, communication patterns between members of this emergent
layer and between these members and members of other community layers
will be analysed.

Research was conducted in two phases. First, a pilot case study (the
Mozilla community) was conducted and based on the findings a set of hy-
potheses was proposed with respect to QA contributors in FLOSS communi-
ties. The second phase consisted in analysing four case studies (the Ubuntu,
Plone, KDE and LibreOffice communities) in order to test and refine the hy-
potheses proposed in the the first phase. In each case the study employed so-
cial network analysis techniques to a dataset of mailing list and issue tracker
communication. The findings suggest that in the Ubuntu and LibreOffice com-
munities QA represents a somewhat separate layer of contributors whereas
in the Plone and KDE communities QA does not seem to form a separate
layer. QA teams do not display consistent growth over time but show more
irreqular patterns with spikes and troughs in metrics such as size, degree and
betweenness values. With respect to communication patterns, findings suggest
that members performing QA tasks communicate both among themselves and
directly with members contributing in other areas of the project.

111

v

Acknowledgements

First of all I would like to thank my advisor Jonathan Lewis for all the great
advice, support and guidance that he provided for the last 4 years. I would
also like to thank everyone at Lero — The Irish Software Engineering Research
Centre (Klaas-Jan Stol, John Noll, Brian Fiztgerald, Padraig O’Leary, How-
ell Jordan, and others) for hosting me in March 2013 and for the invaluable
feedback. I am also grateful to Sulayman Sowe for his useful suggestions.
Last but not least I would like to thank all the participants and organisers of
the Open Source Software Doctoral Consortium at OSS 2011, 2012 and 2013
for providing an excellent environment for exchanging research ideas.

vi

Publications

Parts of this thesis (ideas, figures, results, and discussions) have appeared
previously in the following publications:

1.

Adina Barham. The Emergence of Quality Assurance Practices in
Free/Libre Open Source Software: A Case Study. In Proceedings of
the 9th IFIP WG 2.13 International Conference, OSS 2013, Koper-
Capodistria, Slovenia, June 25-28, 2013, volume 404, 2013, pages 271—
276. Springer, 2013.

. Adina Barham. The impact of QA practices on FLOSS communities.

In Proceedings of the OSS 2013 Doctoral Consortium, volume 22, pages
37-56. Skovde University Studies in Informatics, 2013.

. Adina Barham. The Impact of Formal QA Practices on FLOSS Com-

munities The Case of Mozilla. In Proceedings of the 8th IFIP WG 2.13
International Conference, OSS 2012, Hammamet, Tunisia, September
10-13, 2012, volume 378, 2012, pages 262-267. Springer, 2012.

. Adina Barham. QA practices and FLOSS communities. In Proceed-

ings of the OSS 2012 Doctoral Consortium, volume 21, pages 11-25.
Tampere University of Technology, 2012.

. Adina Barham. The emergence of quality assurance in open source

software development. In Proceedings of the OSS 2011 Doctoral Con-
sortium, volume 20, pages 1-19. Tampere University of Technology,
2011.

vil

viil

Contents

List of Figures xiii
List of Tables Xix
1 Introduction 1
1.1 Significance and Contributions of this Thesis 2
1.1.1 Significance 2

1.1.2 Contributions 3

1.2 Research Questions 4
1.3 Outline of the Research Project)
1.4 Thesis Structure 7

2 Literature Review 11
2.1 Free/Libre Open Source Software 12
2.2 Software Quality Assurance and FLOSS 19
2.2.1 Software Quality Assurance in Proprietary Development 19

2.2.2 Evaluating Quality in FLOSS 22

2.2.3 Researching QA Practices in FLOSS 24

2.2.4 Applying the Results of FLOSS QA Research 29

2.3 Communities and FLOSS development 30
24 Summary 44

3 Research Methodology 47
3.1 The Case Study Approach 47
3.1.1 The Case Study as a Research Method 47

3.1.2 The Case Study Approach in this Research 51

3.1.3 Research Questions 51

3.1.4 Units of Analysis and Research Design 52

3.2 Data 54
3.2.1 Data Selection and Collection 54

3.22 DataCleaning 57

X

CONTENTS

3.3 Social Network Analysis
3.3.1 Social network analysis and its applications in social

SCIENCE . . . v v v v

3.3.2 Basic SNA concepts

3.3.3 Social network analysis and FLOSS

3.3.4 Applying SNA in this Research

3.4 Summary ...

Preliminary Research and Pilot Case Study

4.1 Working Definition of Quality Assurance

4.2 Preliminary Study of QA Adoption in FLOSS projects

4.3 Pilot Case Study: Mozilla
4.3.1 The Mozilla project
4.3.2 General analysis of the Mozilla dataset
4.3.3 Social network analysis of the whole dataset
4.3.4 Social network analysis of QA-specific communications

4.4 Summary

Case studies

5.1 Ubuntu
5.1.1 The Ubuntu project
5.1.2 General analysis of the Ubuntu dataset
5.1.3 Social network analysis of the whole dataset
5.1.4 Social network analysis of QA-specific communications
5.1.5 Summary of findings for this case study

5.2.1 The Plone project
5.2.2 General analysis of the Plone dataset
5.2.3 Social network analysis of the whole dataset
5.2.4 Social network analysis of QA-specific communications
5.2.5 Summary of findings for this case study
53 KDE
5.3.1 The KDE project
5.3.2 General analysis of the KDE dataset
5.3.3 Social network analysis of the whole dataset
5.3.4 Social network analysis of QA-specific communications
5.3.5 Summary of findings for this case study
5.4 LibreOffice
5.4.1 The LibreOffice project
5.4.2 General analysis of the LibreOffice dataset
5.4.3 Social network analysis of the whole dataset

CONTENTS xi

5.4.4 Social network analysis of QA-specific communications 170

5.4.5 Summary of findings for this case study 178

6 Conclusions and Discussion 181
6.1 Comparative Analysis 181
6.2 Answers to the Research Questions 188
6.3 Discussion and Limitations 189
6.3.1 Limitations 189

6.3.2 Future Research 192
Appendix A 197
A.1 Preliminary Analysis 197
Appendix B 209
B.1 DataModels. 209
B.2 Datasets 212
Appendix C 225
C3 Ubuntu 225
C.4 Plone. 272
Ch5 KDE 275
C.6 LibreOffice 280

Bibliography 293

patl

CONTENTS

List of Figures

3.1

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

Community graph example

The heaviest ten arcs in the Mozilla graph connecting ten
members—numbers represent e-mails and bug comments in
each direction.o

Mozilla reduced graph—each cluster was reduced to one ver-
tex in order to illustrate connections between various groups
within the community

The Mozilla graph reduced except for cluster 3—depicts rela-
tions between members of cluster 3 as well as between these
members and other clusters; the red, orange and grey vertices
represent shrunk clusters.,

Mozilla graph reduced except for cluster 3—the size of each
vertex is given by its betweenness centrality value; the red,
orange and grey vertices represent shrunk clusters.

Mozilla graph reduced except for cluster 1—depicts relations
between members of cluster 1 as well as between these mem-
bers and other clusters; the green, orange and grey vertices
represent shrunk clusters.

Mozilla graph reduced except for cluster 1—the size of each
vertex is given by its betweenness centrality value; the green,
orange and grey vertices represent shrunk clusters.

Mozilla graph reduced except for clusters 1 and 3—depicts
relations between members of cluster 1 and 3 as well as be-
tween these members and other clusters; the orange and green
vertices represent shrunk clusters.

Mozilla graph reduced except for clusters 1 and 3—the size of
each vertex is given by its betweenness centrality value; the
orange and green vertices represent shrunk clusters.

Xlil

87

Xiv

LIST OF FIGURES

4.9 QA team graph clusters—vertices that belong to a cluster
share the same colour and are also labeled with the same clus-
ter number

4.10 QA team graph clusters—the size of each vertex is given by
its betweenness centrality value

5.1 Ubuntu Activity Chart

5.2 The heaviest ten arcs in the Ubuntu graph connecting ten
members—numbers represent e-mails and bug comments in
each direction Lo

5.3 Ubuntu reduced graph—each cluster was reduced to one ver-
tex in order to illustrate connections between various groups
within the community.

5.4 Ubuntu graph shrunk except for those who are active on the
QA mailing lists but do not submit code (cluster 3)—depicts
relations between members of cluster 3 as well as between these
members and other clusters; the red, orange and grey vertices
represent shrunk clusters.

5.5 Ubuntu graph shrunk except for those who are active on the
QA mailing lists but do not submit code (cluster 3)—the size
of each vertex is given by its betweenness centrality value; the
red, orange and grey vertices represent shrunk clusters.

5.6 Ubuntu graph shrunk except for those who both code and are
active on the QA mailing lists (cluster 1)—depicts relations
between members of cluster 1 as well as between these mem-
bers and other clusters; the green, orange and grey vertices
represent shrunk clusters.

5.7 Ubuntu graph shrunk except for those who both code and are
active on the QA mailing lists (cluster 1)—the size of each
vertex is given by its betweenness centrality value; the green,
orange and grey vertices represent shrunk clusters.

5.8 Ubuntu graph reduced except for cluster 1 and 3—depicts re-
lations between members of cluster 1 and 3 as well as between
these members and other clusters; the orange and green ver-
tices represent reduced clusters.

5.9 Ubuntu graph reduced except for cluster 1 and 3—the size of
each vertex is given by its betweenness centrality value; the
orange and green vertices represent reduced clusters.

5.10 Ubuntu QA team graph clusters—each colour in the graph
represents a cluster and is labeled as such.

. 106

LIST OF FIGURES XV

5.11

5.12
5.13

5.14
5.15

5.16

5.17

5.18

5.19

5.20

5.21

5.22

5.23

0.24
5.25

Ubuntu QA team graph clusters—the size of each vertex is
given by its betweenness centrality value. 115
Plone Activity Chart 120
The heaviest ten arcs in the Plone graph connecting ten members—
numbers represent e-mails and bug comments in each direction 122
Plone community graph 128
Plone reduced graph—each cluster was reduced to one ver-

tex in order to illustrate connections between various groups
within the community 128
Plone graph graph shrunk except for those who are active on

the QA mailing lists but do not submit code (cluster 3)—
depicts relations between members of cluster 3 as well as be-
tween these members and other clusters; the red, orange and

grey vertices represent shrunk clusters. 129
Plone graph shrunk except for those who are active on the QA
mailing lists but do not submit code (cluster 3)—the size of

each vertex is given by its betweenness centrality value; the

red, orange and grey vertices represent shrunk clusters. 130
Plone graph shrunk except for those who both code and are
active on the QA mailing lists (cluster 1)—depicts relations
between members of cluster 1 as well as between these mem-

bers and other clusters; the green, orange and grey vertices
represent shrunk clusters. 131
Plone graph shrunk except for those who both code and are
active on the QA mailing lists (cluster 1)—the size of each
vertex is given by its betweenness centrality value; the green,
orange and grey vertices represent shrunk clusters. 133
Plone graph graph shrunk except for cluster 1 and 3—depicts
relations between members of cluster 1 and 3 as well as be-
tween these members and other clusters; the orange and green
vertices represent reduced clusters. 134
Plone graph shrunk except for cluster 1 and 3—the size of each
vertex is given by its betweenness centrality value; the orange

and green vertices represent reduced clusters. 135
Plone QA team graph clusters—each colour in the graph rep-
resents a cluster and is labeled as such. 136
Plone QA team graph clusters—the size of each vertex is given
by its betweenness centrality value. 137
KDE Activity Chart 139

The heaviest ten arcs in the KDE graph connecting ten members—
numbers represent e-mails and bug comments in each direction 141

XVv1

5.26

5.27

5.28

5.29

5.30

5.31

5.32

5.33

5.34

5.35

5.36

5.37

LIST OF FIGURES

KDE reduced graph—each cluster was reduced in order to
illustrate connections between various groups within the com-
munity 147

KDE graph shrunk except for those who are active on the
QA mailing lists but do not submit code (cluster 3)—depicts
relations between members of cluster 3 as well as between these
members and other clusters; the red, orange and grey vertices
represent shrunk clusters. 147

KDE graph shrunk except for those who are active on the QA
mailing lists but do not submit code (cluster 3)—the size of
each vertex is given by its betweenness centrality value; the
red, orange and grey vertices represent shrunk clusters. 148

KDE graph shrunk except for those who both code and are
active on the QA mailing lists (cluster 1)—depicts relations
between members of cluster 1 as well as between these mem-
bers and other clusters; the green, orange and grey vertices
represent shrunk clusters. 149

KDE graph shrunk except for those who both code and are
active on the QA mailing lists (cluster 1)—the size of each
vertex is given by its betweenness centrality value; the green,
orange and grey vertices represent shrunk clusters. 152

KDE graph reduced except for cluster 1 and 3—depicts rela-
tions between members of cluster 1 and 3 as well as between
these members and other clusters; the orange and green ver-
tices represent reduced clusters. 154

KDE graph reduced except for cluster 1 and 3—the size of
each vertex is given by its betweenness centrality value; the

orange and green vertices represent reduced clusters. 155
KDE QA team graph clusters—each colour in the graph rep-
resents a cluster and is labeled as such. 156
KDE QA team graph clusters—the size of each vertex is given
by its betweenness centrality value. 157
LibreOffice Activity Chart 160

The heaviest ten arcs in the LibreOffice graph connecting ten
members—numbers represent e-mails and bug comments in
each directiono 162

LibreOffice reduced graph—each cluster was reduced to one
vertex in order to illustrate connections between various groups
within the community 168

LIST OF FIGURES xvii

5.38

5.39

5.40

5.41

0.42

5.43

5.44

5.45

B.1
B.2
B.3
B.4
B.5

LibreOffice graph shrunk except for those who are active on
the QA mailing lists but do not submit code (cluster 3)—
depicts relations between members of cluster 3 as well as be-
tween these members and other clusters; the red, orange and
grey vertices represent shrunk clusters. 169
LibreOffice graph shrunk except for those who are active on
the QA mailing list but do not submit code (cluster 3)—the
size of each vertex is given by its betweenness centrality values;
the red, orange and grey vertices represent shrunk clusters. . . 170
LibreOffice graph shrunk except for those who both code and
are active on the QA mailing list (cluster 1)—depicts relations
between members of cluster 1 as well as between these mem-
bers and other clusters; the green, orange and grey vertices
represent shrunk clusters., 173
LibreOffice graph shrunk except for those who both code and
are active on the QA mailing list (cluster 1)—the size of each
vertex is gibe by its betweenness centrality value; the green,
orange and grey vertices represent shrunk clusters. 175
LibreOffice graph reduced except for cluster 1 and 3—depicts
relations between members of cluster 1 and 3 as well as be-
tween these members and other ;the orange and green vertices
represent reduced clusters. L. 176
LibreOffice graph reduced except for cluster 1 and 3—the size
of each vertex if given by its betweenness centrality value; the

orange and green vertices represent reduced clusters. 177
LibreOffice QA team graph clusters—each colour in the graph

represents a cluster and is labeled as such. 178
LibreOffice QA team graph clusters—the size of each vertex

is given by its betweenness centrality value. 179
Mozilla Database Diagram 210
KDE Database Diagram 210
LibreOffice Database Diagram 211
Plone Database Diagram 211

Ubuntu Database Diagram 212

xviii LIST OF FIGURES

List of Tables

3.1
3.2
3.3
3.4

4.1
4.2
4.3

4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11

4.12
4.13

5.1

5.2

2.3

5.4

Tools used for data retrieval 25
Communication channel data retrieved for each community . 56
Periods covered by datasets 26
Numbers of artefacts retrieved for each project o7
QA mailing list activity in the Mozilla community 70
Activity on a yearly basis in the Mozilla community 71
Vertices in the symmetrized Mozilla graph clustered by degree

value 74
Vertices in the directed Mozilla graph clustered by indegree

value . . oL 75
Vertices in the symmetrized Mozilla graph clustered by out-

degree valueo 76
Vertices in the symmetrized Mozilla graph clustered by k-core

value 7
Betweenness centrality clusters in the Mozilla community . . . 77
Clusters in the Mozilla community 79
Shrunk Mozilla network communication 79

Vertices in the directed QA graph clustered by indegree value 85
Vertices in the directed QA graph clustered by outdegree value 85
Vertices in the symmetrized QA graph clustered by degree value 88

Clusters in the QA team 88
Ubuntu QA mailing list participants’ activity levels on other
channels 98
Vertices in the symmetrized Ubuntu graph clustered by degree
value 100
Vertices in the directed Ubuntu graph clustered by indegree
value 101
Vertices in the directed Ubuntu graph clustered by outdegree
value 101

Xix

XX

9.5
5.6
5.7
5.8
5.9
5.10
5.11

5.12
5.13

5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23

5.24
5.25

5.26

5.27

5.28

5.29

5.30
5.31

LIST OF TABLES

Vertices in the symmetrized Ubuntu graph clustered by k-core

value 102
Betweenness centrality clusters in the Ubuntu community . . . 103
Clusters in the Ubuntu community 103
Shrunk Ubuntu network communication 104
Vertices in the directed Ubuntu QA graph clustered by inde-
gree value Lo 110
Vertices in the directed Ubuntu QA graph clustered by out-
degree valueo 111
Vertices in the symmetrized Ubuntu QA graph clustered by
degree value 112
Clusters in the Ubuntu QA team 114
Plone QA mailing list participants’ activity levels on other
channels 121
Vertices in the symmetrized Plone graph clustered by degree
value 123
Indegree clusters in the Plone graph 123
Outdegree clusters in the Plone graph 124
K-core clusters in the Plone graph 125
Betweenness centrality vectors in in the Plone graph 125
Plone cluster frequency L. 126
Shrunk Plone network communications 127
Vertices in the directed Plone QA graph clustered by indegree
value 132
Vertices in the directed Plone QA graph clustered by outdegree
value 132
Vertices in the symmetrized Plone QA graph clustered by de-
gree valueo 133
Clusters in the Plone QA team 135
KDE QA mailing list participants’ activity levels on other
channels 140
Vertices in the symmetrized KDE graph clustered by degree
value . ..o 142
Vertices in the symmetrized KDE graph clustered by indegree
value 143
Vertices in the symmetrized KDE graph clustered by outde-
gree value Lo Lo 143
Vertices in the symmetrized KDE graph clustered by k-core
value 144
Betweenness centrality clusters in the KDE community 145

Clusters in the KDE community 145

LIST OF TABLES xxi

5.32
5.33

5.34

2.35

2.36
5.37

2.38

2.39

5.40

5.41

5.42
5.43
5.44
0.45

5.46

0.47

5.48

Al
A2
B.3
B.4
B.5
B.6
C.7

C.8
C.9

Shrunk KDE network communication 146
Vertices in the directed KDE QA graph clustered by indegree
value . . oL 150
Vertices in the directed KDE QA graph clustered by outdegree
value L 151
Vertices in the symmetrized KDE QA graph clustered by de-
greevalueo 153
Clusters in the KDE QA team 155
LibreOffice QA mailing list participants’ activity levels on
other channels, 161
Vertices in the symmetrized LibreOffice graph clustered by
degree valueo 163
Vertices in the directed LibreOffice graph clustered by indegree
valueo 164
Vertices in the directed LibreOffice graph clustered by outde-
gree value 165
Vertices in the symmetrized Ubuntu graph clustered by k-core
value 165
Betweenness centrality clusters in the Ubuntu community . . . 166
Clusters in the LibreOffice community 167
Shrunk LibreOffice network communication 167
Vertices in the directed LibreOffice QA graph clustered by
indegree valueo L 171
Vertices in the directed LibreOffice QA graph clustered by
outdegree value Lo 172
Vertices in the symmetrized LibreOffice QA graph clustered
by degree value oo 174
Clusters in the LibreOffice QA team 175

Top 100 FLOSS projects (www.ohloh.net) — general statistics 197
Top 100 FLOSS projects (www.ohloh.net) — QA adoption . . 201

Retrieved LibreOffice Mailing Lists 212
Retrieved KDE Mailing Lists 213
Retrieved Ubuntu Mailing Lists 220
Retrieved Plone Mailing Lists 222
Ubuntu QA mailing list participants activity levels on other

channels 225
Ubuntu activity levels on a yearly basis 271
Plone QA mailing list participants’ activity levels on other

channels 272

C.10 Plone activity levels on a yearly basis 274

xxii LIST OF TABLES

C.11 KDE QA mailing list participants’ activity levels on other

channels 275
C.12 KDE activity levels on a yearly basis 279
C.13 LibreOffice QA mailing list participants activity levels on other

channels 280

C.14 LibreOffice activity levels on a yearly basis 289

Chapter 1

Introduction

In the last three decades, computers have permeated society and daily life.
They have become critical to every kind of infrastructure and organisation,
and software or hardware malfunctions can have far-reaching and potentially
devastating effects. At the same time, computers, or programmed devices
from cars to mobile telephones to cash machines to pacemakers are being used
by people with no understanding of the software controlling those devices.
There is thus a requirement for, on the one hand, software that is extremely
reliable, and on the other, software that is extremely easy to use. These twin
requirements have prompted software companies to develop and implement
quality standards and quality assurance (QA) methods for achieving those
standards. QA practices have become a core part of software development.

In the early days of computing it was common practice for researchers to
share the source code of programs they wrote. However, with the rise of the
proprietary software industry, access to much source code became restricted.
This frustrated many users and developers, and led to the Free/Libre Open
Source Software (FLOSS)! movement. Two of the most important features
of FLOSS are the availability of source code to all users, and the possibility
for anyone to contribute to development by joining a project community.
Today, software developed by FLOSS communities is used in many parts of
the software industry.

The development of QA practices by software companies and the growth
of FLOSS are thus two major phenomena in the domain of software devel-
opment over the last 30 years. As FLOSS products became more widely

Throughout this study, the term Free/Libre Open Source Software will be used al-
though there are differences between free/libre software and open source software [51].
The motivation behind this decision is that the development process is similar and this
is the main interest of this research. In other words, FLOSS will refer to software which
allows inspection, modification and redistribution of its code source.

2 CHAPTER 1. INTRODUCTION

adopted, it was unavoidable that the two phenomena would “meet”. In re-
cent years, more and more FLOSS communities have adopted formal QA
procedures in their development process in an attempt to improve stability
and usability. This study seeks to investigate the relationship between QA
and FLOSS, and more specifically to investigate the impact of QA adoption
on the structure of FLOSS communities.

1.1 Significance and Contributions of this The-
sis
1.1.1 Significance

FLOSS has introduced not only innovative software development method-
ologies but also new ways through which users can interact with software
by creating a new type of community. These communities have “brought
a unique approach to intellectual property and ownership from political,
sociological as well as philosophical perspectives and managed to produce
unique artefacts such as norms, values and beliefs” [15]. FLOSS has had a
great impact on both the software industry and software users. Its diffusion,
however, has triggered an increased need for FLOSS communities to ensure
quality standards. Therefore, a deeper understanding of QA adoption in the
context of FLOSS is needed.

Communities are the driving force behind FLOSS development. A change
in the structure of communities can therefore be an important factor in
a project’s success or failure. Hence, monitoring the evolution of FLOSS
communities is important for both practitioners and researchers. Academic
studies of FLOSS communities have focussed on a variety of topics ranging
from community structure and communication patterns, career advancement
and role migration, to developers’ motivations and the role of voluntary con-
tributions. However, studies of QA adoption by communities are lacking.

The stereotyped image of FLOSS communities is of a bunch of iiberhackers
developing for their own gratification. However, research shows that FLOSS
communities are comprised of individuals with diverse skill sets who con-
tribute for various reasons ranging from hobbyist interest to professional ad-
vancement. Individuals without advanced programming skills have hitherto
been able to contribute to FLOSS projects by translating or writing docu-
mentation. The emergence of QA activities in FLOSS development may offer
a new area in which such non-programmers can contribute. Therefore, it is
important to analyse who is contributing and how they are communicating
regarding QA in FLOSS communities.

1.1. SIGNIFICANCE AND CONTRIBUTIONS OF THIS THESIS 3

Finally, FLOSS communities, which capitalize on the close-to-zero costs of
storing, processing and sharing information to create and share knowledge in
a distributed, open, and informal fashion, are, as Aigran argues, a “paradigm
of the new information world” [2]. The ways in which FLOSS communities
adapt to ensure greater quality may therefore have implications for other
areas of information-intensive economic and social activity.

1.1.2 Contributions

This study offers the first systematic empirical research on the impact of QA
adoption on FLOSS communities. With the growing popularity of FLOSS
products and the diversification of its user base, communities have realised
the need for a more rigorously controlled development process that can en-
sure higher quality. As a consequence, methodologies previously used exclu-
sively in proprietary software development such as formal quality assurance
processes are increasingly present in the FLOSS landscape. These transfor-
mations in the development process suggest that FLOSS is heading towards
a hybrid model that integrates elements from both the open and proprietary
paradigms. The question of how and how far FLOSS communities achieve
quality standards has already attracted the attention of academics; as will
be shown in Chapter 2, they have conducted a variety of studies focusing
on topics including the QA practices that are employed under the FLOSS
model, comparisons of quality levels between proprietary and open systems,
sustainability, fault prediction, and the relationship between social network
metrics and quality. Thus a new question arises with respect to whether the
implementation of formal QA procedures is affecting the structure of FLOSS
communities. However, little research has sought to position QA activities
within project communities. One reason for this gap might be the novelty
of dedicated QA teams within FLOSS projects. The main objective of this
research is to start filling this gap by establishing the impact of formal QA
practices adoption on the structure of FLOSS communities. This goal will
be achieved by analysing communities that have implemented a formal QA
step in their development process and investigating how this emergent layer
in the community affects its structure.

Second, this study contributes a set of hypotheses that can be validated
or tested in future studies. This research consists of two phases: in the first
a pilot case study of a FLOSS community in which QA is employed formally
is carried out, and a set of hypotheses generated from the findings. In the
second phase these hypotheses are tested on four more FLOSS communities
with formal QA practices, and modified accordingly based on the results.
The resulting set of hypotheses and the method used to generate them can

4 CHAPTER 1. INTRODUCTION

be used in analysis of further FLOSS communities that decide to employ QA
practices by assigning a dedicated QA team.

Third, this thesis contributes to research on organisations and governance
by deepening our understanding of communication within voluntary knowl-
edge communities. Open source and open source communities represent so-
cial experiments in building political economies that are based on innovative
organisational structures to coordinate behaviour [87]. Weber, for example,
considers that open source raises three issues from the perspective of po-
litical economy: motivation, coordination and complexity. Furthermore, he
states that in a company authority mechanisms are “means of controlling
specialised knowledge in highly differentiated division of labour” which is
not the case for FLOSS communities in which contributions are not bound
by monetary renumeration and tasks are chosen based more on personal
preference rather than assigned by a superior [87]. In other words, these
communities represent a community whose members develop high quality
products without conforming to the traditional hierarchy of a commercial
institution or market mechanism—a new kind of organisation. However, the
adoption by FLOSS projects of practices and methodologies including QA
from the proprietary sector may be causing changes in the way these projects
operate. An empirical study of the impact of the adoption of QA practices
by FLOSS projects can therefore offer a useful perspective on potentially
important changes in the community-driven innovation organisation. From
the perspective of FLOSS governance, an understanding of how QA-related
practices are absorbed by FLOSS communities can provide insights for prac-
titioners. For example, it would be useful for both project leaders and also
potential users of the software to know if information flows within projects
are dependant on a few key contributors; such dependence might imply that
a project is vulnerable to the departure of those key contributors.

1.2 Research Questions

Q1: Is QA a separate layer in FLOSS communities?

FLOSS communities are usually described as following a concentrical lay-
ered model that resembles an “onion”. In this FLOSS onion model, commu-
nities are formed of four main layers: passive users, active users, developers
and core developers; passive and active users are together considered to be
the periphery. Although this model fails to capture some complexities of
FLOSS communities—see [50] and [90]—the onion model is still regarded as
generally valid. This research aims to investigate how QA contributors fit

1.3. OUTLINE OF THE RESEARCH PROJECT bt

into this onion model. More specifically, it asks whether QA contributors
form a separate layer or whether members who belong to other layers per-
form QA related activities. It would be interesting to note, if all projects
taken into consideration share the same structure with respect to the QA
contributors. Previous research on the Firefox project has shown that pe-
ripheral members (i.e. members of the periphery as defined in the onion
model of FLOSS communities) perform some QA tasks, for example posting
20 to 25% of bugs on the issue tracker [29]; this research will deepen our
understanding of this question by establishing the extent of peripheral in-
volvement for several other major FLOSS projects.

Q2: What are the communication patterns between QA members as well
as with other project participants?

Previous research has shown that information access correlates with pro-
ductivity and participants who have better access to information are able to
contribute more efficiently [3]. Hence it would be useful to know whether
there are participants who control the information flow; such dependence on
a few participants may be risky for a project’s long-term sustainability. This
project will analyse communications between QA members to identify the
central figures, in other words members with high activity levels within the
community, and observe their evolution over time within the project. This
requires us to analyze communication across different channels, most notably
e-mail lists and issue trackers.

1.3 QOutline of the Research Project

Based on existing literature regarding QA, the following working definition
of QA is used for the purposes of this thesis: Testing, contributing code to
automated testing tools or any test related activity, triaging bugs or any
activity performed on the projects issue tracker, participating on the QA
dedicated communication channels. QA team members are considered mem-
bers who perform any of the tasks described in this definition. The number
of FLOSS projects that are implementing formal QA activities in their de-
velopment process is increasing. A preliminary assessment of the top 100
FLOSS projects listed on www.ohloh.net shows that more than a quarter of
these projects include some form of QA in their development.

The approach chosen for conducting this research is the case study ap-
proach as it allows both theory building and validation. The research consists
of two phases:

6 CHAPTER 1. INTRODUCTION

Phase I: A FLOSS community that has implemented QA practices is anal-
ysed as a preliminary case study. The community analyzed is Mozilla,
which is a large and mature community with a long history in devel-
oping successful FLOSS products such as Firefox and Thunderbird.
QA mailing list data and issue tracker data are retrieved, cleaned and
analysed using first simple statistics and then social network analy-
sis techniques. A number of hypotheses regarding the position of QA
activities within FLOSS communities are formed based on the findings.

The findings of the preliminary case study suggests that in the case of
Mozilla a smaller percentage of peripheral members (occasional contributors)
are active on the mailing list as opposed to the issue tracker where a larger
number of members have only one non-repeated act of communication. Ac-
tivity on the QA mailing lists seems to be independent from activity on the
issue tracker presenting peaks that are not directly related to time progres-
sion. Furthermore, a small group of people seems to be highly active in
comparison to the rest of the community on both issue tracker and mailing
lists. Social network analysis of the Mozilla community shows a large group
of people spanning both issue tracker and mailing lists. However, almost
two thirds of the connections are created by single acts of communication
from one member to another. Furthermore, the existence of a highly active
small group of people is also supported by the social network analysis of the
Mozilla community. As regards information flow within the Mozilla commu-
nity, the risk of a small group of people brokering information seems to be
very low. As far as the communication carried out only on the QA lists, the
patterns seem to display similarities to the whole network communication
but on a smaller scale, i.e. one group of people working together where a
small subgroup is highly active.

Phase II: Four other case studies are carried out. The projects studied
differ from Mozilla in size and history and are: Ubuntu, Plone, KDE,
and LibreOffice. The hypotheses proposed in Phase I are examined and
adjusted in the light of the findings for those case studies.

More details regarding these communities and the reasons they were cho-
sen are given in the Research Methodology chapter on page 53 as well as the
Case Studies chapter. The analysis of the Mozilla community revealed that
issue tracker data and QA mailing lists’ data is insufficient to determine if
QA represents a separate layer in the community. As a result, in addition to
retrieving communication data conducted on these venues, all mailing lists
associated with each project were retrieved as far as possible. A full descrip-
tion of the mailing lists taken into consideration is given in Annex A attached

1.4. THESIS STRUCTURE 7

to this thesis on page 197. In addition, a list of community members con-
tributing code to the project was downloaded from www.ohloh.net? which
was used for both data cleaning and contributor layer identification. Thus,
data triangulation is used in the sense that data associated with various
venues is downloaded.

The analysis of these four case studies included general statistics meth-
ods and social network analysis techniques applied in a similar manner as for
the Mozilla preliminary case study. The findings seem to validate some of
the hypotheses proposed in the first phase of the research. For example, all
four communities contained a large group containing most of the projects’
participants that spanned mailing lists and issue trackers. Furthermore, all
communities had a small number of participants with a higher than average
activity that displayed strong connections among themselves and were con-
nected to a large number of members. However, some case studies displayed
particularities. For example, while in the Mozilla, Plone and KDE cases the
QA contributors seemed to merge with other layers in the case of Ubuntu
the QA group tended to be more separate. In other words, a smaller number
of members contributing to QA activities in the latter two communities were
contributing with other activities to the project while members contributing
with QA activities in Mozilla, Plone and KDE seemed to bring a variety of
contributions to the project by submitting code and participating to a large
number of non-QA mailing lists. These findings may suggest that in some
cases less technically knowledgeable individuals are finding a new way to con-
tribute to FLOSS development aside from documentation and localisation.
Further study can be conducted in this direction considering the targeted
user base for these projects. Ubuntu and LibreOffice may display a more
segregated and rigorous QA due to the fact that the intended end-users for
these software products are not necessarily technically “savvy”.

1.4 Thesis Structure

The following section outlines the structure of this thesis as follows:

1. Chapter 1: Introduction. This chapter introduces the main goals of
this thesis and is divided in four sub-chapters:

1. 1 Significance and Contributions of this Thesis. This sub-chapter
states the significance and the main contributions of this thesis to
the field.

20hloh: https://www.ohloh.net/

CHAPTER 1. INTRODUCTION

1. 2 Research Questions. In this sub-chapter the main research ques-
tions are stated and explained.

1. 3 Outline of the Research Project. This sub-chapter summarises the
research conducted in this thesis.

1. 4 Thesis Structure. This sub-chapter details the chapter and sub-
chapter structure of this thesis.

. Chapter 2: Literature Review. This chapter reviews the appropriate
literature and is divided in four main sub-chapters:

2. 1 Free/Libre Open Source Software. This sub-chapter presents a
short history of FLOSS and essential concepts characterising the
FLOSS development paradigm.

2. 2 Software Quality Assurance and FLOSS. This sub-chapter presents
a review of literature focusing on Software Quality Assurance from
both the standpoint of proprietary as well as FLOSS development.

2. 3 Communities and FLOSS development. This sub-chapter contains
a review of literature focusing communities under the FLOSS de-
velopment model including structure and dynamics.

2. 4 Summary. This sub-chapter summarises the current chapter.

. Chapter 3: Research Methodology. This chapter describes the research
methodology and the processes used for data retrieval and analysis in
the following sub-chapters:

3.1 The Case Study Approach. This sub-chapter describes the re-
search approach and methodology in the context of research ob-
jectives. Justifications are made for the choice of the case study
methodology with respect to potential criticism of said method.

3. 2 Data. This sub-chapter presents the datasets included in this re-
search as well as data models, tools used for data retrieval, chosen
venues and data time span.

3. 3 Social Network Analysis. This sub-chapter presents essential So-
cial Network Analysis metrics and concepts as well as justifies the
choice of said method in the context of this research.

3.4 Summary. This sub-chapter summarises the current chapter.
. Chapter 4: Preliminary Research and Pilot Case Study. This chapter

presents the first stage of this research and is organised in the following
sub-chapters:

1.4. THESIS STRUCTURE 9

4.1 Working Definition of Quality Assurance. This sub-chapter presents
the working definition of quality assurance used in this thesis for
identifying project participants contributing with QA activities.

4. 2 Preliminary Study of QA Adoption in FLOSS Projects. This sub-
chapter presents a preliminary assessment of QA presence within
popular FLOSS projects.

4. 3 Pilot Case Study: Mozilla. This sub-chapter presents the justifi-
cations for choosing the Mozilla community as a pilot case study
and presents general statistics about the QA teams within this
community as well as a detailed social network analysis.

4. 4 Summary. This sub-chapter summarises the current chapter.

5. Chapter 5: Case studies. This chapter presents the second phase of the
research and is organised in the following sub-chapters:

5. 1 Ubuntu. This sub-chapter presents general statistics about the QA
team as well as a detailed social network analysis of the Ubuntu
community.

5. 2 Plone. This sub-chapter presents general statistics about the QA
team as well as a detailed social network analysis of the Plone
community.

5.3 KDE. This sub-chapter presents general statistics about the QA
team as well as a detailed social network analysis of the KDE
community.

5.4 LibreOffice. This sub-chapter presents general statistics about
the QA team as well as a detailed social network analysis of the
LibreOffice community.

6. Chapter 6: Conclusions and Discussion. This chapter presents the
main conclusions of this research and is structured in the following
sub-chapters:

6. 1 Comparative Analysis. This sub-chapter presents a comparative
analysis of all the case studies in order to verify the hypothesis
presented in Chapter 4.

6. 2 Answers to the Research Questions. This sub-chapter presents the
general conclusions of this research, and answers to the research
questions.

10

CHAPTER 1. INTRODUCTION

6. 3 Discussion and Limitations. This sub-chapters addresses research
limitations, potential threads to validity and proposes future re-
search directions.

. Appendiz A: This appendix contains tables associated with the prelim-

inary analysis of the top 100 projects on Ohloh.

. Appendiz B: This appendix contains tables that enumerate all the mail-

ing lists associated to each community and which mailing lists were
retrieved and stored for each case study.

. Appendiz C: This appendix contains tables that detail the activity of

QA member participants on all communication venues taken into con-
sideration for this study. In addition, this appendix contains tables
that describe activity on a yearly basis for each of the case studies.

Chapter 2

Literature Review

“We can’t run the modern world without software.” [76]
“Software is virtually inescapable in a modern world.” [67]

The two sentences above, both from books that are essential reading for
anyone interested in the complexities of software development processes, de-
scribe well the current relation between software and society. Not only are
citizens using computers to complete more tasks everyday, but governments,
banks, international corporations, universities and public transportation sys-
tems all rely on software. Moreover, this phenomenal spread of software is
only just getting started: “as we move into the twenty-first century, [soft-
ware| will become the driver for new advances in everything from elementary
education to genetic engineering” [67]. We will become more and more de-
pendent on software, whose potential has no natural limits due to the fact
that software is independent from manufacturing processes or even the laws
of physics [76]. Is it is generally accepted that software products should
respect explicitly stated functional requirements, provide explicitly docu-
mented development standards and have implicit characteristics [67]. How-
ever, the Free/Libre Open Source Software (FLOSS) development paradigm
has demonstrated that it can produce high quality software without adhering
strictly to these requirements.

This chapter is organised into three sections: an outline of the key con-
cepts and history of Free/Libre Open Source Software; a literature review
of research conducted on software quality assurance (SQA) in the context of
FLOSS; and a literature review of research conducted on communities in the
context of FLOSS development.

11

12 CHAPTER 2. LITERATURE REVIEW

2.1 Free/Libre Open Source Software

In the 1940s, according to Feller and Fitzgerald, computers were mainly used
for scientific purposes by researchers with a mathematical or engineering
background who were writing their own programs [33]. More than a decade
later, computer use was starting to spread beyond the academic world, and
the IBM corporation developed “a line of products that met the information-
handling needs of American business” [16]. However, due to the difficulty of
writing and successfully running programs, it was not unusual for software
to be shared. The era of proprietary software, or closed source software as
some call it, began in 1969 when IBM adopted a new marketing policy that
charged separately for software products, thereby starting the multi-billion
dollar software industry!'. Despite the arising complications with monopoly
battles and trials, people continued to share source code.

The free software movement was triggered in 1983 when Richard Stall-
man launched GNU, an alternative to the proprietary UNIX operating sys-
tem. However, the movement got underway officially two years later when
Stallman established the Free Software Foundation (FSF)? as a non-profit
organisation to promote the use and development of free software. The FSF
defines free software as “software that respects users’ freedom and commu-
nity” where “users have the freedom to run, copy, distribute, study, change
and improve the software”. Additionally, the FSF defines the following “es-
sential freedoms” for a program to be considered as free software:

1. The freedom to run the program, for any purpose.

2. The freedom to study how the program works, and change it so it does
your computing as you wish. Access to the source code is a precondition
for this.

3. The freedom to redistribute copies so you can help your neighbour.

4. The freedom to distribute copies of your modified versions to others.
By doing this you can give the whole community a chance to benefit

from your changes. Access to the source code is a precondition for
this3.

IBM archive—timeline: http://www-03.ibm.com/ibm /history/ his-
tory/year_1969.html

2Free Software Foundation: http://www.fsf.org/about/ what-is-free-software

3The of definition free software as maintained by the FSF: http://www.
gnu.org/philosophy/free-sw.html

2.1. FREE/LIBRE OPEN SOURCE SOFTWARE 13

However, the term “free” was confusing to many despite the FSF’s clari-
fication that became a well known motto in the hacker community: “think of
free as in ‘free speech’, not as in ‘free beer’ 7. In addition, many associated
the term “free software” with hostility towards intellectual property or even
communism, which somewhat hindered the success of the movement [68].

Another key moment in the spectacular evolution of the open source
movement was the launch of the Linux operating system kernel launched in
1991 by Linus Torvalds, a Finnish computer science student [60]. Linux’s
success proved that high quality software can be produced under the open
source paradigm—hundreds of hackers from all over the world worked to-
gether on a piece of software without expecting any financial compensation
in return.

In 1997, Eric Raymond gave a paper at the Linux Kongress in Bavaria
called “The Cathedral and Bazaar” that described the methodologies used
in free software development [68]. The paper aimed to offer guidelines for
developing software products under the bazaar model by gathering apho-
risms from both the Raymond’s personal experience and common knowledge
among the hacker community. Some of these aphorisms, such as “Every
good work of software starts by scratching a developer’s personal itch” and
“Given enough eyeballs, all bugs are shallow,” became well-known statements
about open source software. Raymond’s paper was highly acclaimed in the
hacker community and became a source of inspiration for many including Jim
Barksdale, the CEO of Netscape who decided to release the Netscape Com-
municator source code—which was later named Mozilla. Barksdale’s action
was unprecedented and had a great impact on both the hacker community
and the software industry. The stakes were high for everyone involved in the
free software movement, as the success of the Netscape project would mean
proving the viability of the bazaar development model in a commercial envi-
ronment. On the other hand, failure would have meant that companies would
be more reluctant to employ the bazaar model. Raymond, Bruce Perens and
others recognised that a strategy was needed in order to ensure both the
growth of the bazaar model and the success of the Netscape browser. They
decided to re-brand “free software” as “open source,” and in 1998 established
the Open Source Initiative (OSI). They also used the Debian Free Software
guidelines for devising the Open Source Definition (OSD)°, which quickly
became one of the most widely used definitions of open source.

In recent years FLOSS products, like software generally, have become so

iThe definition of free software as maintained by the FSF: http://www.
gnu.org/philosophy/free-sw.html
5Open Source Initiative—the Open Source Definition: http:// opensource.org/osd

14 CHAPTER 2. LITERATURE REVIEW

complex that projects rarely build entirely from scratch but instead integrate
code created, or components maintained, by other communities. One of the
unique characteristics of the FLOSS paradigm is that it allows this reuse
of source code by third parties. However, from a legal perspective, it is
important to note that the FLOSS paradigm is not in contradiction with the
concept of intellectual property but actually relies on licences that guarantee
the freedom to create and distribute derived products [38]. There are multiple
licensing schemes available but perhaps the best-known FLOSS license is the
GNU General Public Licence which is “termed “Copyleft” a play on words
that refers to its formal provision of lasting freedom to subsequent users, as
opposed to traditional restrictions applied by copyright law” [62]. The GPL
was proposed by Richard Stallman out of a desire to ensure certain freedoms
to the users of GNU.

There are major differences between the “free” and the “open” paradigms
as well as the organisations behind them. The first is more philosophical and
ideological while the latter is more business-oriented and as a result there has
been some conflict between the two camps [15]. In an attempt to capture the
commonalities between the two paradigms, the acronym FLOSS was coined
in 2000 by Rishab Ghosh [91] and then later that year, used by the European
Commission (EC) when it funded a study on the topic. Proponents of the
term argue that FLOSS incorporates both “Free” and “Open” thus giving
the possibility to be neutral in the debate between the two camps. Another
advantage of using FLOSS as an acronym is that the word “Libre” lacks
the ambiguity of “Free”—*“libre” means (only)“free” as in liberty or “free
speech”. Proponents of the term also point out that parts of the FLOSS
acronym can be translated into other languages, with for example the F
representing free (English) or frei (German), and the L representing libre
(Spanish or French), livre (Portuguese), or libero (Italian), liber (Romanian)
and so on. However, this term is not often used in official, non-English,
documents, since the words in these languages for free (as in freedom) do not
have the ambiguity problem of “free” in English.

Perhaps one of the most intriguing features of FLOSS is that this de-
velopment model seems to function in spite of Brook’s law that states that
“adding manpower to a late software project makes it later” [13], because the
more people who are brought into project the more complex it will become
and the more difficult to coordinate. But if this is the case, then how did
the FLOSS model become so successful? Despite the “bazaar” metaphor,
the secret is high modularity—small teams of people working on separate
components of the project. As Dibona et al. put it: “The bazaar looks less
like a bustling, homogenous mass and more like a structured community, |...|
a tribe” [30].

2.1. FREE/LIBRE OPEN SOURCE SOFTWARE 15

Mockus et al. in 2000 were among the first academics to investigate
whether FLOSS has the ability to compete with or even overcome propri-
etary software by offering faster, better and cheaper development methods
[58]. Although academic researchers studying FLOSS development at that
time differed on many points, they did agree that one of FLOSS’s key charac-
teristics is that its source code is freely available for anyone to use. According
to Mockus et al., this has led to a unique development process with the fol-
lowing main characteristics:

e FLOSS products are developed by a large number of volunteers;

e tasks are not assigned, but instead participants choose what they want
to contribute to the project;

e there is no explicit system-level design, or even detailed design;
e there is no project plan, schedule or list of deliverables.

The fact that FLOSS tended to be developed by geographically dis-
tributed teams without formal coordination mechanisms made its success
even harder to explain. One example of such success was the Apache server
which was the most deployed web server at the time of Mockus et al.’s arti-
cle (2000). Mockus et al. started with a set of six research questions aimed
at both understanding the development process behind the Apache server
as well as the outcomes of this process. One of the authors, who was a
core member of the Apache community, wrote a description of the develop-
ment process, and Mockus et al. also downloaded the developers’ mailing
list archive, the project’s issue tracker archive, as well as the code repository.
Based on their findings they formulated the following hypotheses:

Hypothesis 1: Open source developments will have a core of developers
who control the code base. This core will be no larger than 10-15
people, and will create approximately 80% or more of the new func-
tionality.

Hypothestis 2: For projects that are so large that 10-15 developers cannot
write 80% of the code in a reasonable time frame, a strict code owner-
ship policy will have to be adopted to separate the work of additional
groups, creating in effect, several related FLOSS projects.

Hypothesis 3: In successful open source developments, a group larger by
an order of magnitude than the core will repair defects, and yet a larger
group (by another order of magnitude) will report problems.

16 CHAPTER 2. LITERATURE REVIEW

Hypothestis 4: Open source developments that have a strong core of devel-
opers but never achieve large numbers of contributors beyond that core
will be able to create new functionality but will fail because of a lack of
resources devoted to finding and repairing defects in the released code.

Hypothesis 5: Defect density in open source releases will generally be lower
than commercial code that has only been feature-tested, i.e., received
a comparable level of testing.

Hypothestis 6: In successful open source developments, the developers will
also be users of the software.

Hypothesis 7: FLOSS developments exhibit very rapid responses to cus-
tomer problems.

Mockus et al. conducted a follow-up study in 2002 with Mozilla as a
second case study in order to test and confirm these hypotheses [59]. After
testing the hypotheses within the Mozilla project the first two hypotheses
were modified as following:

Hypothesis 1a: Open source developments will have a core of developers
who control the code base, and will create approximately 80% or more
of the new functionality. If this core group uses only informal, ad hoc
means of coordinating their work, it will be no larger than 10-15 people.

Hypothesis 2a: If a project is so large that more than 10-15 people are
required to complete 80% of the code in the desired time frame, then
other mechanisms, rather than just informal, ad hoc arrangements, will
be required in order to coordinate the work. These mechanisms may
include one or more of the following: explicit development processes,
individual or group code ownership, and required inspections.

The third hypothesis was not modified at the time since Mozilla did not
deviate significantly from it and it was not considered to be a pure FLOSS
project by Mockus et al. The fourth hypothesis was not tested because
Mozilla had clearly achieved a large number of contributors. The fifth hy-
pothesis was supported considering that defect density within the Mozilla
code was comparable to density in the Apache code. However, Mockus et al.
found that in the case of Mozilla there seemed to be a team of people perform-
ing testing and bug reporting activities similar to proprietary development
methodologies. The sixth and seventh hypotheses were also supported, how-
ever, in the Mozilla case the response time was much longer than in the case
of Apache.

2.1. FREE/LIBRE OPEN SOURCE SOFTWARE 17

Mozilla was only one project among several that divided opinions about
whether it was a FLOSS project or a new hybrid type of FLOSS /proprietary
development. This showed the need for a clear set of criteria for defining
FLOSS projects. Feller and Fitzgerald argued for the adoption of the OSD,
in other words that open source software should be defined as any soft-
ware meeting the criteria laid out in the OSD [33]. However, determining
what a FLOSS project actually is proved to be a challenging task due to
the variety of criteria used to describe FLOSS projects and the particular
characteristics of projects. Gacek et al. [37] aimed to clarify this issue by
providing a set of criteria common to most FLOSS projects as well as a set
of attributes that vary. This aim was achieved by investigating several open
source projects, literature studies, and conducting interviews with contribu-
tors to such projects. The characteristics that were found to be common for
all the considered projects were:

e OSD—the criteria as given in the OSD;

e community—behind each FLOSS project there is a community that
develops the product and/or uses it;

e development improvement cycles—which can include adding significant
functionality or minor changes/bug fixes;

e motivation—there are various motivations behind the contributors’ de-
cisions to join a FLOSS project;

e developers are users—developers are themselves a subset of the com-
munity behind a FLOSS project;

e process of accepting submissions—FLOSS projects use a process com-
posed of two main parts: decision-making and dissemination of infor-
mation on submissions. The implementation of this process is unique
to each FLOSS project;

e modularity—a prerequisite considering the geographical distribution of

FLOSS developers. [37]

One reason for the huge impact of the FLOSS movement was that its
core philosophy of free access to information reached out to other domains
such as education, biotechnology [47], innovation and even entertainment.
Carillo and Okoli argue that FLOSS is growing not only as a development
methodology but also as an alternative approach to intellectual property [15].
One key aspect of this approach is “copyleft” which not only gives the user

18 CHAPTER 2. LITERATURE REVIEW

rights to distribute and modify the original source code, but requires the
user to redistribute any derivatives under the same license as the original
software ©. Initially, there were concerns that copyleft would be difficult to
be implement in profitable business models. However, FLOSS projects such
as Apache, Linux and Mozilla showed that this was not the case.

In addition to these economic aspects, Carillo and Okoli argued that
FLOSS should be regarded as a movement “because it has significant effects
on social structures related to software creation and use at all levels of so-
ciety”. They also discussed the negative and positive influences of FLOSS
communities on the software industry.

However, as FLOSS systems became more complex, their integrity be-
came a major issue. Capiluppi and Beecher investigated whether the repos-
itory in which a FLOSS project was maintained had any influence on its
structure and decay [14]. Based on their comparison of 50 projects in two
FLOSS repositories (Debian and SourceForge), they concluded that projects
hosted on the Debian repository had a higher level of complexity and received
higher rates of control. Therefore, “FLOSS repositories act as exogenous fac-
tors in the evolution of projects they contain”.

In an age where almost every computer user and organization is, con-
sciously or unconsciously, using FLOSS every day, FLOSS is clearly no longer
the mere byproduct of a bunch of super hackers scratching their own itches.
However, Fitzgerald points out that many still perceive FLOSS in a some-
what mythical and outdated way [34]. FLOSS has undergone important
changes since its inception, becoming a hybrid form that is more mainstream
and commercially viable, a form labeled “OSS 2.0” by Fitzgerald. One of the
consequences of this transformation is that FLOSS development in itself can
no longer be characterised by Raymond’s bazaar metaphor but has become
a deliberately designed and rigorously analysed process. However, some pro-
cesses within FLOSS production, such as product delivery or support, can
still fit the bazaar metaphor [68].

Another issue approached by Fitzgerald is the potential impact of OSS
2.0 on the software market as it could end the proprietary driven model that
has dominated the market since the 1970s. The FLOSS movement has been
changing both the supply and the demand side by offering an alternative to
“traditional options” as well as new and profitable business models. Fitzger-
ald argues that throughout history radical movements have been slowly as-
similated into the mainstream and it is likely for the same process to occur
with FLOSS as it becomes an important influence in the software industry.
Fitzgerald proposes a framework describing FLOSS in order to illustrate the

5The GPL license: http://www.gnu.org/copyleft /gpl.html

2.2. SOFTWARE QUALITY ASSURANCE AND FLOSS 19

changes that it has undergone.

The OSS 2.0 hybrid form includes methodologies and practices from both
open and proprietary paradigms, and has attracted the interest of researchers
as it impacts the software market offering a new array of possibilities [75],
(73], [12], [15], [41]. As a result, the user base of FLOSS products has been
increasing, along with the demands for higher quality from FLOSS products.
For this reason, a process implementing more rigorous procedures “borrowed”
from the proprietary development model is emerging. One example of such
procedures would be formal quality assurance.

2.2 Software Quality Assurance and FLOSS

2.2.1 Software Quality Assurance in Proprietary De-
velopment

Due to the fact that software quality assurance (SQA) is a relatively new
element in the development process within FLOSS projects, it is important
to clarify first what SQA represents in the context of proprietary software.
Software development processes have evolved substantially in recent decades,

becoming more complex and requiring a more structured and rigorous qual-
ity assurance process in order to produce stable solutions that meet the high
standards demanded by users and customers. For this purpose a clear def-
inition of quality was needed, and it took the shape of ISO/IEC 9126-1"—
updated and replaced in March 2011 by ISO/IEC 25010%—which defines
a quality model in use and a product quality model that are relevant for
any software product or system. According to ISO/TEC 25010, ¢ a quality
model in use is the degree to which a product or system can be used by
specific users to meet their needs to achieve specific goals”. Quality in use is
further described by five main characteristics: effectiveness, efficiency, satis-
faction, freedom from risk and context coverage. The product quality model
describes product quality properties as eight characteristics: functional suit-
ability, reliability, performance efficiency, usability, security, compatibility,
maintainability and portability. Considering the complexity of both software
development and quality assurance, we should understand quality assurance
not only as testing but as a complex set of activities performed throughout
the development process.

"ISO/IEC 9126-1: http://www.iso.org/iso/catalogue_detail. htm?csnumber=22749
8ISO/IEC 25010: http://www.iso.org/iso/iso_catalogue/ cata-
logue_tc/catalogue_detail. htm?csnumber=35733

20 CHAPTER 2. LITERATURE REVIEW

Quality plays a very important role in the software industry even to the
extent that quality concerns have become part of marketing strategies em-
ployed by software companies. Most software companies employ methodolo-
gies to ensure a certain quality level in their products [67]. Pressman defines
software quality assurance as an “umbrella activity that is applied throughout
the software process” [67]. More concretely, he states that “software quality
assurance encompasses a quality management approach, effective software
engineering technology (methods and tools), formal technical reviews that
are applied throughout the software process, a multitiered testing strategy,
control of software documentation and the changes made to it, a procedure
to ensure compliance with software development standards (when applica-
ble), and measurement and reporting mechanisms”. Pressman also stresses
the following three points regarding software quality:

1. Quality is measured as conformity with the software requirements. A
software product in which these requirements are not followed will usu-
ally lack quality.

2. Development criteria outline the software development process. A soft-
ware product in which there criteria are not followed will usually lack
quality.

3. Additional to software requirements, there is a set of implicit require-
ments that often goes unmentioned such as the desire for good main-
tainability. A software in which the explicit requirements are met but
the implicit requirements are not, will usually lack quality.

Software quality assurance includes a variety of tasks that are carried out
usually by two groups: software engineers and SQA groups. The software en-
gineers usually perform technical work while the SQA groups are responsible
for QA planing, oversight, record keeping, analysis and reporting. According
to Pressman, an SQA team should be independent from the software engi-
neers and should assist in producing a high quality product. A QA team
should carry out the following activities:

e prepare a QA plan for the project;

e participate in the development of the project’s software process descrip-
tion;

e review the process description for compliance with organisation policy,
internal software standards, externally imposed standards; (for example
the ISO-9001), and other parts of the software project plan;

2.2. SOFTWARE QUALITY ASSURANCE AND FLOSS 21

e review software engineering activities to verify compliance with the
defined software process;

e identify, document, and track deviations within the project;
e verify that corrections have been made to deviations;

e coordinate the control and management of change;

e help collect and analyse software metrics [67].

Pressman argues that testing is a crucial factor in SQA and “represents
the ultimate review of specification, design, and code generation”. Testing
activities can be classified as black-box and white-box testing. White-box, or
“glass-box”, testing, is usually performed by software engineers, requires high
level of technical knowledge and is defined by Pressman as “a test case design
method that uses the control structure of the procedural design to derive test
cases”. On the other hand, black-box testing is meant to verify the software’s
functionalities without accessing the code (the software is tested as it would
be used by an end user). As black-box testing is intended to uncover a
different array of errors and issues, it does not represent an alternative to
white-box testing, but a complementary method. As Dijkstra pointed out,
“program testing can be used to show the presence of bugs, but never to
show their absence” [31].

One would expect that as a project matures so does the testing process
around it, and according to Dibona [30], this is indeed true for both open
source and proprietary software. According to Sommerville, a respected au-
thority on software engineering, in proprietary software development testing
usually contains three stages [76]. These three stages are complex phases in
the development phase but can be described briefly as follows:

1. development testing—concurrently with the development phase and is
usually performed by developers and/or system designers;

2. release testing—prior to system release and is usually performed by an
independent team that ensures that the system meets the stakeholder
requirements;

3. user testing—after release and is usually performed by users or poten-
tial users in their own environment [76].

Sommerville recommends that release testing should be performed by a
team independent of the system’s development so that the quality evaluation
is performed objectively and free from the influence of development issues.

22 CHAPTER 2. LITERATURE REVIEW

For Sommerville, the QA team should be responsible, in most cases, for
carrying out the release testing, ensuring that the testing process covers the
system requirements, verifying whether the system is usable, and providing
records of the testing process. After the release testing phase, the system is
usually delivered to the end-users, however there are cases when the release is
delivered to other development teams that are developing related systems or
to other departments that prepare the software product for sale. Regarding
release testing, Sommerville points out that its main purpose is to “show
that the system delivers its specified functionality [...] and that it doesn'’t fail
during normal use” [76]. The testers usually perform black-box testing which
is testing the system’s functionalities without concerns for implementation
methods.

When software quality assurance was being performed by software com-
panies and/or was carried out in a shallow fashion using black-box testing
techniques, it was difficult for researchers to obtain enough data to evaluate
quality attributes or the effectiveness of QA practices. However, Spinellis
et al. argue that the emergence of QA in open source software, with its
transparent communications and results, promises to allow scholars to study
quality assurance processes more thoroughly than was previously possible
[78].

2.2.2 Evaluating Quality in FLOSS

In 2002 Stamelos et al. measured the quality characteristics of 100 ran-
domly selected applications developed for the Linux platform and compared
the results with applications developed under the proprietary paradigm.
Logiscope®, a tool popular at the time of the study among large organi-
sations for controlling the programming process, was used for performing
operations such as code measurement and comparison [79]. The analysis was
limited to the component level and ten metrics were used to measure code
quality for a total of 606,095 lines of code (i.e. number of statements, cyclo-
matic complexity, maximum levels, number of paths, unconditional jumps,
comment frequency, vocabulary frequency, program length, average size, and
number of inputs/outputs). The findings suggested that structural code qual-
ity of FLOSS applications provides results higher than expected considering
the nature of development and more specifically the limited control over the
development process. On the other hand, the structural quality of the FLOSS
applications analysed provided results lower than the quality implied by the
industrial standard. Another interesting observation was that the average
component size of an application is negatively related to the user satisfaction
index.

2.2. SOFTWARE QUALITY ASSURANCE AND FLOSS 23

However, the question of whether FLOSS software quality was compara-
ble to that of proprietary software still lacked a solid empirical basis, and
there was a need for a survey of QA practices [93]. Zhao and Elbaum argued
that under the FLOSS model contributors can be coding, testing or writing
documentation in parallel, triggering faster software evolution. They also
argued that the success of FLOSS products appears to defy the recommen-
dations of quality assurance practices employed within proprietary develop-
ment. Zhao and Elbaum surveyed 229 projects active on two repositories
in late 2001, using a random sample controlled for programming language,
environment, and application domain.

One of their findings was that documentation of development procedures
was not considered an important issue within FLOSS projects as just 32%
of projects used design documents, and 20% had release plans. On the other
hand, the survey confirmed the existence of testing activities within FLOSS
projects considering that 58% of the projects spent more than 20% of the
time on testing, while more than 15% of the projects spent more than 40% of
their time on testing. Regarding the types of testing performed, the survey
showed that 68% of the respondents “provide inputs trying to imitate user
behaviour”, 25% “provide extreme values as inputs”, 25% “use assertions
(assert, Junit, etc.)”, 26% people adopt other validation methodologies, and
5% employ tools to assess coverage. In addition, almost 30% of the projects,
regardless of size or maturity, had a testing coverage estimated at less than
30%. Zhao and Elbaum argued that the lack of mature testing techniques
was surprising considering the large amount of time allocating to testing.
In the case of assertions, the situation seemed to be more evolved in the
sense that almost 35% of the large projects employed some sort of validation
activities. With respect to user participation, the survey showed that user
suggestions generated over 20% of the changes on almost 50% of the projects.
In addition, in almost 20% of the projects, the users posted 40% of the
bugs, and 44% of the respondents thought that users found “hard” bugs (not
likely to be found by the developers). In line with the findings on end-user
participation, only 14% of the respondents thought the users “don’t help
too much”. User contribution in mature projects was higher, which was to
be expected considering that these projects have been running for longer
periods of time and generally tend to have larger communities. This survey
also confirmed the life cycle described by Raymond [68] considering that
60% of the projects started from a need “to scratch a developer’s itch” before
shifting to the community and incorporating more features. Furthermore, an
increasing number of projects developed under the proprietary paradigm are
shifting to the FLOSS model. Zhao and Elbaum concluded their survey by
arguing that we still lack knowledge with respect to the FLOSS model and

24 CHAPTER 2. LITERATURE REVIEW

that further empirical studies are needed in the field.

2.2.3 Researching QA Practices in FLOSS

The number of FLOSS products has shown a steady increase over the years,
which suggests that software produced under this paradigm can offer a vi-
able alternative to proprietary software [57]. Michlmayr et al. conducted
exploratory interviews with seven FLOSS practitioners in order to identify
common quality practices and issues in the FLOSS paradigm. They con-
cluded that even mature and successful projects display quality issues that
are caused by the FLOSS development model itself. Michlmayr et al. clas-
sified various practices into three categories: infrastructure (bug tracking
systems, version control systems, mailing lists, etc.), processes (release, peer
review, testing, etc.), and documentation (coding style, etc.). However, they
noted that we lack tools and metrics to measure quality accurately. Their
study showed that practices employed in FLOSS vary greatly from project
to project and that more investigation is needed to define relationships be-
tween quality and practices. In some FLOSS projects, the importance of
quality assurance has been recognised and dedicated teams are assigned to
perform QA tasks. In addition, the following issues have been identified:
unsupported code, configuration management, security updates, users with-
out proper bug reporting skills, attracting volunteers, lack of documentation,
and coordination and communication issues.

Schmidt and Porter recognised that FLOSS development has been ef-
fective in reducing both cycle-time and design, implementation and quality
assurance costs [72]. However, they argued that the two main challenges
facing FLOSS development were containing the long-term maintenance and
evolution costs associated with QA, and ensuring the coherency of system-
wide properties. The FLOSS paradigm functions, as argued by Schmidt and
Porter, from two perspectives: the end-user and the software process. From
the end-user perspective the benefits of the FLOSS paradigm are reduced
software acquisition costs, enhanced diversity and scale and simplified col-
laboration. From the software process perspective the benefits are a scalable
division of labour, short feedback loops, effective leverage of user commu-
nity expertise and computing resources, inverted stratification, and greater
opportunity for analysis and validation.

Under the FLOSS development model a large amount of resources is al-
located to bug triaging activities and it is often the case that these resources
are not sufficient [46]. Hooimeijer and Weimer present a basic linear re-
gression model that predicts whether bugs are resolved in a certain period
of time using a dataset of 27,000 bug reports associated with the Mozilla

2.2. SOFTWARE QUALITY ASSURANCE AND FLOSS 25

Firefox project. The model uses bug report features that can be retrieved
from a report a day after it has been posted. However, their results show
that this model, with respect to Fi-score (a metric that is the weighted har-
mony mean between precision and recall, two measures used in information
retrieval), achieves a slightly better performance than bug triaging. In ad-
dition, using data from more than one day does not affect the performance
of the model in a significant manner. Their results also suggest that “early”
features have the largest impact on the model’s performance despite the fact
that more data is be available. An interesting finding is that the severity
metric is an important factor in the model’s efficiency while severity changes
made in time do not improve performance. In other words, changes made to
the severity of an issue might not be a precise indicator of the bug’s impact
on the overall system. However, analysis has shown that the presented model
is viable in the sense that it can reduce software maintenance costs, in cases
where the average cost of triaging a bug is greater than 2% of the cost of
ignoring such a bug.

Chengalur-Smith et al. examined the factors influencing the long-term
sustainability of FLOSS projects and developed and empirically tested a
model of project sustainability [17]. One of their most provocative argu-
ments is that a small number of successful FLOSS projects are responsible
for most of the movement’s success. In addition, they found that abandon-
ment is a common issue within FLOSS projects and is the result of ineffi-
cient allocation of effort. Furthermore, repeatedly contributing to a project
that is then abandoned can cause disappointment and decrease developers’
motivation to participate in subsequent FLOSS projects, thereby hindering
the evolution of the movement. Hence, improving sustainability under the
FLOSS development model would benefit both contributors and the move-
ment itself. Chengalur-Smith et al. attempted to discover factors associated
with the project and the project’s environment that can affect its sustain-
ability. For this purpose they proposed a number of hypotheses and tested
them on a dataset of 2,772 projects retrieved from SourceForge.net. They
found that the size of the development base in early stages of a project was a
predictor of later success in attracting new contributors. In addition, project
size and the niche it occupies seem to have a significant importance in at-
tracting future contributors. With regard to niches occupied by projects,
they argued that a project “occupying a larger niche is more likely to be-
come connected to other projects from the same niche through its developer
network” and thus increasing the project’s legitimacy and sustainability in
the same time. Chengalur-Smith et al. also found that the ability to attract
new contributors affects greatly a project’s sustainability in the long-run and
recommend potential contributors to consider not only the current situation

26 CHAPTER 2. LITERATURE REVIEW

of a project but also its history. Another interesting finding is that the age
of a project seems to influence potential users but not developers, which sug-
gests a different assessment process for different stakeholders. The authors
also conclude that predicting a project’s sustainability includes understand-
ing “both project’s internal characteristics as well as how it relates to the
broader FLOSS community”.

In the context of an increasing user base of FLOSS products, the number
of non-technical users is also increasing which produces a higher expectation
of quality[45]. Hedberg et al. reviewed FLOSS literature focusing on qual-
ity and usability issues, analysing current practices, identifying gaps in the
literature and proposing further research directions. They found that typ-
ically, within FLOSS development, end-users are regarded as co-developers
who perform testing (comparable to beta-testing in proprietary software de-
velopment), report bugs or even submit bug fixes. However, users rarely have
the skills to find bugs, let alone submit fixes. “Naive” end users cannot be
expected to tolerate crashes, submit bug reports or contribute patches. For
this reason quality assurance activities must be pushed back into the devel-
opment stages, prior to releasing a product to the general public. Hedberg
et al. acknowledged the existence of high quality FLOSS products such as
Apache or Linux, however they point out that the quality of FLOSS projects
currently depends on the skill set of the developers involved. Just because
a few large and active communities generally produce quality software, does
not mean that the same is true for the majority of FLOSS projects. In most
projects development lacks a strict process regarding quality and testing is
usually very limited. In addition, modification requests coming from the
community are rarely integrated in the final product. The lack of strict de-
velopment methodologies, they argue, is also becoming an issue considering
the increase of developers contributing to FLOSS projects. One impediment
to implementing QA procedures within FLOSS development is that usually
each community member chooses how and what to contribute, and QA ac-
tivities are considered as trivial or boring by most developers. One of the
conclusions of their study is that peer reviews and testing, considered by
Hedberg et al. as the most efficient QA procedures, are not well suited for
the FLOSS development model and more research should focus on adapting
these methodologies.

Halloran and Scherlis argued in 2002 that FLOSS had reached a level of
quality and dependability comparable to software produced under the pro-
prietary development paradigm. They conducted a preliminary survey on
quality practices employed by FLOSS practitioners focusing on adoptability
issues [43]. Halloran and Scherlis examined eleven successful FLOSS projects
by analysing data from November 2001 through March 2002. They observed

2.2. SOFTWARE QUALITY ASSURANCE AND FLOSS 27

that responsibility for quality was given to contributors with commit privi-
leges to the projects’ repositories, and that all the projects taken into consid-
eration used nightly builds and visible bug tracking tools. In addition, most
projects offer appropriate resources and tools for potential contributors to
become visible and acknowledged by the community. Based on their obser-
vations, Halloran and Scherlis suggested criteria shared by successful FLOSS
projects:

e an incremental model for quality investment and payoff;

e incremental adoptability of methods and tools both behind the server
wall and in the baseline client-side tool set;

e trusted server-side implementation that can accept untrusted client-
side input;

e a tool interaction style that is adoptable by FLOSS practitioners.

Five years later, Aberdour reviewed prior research on quality in FLOSS
[1]. He found that substantial studies had been conducted on the issue and
that, in order to achieve quality, actionable conclusions should be drawn from
these empirical studies. He defined a quality model as follows:

e quality assurance which occurs throughout the software organisation
and focuses on process and procedure learning from mistakes and en-
suring good management practices;

e quality control which is the process of verification and validation, usu-
ally within a structured testing process, using high-level plans and de-
tailed test scripts to document and manage the testing process.

According to Aberdour, the quality model in FLOSS differs from that
employed in proprietary development in various ways. For example, in view
of the distributed nature of FLOSS development, coordination tasks are es-
sential. On the other hand, FLOSS development practices included practices
“borrowed” from proprietary development such as: central management,
code ownership, task ownership, planning and strategy, testing, leadership
and decision-making. An important aspect in achieving quality in FLOSS is
having a large and sustainable community eager to “rapidly develop code,
debug code effectively and build new features”.

English et al. focus on quality by conducting empirical research on iden-
tifying locations of faults in a project’s source code, the number and severity
of faults as well as the number of modifications associated with each part

28 CHAPTER 2. LITERATURE REVIEW

of the project [32]. Testing activities within a large system can consume
a lot of resources, so concentrating testing efforts on code areas that are
prone to produce faults would improve development costs in the long run
without compromising quality. The authors propose four research questions
that investigate whether the Pareto principle applies in fault distribution,
and whether Chidamber and Kremer [18] metrics can be correlated to fault
prediction. Pareto’s Law states that 80% of the effects can be contributed to
20% of the causes, while Chidamber and Kremer cover a wide set of metrics
from the Object Oriented model such as: weighted methods per class, depth
of inheritance tree, number of children, coupling between object classes and
response for a class. The findings seem to support the application of Pareto’s
law in fault distribution: 82% were detected in 20% of classes. Thus, iden-
tifying these problematic classes could improve product quality and reduce
costs by focusing testing efforts and reducing development cycles. On the
other hand, the inheritance based metrics NOC (Number Of Children) and
DIT (Depth of Inheritance Tree) were not predictors of faults within the
project. A reason for this finding might be that these metrics showed little
variation and thus could not be used to distinguish between classes. On the
other hand, the coupling metrics CBO (Coupling Between Object classes),
LOC (Lines Of Code) and RFC (Response For a Class) proved to be accurate
predictors of fault-prone classes.

Barbagallo et al. conducted an empirical study in order to define relation-
ships between social network structure and quality within FLOSS projects
[8]. They proposed three hypotheses, two of which described the impact of
contributor centrality degree on project success, development and mainte-
nance efforts, while a third correlated the relationship between success and
project quality. Social network analysis techniques were applied by creating
two-mode undirected affiliation networks. The dataset used for generating
the social network contained data associated with 57,142 contributors listed
on the SourgeForge.net repository as participants in various projects devel-
oped in the Java programming language. The findings seemed to support
the hypothesis that centrality values correlate positively to a project’s suc-
cess. In addition, Barbagallo et al. found that centrality values are positively
correlated with the ability to attract new contributors. However, the study
also suggested that more successful projects tend to have a lower design
quality, and a more “bazaar”-like development style. Thus Barbagallo et al.
concluded that centrality measures represent an important metric in FLOSS
projects and that centrality should be monitored. However, their finding that
success negatively affects design quality raises a potentially serious issue in
the long-term management of FLOSS projects.

2.2. SOFTWARE QUALITY ASSURANCE AND FLOSS 29

2.2.4 Applying the Results of FLOSS QA Research

The quality of FLOSS is a matter of great economic and social importance,
so a number of efforts have been made to exploit the findings of research
on FLOSS quality to improve the quality of software. Schmidt and Porter
launched the Skoll project?, which they defined as “a long-term, multi-site
collaborative research project that leverages key open-source assets” [72].
The goals of the Skoll project are to develop tools and methodologies that
improve quality of FLOSS systems incrementally, automate processes and
minimise end-user involvement. These improvements are applied to ACE
and TAO, two widely deployed FLOSS toolkits used by programmers. The
reason why ACE and TAO were chosen is that they share the same attributes
as any other successful FLOSS project (large and mature code bases, het-
erogenous platform support, highly configurable, core development teams,
comprehensible source control and bug tracking, large and active user com-
munities, continuous evolution, frequent beta releases and occasional “stable”
releases). However, a unique aspect of these projects is that they employ a
highly automated regression testing procedure. Schmidt and Porter argue
that the widespread adoption of these projects in commercial environments
is due to the high quality resulting from these regression tests and FLOSS
development methodologies. Their research hypothesis is that “a system-
atic QA process based on distributed continuous testing and profiling would
prove markedly superior to the ad hoc QA processes” and is tested in the
ACE and TAO projects. Schmidt and Porter’s seems to support this hypoth-
esis, as their methods found bugs that were not initially identified using the
traditional ad-hoc QA process.

More recently, Spinellis et al. presented a technical and research overview
of software quality assurance within FLOSS in order to establish an obser-
vatory for open source. Their research goals were to:

e create a metric plugin-based architecture and a corresponding process-
ing engine;

e cstablish new product and process software metrics that take an ad-
vantage of the SQA-OSS infrastructure;

e provide an interface through the web, web services, and an Eclipse plu-
gin that developers can use to improve the quality of their application;

e publish concrete values of product and process metrics for popular open
source software;

http://www.cs.umd.edu/ aporter/html/skoll.html

30 CHAPTER 2. LITERATURE REVIEW

e set up a league of open source software applications based on user-
specified criteria [78].

Spinellis et al. argued that by combining product and process metrics,
new issues in software quality could be approached. One of the outcomes
of their research is an “integrated platform for large scale software engineer-
ing studies” called Alitheia!® which consists of a data collection system, a
computation component and a presentation layer in the form of a website.

The topic of quality under FLOSS also attracted the interest of various
organisations and governments, which have started initiatives such as the
Qualipso!! or Qualoss'? projects. QualiPSo, the first consortium focused on
FLOSS quality, ran from November 2006 to October 2010. The purpose was
to aid industries and government agencies supporting innovation by providing
a way to use FLOSS in developing reliable systems. To achieve this goal,
technologies, processes and policies were defined and implemented. QualiPSo
was the largest FLOSS initiative ever funded by the European Commission as
part of its Information Society Technology (IST) initiative. Concurrently, the
Qualoss project ran from September 2006 to February 2009 with the goal of
“enhancling] the competitive position of the European software industry by
providing methodologies and tools for improving their productivity and the
quality of their software products”. To achieve this goal, a method to assess
FLOSS quality was built in order to facilitate integration with commercial

software systems'.

2.3 Communities and FLOSS development

People themselves represent the most important resource in software develop-
ment. Pressman reminds us that “the cultivation of motivated, highly skilled
software people has been discussed since the 1960s” [20][28] [89]. In fact, the
“people factor” is so important that the Software Engineering Institute has
developed a people management capability maturity model (PM-CMM), “to
enhance the readiness of software organisations to undertake increasingly
complex applications by helping to attract, grow, motivate, deploy, and re-
tain the talent needed to improve their software development capability” [26]

67].

WOhttp:/ /www.sqo-oss.org

1 Qualipso (trust and quality in open source systems): http://www.qualipso.org/

12Quality in Open Source Software: http://www.qualoss.org

13The Qualoss project related information hosted on libresoft.es—an important online
repository for libre software research: http:// libresoft.es/research/projects/qualoss

2.3. COMMUNITIES AND FLOSS DEVELOPMENT 31

However, the unique characteristic of FLOSS projects is that it builds
communities of people with similar goals who share knowledge and obey the
same norms. “Gemeinschaft” or community in general is defined as a group
of individuals brought together based on shared feelings of togetherness and
on mutual bonds. These feelings represent a goal to be achieved while com-
munity members represent the means for achieving this goal [82]. In the
context of virtual space, Rheingold defines online communities as “social ag-
gregations that emerge from the Net when enough people carry on public
discussions long enough, with sufficient human feeling, to form webs of per-
sonal relationships in cyberspace” [69], a set of criteria fulfilled by FLOSS
communities.

Weber considers open source as an experiment in “social organisation for
production around a distinctive notion of property” [87]. He also argues that
the open source process suggests four principles for distributed innovation:

e empower people to experiment;
e enable bits of information to find each other;

e structure information so it can recombine with other pieces of informa-
tion;

e create a governance system that sustains this process—social concepts
expressed in rules and law. Governance of a distributed innovation sys-
tem also needs to scale successfully (organised effectively, more eyeballs
really are better than fewer) at relatively low overhead costs [87].

Carillo and Okoli argue that the emergence of FLOSS has radically af-
fected the dynamics of the software landscape both within software compa-
nies and between developers, end-users and even hardware manufacturers
[15]. Furthermore, this movement has created a new type of community, cre-
ating new kinds of interaction between users and software. However, despite
the many positive aspects of this development, “some effects must be worthy
of caution” [15]. With regards to property rights, Carillo and Okoli believe
that the open source movement is changing the way property rights are being
used to promote software innovation.

Furthermore, FLOSS communities have an increasing role in the software
industry and can be defined as groups of individuals who convene online
with the purpose of creating software products, useful for both the com-
munity itself as well as for the general public, by using open source devel-
opment methodologies [15]. Communities themselves represent the driving
force behind the open source movement, and studies have shown that hav-
ing a sustainable community should be a priority [65][68][79]. As a result,

32 CHAPTER 2. LITERATURE REVIEW

academics and industry representatives alike have focused on understanding
FLOSS communities, and on how to create and maintain communities ca-
pable of delivering “success stories” such as Firefox, Linux, and the Apache
web server.

A well covered research topic concerns the actual profile of the members of
these communities, more specifically, code contributors or developers. Several
surveys [39][55][44] have profiled FLOSS contributors and although there
are some discrepancies between these surveys the common denominators are
that:

e FLOSS contributors are almost exclusively male;

the average age a FLOSS contributor is around 27,

around 20% of FLOSS contributors are students;

over 50% of FLOSS contributors have IT related jobs;
e around 16% are paid to contribute to FLOSS projects.

However, in 2002, Feller and Fitzgerald recognised that there was a gap
in the literature regarding FLLOSS developers considering the differences be-
tween estimates given by previous research [33]. Despite the lack of demo-
graphic information, Feller and Fitzgerald were able to describe FLOSS devel-
opers as tending to be professionals and specialists, and in their opinion, this
observation could explain how largely uncoordinated efforts were able to cre-
ate high quality software products. Another assumption was that profession-
als came with a knowledge of best practices when joining a FLOSS project,
a knowledge which they could use in development. Feller and Fitzgerald also
observed that community members regularly switched roles between client,
actor and owner and that the lines between these roles were often blurred. In
addition, they observed a higher FLOSS penetration in the corporate market,
although they forecasted increasing private use of FLOSS products.

Another relevant area of academic research regarding FLOSS communi-
ties is the investigation of various factors that can affect the levels of success
of projects. For example, Crowston and Fogel both found that an active
mailing list can be a reliable indicator of success within FLOSS projects
[23][36]. Taking this research a step further, Sowe et al. conducted a study
to correlate developers’ activity on mailing lists with their efforts in submit-
ting code to the project by presenting a methodology for data mining and
analysis from a FLOSS repository of repositories (RoRs) [77]. RoRs are col-
lections of source code commit data and mailing list data associated with
many FLOSS project that are publicly available. Sowe et al. argued that

2.3. COMMUNITIES AND FLOSS DEVELOPMENT 33

developers’ presence and activity on mailing lists is important because their
activity influences the way both individuals outside and inside the commu-
nity view the commitment levels of project leaders and core contributors.
For the purpose of this study, Sowe et al. chose 14 random projects with
two criteria in mind: the projects should cover as many domains as possible
and the developer contribution should vary as much as possible in terms of
commits and postings. In explaining their mining methodology, Sowe et al.
raised the difficult problem of how to identify the same individuals on both
mailing lists and in source code repositories. To address this issue, Sowe et
al. compared data from three tables as follows:

e people table—containing name, username and e-mail address;
e messages table—containing e-mail address;
e commit table—containing committer name.

The people table was used as a common denominator in order to identify
unique developers. After data analysis, Sowe et al. reached the conclusion
that FLOSS developers contribute equally to code repositories and mail-
ing lists. However, this conclusion pointed to new questions that should be
answered in future studies. For example, regarding code commits, it is im-
portant to establish what kind of commits developers are submitting due
to the fact that they may be modifying, deleting or even adding important
new functionalities. Another question would be how exactly developers are
contributing to the mailing lists, i.e. whether they are actively contributing
by replying to previous messages and engaging in substantive discussions, or
simply posting information and ignoring other community members.

Open source is not only growing as a way of developing software but also
as a business model, with open development communities springing up in
other areas of innovation [52]. Kilamo argues that as the number of com-
panies that are choosing to go “open” is increasing, so is the demand for
communities to attract contributors. However, despite the fact that these
communities have a key role in deciding the success or failure of a project,
there are “few guidelines on how to create and maintain a sustainable open
source community”. In her doctoral research, Kilamo seeks to identify is-
sues that must be addressed to grow such communities at different aspects
of open development. Her goal was not to provide a recipe for success, but
to offer a set of key aspects necessary for growing open communities. She
used a case study approach to investigate three different types of community:
software business, educational and innovation. Kilamo et al. argued that, al-
though companies involved in FLOSS development are heavily dependent on

34 CHAPTER 2. LITERATURE REVIEW

the communities surrounding the projects, business decisions are often made
based on little information [53]. The main reason is that existing methods
for measuring community metrics, such as social network analysis or business
readiness rating, tend to be hard to implement. With these considerations in
mind, Kilamo et al. presented a “measuring model for onion-based measuring
of open source communities” using data collected continuously via multiple
channels. The model was then validated by applying a measuring model to
an open source community, and Kilamo et al. argued that it offers a viable
method for companies to assess the community structure in order to support
decision making.

Open source systems can differ greatly from one another with differences
ranging from implementation of the system to the communities themselves
[54]. Compared to evaluating the implementation, which can be performed
using a number of methods, evaluating a community has proven to be a some-
what more difficult task. Despite the fact that some community measuring
models exist, Mikkonen et al. argue that having a researcher participate in
the community as a developer for a period of time is one of the best methods.
They present their experiences using this method in a company-centric com-
munity with an onion-layered structure. Valuable community related data
was collected despite the fact that it tends to be subjective as only one devel-
oper has participated in community activities. Mikkonen et al. found that in
the sample community, experience and technical knowledge are prerequisites
for participation, which may cause the community to be less approachable.
In addition, their experiment suggested that participation can reveal insights
that are beyond the reach of measurement and that this type of approach is
suitable for collecting developer related data.

In recent years, as the number of FLOSS products and communities has
increased so has the number of individuals using FLOSS products [42]. Both
practitioners and academics have been in interested in the questions of how
communities form, evolve and succeed. Community members often partici-
pate in more than one FLOSS project, thus creating collaboration ties with
other FLOSS contributors. The strength of collaboration ties can vary, and
is influenced by various factors such as intimacy or emotional intensity [40].
Hahn et al. analysed whether these collaboration ties can influence a de-
veloper’s decision to join a FLOSS project [42]. They used social network
analysis techniques and focussed only on factors influencing an individual’s
decision to join an emerging/new project and not an already established
project. They defined FLOSS communities as “collaborative network]s] of
developers working together in different project teams”. FLOSS commu-
nication is usually asynchronous and carried out over “computer-mediated
distributed networks” which might be a concern for a developer looking to

2.3. COMMUNITIES AND FLOSS DEVELOPMENT 35

join a new FLOSS project. Hahn et al. formulated three hypotheses regard-
ing the likelihood of a developer joining a FLOSS project and the factors
that affect it. The dataset used for their research consisted of data associ-
ated with newly registered projects on SourceForge.net (between September
30 and November 11, 2005), as well as data associated with all individuals
involved in at least one project hosted on SourceForge.net (including projects
registered prior to new project data retrieval). The final dataset contained
2,349 projects and 170,741 developers.

Hahn et al. distinguished two cases: the first where variables associ-
ated with the project initiator influenced a developer’s decision to join a
new project, and the second where variables associated with non-initiator
contributors influenced a developer’s decision to join a project. In the first
case, developers were more likely to join projects initiated by individuals with
whom they already had strong collaboration ties, regardless of the outcome
of previous projects. On the other hand the developer’s decision was not
influenced by the initiator’s status cues. In other words, developers did not
rely on recommendations provided by other FLOSS contributors, but relied
on their own experiences when joining a new project. In the second case,
authors were not influenced by previous collaboration ties when choosing
a new project. Hahn et al. argued that this might have been due to the
importance of the project leader role within FLOSS development and com-
munities. In addition, whether previous projects in which developers created
collaboration ties were successful or not did not seem to influence their deci-
sion when joining a new one. However, the status cues played an important
part of the developer’s decision in the sense that developers tended to join
projects where non-initiators had more experience. A somewhat surprising
aspect however, was that developers were less likely to join a project where
developers had a high number of past collaboration ties. Another factor that
could influence a developer’s decision to join a project was the perceived
probability of success considering that developers were more likely to join a
project with more developers than one with fewer.

In his book “The Art of Community”, Bacon (a community manager for
Ubuntu) proposes a list of checklists for creating and managing a thriving
community [6]. Bacon covers a wide variety of topics ranging from the use
of social media to ways of organising events and even methods of mediating
conflict. Bacon argues that FLOSS communities function as a coordinated
effort of multiple teams and that one of the keys to their success is ensuring
a strong information flow between these teams so that they do not become
isolated components. However, he warns that “the flow of communication
between teams is a lot more complex than you would first imagine”. It is im-
portant to identify the information brokers (people who belong to more than

36 CHAPTER 2. LITERATURE REVIEW

one team), observe communication patterns and optimise this communica-
tion for the teams that communicate the most in order to ensure a clear and
effective exchange of information. To illustrate his recommendations, Bacon
uses the development and the bug squad teams from the Ubuntu commu-
nity. After an observation period, the lines of communication and how both
teams interacted on the issue tracker were optimised, and the intersection of
meetings and events was coordinated more efficiently.

Au et al. argued that FLOSS communities display characteristics essen-
tial to successful virtual communities such as self-governance, effective work
structure and process or technology for communication and coordination [5].
They chose a sample of 118 projects of various sizes and types hosted on
SourForge.net and analysed data associated with bugs in order to study the
factors that affect learning processes in FLOSS projects. They proposed
five hypotheses relating bug fixing activities to other factors such as com-
munity size. Based on their analysis Au et al. concluded that a number
of factors can affect efficiency within a project. For example, performance
is optimal in moderately sized teams, while smaller teams display a greater
variability in efficiency. Team size depends in turn on other factors such as
the manager’s “perception of the relative importance of efficiency versus bug
resolution time” [5]. Another factor that can improve efficiency is assigning
bugs to specific developers; when possible assigning should be based on the
developers’ expertise and experience. One of the most interesting observa-
tions made by Au et al. is that developers who participate in a large number
of projects are more efficient in bug fixing and contribute more to knowledge
sharing.

Aral and Brynjolfsson conducted a study not within a FLOSS community
but in a proprietary software company. However, their study might have a
great impact if its findings were applied to FLOSS development. They ex-
amined the diffusion of information within email networks and how it affects
productivity by analysing the transmission of various types of information
within a company over a span of two five-month periods [3]. Their study
offers valuable evidence as how access to information increases productivity
and reduces costs. Aral and Brynjolfsson argue that the more individuals
interact, the more likely it is for them to exchange information and for this
reason the strength of the relationship between two individuals is measured
as the number of e-mails exchanged between them. Two types of information
are identified: “event news” and “discussion topics” where the first is sim-
ple, declarative, likely triggered by external events and is of interest for the
majority of the individuals. The latter is more complex, specific, procedural,
and is of interest for smaller groups of individuals. Aral and Brynjolfsson
propose three hypotheses which they proceed to validate using data gath-

2.3. COMMUNITIES AND FLOSS DEVELOPMENT 37

ered from three sources: accounting data on co-work relationships, positions
and so on, email data retrieved from the company server and surveys of
demographic statistics. After analysing the data, the authors reached the
conclusion that men are 55% more likely to receive information of any type.
In addition, as was expected, the strength of ties is an important factor in
receiving information as it increases the possibility: ten additional e-mails
raises the likelihood of receiving information by 2%. In addition, path length
reduces the possibility of receiving information in the sense that each addi-
tional step reduces the possibility of diffusion by 29%. Another observation
is that having many relationships in common reduces the chance of receiving
an information cascade. In addition, discussion topics are more prone to dif-
fuse vertically within the hierarchy across stronger ties, while news is more
prone to diffuse both laterally and vertically without being influenced by fac-
tors such as relationship strength. An important conclusion is that access to
information predicts productivity and affects productivity in the sense that
faster and better access to information can generate a higher revenue for the
company as these individuals finish tasks faster than their counterparts that
don’t receive so much information or receive it later. “Employees who are
aware of new ideas and information are better able to solve problems, im-
prove decisions and conclude projects”. For these reasons it is important to
study how implementing new methodologies such as QA affects the structure
and dynamics of FLOSS communities. In addition, investigating these mat-
ters might provide insightful information to corporations looking to adopt
FLOSS or people considering contributing to FLLOSS projects.

Nakakoji et al. conducted a case study on four FLOSS projects using
interviews as well as quantitative data such as mailing lists. The focus of
their paper was on the evolutions of systems and of communities and the re-
lationship between the two [61]. They argued that as opposed to proprietary
development, FLOSS community members can choose according to their own
preferences one or more of the following eight roles: passive user, reader, bug
reporter, bug fixer, peripheral developer, active developer, core member and
project leader. Nakakoji et al. also pointed out that the percentage of users
associated with each role can vary according to the FLOSS community and
that some of these roles might not exist in some communities. The commu-
nity structure is described as layered with a higher influence for roles closer
to the core. Nakakoji et al. furthermore proposed three types of FLOSS
project: Exploration-Oriented, Utility-Oriented and Service-Oriented.

The communities behind FLOSS projects produce not only software prod-
ucts but also models of and frameworks for open participation [64]. As a re-
sult the structure and dynamics of FLOSS communities have become a point
of interest among researchers. The common conception is that FLOSS com-

38 CHAPTER 2. LITERATURE REVIEW

munities are organised in layers similar to an onion, hence the “onion” model
which is the most common model of a sustainable community [1]. The onion
model contains the following main layers: end-users, active users, develop-
ers (co-developers) and core developers. Another common conception is that
participation and influence increase towards the inner circles/layers while the
number of members of each of these layers decreases. The reason behind this
layered structure is that FLOSS communities function as meritocracies in the
sense that the individual’s involvement increases as they “migrate” towards
the inner circles by committing bug reports, submitting patches or even new
functionalities. However, only a few community members will be able to join
the small core of developers. Bacon defines a meritocracy as “a system of
governance in which its members are given responsibilities and recognition
based on achievements, merit and talent” [6]. He also stresses the importance
of having open, well-defined and enforced communication channels in order
to ensure collaboration. As Aberdour puts it, “each type of member has cer-
tain responsibilities in the system’s evolution, which relates to the system’s
overall quality” and “advancement through the member types is reward and
recognition for each member’s abilities and achievements” [1].

Valverde et al. argued that while complex designs can emerge from a
distributed process, the individuals involved will have only a limited un-
derstanding of the global pattern they are developing [83]. In the case of
software development, it is only natural to expect developers to know the
main purpose/goal of the software they are developing, however with the
increase of project complexity the knowledge of the whole project decreases.
Another issue in complex projects is that decisions depend on other project
developments and will be made locally. Valverde et al. argued that under-
standing the principles behind self-organising FLOSS development can im-
prove software process management. They conducted a comparative study
social of organisation in wasp colonies and in FLOSS development commu-
nities by analysing patterns and functional significance. Two colonies of
Polistes dominulus with a constant number of 13 wasps each (maintained
artificially) and 12 small software communities with ten members each were
taken into consideration for the study. However, the authors concluded that
wasp communities are essentially different because in FLOSS communities
reinforcement mechanisms distinguish a few core members.

In his essay “A twenty-first century science”, Duncan J. Watts argues
that social science has failed to produce a coherent theoretical framework
so far due to the complexity of social phenomena [86]. However, in recent
years, with the possibility of accessing interactions between millions of peo-
ple, researchers’ interest in social networks has grown substantially. Watts
also points out that some issues need to be addressed when analysing such

2.3. COMMUNITIES AND FLOSS DEVELOPMENT 39

networks. For example, social networks are in a continuous state of change,
and people engage in a variety of types of interactions. However, despite the
fact that studies that consider all these issues are far from complete, progress
is slowly being made.

Christley and Madey analysed the social positions as well as how the
social distribution changes over time within the SourceForge.net community
by social network analysis techniques [19]. They argued that community
members can contribute to a project by performing various activities such
as: submitting code, installing and testing the software, reporting and fixing
bugs, writing documentation and posting messages on various communica-
tion channels. Their question was whether the social position system is static,
in other words whether people maintain the same position in projects over
time. In order to answer these questions, Christley and Madey extracted ac-
tivity event data associated with 21 projects hosted on the SourceForge.net
platform. Event data could be the submission or assignment of artefacts
like bugs, feature requests and patches, posting of forum messages, modifi-
cation of project settings, file releases, management of project tasks, docu-
ments or jobs. This activity data was used to generate a multi-relational,
weighted, bipartite graph (social network) where the nodes were members
of the community and projects, and the edges were links between projects
and members. Christley and Madey conducted temporal analysis from two
perspectives: global—in which they compared the state of the network as a
whole in 2003 with the state of the network in 2004; and local—in which they
took an egocentric point of view by looking at each person in the network.
One of their conclusions was that insights can be extracted from different
views of data. For example, for the global social network, “software user” is
the largest social position despite the fact that when using temporal analysis
this position does not exist. The reason is that members do not perform their
primary activities very close in time in the sense that individuals may check
out the source code and post a message on a forum at a much later time.
Some social positions were common for both the local and global network
which indicates that these positions are a common phenomena. In addition,
it is possible that open source software communities are more efficient and
adaptable considering that each member can select their own social position
and/or change it over time to respond to the projects’ needs. This aspect
is clearly in contrast with proprietary software development where each in-
dividual is specialised with a clear distinction between roles such as tester,
developer, architect and so on. However, Christley and Madey recognised
the possibility that these projects may be not large enough to require dedi-
cated positions and further insight could be provided by studying a number
of large projects hosted on SourceForge.net (general results might have been

40 CHAPTER 2. LITERATURE REVIEW

skewed by the large number of small projects), or even the Mozilla or Apache
projects.

Developer coordination after the release of a FLOSS project and man-
agement of activities such as knowledge sharing and bug fixing was inves-
tigated by Hossain and Zhu using social network analysis techniques [48].
Hossain and Zhu proposed two hypotheses describing variables that might
affect FLOSS project metrics such as code quality or defect density. Data as-
sociated with 45 FLOSS projects hosted on SourceForge.net was used to test
these hypotheses. Their first conclusion was that an increase in centrality or
betweenness within the social network of the FLOSS community positively
affects code quality. On the other hand, an increase in the density of the so-
cial network causes a decrease in code quality. However, the most important
conclusion than can be drawn from this study is that social network charac-
teristics can be correlated with performance metrics within FLOSS projects,
underlying the importance of further research in this direction.

Dalle et al. analysed how bug reports and requests are handled, and more
specifically whether ownership plays an important role in bug resolution [27].
In other words, they analysed whether bugs posted by a member of the core
(insider) are treated differently from bugs posted by a member of the periph-
ery (outsider). Dalle et al. argued that understanding the process through
which bugs are fixed is essential for understanding the development process.
For this purpose, meta-data associated with bugs that are mentioned in code
commits was retrieved from both CVS (the project’s code repository) and
Bugzilla (the project’s issue tracker). The meta-data used for this study in-
cluded the number of lines added/deleted with each commit associated with
a certain bug and the number of duplicate bugs. The next step consisted
in retrieving two samples from the available 40,000 bugs, one from the early
stages of the Firefox project and the second from a later and more mature
stage. Their findings suggested that bugs reported by core members (insid-
ers) tend to be fixed more rapidly than bugs reported by members of the
periphery (outsiders), especially in the later stages of development. In addi-
tion, the number of duplicates a bug has seems not to affect the speed with
which the bug is resolved.

Masmoudi et al. took this research a step further by analysing communi-
cation patterns between the core and the periphery as well as the periphery’s
involvement in bug related activities [29]. The motivation for this study was
that if the periphery is viewed as the “eyes”, as described by Raymond [68],
then the mechanism through which the periphery communicates with the
core is highly important. Masmoudi et al. assumed that most of the inter-
action between these two “layers” of the community takes place on the issue
tracker. To assess the situation within the Firefox community, they only con-

2.3. COMMUNITIES AND FLOSS DEVELOPMENT 41

sidered bugs that were mentioned in the code commit comments in order to
rule out any unproductive activity or noise, and they distinguished three key
elements: action, comments and affiliation. In order to differentiate between
peripheral and core members, the following method was used: if the bug
was posted directly with the status “New” then the reporter was considered
as a member of the core as he/she had privileges while if a bug was posted
with the status “Unconfirmed” the reporter was considered as a member of
the periphery. Masmoudi et al. found that 20-25% of the bugs were posted
by members of the periphery and that most of these peripheral members
post only one bug. However, if all actions contributed (i.e. comments) were
considered, 85% of bugs could be traced to core members, who on average
post 16 bugs. Another interesting finding is that bugs with more interactions
are usually associated with the involvement of core members. In addition,
core and periphery activities were analysed using textual content analysis
which revealed that a clear distinction could be made between people taking
a black-box approach and people having a strong technical knowledge. An-
other conclusion was that members of the periphery are disproportionately
marking duplicate bugs. By performing additional analysis, Masmoudi et al.
concluded that people who participate in a discussion at a later time are less
likely to be members of the core while as discussions contain a higher num-
ber of core members, more core members are likely to join in. Furthermore,
after even further analysis, they concluded that actions performed by core
members tend to be followed by actions performed by other core members
and that, similarly, actions performed by peripheral members are generally
followed by actions performed by other peripheral members. However, dis-
cussions around patches tend to be a common ground for interaction between
peripheral and core members; this confirms Alan Cox’s dictum “show me the
code” [21] which highlights the importance of suggesting solutions in the case
of “outsiders who want to be heard” [29]. Summarizing Masmoudi et al.’s
conclusions, most bug resolution activities are performed by a small number
of core members while peripheral members seem to contribute with duplicate
identification and reporting bugs.

Crowston and Howison analysed the social structure of FLOSS projects
by examining 120 projects hosted on the SourceForge.net repository [24].
They argued that “effective FLOSS projects [...| are organised like ‘bazaars’
but ideally not like ‘town councils’ or ‘cliques’ and certainly not like teams
building a ‘cathedral’ ”. One of their motivations was to understand team
practices and more specifically team coordination, team control, socialisation,
continuity and learning. Another motivation was to assess or manage risks
due to the fact the some community members were making contributions so
crucial that their withdrawal would jeopardise the whole project. Therefore,

42 CHAPTER 2. LITERATURE REVIEW

keeping an up to date assessment on who these contributors are might aid
maintaining a project’s sustainability in the long run.

Crowston and Howison argued that in FLOSS development there are
two forms of centralisation: development centralisation and communication
centralisation [24]. The first is an action measure while the latter is an in-
teraction measure. Development centralisation refers mainly to code writing
while communication centralisation refers to centralisation in communica-
tions channels such as e-mail lists, bug-reporting systems, and instant mes-
saging. The common opinion among FLOSS practitioners is that FLOSS
projects display a decentralised communication pattern as opposed to pro-
prietary development, or “cathedral”, where communication would be cen-
tred around an “architect”. A high degree of communication centralisation
implies that a small number of individuals interact with a large number of
individuals who do not communicate among themselves. On the other hand,
a high communication decentralisation implies that that all individuals in-
teract with each other.

Despite the potential implications of various communication patterns
within FLOSS projects, Crowston and Howison noted that academic re-
search on the topic is scarce [24]. Previous FLOSS literature suggests that
FLOSS networks have a few nodes with a number of relationships signif-
icantly higher than the network’s average, called hubs [8]. Crowston and
Howison, in order to test whether there is a consistency in community struc-
ture within FLOSS, analysed communication carried out on issue trackers
(bug-reporting systems). Crowston and Howison used a dataset limited to
active projects with over 100 bugs and more than seven developers. It con-
tained 140 projects with 61,068 associated bug reports and a total of 14,992
unique contributors, of whom 1280 were involved in more than one project.
Their findings revealed that communications within FLOSS projects do not
conform to a single pattern as had been expected. However, they found
a correlation between FLOSS project size and the communication pattern:
the bigger the project the more decentralised the communications tended to
be. This variance also suggested the communities looking to grow should
be achieving higher modularity. In another paper, Crowston et al. analysed
self-organisation within FLOSS communities by examining three active and
successful projects [25]. One of the main motivations behind this study was
that distributed development is increasingly present in the software industry
and FLOSS development in particular faces specific challenges. Crowston
et al. defined large-scale software engineering as “a social activity involving
numerous developers and other professionals working together in a tightly co-
ordinated process”. An inductive multiple case study research approach was
chosen to analyse task assignment due to the fact that the current literature

2.3. COMMUNITIES AND FLOSS DEVELOPMENT 43

did not describe such processes. With this approach, Crowston et al. devel-
oped new theories after analysing FLOSS contributors’ interaction focusing
on task assignment processes. Their dataset contained developer commu-
nication carried out either on e-mail lists or web-based forums as project
coordination activities are usually performed by developers through these
public channels. Their findings suggested that self-assignment is the most
common mechanism as opposed to traditional software development where
assignments are explicit and usually made by managers/leaders. Crowston
et al. argued that this was probably due to the fact that FLOSS is based
on volunteering in the sense that each contributor chooses tasks that he/she
finds interesting. After self-assignment was removed from the equation, de-
velopers were found to assign most of the tasks, which might suggest a status
hierarchy as users rarely assign other users. Another interesting finding was
a broader participation in tasks compared to proprietary development where
tasks are restricted to the development team and not to users.

Oezbek et al. used social network analysis of mailing list traffic to assess
participation of layers within the “onion” model [64]. They chose visual-
isation as an output method after a careful comparison of the advantages
and disadvantages of both visualisation and metrics. Among the advantages
of visualisation is that it allows easy identification of central participants,
comparison of similar networks and assessment of the general structure of
the network. However, the main disadvantage with visualisation techniques
is that when analysing large network the process must be automated which
implies choosing a layout algorithm. Oezbek et al. considered only emails
exchanged in the year 2007 and proceeded to manually extract data from pub-
licly available mailing list archives associated with 11 projects. All projects
displayed a similar structure of a tightly integrated core, a loosely connected
set of co-developers which had strong connections with the core and some
connections among themselves, and peripheral members who were mostly
connected to members of the core or were isolated. In other words, contrary
to prior assumptions of strong peer-to-peer assistance, members of the pe-
riphery rarely communicated with co-developers. Oezbek et al. called this
co-developer layer “cancerous” in that it is strongly oriented to the core while
paying little attention to the periphery. On the other hand, core developers
were much more engaged in communicating with peripheral members. These
findings, they argued, suggested serious limitations in the onion model of
FLOSS communities.

FLOSS communities are not exclusively composed of developers [37] but
also include members who contribute with: dealing with bug reporting and
end-user documentation [15]. Migration within the hierarchy of FLOSS
projects’ communities and role migration within the community is another

44 CHAPTER 2. LITERATURE REVIEW

issue that has caught the attention of researchers. Jensen and Scacchi pro-
vided an empirical analysis of career advancement and role migration in three
large FLOSS communities: Mozilla, Apache and NetBeans [50]. They argued
that the organisational structure of FLOSS communities has not drawn the
same amount of interest as FLOSS processes. They also question the ability
of the concentric “onion model” to capture the complex structure of FLOSS
communities which have multiple tracks of project career advancement and
different role-sets. Another motivation behind their study was that beside
recruitment related guidance, little information is provided by communities
as to how one ascends and transcends the organisational hierarchy. Jensen
and Scacchi used a mixture of qualitative methods (participant interviews,
collection and cross-coding of FLOSS artefacts) and web site data mining
in order to describe the processes behind a member’s evolution within the
community hierarchy for each of the three cases. Jensen and Scacchi pro-
ceeded with a comparative case analysis in which the peculiarities of FLOSS
organisational structure were underlined. They concluded that compared
to traditional software development where the hierarchy is more rigid and
static, the FLOSS hierarchy tends to be more fluid with both horizontal and
vertical migrations as well as overlapping roles. Another interesting aspect
revealed by their study was that even if the number of layers comprising a
community is fixed sometime in the early stages of a project, the size of these
layers, especially the outer layers, is highly variable. In addition, in the case
of FLOSS, the mixture between paid and volunteer developers drives a more
complex career advancement path than that suggested by previous literature.

2.4 Summary

In conclusion, the previous research supports the idea that FLOSS is heading
towards a hybrid model that employs some practices and methodologies from
the proprietary development model. These practices include well-defined
quality assurance practices such as testing. Meanwhile, quality under the
FLOSS model has also attracted the attention of academics who have con-
ducted a variety of studies to measure the quality of FLOSS, to survey the
QA practices being implemented in FLOSS projects, and to reflect the find-
ings of those studies back to FLOSS communities through various analytical
tools. With respect to communities developing FLOSS systems research has
also approached a variety of topics ranging from community structure or com-
munication patterns, career advancement and role migration, to developer’s
motivation to voluntarily contribute to FLOSS projects.

However, despite extensive research on both QA and communities little

2.4. SUMMARY 45

research has sought to link QA with the structure and dynamics of FLOSS
communities. One reason behind this gap might be the novelty of dedicated
QA teams within FLOSS projects. This research aims to start filling that gap
by analysing some communities that have successfully implemented a formal
QA step in their development processes, investigating how this emergent
activity affects community structure, and formulating hypotheses which can
be confirmed in future research.

46

CHAPTER 2. LITERATURE REVIEW

Chapter 3

Research Methodology

Considering the importance of communities as resource for FLOSS develop-
ment, it is important to understand the mechanisms behind their evolution.
Thus, the main goal of this study is to identify the impact of newly emerged
groups of QA contributors on the overall structure and dynamics of FLOSS
communities. In other words, the aim is to discover whether these groups
represent a new layer of contributors to this project, who are the members of
these groups and how they communicate with other groups of contributors.
This chapter describes the methodologies used to conduct this study and is
split into three sections. The first section explains the choice of the case study
approach used in this study. The second section describes the data used in
the study and explains how it was retrieved and processed. The third section
explains the choice of social network analysis as the main tool used in this
research, and introduces some of the key concepts of social network analysis.

3.1 The Case Study Approach

3.1.1 The Case Study as a Research Method

The main method used for conducting this research is the case study ap-
proach. A case study is an empirical inquiry that investigates a contempo-
rary phenomenon in depth and within its real life context, especially when
the boundaries between phenomenon and context are not clearly evident [92].
According to Robson, a case study should be carefully planned and should
contain the following [70]:

e objective—the research goal;

e the case—the investigated phenomena;

47

48 CHAPTER 3. RESEARCH METHODOLOGY

theory—the research framework /theory on which the research is based;

research questions—questions associated with the investigated phenom-
ena;

methods—data collection and analysis methods; and

selection strategy—data selection process.

Case studies have become an established research methodology that has
enabled many contributions to fields including software engineering. Fly-
vbjerg examines common misunderstandings about case study research, ar-
guing in line with the Kuhnian insight that “a scientific discipline without
a large number of thoroughly executed case studies is a discipline without
systematic production of exemplars, and a discipline without exemplars is
an ineffective one” [35]. Flyvbjerg proceeds to define the five most common
misunderstandings as follows:

1. general, theoretical (context-independent) knowledge is more valuable
than concrete, practical (context-dependent) knowledge;

2. one cannot generalise on the basis of an individual case; therefore, the
case study cannot contribute to scientific development;

3. the case study is most useful for generating hypotheses; that is, in the
first phase of a total research process, whereas other methods are more
suitable for hypotheses testing and theory building;

4. the case study contains a bias toward verification, that is, a tendency
to confirm the researcher’s preconceived notions; and

5. it is often difficult to summarise and develop general propositions and
theories on the basis of specific case studies [35].

Flyvbjerg argues that humans need context-dependent knowledge in order
to acquire a specialised set of skills as one only becomes an expert by ac-
quiring knowledge from a multitude of concrete real life cases. Furthermore,
Flyvbjerg contends that predictive theory does not exist in social sciences,
which has produced only context-dependent knowledge. Therefore, one can
draw the conclusion that in “the study of human affairs” practical knowl-
edge is more valuable. Historically, Newton, Einstein, Galileo, Freud and
many others have used case studies to make important contributions to their
fields. Flyvbjerg thus argues that case study results have lead to scientific

3.1. THE CASE STUDY APPROACH 49

innovation and should not be disregarded as a formal research method. Fur-
thermore, case studies should not be limited to generating hypotheses, as
generalizability can be increased by a strategic selection of the case stud-
ies. In addition, as opposed to random sampling that can show only the
symptoms and frequency of a problem, a few valid case studies can offer
important insight as to the causes and consequences. With regards to bias
in case studies, Flyvbjerg argues that these concerns apply to all research
methods and that considering previous experience, the case study method
contains “a greater bias towards falsification of preconceived notions than
towards verification” [35]. Finally, Flyvbjerg argues that the difficulty in
summarising and generalising case studies is due to the complexity of reality
and that in itself is what adds value to this research method.

Many researchers have adapted the case study methodology to the study
of technology or software development. For example, due to the fact that an-
alytical methods offer a limited perspective on analysing human interaction
with technology, Runeson and Host attempt to provide a set of recommended
practices by adapting the case study methodology from other research do-
mains to the particularities of software engineering [71]. They argue that
most research on software engineering aims to investigate how the wide va-
riety of activities that it contains (development, maintenance, etc.), is per-
formed and by which stakeholders. In other disciplines, such research goals
are commonly achieved using the case study methodology, which suggests
that this method is also suitable for software engineering. Runeson proposes
a set of key characteristics that are essential to any type of case study [71].
A case study should be flexible in order to cope with complex real world
phenomena—of which software engineering is clearly one. The conclusions
of a case study approach should be based on a clear chain of evidence where
the data (qualitative or quantitative) is collected from multiple sources in
a planned and consistent manner. Furthermore, a case study should con-
tribute to existing knowledge by being based on already existent theory and
by building new theory. Runeson also defines the phases of a case study as
follows:

1. case study design: objectives are defined and the case study is planned;

2. preparation for data collection: procedures and protocols for data col-
lection are defined;

3. collecting evidence: execution with data collection on the studied case;
4. analysis of collected data; and

5. reporting.

20 CHAPTER 3. RESEARCH METHODOLOGY

One of the motives for choosing the case study approach in the current
research is to gain insights into certain phenomena, such as the how the QA
process is integrated into FLOSS projects. The objectives of the case study
approach can be exploration, characterisation or even validation, while the
subject can be either an intervention such as a new tool or method, or an
existing process such as QA [66]. According to Perry, the case study method
should be employed only under certain circumstances such as when there are
more variables than data points or when the phenomena do not occur in a
laboratory (for example a large FLOSS project) [66]. A case study approach,
as defined by Perry, should fulfil the following conditions [66]:

e the research questions are set from the beginning;
e data is collected in a planned and consistent manner;
e inferences are made from the data to answer research questions;

e the study explores a phenomenon, or produces an explanation, descrip-
tion, or causal analysis of it; and

e threats to validity are addressed in a systematic way.

Furthermore, Perry outlines a five-part structure of the case study:

research questions;

e propositions;

units of analysis;

logically linking the data to propositions; and

criteria for interpreting the findings.

Propositions however, may be lacking in exploratory case studies as find-
ing propositions is the objective of such studies. Another important step in
a case study is defining the units of analysis, which depend on the research
questions. A case study, or the object of the study, can contain multiple
units of analysis.

3.1. THE CASE STUDY APPROACH 51

3.1.2 The Case Study Approach in this Research

A widely cited paper in the field of FLOSS research that uses an exploratory
case study approach is the study of Apache conducted by Mockus et al. [58].
Mockus et al. investigate the development process within the Apache server
community and propose a set of hypotheses. These hypotheses are validated
in a second study conducted by the same authors [59]. Mozilla was chosen
as the second case study and the initial set of hypotheses was tested in this
different context. The hypotheses were then modified based on the findings.
The same approach will be used in this research, i.e. an initial pilot case
study will be chosen after which a set of hypotheses will be proposed. The
validity of these hypotheses will be tested in other FLOSS projects.

This research will be conducted in two phases. The first phase of this
research will follow the observational path as a research framework. In other
words the “goal is to collect a set of observations and to explain them them
in terms of a set of meaningful concepts” [80]. This research goal of collecting
a set of observations, or in this case hypotheses, will be achieved by starting
with the substantive domain or area of interest and a technique. Apply-
ing this framework to this study means that proposing a set of hypotheses
will start with the research questions associated with QA practices within
FLOSS projects, after which the case study approach will be applied. The
second phase of this research will follow the hypothetical path as a research
framework which means that the goal is to “test theory rather than build it”
[80]. This research goal of testing theory will be achieved by starting with
the conceptual domain and then the substantive domain in order to collect
the necessary data. Applying this framework to this study means that test-
ing the hypothesis will start with the hypotheses before the actual FLOSS
projects are selected in order to retrieve the appropriate data.

3.1.3 Research Questions

The main objective of this research is to define and position QA practices
under the FLOSS development model. As a result the following research
questions were set in the initial stages of this study:

Q1: Is QA a separate layer in FLOSS communities?

FLOSS communities are usually described as following a concentrical lay-
ered model that resembles an “onion”. In the FLOSS onion model, commu-
nities are formed of four main layers: passive users, active users, developers
and core developers; passive and active users are together included in the

52 CHAPTER 3. RESEARCH METHODOLOGY

periphery. Despite the fact that research has shown that this model fails to
capture some complexities of FLOSS communities [50] [90], the onion model
is still regarded as generally valid. This research aims to investigate how
the emerging QA teams fit into this onion model. More specifically, it asks
whether QA is established as a separate category or whether members that
belong to other layers perform QA related activities. Previous research has
shown that participants ascend and descend the organisational hierarchy as
well as moving laterally to other tracks but it has also been suggested that
many QA tasks are assimilated by other roles [50]. It would be interesting to
note, if all projects taken into consideration share the same structure with
respect to the QA contributors. In addition, in the case of Firefox, periph-
eral members (i.e. members of the periphery as defined in the onion model of
FLOSS communities) perform some QA tasks, for example posting 20 to 25%
of bugs on the issue tracker [29]. I will compare the percentage of peripheral
involvement for all the case studies.

Q2: What are the communication patterns between QA members as well
as with other project participants?

The goal of analysing communication patterns between QA members is
to find the central figures, or in other words members with high activity
levels within the community and observe their evolution over time within
the project. A related task is to compare central figures based on different
data sets, for example central figures based on e-mailing activity and central
figures based on issue tracker activity.

3.1.4 Units of Analysis and Research Design

The next step consists of defining the units of analysis within the case studies,
or in other words within the objects of study. As the case study is for QA
within FLOSS communities, multiple units of analysis must be selected as
follows:

e individual project contributors—the study focuses on participation to
the project itself;

e team—the study focuses on team interactions; and

e process—the study focuses on QA process as a whole.

The main objective of this research is to explore quality assurance prac-
tices employed by FLOSS communities. As case study design strategy is

3.1. THE CASE STUDY APPROACH 93

flexible enough to allow incremental data collection and analysis, this re-
search was conducted in two phases as follows:

Phase I: An exploratory case study in order to devise hypotheses describ-
ing QA activities within a FLOSS project. The case study is Mozilla.
The Mozilla project was launched in 1998 started when the source code
for the Netscape Communicator was released under an open source
licence—the Mozilla Public License, which was accepted by the open
source community, including the OSI (Open Source Initiative). Mozilla
was a hybrid project in the sense that a commercial entity employed
the bazaar model and many argue that Mozilla is probably one of the
most important initiatives in the history of open source as it had a huge
impact in promoting the open source credo [68] [33]. The community
behind Mozilla is responsible for “Firefox”, one of the most popular
web browsers. It is a mature community that is well known for stable
releases and high quality standards.

Phase II: Four more case studies are chosen to validate the hypotheses
generated in Phase I. The case studies are:

e Ubuntu—The main motivation for developing Ubuntu was cre-
ating an easy to use Linux operating system. It was launched
officially in 2004 and quickly thousands of contributors from all
over the world joined the community. Today Ubuntu is one of the
most widely used Linux distributions;

e Plone—Plone is an enterprise content management system written
in Python that was first released in 2003. The Plone community
is rather small compared to the Mozilla and Ubuntu communi-
ties, but Plone has been widely adopted by government agencies,
universities, companies and non-profit organizations around the
world;

e KDE—KDE is a community that produces a variety of FLOSS
products among which the most well known is “Plasma Desktop”
— a desktop environment. The KDE community was founded in

October 1996 and is another example of a successful and mature
FLOSS project.

o LibreOffice—LibreOffice is a productivity suite developed under
the FLOSS paradigm and thus community-driven. The commu-
nity behind it is powered by the Document Foundation which was
established in 2010 after the fork with OpenOffice, another FLOSS
product.

o4 CHAPTER 3. RESEARCH METHODOLOGY

The dataset retrieved during Phase I consisted of QA mailing list and issue
tracker data associated with the Mozilla community, and will be described
in more detail in the next section. After analysing this dataset using basic
statistical analysis and social network analysis techniques a set of hypotheses
was formulated. In addition, following Phase I the mailing list data gathered
was expanded from QA-specific lists to all (or as many as possible) mailing
lists related to the projecs. Similarly to Phase I, statistical analysis and
social network analysis techniques were applied. However, the purpose in
this phase was to validate the set of hypotheses.

Properly addressing potential threats to validity is an important part
of any case study, thus such potential threats will be addressed in the last
chapter of this thesis in the “Limitations” section on page 189.

3.2 Data

3.2.1 Data Selection and Collection

Open communication channels that are accessible to all community members
are essential in all FLOSS projects considering the geographical distribution
of their participants. Members communicate asynchronously through the
internet by commenting on issue trackers, posting on forums, and sending e-
mails. They can also communicate synchronously using Internet Relay Chat.
Archives of the discussions on asynchronous media are publicly available and
are usually hosted in an online repository.

Data retrieval techniques can vary based on research type and according
to Lethbridge et al. these collection techniques can be divided into three
levels:

o first degree—direct methods are used when the researchers are in direct
contact with the subjects of the study and collect the data in real time;

e second degree—indirect methods are used when researchers directly
collect data without actually being in direct contact with the subjects
of the study; and

e third degree—researchers perform independent analysis on artefacts
that already exist, e.g. in archives [56].

Messages are exchanged between community members independent of this
research and are already available in archives hosted in online repositories.
Thus the data collection techniques used in this research are of the third
degree [56]. Data triangulation, which means approaching an issue from

3.2. DATA 95

different standpoints, is particularly common when analysing data gathered
using qualitative methods (case studies that are based on qualitative data).
However, using triangulation can also compensate for errors in measurement
or modelling when using quantitative methods [71]. As a result, data tri-
angulation was used in this study by gathering data from more than one
data source, i.e. mailing list data, issue tracker data and code repository
metadata. Because all the data gathered for this research was downloaded
from public FLOSS repositories there are no particular ethical issues to be
addressed. However, posters’ names have been anonymised in this thesis.

The data was downloaded and stored in local PostgreSQL or MySQL
databases using either Python scripts that would perform “screen scrap-
ing” (web crawlers) or open source tools'. All the used scripts were made
public and can be downloaded from: https://github.com/adinabarham/
crawlers .In addition, www.ohloh.net? was used for retrieving code contrib-
utor associated metadata in order to perform data cleaning and establish
contributor roles within the community. The tools used for retrieving each
dataset are shown in Table 3.1 on page 55.

Table 3.1: Tools used for data retrieval

Case study E-mails Issue tracker Contributors

Mozilla manual Python scripts —
Ubuntu Python scripts Python scripts Python scripts
LibreOffice MailingListStats Python scripts Python scripts

Plone MailingListStats Python scripts Python scripts
Python scripts
KDE MailingListStats Python scripts Python scripts

Table 3.2 on page 56 describes the dataset associated with each study. For
the exploratory case study (Mozilla community) only QA related mailing lists
and issue tracker data was downloaded while for the other case studies most
mailing lists, issue tracker and contributor related data were downloaded.
Most FLOSS projects have a large number of associated mailing lists. De-
pending on the size of the project these mailing lists are specialised in the
sense that some can be dedicated for the developers of a certain component
or for teams that handle certain tasks such as localisation or QA related ac-
tivities. Some mailing lists are used by members speaking a certain language

"MailingListStats: https://github.com/MetricsGrimoire/MailingListStats
20hloh: https://www.ohloh.net/

https://github.com/adinabarham/crawlers
https://github.com/adinabarham/crawlers

26 CHAPTER 3. RESEARCH METHODOLOGY

or from a geographical area. For a more comprehensive description of which
mailing lists were retrieved and the numbers of e-mails obtained, see Tables
B.3, B.4, B.5 and B.6 in Appendix B starting on page 212.

Table 3.2: Communication channel data retrieved for each community

Project QA e-mails General e-mails Bugs Code contributors
Mozilla v X v X
Ubuntu v v v v
LibreOffice v v v v
Plone v v v v
KDE v v v v

Each FLOSS project used as a case study for this research started its
activities and implemented QA at different times. Furthermore, the large
amount of data associated with each project meant that data retrieval for
the projects took place at different times. As a result, the data gathered is
associated with various time periods, which are shown in Table 3.3 on page
56.

Table 3.3: Periods covered by datasets

Project QA e-mails General e-mails Bugs

Mozilla 02/2006-07/2011 — 01/1998-02/2012
Ubuntu 08/2005-05/2013 09/2004-05/2013 05/2000-04/2013
LibreOffice 07/2011-05/2013 09/2010-05/2013 08/2010-06/2013
Plone 06/2011-07/2013 07/2002-07/2013 05/2002-12/2012
KDE 04/2012-04/2013 03/1999-05/2013 01/1999-06/2013

As the FLOSS projects studied vary in size and other characteristics,
so do the sizes of the datasets associated with each project and with each
communication channel. The total numbers of QA e-mails, e-mails bugs and
bug comments for each project are given in Table 3.4 on page 57.

The initial design contained only PostgreSQL databases but the Mail-
ingListStats tool required MySQL, so mailing list data associated with the
KDE, Plone and LibreOffice was initially stored in MySQL databases and

3.2. DATA 27

Table 3.4: Numbers of artefacts retrieved for each project

Project QA e-mails Total e-mails Bugs Bug comments
Mozilla 3,689 3,689 687,221 5834,507
Ubuntu 8,798 487,694 993,420 4,114,392
LibreOffice 3,381 192,709 19,432 127,208
Plone 170 176,144 13,026 55,883
KDE 954 529,488 312,847 1,364,871

then migrated to PostgreSQL using a migration script written in Python. A
detailed description of each database is given in Appendix B on page 209.

3.2.2 Data Cleaning

After storing the Mozilla mailing list data on a local machine, it was cleaned
manually by completing the following actions:

e spam was marked as such and removed;
e double posts were removed; and

e single usernames was assigned to participants posting under multiple
usernames.

In view of the large amount of data associated with the other four projects,
data cleaning was performed using Python scripts in the following steps:

e a list of code contributor names and usernames used to commit code
was retrieved from the appropriate DB table;

e contributors were retrieved from both mailing list and bug tables and
processed as follows:

— if these contributor names contain “@Q” mark then the characters
to the left of the sign are considered the same;
— if the name contains “.” then the dot is replaced with a space;

— if the name contains the characters “a.k.a.” then two names are
attributed to the same contributor (before the “a.k.a.” characters
and after); and

o8 CHAPTER 3. RESEARCH METHODOLOGY

— if the name contains brackets then two names are attributed to
the same contributor (outside and inside the brackets);

e the contributor names are then compared with the names and nick-
names of code contributors; and

e names are then modified in the bugs and mailing list tables.

Unlike in the Mozilla pilot case study, a manual check of emails to remove
spam was not conducted for the other four cases due to the large amount of
data. Spam was unlikely to affect the results of the social network analysis
because it is generally ignored by other mailing list participants and therefore
does not create connections that appear in the network. However the activ-
ity level analysis did include spam e-mails. For example, the discrepancies
between the activity levels and the social network analysis of the Plone com-
munity suggested a large amount of spam e-mails on the Plone-QA mailing
list; for more details see page 119.

3.3 Social Network Analysis

3.3.1 Social network analysis and its applications in
social science

A parlor game in early 18" century Kénisberg (now Kaliningrad) was to try
to find a way to walk through the town without crossing any of its seven
bridges twice. In 1736, the famous mathematician Euler demonstrated the
impossibility of such a walk [7]. Euler’s demonstration marked the begin-
nings of graph theory, an important branch of mathematics that is the basis
of social network analysis—the analysis of relationships and their implica-
tions between people, groups, organisations and other types of entities [40]
[84] [88]. However, despite the fact that graph theory has long been an es-
tablished branch of mathematics, networks (which are represented as graphs)
were viewed as objects of “pure structure whose properties are fixed in time”
[85]. Watts argued that this view is false because these networks can rep-
resent populations of individual components that are in a continuous state
of change. Watts proceeds to argue that graph theory requires a more in-
terdisciplinary approach, because mathematicians do not consider individual
behaviour or cultural norms while social scientists lack the mathematical
background to understand and apply graph theory.

In the years since Watts made that argument, interdisciplinary research
has grown, and along with it interest in social network analysis and its appli-

3.3. SOCIAL NETWORK ANALYSIS 59

cations in fields as varied as anthropology, organisational behaviour, chem-
istry and even epidemiology. Social network analysts have developed two
frameworks for approaching the problem of complex networks. The first fo-
cuses on the relationship between network structure while the second focuses
on the information flow within a network. On other words, social network
analysis allows the analysis and observation of links between a network’s ac-
tors as well as the social structure or the variety of roles and social groups
within the network. Furthermore, social network analysis allows the study of
information diffusion, identification of potential information brokers through
whom much information is likely to flow (and whose departure would jeop-
ardize the flow of information), and of individuals who are in a position to
influence other network members.

When “stripped to its bare bones, a network is nothing more than a col-
lection of objects connected to each other in some fashion” [85]. A network
can be represented by a graph. A directed graph shows the direction of com-
munications between community members, in the sense that if a community
member “A” sends a message to community member “B”, an arc will ex-
ist from vertex A to vertex B while an arc will not exist from vertex B to
vertex A. The number of interactions between members can be represented
as the weight (value) of the graph’s arcs. For example, Figure 3.1 on page
60 describes interactions between four community participants. There have
been three interactions between Ann and Pete, one interaction between Sara
and Pete and two interactions between Pete and John. On the other hand,
Mike is an isolate vertex as he did not interact with anyone in this particular
community.

3.3.2 Basic SNA concepts

Here let us introduce some basic SNA concepts that will be used in this
thesis. 3

e vertex/node—an actor in the social network;

e edge/arc—a connection between two vertices/nodes. Edges are undi-
rected lines while arcs are directed lines;

e graph—a set of vertices and a set of lines between pairs;

e oriented graph—containing at least one arc;

3For more details of these concepts, see for example [63]

CHAPTER 3. RESEARCH METHODOLOGY

Figure 3.1: Community graph example

network—a graph and additional information associated with the lines
and vertices it contains;

vertex degree—the number of edges adjacent with the vertex;

outer degree/outdegree—the number of arcs starting from the vertex
to other vertexes in the graph (oriented graphs only);

inner degree/indegree—the number of arcs pointing to the vertex from
other vertexes in the graph (oriented graphs only);

loop—an edge/arc that connects a vertex to itself;

density—the number of lines in a simple network expressed as a pro-
portion of the maximum possible number of lines;

complete network—a network with maximum density (density is 1);

semiwalk from vertex u to v—a sequence of lines such that the end
of vertex of one line is the starting vertex for the next line and the
sequence starts at vertex u and ends at vertex v;

walk from vertex u to v—a semiwalk with the additional condition that
none of its lines are an arc of which the end vertex is the arc’s tail;

semipath—a semiwalk in which no vertex in between the first and last
vertex of the semiwalk occurs more than once;

3.3. SOCIAL NETWORK ANALYSIS 61

e path—a walk in which no vertex in between the first and last vertex of
the walk occurs more than once;

e (weakly) connected network—a network where each pair of vertices is
connected by a semipath;

e strongly connected network—a network where each pair of vertices is
connected by a path;

e (weak) component—a maximal (weakly) connected subnetwork;
e strong component—a maximal strongly connected subnetwork;
e geodesic—the shortest path between two vertices;

e betweenness centrality of a vertex is the proportion of all geodesics
between pairs of other vertices that include this vertex;

e betweenness centralisation is the variation in the betweenness centrality
of vertices divided by the maximum variation in betweenness centrality
scores possible in a network of the same size; and

e k-core—a maximal subnetwork in which each vertex has at least degree
k within the subnetwork.

3.3.3 Social network analysis and FLOSS

FLOSS researchers have made considerable use of social network analysis, for
two main reasons. First, the fact that in FLOSS development, people col-
laborate in communities to plan and perform the construction of specialized
information i.e. computer code, means that researchers will be interested
in network structures in information flows, which are the two main focuses
of social network analysis. Second, the fact that most of the information
flows in FLOSS communities are public and archived allows researchers to
reconstruct networks relatively easily. For example, Crowston and Howison
analyse the social structure of FLOSS projects by examining 120 projects
hosted on the SourceForge.net repository [24]. Another example is the anal-
ysis of social positions as well as the dynamics of social distribution over time
conducted by Christley and Madey [19].

Previous research focusing on FLOSS communities has shown that in-
teractions between community members can be defined using two methods:
thread-based analysis and quotation-based analysis. Thread-based analysis
assumes that relations are created between members who are exchanging

62 CHAPTER 3. RESEARCH METHODOLOGY

messages under the same thread [90]. Quotation-based analysis assumes
that relations are created between two members if one has quoted another
member’s message in his own message [9].

Barcellini et al. propose the use of quotation-based analysis when inves-
tigating thematic coherence [9]. They define FLOSS design as “a particular
case of asynchronous, distributed, collaborative design”. The FLOSS de-
sign process usually takes place in a public communication channel and is
archived in an online repository (documentation space). New project con-
tributors to a FLOSS project are commonly encouraged to go through these
archives in order to gain knowledge regarding the project, its evolution, and
what has already been tried and accomplished. Barcellini et al. hypothesise
that quotation-based analysis is more appropriate than thread-based analysis
when reconstructing thematic coherence in design-oriented discussions. They
also argue that thread-based analysis is more appropriate for analysis of the
community structure, member roles or measuring member centrality. They
compared the two methods by applying them to the same FLOSS project
data. They made the interesting observation that there is a real need for
tools and methods to extract relevant data from the design discussions con-
sidering the large amount of data associated with each project. Their findings
supported the proposed hypotheses, meaning that quotation-based analysis
is a promising approach for studies focusing on thematic coherence-related
topics and design-relevant information. The main reason is that while using
thread-based analysis, some theme-related messages were incorrectly divided
into different threads. In addition, some messages were categorised as periph-
eral contributions while they were in fact central contributions. Quotation-
based analysis did not seem to display the same erroneous behaviour. The
study also revealed that the links within the project’s social structure influ-
enced the shape of the discussion space. The roles of participants influenced
whom the participant replied to, thus influencing “the unfolding of the de-
sign process within the discussion space”. In other words, the structure of
this particular community resembled a transitional organisation hierarchy
opposing the idealistic views of FLOSS organisation.

Wiggins et al. advanced the application of SNA techniques to FLOSS
research by investigating the social dynamics of FLOSS teams and raising
concerns regarding the techniques used by previous exponents of SNA [90].

FLOSS practitioners have often claimed that FLOSS communities dis-
play a decentralised communication pattern, making centralisation metrics
an important issue in community research. Wiggins et al. argued that in
prior research social network analysis techniques were commonly applied
to an aggregated representation of the network which may have provided
a skewed and simplified view of FLOSS communication patterns and dy-

3.3. SOCIAL NETWORK ANALYSIS 63

namics. Instead they proposed a dynamic approach to assess centralisation
in FLOSS communities. Another issue that is commonly present in prior
FLOSS community research that employs SNA techniques is the actual con-
struction method of the social network. These methods utilise replies on
public discussion threads as proxies for direct communication between par-
ticipants. However, some reply messages may include not only the previous
poster but also all the community members or all previous members active on
the thread as a recipient. This is not always the case but it nonetheless rep-
resents a potential issue in assessing centrality. As a result, “the broadcast of
these communication channels restricts the choice of SNA measures that are
meaningful as the potentially public nature of the messages clearly violates
the assumptions of information brokerage such as betweenness centralisation
among others” [90].

To address this issue, Wiggins et al. proposed the use of the out degree
centralisation for measuring inequalities in communication contributions to
the projects. Higher values indicate that a small number of members reply to
more participants while lower values indicate a more equal contribution on
communication channels. Wiggins et al. also argued that collapsing events
over a long period of time is another common problem in prior research. To
address this issue, they propose using message timestamps to build a set of
snapshots of the community structure at different times. Furthermore, prior
research has usually focused on communication carried out on one commu-
nication channel and thus does not depict the community. Wiggins et al.
argue that differences should be expected between discussions carried out
on mailing lists versus discussions carried out on issue trackers or between
developer-oriented communication channels versus user-oriented ones. After
applying SNA techniques to two FLOSS communities, they found that the
user-oriented communication venues displayed a more decentralised pattern
than developer-oriented communication venues. Therefore, communication
patterns may vary depending on communication channels and researchers
should consider this aspect when characterising a community. However,
both projects tended to display a decentralisation pattern over time with
occasional centralisation peaks. Another interesting finding was a spike in
activity on the issue tracker which was linked to periodic management activ-
ities performed by a few users who closed a large number of bugs.

Another study that investigates validity issues in the appliation of SNA
techniques to data associated with FLOSS projects was conducted by Howi-
son et al. [49]. They argued that social network analysis is “not a theory per
se but more a set of analysis techniques” and propose a series of practices in
order to improve the existing research framework. FLOSS associated data
is considered digital trace data which can be defined as “records of activity

64 CHAPTER 3. RESEARCH METHODOLOGY

(trace data) which undertake through an online information (thus, digital)”
[49] that is both produced and stored by an information system. All trace
data can be characterised as follows:

1. it is not produced for the sake of research as it already exists as a
byproduct of various activities;

2. it is event-based data rather than summary data; and
3. it is longitudinal data as events occur over a period of time.

Furthermore, Howison et al. clarify the distinction between archival data
and trace data. Archival data is stored in archives that may contain both
trace data and data “that represents participants’ summaries of their so-
cial relationships” [49]. Thus all digital trace data is archival data but not
vice versa. Howison et al. suggest that researchers should triangulate with
multiple measures of links between community members and assess consis-
tency. In addition, researchers should consider whether the order of events
affects the results of the study when aggregating links that occur at different
times. Furthermore, researchers should specify the SNA tools or software
used, the algorithms and even perform tool triangulation and compare the
results. With regards to the datasets, researchers should consider if it is a
data sample or a census of activity and, if the former is the case, explain
the sample logic. Finally, they argue that one should explicitly define nodes,
links and network measures based on the network processes.

3.3.4 Applying SNA in this Research

For the purposes of this research communities associated with each case study
will be represented as directed graphs. Project participants will be repre-
sented as nodes (vertices) while interactions will be represented as edges
(arcs). The interactions are messages exchanged by community members on
mailing lists and issue trackers. Thread-based analysis is used because the-
matic coherence does not represent a focus in this research. Furthermore,
the number of messages exchanged between two members will determine the
weight of the arc connecting these two members.

The dataset associated with each FLOSS community will be exported
into a Pajek-readable format. Pajek* is a free social network analysis appli-
cation that allows both mathematical analysis and visualisation of commu-
nity graphs. Mathematical analysis of the community graphs will produce
metrics that describe structure and dynamics. The purpose of visualising

4Pajek homepage: http://pajek.imfm.si/doku.php

3.4. SUMMARY 65

these community graphs is not to show details of communications between
individual community members but rather to show general communication
trends in the community. Visualizations of all connections in a community
will show so many lines that most individual arcs will be indistinguishable
from one another, but the purpose of showing these figures is to convey that
there is a large amount of communication between members of the various
layers.

Social netwrok analysis will applied to each dataset in multiple steps.
First, social network analysis techniques will be applied to the whole dataset
in order to compute general metrics such as degree values, betweenness cen-
trality for the whole community. Each dataset will then be split into layers of
contributors and then layers associated with QA will be analysed separately
by computing general SNA metrics. The third step will consist of analysing
the groups of contributors active on the QA mailing lists and computing var-
ious metrics. The analysis conducted in these first stages will be conducted
on an aggregated forms of the graphs. Finally, due to the dynamic nature of
communities and to the QA focus of this research, the graphs consisting of
community members active on the QA mailing lists will be analysed using
six month time frames. These time-frames will be used to track the evolution
of QA teams, and SNA metrics will be computed for each window.

3.4 Summary

The main objective of this research is to define the impact of the adoption
of formal QA practices on the structure of FLOSS communities. For this
purpose two main research questions have been formulated. These questions
focus on the network structure of QA activities in FLOSS, and on information
flows regarding QA within FLOSS communities. The study will be conducted
in two phases: first, an exploratory case study will be made and a set of
hypotheses proposed based on the findings; second, these hypotheses will be
tested and refined in four more case studies of FLOSS projects. The data
will be from mailing lists, bug trackers and will be further triangulated using
metadata from code repositories. The datasets will be cleaned and statistical
and SNA techniques applied both on aggregrate and time-series data.

66

CHAPTER 3. RESEARCH METHODOLOGY

Chapter 4

Preliminary Research and Pilot
Case Study

4.1 Working Definition of Quality Assurance

“The problem of quality management is not what people don’t know about
it. The problem is what they think they know” [22]. In other words, quality
assurance is often misunderstood and is actually a process that requires a
complex set of methodologies and procedures [67].

In view of the complexities of quality assurance processes, a clear defini-
tion of what QA entails under the FLOSS model is necessary for the scope
of this research. This thesis uses the following working definition of QA ac-
tivities within FLOSS projects:

Testing, contributing code to automated testing tools or any test related
activity, triaging bugs or any activity performed on the projects issue tracker,
participating on the QA dedicated communication channels.

The main purpose of this definition is to help identify QA contributors
within FLOSS communities by describing current observed QA practices em-
ployed in the open development model. However, the FLOSS model itself is
still evolving and so is the role of QA within this model. Therefore it is to
be expected that as FLOSS methodologies mature and become more com-
plex, so will the QA procedures employed [30]. One potential problem for
this research is that there could be QA contributors performing QA activi-
ties that are not observable by monitoring public communication channels.
This problem is addressed by comparing observed QA team activities in the
traditional development model [76] and previous FLOSS literature [93] [57].

67

68CHAPTER 4. PRELIMINARY RESEARCH AND PILOT CASE STUDY

However, future research should include further triangulation by conducting
interview or questionnaire surveys of key project members.

4.2 Preliminary Study of QA Adoption in FLOSS
projects

Before the main research, a preliminary study was carried out to assess the
presence of QA procedures within popular FLOSS projects. The top 50
FLOSS software products ranked by number of downloads were accessed on
Ohloh, which is a directory of FLOSS and the contributors who create and
maintain it!. It was found that almost one third had QA procedures. QA
was considered to be present if there were clear references to its existence (for
example, mailing lists, IRC channels, webpages, wikis and so on) and they
were easily identifiable. The results of this step were published previously
[10]. In the next phase of this preliminary assessment, the top 100 software
projects ranked by number of users were analysed; these results were also
published previously [11]. The conclusions were consistent with the findings
of the previous phase: more than a quarter (27 projects) had some form of
QA present in the development process. In addition it was noted that almost
half of these projects had dedicated communication channels for the QA
teams. The remaining projects either had channels for contributors to post
test results or other resources dedicated to describing QA within the project
such as wikis or websites. These projects are listed with general statistics
regarding contributor numbers and lines of code in Table A.1 of Appendix
A on page 197. Furthermore, a detailed description of which projects had
dedicated QA communication channels and QA teams is provided in Table
A.2 of Appendix A on page 197.

4.3 Pilot Case Study: Mozilla

4.3.1 The Mozilla project

The Mozilla project was launched in 1998 when the source code for the
Netscape Communicator was released under an open source licence—the
Mozilla Public License, which was accepted by the open source community,
including the OSI (Open Source Initiative). The “Mozilla Organization” was
founded to ensure the transition from proprietary development to the open
development model and manage the project. Mozilla was a hybrid project

1Ohloh: https://www.ohloh.net/

4.3. PILOT CASE STUDY: MOZILLA 69

in the sense that a commercial entity employed the bazaar model and even
if it was not the first of its kind, as Mitchell Baker puts it, “the combination
of open source techniques with an active, focused commercial management
structure was uncharted territory” [30]. Feller and Fitzgerald argue that
Mozilla is one of the most important initiatives in the history of open source
as it had a huge impact in promoting the open source paradigm [33]. As a
pioneer FLOSS project Mozilla has also attracted the attention of researchers
[59].

The importance of QA within the Mozilla project was recognised as an
important issue from the early days and as a result Christine Beagle was
hired to coordinate the QA effort. The result, according to Baker, was an
active and effective quality assurance community [30]. In 2003 the “Mozilla
Foundation” was established as an independent non-profit organisation in
order to manage the Mozilla project. Soon after, a transition began from the
Mozilla Application Suite to new products such as Firefox and Thunderbird.

The pioneering nature of Mozilla as a hybrid project, the wealth of pre-
vious research on it, the size and maturity of its community, the widespread
adoption of its products, and its early adoption of formal QA practices: all
these factors combine to make Mozilla a suitable subject for our pilot case
study.

4.3.2 General analysis of the Mozilla dataset

The Mozilla community was chosen as a pilot case study in order to generate
a set of hypotheses and create a framework for further research. Mailing list
data was downloaded in July 2011. At that time, according to the Mozilla
Quality Assurance (QMO) website?, there were five sub-teams: Web QA,
Desktop Firefox, Browser Technologies, Automation and Services. The Web
QA, Desktop Firefox, Browser Technologies and Services teams used the
mozilla.dev-quality mailing list while the Automation team used the Mozmill
developer mailing list.

Bugzilla data were acquired in February-March 2012 using a web crawler
that accessed pages associated with each bug (the actual bug page and the
change history page associated with each bug) and stored the issues directly
into a PostgreSQL database. The next phase consisted of cleaning both
datasets by removing double posts, removing spam and normalising name
formats. As expected, the QA mailing list was created much later than
the issue tracker. For the purpose of analysing activity levels issue tracker
and mailing list data should be retrieved from the same periods of time,

2Mozilla quality assurance: https://quality.mozilla.org/

7T0CHAPTER 4. PRELIMINARY RESEARCH AND PILOT CASE STUDY

however by doing so important data might be lost. For example, if activity
pertaining to a certain period of time is not be taken into account then there
is a risk that we might miss migration of certain members between layers of
the community.

The Mozilla.dev-quality mailing list data contains 2,535 e-mails exchanged
between February 2006 and June 2011, while the Mozmill developer mailing
list data contains 1,155 e-mails exchanged between October 2008 and July
2011. The traffic and number of users is higher on the Mozilla.dev-quality
mailing list than the Mozmill developer mailing list—see Table 4.1 on page
70. This is to be expected as the Mozmill developer list is addressed to more
technically aware users, as Mozmill is an automated testing tool produced
by the Mozilla community primarily to test their own products.

Table 4.1: QA mailing list activity in the Mozilla community

Mozilla.dev—quality Mozmill developer Total

Topic 1,042 313 1,299
Messages 2,535 1,155 3,689
Thread initiators 199 47 233
Distinct authors 293 61 332

The issue tracker (Bugzilla) dataset covers all Mozilla products from 1998
to 2012 and contains 687,221 bugs with 5,834,507 associated comments. Bug
IDs range from 0 to 724,339; the collected bugs thus represent 94.87% of the
id range. The remaining 5.13% were not collected because they were not
publicly available or could not be parsed due to bad HTML.

Approximately 4,400 distinct project members were identified as assigned
to fix bugs. Without getting the data associated with code commits it is not
safe to assume that these members were also the members who posted the
bug fix. However, these individuals assume the role of code committers or
are viewed by other community members as code committers. These users
are also active when it comes to posting bug comments as well as sending
e-mails on the QA mailing lists. After cross-referencing members active on
the mailing lists and code committers, 883 bugs were found, most pertaining
to Firefox.

Of all the e-mails exchanged 152 (approximately 4%) were sent by authors
who had sent only one e-mail throughout the period of the study. On the
other hand 135,466 bugs (approximately 20%) were posted by members who
had posted only one bug while 61,196 (approximately 1%) comments were

4.3. PILOT CASE STUDY: MOZILLA 71

posted by members who had posted only one comment. In other words
occasional contributors, or peripheral members are more active in posting
bugs than engaging in conversation. Table 4.2 on page 71 describes activity
on various channels on a yearly basis. Most activity has steadily increased
over time; however activity on the QA mailing lists has irregular spikes but
does not seem to show an overall upward or downward trend. It would be
useful to find out if the activity peak in 2009 is linked to interior events or
external factors, but that is beyond the scope of this study.
Considering these findings the following two hypotheses are proposed:

Hypothestis 1: A smaller percentage of peripheral members are engaged in
conversation than in posting bugs.

Hypothesis 2a: Activity levels on the QA mailing lists are independent of
activity levels on other communication channels.

Hypothests 2b: Traffic on the QA mailing lists does not show a consistent
upward trend.

Table 4.2: Activity on a yearly basis in the Mozilla community

2006 2007 2008 2009 2010 2011

Comments 328,846 335,323 467,087 528,199 658,030 703,857
Bugs 42,015 41,995 56,785 60,880 78,089 78,896
QA e-mails 343 361 556 1,307 739 384
Dev bugs 119,571 123,234 174,742 177,776 227,123 226,555
Dev comments 258,458 271,679 375,729 449,539 541,707 561,853
Dev e-mails 196 286 343 953 500 264

Developers were considered to be those to whom bugs were assigned on
the tracker. Developers’ activities comprised comments posted on the issue
tracker as well as e-mails sent to the QA mailing lists. On the bug tracker
only about 4% of participants posted more than the average of 39 comments,
while approximately 9% posted more than six bugs. The average number of
e-mails sent is 11.28 (sd = 37.23) and only about 17% of participants sent
more than this average. Active members were considered to be those who
sent eleven or more e-mails, i.e. more than the average. Based on these
findings we generated two more hypotheses:

72CHAPTER 4. PRELIMINARY RESEARCH AND PILOT CASE STUDY

Hypothesis 3a: A small group of people is highly active on the QA mailing
lists. These groups tend to represent less that 20% of the mailing list
participants.

Hypothesis 3b: A large percentage of QA mailing list participants send
e-mails only very occasionally.

4.3.3 Social network analysis of the whole dataset

In order to apply SNA techniques the dataset was then exported from the
database into a Pajek-readable file containing community members, links
between them and the periods in which they were active in the project.
However, members who did not form any connections with other community
members were eliminated from the dataset as it was most likely that the
messages sent by these members were spam, general information messages or
automated messages (i.e., messages sent automatically when a bug status is
changed). After importing the data into Pajek all the loops were eliminated
due to the fact that a message sent by a community member as a reply to one
of his/her previous messages was usually either sent by mistake or was to add
additional information and therefore did not contribute to our understanding
of community structure or dynamics.

The resulting network contained 149,032 vertices and 1,132,413 arcs, of
which 353,100 arcs had a value greater than 1 and 779,313 arcs had a value
equal to 1; in other words, most of the connections were single, unrepeated
acts of communication from one participant to another. We should note that
it would be possible for there to be an arc of value 1 from member A to
member B, and an arc of a higher value e.g. 5 from member B to member
A, but that is unlikely to occur.

Hypothesis 4: Almost two thirds of connections within a project’s graph
are created by single acts of communication from one participant to
another.

The network contained 786 components, of which the biggest component
contains 148,180 vertices or approximately 99% of the community. The rest
of the components contained between one and three vertices. One of the
reasons for these small components could be that some messages are actually
spam messages. Another reason would be that the messages received replies
after the dataset was retrieved or that the messages were posted by members
not active previously as they might be peripheral or new members who did
not yet have the chance to create relations with more active users.

4.3. PILOT CASE STUDY: MOZILLA 73

Hypothesis 5: The community consists of a large group of people that
spans both issue tracker and mailing lists.

The average degree® of this directed network was 15.196, which means
that the community members interacted on average with approximately 15
other members. The network’s density was 0.00005099; this number ex-
presses the ratio between all possible connections and the actual connec-
tions existing in the network. We will use this number later in the thesis to
compare QA-related communications regarding Mozilla with those of other
FLOSS projects. The heaviest ten arcs connected ten people and had values
between 1,751 and 4,138; each of these represents one person sending many
hundreds of communications to another person; see Figure 4.1 on page 73.

Figure 4.1: The heaviest ten arcs in the Mozilla graph connecting ten
members—numbers represent e-mails and bug comments in each direction.

4108

2341 1920 T

14

In order to calculate more exact degree values, the directed network was
changed into an undirected graph by transforming all arcs into edges. The
weights of the edges were the combined weights of the arcs between the
relevant vertices. The resulting network had 505,132 edges with a value equal
to 1, and 338,636 edges with values greater than 1. The network’s density was
0.00007598. Compared to the directed graph, the average degree dropped to

3The average degree is calculated using the formula 2 |E|/|V|, where |E| is the total
number of arcs and |V| is the total number of vertices in the network.

TACHAPTER 4. PRELIMINARY RESEARCH AND PILOT CASE STUDY

11.32. About 9% of individuals had connections with more than eleven (i.e.
the average degree) other individuals. Looking at the vertices with degree
value from 0 to 10, we found that they accounted for approximately 90%
of the community. The remaining approximately 10% of vertices with the
highest degrees were connected to—that is, communicated directly with—
between 11 and 16,947 other members. Details of the approximately 90% of
vertices in the Mozilla graph with degree value between 0 and 10 are given in
Table 4.3 on page 74. In the table, Frequency is the number of vertices with
that value, Frequency % is the percentage of vertices with that value from
the whole community, CumFreq is cumulative frequency, i.e. the sum of the
number of the vertices with that value added to the numbers of vertices with
lower degree values and CumFreq % is the cumulative frequency expressed
as a percentage of the whole community graph. The largest degree cluster
is formed by vertices with a degree value of 1 and represents more than one
third of the community:.

Table 4.3: Vertices in the symmetrized Mozilla graph clustered by degree
value

Degree value Frequency Frequency % CumFreq CumFreq%

0 724 0.4858 724 0.4858
1 5,9008 39.5942 59,732 40.0800
2 34,726 23.3010 9,4458 63.3810
3 1,4074 9.4436 108,532 72.8246
4 8,883 5.9605 117,415 78.7851
5 5,233 3.5113 12,2648 82.2964
6 3,859 2.5894 126,507 84.8858
7 2,799 1.8781 129,306 86.7639
8 2,058 1.3809 131,364 88.1448
9 1,555 1.0434 132,919 89.1882
10 1,381 0.9266 134,300 90.1149

Hypothesis 6a: Less than one tenth of the community members are con-
nected to a higher than average number of other individuals.

Hypothesis 6b: More than a third of community participants have connec-
tions with only one other participant.

In any online community it is possible that some members may be send-
ing more messages than they receive and some members receiving more than

4.3. PILOT CASE STUDY: MOZILLA 75

they send. In social network analysis this is measured by indegree and out-
degree values that can be computed in a directed network. Returning to our
directed Mozilla graph, and once again looking at the vertices with indegree
values between 0 and 10, we found that they make up about 92% of the
community—see Table 4.4 on page 75 for details. The remaining vertices
had indegree values of between 11 and 8,853.

Table 4.4: Vertices in the directed Mozilla graph clustered by indegree value

Indegree value Frequency Frequency % CumFreq CumFreq%

0 2,582 1.7325 2582 1.7325
1 76,983 51.6553 79,565 53.3879
2 26,831 18.0035 106,396 71.3914
3 11,853 7.9533 118,249 79.3447
4 6,588 4.4205 124,837 83.7652
5 4,194 2.8142 129,031 86.5794
6 2,780 1.8654 131,811 88.4448
7 2,083 1.3977 133,894 89.8424
8 1,540 1.0333 135,434 90.8758
9 1,268 0.8508 136,702 91.7266
10 1,076 0.7220 137,778 92.4486

Hypothestis 7: More than half of community participants are connected to
only one other community member from whom they received messages.

In the same directed Mozilla graph approximately 6% of vertices had
outdegree values between 11 and 15,390; see Table 4.4 on page 75.

Hypothesis 8: Almost one third of community participants are connected
to only one other community member to whom they had sent one or
more messages.

The directed Mozilla graph contains 57,781 strong components*. The
largest strong component contains 91,155 vertices which amounts to approx-
imately 61% of the whole network.

4A strong component is a maximal strongly connected subnetwork. For details of this
and other social network analysis concepts such as k-core, see page 59.

7T6CHAPTER 4. PRELIMINARY RESEARCH AND PILOT CASE STUDY

Table 4.5: Vertices in the symmetrized Mozilla graph clustered by outdegree
value

Outdegree value Frequency Frequency % CumFreq CumFreq%

0 54,886 36.8283 54,886 36.8283
1 47,391 31.7992 102,277 68.6275
2 16,851 11.3070 119,128 79.9345
3 7,793 9.2291 126,921 85.1636
4 4,383 2.9410 131,304 88.1046
) 2,881 1.9331 134,185 90.0377
6 1,927 1.2930 136,112 91.3307
7 1,404 0.9421 137,516 92.2728
8 1,156 0.7757 138,672 93.0485
9 897 0.6019 139,569 93.6504
10 720 0.4831 140,289 94.1335

Hypothesis 9: More than half of community participants form a strongly
connected subnetwork.

The symmetrized i.e. undirected network contains 786 components where
the largest component contains 148,180 vertices or approximately 99% of the
whole community. In the same graph, k-core values range between 0 and 166,
in other words the most connected group of members contains individuals
who interacted with a minimum of 166 other people. This group contains
450 community members or about 0.3% of the whole community. Table 4.6
on page 77 gives details of the members who have k-core values between 0
and 10, who make up approximately 91% of the graph.

Betweenness centrality within a social network represents the importance
of a certain vertex in the information flow. In other words, if we consider
geodesics as channels for transmitting important pieces of information then,
an individual that is situated on a higher number of geodesics is more cen-
tral according to the betweenness concept [63]. The Mozilla directed graph
vertices have betweenness centralities of between 0 and 0.0626 where the
network’s betweenness centralisation value is equal to 0.0625. Table 4.7 on
page 77 details the distribution of betweenness centrality vectors within the
network.

In other words, these findings suggest that more than 60% of Mozilla
community members do not represent a “step” in the information flow (i.e.
have a centrality betweenness value equal to 0). The maximum possible value

4.3. PILOT CASE STUDY: MOZILLA

7

Table 4.6: Vertices in the symmetrized Mozilla graph clustered by k-core

value

K-core value Frequency Frequency %

CumFreq CumFreq%

724
59,826

35,562

14,511

8,624

5,113

3,756

2,730

1,863

1,590

0 1,320

= © 00 O Ul Wi+~ O

0.4858
40.1431
23.8620

9.7368

5.7867

3.4308

2.5203

1.8318

1.2501

1.0669

0.8857

724
60,550
96,112

110,623

119,247

124,360

128,116

130,846

132,709

134,299

135,619

0.4858
40.6289
64.4908
74.2277
80.0144
83.4452
85.9654
87.7973
89.0473
90.1142
90.9999

Table 4.7: Betweenness centrality clusters in the Mozilla community

Value intervals Frequency Frequency %

CumFreq CumFreq%

0.000 91,688
0.000-0.021 57,338
0.021-0.042 4
0.042-0.063 2

61.5224
38.4736
0.0027
0.0013

91,688
149,026
149,030
149,032

61.5224
99.9960
99.9987
100.0000

7TSCHAPTER 4. PRELIMINARY RESEARCH AND PILOT CASE STUDY

of the betweenness centrality is 1 while the minimum is 0, so the highest
value in the Mozilla community i.e. 0.063 is towards the low end of the
spectrum of possible values. Less than 1% of vertices have a higher than
average betweenness score, but they do not pose a high risk because of their
relatively low values.

Hypothesis 10: Less than 1% of vertices have a higher than average be-
tweenness centrality score.

To get a better understanding of communication patterns between QA
team members and the rest of the community the graph was divided into
four clusters as follows:

e Cluster I—Members of the community who were assigned as bug fixers
on the issue tracker and were active on the QA mailing lists.

e Cluster 2—Members of the community who were assigned as bug fixers
on the issue tracker and were not active on the QA mailing lists.

e Cluster 3—Members of the community who were not assigned as bug
fixers on the issue tracker and were active on the QA mailing lists.

e Cluster 4—Members of the community who were not assigned as bug
fixers on the issue tracker and were not active on the QA mailing lists.
In addition, members who could not be categorised were added to this
cluster.

Each bug posted on the issue tracker has an associated field: assigned_to.
The members whose names are displayed in this field are supposed to provide
bug fixes. It is not safe to assume that these individuals did in fact provide
the bug fixes, but they are regarded as code committers by the rest of the
community. Table 4.8 on page 79 provides more details regarding cluster
distribution within the community:.

If each of these clusters is shrunk to one vertex then the resulting network
has four vertices and is a complete network with a density value of 1. The
graph contains a total of four loops and six lines and is depicted in Figure
4.2 on page 80. The values graph’s lines are described in Table 4.9 on page
79.

The next step was to reduce all clusters to one vertex except for cluster 3.
The resulting network contained 122 vertices of which three represented the
other clusters. The graph contained a total of 377 arcs of which 219 had a
value greater than 1 and 158 arcs had a value equal to 1. The network’s den-
sity was 0.0253 while the average degree was 6.1803. The network is depicted

4.3. PILOT CASE STUDY: MOZILLA

Table 4.8: Clusters in the Mozilla community

Cluster Frequency Frequency

% CumFreq CumFreq%

1 101 0.0678 101 0.0678
2 4,017 2.6954 4,118 2.7632
3 119 0.0798 4,237 2.8430
4 14,4795 97.1570 149,032 100.0000

Table 4.9: Shrunk Mozilla network communication

Rank Line Value
1 4.4 1,575,648
2 4.3 519,218
3 3.4 372,553
4 1.4 339,663
5 4.1 325,703
6 3.3 254,976
7 1.3 178,328
8 3.1 107,031
9 1.1 99,245
10 4.2 1,212
11 2.3 1,142
12 1.2 1,036
13 2.4 982
14 2.1 876
15 3.2 772
16 2.2 147

79

S80CHAPTER 4. PRELIMINARY RESEARCH AND PILOT CASE STUDY

Figure 4.2: Mozilla reduced graph—each cluster was reduced to one vertex in

order to illustrate connections between various groups within the community

©a ®

“a ®2

in Figure 4.3 on page 81. This figure shows that members of cluster 3 tend to
direct their communication efforts to members of other clusters directly (i.e.
there does not seem to be a small number of individuals who broker informa-
tion between community groups). Figure 4.4 on page 82 conveys the same
behaviour as the betweenness centrality of vertices representing other clus-
ters is visibly greater. Furthermore, it shows that members of cluster 3 are
also engaging in communication among themselves. If loops are eliminated,
the density value drops to 0.0253 and the average degree to 6.1311.

The same operations were applied to the Mozilla graph in order to reduce
all clusters except for cluster 1. The resulting network contains 104 vertices
of which three represent the other clusters. The graph contains a total of
5,366 arcs of which 4,196 have a value greater than 1 and 1,170 have a value
equal to 1. The network’s density is 0.49611 while the average degree is
103.19. The network is depicted in Figure 4.5 on page 83. This figure shows
a very dense communication (i.e. the large number of arcs is making the
centre of the figure look almost completely black) both between members of
cluster 1 as well as with members of other clusters. In Figure 4.6 on page
84 the variety of betweenness centrality values produces a variety of vertex
sizes. This variety in size as well as the dense communication suggests that
members of cluster 1 communicate both within the cluster as well as directly
with members of other clusters. If loops are eliminated the density value
drops to 0.5006 and the average degree to 103.13.

In order to visualise the communication patterns between the QA team
as a whole and the rest of the community, clusters 1 and 3 were merged
and clusters 2 and 4 were reduced. The resulting network contained 222
vertices of which two represented the other clusters. The graph contains a
total of 6,099 arcs of which 4,455 have a value greater than 1 and 1,644 have
a value equal to 1. The network’s density is 0.1237 while the average degree

4.3. PILOT CASE STUDY: MOZILLA 81

Figure 4.3: The Mozilla graph reduced except for cluster 3—depicts relations
between members of cluster 3 as well as between these members and other
clusters; the red, orange and grey vertices represent shrunk clusters.

is 54.9459. The network is depicted in Figure 4.7 on page 86. This figure
shows a very dense communication (i.e. the large number of arcs is making
the centre of the figure look almost completely black) both between members
of cluster 1 as well as with members of other clusters. In Figure 4.8 on page
87 the variety of betweenness centrality values produces a variety of vertex
sizes. This variety in size as well as the dense communication suggests that
members of cluster 1 communicate both within the cluster as well as directly
with members of other clusters. If loops are eliminated the density value
drops to 0.1242 and the degree to 54.9279.

The repeated reduction of clusters within the Mozilla community points
to the fact that it is unlikely for a small number of individuals to broker
information between members of the QA team and other groups of the com-
munity.

Hypothesis 11: The community graph does not contain a small number of
people brokering information between the QA team and the rest of the
community.

82CHAPTER 4. PRELIMINARY RESEARCH AND PILOT CASE STUDY

Figure 4.4: Mozilla graph reduced except for cluster 3—the size of each vertex
is given by its betweenness centrality value; the red, orange and grey vertices
represent shrunk clusters.

4.3.4 Social network analysis of QA-specific communi-
cations

Until this point we have analysed the graph of communications taking place
on the issue tracker and QA mailing lists. The issue tracker includes commu-
nication between members not active in QA, so this broad approach allowed
us to generate hypotheses about the relationships between members con-
tributing to QA and other members. Next, however, we wanted to narrow
our focus to the communications between QA members, so we excluded the
issue tracker and applied SNA techniques to the graph formed by members
active on the QA mailing lists. After eliminating loops, the network con-
tained 297 vertices connected by 1,055 arcs, of which 731 had a value equal
to 1 and 324 had a value greater than 1 (the highest arc value was 53). The
average degree was 7.10 while the network’s density was 0.0120. The graph
is shown in Figure 4.9 on page 89.

The QA team graph contains nine components of which the biggest con-
tains 285 vertices which represents approximately 96% of the whole network.
Of the remaining eight components, four contain one vertex each while the
other four contain two vertices each. The reason why these small components
exist is similar to the reasons enumerated for the whole Mozilla community.

4.3. PILOT CASE STUDY: MOZILLA 83

Figure 4.5: Mozilla graph reduced except for cluster 1—depicts relations
between members of cluster 1 as well as between these members and other
clusters; the green, orange and grey vertices represent shrunk clusters.

In other words, one possible reason for these small components could be
that some messages are actually spam messages. Another reason would be
that the messages received replies after the dataset was retrieved or that the
messages were posted by members not active previously as they might be pe-
ripheral or new members who did not yet have the chance to create relations
with more active users.

Hypothesis 12: The QA team forms a large group of people working to-
gether.

Next, we calculated indegree and outdegree values for the directed QA
graph. The indegree value expresses the number of other members of the
community an individual has interacted with by receiving messages. The
outdegree value expresses the number of other members of the community
an individual has interacted with by sending messages. It could be useful
to observe if individuals create equal connections in the network by sending
and receiving messages or whether there is some disparity.

In the directed QA graph the indegree values vary between 0 and 59.
Table 4.10 on page 85 details the approximately 91% of QA team members
who have indegree values between 0 and 10.

84CHAPTER 4. PRELIMINARY RESEARCH AND PILOT CASE STUDY

Figure 4.6: Mozilla graph reduced except for cluster 1—the size of each
vertex is given by its betweenness centrality value; the green, orange and
grey vertices represent shrunk clusters.

In the directed QA graph the outdegree values vary between 0 and T71.
Table 4.11 on page 85 details the approximately 91% of QA team members
who have outdegree values between 0 and 10.

The findings seem to suggest that members of the community active on
the QA mailing lists have similar values of indegree and outdegree considering
that approximately 91% of individuals receive and send from/to ten or fewer
individuals. However, to portray the number of connections an individual has
regarding of form of communication (i.e. sending or receiving) the graph must
be symmetrized. For this purpose, the QA team graph was then symmetrized
by transforming all arcs into edges and removing all multiple lines by adding
the value of their weights. In this graph the degrees varied between 0 and
85. Table 4.12 on page 88 details the approximately 87% of vertices with a
degree value between 0 and 10.

The number of community members with more connections has increased
after normalising the degree values by not taking into consideration if the
interaction consisted of sending or receiving a message. One explanation for
this could be that some members send messages to a number of individuals
and receive messages from a completely different number of individuals.

4.3. PILOT CASE STUDY: MOZILLA

85

Table 4.10: Vertices in the directed QA graph clustered by indegree value

Indegree value

Frequency Frequency %

CumFreq CumFreq%

= O 00 O ULk W~ O

45
110
59
11
12
11
8

N Oy W =~

15.1515
37.0370
19.8653
3.7037
4.0404
3.7037
2.6936
1.3468
1.0101
2.0202
0.6734

45
155
214
225
237
248
256
260
263
269
271

15.1515
52.1886
72.0539
75.7576
79.7980
83.5017
86.1953
87.5421
88.5522
90.5724
91.2458

Table 4.11: Vertices in the directed QA graph clustered by outdegree value

Outdegree value

Frequency Frequency %

CumFreq CumFreq%

= O 00 1O Ol Wi~ O

75
101
34
16
16
12
1

Ol = W Ot

25.2525
34.0067
11.4478
0.3872
5.3872
4.0404
0.3367
1.6835
1.0101
1.3468
1.6835

75
176
210
226
242
254
255
260
263
267
272

25.2525
99.2593
70.7071
76.0943
81.4815
85.5219
85.8586
87.5421
88.5522
89.8990
91.5825

86CHAPTER 4. PRELIMINARY RESEARCH AND PILOT CASE STUDY

Figure 4.7: Mozilla graph reduced except for clusters 1 and 3—depicts rela-
tions between members of cluster 1 and 3 as well as between these members
and other clusters; the orange and green vertices represent shrunk clusters.

Hypothesis 13: About one third of the QA team members create only one
connection by receiving messages.

Hypothesis 14: About one third of the QA team members create only one
connection by sending messages.

The symmetrized graph contains nine components, of which the biggest
contains 285 vertices or approximately 96% of all vertices. However, if the
network is not symmetrized, the directed graph contains 128 strong compo-
nents of which the largest contains 170 vertices or about 57%. The other 127
components contain one vertex each. In other words, the largest component
in which any two vertices are connected by a path® contains approximately
57% of vertices. The highest k-core in the symmetrized graph is a 9-core
containing 20 vertices or approximately 7% of all vertices. This means that
in this group (subgraph) of 20 individuals, 20 is the lowest degree within
the subnetwork. The largest k-core is a 1-core containing about 41% of all
vertices.

In order to understand communication patterns within the QA team, the
graph was was divided into four clusters as follows:

5Please see detailed description of what a path is on page 59

4.3. PILOT CASE STUDY: MOZILLA 87

Figure 4.8: Mozilla graph reduced except for clusters 1 and 3—the size of
each vertex is given by its betweenness centrality value; the orange and green
vertices represent shrunk clusters.

e Cluster I—Members of the community who were assigned as bug fixers
on the issue tracker and were active on the technical QA mailing list
Mozmill.

e Cluster 2—Members of the community who were assigned as bug fixers
on the issue tracker and were not active on Mozmill.

e Cluster 3—Members of the community who were not assigned as bug
fixers on the issue tracker and were active on Mozmill.

e Cluster 4—Members of the community that were not assigned as bug
fixers on the issue tracker and were not active on Mozmill. In addition,
members who could not be categorised were added to this cluster.

Table 4.13 on page 88 provides more details regarding cluster distribution
within the QA team graph.

After analysing the cluster distribution, we realised that the dataset is
incomplete for the purpose of determining whether QA teams represent a
separate layer in FLOSS communities. The full dataset should include the
complete mailing lists archives (i.e. not only the QA mailing list archives) as
well as a complete list of code contributors. However the following hypotheses

88CHAPTER 4. PRELIMINARY RESEARCH AND PILOT CASE STUDY

Table 4.12: Vertices in the symmetrized QA graph clustered by degree value

Degree value Frequency Frequency % CumFreq CumFreq%

0 4 1.3468 4 1.3468
1 116 39.0572 120 40.4040
2 63 21.2121 183 61.6162
3 28 9.4276 211 71.0438
4 13 4.3771 224 75.4209
5 9 3.0303 233 78.4512
6 6 2.0202 239 80.4714
7 7 2.3569 246 82.8283
8 4 1.3468 250 84.1751
9 4 1.3468 254 85.5219
10 5 1.6835 259 87.2054
Table 4.13: Clusters in the QA team

Cluster Frequency Frequency % CumFreq CumFreq%

1 22 7.4074 22 7.4074

2 99 33.3333 121 40.7407

3 27 9.0909 148 49.8316

4 149 50.1684 297 100.0000

4.3. PILOT CASE STUDY: MOZILLA 89

Figure 4.9: QA team graph clusters—vertices that belong to a cluster share
the same colour and are also labeled with the same cluster number

(4]

by 4
“w %m w “w

@ W@ Cw CE P % 4

were proposed based on the Mozilla case and should be validated and/or
modified accordingly after being tested in other case studies.

Hypothesis 15: More than half of the individuals active on the QA mailing
lists are not active on other mailing lists and are not code contributors.

Hypothesis 16: More than one third of the individuals active on the QA
mailing lists are listed as code contributors.

The value of betweenness centrality within the QA team graph is 0.1720.
Vertices with a betweenness centrality equal to 0 represent approximately
60% of the vertices. Vertices with betweenness centrality values between
0.059 and 0.176 represent about 1% of the vertices. Figure 4.10 on page
90 shows clusters within the QA team; the size of the vertices reflects the
centrality betweenness score.

Social network analysis techniques were applied so far on an aggregated
form of the Mozilla graph. In other words the vertices and arcs were not
separated considering time frames or various points in the network’s evolu-
tion. If analysis techniques are applied without taking into consideration the
dynamic nature of communities, the metrics such as degree values or even
size might be skewed. For that reason, the Mozilla subnetwork formed of

90CHAPTER 4. PRELIMINARY RESEARCH AND PILOT CASE STUDY

Figure 4.10: QA team graph clusters—the size of each vertex is given by its
betweenness centrality value

members active on the QA mailing lists was analysed using six-month time
frames. The subgraphs for each time frame were as follows:

e SN; — 26 vertices connected by 33 arcs where the average degree was
2.53. The network betweenness centralisation score was 0.3377 where
about 8% of vertices had a betweenness centrality score higher than
average (i.e. 0.116). After symmetrising the network it contained 22
edges. The average degree dropped to 1.69.

e SN, — 35 vertices connected by 64 arcs where the average degree was
3.65. The network betweenness centralisation score was 0.1565 where
about 11% of vertices had a betweenness centrality score higher than
average (i.e. 0.057). After symmetrising the network it contained 45
edges. The average degree dropped to 2.57.

e SN;3; — 33 vertices connected by 29 arcs where the average degree was
1.75. The network betweenness centralisation score was 0.1211 where
about 3% of vertices had a betweenness centrality score higher than
average (i.e. 0.041). After symmetrising the network it contained 20
edges. The average degree dropped to 1.21.

e SN, — 15 vertices connected by 10 arcs where the average degree was
1.33. The network betweenness centralisation score was 0.0423 where
about 27% of vertices had a betweenness centrality score higher than
average (i.e. 0.016). After symmetrising the network it contained eight
edges. The average degree dropped to 1.06.

4.3. PILOT CASE STUDY: MOZILLA 91

e SN5 — 36 vertices connected by 45 arcs where the average degree was
2.5. The network betweenness centralisation score was 0.1329 where
about 11% of vertices had a betweenness centrality score higher than
average (i.e. 0.048). After symmetrising the network it contained 32
edges. The average degree dropped to 1.77.

e SNg — 37 vertices connected by 44 arcs where the average degree was
2.37. The network betweenness centralisation score was 0.1626 where
about 16% of vertices had a betweenness centrality score higher than
average (i.e. 0.060). After symmetrising the network it contained 31
edges. The average degree dropped to 1.67.

e SN; — 41 vertices connected by 59 arcs where the average degree was
2.87. The network betweenness centralisation score was 0.1704 where
about 7% of vertices had a betweenness centrality score higher than
average (i.e. 0.061). After symmetrising the network it contained 41
edges. The average degree dropped to 2.

e SNy — 64 vertices connected by 77 arcs where the average degree was
2.4. The network betweenness centralisation score was 0.1619 where
about 3% of vertices had a betweenness centrality score higher than
average (i.e. 0.055). After symmetrising the network it contained 59
edges. The average degree dropped to 1.84.

e SNy — 32 vertices connected by 42 arcs where the average degree was
2.62. The network betweenness centralisation score was 0.0761 where
about 3% of vertices had a betweenness centrality score higher than
average (i.e. 0.026). After symmetrising the network it contained 29
edges. The average degree dropped to 1.81.

e SNy — 31 vertices connected by 38 arcs where the average degree was
2.45. The network betweenness centralisation score was 0.1406 where
about 3% of vertices had a betweenness centrality score higher than
average (i.e. 0.048). After symmetrising the network it contained 28
edges. The average degree dropped to 1.8.

e SNy, — 25 vertices connected by 31 arcs where the average degree was
2.48. The network betweenness centralisation score was 0.1015 where
about 8% of vertices had a betweenness centrality score higher than
average (i.e. 0.037). After symmetrising the network it contained 21
edges. The average degree dropped to 1.68.

92CHAPTER 4. PRELIMINARY RESEARCH AND PILOT CASE STUDY

e SNy — 5 vertices connected by 9 arcs where the average degree was
3.6. The network betweenness centralisation score was 0.4583 where
about 20% of vertices had a betweenness centrality score higher than
average (i.e. 0.167). After symmetrising the network it contained seven
edges. The average degree dropped to 2.8.

The Mozilla QA team was active in all the time frames examined. The
subnetworks associated with each time frame varied in size from 15 to 64 ver-
tices®. The average degree after symmetrising the networks varied between
1.06 and 2.57. The findings, as predicted, seem to point to much smaller
networks and lower degrees compared to the aggregated QA team graph.
However, as the degree values were not exceptionally high in a given time
frame compared to the aggregated graph it is safe to assume that a number of
people made a sustained communication effort within the group and created
connections between themselves as well as with members of the periphery
or occasional contributors. These findings are consistent with the initial
assumption that a small group of individuals within the QA team is com-
municating more and by extension performing most of the tasks. The value
of the betweenness centrality value for the aggregated graph is 0.1720 where
only 1% of participants have a higher than average score. The subnetworks’
betweenness centralisation scores vary between 0.0423 and 0.3377 where the
percentage of participants having a higher than average betweenness score
varied between 3% and 27%. These findings confirm that subnetworks will
display higher centrality values than the aggregated form of the graph.

Hypothestis 17: Size, degree and betweenness values of temporal subgraphs
do not display a consistent growth over time but display a more irreg-
ular pattern.

4.4 Summary

After establishing a working definition of QA, an assessment of QA presence
was carried out on the top 100 FLOSS projects listed on Ohloh. The as-
sessment showed that more than a quarter of these projects include some
form of QA in their development. The next step consisted in choosing the
Mozilla community as a preliminary case study in order to generate a set of
hypotheses that will be tested in the next stage of this research.

The dataset comprising data from QA mailing lists and the issue tracker
was retrieved, stored on a local machine, cleaned and analysed. Simple sta-
tistical analysis techniques were first applied in order to analyse activity per

6As the dataset for SNj» was not complete, it was not taken into consideration.

4.4. SUMMARY 93

year or activity performed by various layers in the community. The findings
showed that a smaller number of peripheral members are active on the mail-
ing lists than on the issue tracker. Furthermore, activity in the QA mailing
lists showed peaks that are independent from activity carried out on other
venues. Next, social network analysis techniques were applied to the data
set. The social network analysis showed that in the case of Mozilla, the
community forms one group that spans both mailing lists and issue trackers.
Furthermore, a small group of people is highly connected within the net-
work and also displays higher communication activities. Another interesting
finding is that almost two thirds of connections were formed by single acts
of communication from one individual to another, suggesting weaker ties.
Members of the QA team show a distributed communication pattern in the
sense that the QA team does not contain a small number of individuals who
control the information flow. Furthermore, the QA team seems to display a
similar structure to the whole Mozilla community in the sense that a small
number of members are highly engaged in communication and thus highly
connected.

94CHAPTER 4. PRELIMINARY RESEARCH AND PILOT CASE STUDY

Chapter 5

Case studies

In this chapter we will analyse further case studies in order to test the hy-
potheses proposed in the previous chapter (Phase I). Four case studies have
been chosen on the basis of the success of their products, their maturity and
the existence of a dedicated QA team in their community structure. Com-
pared to the pilot case study, the datasets associated with these four cases
were more extensive in the sense that a list of code contributors! as well as
mailing lists not associated with QA activities were retrieved?. Analysis was
performed similarly to the analysis of the Mozilla community with minor
differences. For example, the community was split into clusters based on
members’ activity on QA mailing lists and by comparing members’ names to
the list of code contributors retrieved from Ohloh. For modularity and clarity
purposes, each case study will be presented in a separate section which will
contain: a short description of the project, the motivation behind choosing
the project, general statistics, social network analysis of the whole commu-
nity graph, and analysis of an aggregated form of the subgraph containing
members active exclusively on the QA mailing lists as well as an analysis
over six month time frames.

5.1 Ubuntu

5.1.1 The Ubuntu project

In 2004 the South African entrepreneur Mark Shuttleworth gathered a small
team of developers from the Debian community with the purpose of develop-

IThe list of code contributors was downloaded from www.ohloh.net
2Please see Appendix B on page 212 for a full list of mailing lists associated with each
project.

95

96 CHAPTER 5. CASE STUDIES

ing an easy to use Linux operating system which he called Ubuntu?. Since its
official launch the same year, thousands of FLOSS experts and enthusiasts
alike have joined the community, and today Ubuntu is one of the world’s
most widely used Linux distributions: about 70% of the PCs shipped by the
major PC companies are now certified to work with Ubuntu*. Ubuntu is
clearly a mature and successful FLOSS project and is therefore a suitable
case study for this research.

Ubuntu has a QA team® which uses a dedicated mailing list, an IRC
channel, a blog and other resources for communication and for providing rel-
evant information to potential contributors. QA team tasks, as described on
the QA webpage, include writing test cases, executing tests, reporting bugs,
giving instructional presentations, and encouraging best practices for qual-
ity. The Ubuntu community has a BugSquad team® which uses a dedicated
mailing list, a wiki, an IRC channel and other resources for communication
and for providing relevant information to potential contributors. BugSquad
tasks include assigning bugs to packages, ensuring that bug reports are com-
plete, finding duplicate bug reports, recreating bugs, and forwarding bugs to
their upstream authors. In addition, the Ubuntu community has also had
a laptop testing team that was using a dedicated mailing list. The activity
of that mailing list decreased substantially after 2008 but for the purpose of
this research it is regarded as QA related and included in our analysis as it
might provide relevant information with respect to community structure.

5.1.2 General analysis of the Ubuntu dataset

In order to measure QA activity levels on more than one channel, issue tracker
data as well as mailing list data were taken into account. Data were retrieved
between April and May 2013 and stored locally in a PostgreSQL database.
The issue tracker dataset contains a total of 993,420 bugs with 4,114,392
associated comments, and was downloaded using a web crawler. The mailing
list dataset contains a total of 487,694 e-mails on all Ubuntu topics’ that
were downloaded using a Python script written specifically for the purpose.
This dataset includes three QA-related mailing lists which contain a total
of 8,798 e-mails. In addition, a list of contributors’ usernames, nicknames

3Ubuntu—about: http://www.ubuntu.com/about/about-ubuntu

4Ubuntu—business: http://www.ubuntu.com/desktop/business

SUbuntu quality assurance: http://community.ubuntu.com/contribute/quality/

SUbuntu BugSquad: https://wiki.ubuntu.com/BugSquad

"The total number of analysed e-mails was 1,468,114, however due to bad HTML,
double postings and other errors 980,420 e-mails were not stored in the database.

5.1. UBUNTU 97

and (where available) real names was downloaded from Ohloh®. This list
was used to perform data cleaning as follows: names contained in the issue
tracker and the mailing list were compared with names from code repositories
and unified.

Of all the e-mails exchanged 12,169 (2.49%) were sent by authors who
had sent only one e-mail throughout the period of the study while of all the
QA e-mails 839 (9.53%) were sent by authors who had sent only one e-mail.
On the other hand 122,376 bugs (12.31%) were posted by members who
had posted only one bug throughout the period of the study while 128,287
(3.11%) comments were posted by members who posted only one comment.
The activity on mailing lists and the bug tracker on a yearly basis is shown
in Figure 5.1 on page 97, while more detailed information is given in Table
C.8 on page 271. The figure shows a steady increase in the number of bug
comments from 2003 until 2010 followed by a slight drop. The number of bugs
posted shows a much less pronounced rise and drop over the same period.
Trends in mailing list activities are difficult to discern from the figure as the
numbers are much smaller than those of bug postings and comments, but
they show rises and drops from year to year with no discernible pattern.

800000

700000

600000

500000

400000

300000

T~

e===N\ail No.
QA Mail No.
e==Bug No.

= Comments No.

200000

100000 -
0 —x——x—w : : : ——

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

Figure 5.1: Ubuntu Activity Chart

The QA mailing lists started in 2005 and include 1,564 members of whom
53.64% (839 participants) sent only one e-mail. The average number of e-
mails sent is 5.63 (sd = 22.5). Only 14.89% of QA mailing lists participants
sent more than six e-mails. A detailed description of top QA e-mail partic-
ipants’ activity is given in Table 5.1 on page 98°. In the table the Author
column represents a label assigned to each participant, the QA e-mails col-
umn represents the number of e-mails the participant sent to the QA mailing

8Ohloh: https://www.ohloh.net/
9A table containing all QA mailing list participants and their activity can be found in
Table C.7 on page 225

98 CHAPTER 5. CASE STUDIES

lists, the Other e-mails represents the number of e-mails sent to other mail-
ing lists, the Lists column represents the number of other mailing lists the
participant has been active on, the Bugs column represents the number of
bugs the participant has posted on the issue tracker, the Comments column
represents the number of comments the participant has posted on the issue
tracker, and the Code Contributor column represents whether the participant
had submitted code to the project.

Table 5.1: Ubuntu QA mailing list participants’ activity levels on other chan-
nels

Author QA Other Lists Bugs Comments Code

e-mails e-mails Contributor
X350 456 167 9 845 24231 Yes
Xoss 397 42 o 133 0 No
X907 343 0 0 0 0 No
Xyro 249 12 1 0 0 No
X468 207 436) 23 0 No
X624 201 24 7 401 0 No
Xopo3 126 149 5 0 0 No
X1183 120 1046 5) 169 0 No
Xous 119 1256 14 1218 15392 Yes
X141 119 11 2 0 0 No
X1056 110 258 9 185 0 No
X1029 87 42 3 0 0 No
X1 108 86 62 2 44 0 No
X1223 82 580 6 64 0 No
X170 81 110 8 0 0 No
Xeo1 76 18 1 0 0 No
X1406 69 6 1 36 0 No
X508 67 669 5 392 0 No
Xo7o 66 30 4 45 0 No

Of the total number of individuals active on the QA mailing list, 957
(61%) participants were not active on other mailing lists, and of these 957
members, 347 sent more than one message. Furthermore, of these 347 partic-
ipants none was listed as a code contributor. In addition, 1,526 or about 98%
of the total 1,564 participants were not listed as code contributors. These
facts suggest that QA contributors form a separate layer in the Ubuntu com-
munity.

5.1. UBUNTU 99

5.1.3 Social network analysis of the whole dataset

The next stage was to carry out a social network analysis of the Ubuntu
community. The dataset was exported to a Pajek-readable file that contained
community members, the links between them and the periods in which they
were active in the project. Members who did not form any connections with
other members were eliminated from the dataset. As in the Mozilla pilot
case study, after importing this data into Pajek all loops were eliminated
due to the fact that a message sent by a community member as a reply to
one of his/her previous messages does not contribute to our understanding
of community structure or dynamics.

The resulting network contains 294,988 vertices connected by a total of
1,530,150 arcs of which 323,313 have a value that is greater than 1 and
1,206,837 have a value equal to 1. This means that 1,206,837 connections
(78.87%) are created by only one interaction (message). One could draw
the conclusion that these members are occasional contributors or part of
the periphery. The average degree is 10.37, which means that on average a
person interacts with approximately ten other people. The network’s density
is 0.000017. The “heaviest” ten arcs in the network connected seven people
and had values between 1,724 and 7,418; each of these represents one person
sending many hundreds of communications to another person; see Figure 5.2
on page 99.

il

2252 2832

26

7418

Figure 5.2: The heaviest ten arcs in the Ubuntu graph connecting ten
members—numbers represent e-mails and bug comments in each direction

The network contains 2,796 components of which the biggest component
contains 291,357 vertices or 98.77% of the community. Of the rest of the
components, the largest contain nineteen, thirteen and ten vertices while the
remainder contain less between one and seven vertices.

100 CHAPTER 5. CASE STUDIES

To get the precise values of vertex degrees within the Ubuntu commu-
nity, the directed network was transformed into an undirected network by
transforming all arcs into edges. This process was executed by adding the
weights of arcs. The resulting network has 1,215,389 edges of which 374,015
have a value greater than 1 and 841,374 edges have a value equal to 1. The
network’s density is 0.000027. The average degree drops to 8.24 compared
to 10.37 for the directed network. About 13% of individuals had connections
with more than eight (i.e. the average degree) other individuals. Looking at
the vertices with degree value from 0 to 10, we find that they account for
approximately 89% of the community. The remaining approximately 11%
of vertices with the highest degrees are connected to—that is, communicate
directly with—between 11 and 34,003 other members. Details of the 89% of
vertices in the Ubuntu graph with degree value between 0 and 10 are given
in Table 5.2 on page 100. In the table, the Frequency column is the number
of vertices with that value, the Frequency % column is the percentage of ver-
tices with that value from the whole community, the CumFreq is cumulative
frequency, i.e. the sum of the number of the vertices with that value added
to the numbers of vertices with lower degree values and the CumFreq % is
the cumulative frequency expressed as a percentage of the whole community
graph. The largest degree cluster is formed by vertices with a degree value
of 1 and represents approximately one third of the community.

Table 5.2: Vertices in the symmetrized Ubuntu graph clustered by degree
value

Degree value Frequency Frequency % CumFreq CumFreq%

0 2,143 0.7265 2,143 0.7265
1 99,672 33.7885 101,815 34.5150
2 78,305 26.5451 180,120 61.0601
3 25,972 8.8044 206,092 69.8645
4 19,487 6.6060 225,579 76.4706
bt 11,049 3.7456 236,628 80.2161
6 8,481 2.8750 245,109 83.0912
7 6,150 2.0848 251,259 85.1760
8 4,934 1.6726 256,193 86.8486
9 3,801 1.2885 259,994 88.1371
10 3,184 1.0794 263,178 89.2165

As it is possible for some members to be sending or receiving more mes-
sages than others, both the indegree and outdegree values were computed.
In the directed Ubuntu graph vertices with values between 0 and 10 make

5.1. UBUNTU 101

up about 93% of the community—see table 5.3 on page 101. The remaining
vertices have indegree values of between 11 and 14,987.

Table 5.3: Vertices in the directed Ubuntu graph clustered by indegree value

Indegree value Frequency Frequency % CumFreq CumFreq%

0 18,254 6.1880 18,254 6.1880
1 147,879 50.1305 166,133 56.3186
2 47,099 15.9664 213,232 72.2850
3 21,853 7.4081 235,085 79.6931
4 12,619 42778 247,704 83.9709
) 8,318 2.8198 256,022 86.7906
6 5,718 1.9384 261,740 88.7290
7 4,249 1.4404 265,989 90.1694
8 3,398 1.1519 269,387 91.3213
9 2,723 0.9231 272,110 92.2444
10 2,299 0.7794 274,409 93.0238

In the same directed Ubuntu graph approximately 6% of vertices have
outdegree values between 11 and 30,535; see Table 5.4 on page 101.

Table 5.4: Vertices in the directed Ubuntu graph clustered by outdegree value

Outdegree value Frequency Frequency % CumFreq CumFreq%

0 74,912 25.3949 74,912 25.3949
1 113,240 38.3880 188,152 63.7829
2 37,182 12.6046 225,334 76.3875
3 17,548 5.9487 242,882 82.3362
4 10,599 3.5930 253,481 85.9293
> 6,831 2.3157 260,312 88.2449
6 5,071 1.7191 265,383 89.9640
7 3,759 1.2743 269,142 91.2383
8 3,025 1.0255 272,167 92.2638
9 2,397 0.8126 274,564 93.0763
10 1,883 0.6383 276,447 93.7147

The directed Ubuntu graph contains 94,586 strong components. The
largest strong component contains 199,781 vertices which amounts to ap-
proximately 68% of the whole network. The symmetrized i.e. undirected
network contains 2,796 components where the largest component contains

102 CHAPTER 5. CASE STUDIES

291,357 vertices or approximately 99% of the whole community. In the same
symmetrized Ubuntu graph, k-core values range between 0 and 92, in other
words the most connected group of members contains individuals who inter-
acted with a minimum of 92 other people. This group contains 318 commu-
nity members. Table 5.5 on page 102 gives details of the members who have
k-core values between 0 and 10, and who make up approximately 92% of the
graph.

Table 5.5: Vertices in the symmetrized Ubuntu graph clustered by k-core
value

K-core value Frequency Frequency % CumFreq CumFreq%

0 2,143 0.7265 2,143 0.7265
1 102,667 34.8038 104,810 35.5303
2 82,414 27.9381 187,224 63.4683
3 28,811 9.7668 216,035 73.2352
4 18,614 6.3101 234,649 79.5453
) 11,589 3.9286 246,238 83.4739
6 8,040 2.7255 254,278 86.1994
7 6,091 2.0648 260,369 88.2643
8 4,628 1.5689 264,997 89.8331
9 3,575 1.2119 268,572 91.0451
10 3,026 1.0258 271,598 92.0709

Betweenness centrality values were then computed as they represent the
importance of each vertex to the information flow. The Ubuntu directed
graph vertices have betweenness centralities of between 0 and 0.118 where
the network’s centralisation value is equal to 0.1179. Table 5.6 on page 103
details the distribution of betweenness centrality vectors within the network.
Findings suggest that approximately 47% of the Ubuntu community do not
represent a “step” in the information flow. Furthermore, much fewer than 1%
of vertices have a higher than average betweenness score and the maximum
betweenness centrality is 0.118, which is higher than the maximum value for
the Mozilla community which was 0.063.

5.1. UBUNTU 103

Table 5.6: Betweenness centrality clusters in the Ubuntu community

Value Intervals Frequency Frequency % CumFreq CumFreq%

0.000 139,680 47.3511 139,680 47.3511
0.000-0.039 155,304 02.6476 294,984 99.9986
0.039-0.079 3 0.0010 294,987 99.9997
0.079-0.118 1 0.0003 294,988 100.0000

To get a better understanding of communication patterns between QA
team members and the rest of the community the graph was divided into
four clusters as follows:

1. Cluster I—Community participants who contribute code and are mem-
bers of the QA mailing lists.

2. Cluster 2—Community participants who contribute code but are not
members of the QA mailing lists.

3. Cluster 3—Community participants who do not contribute code but
are members of the QA mailing lists.

4. Cluster 4—Community participants who do not contribute code and
are not members of the QA mailing lists. Members who could not be
categorised were also added to this cluster.

Table 5.7: Clusters in the Ubuntu community

Cluster Frequency Frequency % CumFreq CumFreq%

1 32 0.0108 32 0.0108
2 172 0.0583 204 0.0692
3 1,231 0.4173 1,435 0.4865
4 293,553 99.5135 294,988 100.0000

To categorise participants into clusters, a list containing Ubuntu code
contributors was retrieved from Ohloh. A Python script was then written
in order to compare all community members whose names contained more
than four characters to the code contributor list and categorise them into
clusters based on participation on the QA mailing list. Table 5.7 on page 103
provides more details regarding cluster distribution within the community.
It will be observed that the cluster containing members who are neither code
contributors nor QA contributors is the largest, representing approximately

104 CHAPTER 5. CASE STUDIES

Figure 5.3: Ubuntu reduced graph—each cluster was reduced to one vertex in
order to illustrate connections between various groups within the community.

T)

e e

99.5% of the whole community. On the other hand people performing QA
tasks appear to add up to only about 0.4% of the community.

If each of the clusters is shrunk to one vertex then the resulting network
has four vertices and is a complete network with a density value of 1. The
graph contains a total of four loops and twelve lines and is depicted in Figure
5.3 on page 104. The values of the lines of the graph are described in Table
5.8 on page 104.

Table 5.8: Shrunk Ubuntu network communication

Rank Line Value

1 1.1 2,067,856
2 3.1 180,478
3 1.3 151,307
4 41 73,647
5 1.4 64,914
6 2.1 41,360
7 1.2 33,557
8 3.3 19,190
9 2.2 9,208
10 3.4 7,560
11 4.3 7,192
12 3.2 5,373
13 4.4 4,767
14 2.3 4,735
15 2.4 2,064
16 4.2 1,799

The next step was to reduce all clusters to one vertex except for cluster 3,
the QA-only cluster. The resulting network contains 1,234 vertices of which

5.1. UBUNTU 105

Figure 5.4: Ubuntu graph shrunk except for those who are active on the QA
mailing lists but do not submit code (cluster 3)—depicts relations between
members of cluster 3 as well as between these members and other clusters;
the red, orange and grey vertices represent shrunk clusters.

three represent the other clusters. The graph contains a total of 7,145 arcs
of which 2,914 have a value greater than 1 and 4,231 have a value equal to
1. The network’s density is 0.0046 while the average degree is 11.58. The
network is depicted in Figure 5.4 on page 105. This figure shows a very
dense communication (i.e. the large number of arcs is making the centre of
the figure look almost completely black) both between members of cluster
3 as well as with members of other clusters. In Figure 5.5 on page 106 the
variety of betweenness centrality produces a variety of vertex sizes while a
dense communication can be observed suggesting that members of cluster
3 communicate both within the cluster as well as directly with members of
other clusters. If loops are eliminated the density value is 0.0046 and the
degree drops to 11.57.

The same operations were applied to the Ubuntu graph in order to reduce
all clusters except for cluster 1, i.e. those who both submit code and are
active on the QA mailing lists. The resulting network contains 35 vertices
of which three represent the other clusters. The graph contains a total of
870 arcs of which 767 have a value greater than 1 and 103 have a value
equal to 1. The network’s density is 0.7102 while the average degree is 49.71.
The resulting network is depicted in Figure 5.6 on page 107. This figure
shows a distributed communication among both members of cluster 1 as well
as with members of other clusters. In Figure 5.7 on page 107 the variety of
betweenness centrality produces a variety of vertex sizes while communication
displays the same pattern suggesting that members of cluster 1 communicate

106 CHAPTER 5. CASE STUDIES

Figure 5.5: Ubuntu graph shrunk except for those who are active on the QA
mailing lists but do not submit code (cluster 3)—the size of each vertex is
given by its betweenness centrality value; the red, orange and grey vertices
represent shrunk clusters.

[T

€] (303 (3)3) 1303 3

13) (303 (313) 1313) [
13 (3.3 313 3

both within the cluster as well as directly with members of other clusters.
If loops are eliminated the density value is 0.7285 and the degree drops to
49.54.

In order to visualise the communication patterns between the QA team
as a whole and the rest of the community, cluster 1 was merged with cluster
3 and clusters 2 and 4 were reduced. The resulting network contains 1,265
vertices of which two represent the other clusters (i.e. 2 and 4). The graph
contains a total of 9,966 arcs of which 4,473 have a value greater than 1 and
5,493 have a value equal to 1. The network’s density is 0.0062 while the
average degree is 15.75. The resulting network is depicted in Figure 5.8 on
page 108. This figure shows a dense communication among both members of
cluster 1 as well as with members of other clusters. In Figure 5.9 on page 108
the variety of betweenness centrality produces a variety of vertex sizes while
communication displays the same pattern suggesting that members of cluster
1 communicate both within the cluster as well as directly with members of
other clusters. If loops are eliminated the density value remains 0.0062 and
the degree remains 15.75.

The analysis of communication patterns between members of the commu-
nity performed by reducing clusters suggests that members active on the QA
mailing lists communicate among themselves and do not seem to be exclu-
sively oriented towards other groups within the community. Communication
seems to be somewhat decentralised in the sense that no individual or few
individuals are central in the network. The fact that QA members commu-

5.1. UBUNTU 107

Figure 5.6: Ubuntu graph shrunk except for those who both code and are
active on the QA mailing lists (cluster 1)—depicts relations between members
of cluster 1 as well as between these members and other clusters; the green,
orange and grey vertices represent shrunk clusters.

Figure 5.7: Ubuntu graph shrunk except for those who both code and are
active on the QA mailing lists (cluster 1)—the size of each vertex is given by
its betweenness centrality value; the green, orange and grey vertices represent
shrunk clusters.

108 CHAPTER 5. CASE STUDIES

Figure 5.8: Ubuntu graph reduced except for cluster 1 and 3—depicts rela-
tions between members of cluster 1 and 3 as well as between these members
and other clusters; the orange and green vertices represent reduced clusters.

Figure 5.9: Ubuntu graph reduced except for cluster 1 and 3—the size of
each vertex is given by its betweenness centrality value; the orange and green
vertices represent reduced clusters.

oo m

i

i i ‘ i i
il il | - i €]
T i) e

n

m‘ 1)
Sl
1)

At
i
At ik

il nim i i [kl
il ni i i i
[i] mo e m

5.1. UBUNTU 109

Figure 5.10: Ubuntu QA team graph clusters—each colour in the graph
represents a cluster and is labeled as such.

9 f(oa] /3 RS /%[\4]14){?@[41

W 0
7(31 2 8, %
S%[\O

]r[3] %5\[41

Q,

[4]

][4]

131

@ B
) ’ 13 ir un% A
C]} 4 o [
oo)
" 3 Qggg %ﬁ Eri
“ 3

“ EEa)

\O ;3]/[3] 44

\}_‘&;
.
o A= AT DA
W [3]? SR @[4#33
i fm

13)

C
m\ol o
3 ol
E] fm it EE) liicy A “
E] Em B @m EiE] KE] @
Gl A CiE] (i) Rm Am B
E] fim iE) BE) 05 el “

nicate directly with members of other layers in the community and the lack
of few central individuals also suggests that there are no information brokers
between layers.

5.1.4 Social network analysis of QA-specific communi-
cations

So far we have analysed communications carried out on both issue tracker
and mailing lists. Now, however, we want to focus on QA activities within
the Ubuntu community, so we restrict our dataset to QA-related mailing
lists. After eliminating loops the network contains 1,250 vertices connected
by 3,267 arcs of which 2,620 have a value equal to 1 and 647 have a value
greater than 1 (the highest value an arc had is 15). The average degree is
5.22 while the network’s density is 0.00209. The graph is shown in Figure
5.10 on page 109.

The QA team graph contains 36 components of which the largest includes
1,181 vertices or approximately 94% of the whole QA team. The other com-
ponents contain between one and three vertices.

In the directed QA graph the indegree values vary between 0 and 111.
Table 5.9 on page 110 details the distribution of indegree values.

In the directed QA graph the outdegree values vary between 0 and 178.
Table 5.10 on page 111 details the distribution of outdegree values.

110 CHAPTER 5. CASE STUDIES

Table 5.9: Vertices in the directed Ubuntu QA graph clustered by indegree
value

Indegree value Frequency Frequency % CumFreq CumFreq%

0 184 14.7200 184 14.7200
1 082 46.5600 766 61.2800
2 204 16.3200 970 77.6000
3 85 6.8000 1055 84.4000
4 50 4.0000 1105 88.4000
5 23 1.8400 1128 90.2400
6 23 1.8400 1151 92.0800
7 12 0.9600 1163 93.0400
8 15 1.2000 1178 94.2400
9 13 1.0400 1191 95.2800
10 7 0.5600 1198 95.8400
11 2 0.1600 1200 96.0000
12 6 0.4800 1206 96.4800
13 6 0.4800 1212 96.9600
14 4 0.3200 1216 97.2800
15 3 0.2400 1219 97.5200
16 6 0.4800 1225 98.0000
17 1 0.0800 1226 98.0800
18 3 0.2400 1229 98.3200
19 3 0.2400 1232 98.5600
21 3 0.2400 1235 98.8000
24 1 0.0800 1236 98.8800
27 2 0.1600 1238 99.0400
28 2 0.1600 1240 99.2000
30 1 0.0800 1241 99.2800
31 1 0.0800 1242 99.3600
33 1 0.0800 1243 99.4400
36 1 0.0800 1244 99.5200
39 1 0.0800 1245 99.6000
40 1 0.0800 1246 99.6800
44 1 0.0800 1247 99.7600
52 1 0.0800 1248 99.8400
68 1 0.0800 1249 99.9200
111 1 0.0800 1250 100.0000

5.1. UBUNTU 111

Table 5.10: Vertices in the directed Ubuntu QA graph clustered by outdegree
value

Outdegree value Frequency Frequency % CumFreq CumFreq%

0 475 38.0000 475 38.0000
1 392 31.3600 867 69.3600
2 135 10.8000 1002 80.1600
3 o8 4.6400 1060 84.8000
4 37 2.9600 1097 87.7600
5 29 2.3200 1126 90.0800
6 21 1.6800 1147 91.7600
7 16 1.2800 1163 93.0400
8 14 1.1200 1177 94.1600
9 7 0.5600 1184 94.7200
10 3 0.2400 1187 94.9600
11) 0.4000 1192 95.3600
12 2 0.1600 1194 95.5200
13 7 0.5600 1201 96.0800
14 3 0.2400 1204 96.3200
15 3 0.2400 1207 96.5600
16 5 0.4000 1212 96.9600
17 4 0.3200 1216 97.2800
18 3 0.2400 1219 97.5200
19 1 0.0800 1220 97.6000
20 2 0.1600 1222 97.7600
21 1 0.0800 1223 97.8400
22 6 0.4800 1229 98.3200
24 3 0.2400 1232 98.5600
26 1 0.0800 1233 98.6400
28 1 0.0800 1234 98.7200
29 1 0.0800 1235 98.8000
30 2 0.1600 1237 98.9600
32 2 0.1600 1239 99.1200
35 3 0.2400 1242 99.3600
46 1 0.0800 1243 99.4400
23 1 0.0800 1244 99.5200
56 1 0.0800 1245 99.6000
71 2 0.1600 1247 99.7600
79 1 0.0800 1248 99.8400
86 1 0.0800 1249 99.9200
178 1 0.0800 1250 100.0000

112 CHAPTER 5. CASE STUDIES

Around 95% of individuals receive from and send to ten or fewer individ-
uals, in other words the majority of members active on the QA mailing lists
have similar values of indegree and outdegree. However, in order to portray
the number of connections a member has regardless of direction of commu-
nication the graph was symmetrized. In this symmetrized i.e. undirected
graph, the degree varies between 1 and 209. Table 5.11 on page 112 details
the distribution of degree values. The results suggest that the number of in-
dividuals with more connections has increased after symmetrizing the graph.
One explanation for this could be that some members send messages to one
set of individuals but receive messages from a different set of individuals.

Table 5.11: Vertices in the symmetrized Ubuntu QA graph clustered by
degree value

Degree value Frequency Frequency % CumFreq CumFreq%

0) 0.4000 5 0.4000
1 580 46.4000 285 46.8000
2 259 20.7200 844 67.5200
3 113 9.0400 957 76.5600
4 66 5.2800 1023 81.8400
5 41 3.2800 1064 85.1200
6 31 2.4800 1095 87.6000
7 24 1.9200 1119 89.5200
8 15 1.2000 1134 90.7200
9 11 0.8800 1145 91.6000
10 15 1.2000 1160 92.8000
11 9 0.7200 1169 93.5200
12 7 0.5600 1176 94.0800
13 8 0.6400 1184 94.7200
14 1 0.0800 1185 94.8000
15) 0.4000 1190 95.2000
16 4 0.3200 1194 95.5200
17) 0.4000 1199 95.9200
18 2 0.1600 1201 96.0800
19 3 0.2400 1204 96.3200
20 3 0.2400 1207 96.5600
21 2 0.1600 1209 96.7200
22 3 0.2400 1212 96.9600
23 2 0.1600 1214 97.1200

Continued on next page

5.1. UBUNTU

Degree value

Frequency Frequency %

CumFreq CumFreq%

24
25
26
27
28
29
31
32
33
35
36
37
38
39
40
42
o1
52
56
60
71
86
90
103
209

[\

= R N R = N R RN O Ot

0.1600
0.4000
0.0800
0.0800
0.2400
0.0800
0.0800
0.0800
0.0800
0.1600
0.1600
0.0800
0.0800
0.0800
0.0800
0.0800
0.0800
0.0800
0.1600
0.0800
0.0800
0.0800
0.1600
0.0800
0.0800

1216
1221
1222
1223
1226
1227
1228
1229
1230
1232
1234
1235
1236
1237
1238
1239
1240
1241
1243
1244
1245
1246
1248
1249
1250

97.2800
97.6800
97.7600
97.8400
98.0800
98.1600
98.2400
98.3200
98.4000
98.5600
98.7200
98.8000
98.8800
98.9600
99.0400
99.1200
99.2000
99.2800
99.4400
99.5200
99.6000
99.6800
99.8400
99.9200
100.0000

113

The symmetrized graph contains 36 components of which the largest in-
cludes 1,181 vertices, the same as the directed (i.e. unsymmetrized) graph.
However, if the network is not symmetrized, the directed graph contains 705
strong components of which the largest contains 533 vertices or about 43%.
In other words, the largest component in which any two vertices are con-
nected by a path contains approximately 43% of vertices. The highest k-core
in the symmetrized graph is an 8-core containing 43 vertices or approximately
3% of all vertices. The largest k-core is a 1-core containing about 51% of the

whole community.

In order to understand communication patterns within the QA team, the

graph was was divided into four clusters as follows:

e Cluster 1-—Members of the community who were listed as code con-

114 CHAPTER 5. CASE STUDIES

tributor and were active on other mailing lists.

e Cluster 2—Members of the community who were listed as code con-
tributor and were not active on other mailing lists.

e Cluster 3—Members of the community who were not listed as code
contributor and were active on other mailing lists.

e Cluster 4—Members of the community who were not listed as code
contributor and were not active on other mailing lists. In addition,
members who could not be categorised were added to this cluster.

Table 5.12 on page 114 provides more details regarding cluster distribu-
tion within the QA team graph. It is interesting to note that, of a total 1,564
QA contributors, only one belongs to cluster 2 and only 30 to cluster 1.

Table 5.12: Clusters in the Ubuntu QA team

Cluster Frequency Frequency % CumFreq CumFreq%

1 30 2.4000 30 2.4000
2 1 0.0800 31 2.4800
3 499 39.9200 530 42.4000
4 720 57.6000 1250 100.0000

The betweenness centralisation value of the QA team graph is 0.1798;
later in this section we will use this value to compare the network’s infor-
mation diffusion with temporal analysis results. Vertices with a betweenness
centrality equal to 0 represent approximately 62% of the vertices. Vertices
with betweenness centrality values between 0.060 and 0.181 represent 0.24%
of the vertices. Figure 5.11 on page 115 shows clusters within the QA team
where the vertex size shows the centrality betweenness score.

Until now we have carried out social network analysis of the Ubuntu
community in general and the QA contributors in particular using aggre-
gated data taking place over several years. In order to capture the dynamic
nature of the community, we next analysed the Ubuntu subnetwork formed
of members active on the QA mailing lists using six-month time frames. The
subgraph associated with each time frame is further described as follows:

e SN;—67 vertices connected by 147 arcs where the average degree is
4.38. The network betweenness centralisation score is 0.2646 where

5.1. UBUNTU 115

Figure 5.11: Ubuntu QA team graph clusters—the size of each vertex is given
by its betweenness centrality value.

)[41 [31\/{31 ()
@ T

B Ty

I{‘o“y

)@

[E] 03 (414] [sTE] 4041 14 "
“ (=] (414] 4 (4031 4031 &)
] 4 (413) 1403) (403] 441 “
[E] 403 (413) 44 4131 4(31 “

about 3% of vertices had a betweenness centrality score higher than
average (i.e. 0.092). After symmetrising the network it contained 112
edges. The average degree drops to 3.34.

e SN,—88 vertices connected by 229 arcs where the average degree is
5.20. The network betweenness centralisation score is 0.1594 where
about 3% of vertices had a betweenness centrality score higher than
average (i.e. 0.056). After symmetrising the network it contained 177
edges. The average degree drops to 4.02.

e SN3;—112 vertices connected by 180 arcs where the average degree is
3.21. The network betweenness centralisation score is 0.1512 where
about 5% of vertices had a betweenness centrality score higher than
average (i.e. 0.054). After symmetrising the network it contained 147
edges. The average degree drops to 2.62.

e SN,—86 vertices connected by 118 arcs where the average degree is
2.74. The network betweenness centralisation score is 0.0886 where
about 7% of vertices had a betweenness centrality score higher than
average (i.e. 0.031). After symmetrising the network it contained 93
edges. The average degree drops to 2.16.

116

CHAPTER 5. CASE STUDIES

SN;—64 vertices connected by 97 arcs where the network between-
ness centralisation score is 0.0972 where about 9% of vertices had a
betweenness centrality score higher than average (i.e. 0.036). After
symmetrising the network it contained 81 edges. The average degree
drops to 2.53.

S Ng—86 vertices connected by 178 arcs where the average degree is
4.13. The network betweenness centralisation score is 0.1659 where
about 9% of vertices had a betweenness centrality score higher than
average (i.e. 0.060). After symmetrising the network it contained 144
edges. The average degree drops to 3.34.

S N7;—107 vertices connected by 187 arcs where the average degree is
3.49. The network betweenness centralisation score is 0.2022 where
about 2% of vertices had a betweenness centrality score higher than
average (i.e. 0.069). After symmetrising the network it contained 154
edges. The average degree drops to 2.87.

S Ng—102 vertices connected by 169 arcs where the average degree is
3.31. The network betweenness centralisation score is 0.1775 where
about 3% of vertices had a betweenness centrality score higher than
average (i.e. 0.061). After symmetrising the network it contained 141
edges. The average degree drops to 2.76.

S Ng—120 vertices connected by 171 arcs where the average degree is
2.85. The network betweenness centralisation score is 0.1556 where
about 2% of vertices had a betweenness centrality score higher than
average (i.e. 0.053). After symmetrising the network it contained 140
edges. The average degree drops to 2.33.

S N1p—272 vertices connected by 454 arcs where the average degree
is 3.33. The network betweenness centralisation score is 0.1315 where
about 1% of vertices had a betweenness centrality score higher than
average (i.e. 0.045). After symmetrising the network it contained 389
edges. The average degree drops to 2.86.

SNy1—172 vertices connected by 307 arcs where the average degree
is 3.56. The network betweenness centralisation score is 0.137 where
about 3% of vertices had a betweenness centrality score higher than
average (i.e. 0.047). After symmetrising the network it contained 248
edges. The average degree drops to 2.88.

5.1. UBUNTU 117

e SN;5—136 vertices connected by 213 arcs where the average degree
is 3.13. The network betweenness centralisation score is 0.1547 where
about 1% of vertices had a betweenness centrality score higher than
average (i.e. 0.053). After symmetrising the network it contained 181
edges. The average degree drops to 2.66.

e SN;3—109 vertices connected by 177 arcs where the average degree
is 3.24. The network betweenness centralisation score is 0.1822 where
about 5% of vertices had a betweenness centrality score higher than
average (i.e. 0.063). After symmetrising the network it contained 135
edges. The average degree drops to 2.47.

e SNy;—124 vertices connected by 172 arcs where the average degree
is 2.77. The network betweenness centralisation score is 0.1979 where
about 3% of vertices had a betweenness centrality score higher than
average (i.e. 0.068). After symmetrising the network it contained 144
edges. The average degree drops to 2.32.

e SN;5—136 vertices connected by 361 arcs where the average degree
is 5.3. The network betweenness centralisation score is 0.2896 where
about 2% of vertices had a betweenness centrality score higher than
average (i.e. 0.099). After symmetrising the network it contained 270
edges. The average degree drops to 3.97.

e SNis—139 vertices connected by 362 arcs where the average degree
is 5.2. The network betweenness centralisation score is 0.2387 where
about 4% of vertices had a betweenness centrality score higher than
average (i.e. 0.082). After symmetrising the network it contained 269
edges. The average degree drops to 3.87.

The Ubuntu QA team was active in all the time frames considered. The
subnetworks associated with each time frame vary in size from 64 to 272
vertices!?. The average degree after symmetrising the networks varies be-
tween 2.16 and 4.02. The findings, as predicted, seem to point to much
smaller networks and lower degrees compared to the aggregated QA team
graph. However, as the degree values are not exceptionally high in a given
time frame compared to the aggregated graph it is safe to assume that a
number of people made a sustained communication effort within the group
and created connections between themselves as well as with members of the
periphery or occasional contributors. These findings are consistent with the
initial assumption that a small group of individuals within the QA team is

10As the dataset for SNig was not complete, it was not taken into consideration

118 CHAPTER 5. CASE STUDIES

communicating more thus performing most of the tasks. The value of the
betweenness centrality value for the aggregated graph is 0.1798 where only
0.24% of participants have a higher than average score. The subnetworks’
betweenness centralisation scores vary between 0.0886 and 0.2896 where the
percentage of participants having a higher than average betweenness score
varied between 1% and 9%. These findings confirm that subnetworks will
display higher centrality values than the aggregated form of the graph.

5.1.5 Summary of findings for this case study

Ubuntu-related communication activity rose and fell over the period studied
in all communication channels and did not show consistent growth.

QA seems to be a separate layer in the Ubuntu community considering
that 609 members sent more than one e-mail on the QA mailing lists and
were not active on other venues.

Social network analysis suggests that in the Ubuntu community most
members form a large group spanning mailing lists and issue tracker. How-
ever, most connections are created by a single unrepeated act. Furthermore,
a small group of individuals is highly connected and highly engaged in com-
munication activities. Fewer than 1% of community members have a higher
than average betweenness centrality value, and those values are not par-
ticularly high, which suggests that information flow in the network is not
particularly vulnerable. The QA cluster analysis showed that QA members
communicate both among themselves, in a somewhat decentralised manner,
as well as directly with people contributing to other project activities.

The subgraph formed of members active on the QA mailing lists displays
similarities to the whole Ubuntu network in the sense that most participants
are included in a large group, within which a small number of members are
highly connected and engaged in communication.

5.2 Plone

5.2.1 The Plone project

Plone, an enterprise content management system written in Python, was first
released in 2003. It was selected as a case study based on the fact that it
has a mature community [4], its product is in use by many organisations
around the world, and it has had a dedicated QA team since 2011. As
opposed to Ubuntu and Mozilla, Plone has only one QA dedicated mailing
list. The QA team has a webpage where one can find basic information such

5.2. PLONE 119

as activity description, communication channels and team leaders'!. QA
activities include triaging new bugs, validating submitted patches, ensuring
that new releases are usable and generally help in the release process.

5.2.2 General analysis of the Plone dataset

Issue tracker data as well as mailing list data were taken into account. Data
was retrieved between December 2012 and July 2013'% and stored locally.
The issue tracker data contains a total of 13,026 bugs with 55,883 associ-
ated comments, and was downloaded using a web crawler. The mailing lists
contain a total of 176,144 e-mails. 28,588 e-mails were downloaded using
MailingListStats'®, an open source tool'*. However, two heavy traffic lists
(Plone Users and Plone Developers) were archived in a format not compatible
with MailingListStats and were downloaded using a Python script written
specifically for this purpose. The two mailing lists contain 147,601 e-mails'®
of which 147,556 e-mails were processed as part of this research. In addition,
a list of contributors’ usernames, nicknames and (where available) real names
was downloaded from Ohloh!®. This list was used to perform data cleaning
similarly to Ubuntu case.

Of all the e-mails exchanged 4,100 (2.32%) were sent by authors who
had sent only one e-mail throughout the period of the study while of all the
QA e-mails 38 (22.35%) were sent by authors who had sent only one e-mail.
On the other hand 1,526 bugs (11.71%) were posted by members who had
posted only one bug throughout the period of the study while 693 (1.24%)
comments were posted by members who posted only one comment. However,
it would seem that spam is a major problem on the Plone QA mailing list.
For example, in the three month period starting 1 April 2013, ten of the 26
e-mails sent to the list were spam. The activity on mailing lists and the bug
tracker on a yearly basis is shown in Figure 5.12 on page 120 while more
detailed information is given in Table C.10 on page 274. The figure does
not show a steady increase in the number of bug comments or bugs. Trends
in the mailing lists activities are more difficult to discern from the figure as
the numbers are much smaller than those of bug postings and comments but

1Plone quality assurance: http://plone.org/community/teams/qa-team

12Gee Table 3.3 on page 56 for more details.

13 A total of 52,907 e-mails were analysed, however due to double postings, bad html and
various other reasons 28,588 e-mails were stored. For a complete list of e-mails downloaded
with MailingListsStats please see Table B.6 on page 222.

M4 MailingListStats: https://github.com/MetricsGrimoire/MailingListStats

1545 e-mails were not taken into consideration as they contained bad html that could
not be parsed.

160hloh: https://www.ohloh.net/

120 CHAPTER 5. CASE STUDIES

they display the same irregular pattern. Furthermore, there seems to be no
correlation between the number of bugs opened and the number of comments
which leads to to question what causes these spikes in activity.

Figure 5.12: Plone Activity Chart

30000

25000

. M
/V \ a=tm=Bug No.
15000 Comment No.
/ e=t==ail No.
10000 / L == QA mail No.
—

5000

-
0 o

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

The QA mailing list activity started in 2011 and includes 57 members of
whom 66.6% (38 participants) sent only one e-mail. The average number of
e-mails sent is 2.98 (sd = 7.91). Only 19.3% of QA mailing lists participants
sent more than three e-mails. A description of top QA e-mail participants’
activity is provided in Table 5.13 on page 121'7. Of the total number of
individuals active on the QA mailing list who sent more than one e-mail, only
five participants are not active on other mailing lists and do not contribute
code. The rest of the participants contribute to the project by submitting
code or by being active on other mailing which suggests that in the case of
Plone, QA cannot be considered as a separate layer in the community:.

I7A table containing all QA mailing list participants and their activity can be found in
Table C.9 on page 272

5.2. PLONE 121

Table 5.13: Plone QA mailing list participants’ activity levels on other chan-
nels

Author QA Other Lists Bugs Comments Code

e-mails e-mails Contributor
Xis 59 520 7 76 886 Yes
Xs7 15 0 0 0 0 No
X 8 1,590 7 0 0 Yes
X7 8 924 9 0 0 Yes
Xs 6 0 0 0 0 No
X39 4 888 10 0 0 Yes
X38 4 71 3 0 0 No
X 3 1,063 10 51 834 Yes
Xo9 3 0 0 0 0 No
Xo3 3 974 9 40 170 Yes
X39 3 276 4 0 0 Yes
Xio 2 221 2 0 0 No
Xoo 2 1 1 0 0 No
Xou 2 331 6 0 0 No
Xog 2 0 0 0 0 No
X3 2 81 4 0 0 Yes
Xu 2 1,110 2 0 0 No
Xus 2 0 0 0 0 No
Xss 2 78 5 0 0 No

An interesting finding after analysing activity levels of QA list members
is that the person listed as QA lead on the Plone webpage has only sent
one e-mail using her name on the mailing list. This may suggest that QA
communication is conducted on other channels as well and should be further
investigated in future studies.

5.2.3 Social network analysis of the whole dataset

The next stage was to carry out a social network analysis of the Plone com-
munity. The dataset was exported to a Pajek-readable file that contained
community members, the links between them and the periods in which they
were active in the project. Members who did not form any connections with
other members were eliminated from the dataset. As in the previous case
studies, after importing this data into Pajek all loops were eliminated. The
resulting network contains 9,480 vertices connected by a total of 61,686 arcs
of which 18,514 have a value that is greater than 1 and 43,172 have a value

122 CHAPTER 5. CASE STUDIES

equal to 1. This means that 43,172 connections (69.98%) are created by only
one interaction (message). One could draw the conclusion that these mem-
bers are occasional contributors or part of the periphery. The average degree
is 13.01, which means that on average a person interacts with approximately
13 other people. The network’s density is 0.00068. The “heaviest” ten arcs
connected eight people and had values between 256 and 1666; see Figure 5.13
on page 122.

Figure 5.13: The heaviest ten arcs in the Plone graph connecting ten
members—numbers represent e-mails and bug comments in each direction

The network contains 99 components of which the biggest component
contains 9,362 vertices which or 98.7553% of the community. The rest of the
components contain between one and two vertices.

To get the precise values of vertex degrees within the Plone community,
the directed network was transformed into an undirected network by trans-
forming all arcs into edges. The resulting network had 46,924 edges of which
19,474 have a value greater than 1 and 27,450 have a value equal to 1. The
network’s density is 0.00104. The average degree drops to 9.89 compared to
13.01 for the directed network. About 15% of individuals had connections
with more than ten (i.e. the average degree) other individuals. Looking at
the vertices with degree value from 0 to 10, we find that they account for
approximately 85% of the community. The remaining approximately 15%
of vertices with the highest degrees are connected to—that is communicate
directly with— between 11 and 2,134 other members. Details of the 85% of
vertices in the Plone graph with degree value between 0 and 10 are given in
Table 5.14 on page 123. The largest degree cluster is formed by vertices with
a degree value of 1 and represents approximately one third of the community.

Both the indegree and outdegree values were computed. In the directed
Plone graph vertices with values between 0 and 10 make up about 88% of
the community—see Table 5.15 on page 123. The remaining vertices have
indegree values of between 11 and 1,102.

5.2. PLONE

123

Table 5.14: Vertices in the symmetrized Plone graph clustered by degree

value

Degree value Frequency Frequency %

CumFreq CumFreq%

78
2,954
1,830
1,000

624
404
341
276
209
176
0 127

= O 00 3O Ul Wi~ O

0.8228
31.1603
19.3038
10.5485

6.5823

4.2616

3.5970

29114

2.2046

1.8565

1.3397

78
3,032
4,862
5,862
6,486
6,390
7,231
7,507
7,716
7,892
8,019

0.8228
31.9831
51.2869
61.8354
68.4177
72.6793
76.2764
79.1878
81.3924
83.2489
84.5886

Table 5.15: Indegree clusters in the Plone graph

Indegree value Frequency Frequency %

CumFreq CumFreq%

798
3,175

1,572

903

558

407

308

224

168

149

0 111

= ©O© 00 O ULk Wi~ O

8.4177
33.4916
16.5823

9.5253

5.8861

4.2932

3.2489

2.3629

1.7722

1.5717

1.1709

798
3,973
5,545
6,448
7,006
7413
7,721
7,945
8,113
8,262
8,373

8.4177
41.9093
58.4916
68.0169
73.9030
78.1962
81.4451
83.8080
85.5802
87.1519
88.3228

124 CHAPTER 5. CASE STUDIES

In the same directed Plone graph approximately 9% of vertices have out-
degree values between 11 and 1,990; see Table 5.16 on page 124.

Table 5.16: Outdegree clusters in the Plone graph

Outdegree value Frequency Frequency % CumFreq CumFreq%

0 3329 35.1160 3329 35.1160
1 2605 27.4789 5934 62.5949
2 963 10.1582 6897 72.7532
3 235 5.6435 7432 78.3966
4 358 3.7764 7790 82.1730
5 245 2.5844 8035 84.7574
6 168 1.7722 8203 86.5295
7 109 1.1498 8312 87.6793
8 111 1.1709 8423 88.8502
9 104 1.0970 8527 89.9473
10 65 0.6857 8592 90.6329

The Plone directed graph contains 4,236 strong components. The largest
strong component contains 5,228 vertices or about 55% of the whole network.
The symmetrized i.e. undirected network contains 99 components where
the largest components contains 9,362 vertices or approximately 99% of the
whole community. In the same symmetrized Plone graph k-core values range
between 0 and 37, in other words the most connected group of members
contains individuals who interacted with a minimum of 37 other people.
This group contains 104 community members. Table 5.17 on page 125 gives
details of the members who have k-core values between 0 and 10, who make
up approximately 87% of the graph.

Betweenness centrality values were then computed. The Plone directed
graph vertices have betweenness centralities of between 0 and 0.108 where
the network’s betweenness centralisation value is equal to 0.1076. Table 5.18
on page 125 details the distribution of betweenness centrality vectors within
the network. These findings suggest that approximately 58% of the Plone
community do not represent a “step” in the information flow. Furthermore,
fewer than 1% of vertices have a higher than average betweenness score and
the maximum betweenness centrality is 0.108, which is higher than the max-
imum value for the Mozilla community which was 0.063.

To get a better understanding of communication patterns between QA
team members and the rest of the community the graph was divided into

5.2. PLONE 125

Table 5.17: K-core clusters in the Plone graph

K-core value Frequency Frequency % CumFreq CumFreq%

0 78 0.8228 78 0.8228
1 3,028 31.9409 3,106 32.7637
2 1,875 19.7785 4,981 02.5422
3 1,023 10.7911 6,004 63.3333
4 626 6.6034 6,630 69.9367
) 430 4.5359 7,060 74.4726
6 352 3.7131 7,412 78.1857
7 305 3.2173 7,717 81.4030
8 211 2.2257 7,928 83.6287
9 176 1.8565 8,104 85.4852
10 152 1.6034 8,256 87.0886

Table 5.18: Betweenness centrality vectors in in the Plone graph

Value intervals Frequency Frequency % CumFreq CumFreq%

0.000 5,506 58.0802 5,506 58.0802
0.000 — 0.036 3,968 41.8565 9,474 99.9367
0.036 — 0.072 4 0.0422 9,478 99.9789

0.072 - 0.108 2 0.0211 9,480 100.0000

126 CHAPTER 5. CASE STUDIES

four clusters as follows:

1. Cluster 1-—Community participants who contribute code and are mem-
bers of the QA mailing list.

2. Cluster 2—Community participants who contribute code but are not
members of the QA mailing list.

3. Cluster 3—Community participants who do not contribute code but
are members of the QA mailing list.

4. Cluster 4—Community participants who do not contribute code and
are not members of the QA mailing list. Members who could not be
categorised were also added to this cluster.

Table 5.19: Plone cluster frequency

Cluster Frequency Frequency % CumFreq CumFreq%

1 11 0.1160 11 0.1160
2 267 2.8165 278 2.9325
3 20 0.2110 298 3.1435
4 9,182 96.8565 9,480 100.0000

To categorise participants into clusters a list containing Plone code con-
tributors was retrieved from Ohloh. A Python script was then written in
order to compare all community members whose names contained more than
four characters to the code contributor list and categorise them into clus-
ters based on participation on the QA mailing list. Table 5.19 on page 126
provides more details regarding cluster distribution within the community.

It will be observed that the cluster containing members who are neither
code contributors nor QA contributors is the largest, representing approxi-
mately 97% of the whole community. On the other hand people performing
QA tasks appear to add up to only about 0.3% of the whole community. Fig-
ure 5.14 on page 128 represents an aggregated graph of the Plone network
where each cluster is represented by a different colour.

If each of the clusters is shrunk to one vertex then the resulting network
has four vertices and is a complete network with a density value of 1. The
graph contains a total of four loops and twelve lines and is depicted in Figure

5.2. PLONE

Table 5.20: Shrunk Plone network communications

Rank Line Value
1 1.1 56,560
2 3.1 22997
3 1.3 15,859
4 2.1 7,236
5 1.2 5,959
6 3.3 5,798
7 2.3 4,926
8 4.1 3,459
9 3.2 2,781
10 1.4 2,518
11 2.2 1,064
12 4.3 962
13 3.4 942
14 4.2 457
15 2.4 435
16 4.4 171

127

128 CHAPTER 5. CASE STUDIES

Figure 5.14: Plone community graph
CRBATIREERY

- 4T I 4T 42
W T og OgE o Do S PR T T g0y T o Cmr D 1w PG
(4] (41 4 di 8 4 e B
i i i [4] & i

M N 4
i 3 1l & 1) i 1

5.15 on page 128. The values of the lines of the graph are given in Table 5.20
on page 127.

If each of the clusters is shrunk to one vertex then the resulting network
has four vertices and is a complete network with a density value of 1. The
graph contains a total of four loops and twelve lines and is depicted in Figure
5.15 on page 128. The values of the lines of the graph are given in Table 5.20
on page 127.

Figure 5.15: Plone reduced graph—each cluster was reduced to one vertex in

order to illustrate connections between various groups within the community

T 2

il Y3

The next step was to reduce all clusters to one vertex except for cluster

5.2. PLONE 129

3, the QA-only cluster. The resulting network contains 23 vertices of which
three represent the other clusters. The graph contains a total of 273 arcs of
which 205 have a value greater than 1 and 68 have a value equal to 1. The
network’s density is 0.516 while the average degree is 23.73. The network is
depicted in Figure 5.16 on page 129. This figure shows dense communication
both between members of cluster 3 as well as with members of other clusters
(but less dense than was the case for Ubuntu). In Figure 5.17 on page 130
the variety of betweenness centralities produces a variety of vertex sizes while
a dense communication can be observed suggesting that members of cluster
3 communicate both within the cluster as well as directly with members of
ofther clusters. If loops are eliminated the density value is 0.5335 and the
degree drops to 23.47.

Figure 5.16: Plone graph graph shrunk except for those who are active on
the QA mailing lists but do not submit code (cluster 3)—depicts relations
between members of cluster 3 as well as between these members and other
clusters; the red, orange and grey vertices represent shrunk clusters.

The same operations were applied to the Plone graph in order to reduce all
clusters except for cluster 1, i.e. those who both submit code and are active
on the QA mailing list. The resulting network contains 14 vertices of which
three represent the other clusters. The graph contains a total of 130 arcs of
which 103 have a value greater than 1 and 27 have a value equal to 1. The
network’s density is 0.6632 while the average degree is 18.57. The network is
depicted in Figure 5.18 on page 131. This figure shows communication both
between members of cluster 1 as well as with members of other clusters (but
less dense than was the case for Ubuntu). In Figure 5.19 on page 133 the
variety of betweenness centralities produces a variety of vertex sizes while
a dense communication can be observed suggesting that members of cluster

130 CHAPTER 5. CASE STUDIES

Figure 5.17: Plone graph shrunk except for those who are active on the QA
mailing lists but do not submit code (cluster 3)—the size of each vertex is
given by its betweenness centrality value; the red, orange and grey vertices
represent shrunk clusters.

i
L

g
iy

i

i

R
[S

]

i
I
7

i/
i

K

1 communicate both within the cluster as well as directly with members of
ofther clusters. If loops are eliminated the density value is 0.6978 and the
degree drops to 18.14.

In order to visualise the communication patterns between the QA team
as a whole and the rest of the community, cluster 1 was merged with cluster
3 and clusters 2 and 4 were reduced. The resulting network contains 33
vertices of which two represent the other clusters (i.e. 2 and 4). The graph
contains a total of 516 arcs of which 371 have a value greater than 1 and
145 arcs have a value equal to 1. The network’s density is 0.4738 while the
average degree is 31.27. The resulting network is depicted in Figure 5.20 on
page 134. This figure shows dense communication both between members of
cluster 1 as well as with members of other clusters (but less dense than was
the case for Ubuntu). In Figure 5.19 on page 133 the variety of betweenness
centralities produces a variety of vertex sizes while a dense communication
can be observed suggesting that members of cluster 1 communicate both
within the cluster as well as directly with members of ofther clusters. If
loops are eliminated the density value is 0.4867 and the degree drops to
31.15.

5.2. PLONE 131

Figure 5.18: Plone graph shrunk except for those who both code and are
active on the QA mailing lists (cluster 1)—depicts relations between members
of cluster 1 as well as between these members and other clusters; the green,
orange and grey vertices represent shrunk clusters.

(i) m

5.2.4 Social network analysis of QA-specific communi-
cations

So far we have analysed communications carried out on both issue tracker
and mailing lists. Now, however, we want to focus on QA activities within
the Plone community, so we restrict our dataset to QA-related mailing lists.
After eliminating loops the network contains 31 vertices connected by 49
arcs of which 40 have a value equal to 1 and 9 have a value greater than 1
(the highest value an arc had is 5). The average degree is 3.1612 while the
network’s density is 0.0526. The graph is shown in Figure 5.22 on page 136.

The QA team graph contains only one component that contains all 31
vertices. In the directed QA graph the indegree values vary between 0 and
24. Table 5.21 on page 132 details the distribution of indegree values.

In the directed QA graph the outdegree values vary between 0 and 8.
Table 5.22 on page 132 details the distribution of outdegree values.

With the notable exception of one individual who received messages from
24 other participants, around 97% of individuals received messages from four
or less other individuals while 100% of individuals sent messages to eight
or fewer other individuals. However, in order to portray the number of
connections a member has regardless of direction of communication the graph
was symmetrized. In this symmetrized graph i.e. undirected, the degree
varies between 1 and 24. Table 5.23 on page 133 details the distribution
of degree values. The result suggests no significant increase in the number

132 CHAPTER 5. CASE STUDIES

Table 5.21: Vertices in the directed Plone QA graph clustered by indegree
value

Cluster Frequency Frequency % CumFreq CumFreq%

0 10 32.2581 10 32.2581
1 17 54.8387 27 87.0968
2 2 6.4516 29 93.5484
4 1 3.2258 30 96.7742
24 1 3.2258 31 100.0000

Table 5.22: Vertices in the directed Plone QA graph clustered by outdegree
value

Cluster Frequency Frequency % CumFreq CumFreq%

0 1 3.2258 1 3.2258
1 21 67.7419 22 70.9677
2 6 19.3548 28 90.3226
3 1 3.2258 29 93.5484
> 1 3.2258 30 96.7742
8 1 3.2258 31 100.0000

5.2. PLONE 133

Figure 5.19: Plone graph shrunk except for those who both code and are
active on the QA mailing lists (cluster 1)—the size of each vertex is given by
its betweenness centrality value; the green, orange and grey vertices represent
shrunk clusters.

n [}

connections an individual has with other individuals considering that about
97% of individuals have connections with six or fewer other individuals (only
one individual has connections with 24 other individuals).

Table 5.23: Vertices in the symmetrized Plone QA graph clustered by degree
value

Cluster Frequency Frequency % CumFreq CumFreq%

1 16 51.6129 16 51.6129
2 11 35.4839 27 87.0968
3 2 6.4516 29 93.5484
6 1 3.2258 30 96.7742
24 1 3.2258 31 100.0000

The symmetrized graph contains one component that contains all 31 ver-
tices. However, if the network is not symmetrized, the directed graph con-
tains 17 strong components of which the largest contains 13 vertices or about
42% of all vertices. In other words, the largest component in which any two
vertices are connected by a path contains 13 vertices. The highest k-core in
the symmetrized graph is a 2-core containing 11 vertices or approximately
35% of all vertices. The largest k-core is a 1-core containing about 65% of

134 CHAPTER 5. CASE STUDIES

Figure 5.20: Plone graph graph shrunk except for cluster 1 and 3—depicts re-
lations between members of cluster 1 and 3 as well as between these members
and other clusters; the orange and green vertices represent reduced clusters.

the whole community.
In order to understand communication patterns within the QA team, the
graph was was divided into four clusters as follows:

e Cluster 1-—Members of the community who were listed as code con-
tributor and were active on other mailing lists.

e Cluster 2—Members of the community who were listed as code con-
tributor and were not active on other mailing lists.

e Cluster 3—Members of the community who were not listed as code
contributor and were active on other mailing lists.

e Cluster 4—Members of the community who were not listed as code
contributor and were not active on other mailing lists. In addition,
members who could not be categorised were added to this cluster.

Table 5.24 on page 135 provides more details regarding cluster distribu-
tion within the QA team graph. It is interesting to note that, of a total of
31 QA contributors, none belong to cluster 2 and only one to cluster 4.

The betweenness centralisation value of the QA team graph is 0.3413.
Vertices with a betweenness centrality equal to 0 represent approximately
71% of the vertices. Vertices with betweenness centrality values between
0.116 and 0.348 represent 3.22% of the vertices. Figure 5.23 on page 137
shows clusters within the QA team where the vertex shows the centrality
betweenness score.

5.2. PLONE 135

Figure 5.21: Plone graph shrunk except for cluster 1 and 3—the size of each
vertex is given by its betweenness centrality value; the orange and green
vertices represent reduced clusters.

Table 5.24: Clusters in the Plone QA team

Cluster Frequency Frequency % CumFreq CumFreq%

1 11 35.4839 11 35.4839
3 19 61.2903 30 96.7742
4 1 3.2258 31 100.0000

Until now we have carried out social network analysis of the Ubuntu
community in general and the QA contributors in particular using aggre-
gated data taking place over several years. In order to capture the dynamic
nature of the community, we next analysed the Ubuntu subnetwork formed
of members active on the QA mailing lists using six-month time frames. The
subgraph associated with each time frame is further described as follows:

e SN;—16 vertices connected by 21 arcs where the average degree is
2.62. The network betweenness centralisation score is 0.2415 where
about 12% of vertices had a betweenness centrality score higher than
average (i.e. 0.086). After symmetrising the network it contained 17
edges. The average degree drops to 2.12.

e SN3—13 vertices connected by 17 arcs where the average degree is
2.61. The network betweenness centralisation score is 0.2007 where

136 CHAPTER 5. CASE STUDIES

Figure 5.22: Plone QA team graph clusters—each colour in the graph repre-
sents a cluster and is labeled as such.

about 23% of vertices had a betweenness centrality score higher than
average (i.e. 0.073). After symmetrising the network it contained 14
edges. The average degree drops to 2.15.

o SN;—12 vertices connected by 18 arcs where the average degree is 3.
The network betweenness centralisation score is 0.5223 where about
8% of vertices had a betweenness centrality score higher than average
(i.e. 0.179). After symmetrising the network it contained 12 edges.
The average degree drops to 2.

The Plone QA team was active in only three of the five time frames
considered. The subnetworks associated with each time frame varied in size
from 12 to 16 vertices'®. The average degree after symmetrising the networks
varies between 2 and 2.15. The findings, as predicted, seem to point to much
smaller networks and lower degrees compared to the aggregated QA team
graph. However, as the degree values are not exceptionally high in a given
time frame compared to the aggregated graph it is safe to assume that a
number of people made a sustained communication effort within the group
and created connections between themselves as well as with members of the
periphery or occasional contributors. These findings are consistent with the
initial assumption that a small group of individuals within the QA team is
communicating more thus performing most of the tasks. The value of the
betweenness centrality value for the aggregated graph is 0.3413 where only

18 As the dataset is too small SN5 was also included in this analysis.

5.2. PLONE 137

Figure 5.23: Plone QA team graph clusters—the size of each vertex is given
by its betweenness centrality value.

3.22% of participants have a higher than average score. The subnetworks’
betweenness centralisation scores vary between 0.2007 and 0.5223 where the
percentage of participants having a higher than average betweenness score
varied between 8% and 23%. These findings confirm that subnetworks will
display higher centrality values than the aggregated form of the graph.

5.2.5 Summary of findings for this case study

Plone-related communication activity did not show constant growth but dis-
played a more irregular pattern. QA does not seem to be a separate layer
in the Plone community considering that only five participants active on the
QA mailing did not submit code and were not active on other venues. These
findings suggest that in the case of Plone, community members have multiple
roles.

Social network analysis suggests that in the Plone community most mem-
bers form a large group spanning the mailing lists and issue tracker. How-
ever, most connections are created by a single unrepeated act. Furthermore,
a small group of individuals is highly connected and highly engaged in com-
munication activities. Fewer than 1% of community members have a higher
than average betweenness centrality value, and those values are not par-
ticularly high, which suggests that information flow in the network is not
particularly vulnerable. The QA cluster analysis showed that QA members
communicate both among themselves in a somewhat decentralised manner as
well as directly with people contributing to other project activities. The sub-
graph formed of members active on the QA mailing lists displays similarities

138 CHAPTER 5. CASE STUDIES

to the whole Plone network in the sense that all participants are included in
a large group, within which a small number of members are highly connected
and engaged in communication.

5.3 KDE

5.3.1 The KDE project

KDE “is an international team co-operating on development and distribution
of Free, Open Source Software”!. In other words, KDE is a community that
produces a variety of FLOSS products among which the most well known
is “Plasma Desktop”—a desktop environment. The KDE community was
founded in October 1996 by Matthias Ettrich? and is another example of a
successful FLOSS project. In the early 2000s as a part of the KDE commu-
nity, a team of people were in charge of the “task of user case studies, writing
articles, documentation, creating missing artwork for consistency, and other
miscellanea”?!. The team’s activity was interrupted, but it then revived in
2012 as an official QA team. In addition to the QA team, the KDE com-
munity also has a Bugsquad team??. Both teams use dedicated mailing lists,
webpages and wikis through which they offer information to potential con-
tributors and/or carry out discussions. The KDE community was chosen as
a case study due to its maturity and size as well as its dedicated QA team.

5.3.2 General analysis of the KDE dataset

Issue tracker data as well as mailing list data were taken into account. Data
was retrieved between April and June 2013 and stored locally. The issue
tracker data contained a total of 312,847 bugs with 1,364,871 associated com-
ments, and was downloaded using a web crawler. The mailing lists contained
a total of 529,488 e-mails that were downloaded using MailingListStats, an
open source tool?*. Considering the definition of QA activities given for the
scope of this research, both QA mailing list and Bugsquad mailing lists were
considered as QA related; together they contained 954 e-mails. In addition, a
list of contributors’ usernames, nicknames and (where available) real names

YKDE: http://www.kde.org/

20KDE history: http://www.kde.org/community /history/

2IKDE quality: http://community.kde.org/Getinvolved /Quality,
http://techbase.kde.org/Contribute/Quality_Team

22KDE Bugsquad: http://techbase.kde.org/Contribute/Bugsquad

ZMailingListStats: https://github.com/MetricsGrimoire/MailingListStats

5.3. KDE 139

was downloaded from Ohloh?*. This list was used to perform data cleaning
similarly to the previous cases.

Of all the e-mails exchanged 15,218 (about 3%) were sent by authors
who had sent only one e-mail throughout the period of the study while of
all the QA e-mails 45 (about 5%) were sent by authors who had sent only
one e-mail. On the other hand 39,826 bugs (about 13%) were posted by
members who had posted only one bug throughout the period of the study
while 34,247 (about 3%) comments were posted by members who posted only
one comment. The activity on mailing lists and the bug tracker on a yearly
basis is shown in Figure 5.24 on page 139 while more detailed information is
given in Table C.11 on page 279. The figure does not show a steady increase
in the number of bug comments, bugs or e-mails; instead they display a
somewhat irregular pattern. Bug comment activity seems to be correlated to
bug activity as they follow the same general trajectory. Activity conducted
on the mailing lists seems to be unrelated to issue tracker activity. The recent
start of QA activity makes it difficult to observe trends in activity levels on
the QA mailing lists over time.

Figure 5.24: KDE Activity Chart

250000

200000
/\ =o=ail No.
150000
\ QA Mail No.
esr=BugSquad Mail No.

100000 =5 No.
/ ‘V /i < % “He=Comments No.

50000

0+ —

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

The QA mailing list activity started in 2012 and includes 121 members of
whom about 45 (37%) sent only one e-mail. The average number of e-mails
sent is 7.88 (sd = 16.39). Only about 20% of QA mailing list participants sent
more than eight e-mails. A detailed description of top QA e-mail participants’
activity is given in Table 5.25%° on page 140.

240hloh: https://www.ohloh.net/
25Table C.11 on page 275 contains all QA mailing list participants and their activity

140 CHAPTER 5. CASE STUDIES

Table 5.25: KDE QA mailing list participants’ activity levels on other chan-
nels

Author QA Other Lists Bugs Comments Code

e-mails e-mails Contributor
Xo1 115 509 13 0 0 No
X100 76 2491 28 119 23887 No
X, 65 2267 17 329 12642 Yes
X3 64 44 16 141 1316 No
Xog 45 3610 13 251 1863 Yes
Xe4 42 543 26 121 3224 Yes
Xgg 36 657 13 0 0 No
X 35 126 9 30 1676 No
Xz 31 806 14 216 2109 Yes
X101 30 567 25 47 869 Yes
X5 28 6248 22 78 34075 No
X105 25 57 5) 23 169 No
X7 22 4718 51 342 5525 Yes
Xoo 19 58 8 90 614 No
X0 18 402 21 0 0 No
Xg 17 1071 15 956 3391 No
X35 12 190 13 36 6173 Yes
Xag 10 310 20 73 6206 Yes
X9 10 27 3 0 0 No

5.3. KDE 141

Of the total number of individuals active on the QA mailing list only eight
(7%) participants were not active on other mailing lists , and of these one
participant was listed as a code contributor. Of the seven members who were
active exclusively active on the QA mailing list, three sent only one e-mail;
the other four members sent between two and four e-mails. These findings
suggest that in the KDE case, QA cannot be considered as a separate layer
in the community.

5.3.3 Social network analysis of the whole dataset

The next stage was to carry out a social network analysis of the KDE com-
munity. The dataset was exported to a Pajek-readable file that contained
community members, the links between them and the periods in which they
were active in the project. Members who did not form any connections with
other members were eliminated from the dataset. As in the previous case
studies, after importing this data into Pajek all loops were eliminated. The
resulting network contains 89,317 vertices connected by a total of 506,090
arcs of which 149,909 have a value that is greater than 1 and 356,181 have
a value equal to 1. This means that 356,181 connections (about 70%) are
created by only one interaction (message). One could draw the conclusion
that these members are occasional contributors or part of the periphery. The
average degree is 11.33, which means that on average a person interacts with
approximately eleven other people. The network’s density is 0.000063. The
“heaviest” ten arcs in the network connected twelve people and had values
between 717 and 1097; each of these represents one person sending many
hundreds of communications to another person; see Figure 5.25 on page 141.

Figure 5.25: The heaviest ten arcs in the KDE graph connecting ten

members—numbers represent e-mails and bug comments in each direction
D,

70 7a7 1097

247 925 Fa

142 CHAPTER 5. CASE STUDIES

The network contains 716 components of which the biggest component
contains 88,502 vertices or about 99% of the community. The rest of the
components contain between one and three vertices.

To get the precise values of vertex degrees within the KDE community,
the directed network was transformed into an undirected network by trans-
forming all arcs into edges. The resulting network has 396,437 edges of which
151,967 have a value greater than 1 and 244,470 have a value equal to 1. The
network’s density is 0.000099. The average degree drops to 8.87 compared
to 11.33 for the directed network. About 11% of individuals had connections
with more than nine other individuals (i.e. the average degree). Looking at
the vertices with degree value from 0 to 10, we find that they account for
approximately 90% of the community. The remaining approximately 10%
of vertices with the highest degrees are connected to—that is, communicate
directly with—between 11 and 9,972 other members. Details of the 90% of
vertices in the KDE graph with degree value between 0 and 10 are given in
Table 5.26 on page 142. The largest degree cluster is formed by vertices with
a degree value of 1 and represents over one third (i.e. 43%) of the community.

Table 5.26: Vertices in the symmetrized KDE graph clustered by degree value

Degree value Frequency Frequency % CumFreq CumFreq%

0 625 0.6998 625 0.6998
1 38,747 43.3814 39,372 44.0812
2 18,390 20.5896 57,762 64.6708
3 7,773 8.7027 65,535 73.3735
4 4,624 5.1771 70,159 78.5506
3 3,108 3.4797 73,267 82.0303
6 2,198 2.4609 75,465 84.4912
7 1,621 1.8149 77,086 86.3061
8 1,335 1.4947 78,421 87.8008
9 1,008 1.1286 79,429 88.9293
10 843 0.9438 80,272 89.8731

Both the indegree and outdegree values were computed. In the directed
KDE graph vertices with values between 0 and 10 make up about 92% of
the community—see Table 5.27 on page 143. The remaining vertices have
indegree values of between 11 and 3,679.

In the same directed KDE graph approximately 5% of vertices have out-
degree values between 11 and 9,430; see Table 5.28 on page 143.

5.3. KDE

143

Table 5.27: Vertices in the symmetrized KDE graph clustered by indegree

value

Indegree value

Frequency Frequency %

CumFreq CumFreq%

= © 00 O UL Wi+~ O

3,851
44,936
14,549
6,754
3,048
2,595
1,824
1,362
1,062
829
719

4.3116
50.3107
16.2892

7.5618

4.4202

2.9054

2.0422

1.5249

1.1890

0.9282

0.8050

3,851
48,787
63,336
70,090
74,038
76,633
78,457
79,819
80,881
81,710
82,429

4.3116
54.6223
70.9115
78.4733
82.8935
85.7989
87.8411
89.3660
90.5550
91.4831
92.2881

Table 5.28: Vertices in the symmetrized KDE graph clustered by outdegree

value

Outdegree value

Frequency Frequency %

CumFreq CumFreq%

= O 00 1O Ol Wi~ O

39,124
25,411
8,369
3,913
2,372
1,545
1,097
870
672
583
470

43.8035
28.4504
9.3700
4.3810
2.6557
1.7298
1.2282
0.9741
0.7524
0.6527
0.5262

39,124
64,535
72,904
76,817
79,189
80,734
81,831
82,701
83,373
83,956
84,426

43.8035
72.2539
81.6239
86.0049
88.6606
90.3904
91.6186
92.5927
93.3451
93.9978
94.5240

144 CHAPTER 5. CASE STUDIES

The KDE directed graph contains 43,388 strong components. The largest
strong component contains 45,859 vertices which amounts to approximately
51% of the whole network. The symmetrized i.e. undirected network contains
716 components where the largest component contains 88,502 vertices or
about 99% of the whole community. In the same symmetrized KDE graph,
k-core values range between 0 and 81, in other words the most connected
group of members contains individuals who interacted with a minimum of 81
other people. This group contains 274 community members. Table 5.29 on
page 144 gives details of the members who have k-core values between 0 and
10, who make up approximately 91% of the graph.

Table 5.29: Vertices in the symmetrized KDE graph clustered by k-core value

K-core value Frequency Frequency % CumFreq CumFreq%

0 625 0.6998 625 0.6998
1 39,378 44.0879 40,003 447877
2 18,760 21.0038 58,763 65.7915
3 7,887 8.8303 66,650 74.6219
4 4,728 5.2935 71,378 79.9154
bt 3,113 3.4853 74,491 83.4007
6 2,209 2.4732 76,700 85.8739
7 1,651 1.8485 78,351 87.7224
8 1,287 1.4409 79,638 89.1633
9 933 1.0446 80,571 90.2079
10 834 0.9338 81,405 91.1417

Betweenness centrality values were then computed. The KDE directed
graph vertices have betweenness centralities of between 0 and 0.053 where
network’s betweenness centralisation value is equal to 0.0526. Table 5.30 on
page 145 details the distribution of betweenness centrality vectors within the
network. Findings suggest that approximately 64% of the KDE community
do not represent a “step” in the information flow. Furthermore, much fewer
than 1% (i.e. 0.01%) of vertices have a higher than average betweenness
score and the maximum betweenness centrality is 0.053, which is lower than
the maximum value for the Mozilla community which was 0.063.

To get a better understanding of communication patterns between QA
team members and the rest of the community the graph was divided into
four clusters as follows:

5.3. KDE

Table 5.30: Betweenness centrality clusters in the KDE community

145

Value intervals

Frequency Frequency %

CumFreq CumFreq%

0.000 57,137
0.000-0.018 32,171
0.018-0.035 7
0.035-0.053 2

63.9710 57,137 63.9710
36.0189 89,308 99.9899
0.0078 89,315 99.9978
0.0022 89,317 100.0000

1. Cluster 1-—Community participants who contribute code and are mem-

bers of the QA mailing lists.

2. Cluster 2—Community participants who contribute code but are not
members of the QA mailing lists.

3. Cluster 3—Community participants who do not contribute code but
are members of the QA mailing lists.

4. Cluster 4—Community participants who do not contribute code and
are not members of the QA mailing lists. Members who could not be
categorised were also added to this cluster.

Table 5.31: Clusters in the KDE community

Cluster Frequency Frequency % CumFreq CumFreq%
1 53 0.0593 53 0.0593
2 1,412 1.5809 1,465 1.6402
3 64 0.0717 1,529 1.7119
4 87,788 98.2881 89,317 100.0000

To categorise participants into clusters, a list containing KDE code con-
tributors was retrieved from Ohloh. A Python script was then written in
order to compare all community members whose names contained more than
four characters to the code contributor list and categorise them into clusters
based on participation on the QA mailing list. Table 5.31 on page 145 pro-
vides more details regarding cluster distribution within the community. It
will be observed that the cluster containing members who are neither code

146 CHAPTER 5. CASE STUDIES

contributors nor QA contributors is the largest, representing approximately
98% of the whole community. On the other hand people performing QA
tasks appear to add up to only about 0.131% of the community.

If each of these clusters is shrunk to one vertex then the resulting network
has four vertices and is a complete network with a density value of 1. The
graph contains a total of four loops and twelve lines and is depicted in Figure
5.26 on page 147. The values of the lines of the graph are described in Table
5.32 on page 146.

Table 5.32: Shrunk KDE network communication

Rank Line Value

1 2.2 271,866
2 1.2 235,070
3 2.1 120,460
4 3.2 109,354
5 42 77,192
6 1.1 69,536
7 2.3 44,258
8 2.4 30,108
9 3.1 26,433
10 1.3 21,115
11 41 16,185
12 1.4 14,645
13 3.4 10,766
14 3.3 9,906
15 43 9,369
16 44 5237

The next step was to reduce all clusters to one vertex except for cluster
3, the QA-only cluster. The resulting network contains 67 vertices of which
three represent the other clusters. The graph contains a total of 855 arcs
of which 647 have a value greater than 1 and 208 have a value equal to
1. The network’s density is 0.1904 while the average degree is 25.52. The
network is depicted in Figure 5.27 on page 147. This figure shows dense
communication both between members of cluster 3 as well as with members
of other clusters. In Figure 5.28 on page 148 the variety of betweenness
centrality produces a variety of vertex sizes while a dense communication
can be observed suggesting that members of cluster 3 communicate both

5.3. KDE 147

Figure 5.26: KDE reduced graph—each cluster was reduced in order to il-
lustrate connections between various groups within the community

@ T

iy

(3 nl

within the cluster as well as directly with members of other clusters. If loops
are eliminated the density value becomes 0.1926 and the degree drops to
25.43.

Figure 5.27: KDE graph shrunk except for those who are active on the QA
mailing lists but do not submit code (cluster 3)—depicts relations between
members of cluster 3 as well as between these members and other clusters;
the red, orange and grey vertices represent shrunk clusters.

N
RO

N
%

The same operations were applied to the KDE graph in order to reduce
all clusters except for cluster 1, i.e. those who both submit code and are
active on the QA mailing lists. The resulting network contains 56 vertices
of which three represent the other clusters. The graph contains a total of
1,204 arcs out of which 934 have a value greater than 1 and 270 have a value
equal to 1. The network’s density is 0.3839 while the average degree is 43.
The resulting network is depicted in Figure 5.29 on page 149. This figure
shows a very dense communication both between members of cluster 1 as well

148 CHAPTER 5. CASE STUDIES

Figure 5.28: KDE graph shrunk except for those who are active on the QA
mailing lists but do not submit code (cluster 3)—the size of each vertex is
given by its betweenness centrality value; the red, orange and grey vertices
represent shrunk clusters.

as with members of other clusters. In Figure 5.30 on page 152 the variety
of betweenness centrality produces a variety of vertex sizes while a dense
communication can be observed. This suggests that members of cluster 1
communicate both within the cluster as well as directly with members of
other clusters. If loops are eliminated the density value is 0.3899 and the
degree drops to 42.89.

In order to visualise the communication patterns between the QA team
as a whole and the rest of the community, cluster 1 was merged with cluster
3 and clusters 2 and 4 were reduced. The resulting network contains 119
vertices of which two represent the other clusters (i.e. 2 and 4). The graph
contains a total of 3,213 arcs of which 2,320 have a value greater than 1
and 893 have a value equal to 1. The network’s density is 0.2268 while the
average degree is b4. The resulting network is depicted in Figure 5.31 on page
154. This figure shows a very dense communication both between members
of cluster 1 as well as with members of other clusters. In Figure 5.32 on page
155 the variety of betweenness centrality produces a variety of vertex sizes
while a dense communication can be observed. This suggests that members
of cluster 1 communicate both within the cluster as well as directly with
members of other clusters. If loops are eliminated the density value is 0.2286
and the degree drops to 53.96.

The analysis of communication patterns between members of the commu-
nity performed by reducing clusters suggests that members active on the QA
mailing lists communicate among themselves and do not seem to be exclu-

5.3. KDE 149

Figure 5.29: KDE graph shrunk except for those who both code and are active
on the QA mailing lists (cluster 1)—depicts relations between members of
cluster 1 as well as between these members and other clusters; the green,
orange and grey vertices represent shrunk clusters.

sively oriented towards other groups within the community. Communication
seems to be somewhat decentralised in the sense that there no individual
or few individuals are central in the network. The fact that QA members
communicate directly with members of other layers in the community and
the lack of few central individuals also suggests that there are no information
brokers between layers.

5.3.4 Social network analysis of QA-specific communi-
cations

So far we have analysed communications carried out on both issue tracker
and mailing lists. Now, however, we want to focus on QA activities within
the KDE community, so we restrict our dataset to QA-related mailing list.
After eliminating loops the network contains 116 vertices connected by 350
arcs of which 245 have a value equal to 1 and 105 have a value greater than
1 (the highest value an arc had is 22). The average degree is 6.03 while the
network’s density is 0.0262. The graph is shown in Figure 5.33 on page 156.

The QA team graph contains only one component that contains all 116
vertices. In the directed QA graph the indegree values vary between 0 and
25. Table 5.33 on page 150 details the distribution of indegree values.

In the directed QA graph the outdegree values vary between 0 and 21.
Table 5.34 on 151 details details the distribution of outdegree values.

150 CHAPTER 5. CASE STUDIES

Table 5.33: Vertices in the directed KDE QA graph clustered by indegree
value

Indegree value Frequency Frequency % CumFreq CumFreq%

0 24 20.6897 24 20.6897
1 36 31.0345 60 01.7241
2 21 18.1034 81 69.8276
3 8 6.8966 89 76.7241
4 6 5.1724 95 81.8966
5 3 4.3103 100 86.2069
6 3 2.5862 103 88.7931
7 2 1.7241 105 90.5172
9 1 0.8621 106 91.3793
10 1 0.8621 107 92.2414
11 1 0.8621 108 93.1034
12 2 1.7241 110 94.8276
13 1 0.8621 111 95.6897
17 1 0.8621 112 96.5517
19 2 1.7241 114 98.2759
20 1 0.8621 115 99.1379
25 1 0.8621 116 100.0000

5.3. KDE 151

Table 5.34: Vertices in the directed KDE QA graph clustered by outdegree
value

Outdegree values Frequency Frequency % CumFreq CumFreq%

0 16 13.7931 16 13.7931
1 45 38.7931 61 52.5862
2 19 16.3793 30 68.9655
3 9 7.7586 89 76.7241
4 9 7.7586 98 84.4828
) 3 2.5862 101 87.0690
6 1 0.8621 102 87.9310
7 1 0.8621 103 88.7931
8 1 0.8621 104 89.6552
9 2 1.7241 106 91.3793
10 1 0.8621 107 92.2414
11 2 1.7241 109 93.9655
12 1 0.8621 110 94.8276
14 1 0.8621 111 95.6897
15 1 0.8621 112 96.5517
17 1 0.8621 113 97.4138
18 1 0.8621 114 98.2759
21 2 1.7241 116 100.0000

152 CHAPTER 5. CASE STUDIES

Figure 5.30: KDE graph shrunk except for those who both code and are
active on the QA mailing lists (cluster 1)—the size of each vertex is given by
its betweenness centrality value; the green, orange and grey vertices represent
shrunk clusters.

Around 92% of individuals receive and send from/to ten or fewer indi-
viduals, in other words the majority of members active on the QA mailing
lists have similar values of indegree and outdegree. However, in order to
portray the number of connections a member has regardless of direction of
communication the graph was symmetrized. In this symmetrized graph i.e.
undirected, the degree varies between 1 and 30. Table 5.35 on page 153
details the distribution of degree values. The results suggest that the num-
ber of individuals with more connections has increased after symmetrizing
the graph. One explanation for this could be that some members send mes-
sages to one set of individuals but receive messages from a different set of
individuals.

The symmetrized graph contains one component that contains all 116
vertices, the same as the directed graph (not symmetrized). However, if the
network is not symmetrized the directed graph contains 41 strong compo-
nents of which the largest contains 76 vertices or about 66%. In other words,
the largest component in which any two vertices are connected by a path con-
tains approximately 66% of vertices. The highest k-core in the symmetrized
graph is a 4-core containing 30 vertices or approximately 26% of all vertices.
The largest k-core is a 1-core containing about 40% of the whole community.

In order to understand communication patterns within the QA team, the
graph was was divided into four clusters as follows:

e Cluster 1-—Members of the community who were listed as code con-

5.3. KDE

153

Table 5.35: Vertices in the symmetrized KDE QA graph clustered by degree

value

Degree value

Frequency Frequency %

CumFreq CumFreq%

46
19
13
10

oo

= = = = = N = =N RN

39.6552
16.3793
11.2069
8.6207
6.8966
1.7241
3.4483
0.8621
1.7241
0.8621
0.8621
1.7241
0.8621
0.8621
0.8621
0.8621
0.8621
0.8621
0.8621

46
65
78
38
96
98
102
103
105
106
107
109
110
111
112
113
114
115
116

39.6552
56.0345
67.2414
75.8621
82.7586
84.4828
87.9310
88.7931
90.5172
91.3793
92.2414
93.9655
94.8276
95.6897
96.5517
97.4138
98.2759
99.1379
100.0000

154 CHAPTER 5. CASE STUDIES

Figure 5.31: KDE graph reduced except for cluster 1 and 3—depicts relations
between members of cluster 1 and 3 as well as between these members and
other clusters; the orange and green vertices represent reduced clusters.

tributor and were active on other mailing lists.

e Cluster 2—Members of the community who were listed as code con-
tributor and were not active on other mailing lists.

e Cluster 3—Members of the community who were not listed as code
contributor and were active on other mailing lists.

e Cluster 4—Members of the community who were not listed as code
contributor and were not active on other mailing lists. In addition,
members who could not be categorised were added to this cluster.

Table 5.36 on page 155 provides more details regarding cluster distribu-
tion within the QA team graph. It is interesting to note that, of a total
116 QA contributors, only one member belongs to cluster 2 and only eight
members belong to cluster 4.

The betweenness centralisation value of the QA team graph is 0.2148.
Vertices with a betweenness centrality equal to 0 represent approximately
58% of the vertices. Vertices with betweenness centrality values between
0.075 and 0.226 represent about 6.9% of the vertices. Figure 5.34 on page
157 shows clusters within the QA team where the vertex size shows the
centrality betweenness score.

Until now we have carried out social network analysis of the Ubuntu
community in general and the QA contributors in particular using aggre-
gated data taking place over several years. In order to capture the dynamic

5.3. KDE 155

Figure 5.32: KDE graph reduced except for cluster 1 and 3—the size of each
vertex is given by its betweenness centrality value; the orange and green
vertices represent reduced clusters.

Table 5.36: Clusters in the KDE QA team

Cluster Frequency Frequency % CumFreq CumFreq%

1 51 43.9655 ol 43.9655
2 1 0.8621 52 44.8276
3 26 48.2759 108 93.1034
4 8 6.8966 116 100.0000

nature of the community, we next analysed the Ubuntu subnetwork formed
of members active on the QA mailing lists using six-month time frames. The
subgraph associated with each time frame is further described as follows:

e SN;—17 vertices connected by 41 arcs where the average degree is 4.82.
The network betweenness centralisation score is 0.3858 where about 6%
of vertices had a betweenness centrality score higher than average (i.e.
0.133). After symmetrising the network it contained 30 edges. The
average degree drops to 3.52.

e SNy,—26 vertices connected by 73 arcs where the average degree is
5.61. The network betweenness centralisation score is 0.3793 where
about 12% of vertices had a betweenness centrality score higher than
average (i.e. 0.134). After symmetrising the network it contained 53
edges. The average degree drops to 4.07.

156 CHAPTER 5. CASE STUDIES

Figure 5.33: KDE QA team graph clusters—each colour in the graph repre-
sents a cluster and is labeled as such.

N

BTN
3N \x -'r’/
NN

e SN;—14 vertices connected by 21 arcs where the average degree is 3.
The network betweenness centralisation score is 0.1124 where about
21% of vertices had a betweenness centrality score higher than average
(i.e. 0.043). After symmetrising the network it contained 18 edges.
The average degree drops to 2.57.

e SN,—20 vertices connected by 38 arcs where the average degree is 3.8.
The network betweenness centralisation score is 0.3689 where about
15% of vertices had a betweenness centrality score higher than average
(i.e. 0.132). After symmetrising the network it contained 28 edges.
The average degree drops to 2.8.

e SN;—9 vertices connected by 11 arcs where the average degree is 2.44.
The network betweenness centralisation score is 0.0535 where about
44% of vertices had a betweenness centrality score higher than average
(i.e. 0.024). After symmetrising the network it contained 9 edges. The
average degree drops to 2.

e SNg—15 vertices connected by 31 arcs where the average degree is
4.13. The network betweenness centralisation score is 0.4462 where
about 13% of vertices had a betweenness centrality score higher than
average (i.e. 0.161). After symmetrising the network it contained 22
edges. The average degree drops to 2.93.

e SN;,—11 vertices connected by 13 arcs where the average degree is
2.36. The network betweenness centralisation score is 0.2655 where

5.3. KDE 157

Figure 5.34: KDE QA team graph clusters—the size of each vertex is given
by its betweenness centrality value.

Com ™

W e mm @0 e

about 18% of vertices had a betweenness centrality score higher than
average (i.e. 0.096). After symmetrising the network it contained 9
edges. The average degree drops to 1.63.

e SNg—9 vertices connected by 8 arcs where the average degree is 1.77.
The network betweenness centralisation score is 0.0848 where about
22% of vertices had a betweenness centrality score higher than average
(i.e. 0.030). After symmetrising the network it contained 6 edges. The
average degree drops to 1.33.

e SNy—35 vertices connected by 75 arcs where the average degree is 4.28.
The network betweenness centralisation score is 0.2933 where about 9%
of vertices had a betweenness centrality score higher than average (i.e.
0.103). After symmetrising the network it contained 52 edges. The
average degree drops to 2.97.

e SN;p—31 vertices connected by 54 arcs where the average degree is
3.48. The network betweenness centralisation score is 0.2271 where
about 16% of vertices had a betweenness centrality score higher than
average (i.e. 0.083). After symmetrising the network it contained 38
edges. The average degree drops to 2.45.

e SN;;—23 vertices connected by 44 arcs where the average degree is
3.82. The network betweenness centralisation score is 0.4574 where
about 13% of vertices had a betweenness centrality score higher than

158 CHAPTER 5. CASE STUDIES

average (i.e. 0.163). After symmetrising the network it contained 28
edges. The average degree drops to 2.43.

The KDE QA team were active in all time frames considered. The sub-
networks associated with each time frame vary in size from 9 to 35 vertices®.
The average degree after symmetrising the networks varies between 1.33 and
4.07. The findings, as predicted, seem to point to much smaller networks
and lower degrees compared to the aggregated QA team graph. However, as
the degree values are not exceptionally high in a given time frame compared
to the aggregated graph it is safe to assume that a number of people made
a sustained communication effort within the group and created connections
between themselves as well as with members of the periphery or occasional
contributors. These findings are consistent with the initial assumption that a
small group of individuals within the QA team is communicating more thus
performing most of the tasks. The value of the betweenness centrality value
for the aggregated graph is 0.2148 where only 6.9% of participants have
a higher than average score. The subnetworks’ betweenness centralisation
scores vary between 0.0535 and 0.4462 where the percentage of participants
having a higher than average betweenness score varied between 6% and 44%.
These findings confirm that subnetworks will display higher centrality values
than the aggregated form of the graph.

5.3.5 Summary of findings for this case study

KDE-related communication activity rose and fell over the period studied in
all communication channels and did not show consistent growth.

QA seems not to be a separate layer in the KDE community considering
that only seven participants were not active on other venues and were not
listed as code contributors.

Social network analysis suggests that in the KDE community most mem-
bers form a large group spanning mailing lists and issue tracker. However,
most connections are created by a single unrepeated act. Furthermore, a
small group of individuals is highly connected and highly engaged in commu-
nication activities. Much fewer than 1% (i.e. 0.1%) of community members
had a higher than average betweenness centrality value, and those values
were not particularly high, which suggests that information flow in the net-
work is not particularly vulnerable. The QA cluster analysis showed that
QA members communicate both among themselves, in a somewhat decen-
tralised manner, as well as directly with people contributing to other project
activities.

26 As the dataset for SNy, was not complete, it was not taken into consideration

5.4. LIBREOFFICE 159

The subgraph formed of members active on the QA mailing lists displays
similarities to the whole KDE network in the sense that most participants
are included in a large group, within which a small number of members are
highly connected and engaged in communication.

5.4 LibreOffice

5.4.1 The LibreOffice project

LibreOffice “is a comprehensive, professional-quality productivity suite
The community is powered by the Document Foundation, which was es-
tablished in 2010%® after a fork with OpenOffice, another FLOSS product.
LibreOffice has a QA team in charge of bug triage, manual testing, automatic
testing and localisation QA activities?”. The QA team uses a dedicated mail-
ing list, an IRC channel as well as wikis for QA or bug triaging.

The wide adoption of LibreOffice by end users, many of whom are less
technically knowledgeable than those who use products of the other case
studies such as Plone or KDE, as well as its dedicated QA teams, justify its
selection as the next case study in this research.

27

5.4.2 General analysis of the LibreOffice dataset

Issue tracker data as well as mailing list data were taken into account. Data
was retrieved between May and June 2013 and stored locally. The issue
tracker data contained a total of 19,432 bugs with 127,208 associated com-
ments, and was downloaded using a web crawler. The mailing lists contained
a total of 192,709 e-mails on all LibreOffice topics that were downloaded us-
ing MailingListStats, an open source tool*’. The QA mailing list contained
a total of 3,381 e-mails. In addition, a list of contributors’ usernames, nick-
names and (where available) real names was downloaded from Ohloh®'. This
list was used to perform data cleaning similarly to the previous cases.

Of all the e-mails exchanged 1,071 (0.55%) were sent by authors who had
sent only one e-mail throughout the period of the study while of all the QA e-
mails 187 (5.53%) were sent by authors who had sent only one e-mail. On the
other hand 5,250 bugs (27.01%) were posted by members who had posted only

2TLibreoffice—features. http://www.libreoffice.org/features/

Z8Document foundation—history: http://www.documentfoundation.
org/foundation/history/

Libreoffice—quality assurance: http://www.libreoffice.org/ get-involved/qa-testers

30MailingListStats: https://github.com/MetricsGrimoire/MailingListStats

310hloh: https://www.ohloh.net/

160 CHAPTER 5. CASE STUDIES

one bug throughout the period of the study while 3,494 (2.74%) comments
were posted by members who posted only one comment. The activity on
mailing lists and the bug tracker on a yearly basis is shown in Figure 5.35 on
page 160 while more detailed information is given in Table C.14 on page 289.
While the figure shows a steady increase over the three years, the dataset
covers a period of time too small to draw significant conclusions.

90000

80000 /
70000 /
60000
/ e===\1ail No.
50000
”’ QA Mail No.

40000 // ir=Bugs No.
30000 // @ Comment No.
20000 //

10000 Pl e

o
2
s

2011 2012

Figure 5.35: LibreOffice Activity Chart

The QA mailing list activity started in 2011 and includes 317 members
of whom about 187 (59%) sent only one e-mail. The average number of
e-mails sent was 10.67 (sd = 37.16). Only about 16% of QA mailing lists
participants sent more than eleven e-mails. A detailed description of top QA
e-mail participants’ activity is given in Table 5.37 on page 16132,

32A table containing all QA mailing list participants and their activity can be found in
Table C.13 on page 280

5.4. LIBREOFFICE 161

Table 5.37: LibreOffice QA mailing list participants’ activity levels on other
channels

Author QA Other Lists Bugs Comments Code

e-mails e-mails Contributor
X153 443 176 2 0 0 No
X293 254 134 1 0 0 No
Xg 237 2462 4 42 1042 Yes
Xso 192 1009 3 0 0 Yes
Xig 136 663 2 152 1535 Yes
Xi40 130 320 2 20 2620 Yes
X100 124 4067 3 126 1876 Yes
X7 101 5 1 58 4327 Yes
Xss 100 18 2 53 383 Yes
X217 70 108 1 0 0 Yes
Xso 69 38 1 0 0 No
X135 65 0 0 6 46 No
X284 59 491 2 0 0 Yes
X301 o6 5 2 0 0 No
X9 o4 9 1 0 0 No
Xog 45 4 1 38 2779 Yes
Xoz0 42 109 1 34 257 Yes
X283 42 66 2 0 0 No
Xi79 39 36 1 0 0 No
Xogo 36 930 2 25 841 Yes

162 CHAPTER 5. CASE STUDIES

Of the total 317 participants on the QA mailing list, 181 (57%) were not
active on other mailing lists, and of these 43 sent more than one message and
one was listed as a code contributor. In addition, 267 participants (84%) were
not listed as code contributors. These facts suggest that QA contributors
form a a somewhat separate layer in the LibreOffice community.

5.4.3 Social network analysis of the whole dataset

The next stage was to carry out a social network analysis of the LibreOffice
community. The dataset was exported to a Pajek-readable file that contained
community members, the links between them and the periods in which they
were active in the project. Members who did not form any connections with
other members were eliminated from the dataset. As in the previous case
studies, after importing this data into Pajek all loops were eliminated. The
resulting network contains 9,971 vertices connected by a total of 44,682 arcs of
which 14,035 have a value that is greater than 1 and 30,647 have a value equal
to 1. This means that 30,647 connections (68.58%) are created by only one
interaction (message). One could draw the conclusion that these members
are occasional contributors or part of the periphery. The average degree is
8.96, which means that on average a person interacts with approximately
nine other people. The network’s density is 0.00044. The “heaviest” ten arcs
connected seven people and had values between 165 and 615; see Figure 5.36
on page 162.

Figure 5.36: The heaviest ten arcs in the LibreOffice graph connecting ten
members—numbers represent e-mails and bug comments in each direction

s 7H 9

169 168 179

The network contains 111 components of which the biggest component
contains 9,842 vertices or about 99% of the community. The rest of the
components contain between one and three vertices.

To get the precise values of vertex degrees within the LibreOffice com-
munity, the directed network was transformed into an undirected network by

5.4. LIBREOFFICE 163

transforming all arcs into edges. The resulting network has 32,556 edges of
which 14,019 have a value greater than 1 and 18,537 with a value equal to 1.
The network’s density is 0.00065. The average degree drops to 6.53 compared
to 8.96 for the directed network. About 10% of individuals had connections
with more than seven other individuals (i.e. the average degree). Looking
at the vertices with degree value from 0 to 10, we find that they account
for approximately 93% of the community. The remaining approximately 7%
of vertices with the highest degree are connected to—that is, communicate
directly with-— between 11 and 2,026 other members. Details of the 93% of
vertices in the LibreOffice graph with value between 0 and 10 are given in
Table 5.38 on page 163. The largest degree cluster is formed by vertices with
a degree value of 1 and represents more than one third (i.e. 41.8%) of the
community.

Table 5.38: Vertices in the symmetrized LibreOffice graph clustered by degree
value

Degree value Frequency Frequency % CumFreq CumFreq%

0 94 0.9427 94 0.9427
1 4,167 41.7912 4,261 42.7339
2 2,386 23.9294 6,647 66.6633
3 981 9.8385 7,628 76.5019
4 544 5.4558 8,172 81.9577
5 358 3.5904 8,530 85.5481
6 224 2.2465 8,754 87.7946
7 177 1.7751 8,931 89.5698
8 154 1.5445 9,085 91.1142
9 107 1.0731 9,192 92.1873
10 74 0.7422 9,266 92.9295

164 CHAPTER 5. CASE STUDIES

Both the indegree and outdegree values were computed. In the directed
LibreOffice graph vertices with values between 0 and 10 make up about 95%
of the community—see Table 5.39 on page 164. The remaining vertices have
indegree values of between 11 and 1,230.

Table 5.39: Vertices in the directed LibreOffice graph clustered by indegree
value

Indegree value Frequency Frequency % CumFreq CumFreq%

0 329 3.2996 329 3.2996
1 5,166 51.8102 2,495 55.1098
2 1,859 18.6441 7,354 73.7539
3 810 8.1236 8,164 81.8774
4 429 4.3025 8,593 86.1799
5 297 2.9786 8,890 89.1586
6 170 1.7049 9,060 90.8635
7 146 1.4642 9,206 92.3278
8 86 0.8625 9,292 93.1903
9 95 0.9528 9,387 94.1430
10 29 0.5917 9,446 94.7347

In the same directed LibreOffice graph approximately 4% of vertices have
outdegree values between 11 and 1,804; see Table 5.40 on page 165.

The LibreOffice directed graph contains 3,911 strong components. The
largest strong component contains 6,041 vertices which amounts to approx-
imately 61% of the whole network. The symmetrized i.e. undirected net-
work contains 111 components where the largest contains 9,842 vertices or
approximately 99% of the whole community. In the same symmetrized Li-
breOffice graph, k-core values range between 0 and 38, in other words the
most connected group of members contains individuals that interacted with
a minimum of 38 other people. This group contains 69 community members.
Table 5.41 on page 165 gives details of the members who have k-core values
between 0 and 10, who make up approximately 94% of the graph.

Betweenness centrality values were then computed. The LibreOffice di-
rected graph vertices have betweenness centralities of between 0 and 0.128
where the network’s betweenness centralisation value is equal to 0.1277. Ta-
ble 5.42 on page 166 details the distribution of betweenness centrality vec-
tors within the network. Findings suggest that approximately 66% of the
LibreOffice community do not represent a “step” in the information flow.

5.4.

LIBREOFFICE

165

Table 5.40: Vertices in the directed LibreOffice graph clustered by outdegree

value

0]

utdegree value Frequency Frequency %

CumFreq CumFreq%

= O 00 O ULk Wi+~ O

3,559
3,417
1,189
513
291
208
108
93

53

48

0 o4

35.6935
34.2694
11.9246
5.1449
2.9185
2.0860
1.0831
0.9327
0.5315
0.4814
0.5416

3,559
6,976
8,165
8,678
8,969
9,177
9,285
9,378
9,431
9,479
9,533

35.6935
69.9629
81.8875
87.0324
89.9509
92.0369
93.1200
94.0528
94.5843
95.0657
95.6073

Table 5.41: Vertices in the symmetrized Ubuntu graph clustered by k-core

value

K-core value Frequency Frequency %

CumFreq CumFreq%

94
4,267
2,455
1,006

535

331

227

179

128

95

0 68

= O 00 O Ul Wi~ O

0.9427
42.7941
24.6214
10.0893

5.3656

3.3196

2.2766

1.7952

1.2837

0.9528

0.6820

94
4,361
6,316
7,822
8,357
8,688
8,915
9,004
9,222
9,317
9,385

0.9427
43.7368
68.3582
78.4475
83.8131
87.1327
89.4093
91.2045
92.4882
93.4410
94.1230

166

CHAPTER 5. CASE STUDIES

Furthermore, fewer than 1% of vertices (i.e. 0.0601%) have a higher than av-
erage betweenness score and the maximum betweenness centrality is 0.128,
which is higher than the maximum value for the Mozilla community which

was 0.063.

Table 5.42: Betweenness centrality clusters in the Ubuntu community

Value intervals

Frequency Frequency % CumFreq CumFreq%

0.000

0.000-0.043
0.043-0.085
0.085-0.128

66.0917 6,590 66.0917
33.8482 9,965 99.9398
0.0501 9,970 99.9900
0.0100 9,971 100.0000

To get a better understanding of communication patterns between QA
team members and the rest of the community the graph was divided into

four clusters as follows:

1. Cluster 1—Community participants who contribute code and are mem-

bers of the QA mailing list.

2. Cluster 2—Community participants who contribute code but are not

members of the QA mailing list.

3. Cluster 3—Community participants who do not contribute code but
are members of the QA mailing list.

4. Cluster 4—Community participants who do not contribute code and
are not members of the QA mailing list. Members who could not be
categorised were also added to this cluster.

To categorise participants into clusters a list containing LibreOffice code
contributors was retrieved from Ohloh. A Python script was then written
in order to compare all community members whose names contained more
than four characters to the code contributor list and categorise them into
clusters based on participation on the QA mailing list. Table 5.43 on page 167
provides more details regarding cluster distribution within the community.
It will be observed that the cluster containing members who are neither code
contributors nor QA contributors is the largest representing approximately
96% of the whole community. On the other hand people performing QA
tasks appear to add up to only about 1.5% of the community.

5.4. LIBREOFFICE 167

Table 5.43: Clusters in the LibreOffice community

Cluster Frequency Frequency % CumFreq CumFreq%

1 33 0.3310 33 0.3310
2 269 2.6978 302 3.0288
3 114 1.1433 416 4.1721
4 9,555 95.8279 9,971 100.0000

If each of these clusters is shrunk to one vertex then the resulting network
has four vertices and is a complete network with a density value of 1. The
graph contains a total of four loops and twelve lines and is depicted in Figure
5.37 on page 168. The values of the lines of the graph are described in Table
5.44 on page 167.

Table 5.44: Shrunk LibreOffice network communication

Rank Line Value

1 2.2 32,668
2 1.2 10,432
3 4.2 10,036
4 2.1 7,934
5 24 6,953
6 1.1 6,443
7 3.2 6,050
8 2.3 4,832
9 14 4,420
10 41 3914
11 1.3 3,531
12 44 2,587
13 3.1 2,388
14 4.3 1,490
15 34 1,353
16 3.3 1,002

The next step was to reduce all clusters to one vertex except for cluster
3, the QA-only cluster. The resulting network contains 117 vertices of which

168 CHAPTER 5. CASE STUDIES

Figure 5.37: LibreOffice reduced graph—each cluster was reduced to one
vertex in order to illustrate connections between various groups within the

community

TE T

Y@ (1)

three represent the other clusters. The graph contains a total of 1,239 arcs of
which 833 have a value greater than 1 and 406 have a value equal to 1. The
network’s density is 0.0905 while the average degree is 21.17. The network is
depicted in Figure 5.38 on 169. This figure shows dense communication both
between members of cluster 3 as well as with members of other clusters. In
Figure 5.39 on page 170 the variety of betweenness centrality produces a va-
riety of vertex sizes while a dense communication can be observed suggesting
that members of cluster 3 communicate both within the cluster as well as
directly with members of other clusters. If loops are eliminated the density
value is 0.0910 and the degree drops to 21.12.

The same operations were applied to the LibreOffice graph in order to
reduce all clusters except for cluster 1, i.e. those who both submit code
and are active on the QA mailing lists. The resulting network contains 36
vertices of which three represent the other clusters. The graph contains a
total of 630 arcs of which 499 have a value greater than 1 and 131 have a
value equal to 1. The network’s density is 0.4861 while the average degree
is 35. The resulting network is depicted in Figure 5.40 on page 173. This
figure shows dense communication both between members of cluster 1 as well
as with members of other clusters. In Figure 5.41 on page 175 the variety
of betweenness centrality produces a variety of vertex sizes while a dense
communication can be observed. This suggests that members of cluster 1
communicate both within the cluster as well as directly with members of
other clusters. If loops are eliminated the density value is 0.4976 and the
degree drops to 34.83.

In order to visualise the communication patterns between the QA team
as a whole and the rest of the community, cluster 1 was merged with cluster
3 and clusters 2 and 4 were reduced. The resulting network contains 149

5.4. LIBREOFFICE 169

Figure 5.38: LibreOffice graph shrunk except for those who are active on
the QA mailing lists but do not submit code (cluster 3)—depicts relations
between members of cluster 3 as well as between these members and other
clusters; the red, orange and grey vertices represent shrunk clusters.

vertices of which two represent the other clusters. The graph contains a
total of 2,897 arcs out of which 2,003 have a value greater than 1 and 894
have a value equal to 1. The network’s density is 0.1304 while the average
degree is 38.88. The resulting network is depicted in Figure 5.42 on page
176. This figure shows a very dense communication both between members
of cluster 1 as well as with members of other clusters. In Figure 5.43 on
page 177 the variety of betweenness centrality produces a variety of vertex
sizes while a dense communication can be observed suggesting that members
of cluster 1 communicate both within the cluster as well as directly with
members of other clusters. If loops are eliminated the density value is 0.1312
and the degree drops to 38.85.

The analysis of communication patterns between members of the commu-
nity performed by reducing clusters suggests that members active on the QA
mailing lists communicate among themselves and do not seem to be exclu-
sively oriented towards other groups within the community. Communication
seems to be somewhat decentralised in the sense that there is no individual or
few individuals that are central in the network. The fact that QA members
communicate directly with members of other layers in the community and
the lack of few central individuals also suggests that there are no information
brokers between layers.

170 CHAPTER 5. CASE STUDIES

Figure 5.39: LibreOffice graph shrunk except for those who are active on the
QA mailing list but do not submit code (cluster 3)—the size of each vertex is
given by its betweenness centrality values; the red, orange and grey vertices
represent shrunk clusters.

@
Vi ® P

5 @ e

5.4.4 Social network analysis of QA-specific communi-
cations

So far we have analysed communications carried out on both issue tracker
and mailing lists. Now, however, we want to focus on QA activities within the
LibreOffice community, so we restrict our dataset to the QA-related mailing
list. After eliminating loops the network contains 153 vertices connected by
861 arcs of which 492 have a value equal to 1 and 369 have a value greater
than 1 (the highest value an arc had is 30). The average degree is 11.25 while
the network’s density is 0.0370. The graph is shown in Figure 5.44 on page
178.

The QA team graph contains only one component that contains all 153
vertices. In the directed QA graph the indegree values vary between 0 and
51. Table 5.45 on page 171 details the distribution of indegree values.

In the directed QA graph the outdegree values vary between 0 and 59.
Table 5.46 on page 172 details the distribution of outdegree values.

Around 84% of individuals receive messages from ten or fewer individuals
while around 81% of individuals send messages to ten or fewer individuals.
These findings suggest similar values between indegree and outdegree values.
However,compared to other case studies, the number of individuals who have
an indegree value that is less than 10 is slightly higher (i.e. about 3%) than
the number of individuals who have an outdegree value that is less than 10.

However, in order to portray the number of connections a member has

5.4. LIBREOFFICE

171

Table 5.45: Vertices in the directed LibreOffice QA graph clustered by inde-

gree value

Indegree value Frequency Frequency %

CumFreq CumFreq%

0 3O Ul W~ O

LW W W WO NP ===
— O IO =N O 00 J 0w~ O

14
20

[N}
ot

RN R R NNDN R RN AR WR WND WOt O oo

9.1503
32.6797
16.3399

5.2288

6.5359

1.3072

3.2680

1.9608

4.5752

1.3072

1.9608

0.6536

1.9608

0.6536

2.6144

1.3072

1.3072

0.6536

0.6536

1.3072

1.3072

0.6536

0.6536

1.3072

0.6536

14

64

89

97
107
109
114
117
124
126
129
130
133
134
138
140
142
143
144
146
148
149
150
152
153

9.1503
41.8301
58.1699
63.3987
69.9346
71.2418
74.5098
76.4706
81.0458
82.3529
84.3137
84.9673
86.9281
87.5817
90.1961
91.5033
92.8105
93.4641
94.1176
95.4248
96.7320
97.3856
98.0392
99.3464

100.0000

172 CHAPTER 5. CASE STUDIES

Table 5.46: Vertices in the directed LibreOffice QA graph clustered by out-
degree value

Outdegree value Frequency Frequency % CumFreq CumFreq%

1 39 25.4902 7 50.3268
2 22 14.3791 99 64.7059
3 4 2.6144 103 67.3203
4 3 1.9608 106 69.2810
) 2 1.3072 108 70.5882
6) 3.2680 113 73.8562
7 5 3.2680 118 77.1242
9 3 1.9608 121 79.0850
10 3 1.9608 124 81.0458
11 3 1.9608 127 83.0065
12 4 2.6144 131 85.6209
13 1 0.6536 132 86.2745
14 3 1.9608 135 88.2353
15 2 1.3072 137 89.5425
16 1 0.6536 138 90.1961
17 2 1.3072 140 91.5033
18 2 1.3072 142 92.8105
19 2 1.3072 144 94.1176
21 1 0.6536 145 94.7712
23 1 0.6536 146 95.4248
27 1 0.6536 147 96.0784
30 1 0.6536 148 96.7320
33 1 0.6536 149 97.3856
44 1 0.6536 150 98.0392
47 1 0.6536 151 98.6928
48 1 0.6536 152 99.3464
29 1 0.6536 153 100.0000

5.4. LIBREOFFICE 173

Figure 5.40: LibreOffice graph shrunk except for those who both code and are
active on the QA mailing list (cluster 1)—depicts relations between members
of cluster 1 as well as between these members and other clusters; the green,
orange and grey vertices represent shrunk clusters.

(1], (11

A1) il

2] il

[} a

i m

i) i

(] i

m il

i} m

(i) i

i} il
i} i} il

regardless of direction of communication the graph was symmetrized. In
this symmetrized graph i.e. undirected, the degree varies between 1 and 69.
Table 5.47 on page 174 details the distribution of degree values. The results
suggest that the number of individuals with more connections has increased
after symmetrizing the graph. One explanation for this could be that some
members send messages to one set of individuals but receive messages from
a different set of individuals.

The symmetrized graph contains one component that contains all 31 ver-
tices, the same as the directed graph (i.e. unsymmetrized). However, if
the network is not symmetrized, the directed graph contains 55 strong com-
ponents of which the largest contains 99 vertices or about 65%. In other
words, the largest component in which any two vertices are connected by a
path contains approximately 65% of vertices. The highest k-core in the sym-
metrized graph is an 11-core containing 26 vertices or approximately 17% of
all vertices. The largest k-core is a 1-core containing about 29% of the whole
community.

In order to understand communication patterns within the QA team, the
graph was was divided into four clusters as follows:

e Cluster 1-—Members of the community who were listed as code con-
tributor and were active on other mailing lists.

e Cluster 2—Members of the community who were listed as code con-
tributor and were not active on other mailing lists.

174 CHAPTER 5. CASE STUDIES

Table 5.47: Vertices in the symmetrized LibreOffice QA graph clustered by
degree value

Cluster Frequency Frequency % CumFreq CumFreq%

1 44 28.7582 44 28.7582
2 33 21.5686 7 20.3268
3 16 10.4575 93 60.7843
4 6 3.9216 99 64.7059
) 2 1.3072 101 66.0131
6 3 1.9608 104 67.9739
7 1 0.6536 105 68.6275
8 9 0.8824 114 74.5098
9 1 0.6536 115 75.1634
10 2 1.3072 117 76.4706
11 3 1.9608 120 78.4314
12 1 0.6536 121 79.0850
13 2 1.3072 123 80.3922
14 3 1.9608 126 82.3529
15 1 0.6536 127 83.0065
16 1 0.6536 128 83.6601
17 6 3.9216 134 87.5817
18 1 0.6536 135 88.2353
19 1 0.6536 136 88.8889
20 1 0.6536 137 89.5425
21 2 1.3072 139 90.8497
22 1 0.6536 140 91.5033
23 2 1.3072 142 92.8105
24 1 0.6536 143 93.4641
25 1 0.6536 144 94.1176
29 1 0.6536 145 94.7712
33 1 0.6536 146 95.4248
37 1 0.6536 147 96.0784
41 1 0.6536 148 96.7320
42 1 0.6536 149 97.3856
ol 1 0.6536 150 98.0392
o4 2 1.3072 152 99.3464
69 1 0.6536v153 100.0000

5.4. LIBREOFFICE 175

Figure 5.41: LibreOffice graph shrunk except for those who both code and are
active on the QA mailing list (cluster 1)—the size of each vertex is gibe by its
betweenness centrality value; the green, orange and grey vertices represent
shrunk clusters.

)))
0] il

11) (1),
/il (1]

1) (1)

] 1]

(2] 11

4 il

il m

il an

1 an

e Cluster 3—Members of the community who were not listed as code
contributor and were active on other mailing lists.

e Cluster 4—Members of the community who were not listed as code
contributor and were not active on other mailing lists. In addition,
members who could not be categorised were added to this cluster.

Table 5.48 on page 175 provides more details regarding cluster distribu-
tion within the QA team graph. It is interesting to note that, of a total
153 QA contributors, only one belongs to cluster 2. However, compared to
other case studies, cluster 1 does not seem to contain a small percentage of
participants.

Table 5.48: Clusters in the LibreOffice QA team

Cluster Frequency Frequency % CumFreq CumFreq%

1 31 20.2614 31 20.2614
2 1 0.6536 32 20.9150
3 66 43.1373 98 64.0523
4 95 35.9477 153 100.0000

The betweenness centralisation value of the QA team graph is 0.1667.

176 CHAPTER 5. CASE STUDIES

Figure 5.42: LibreOffice graph reduced except for cluster 1 and 3—depicts re-
lations between members of cluster 1 and 3 as well as between these members
and other ;the orange and green vertices represent reduced clusters.

Vertices with a betweenness centrality equal to 0 represent approximately
52% of the vertices. Vertices with betweenness centrality values between
0.058 and 0.173 represent 3.9% of the vertices. Figure 5.45 on page 179
shows clusters within the QA team where the vertex size is given by the
centrality betweenness score.

Until now we have carried out social network analysis of the Ubuntu
community in general and the QA contributors in particular using aggre-
gated data taking place over several years. In order to capture the dynamic
nature of the community, we next analysed the Ubuntu subnetwork formed
of members active on the QA mailing lists using six-month time frames. The
subgraph associated with each time frame is further described as follows:

e SN;—51 vertices connected by 167 arcs where the average degree is
6.54. The network betweenness centralisation score is 0.3176 where
about 8% of vertices had a betweenness centrality score higher than
average (i.e. 0.111). After symmetrising the network it contained 113
edges. The average degree drops to 4.43.

e SN,—58 vertices connected by 271 arcs where the average degree is
9.34. The network betweenness centralisation score is 0.1811 where
about 10% of vertices had a betweenness centrality score higher than
average (i.e. 0.066). After symmetrising the network it contained 183
edges. The average degree drops to 6.31.

e SN3—84 vertices connected by 354 arcs where the average degree is

5.4. LIBREOFFICE 177

Figure 5.43: LibreOffice graph reduced except for cluster 1 and 3—the size
of each vertex if given by its betweenness centrality value; the orange and
green vertices represent reduced clusters.

8.42. The network betweenness centralisation score is 0.198 where
about 6% of vertices had a betweenness centrality score higher than
average (i.e. 0.070). After symmetrising the network it contained 257
edges. The average degree drops to 6.11.

e SN,—83 vertices connected by 322 arcs where the average degree is
7.75. The network betweenness centralisation score is 0.2115 where
about 6% of vertices had a betweenness centrality score higher than
average (i.e. 0.075). After symmetrising the network it contained 235
edges. The average degree drops to 5.66.

The LibreOffice QA team was active in all time frames considered. The
subnetworks associated with each time frame varied in size from 51 to 84
vertices®®. The average degree after symmetrising the networks varied be-
tween 4.43 and 6.11. The findings, as predicted, seem to point to much
smaller networks and lower degrees compared to the aggregated QA team
graph. However, as the degree values are not exceptionally high in a given
time frame compared to the aggregated graph it is safe to assume that a
number of people made a sustained communication effort within the group
and created connections between themselves as well as with members of the
periphery or occasional contributors. These findings are consistent with the
initial assumption that a small group of individuals within the QA team is
communicating more thus performing most of the tasks. The value of the

33 As the dataset is too small, SN, was also included in this analysis.

178 CHAPTER 5. CASE STUDIES

Figure 5.44: LibreOffice QA team graph clusters—each colour in the graph
represents a cluster and is labeled as such.

betweenness centrality value for the aggregated graph is 0.1667 where only
3.9% of participants have a higher than average score. The subnetworks’
betweenness centralisation scores varied between 0.1811 and 0.3176. The
percentage of participants having a higher than average betweenness score
varied between 6% and 10%. These findings confirm that subnetworks will
display higher centrality values than the aggregated form of the graph.

5.4.5 Summary of findings for this case study

LibreOffice-related communication activity rose constantly over the period of
time. However, the dataset is too small for us to draw definitive conclusions
with respect to a possible correlation between time progression and activity
levels.

QA seems to be a somewhat separate layer in the LibreOffice community
considering that 42 members were not listed as code contributors and were
active exclusively on the QA mailing list.

Social network analysis suggests that in the LibreOffice community most
members form a large group spanning mailing lists and issue tracker. Most
connections are created by a single unrepeated act but such unrepeated
acts are a smaller percentage of all communications compared with previous
case studies. Furthermore, a small group of individuals is highly connected
and highly engaged in communication activities. Much fewer than 1% (i.e.
0.0601%) of community members have a higher than average betweenness
centrality value, and those values are not particularly high, which suggests

5.4. LIBREOFFICE 179

Figure 5.45: LibreOffice QA team graph clusters—the size of each vertex is
given by its betweenness centrality value.

Ao
3
iy
YT £y

that information flow in the network is not particularly vulnerable. The QA
cluster analysis showed that QA members communicate both among them-
selves, in a somewhat decentralised manner, as well as directly with people
contributing to other project activities.

The subgraph formed of members active on the QA mailing lists displays
similarities to the whole LibreOffice network in the sense that most partici-
pants are included in a large group, within which a small number of members
are highly connected and engaged in communication.

180 CHAPTER 5. CASE STUDIES

Chapter 6

Conclusions and Discussion

In this chapter we will conduct a comparative analysis of the case studies in
order to test and refine the set of hypotheses proposed after the analysis of
the pilot case study. Furthermore, general conclusions will be discussed as
well as possible threats to validity and topics for future research.

6.1 Comparative Analysis

The main goal of this research is to investigate the relation between formal
QA adoption and the structure of FLOSS communities. In order to investi-
gate this, a study was conducted in two phases:

Phase I: A pilot case study was chosen in order to refine the research
methodology and propose a set of hypotheses describing QA activi-
ties within a FLOSS project. The Mozilla community was chosen as
the pilot case study.

Phase II: The hypotheses proposed in Phase I were then tested in the con-
text of four other case studies: Ubuntu, Plone, KDE and LibreOffice.

Having carried out the analysis of each case study in the second phase of
this research, it is now time to revisit each hypothesis and either confirm it
or modify it in light of the case study findings.

The first hypothesis states that a smaller percentage of peripheral mem-
bers are engaged in conversation than in posting bugs. In the Mozilla com-
munity about 4% e-mails and about 1% of comments, as opposed to about
20% of bugs, were sent by individuals who contributed with only one ac-
tion on each channel (i.e. sent only one e-mail, posted only one comment

181

182 CHAPTER 6. CONCLUSIONS AND DISCUSSION

or opened only one bug). In the Ubuntu community about 2% of all e-
mails, about 10% of QA e-mails, about 3% of comments and about 12% of
bugs were contributed by such occasional members. In the Plone community
about 2% of all e-mails, about 22% of QA e-mails, about 1% of comments
and about 12% of bugs were contributed by such occasional members. In the
KDE community about 3% of all e-mails, about 5% of QA e-mails, about 3%
of comments, and about 13% of bugs were contributed by such occasional
members. In the LibreOffice community about 1% of all e-mails, about 6% of
QA e-mails, about 3% of comments, and about 27% of bugs were contributed
by such occasional members.

These findings suggest that a very small percentage of community partic-
ipants contribute to the project by sending only one e-mail or posting only
one comment. This hypothesis is not validated by our findings for the Plone
QA mailing list, but we suspect a high volume of spam may be the reason for
that. The contribution of members who post only one bug seems to be over
10% for all case studies but higher then average in the LibreOffice project.
One reason for this might be that LibreOffice is a software program that tar-
gets a wider range of end-users who are not necessarily technically skilled. In
conclusion, a smaller percentage of peripheral members tends to be engaged
in conversation than in posting bugs.

Hypothesis 1 (supported): A smaller percentage of peripheral members
are engaged in conversation than in posting bugs.

The second hypothesis states that activity on the mailing list is inde-
pendent from activity on the other communication channels and that traffic
on the QA mailing list displays an irregular pattern of spikes and troughs.
In the Mozilla projects e-mail activity peaked in 2009 while comment and
bug activity showed constant growth over the period. In the Ubuntu project
QA e-mail activity displayed multiple spikes that were not correlated with
activity on all Ubuntu mailing lists. Bug and comment activity showed less
pronounced variation. In the KDE project, activity on the QA mailing list
displayed slight variation with spikes throughout the period of adoption. Bug
and comment activity also displayed an irregular pattern as opposed to ac-
tivity on all mailing lists which showed a consistent growth until 2009 after
which almost no change was found. In the Plone and LibreOffice projects
QA activities were only formally adopted in 2011 providing insufficient data
for such a comparison. Thus the findings seem to support Hypothesis 2a and
2b.

Hypothesis 2a (somewhat supported): Activity levels on the QA mail-
ing lists are independent of activity levels on other communication

6.1. COMPARATIVE ANALYSIS 183

channels.

Hypothesis 2b (somewhat supported): Traffic on the QA mailing lists
does not show a consistent upward trend.

The third and fourth hypotheses characterise contributors active on the
QA mailing lists. In the Mozilla project the average number of sent e-mails
was 11.28 (sd = 37.23) where only about 17% participants sent more than
eleven e-mails. In the Ubuntu project the average number of sent e-mails
was 5.63 (sd = 22.5) where only about 15% of participants sent more than
six e-mails. In the Plone project the average number of sent e-mails was
2.98 (sd = 7.91) where only about 19% participants sent more than three
e-mails. In the KDE project the average number of sent e-mails was 7.88
(sd = 16.39) where only about 20% participants sent more than eight e-
mails. In the LibreOffice project the average number of sent e-mails was
10.67 (sd = 37.16) where only about 16% participants sent more than eleven
e-mails. These findings suggest that only a small percentage (less than 20%)
of the community is engaged higher than average activity, thus supporting
Hypotheses 3a and 3b.

Hypothesis 3a (supported): A small group of people is highly active on
the QA mailing lists. These groups tend to represent less that 20% of
the mailing list participants.

Hypothesis 3b (supported): A large percentage of QA mailing list par-
ticipants send e-mails only very occasionally.

The fourth hypothesis describes the structure of the communities. In the
Mozilla community of 1,132,413 arcs, 779,313 (about 69%) had a value of
1; in other words, most of the connections were single, unrepeated acts of
communication from one participant to another. In the Ubuntu community
of 1,530,150 arcs, 1,206,837 (about 79%) had a value of 1. In the Plone
community of 61,686 arcs, 43,172 (about 70%) had a value of 1. In the KDE
community of 506,090 arcs 356,181 (about 70%) had a value of 1. In the
LibreOffice community of 44,682 arcs 30,647 (about 69%) had a value of 1.
These findings support the hypothesis that almost two thirds of connections
within the communities’ graph are created by single acts of communication
from one participant to another.

Hypothesis 4 (revised): At least two thirds of connections within a project’s
graph are created by single acts of communication from one participant
to another.

184 CHAPTER 6. CONCLUSIONS AND DISCUSSION

Hypothesis 5 states that the community consists of large groups of peo-
ple who span both mailing lists and issue tracker. The Mozilla community
contains 786 components, of which the biggest component contains 148,180
vertices or approximately 99% of the community. The Ubuntu community
contains 2,796 components of which the biggest component contains 291,357
vertices or about 99% of the community. The Plone community contains 99
components of which the biggest component contains 9,362 vertices which or
about 99% of the community. The KDE contains 716 components of which
the biggest component contains 88,502 vertices or about 99% of the com-
munity. The LibreOffice community 111 components of which the biggest
component contains 9,842 vertices or about 99% of the community. Most
communities consisted of a large component containing approximately 99%
of vertices and a number of small components containing between one and
three vertices. However, a particularity was observed in the case of Ubuntu
where the smaller components contained up to 19 vertices which could mean
that groups of individuals are working separately from the rest of the commu-
nity. Studying this particularity in future research could provide important
insights regarding various FLOSS community structures. These findings sup-
port Hypothesis 5.

Hypothesis 5 (supported): The community consists of a large group of
people that spans both issue tracker and mailing lists.

Hypotheses 6a and 6b state that less than one tenth of community partic-
ipants are highly connected while more than a third have connections with
only one other participant. In the symmetrized graph of Mozilla approx-
imately 90% of the community had a degree value between 0 to 10 while
about 40% had a degree value of 1. About 9% of individuals had connec-
tions with more than eleven (i.e. the average degree) other individuals. In
the Ubuntu symmetrized graph approximately 89% of the community had
a degree value between 0 to 10 while about 34% had a degree value of 1.
About 13% of individuals had connections with more than eight (i.e. the
average degree) other individuals. In the Plone symmetrized graph approx-
imately 85% of the community had a degree value between 0 to 10 while
about 31% had a degree value of 1. About 15% of individuals had connec-
tions with more than ten (i.e. the average degree) other individuals. In the
KDE symmetrized graph approximately 90% of the community had a degree
value between 0 to 10 while about 43% had a degree value of 1. About 11%
of individuals had connections with more than nine (i.e. the average degree)
other individuals. In the LibreOffice symmetrized graph approximately 93%
of the community had a degree value between 0 to 10 while about 42% had

6.1. COMPARATIVE ANALYSIS 185

a degree value of 1. About 10% of individuals had connections with more
than seven (i.e. the average degree) other individuals. In conclusion the per-
centage of individuals connected to a higher than average number of other
individuals varies between 9 and 15%. As a result, we modify Hypothesis
6a to state that fewer than 15% of community members are connected to a
higher than average number of individuals. Similarly, our findings support
Hypothesis 6b only partially as in the case of Plone about 31% of vertices
had a degree value of 1, so we modify Hypothesis 6b to reflect this.

Hypothesis 6a (Revised): Fewer than 15% of the community members
are connected to a higher than average number of other individuals.

Hypothesis 6b (Revised): More than 30% of community participants have
connections with only one other participant.

Hypothesis 7 states that more than half of community participants are
connected to only one other member from whom they receive messages. The
approximate percentages of vertices with an indegree value of 1 in the directed
graphs of the projects are as follows: Mozilla 52%, Ubuntu 50%, Plone 33%,
KDE 50%, LibreOffice 52%. These findings support Hypothesis 7 with the
exception of Plone, where only about a third of community participants are
connected to only one other community member from whom they received
messages.

Hypothesis 7 (Revised): More than one third of community participants
are connected to only one other community member from whom they
received one or more messages.

Hypothesis 8 states that almost one third of community participants are
connected to only one other individual to whom they had sent messages.
The approximate percentages of vertices with an outdegree value of 1 in the
directed graphs of the projects are as follows: Mozilla 32%, Ubuntu 38%,
Plone 27%, KDE 28%, LibreOffice 34%. These findings require us to revise
our hypothesis.

Hypothesis 8 (Revised): More than one quarter of community partici-
pants are connected to only one other community member to whom
they had sent one or more messages.

Hypothesis 9 states that more than half of community participants form a
strongly connected subnetwork. The directed Mozilla graph contained 57,781
strong components of which the largest contained about 61% of vertices. The

186 CHAPTER 6. CONCLUSIONS AND DISCUSSION

corresponding numbers for the other projects were: Ubuntu 94,586 and 68%,
Plone 4,236 and 55%, KDE 43,388 and 51%, and LibreOffice 3,911 and 61%.
These findings seem to support Hypothesis 9 which states that more than
half of community participants form a strongly connected subnetwork.

Hypothesis 9 (Supported): More than half of community participants
form a strongly connected subnetwork.

Hypothesis 10 states that less than 1% of vertices have a higher than
average betweenness centrality score. In all the case studies less than 1%
of vertices had a higher than average betweenness centrality score, which
supports the hypothesis.

Hypothesis 10 (Supported): Less than 1% of vertices have a higher than
average betweenness centrality score.

Hypothesis 11 states that the community graph does not contain a small
number of people brokering information between QA team members and the
rest of the community. For each case study included in this research, social
network analysis techniques included shrinking non-QA related clusters and
analysing the communication patterns between members of the QA teams
and the shrunk clusters. The findings suggest that communication is some-
what decentralised in the sense that participants communicate directly with
members of other layers of the community, thus supporting Hypothesis 11.

Hypothesis 11 (supported): The community graph does not contain a
small number of people brokering information between the QA team
and the rest of the community.

Hypothesis 12 states that QA team members form a large group of peo-
ple working together. In all the case studies, the QA team displayed similar
characteristics to the whole network but at a smaller scale. The Mozilla
and Ubuntu QA teams were formed of a large component containing over
96% and 94% of vertices. In the case of Ubuntu, the largest remaining com-
ponents contained 19, 13 and ten vertices while the remainder contained
between one and seven vertices. In the Mozilla case all the remaining com-
ponents contained fewer than four vertices. One possible reason for these
small components could be that some messages are actually spam messages.
Another reason could be that the messages received replies after the dataset
was retrieved or that the messages were posted by members not active previ-
ously as they might be peripheral or new members who did not yet have the
chance to create relations with more active users. In the Plone, KDE and
LibreOffice communities the QA teams were formed of a large component
containing all vertices. These findings thus support Hypothesis 12.

6.1. COMPARATIVE ANALYSIS 187

Hypothesis 12 (supported): The QA team forms a large group of people
working together.

Hypothesis 13 and 14 state that more than a third of QA team members
create only one connection by receiving and sending messages respectively.
In the Mozilla QA team about 37% of individuals created only one con-
nection by receiving messages and about 34% created only one connection
by sending messages. The corresponding percentages for the other projects
were: Ubuntu 47% and 31%; Plone 55% and 68%; KDE 31% and 39%; and
LibreOffice 33% and 25%. In view of the wide variation in the percentages
Hypotheses 13 and 14 are not supported. Hence, further research should in-
vestigate the factors influencing these high values for the Ubuntu and Plone
communities.

Hypothesis 13 (Not supported): About one third of the QA team mem-
bers create only one connection by receiving messages.

Hypothesis 14 (Not supported): About one third of the QA team mem-
bers create only one connection by sending messages.

In the Mozilla community about 59% of community members were not
assigned as bug fixers and about 9% of the 59% were active on the more tech-
nical Mozmill mailing list. However the dataset did not allow the inspection
of members’ activity on other mailing lists.

The following analysis should produce different percentages compared to
the analysis of QA list participants’ activity on other channels as in this case,
only members who created at least one connection were included. In the
Ubuntu community members who were not listed as code contributors and
were not active on other mailing lists represented about 58% of individuals
while code contributors represented about 2%. For Plone the corresponding
figures were 3% and 35%; for KDE 7% and 45%; and for LibreOffice 36%
and 21%. These findings suggest that in the Plone and KDE communities
a very small percentage of people are performing exclusively QA related
activities. On the other hand, in the Ubuntu and LibreOffice communities
the percentage of individuals performing exclusively QA tasks seems to be
considerably higher. A reason for these variations might be the target user of
the software products in the sense that KDE and Plone are aimed at a more
technically “savvy” end-user while Ubuntu and LibreOffice are dedicated to
a more technically diverse user-base. Another factor that could influence
this aspect could be the size or the history of the QA team itself. In other
words, it could be the case that when implemented in a FLOSS project,
QA is performed by individuals who initially have various roles within the

188 CHAPTER 6. CONCLUSIONS AND DISCUSSION

community but as QA practices mature they slowly shift to an exclusively
QA role. These suppositions are not confirmed by this study, however, but
could provide useful insights if investigated in future research. In conclusion,
Hypotheses 15 is not supported.

The percentage of individuals listed as code contributors who are active
on the QA mailing lists seems to be somewhat inversely proportional with the
number of individuals who are performing exclusively QA activities. In other
words, in the Plone and KDE communities the number of code contributors
active on the QA mailing list is very high compared to the Ubuntu and
LibreOffice communities. Thus Hypothesis 16 is also not supported.

Hypothesis 15 (Not supported): More than half of the individuals ac-
tive on the QA mailing lists are not active on other mailing lists and
are not code contributors.

Hypothesis 16 (Not supported): More than one third of the individuals
active on the QA mailing lists are listed as code contributors.

Hypothesis 17 states that size, degree and betweenness values of temporal
subgraphs do not display a consistent growth over time but display a more
irregular pattern. For each case study the sub-networks did not display a
consistent growth for neither of the metrics (i.e. size, degree and between-
ness values). However, the Plone and LibreOffice QA teams were formally
adopted in 2011 and so did not provide enough data for a precise assessment.
Furthermore, the Plone QA team was only active in three six-month time
frames out of the five frames for which data was retrieved. Hence, Hypothesis
17 is only supported for the Ubuntu and KDE communities.

Hypothesis 17 (Somewhat supported): Size, degree and betweenness
values of temporal subgraphs do not display a consistent growth over
time but display a more irregular pattern.

6.2 Answers to the Research Questions

Q1: Is QA a separate layer in FLOSS communities?

This research has investigated whether QA has become a separate cate-
gory of contributors in FLOSS communities. The five communities studied
have dedicated communication channels, wikis and other resources for pro-
viding QA related information. However, only the Ubuntu and LibreOffice

6.3. DISCUSSION AND LIMITATIONS 189

communities displayed a somewhat separate QA layer where a large percent-
age of its members do not appear to be contributing code or communicating
on other mailing lists. In the other analysed communities a much smaller per-
centage of users were performing exclusively QA related activities; instead,
they had multiple roles within the project. However, it is possible that non-
QA activities were performed in different time frames than the ones in which
the contributors were part of the QA team. Further study is required to
clarify this point.

Q2: What are the communication patterns between QA members as well
as with other project participants?

All communities’ graphs displayed a large group of people spanning both
mailing lists and issue tracker. Previous research [8] has suggested that
FLOSS networks contain a small number of individuals with significantly
higher connections than the network’s average (called hubs). Our case studies
supported this argument, as we found a very small number of individuals with
a high degree compared to the network’s average. Similarly, in the QA teams
studied a small number of vertices had a higher degree than average. Within
these teams, participants did not direct all communication efforts to one or
a few members who then conveyed that information to members of other
groups. Instead, QA team members seemed to communicate not only among
themselves but also directly with members of other groups. Furthermore,
fewer than 1% of community members had a higher than average betweenness
centrality value, and those values were not particularly high, which suggests
that information flow in the networks was not particularly vulnerable to a
small number of individuals leaving the community.

6.3 Discussion and Limitations

6.3.1 Limitations

The main goal of this thesis is to start investigating the impact of QA adop-
tion on the structure of FLOSS communities by proposing a set of hypotheses
generated from the findings of a preliminary case study. These hypotheses
were then tested on four other cases. Considering the diversity of FLOSS
projects, some might argue that this data sample is not sufficient for drawing
conclusions applicable to all FLOSS communities. This research is structured
according to the Mockus model [59] in which hypotheses are formulated after
the analysis of a preliminary case study and then validated by analysing an-

190 CHAPTER 6. CONCLUSIONS AND DISCUSSION

other case study. Like the Mockus study, this thesis does not aim to create
a theory that can be applied to all FLOSS communities. Furthermore, the
purpose of this research is not to create a fail proof method for FLOSS com-
munities looking to adopt formal QA practices. Assessing whether the quality
of FLOSS projects has improved or not after implementing QA is also not
within the scope of this research; such assessment is difficult, although pre-
vious studies have attempted to create a methodology for measuring FLOSS
quality [74].

The case studies taken into consideration for this study do not cover all
possible configurations of FLOSS projects with respect to size, programming
language, targeted end users and so on. However, the case studies included
projects of various size, programming language, history and target user. The
five case studies should thus offer enough basis for proposing a set of hypothe-
ses that can form the foundation for future studies. Furthermore, Plone and
LibreOffice cases did not provide enough data in order to determine activity
tendencies over the years, as LibreOffice is a relatively new FLOSS project
and Plone only started implementing QA formally in 2011. It might be a
useful exercise to note differences between projects that formally adopted
QA recently with projects that have a longer experience of implementing
QA practices.

The datasets used for this study consist of mailing lists, issue trackers and
contributor lists downloaded from Ohloh. Mailing list data was downloaded
both using an open source tool called MailingListStats as well as Python
scripts written for that purpose. However, the mailing list datasets were
not complete due to the fact that some mailing lists were private, some were
archived in a format not compatible with the tools used for retrieval and some
e-mails contained bad html that could not be parsed, double postings and so
on. For a full list of mailing lists analysed and retrieved please consult Ap-
pendix B on page 212. In addition, the list of code contributors was retrieved
from a third party (i.e. a well known and widely used online repository of
FLOSS related information) and it may contain some inconsistencies.

Another issue that should be addressed is the discrepancies between the
number of unique QA contributors considered in the cluster analysis of the
whole community and the number of individuals active on the QA mailing
lists. The number of QA contributors was calculated considering only mem-
bers with names containing more than four characters and that had at least
one connection in the community (i.e. at least one individual replied to their
message or they replied to at least one individual). Names containing less
that four characters (i.e. Tom, John, Tim, etc.) are far too common and
the chance of multiple individuals posting with the same name was rather
high and as a consequence these individuals were added to cluster 4 (i.e. the

6.3. DISCUSSION AND LIMITATIONS 191

cluster containing participants who are neither code contributors nor QA
contributors or who could not be categorised). Furthermore, it is possible
for multiple individuals with names containing more than four characters
to be contributing using the same name. Therefore, future studies should
consider more efficient algorithms for identifying unique contributors.

Replies were used for creating the graph associated with each FLOSS
community. Fields such as “<Replied-to>" were used for mailing lists while
for issue trackers an individual was considered as replying to the individual
who had previously posted under the same thread. However, in the case of
mailing lists it is possible for an individual to reply to one e-mail and quote
another. Another issue is that sometimes an individual would reply to more
than one member in the same e-mail, in which case for the purposes of this
study only the first addressee’ e-mail address was taken into account. The
same situation might occur on issue trackers in the sense that one member
could be in fact replying to a member that had posted something much earlier
in the thread history.

Data cleaning was performed manually in the pilot case study by removing
all double postings and spam from the QA mailing lists. The names of
contributors active on the QA mailing lists were also unified manually after
going through the data. Data cleaning for the other four case studies was
automated and consisted in unifying contributor names using a list of code
contributors retrieved from Ohloh as follows: names contained in the issue
tracker and the mailing list were compared with names from code repositories
and unified. A potential thread to validity is the fact the individuals may use
various aliases to contribute to the projects based on communication venue
or simply change their alias over a period of time.

Spam messages were not included in the social network analysis, as the
dataset used for social network analysis consisted only from individuals who
created at least a connection within the network and it is safe to assume that
people do not reply to spam messages. Removal of double postings was not
performed. However each e-mail has a unique id and double postings should
only occur when the same e-mail is posted to more than one list and has
multiple ids. For the issue tracker data it is possible that comments were
posted more than once due to personal mistakes but the number should not
be large enough to influence the results of this study.

The QA definition used for the scope of this research was proposed after
reviewing literature describing QA activities and QA contributors’ responsi-
bilities within proprietary software development, and comparing the results
with QA activities described on the QA website associated with each case
study. We must therefore acknowledge the possibility that some QA activities
performed by QA contributors were not listed on the appropriate websites or

192 CHAPTER 6. CONCLUSIONS AND DISCUSSION

that QA contributors do not actually perform some of the activities that were
in fact listed in the appropriate websites. As this may be the case, future
studies should include triangulation with regard to QA practices and conduct
qualitative research (i.e. interviews) in order to validate this definition.

Another limitation of this study is that community members may be
using private communication channels such as instant messaging, private IRC
channels, private e-mails or even live meetings or phone calls. They may also
be performing QA activities on public but non-archived channels such as IRC.
The existence of such undisclosed or unarchived communication may bias the
conclusions of this study. However, the premise of FLOSS communities is
that information should be available for anyone and as such, we believe that
private communication is limited.

With respect to social network analysis techniques applied on each data
set temporal analysis was performed using six-month windows. However,
considering the dynamic nature of communities, these windows may be too
large in order to describe an accurate evolution of the networks state. Perhaps
the greatest impact that temporal analysis has is on centrality values, which
can be highly skewed in aggregated forms of a graph. However, considering
the small sizes of sub-networks associated with each time frame and the
centrality values for the aggregated form, it was possible to observe general
trends.

6.3.2 Future Research

The goal of this research was to investigate the impact of formal QA adop-
tion on FLOSS communities’ structure. The findings seem to suggest that
within some communities, a consequence of QA adoption is the emergence
of a new layer of contributors. The members of this layer seem to commu-
nicate both among themselves as well as with members of other layers of
contributors. However, the topics of communication between various partic-
ipants were beyond the scope of this study and thus message contents were
not analysed. A possible direction for future studies would be applying text
mining techniques in order to deepen the understanding of tasks performed
by QA contributors as well as the extent to which developers participate
in the QA process. For example, it would be useful to find out what are
developers discussing on the QA dedicated mailing lists, what are the QA
contributors discussing on the issue trackers, and which contributors are ask-
ing questions and which are answering. Furthermore, it would be interesting
to compare topics of communication among various FLOSS communities in
order to reveal whether each community has specific QA related topics or all
communities share similar topics. This study also revealed that the majority

6.3. DISCUSSION AND LIMITATIONS 193

of connections within communities are created by a single unrepeated act of
communication, in other words a large number of individuals sent only one
message or posted only one comment and could be regarded as occasional
contributors or members of the so called “periphery”. Considering the large
contribution of these members to projects it would be worth investigating
the contents of their messages in order to investigate the nature of their con-
tribution (i.e. are they asking questions related to the project or are they
offering more details regarding a bug?).

Another interesting finding revealed by this research is that most FLOSS
activity did not show a consistent growth over time but displayed a some-
what more irregular pattern with spikes and troughs. Future research should
investigate the reasons behind these irregularities. Identifying the factors
behind these irregularities could prove valuable for FLOSS practitioners as
they influence activity and thus participation. These factors could be simple,
such as the release of a new version, or more complex such as the release of
a competing product or even a marketing campaign.

One of the threats to the validity of this research is the fact that com-
munity members might be communicating on private channels (i.e. instant
messaging services, IRC, Skype meetings, etc.) or conducting activities which
are not tracked/documented. As a result, a direction for future studies would
be using qualitative research in order to confirm the findings of this thesis by
conducting interviews with key QA contributors or surveys. Furthermore,
as previous studies have focused on the profiles of FLOSS code contributors,
future research could investigate the profiles of QA contributors in order to
investigate whether QA adoption has created new contribution opportunities
for non-technical community members. Another limitation is the relatively
small sample of FLOSS communities used for this research. As a result,
future studies could confirm the findings by repeat this investigation on a
larger or more varied dataset.

Future research can also focus on applying a more varied range of SNA
techniques. The time frames chosen for the temporal analysis conducted in
this research consisted of six-month windows. Potentially, six months can be
a too wide of a time frame and thus future studies could consider smaller
windows. Furthermore, in this research, only betweenness centrality values
have been computed in order to determine the importance of various vertices
in the diffusion of information within the network. Future research could
attempt to compute for example, outdegree and indegree centrality values in
order to compare central figures based on the number of people they connect
to by sending messages with central figures based on the number of people
they connect to by receiving messages. In other words, outdegree centrality
might determine individuals who are looking to communicate with as many

194 CHAPTER 6. CONCLUSIONS AND DISCUSSION

other individuals as possible as opposed to indegree centrality which might
determine “popular” individuals who receive messages from a high number
of community members. In this research, the information flows have been
investigated from the perspective of betweenness centrality, however, future
research should undertake a more detailed analysis of this aspect by identi-
fying potential risks and weaknesses. Another aspect that should be investi-
gated is the actual nature and particularities of FLOSS networks, for exam-
ple determining if they are complex networks as they display some common
characteristics such as structural complexity, network evolution, connection
diversity, dynamical complexity and node diversity [81].

196 CHAPTER 6. CONCLUSIONS AND DISCUSSION

Appendix A

A.1 Preliminary Analysis

Table A.1: Top 100 FLOSS projects (www.ohloh.net) — general statistics

Project Current Total Lines of Project Start
contributors contributors code

Mozilla Fire- 867 2,096 8,207,780 April, 2002

fox

MySQL 101 1,180 1,423,109 July, 2000

PHP 166 873 3,782,756 November, 1997

Linux Kernel 2,973 10,665 15,382,092 February, 2002

Ubuntu 57 506 974,209 September, 1996

Apache 56 397 19,603,114 September, 2000

OpenOffice

Thunderbird 171 726 1,179,797 March, 1998

GNOME 1,035 4917 7,837,564 January, 1997

Debian 1,060 4,501 67,996,161 April, 1996

GNU/Linux

PostgreSQL 13 61 659,766 July, 1996

Database

Server

WordPress 15 46 176,755 April, 2003

Inkscape 26 145 537,694 January, 2006

Perl 124 1,120 4,552,672 December, 1987

KDE 776 4,204 24,421,852 April, 1997

NetBeans 97 672 9,816,195 January, 1999

IDE

VirtualBox 2 8 3,367,817 October, 2002

OSE

Continued on next page

197

198 Appendix A

Project Current Total Lines of Project Start
contributors contributors code

phpBB 45 133 423,481 February, 2001

MediaWiki 154 344 931,141 April, 2003

Drupal (core) 88 146 833,347 May, 2000

Amarok 49 385 264,833 September, 2003

GNU Com- 181 486 6,340,668 November, 1988

piler Collec-

tion

Python pro- 63 186 867,730 August, 1990

gramming

language

X.Org 180 1,055 2,238,940 August, 1999

Chromium 914 1,304 6,557,593 July, 2008

(Google

Chrome)

GDB 102 313 2,892,581 April, 1999

Wine 143 1,338 2,445,402 June, 1993

GTK+ 211 947 737,749 November, 1997

Funambol 0 9 8,089 August, 2008

Client for

Mozilla

Thunderbird

Apache 35 112 1,634,476 July, 1996

HTTP Server

Subversion 39 169 491,569 March, 2000

Firebug 17 33 474,801 August, 2007

Bash 1 2 188,589 August, 1996

PuTTY 4 8 87,870 January, 1999

GIMP 92 474 726,078 January, 1997

phpMyAdmin 250 510 278,267 May, 2001

Vim 1 14 1,716,310 December, 1999

TortoiseSVN 8 163 252,739 April, 2003

Git 201 1,045 390,837 April, 2005

GNU grep 9 33 9,272 November, 1998

VLC media 124 546 610,068 August, 1999

player

Continued on next page

199

A.1. PRELIMINARY ANALYSIS
Project Current Total Lines of Project Start
contributors contributors code

sudo 1 4 95,772 February, 1993
GNU tar 4 18 20,460 November, 1990
Eclipse Plat- 108 333 2,729,367 May, 2001
form Project

jQuery 81 214 25,926 March, 2006
OpenSSH 10 81 110,260 September, 1999
GNU Make 2 22 33,351 April, 1988
7-Zip — - - -
GNU Core 33 118 78,076 October, 1992
Utilities

Wget 20 80 36,421 December, 1999
Pidgin 34 699 354,435 March, 2000
GNU GRUB 39 79 246,329 December, 2002
FileZilla 2 15 250,305 June, 2001
CakePHP 99 216 467,203 May, 2005
OpenSSL 5 17 423,088 December, 1998
GNU Screen 6 30 43,231 April, 2003
rsync 1 13 47,403 June, 1996
Notepad++ 1 4 251,840 April, 2009
Apache Tom- 14 46 4,874,751 May, 2001
cat

Trac 11 36 76,182 August, 2003
man - - - -
Subclipse 4 25 141,904 June, 2003
GNU findu- 5 20 17,899 February, 1996
tils

Junit 37 63 27,762 December, 2000
SQLite 0 25 135,231 May, 2000
MPlayer 18 134 451,705 February, 2001
bzip2 - - - -
Apache Ant 5 48 262,186 January, 2000
ImageMagick 4 8 752,227 September, 2009
Samba 70 263 1,438,986 December, 2006
Wireshark 25 64 2,510,572 September, 1998
GnuPG 8 19 196,000 November, 1997

Continued on next page

200 Appendix A

Project Current Total Lines of Project Start
contributors contributors code

Ruby 44 85 905,440 January, 1998
Web Devel- 1 3 56,683 January, 2004
oper (Browser
Add-on)
GNU sed 3 11 23,538 October, 2004
Eclipse Java 37 112 2,087,369 May, 2001
Development
Tools (JDT)
Apache 40 128 40,657,564 September, 2003
Maven 2
Hibernate 53 140 1,041,113 January, 2003
log4j 3 33 79,986 November, 2000
Common 1 8 550,886 May, 2000
Unix Print-
ing System
(CUPS)
GNU Emacs 211 529 1,679,862 April, 1985
LaTeX 6 20 50,247 August, 1997
Audacity 10 59 161,441 November, 2001
Spring 74 164 1,153,214 March, 2004
Framework
cURL 70 185 158,647 December, 1999
Django 178 221 154,263 July, 2005
Ruby on Rails 796 2,058 161,272 November, 2004
WinSCP 2 4 384,712 July, 2003
Mercurial 115 498 77,856 May, 2005
Nmap Secu- 17 45 13,428,827 December, 2006
rity Scanner
Ffmpeg 260 908 646,540 December, 2000
Adblock Plus 3 11 15,309 January, 2006
Scripting 0 2 1,670,314 March, 2009
Layer for
Android

Continued on next page

A.1. PRELIMINARY ANALYSIS 201

Project Current Total Lines of Project Start
contributors contributors code

GNU C Li- 92 227 1,171,616 April, 1989

brary

GNU Auto- 12 100 38,351 March, 1992

conf

GNU binutils 73 227 2,687,113 May, 1999

Postfix - - - -

Facebook 2 6 6,037 May, 2008

Plugin for

Pidgin

Cygwin 8 43 1,397,863 February, 2000

LAME (Lame 3 33 116,710 November, 1999

Ain’t an MP3

Encoder)

GNU Diff 6 16 9,668 July, 1988

Utilities

Table A.2: Top 100 FLOSS projects (www.ohloh.net) — QA adoption

Project QA Description

Mozilla Fire- Yes QA dedicated mailing lists found.

fox

MySQL Yes QA dedicated forum found. Job listings from 2006
for QA engineer positions.

PHP Yes QA dedicated mailing list found.

Linux Kernel Yes Kernel-testers mailing list found; posts are related
to bugs. Relies on community of testers to en-
counter bugs.

Ubuntu Yes QA dedicated webpage and three mailing lists
found.

Apache Yes QA dedicated mailing lists found (mailing lists

OpenOffice could not be retrieved as link was not working).

Thunderbird Yes QA dedicated wiki, irc channel and team found.

GNOME Yes DBug squad dedicated communication channels
found (listed as QA).

Debian Yes Dedicated QA website and wiki describing specific

GNU/Linux activities found.

Continued on next page

202 Appendix A

Project QA Description

PostgreSQL Yes Testing dedicated mailing list for posting test re-

Database sults and potential issues.

Server

WordPress Yes Testing dedicated mailing list found. Testers in-
stall nightly builds and perform testing tasks.

Inkscape Yes Testing dedicated mailing list found.

Perl Yes CPAN tester community contributes by testing.
CPAN is comprehensive perl archive network
(modules and extensions).

KDE Yes QA team revived in april 2012. Active in the early
2000s; later becoming inactive.

NetBeans Yes NetCat community handles beta testing.

IDE

VirtualBox Yes A large test laboratory at Oracle’s facilities and

OSE a dedicated test team in 24/7 operation ensures
that code quality remains excellent: dozens of test
machines perform automated tests to spot regres-
sions and monitor performance.

phpBB Yes QA mailing list, sub forum found. Not much
activity on topic. Area 51 development board,
phpBB’s testing ground of bleeding edge devel-
opmental code, to discuss development and code
changes, RFCs, future versions of phpBB, and
also sneak peeks of currently available develop-
ment versions of phpBB.

MediaWiki Yes QA dedicated wiki found. QA practices employed.
QA dedicated mailing list was not found.

Drupal (core) Yes QA mailing list not found. QA has a dedicated
website, group, etc.

Amarok Yes QA is recognised as a separate form of contribu-
tion. QA dedicated channels were not found.

GNU Com- Yes No dedicated QA mailing list found. Two mailing

piler Collec- lists for submitting test results used by developers

tion found.

Continued on next page

203

A.1. PRELIMINARY ANALYSIS

Project QA Description

Python pro- Yes No dedicated QA mailing list found. Testing list

gramming used by developers found.

language

X.Org Yes No dedicated QA mailing list found. Webpage
describing testing methodologies found. Xtest is
an extension.

Chromium Yes No dedicated QA mailing list found.

(Google Specific instructions = for testers found

Chrome) http://www.chromium.org/getting-involved.

GDB Yes Test result reporting mailing list found. Used
mainly by developers.

Wine Yes Test dedicated mailing list used mainly by devel-
opers to post test results. QA dedicated page
found http://www.kegel.com/wine/qa/. No QA
dedicated communication channel found.

GTK+ Yes No dedicated QA mailing list found. 2—4 individ-
uals are responsible for bug testing, triaging and
patch testing: https://live.gnome.org/GtkTasks.

Funambol - Website not working.

Client for

Mozilla

Thunderbird

Apache No All httpd release candidates are announced to a

HTTP Server mailing list prior to acceptance. Subscribers are
encouraged to test drive the candidates and sub-
mit feedback.

Subversion No No dedicated QA mailing list found. Users are
urged to submit bug reports and help with triag-
ing bugs.

Firebug No No dedicated QA mailing list found.

Bash No No dedicated QA mailing list found. Develop-
ment, translating and maintenance groups are
listed.

PuTTY No Website lists four individuals as developers. No

dedicated QA mailing list found.

Continued on next page

204 Appendix A

Project QA Description

GIMP No No dedicated QA mailing list found. Documenta-
tion list found.

phpMyAdmin No No dedicated QA mailing list found. Community
members are urged to test and open bug reports
on the issue tracker.

Vim No No dedicated QA mailing list found.

TortoiseSVN ~ No No dedicated QA mailing list found.

Git No No dedicated QA mailing list found.

GNU grep No No dedicated QA mailing list found.

VLC media No No dedicated QA mailing list found. An

player attempt to implement QA was found—
2006 (http://wiki.videolan.org/Quality ,
http://www.jbkempf.com/blog/post/2006/11/15
/VLC-QA-team). Forum threads related to
testing were found (http://forum.videolan.org/).

sudo No No dedicated QA mailing list found.

GNU tar No No dedicated QA mailing list found.

Eclipse Plat- No No dedicated QA mailing list found.

form Project

jQuery No No dedicated QA mailing list found.

OpenSSH No No dedicated QA mailing list found.

GNU Make No No dedicated QA mailing list found.

7-7ip No No dedicated QA mailing list found.

GNU Core No No dedicated QA mailing list found.

Utilities

Wget No No dedicated QA mailing list found.

Pidgin No No dedicated QA mailing list found.

GNU GRUB No No dedicated QA mailing list found.

FileZilla No No dedicated QA mailing list found.

CakePHP No No dedicated QA mailing list found.

OpenSSL No No dedicated QA mailing list found.

GNU Screen No No dedicated QA mailing list found.

rsync No No dedicated QA mailing list found.

Notepad++ No No dedicated QA mailing list found.

Apache Tom- No No dedicated QA mailing list found.

cat

Continued on next page

205

A.1. PRELIMINARY ANALYSIS

Project QA Description

Trac No No dedicated QA mailing list found.

man No No dedicated QA mailing list found.

Subclipse No No dedicated QA mailing list found.

GNU findu- No No dedicated QA mailing list found.

tils

Junit No No dedicated QA mailing list found.

SQLite No No dedicated QA mailing list found.

MPlayer No No dedicated QA mailing list found.

bzip2 No No dedicated QA mailing list found.

Apache Ant No No dedicated QA mailing list found.

ImageMagick No No dedicated QA mailing list found.

Samba No No dedicated QA mailing list found.

Wireshark No No dedicated QA mailing list found.

GnuPG No No dedicated QA mailing list found.

Ruby No No dedicated QA mailing list found.

Web Devel- No No dedicated QA mailing list found.

oper (Browser

Add-on)

GNU sed No No dedicated QA mailing list found. Website does
not provide a list of mailing lists.

Eclipse Java No No dedicated QA mailing list found.

Development

Tools (JDT)

Apache No No dedicated QA mailing list found. Testing pro-

Maven 2 cedures are described. Community members are
urged to join testing activities.

Hibernate No No dedicated QA mailing list found.

log4j No No dedicated QA mailing list found.

Common No No dedicated QA mailing list found.

Unix Print-

ing System

(CUPS)

GNU Emacs No No dedicated QA mailing list found.

LaTeX No No dedicated QA mailing list found.

Audacity No No dedicated QA mailing list found.

Continued on next page

206 Appendix A

Project QA Description

Spring No Dedicated QA team; No dedicated communication

Framework channel found.

cURL No No dedicated QA mailing list found.

Django No No dedicated QA mailing list found. De-
tailed info regarding bug triaging process
(https://docs.djangoproject.com/en/dev/internals
/contributing/triaging-tickets /#how-can-i-
help-with-triaging). Unit tests are writ-
ten when committing a new feature:
https://docs.djangoproject.com/en/dev /internals
/contributing /writing-code /unit-tests/

Ruby on Rails No No dedicated QA mailing list found. Commu-
nity is encouraged to contribute also by testing
patches.

WinSCP No No dedicated QA mailing list found.
Project seems to be developed by one per-
son with the exception of minor contri-
butions, documentation and transalations
(http://winscp.net/eng/docs/project_history).

Mercurial No No dedicated QA mailing list found. Patch con-
tributors are encouraged to add test scripts.

Nmap Secu- No No dedicated QA mailing list found. Beta ver-

rity Scanner sions are released to the development list for QA
purposes.

Ffmpeg No No dedicated QA mailing list found.

Adblock Plus No No dedicated QA mailing list found. Community
is encouraged to test beta versions.

Scripting No No dedicated QA mailing list found.

Layer for

Android

GNU C Li- No No dedicated QA mailing list found.

brary

GNU Auto- No No dedicated QA mailing list found.

conf

GNU binutils No No dedicated QA mailing list found.

Continued on next page

A.1. PRELIMINARY ANALYSIS 207

Project QA Description

Postfix No No dedicated QA mailing list found.
Facebook No No dedicated QA mailing list found.
Plugin for

Pidgin

Cygwin No No dedicated QA mailing list found.

LAME (Lame No No dedicated QA mailing list found.

Ain’t an MP3

Encoder)

GNU Diff No No dedicated QA mailing list found. Community
Utilities is urged to test releases.

208 Appendix A

Appendix B

B.1 Data Models

The Mozilla database has the simplest structure as it contains only three
tables as follows:

e bugs—bugs with the associated metadata are saved with the appropri-
ate metadata. The bug_id field is a primary key (the bug id is unique
to each bug retrieved);

e bug_comments—comments posted for each bugs are saved with the
appropriate metadata. The bug_id field references one instance (bug_id)
from the bugs table; and

e mozdbga—e-mails from QA mailing lists are saved with associated
metadata. This table is not referenced and does not reference other
tables.

The databases associated with the KDE, Ubuntu, LibreOffice and Plone
projects are structured as follows:

e a bugs table—bugs with the associated metadata are saved with the
appropriate metadata. The bug_id field is a primary key (the bug id is
unique to each bug retrieved);

e a bug comments table—comments posted for each bugs are saved with
the appropriate metadata. The bug_id field references one instance
(bug_id) from the bugs table;

e a mailing lists table—e-mails from retrieved mailing lists are saved
with associated metadata. This table is not referenced and does not
reference other tables; and

e a contributors table—code contributor associated metadata such as
nicknames and commits is saved. This table is not referenced and does
not reference other tables.

209

210

Appendix B

Figure B.1: Mozilla Database Diagram

* bug_id INT
& title VARCHAR{200)
< status VARCHAR(200)
> whiteboard VARCHAR(200)
< keywords VARCHAR(200)
& product VARGHAR(200)
2> component VARCHAR(200)
2 vsn VARCHAR{200)
< platform VARGHAR(200)
2 importance VARCHAR(200)

< assigned_to VARCHAR(200)
<» depends_on VARCHAR(200)
> blocks VARCHAR([200)

<» modified VARCHAR(20:0)

< oc_list VARCHAR(20:0)

<> ga_contact VARCHAR(200)
<» classification VARCHAR(200)
< reported_by VARCHAR(200)
< reported_at VARCHAR(200)
< semaster INT

2 target_mile VARCHAR(200) |4—

< bug_id INT
2 author VARCHAR(45)
< rapliadto VARCHAR|45)

< postdate VARCHAR|45)
<> semester VARCHAR|45)

¢ initiator INT
< author VARGHAR(200)
< repliedto VARCHAR(200)
< postdate VARCHAR(200)
< topic VARCHAR(|200)
<> notes VARCHAR(200)
<> mig_list VARCHAR(200)
> semaster INT

Figure B.2: KDE Database Diagram

* bug_id INT
> title VARCHAR(|200)
< status VARCHAR(200)
< whiteboard VARGHAR(200)
< keywords VARCHAR(200)
< product VARCHAR(200)

< ven VARCHAR(200)
<» platform VARCHAR{200)

< importance VARCHAR(200)
< target_mile VARCHAR(200)
<» assigned_to VARCHAR(200)
<» depends_on VARCHAR(200)
< blocks VARCHAR(200)

<> modified VARCHAR|200)

< co_list VARCHAR(200)

<> ga_contact VARCHAR(200)
< classification VARCHAR({200)
<> reported_by VARCHAR(200)
< reported_at VARCHAR(200)
> semaster INT

<» component VARCHAR(200) |y~

< bug_id INT
<> author VARCHAR(45)

| © repliedto VARGHAR(45)
> postdate VARCHAR(45)
> semester VARCHAR(45)

» authar VARCHAR(200)
S last_12 INT
> total_com INT
< first_com DATETIME
< last_com DATETIME
2 author_link VARCHAR(200)
& semnames VARCHAR{200)

+ message_id VARCHAR{200)
< first_date VARCHAR(20:0)
< mailing_list_url VARCHAR(200)
< subject VARCHAR(200)
> message_body VARCHAR(200)
< replied_to VARCHAR(200)

< replied_to_mail VARCHAR(200)
& author VARCHAR(200)

2 author_email VARCHAR(200)
<> semaester INT

< initiator VARCHAR200)

1 more...

B.1. DATA MODELS

Figure B.3: LibreOffice Database Diagram

¢ bug_id INT <> bug_id INT ! message_id VARCHAR(2...
< title VARCHAR({200) < authar VARCHAR({45) > first_date VARCHAR(200)
< status VARCHAR(200) < repliedic VARCHAR(45) < mailing_ist_url VARGHA....
< whiteboard VARCHAR{200) <> postdate VARCHAR(45) 4 subject VARCHAR[200)
< keywords VARCHAR{200) < semester VARCHAR(45) > message_body VARCHA...
< preduct VARCHAR(200) < replied_to VARCHAR(200)
< compongnt Y ARCHAR(200) < replied_to_mail VARGHA...
< ven VARCHAR(200) % author VARCHAR(200)
< platform YARCHAR(200) < author_email VARCHAR...
< importance VARCHAR{200) - semester INT
< target_mile VARCHAR(200) < initiator VARCHAR{45)
< assigned_to VARCHAR(200) < notes VARCHAR[45)
<> depends_on VARCHAR(200)
< blocks VARCHAR(200) ¢ author VARGHAR(200) —'
< modified VARCHAR(200) Qlast_12 INT
& ce_list VARCHAR(200) < total_com INT
> ga_contact VARCHAR(200) < first_com DATETIME
< classification VARCHAR(200) Qlast_com DATETIME
> reported_by VARGHAR(200) < author_link VARCHAR (200)
< reported_at VARCHAR| 200) < scmnames VARCHAR(200)
< semester INT
> >
R
Figure B.4: Plone Database Diagram
! bug_id INT <> bug_id INT + author VARCHAR{200)
< title VARCHAR(200) <> author VARCHAR(200) < last_12 INT
<> post_date VARCHAR(200) < post_date VARCHAR(200) < total_com INT
< Ist_mdf VARCHAR(200) i— < comment_cnt VARCHAR(200) < first_com DATETIME
< reported_by VARCHAR(200) | < replied_to VARCHAR|200) <»last_com DATETIME
<> owned_by VARCHAR(200) I <> semester INT < author_link VARCHAR200)
2 priority VARCHAR(200) | > > scmnames VARCHAR(200)
< milestone VARCHAR(200) I
< version_no VARCHAR(200) | >
< component VARCHAR(200) + message_id INT
< keywards VARCHAR (200) < first_date VARCHAR(200)
< description VARCHAR(500) < mailing_list_url VARGHAR({200)
< des_lst_mdf VARCHAR{200) *> subject VARCHAR(200)
< bug_type VARCHAR(45) < message_body VARCHAR(500)
< status VARCHAR(45) < replied_to VARCHAR(200)
< notes VARCHAR(45) < replied_te_mail VARCHAR(200)
<> des_lst_mdf_by VARGHAR(45) 2 author VARCHAR(200)
> <> author_email VARCHAR(200)
B < semester VARCHAR(200)
< initiator VARCHAR(200)
< notes VARGHAR(200)

>
S ——

211

212 Appendix B

Figure B.5: Ubuntu Database Diagram

_| ubuntu_mails v] ubuntu_bugs ¥] contributors v
»initiator VARCHAR(200) bug_id INT author VARCHAR(200)
» author VARCHAR(20:0) > reported_by VARG .. slast 12 INT
» postdate VARCHAR|200) > nicknama VARCH. .. > total com INT
> thread VARCHAR(20:0) s reported_at DATE... > first_com DATETIME
»raplied_to_dirty VARCHAR. .. » affects VARCHAR . .. »last_com DATETIME
» message VARCHAR(20:0) » status VARCHAR]... » author_link VARCHAR(200)
> notes VARCHAR(200) s importance VARC. .. » scmnames VARCHAR(200)
»mig_lst VARCHARZ00) » assigned_to VARC. ..
msg_id VARCHAR[45) » milestone VARCH. .. »
> author_mail VARCHAR{200) » description VARC...
sinreply_to VARCHAR(200) 2 maore...
»semaester INT »
s replied_to_mai VARCHAR... L
»raplied_to VARGHAR(200) T—— o
M
>] ubuntu_comments v
2 bug_id INT

s replied_to VARCHAR(45)

> replied_to_nickname VARCHAR(45)
» author VARCHAR(45)

» authar_nickname VARCHAR(45)

> post_date VARCHAR|45)

> com VARCHAR(45)

s semaster INT

B.2 Datasets

Table B.3: Retrieved LibreOffice Mailing Lists

List Name Analysed Stored Issues Encountered
Libre-graphics- 474 474 —

meeting

LibreOffice 52,601 52,293 -

Libreoffice-bugs 122,307 122,294 -
Libreoffice-commits Nan 12,603 Unknown error
Libreoffice-qa 4,608 3,381 —
Libreoffice-release 62 o7 —
Libreoffice-ux-advise 2,072 1,607 -

Totals 182,124 192,709 Nan

B.2. DATASETS

Table B.4: Retrieved KDE Mailing Lists

List Name Analysed Stored Issues Encountered

Active 6,164 6,157 -

Akademy-br 0 0 Unknown error

akunambol 30 30 -~

Amarok 33,042 11,357 -

Amarok-bugs-dist 0 0 Private list

Amarok-private 0 0 Private list

Amarok-promo 1,418 1245 -

Bugsquad 637 635 —

Bugsquad-triage 0 0 Empty list

Calligra-author 0 0 Empty list

calligra-devel 9,377 9,343 -

Campkde- 6 6 -

participants

Contour 0 0 Empty list

Digest 803 803 —

Digikam-devel 68,258 67,846 —

digikam-soc-devel 0 0 Private list

Digikam-users 0 4,850 Unknown error (data
retrieved 01/2008)

FreeNX-kNX 9,882 9836 -

Gluon 439 439 —

Gwenview-devel 0 0 Empty list

Inglude 7 7T -

k3b 282 282 -

Kalzium 1,395 1,394 -

kbabel 881 862 —

kde 0 0 Tool not compatible
with this format

kde-accessibility 0 0 Tool not compatible
with this format

kde-announce 0 0 Tool not compatible
with this format

Kde-announce-apps 5,009 4,854 -

kde-artists 0 0 Tool not compatible

with this format

Continued on next page

213

214

Appendix B

List Name

Analysed Stored

Issues Encountered

Kde-bindings

Kde-br
Kde-bretzn
kde-bugs-dist

Kde-buildsystem
kde-china

Kde-cl
kde-commits

kde-community
kde-core-devel

Kde-cvs-announce
Kde-dashboard
kde-de

kde-devel

Kde-devel-es
kde-doc-english

kde-docbook
kde-edu

Kde-edu-pt_br
Kde-el
kde-embedded
Kde-ev-board
kde-ev-marketing
Kde-ev-patrons
Kde-ev-research
Kde-ev-sprint
Kde-ev-supporters

0 0
0 0

51 51

0 0
9,254 9,220
5651 5,640
267 267
0 0

32 32

0 0

110 110

0 0

0 0

0 0
1,739 1,723
0 0

0 0

0 0

0 0

166 166
19 19

0 0

0 0

0 0

0 0

0 0

0 0

Tool not compatible
with this format
Private list

Tool not compatible
with this format

Tool not compatible
with this format
Tool not compatible
with this format
Empty list

Tool not compatible
with this format
Tool not compatible
with this format
Tool not compatible
with this format
Tool not compatible
with this format
Tool not compatible
with this format
Empty list

Private list

Private list

Private list

Private list

Private list

Continued on next page

B.2. DATASETS

List Name

Analysed Stored

Issues Encountered

Kde-events

Kde-events-ir
Kde-events-in
Kde-extra-gear

Kde-finance-apps
Kde-frameworks-
devel
kde-francophone

kde-freebsd
kde-games-bugs
kde-games-devel
Kde-graphics-devel
kde-guidelines
Kde-hardware-devel
kde-i18n-ca

kde-118n-de
kde-i18n-doc

kde-i18n-el
Kde-118n-eo

Kde-118n-fa
Kde-118n-fr
Kde-i18n-fry
Kde-i18n-it

kde-118n-1t
Kde-118n-nds
Kde-118n-nl

0 0
231 231
0 0

0 0
668 667
2,625 2,489
0 0

0 13,921

0 0

0 0
383 366
156 155
2213 2,179
0 0

0 0

0 0

0 0

0 0

0 64

0 0
229 298
0 0
410 409
292 286
0 0

Tool not compatible
with this format
Private list

Tool not compatible
with this format

Tool not compatible
with this format
Unknown error
Empty list

Tool not compatible
with this format
Tool not compatible
with this format
Tool not compatible
with this format
Empty list

Tool not compatible
with this format
Unknown error
Empty list

Tool not compatible
with this format

Tool not compatible
with this format

Continued on next page

215

216 Appendix B

List Name Analysed Stored Issues Encountered

Kde-i18n-no 73 72 -

Kde-i18n-pa 11 10 -

kde-i18n-pt 0 0 Unknown error

Kde-i18n-pt_br 0 0 Unknown error

kde-i18n-ro 608 574 —

Kde-i18n-sr 2 2 Unknown error

Kde-i18n-uk 56 56 Unknown error

Kde-i18n-vi 119 119 Unknown error

Kde-imaging 15,353 14,791 -~

KDE-india 1,164 1,155 —

KDE-Italia 152 148 Unknown error

Kde-jp 836 621 —

KDE-Kamoso 36 36 -

kde-kiosk 0 0 Tool not compatible
with this format

Kde-110n-es 2,087 2,077 —

Kde-110n-he 263 263 Unknown error

Kde-110n-hu 45 45 Unknown error

Kde-110n-ia 58 b8 —

Kde-110n-in 3 3 -

Kde-110n-kn 237 237 -

Kde-110n-si 3 3 -

Kde-110n-sw 0 0 Empty list

kde-110n-tr 202 202 -

Kde-110n-vi 171 164 —

Kde-latam 44 44 -

Kde-licensing 0 0 Tool not compatible
with this format

kde-linux 0 0 Tool not compatible
with this format

KDE-Look 0 0 Tool not compatible
with this format

kde-mac 847 798 —

Kde-metrics 0 0 Private list

kde-mexico 478 477 -

Kde-mobile 605 575 —

Continued on next page

B.2. DATASETS

List Name Analysed Stored Issues Encountered

Kde-mobile-users 263 232 —

kde-multimedia 0 0 Tool not compatible
with this format

kde-networkmanager 1,132 1,083 -~

kde-nonlinux 0 0 Tool not compatible
with this format

Kde-oldies 0 0 Private list

kde-openserver 1 0 -

Kde-partnership 0 0 Empty list

Kde-perl 1,668 1,663 -

kde-pim 0 0 Tool not compatible
with this format

Kde-policies 0 0 Tool not compatible
with this format

KDE-Press- 0 0 Private list

Announce-PL

Kde-print-devel 2973 2970 -

kde-promo 0 0 Tool not compatible
with this format

Kde-science 53 02 —

Kde-scm-interest 2,296 2271 -~

kde-sdk-devel 116 58 -

kde-services-devel 91 89 -

Kde-silk 78 78 -

Kde-soc 876 859 —

kde-solaris 0 0 Tool not compatible
with this format

kde-sonnet 74 4 -

Kde-teaching 2 2 -

KDE-Telepathy 9,358 9,332 -~

Kde-telepathy-bugs 3,727 3,727 —

Kde-testing 360 319 —

kde-usa 79 79 -

kde-usability 0 0 Tool not compatible

with this format

Continued on next page

217

218 Appendix B

List Name Analysed Stored Issues Encountered

Kde-usability-devel 630 619 -

Kde-utils-devel 982 978 -

Kde-uwg 10 10 -

Kde-ux-meeting 47 47 —

Kde-winbuild 6,982 6,935 -

Kde-windows 7,643 7,396 —

kde-women 0 0 Tool not compatible
with this format

kde-www 0 0 Private list

Kdeev-books 0 0 Tool not compatible
with this format

Kdelibs-bugs 3,524 3,524 -

Kdepim-bugs 85,384 85377 —

Kdepim-builds 0 0 Empty list

Kdepim-maintainers 3 3 -

kdepim-users 0 0 Private list

KDevelop 17,996 17,382 —

KDevelop-devel 0 20,851 Unknown error

Kexi 985 963 —

Kexi-devel 125 112 —

Kexi-pl 0 0 Unknown error

kfm-devel 0 0 Tool not compatible
with this format

Kget 4,798 4,794 -

kgraphviewer-devel 340 340 —

Khtml-cvs 0 0 Private list

kimageshop 11,897 11,697 -

Klink 138 138 -

KMyMoney 1,392 1,390 -

KMyMoney-devel 10,357 10,312 -

koffice-devel 0 0 Tool not compatible
with this format

Kompare-devel 1,296 1,294 -

kong-e 0 0 Tool not compatible

with this format

Continued on next page

B.2. DATASETS

List Name Analysed Stored Issues Encountered

konsole-devel 0 0 Tool not compatible
with this format

Konversation-devel 5,344 5,325 -

kopete-devel 0 0 Private list

Korganizer-devel 11,563 11,561 -

kpovmodeler-devel 0 0 Tool not compatible
with this format

Ksecretservice-devel 148 138 —

Kst 21,303 21,288 -

Kstars-devel 0 0 Tool not compatible
with this format

kwin 0 0 Tool not compatible
with this format

KWrite-Devel 0 0 Tool not compatible
with this format

Lokalize 6 6 —

Marble 53 53 -

Marble-bugs 2,772 2772 —

Marble-commits 2,365 2,365 -

Marble-devel 4,280 4,233 -

Massif-visualizer 67 66 —

Necessitas-devel 1,417 1,416 -

Nepomuk 4,399 4315 -

Nepomuk-bugs 1,649 1,649 -

Noatun-bugs 9 9 -

Okular-devel 15,095 15,073 -

Open-collaboration- 73 3 -

services

Owncloud 9,285 9,268 -

Parley-devel 631 630 -

Phonon-backends 733 712 —

Plasma-bugs 0 0 private

Plasma-devel 25,407 24,778 —

Qtscript-bindings 137 125 -

Quanta 0 0 Tool not compatible

with this format

Continued on next page

219

220 Appendix B
List Name Analysed Stored Issues Encountered
quanta-devel 0 0 Tool not compatible

with this format

Raptor 119 119 -

rekonq 4,219 4201 —
release-team 6,988 6,534 —
Rocs-devel 0 0 Empty list
Social-Desktop 41 41 -
Solidkreator 6 5 -
Sysadmin 0 0 Private list
taglib-devel 2,489 2,479 —
tellico-users 898 897 —
Unassigned-bugs 29,231 29,223 -
WebKit-devel 2,395 2,385 —

www-de 0 0 Private list
www-pl 0 0 Private list
Zanshin-devel 0 0 Empty list
Totals 516,377 529,488 Error!

YThe difference in totals results from unknown errors that prevented
from estimating the number of analysed e-mails for certain lists.

Table B.5: Retrieved Ubuntu Mailing Lists

Mailing List Name

Number in DB

Analysed Stored in DB

ubuntu-quality
ubuntu-bugsquad
laptop-testing-team
ubuntu-users
edubuntu-users
kubuntu-users
lubuntu-users
ubuntu-studio-users
xubuntu-users
ubuntu-devel
ubuntu-devel-discuss
edubuntu-devel

1 3,679 3,679
2 4,001 3,796
3 1,323 1,323
4 267,156 267,155
5 7,242 7,242
6 57,280 57,280
7 3,964 3,964
8 8,932 8,923
9 5,326 5,324
10 36,093 36,081
11 13,946 13,945
12 3,463 3,321

Continued on next page

B.2. DATASETS

Mailing List Name

Number in DB Analysed Stored in DB

edubuntu-devel-es 13 133 133
fwts-devel 14 3,119 3,119
kernel-team 15 25,033 24,359
kubuntu-devel 16 6,674 6,402
laptop-devel 17 40 40
mir-devel 18 128 128
ubuntu-accessibility- 19 890 866
devel

ubuntu-app-devel 20 250 250
ubuntu-archive 21 46,089 1,168
ubuntu-desktop 22 3,729 3,571
ubuntu-distributed- 23 1,167 1,167
devel

ubuntu-motu 24 6,536 6,534
ubuntu-mozillateam 25 1,257 1,257
ubuntu-release 26 2,140 2,140
ubuntu-server 27 6,010 6,010
ubuntu-studio-devel 28 4,687 4,366
ubuntu-utah-devel 29 93 93
upstart-devel 30 2,246 2,246
xubuntu-devel 31 8,576 7,811
community-web- 32 50 20
projects

universe-bugs 33 191,307 37
desktop-bugs 34 88,777 22
kubuntu-bugs 35 128,056 13
kernel-bugs 36 153,143 8
ubuntu-accessibility- 37 5,594 30
bugs

ubuntu-mozillateam- 38 135,751 508
bugs

foundations-bugs 39 148,775 0
ubuntu-server-bugs 40 85,459 3,333
Totals 146,8114 487,694

221

Appendix B

222
Table B.6: Retrieved Plone Mailing Lists

List Name Analysed Stored Issues Encountered
Plone-ally 1 1 -
Plone-Board 0 0 Private list
Plone-com 277 277 —
Communications 0 0 Private list
Plone-conference 53 93 -
Diversity 0 0 Empty list
Doc-Editors 1,794 962 —
Educational 362 201 -
Enterprise 207 105 —
Environmental 72 36 —
Evangelism 2,455 1,296 -
Framework-Team 7,025 3,553 -
Framework41 0 0 Private list
Gsoc-mentors 0 0 Private list
GSOC-Students 150 7 -
Mailman 0 0 Empty list
Membership 0 0 Private list
Membership- 0 0 Private list
Committee
NGO 1,555 734 —
P4u-webadmin 0 0 Private list
PLIP-Advisories 2,951 1,628 -
Plone-AsiaPacific 184 95 -
Plone-cat 87 48 —
Plone-ConoSur 3,731 1,969 -
Plone-cz 0 0 Error
Plone- 22 9 -
EasternEurope
Plone-FR 2,087 1,363 -
Plone-Hungary 174 87 —
Plone-IT 0 0 Error
Plone-NL 111 59 —
Plone-pl 48 24 -
Plone-Scandinavia 42 21 -
Product-Developers 12,282 7,082 -

Continued on next page

B.2. DATASETS

223

List Name Analysed Stored Issues Encountered
QA-Team 170 170 -
Plone-Roadmap 89 81 -
Scientific 78 32 -

Setup 11,455 5,614 —

Sprints 707 300 —

Testbot 0 0 Error
Tester 0 0 Empty list
Plone-testing-team 70 69 —

Ul 2,859 1,565 -
Usergroups 99 45 —
Usuarios-Plone 1,387 833 —
ZopeSkel 323 201 -

Totals 52,907 28,588 Nan

224 Appendix B

Appendix C

C.3 Ubuntu

Table C.7: Ubuntu QA mailing list participants activity levels on other chan-
nels

Author QA Other Lists Bugs Comments Code

e-mails e-mails Contributor
X1 2 227 3 358 0 No
X5 21 127 7 0 0 No
X3 5) 0 0 0 0 No
X4 1 0 0 0 0 No
X; 4 2360 12 1,137 37,689 Yes
Xs 4 0 0 0 0 No
X5 1 0 0 0 0 No
Xg 1 0 0 0 0 No
X 2 2 1 1 0 No
X1 2 3 2 0 0 No
X1 1 131 10 540 0 No
X1 1 1 1 146 0 No
X13 1 0 0 0 0 No
Xy 1 0 0 0 0 No
Xis 1 4 1 59 0 No
Xi6 37 41 3 232 0 No
X17 3 9 2 0 0 No
X18 1 0 0 4 0 No
X1 3 158 7 49 0 No
X 1 0 0 0 0 No
X21 1 0 0 0 0 No
Xoo 1 1 1 12 0 No

Continued on next page

225

226 Appendix C

Author QA Other Lists Bugs Comments Code

e-mails e-mails Contributor
X23 2 0 0 5) 0 No
Xoy 1 10 2 0 0 No
Xos 6) 2 121 1,272 Yes
Xog 3 36 3 18 0 No
X27 1 0 0 3 0 No
ng 2 0 0 7 0 No
Xog 1 0 0 0 0 No
X30 1 9 5 0 0 No
X31 1 0 0 0 0 No
X32 1 0 0 0 0 No
X33 1 0 0 1 0 No
Xy 1 0 0 3 0 No
X35 1 0 0 0 0 No
X36 1 0 0 0 0 No
Xy 1 35 1 148 0 No
Xag 1 1 1 0 0 No
Xsg 1 0 0 0 0 No
X0 1 4,091 15 774 0 Yes
X41 1 0 0 3 0 No
X42 1 1 1 0 0 No
X3 1 0 0 12 0 No
Xy 3 0 0 20 0 No
X 4 113 1 12 0 No
X46 1 0 0 0 0 No
Xug 1 0 0 31 0 No
X49 1 0 0 0 0 No
X50 4 0 0 4 0 No
X5 1 0 0 0 0 No
Xs0 6 91 2 64 0 No
X53 1 0 0 0 0 No
X54 1 6 2 0 0 No
Xsr 1 11 2 31 0 No
Xs6 1 0 0 0 0 No
Xs7 1 0 0 224 0 No

Continued on next page

C.3. UBUNTU 227

Author QA Other Lists Bugs Comments Code

e-mails e-mails Contributor
Xs8 3 0 0 0 0 No
Xs9 2 83 3 14 0 No
X60 1 147 10 233 733 Yes
X61 3 2 1 67 0 No
X62 1 10 5) 63 0 No
X63 1 0 0 0 0 No
Xea 1 0 0 0 0 No
Xes 35 0 0 151 0 No
Xe6 1 1 1 22 0 No
X67 1 0 0 0 0 No
X68 7 4 2 314 0 No
Xeo 40 928 7 220 0 No
X0 3 128 2 0 0 No
Xn 3 28 4 296 0 No
X72 1 0 0 0 0 No
X73 1 0 0 0 0 No
X74 1 0 0 0 0 No
X5 7 0 0 0 0 No
X76 3 0 0 15 0 No
X7 3 32 4 773 0 No
X78 1 0 0 0 0 No
X9 1 105 7 362 2,258 Yes
Xgo 2 0 0 0 0 No
Xgl 2 0 0 4 0 No
ng 1 0 0 0 0 No
Xgs 1 227 5 495 0 No
X84 1 0 0 6 0 No
Xgs 2 115 2 88 0 No
Xse 1 0 0 0 0 No
Xg7 2 25 2 0 0 No
ng 7 0 0 0 0 No
Xgo 1 0 0 38 0 No
Xoo 1 p 1 432 0 No
Xo 3 0 0 47 0 No
ng 2 0 0 3 0 No

Continued on next page

228 Appendix C
Author Other Lists Bugs Comments Code
e-mails e-mails Contributor

X93 6 0 0 0 0 No
Xoy 1 0 0 0 0 No
X95 3 5 1 0 0 No
X96 1 0 0 0 0 No
X97 1 0 0 0 0 No
ng 2 0 0 2 0 No
Xog 1 15 2 0 0 No
X100 1 1 1 9 0 No
X101 2 0 0 0 0 No
X102 1 13 1 92 0 No
X103 2 51 3 174 0 No
X104 3 3 2 12 0 No
Xi05 23 443 6 508 2,340 Yes
X106 10 0 0 54 0 No
X107 10 1 1 0 0 No
X108 1 145 4 0 0 No
X109 13 856 3 12 0 No
Xi10 1 0 0 0 0 No
X111 2 0 0 2 0 No
X112 13 354 7 461 4,894 Yes
X113 11 28 5 74 0 No
X114 1 0 0 0 0 No
Xi15 2 168 6 2,003 0 No
X116 1 0 0 1 0 No
X117 1 0 0 5 0 No
X118 2 0 0 71 0 No
X119 1 0 0 4 0 No
Xi20 16 7 1 189 0 No
X121 3 0 0 0 0 No
X122 24 1 1 23 0 No
X123 1 0 0 0 0 No
Xi24 6 27 4 342 5,903 Yes
X195 1 2 1 0 0 No
X6 2 163 1 0 0 No
Xi97 2 0 0 194 0 No

Continued on next page

C.3. UBUNTU 229

Author QA Other Lists Bugs Comments Code

e-mails e-mails Contributor
X128 1 3 1 24 0 No
X129 3 0 0 0 0 No
X130 1 0 0 13 0 No
X131 1 0 0 0 0 No
X132 1 0 0 0 0 No
X133 1 120 2 15 0 No
X134 1 0 0 1 0 No
X135 1 0 0 0 0 No
X136 2 0 0 0 0 No
X137 1 0 0 0 0 No
X138 1 3 1 0 0 No
X139 1 0 0 0 0 No
X110 1 1 1 0 0 No
X141 1 0 0 0 0 No
X142 1 246 5 0 0 No
X143 2 11 3 8 0 No
Xia4 1 33 6 0 0 No
X145 1 0 0 10 0 No
X146 1 31 2 0 0 No
X147 3 27 6 39 0 No
X148 29 10 1 121 0 No
X149 1 3 1 0 0 No
X150 7 0 0 0 0 No
X151 1 0 0 0 0 No
X152 5 0 0 0 0 No
X153 1 0 0 0 0 No
Xias 1 1 1 2 0 No
X155 16 52 2 37 0 No
X156 2 0 0 0 0 No
X157 1 0 0 0 0 No
X158 1 0 0 18 0 No
X159 4 0 0 0 0 No
X160 27 13 5 259 1,742 Yes
Xi61 1 0 0 0 0 No
X162 1 0 0 0 0 No

Continued on next page

230 Appendix C
Author QA Other Lists Bugs Comments Code
e-mails e-mails Contributor

X163 1 0 0 0 0 No
Xi64 2 0 0 0 0 No
X165 4 18 2 230 801 Yes
X166 23 0 0 30 0 No
X167 1 0 0 0 0 No
X168 25 64 2 0 0 No
Xi69 8 0 0 0 0 No
X170 1 0 0 0 0 No
Xin 10 7 3 217 0 No
Xiro 39 333 8 0 0 Yes
Xi73 2 337 7 305 0 No
Xi74 32 53 4 209 0 No
Xi75 1 0 0 0 0 No
X176 12 0 0 21 0 No
X177 4 1 1 9 0 No
X178 1 0 0 0 0 No
Xi79 81 110 8 0 0 No
Xis0 1 0 0 70 0 No
X181 2 0 0 0 0 No
Xlgg 5 0 0 0 0 No
X183 1 0 0 0 0 No
X84 8 0 0 14 0 No
Xiss 26 119 4 218 0 No
X186 6 68 4 104 0 No
X187 1 0 0 0 0 No
Xlgg 1 0 0 0 0 No
Xlgg 1 0 0 0 0 No
Xi90 2 0 0 0 0 No
X191 1 0 0 0 0 No
X192 1 0 0 2 0 No
X193 2 0 0 0 0 No
X194 1 0 0 0 0 No
X5 2 0 0 1 0 No
Xi96 1 0 0 7 0 No
Xig7 17 27 3 46 0 No

Continued on next page

C.3. UBUNTU 231

Author QA Other Lists Bugs Comments Code

e-mails e-mails Contributor
X198 2 0 0 0 0 No
X199 1 0 0 3 0 No
X200 2 0 0 0 0 No
X201 2 0 0 0 0 No
X202 1 0 0 0 0 No
Xoo3 p 1 1 181 0 No
Xoo4 1 305 1 0 0 No
Xo05 1 43 4 65 0 No
X206 1 0 0 0 0 No
Xoo7 13 0 0 139 0 No
X208 1 0 0 0 0 No
Xo09 1 0 0 0 0 No
Xo10 1 8 3 153 0 No
X211 1 0 0 0 0 No
X212 6 195 2 0 0 No
X213 39 4 2 34 0 No
Xo14 1 0 0 0 0 No
Xors 1 0 0 0 0 No
X216 3 0 0 0 0 No
X217 1 0 0 0 0 No
X218 1 0 0 0 0 No
Xo19 4 0 0 0 0 No
X920 17 24 2 55 0 No
X221 1 0 0 0 0 No
X222 5 0 0 0 0 No
X223 1 320 2 24 0 No
X224 1 0 0 0 0 No
Xoo5 2 0 0 0 0 No
Xo96 14 45 7 561 0 No
Xoo7 1 46 3 213 0 No
X228 1 0 0 0 0 No
ngg 3 0 0 0 0 No
Xo30 2 0 0 34 0 No
Xos1 1 1 1 0 0 No
X232 1 0 0 0 0 No

Continued on next page

232 Appendix C

Author QA Other Lists Bugs Comments Code

e-mails e-mails Contributor
X233 1 0 0 0 0 No
Xosg 1 0 0 0 0 No
X235 1 0 0 0 0 No
Xosg 12 4 1 2 0 No
X237 1 0 0 1 0 No
Xoas 1 114 5 170 0 No
Xosg 6 0 0 0 0 No
Xoso 1 5 1 6 0 No
X241 1 0 0 0 0 No
X242 2 2 1 46 0 No
X243 2 0 0 0 0 No
X244 1 0 0 0 0 No
Xous 1 0 0 0 0 No
Xouag 2 133 11 150 1,797 Yes
Xoar 1 507 5 269 0 No
Xous 2 4 2 10 0 No
Xoag 1 0 0 0 0 No
Xas0 1 0 0 p 0 No
X251 1 0 0 0 0 No
X252 1 0 0 0 0 No
X253 2 0 0 0 0 No
X254 1 0 0 5 0 No
Xos5 1 0 0 6 0 No
X256 2 0 0 0 0 No
X257 2 0 0 0 0 No
X258 2 0 0 151 0 No
X259 3 0 0 0 0 No
Xogo 1 12 3 117 0 No
Xos1 10 2 1 14 0 No
X262 2 14 5 70 0 No
X263 2 0 0 5) 0 No
X264 1 85 1 14 0 No
Xogs 1 0 0 32 0 No
Xoe6 1 0 0 0 0 No
Xog7 2 2 1 10 0 No

Continued on next page

C.3. UBUNTU 233

Author QA Other Lists Bugs Comments Code

e-mails e-mails Contributor
X268 1 0 0 1 0 No
Xo69 1 0 0 0 0 No
X270 8 83 3 0 0 No
X271 2 1 1 7 0 No
X272 2 0 0 0 0 No
X273 1 0 0 0 0 No
Xorg 3 51 2 149 0 No
Xors 3 87 2 0 0 No
X276 2 0 0 3 0 No
X277 1 0 0 0 0 No
X278 2 0 0 0 0 No
Xorg 2 0 0 0 0 No
Xaso p 0 0 1 0 No
X281 5 41 3 4 0 No
X282 3 4 1 107 0 No
X283 3 0 0 0 0 No
Xogg 9 0 0 25 0 No
Xogs 1 1 1 1 0 No
X286 1 0 0 160 0 No
X287 1 1 1 0 0 No
X288 2 0 0 11 0 No
X289 2 19 1 0 0 No
Xa90 1 0 0 0 0 No
X291 1 3 1 0 0 No
X292 1 1 1 0 0 No
X293 1 0 0 0 0 No
X294 2 0 0 7 0 No
Xo95 1 0 0 0 0 No
Xogs 1 20 7 3 0 No
X297 1 0 0 0 0 No
ngs 5 107 3 83 0 No
X299 2 0 0 4 0 No
X300 1 0 0 0 0 No
X301 2 10 4 0 0 No
X302 1 0 0 0 0 No

Continued on next page

234 Appendix C
Author QA Other Lists Bugs Comments Code
e-mails e-mails Contributor
X303 1 0 0 0 0 No
X304 2 297 11 890 12,030 Yes
X305 1 0 0 6 0 No
X306 1 0 0 0 0 No
X307 1 0 0 0 0 No
X308 1 0 0 0 0 No
X309 3 0 0 0 0 No
Xs10 1 1 1 0 0 No
X311 1 0 0 0 0 No
Xz 3 214 7 1,284 0 No
X313 2 3 2 17 0 No
X314 3 194 4 170 0 No
X315 3 0 0 0 0 No
X316 1 0 0 0 0 No
X317 1 0 0 0 0 No
X318 41 0 0 37 0 No
X319 20 0 0 0 0 No
Xno 1 2 1 3 0 No
Xso 1 0 0 0 0 No
X392 1 0 0 3 0 No
X323 1 0 0 0 0 No
X324 1 0 0 0 0 No
X 5 14 2 1 0 No
X326 1 2 1 104 0 No
X327 2 0 0 4 0 No
X328 14 398 2 79 0 No
X329 6 0 0 51 0 No
X330 1 0 0 0 0 No
X331 1 0 0 1 0 No
X332 1 0 0 0 0 No
X333 2 0 0 0 0 No
X334 36 25 5 829 0 No
X335 1 0 0 0 0 No
X336) 0 0 0 0 No
X337 3 0 0 0 0 No

Continued on next page

C.3. UBUNTU 235

Author QA Other Lists Bugs Comments Code

e-mails e-mails Contributor
X338 1 0 0 2 0 No
X339 1 0 0 0 0 No
X340 1 0 0 0 0 No
X3a1 6 9 3 79 0 No
X342 1 1 1 0 0 No
X343 4 0 0 15 0 No
Xaus 1 14 1 4 0 No
X35 1 0 0 0 0 No
X346 1 0 0 5} 0 No
X347 3 0 0 0 0 No
X348 1 0 0 0 0 No
X349 4 38 5 153 0 No
X350 2 0 0 7 0 No
X351 1 0 0 0 0 No
X352 456 167 9 845 24,231 Yes
X353 1 0 0 1 0 No
X354 1 0 0 0 0 No
X355 1 0 0 0 0 No
X356 1 0 0 0 0 No
X357 2 0 0 0 0 No
X358 2 141 4 0 0 No
X359 1 0 0 3 0 No
X360 1 2 2 1 0 No
X361 15 1 1 0 0 No
X362 1 0 0 0 0 No
X363 2 0 0 21 0 No
X364 1 0 0 0 0 No
X365 1 347 2 0 0 No
X366 1 0 0 0 0 No
X367 7 0 0 0 0 No
X368 2 0 0 0 0 No
X369 1 0 0 0 0 No
X370 1 0 0 0 0 No
Xan 2 0 0) 0 No
X372 1 0 0 0 0 No

Continued on next page

236 Appendix C

Author QA Other Lists Bugs Comments Code

e-mails e-mails Contributor
X373 1 0 0 0 0 No
X34 1 0 0 0 0 No
Xsrs 16 12 3 95 0 No
X 376 3 0 0 0 0 No
Xs77 4 828 10 395 0 No
X378 1 0 0 0 0 No
Xamo 1 2 1 0 0 No
X380 1 0 0 2 0 No
Xsg1 1 0 0 0 0 No
X382 1 0 0 0 0 No
X383 1 0 0 0 0 No
X34 2 0 0 0 0 No
Xsss 1 0 0 6 0 No
X386 1 3 2 1 0 No
X387 1 28 1 6 0 No
X388 1 0 0 0 0 No
Xsg9 1 0 0 0 0 No
X300 17 27 3 1 0 No
X301 2 7 2 0 0 No
X302 1 0 0 0 0 No
X393 1 0 0 0 0 No
X394 1 0 0 0 0 No
X395 3 6 3 0 0 No
X396 1 0 0 0 0 No
X397 2 0 0 0 0 No
X398 1 4 1 0 0 No
X399 1 0 0 0 0 No
X100 1 401 6 172 0 No
X0 1 0 0 0 0 No
X 402 3 62 4 60 0 No
X403 4 0 0 0 0 No
X404 3 74 3 41 0 No
X405 4 0 0 7 0 No
X406 1 0 0 0 0 No
X407 1 0 0 0 0 No

Continued on next page

C.3. UBUNTU 237

Author QA Other Lists Bugs Comments Code

e-mails e-mails Contributor
X408 1 0 0 0 0 No
X409 1 0 0 16 0 No
X410 2 0 0 0 0 No
X411 7 170 10 524 0 No
X120 1 2 1 4 0 No
X413 2 0 0 4 0 No
X414 1 44 3 0 0 No
X5 1 0 0 0 0 No
X416 3 0 0 0 0 No
X417 1 0 0 6 0 No
X418 1 0 0 0 0 No
X1 3 4 1 25 0 No
X2 2 415 4 54 0 No
X421 22 410 12 265 0 No
X422 1 0 0 0 0 No
X423 3 0 0 17 0 No
X424 1 0 0 0 0 No
X425 1 0 0 0 0 No
X426 36 1,199 7 182 0 No
X427 5 2 1 0 0 No
X428 1 0 0 0 0 No
X429 6 1 1 155 0 No
X430 1 2 2 1 0 No
X431 3 7 3 22 0 No
X432 3 0 0 0 0 No
X433 1 0 0 3 0 No
X4a3q 1 36 3 0 2,015 No
X35 1 0 0 0 0 No
X436 1 44 3 0 0 No
Xus7 2 1,440 9 89 0 No
X438 1 6 2 35 0 No
X439 2 0 0 6 0 No
X440 20 0 0 84 0 No
Xon 2 0 0 11 0 No
Xa42 1 2 1 32 0 No

Continued on next page

238 Appendix C
Author QA Other Lists Bugs Comments Code
e-mails e-mails Contributor

X443 1 0 0 0 0 No
X444 7 0 0 0 0 No
X445 4 3 1 13 0 No
X6 4 975 11 719 14,224 Yes
X447 1 0 0 0 0 No
X448 4 0 0 0 0 No
X449 5] 260 12 1,075 0 No
X450 3 0 0 0 0 No
X451 1 1 1 0 0 No
X452 1 1 1 0 0 No
Xss 2 191 6 181 0 No
X454 1 0 0 0 0 No
X 4 4 1 0 0 No
X456 1 16 1 2 0 No
X457 5) 2 1 0 0 No
X458 2 92 3 0 0 No
Xz 1 1 1 0 0 No
X0 11 0 0 0 0 No
X1 1 92) 297 0 No
X462 7 1 1 0 0 No
X463 2 0 0 0 0 No
X464 1 0 0 0 0 No
Xyes 10 2 1 0 0 No
X466 2 0 0 0 0 No
X467 1 0 0 0 0 No
X468 1 229 4 0 0 No
X469 5) 68 2 95 0 No
Xm0 1 131 5 154 0 No
Xun 1 0 0 0 0 No
X472 3 3 1 178 0 No
X473 2 0 0 0 0 No
X474 1 0 0 2 0 No
X475 1 0 0 0 0 No
X476 2 0 0 0 0 No
X477 2 1 1 0 0 No

Continued on next page

C.3. UBUNTU 239

Author QA Other Lists Bugs Comments Code

e-mails e-mails Contributor
X478 25 0 0 49 0 No
Xyro 249 12 1 0 0 No
X480 2 0 0 0 0 No
Xug1 3 160 6 632 0 No
X482 1 0 0 0 0 No
X3 1 12 1 14 0 No
X484 4 8 2 0 0 No
Xuss 2 7 2 0 0 No
X486 4 5) 2 9 0 No
X487 1 0 0 0 0 No
X488 10 1 1 0 0 No
X489 1 0 0 0 0 No
X490 6 0 0 0 0 No
X491 1 0 0 0 0 No
X492 1 164 1 1 0 No
X493 1 0 0 0 0 No
X494 3 0 0 0 0 No
X0 1 1 1 0 0 No
X496 1 119 5) 144 0 No
X497 3 39 6 0 0 No
X498 2 57 6 10 0 No
X499 2 1 1 68 0 No
Xs00 1 0 0 p 0 No
X501 1 0 0 0 0 No
X502 2 0 0) 0 No
X503 1 0 0 0 0 No
X504 2 0 0 0 0 No
X505 D 12 3 91 0 No
X506 12 0 0 0 0 No
X507 1 0 0 0 0 No
X508 1 0 0 0 0 No
X509 1 13 1 0 0 No
X510 1 0 0 0 0 No
X511 1 111 2 9 0 No
X512 1 4 3 2 0 No

Continued on next page

240 Appendix C

Author QA Other Lists Bugs Comments Code

e-mails e-mails Contributor
X513 1 0 0 0 0 No
X514 1 1 1 0 0 No
X515 1 0 0 0 0 No
X516 3 0 0 25 0 No
X517 22 26 1 0 0 No
X518 1 0 0 0 0 No
Xs10 7 1 1 13 0 No
X590 2 0 0 0 0 No
X521 1 0 0 2 0 No
X592 13 0 0 0 0 No
X523 1 45 5) 119 0 No
X504 7 3 2 0 0 No
Xaos 4 1 1171 0 No
X526 1 0 0 0 0 No
X527 1 0 0 0 0 No
X528 1 0 0 0 0 No
X529 1 0 0 0 0 No
X0 3 122 4 63 0 No
X531 1 5 2 0 0 No
X532 2 0 0 0 0 No
X533 2 0 0 0 0 No
X534 3 0 0 0 0 No
X535 1 0 0 18 0 No
X536 35 7 2 28 0 No
X537 2 3 2 0 0 No
X538 1 0 0 0 0 No
X539 3 0 0 0 0 No
X540 1 43 4 791 3,783 Yes
Xsa1 2 0 0 0 0 No
X542 1 0 0 0 0 No
X543 3 0 0 0 0 No
X544 2 0 0 0 0 No
X545 1 0 0 13 0 No
X546 2 0 0 0 0 No
X547 1 19 2 4 0 No

Continued on next page

C.3. UBUNTU 241

Author QA Other Lists Bugs Comments Code

e-mails e-mails Contributor
X548 1 0 0 0 0 No
X549 1 0 0) 0 No
X550 1 0 0 0 0 No
X551 3 0 0 0 0 No
X552 2 68 2 29 0 No
X553 1 0 0 0 0 No
Xssa 9 44 4 31 0 No
X555 19 21 3 53 0 No
X556 6 1 1 316 0 No
X557 1 0 0 0 0 No
X558 21 0 0 0 0 No
X559 1 0 0 0 0 No
X560 1 0 0 0 0 No
Xs61 11 0 0 0 0 No
X562 2 0 0 6 0 No
X563 2 0 0 8 0 No
X564 1 0 0 6 0 No
X565 38 226 2 0 0 No
X566 2 0 0 0 0 No
X567 1 0 0 0 0 No
X568 1 2 1 202 0 No
X569 5 606 3 0 0 No
X570 2 0 0 0 0 No
X571 6 5 2 44 0 No
X572 1 0 0 6 0 No
X573 1 0 0 0 0 No
X574 3 0 0 0 0 No
X575 2 0 0 0 0 No
X576 1 0 0 0 0 No
X577 1 0 0 0 0 No
X578 1 6 1 12 0 No
X579 1 9 3 35 0 No
X580 2 3 1 0 0 No
X581 2 0 0 0 0 No
X552 1 0 0 0 0 No

Continued on next page

242 Appendix C
Author QA Other Lists Bugs Comments Code
e-mails e-mails Contributor

X5s3 11 2 1 201 0 No
X84 1 1 1 0 0 No
X585 1 0 0 0 0 No
Xss6 53 2,720 12 1,540 9,290 Yes
X587 1 0 0 0 0 No
X588 1 41 3 0 0 No
Xss9 10 100 6 426 8,001 Yes
X590 2 35 1 491 0 No
Xs91 2 93 5 181 0 No
X592 3 1 1 73 0 No
X593 3 0 0 0 0 No
Xso4 2 0 0 0 0 No
Xros 1 0 0 0 0 No
X596 3 0 0 3 0 No
X597 1 88 1 0 0 No
Xsos 1 1 1 0 0 No
X599 1 168 4 36 0 No
X600 1 0 0 0 0 No
Xe01 1 31 2 0 0 No
Xe02 1 0 0 0 0 No
X603 2 0 0 4 0 No
X604 1 0 0 2 0 No
Xeos 1 0 0 0 0 No
X606 7 3 2 0 0 No
Xeor 2 153 3 25 0 No
XGOS 1 0 0 3 0 No
X609 1 0 0 0 0 No
X610 1 0 0 0 0 No
Xe11 3 3 1 0 0 No
X612 8 2 2 25 0 No
X613 1 0 0 0 0 No
X614 1 0 0 0 0 No
X615 1 0 0 0 0 No
Xe16 1 0 0 0 0 No
Xe17 1 4 2 1 0 No

Continued on next page

C.3. UBUNTU 243

Author QA Other Lists Bugs Comments Code

e-mails e-mails Contributor
Xﬁlg 7 0 0 0 0 No
X619 15 0 0 6 0 No
X620 10 79) 25 2,597 Yes
Xe21 14 0 0 0 0 No
Xe22 2 0 0 0 0 No
X623 1 0 0 0 0 No
Xeoa 201 24 7 401 0 No
Xeos 1 0 0 58 0 No
X626 1 0 0 0 0 No
X627 1 0 0 0 0 No
X628 10 7 4 0 0 No
X629 7 0 0 0 0 No
X0 1 6 p 6 0 No
Xe31 2 0 0 0 0 No
Xe32 1 16 1 1 0 No
X633 3 0 0 7 0 No
X634 16 5 1 0 0 No
X635 2 0 0 0 0 No
X636 2 0 0 9 0 No
X637 1 0 0 0 0 No
X638 1 0 0 0 0 No
X639 3 0 0 0 0 No
X640 1 0 0 0 0 No
Xea1 3 0 0 0 0 No
Xo42 1 0 0 0 0 No
X643 1 0 0 0 0 No
X644 3 0 0 0 0 No
X645 3 7 4 0 0 No
Xe46 1 0 0 1 0 No
X647 1 6 1 7 0 No
X648 2 0 0 0 0 No
X649 1 28 5! 247 0 No
X650 42 0 0 0 0 No
Xeos1 1 0 0 4 0 No
X652) 3 1 0 0 No

Continued on next page

244 Appendix C

Author QA Other Lists Bugs Comments Code

e-mails e-mails Contributor
X653 1 0 0 0 0 No
Xes4 1 0 0 0 0 No
X655 4 0 0 0 0 No
X656 1 0 0 12 0 No
X657 18 6 4 2 0 No
X658 1 354 5 32 0 No
Xeso 1 28 2 0 0 No
X660 2 750 3 502 0 No
Xe61 2 0 0 2 0 No
Xo62 1 48 3 59 0 No
X663 1 0 0 0 0 No
Xo64 1 0 0 0 0 No
X665 1 0 0 0 0 No
X666 1 0 0 0 0 No
X667 1 0 0 0 0 No
X668 1 0 0 0 0 No
Xo69 1 0 0 0 0 No
Xe70 2 0 0 0 0 No
Xer1 8 0 0 0 0 No
Xo72 1 0 0 0 0 No
X673 2 0 0 0 0 No
X674 1 0 0 0 0 No
Xe75 1 0 0 0 0 No
Xe76 3 0 0 26 0 No
X677 5 0 0 0 0 No
X678 1 0 0 0 0 No
X679 1 0 0 13 0 No
Xes0 1 0 0 0 0 No
Xes1 2 220 5 487 0 No
Xeg2 1 0 0 0 0 No
X683 1 473 9 589 0 No
X684 1 94 6 191 0 No
Xess 1 86 5 112 0 No
Xes6 2 0 0 0 0 No
X687 3 36 2 1 0 No

Continued on next page

C.3. UBUNTU 245

Author QA Other Lists Bugs Comments Code

e-mails e-mails Contributor
Xess 18 208 8 0 0 No
X689 3 49) 0 0 No
Xﬁgo 2 50 4 0 0 No
Xeo1 76 18 1 0 0 No
X692 4 0 0 4 0 No
X693 1 0 0 0 0 No
X694 1 0 0 0 0 No
X605 1 0 0 0 0 No
X696 1 0 0 0 0 No
X697 1 0 0 0 0 No
X698 1 0 0 0 0 No
X699 2 0 0 3 0 No
X0 7 4 2 12 0 No
X701 3 0 0 9 0 No
X702 1 0 0 0 0 No
X703 2 0 0 0 0 No
X704 2 0 0 0 0 No
Xros 1 4 1 0 0 No
X706 1 1 1 5 0 No
X707 1 0 0 0 0 No
X708 1 0 0 2 0 No
X709 4 9 2 30 0 No
X710 5t 0 0) 0 No
X711 1 11 3 0 0 No
Xoi2 1 2674 18 833 92,959 Yes
X713 1 0 0 0 0 No
X714 1 0 0 4 0 No
X715 1 0 0 7 0 No
X716 1 0 0 0 0 No
X717 1 0 0 1 0 No
X718 1 0 0 0 0 No
X719 1 0 0 0 0 No
X790 1 32 3 0 0 No
X 34 607 11 507 3,868 Yes
X722 1 0 0 1 0 No

Continued on next page

246 Appendix C

Author QA Other Lists Bugs Comments Code

e-mails e-mails Contributor
X723 126 149 5 0 0 No
X724 1 0 0 0 0 No
X725 2 1 1 84 0 No
X 726 33 40 1 0 0 No
X727 2 2 1 3 0 No
X728 2 0 0 4 0 No
X729 1 0 0 0 0 No
X730 1 2 2 120 0 No
X731 1 0 0 0 0 No
X732 1 0 0 0 0 No
X733 1 0 0 0 0 No
X734 2 0 0 0 0 No
X735 1 0 0 0 0 No
X736 4 0 0 0 0 No
X737 13 74 2 8 0 No
X738 9 14 1 179 0 No
X 739 5 0 0 0 0 No
X 740 3 0 0 0 0 No
X 2 4 1 0 0 No
X742 2 6 6 0 0 No
X743 2 0 0 0 0 No
Xous 2 22 2 0 0 No
X745 1 0 0 0 0 No
X746 1 0 0 0 0 No
X747 1 0 0 0 0 No
X748 1 0 0 1 0 No
X749 1 0 0 0 0 No
Xoso 2 34 2 12 0 No
X751 1 0 0 0 0 No
X752 7 0 0 161 0 No
X753 3 1 1 0 0 No
X754 1 0 0 0 0 No
Xoss 12 276 2 928 0 No
X756 1 0 0 0 0 No
X 757 16 0 0 0 0 No

Continued on next page

C.3. UBUNTU
Author QA Other Lists Bugs Comments Code
e-mails e-mails Contributor

X758 1 13 5! 29 0 No
X759 2 0 0 10 0 No
X760 1 0 0 11 0 No
X761 1 0 0 0 0 No
X762 11 0 0 34 0 No
X 2 11 1 1 0 No
X 1 5 2 14 0 No
Xogs 1 p 1 0 0 No
X766 2 o7 3 261 0 No
X767 5) 26 5) 115 0 No
X768 1 0 0 1 0 No
X769 5 140 4 38 0 No
X770 1 0 0 0 0 No
X1 1 0 0 0 0 No
Xr7o 66 30 4 45 0 No
X773 4 8 2 0 0 No
X774 1 0 0 0 0 No
X775 2 0 0 0 0 No
X776 1 0 0 0 0 No
X777 1 0 0 2 0 No
X778 1 0 0 1 0 No
X779 6 1 1 0 0 No
Xoso 1 1 1 5 0 No
X781 15 27 4 131 0 No
X782 19 46 2 75 0 No
X783 1 0 0 0 0 No
X784 4 0 0 0 0 No
X785 1 0 0 0 0 No
X786 1 0 0 1 0 No
X787 1 0 0 0 0 No
X788 2 35 2 6 0 No
X789 1 0 0 0 0 No
X790 1 0 0 1 0 No
X791 6 0 0 0 0 No
X792 1 0 0 0 0 No

Continued on next page

247

248 Appendix C

Author QA Other Lists Bugs Comments Code

e-mails e-mails Contributor
X3 1 1 1 0 0 No
X794 1 0 0 0 0 No
X795 7 17 2 0 0 No
X796 3 0 0 0 0 No
X797 1 0 0 0 0 No
X798 1 266 11 96 0 No
X799 1 0 0 3 0 No
Xs00 1 0 0 0 0 No
Xgo1 3 385 1 64 0 No
Xgo2 4 16 1 0 0 No
X803 2 0 0 0 0 No
Xso4 2 75 7 40 0 No
Xs05 3 0 0 0 0 No
X806 1 0 0 0 0 No
X807 1 0 0 51 0 No
Xg()g 4 255 7 273 0 No
Xso09 1 0 0 0 0 No
Xs10 4 15 3 97 0 No
Xs11 2 0 0 0 0 No
Xs12 1 0 0 0 0 No
X813 1 85 2 20 0 No
X814 1 0 0 1 0 No
Xg15 3 71 3 378 0 No
X816 1 0 0 13 0 No
X817 1 0 0 0 0 No
X818 20 10 3 70 0 No
X819 1 0 0 0 0 No
Xs20 1 0 0 0 0 No
Xsga1 1 1 1 28 0 No
Xg22 8 557) 0 0 No
X823 1 0 0 0 0 No
X824 2 0 0 0 0 No
Xg25 1 60 2 69 0 No
Xaog 1 4 2 12 0 No
X827 1 0 0 0 0 No

Continued on next page

C.3. UBUNTU 249

Author QA Other Lists Bugs Comments Code

e-mails e-mails Contributor
ngg 1 338 5! 0 0 No
Xg29 1 0 0 0 0 No
X830 1 0 0 0 0 No
Xg31 1 7 2 0 0 No
Xg32 1 3 1 0 0 No
X 1 p 1 27 0 No
Xg34 4 0 0 6 0 No
Xs35 1 0 0 0 0 No
X836 5 46 3 183 0 No
X837 1 0 0 9 0 No
X838 1 0 0 0 0 No
Xaso 1 174 11 244 0 No
Xs40 1 0 0 6 0 No
Xga1 1 1 1 8 0 No
Xgao 4 31 7 214 0 No
X843 1 0 0 0 0 No
Xgaq 23 942 8 826 82,719 Yes
Xsus 3 24 4 1 0 No
X846 1 0 0 0 0 No
X847 1 5) 1 14 0 No
X848 2 11 3 172 0 No
X849 2 0 0 0 0 No
Xss50 1 0 0 0 0 No
Xss1 1 0 0 16 0 No
Xs52 2 0 0 0 0 No
X853 1 31 4 58 0 No
X854 1 0 0 0 0 No
Xsgs5 4 0 0) 0 No
Xss6 16 405 2 0 0 No
X857 1 2 2 0 0 No
X858 1 0 0 85 0 No
X859 5) 145 7 384 0 No
X560 1 0 0 0 0 No
Xs61 1 0 0 0 0 No
Xgs2 1 0 0 0 0 No

Continued on next page

250 Appendix C
Author QA Other Lists Bugs Comments Code
e-mails e-mails Contributor

X863 1 0 0 0 0 No
Xs64 1 0 0 0 0 No
X865 1 0 0 0 0 No
X866 1 0 0 0 0 No
X867 3 2 1 15 0 No
X868 1 0 0 1 0 No
Xse9 1 0 0 4 0 No
Xgro 1 0 0 1 0 No
Xgr1 1 0 0 0 0 No
Xgr2 1 715 4 58 0 No
Xgrs 1 28 5 588 0 No
Xara 12 1 1 32 0 No
Xgrs 1 0 0 0 0 No
Xg76 1 127 6 46 0 No
X877 1 0 0 0 0 No
X878 35 101 4 0 0 No
Xgr9 2) 1 3 0 No
Xss0 4 20 6 0 0 No
Xss1 1 8 1 532 0 No
Xss2) 29 5 0 0 No
ngg 1 0 0 0 0 No
X884 1 0 0 0 0 No
Xass 10 154 4 99 0 No
X886 4 3 1 0 0 No
X887 2 0 0 0 0 No
ngg 1 0 0 0 0 No
ngg 1 0 0 0 0 No
Xs90 1 3 1 0 0 No
Xso1 1 6 2 26 0 No
Xgg2 8 89 8 646 0 No
X893 1 0 0 0 0 No
X894 1 0 0 0 0 No
Xgo5 1 0 0 1 0 No
Xso6 1 0 0 0 0 No
X897 1 0 0 0 0 No

Continued on next page

C.3. UBUNTU 251

Author QA Other Lists Bugs Comments Code

e-mails e-mails Contributor
X898 1 0 0 0 0 No
Xs99 1 0 0 0 0 No
Xgoo 6 2 1 0 0 No
Xoo1 1 0 0 0 0 No
X902 1 0 0 0 0 No
X903 1 0 0 1 0 No
Xogo4 1 0 0 A7 0 No
Xoo0s 2 0 0 0 0 No
Xoos 4 6 3 46 0 No
X907 343 0 0 0 0 No
Xg()g 3 7 2 0 0 No
Xo09 8 0 0 0 0 No
Xo1o 1 0 0 1 0 No
Xo11 11 215 8 39 0 No
Xo12 1 0 0 1 0 No
X913 1 0 0 0 0 No
Xoua 17 24 2 0 0 No
Xo15 1 0 0 3 0 No
Xoe 119 1256 14 1218 15,392 Yes
X917 8 8 2 79 0 No
X918 1 0 0 0 0 No
Xglg 12 32 4 75 0 No
X920 2 0 0 0 0 No
Xoa1 1 0 0 1 0 No
X922 1 5 1 2 0 No
X923 1 0 0 0 0 No
X924 1 0 0 0 0 No
Xogo5 1 8 2 0 0 No
Xoo6 1 0 0 0 0 No
Xoo7 12 6 2 0 0 No
ngs 6 0 0 4 0 No
X929 4 5) 3 1 0 No
Xo30 1 0 0 0 0 No
Xo31 3 80 4 0 0 No
Xo32 1 0 0 0 0 No

Continued on next page

252 Appendix C

Author QA Other Lists Bugs Comments Code

e-mails e-mails Contributor
X933 1 0 0 0 0 No
Xo34 1 8 1 252 0 No
X935 1 0 0 0 0 No
Xo 2 118 7 334 1,021 Yes
X937 28 0 0 0 0 No
X938 1 0 0 0 0 No
Xoo 1 1 1 47 0 No
Xoao 1 4 1 250 0 No
Xoa1 1 0 0 11 0 No
Xoa2 4 11 2 0 0 No
X943 2 0 0 0 0 No
X944 1 0 0 22 0 No
Xous 2 0 0 0 0 No
X946 1 60 1 0 0 No
X947 10 47 5 0 0 No
X948 2 37 4 %) 0 No
Xoag 3 0 0 0 0 No
Xos0 1 0 0 0 0 No
Xos1 8 27 2 60 0 No
Xo52 9 181 5 0 0 No
X953 1 0 0 0 0 No
Xoss 4 18 2 11 0 No
Xos5 1 0 0 0 0 No
X956 1 0 0 0 0 No
Xg57 1 44 7 0 0 No
Xoss 397 42 5 133 0 No
Xos9 1 368 12 384 0 No
Xogo 1 0 0 14 0 No
Xoe1 1 1 1 0 0 No
Xo62 1 0 0 0 0 No
X963 1 0 0 0 0 No
X964 3 0 0 0 0 No
Xogs 29 246 9 0 0 No
Xoss 2 2 1 0 0 No
X967 3 0 0 1 0 No

Continued on next page

C.3. UBUNTU 253

Author QA Other Lists Bugs Comments Code

e-mails e-mails Contributor
X968 1 107 2 10 0 No
Xoso 1 p 2 0 0 No
X970 1 0 0 0 0 No
Xor1 35 0 0 211 0 No
Xoro 10 122 7 143 0 No
Xoms 1 p 1 0 0 No
Xora 16 0 0 127 0 No
Xors 1 3 1 0 0 No
X976 1 0 0 142 0 No
X977 1 0 0 0 0 No
X978 2 15 1 0 0 No
Xor9 2 0 0 0 0 No
Xoso 1 4 3 20 0 No
Xog1 1 0 0 0 0 No
Xog2 3 0 0 8 0 No
X983 1 8 1 0 0 No
Xoga 12 0 0 0 0 No
Xogs 5 22 1 23 0 No
X986 3 1 1 382 0 No
X987 1 0 0 0 0 No
Xogs 23 21 3 726 0 No
ngg 19 447 6 0 0 Yes
X990 23 6 2 46 0 No
Xo91 1 3,991 3 272 0 No
Xg92 1 0 0 0 0 No
X993 1 13 2 2 0 No
Xoos 1 1 1 127 0 No
Xoos 3 0 0 2 0 No
Xoos 1 0 0 12 0 No
X997 2 0 0 0 0 No
ngs 1 0 0 0 0 No
ngg 2 9 1 16 0 No
X1000 1 0 0 0 0 No
Xi001 1 0 0 0 0 No
X1002 40 32 3 110 0 No

Continued on next page

254 Appendix C

Author QA Other Lists Bugs Comments Code

e-mails e-mails Contributor
X1003 2 2 1 0 0 No
X004 3 0 0 2 0 No
X1005 1 0 0 0 0 No
X1006 1 0 0 0 0 No
X1007 2 0 0 12 0 No
X1008 1 0 0 1 0 No
X1009 4 0 0 10 0 No
X1010 14 143 9 0 0 No
X1011 1 30 2 47 0 No
X1012 4 120 5 0 0 No
X1013 1 5! 1 0 0 No
Xi014 3 0 0 0 0 No
Xio015 1 0 0 0 0 No
X1016 9 1 1 48 0 No
X1017 1 58 3 31 0 No
X1018 14 37 2 64 0 No
X101 1 1 1 0 0 No
X1020 1 0 0 0 0 No
X1021 2 0 0 0 0 No
X1022 1 1 1 0 0 No
X1023 2 0 0 0 0 No
X1024 2 0 0 0 0 No
Xi025 1 0 0 9 0 No
X1026 1 0 0 1 0 No
X1027 3 0 0 0 0 No
X1028 9 0 0 0 0 No
X1029 87 42 3 0 0 No
X1030 3 0 0 0 0 No
X031 1 1 1 0 0 No
X1032 1 4 2 0 0 No
X1033 1 0 0 0 0 No
X1034 2 0 0 0 0 No
X035 41 7 1 483 0 No
X1036 2 0 0 0 0 No
X1037 2 2 1 7 0 No

Continued on next page

C.3. UBUNTU
Author QA Other Lists Bugs Comments Code
e-mails e-mails Contributor

X1038 2 0 0 0 0 No
X1039 1 0 0 0 0 No
X1040 3 0 0 8 0 No
X1041 30 470 6 136 0 No
X1042 3 5 1 46 0 No
X1043 4 0 0 0 0 No
X1044 2 0 0 0 0 No
X1045 1 0 0 0 0 No
X1046 1 0 0 1 0 No
X1047 17 115 3 123 0 No
X104g 1 0 0 12 0 No
X1049 3 0 0 0 0 No
X 1050 1 1 1 0 0 No
X1051 1 0 0 0 0 No
X1052 9 22 5} 92 0 No
X1053 4 13 1 23 0 No
X1054 4 0 0 o1 0 No
X1055 4 433 5 157 0 No
X1056 110 258 9 185 0 No
X1057 1 0 0 1 0 No
X1058 1 0 0 1 0 No
X1059 1 0 0 0 0 No
X1060 1 0 0 0 0 No
X1061 3 0 0 0 0 No
X1062 2 0 0 0 0 No
X1063 7 1 1 0 0 No
X1064 1 0 0 0 0 No
X1065 1 3 1 0 0 No
X 1066 1 4 119 0 No
X1067 2 0 0 9 0 No
X1068 1 0 0 0 0 No
X1069 1 0 0 2 0 No
X1070 2 0 0 0 0 No
Xio71 1 8 3 37 0 No
X1072 2 0 0 0 0 No

Continued on next page

255

256 Appendix C

Author QA Other Lists Bugs Comments Code

e-mails e-mails Contributor
X1073 1 0 0 0 0 No
X1074 3 22 2 0 0 No
X1075 1 36 2 89 0 No
X1076 2 2 1) 0 No
X1077 4 0 0 21 0 No
X1078 2 0 0 0 0 No
X107 11 271 3 928 0 No
X080 1 0 0 1 0 No
X1081 1 0 0 3 0 No
X1082 1 0 0 0 0 No
X1083 1 0 0 0 0 No
X084 1 0 0 0 0 No
Xi085 1 66 3 0 0 No
X1086 1 0 0 1 0 No
X1087 2 0 0 1 0 No
X1088 2 0 0 0 0 No
X1089 3 0 0 0 0 No
X1090 4 12 2 52 0 No
X1091 1 5 1 59 0 No
X1092 5 57 2 0 0 No
X1093 2 0 0 0 0 No
X1094 1 0 0 0 0 No
X1005 2 11 1 0 0 No
Xl()gﬁ 3 0 0 1 0 No
X1097 2 0 0 0 0 No
X1098 1 1 1 13 0 No
Xlogg 1 0 0 0 0 No
X1100 7 94 2 26 0 No
X1101 5 0 0 26 0 No
X1102 5 724 7 0 0 No
X1103 1 0 0 23 0 No
X1104 2 0 0 13 0 No
Xi105 1 1 1 0 0 No
X1106 1 0 0 0 0 No
X1107 4 1 1 0 0 No

Continued on next page

C.3. UBUNTU 257

Author QA Other Lists Bugs Comments Code

e-mails e-mails Contributor
Xllgg 86 62 2 44 0 No
X1109 1 0 0 0 0 No
X1110 1 0 0 70 0 No
X1111 1 0 0 0 0 No
X1112 6 5 2 344 0 No
X1113 1 0 0 0 0 No
X114 2 0 0 0 0 No
X115 2 0 0 1 0 No
X1116 3 3 1 4 0 No
X1117 1 0 0 9 0 No
X1118 1 0 0 0 0 No
Xi119 1 0 0 0 0 No
X120 2 0 0 0 0 No
X1121 1 0 0 0 0 No
X1122 1 0 0 0 0 No
X1123 1 0 0 0 0 No
X124 1 0 0 0 0 No
X195 5 2% 1 4 0 No
X1126 1 3 2 10 0 No
X1127 1 0 0 0 0 No
X1128 1 0 0 11 0 No
X1129 2 27 2 0 0 No
X1130 3 0 0 18 0 No
X1131 2 0 0 0 0 No
X1132 1 0 0 0 0 No
X1133 5) 8 1 119 0 No
X1134 22 69 4 139 0 No
X135 8 23 2 25 0 No
Xi136 1 D 1 22 0 No
X1137 2 7 3 110 0 No
Xllgg 1 0 0 0 0 No
X1139 3 494 6 0 0 No
Xi140 1 D 1 0 0 No
X141 13 100 6 20 0 No
X1142 1 24 5) 180 0 No

Continued on next page

258 Appendix C

Author QA Other Lists Bugs Comments Code

e-mails e-mails Contributor
X1143 1 0 0 0 0 No
X1144 1 0 0 0 0 No
X1145 33 0 0 0 0 No
X1146 1 0 0 0 0 No
X1147 1 0 0 0 0 No
X148 3 9 1 3 0 No
X149 1 0 0 37 0 No
X150 2 0 0 1 0 No
X1151 5 9 3 60 0 No
X1152 1 13 4 203 0 No
X1153 1 0 0 0 0 No
X154 1 0 0 0 0 No
Xi155 15 0 0 10 0 No
X1156 11 0 0 33 0 No
X157 1 1 1 21 0 No
X1158 2 0 0 0 0 No
X159 1 156 5 16 0 No
X1160 1 3 1 7 0 No
X1161 5 253 1 22 0 No
X1162 1 0 0 0 0 No
X1163 1 178 4 0 0 No
X164 2 2 1 0 0 No
Xi165 1 0 0 0 0 No
X1166 1 213 8 0 0 No
X1167 6 26 6 107 0 No
X1168 5) 142 6 488 4,751 Yes
X1169 2 0 0 0 0 No
Xi170 1 7 3 0 0 No
X171 1 0 0 0 0 No
X1172 2 0 0 0 0 No
X1173 8 0 0 0 0 No
X1174 1 0 0 0 0 No
X175 13 9 4 51 0 No
Xi176) 0 0 0 0 No
X1177 1 0 0 12 0 No

Continued on next page

C.3. UBUNTU 259

Author QA Other Lists Bugs Comments Code

e-mails e-mails Contributor
X1 178 1 0 0 0 0 No
X1179 D 330 8 43 0 No
X1180 3 178 5 759 0 No
X1181 2 22 7 220 0 No
X1182 2 17 1 0 0 No
X1183 120 1,046 5! 169 0 No
X184 1 0 0 0 0 No
X185 25 0 0 411 0 No
X1186 1 33 2 0 0 No
X1187 1 0 0 0 0 No
X1188 1 0 0 1 0 No
X1189 1 0 0 0 0 No
X1190 2 0 0 0 0 No
X1191 2 0 0 0 0 No
X1192 1 0 0 0 0 No
X1193 10 7 2 0 0 No
X1194 1 0 0 8 0 No
X1105 1 0 0 2 0 No
X1196 1 0 0 0 0 No
X1197 1 7 1 0 0 No
X1198 1 0 0 70 0 No
X1 199 1 0 0 0 0 No
X1200 1 0 0 0 0 No
X1201 2 104 1 0 0 No
X1202 3 0 0 0 0 No
X1203 1 0 0 0 0 No
X1204 3 33 1 0 0 No
X1205 1 0 0 0 0 No
X1206 4 0 0 0 0 No
X1207) 0 0 2 0 No
Xlgog 6 152 5} 10 0 No
Xlg()g 3 0 0 0 0 No
X1210 1 0 0 1 0 No
Xi211 1 0 0 0 0 No
Xi212 2 0 0 0 0 No

Continued on next page

260 Appendix C

Author QA Other Lists Bugs Comments Code

e-mails e-mails Contributor
X213 1 8,640 4 53 0 No
X114 1 2 1 0 0 No
X1215 1 0 0 32 0 No
X1216 4 0 0 0 0 No
X1217 9 414 7 256 27082 Yes
X1218 1 0 0 49 0 No
X219 1 0 0 1 0 No
X1990 1 0 0 0 0 No
X1221 5 7 3 0 0 No
X1222 2 60 3 0 0 No
X293 82 580 6 64 0 No
X194 1 2 1 0 0 No
X 1995 3 p 1 0 0 No
X1226 4 0 0 6 0 No
X1227 2 0 0 3 0 No
X1228 5 0 0 0 0 No
X1229 1 0 0 0 0 No
X1230 1 0 0 0 0 No
X1231 2 0 0 56 0 No
X1232 1 0 0 0 0 No
X1233 2 0 0 0 0 No
X1234 1 0 0 0 0 No
X235 1 0 0 0 0 No
X1236 1 0 0 0 0 No
X1237 1 0 0 3 0 No
X1238 2 34 6 0 0 No
X1239 1 0 0 0 0 No
X240 1 0 0 0 0 No
Xioa1 1 0 0 1 0 No
X1242 6 1,054 10 276 0 No
X1243 1 0 0 0 0 No
X1244 19 219 7 0 0 Yes
X245 1 0 0 0 0 No
X146 2 29 1 0 0 No
X247 1 0 0 0 0 No

Continued on next page

C.3. UBUNTU 261

Author QA Other Lists Bugs Comments Code

e-mails e-mails Contributor
X1248 10 75 6 524 0 No
X1249 18 75 3 27 0 No
X1250 9 0 0 0 0 No
X1251 3 5 1 8 0 No
X1252 1 0 0 0 0 No
X1253 3 0 0 0 0 No
X954 1 273 2 3 0 No
X955 1 0 0 0 0 No
X1256 7 32 5} 1,371 0 No
X1257 1 134 7 42 0 No
X125g 1 0 0 0 0 No
X1259 1 0 0 0 0 No
X1260 2 0 0 0 0 No
X1261 1 0 0 0 0 No
X1262 1 0 0 0 0 No
X1263 2 0 0 0 0 No
X264 2 0 0 1 0 No
X1265 7 0 0 16 0 No
X1266 5 0 0 54 0 No
X1267 2 110 1 0 0 No
X1268 1 0 0 0 0 No
X1269 2 0 0 17 0 No
Xi270 1 0 0 10 0 No
X1271 2 0 0 0 0 No
X1272 5 0 0 0 0 No
X1273 2 0 0 76 0 No
X1274 1 0 0 45 0 No
Xi975 1 0 0 0 0 No
X19276 1 0 0 0 0 No
X1277 1 0 0 0 0 No
X127g 19 0 0 0 0 No
X1279 7 0 0 0 0 No
X1280 1 0 0 0 0 No
X981 1 D 2 363 0 No
X1282 2 0 0 0 0 No

Continued on next page

262 Appendix C

Author QA Other Lists Bugs Comments Code

e-mails e-mails Contributor
X1283 1 0 0 0 0 No
X284 1 0 0 0 0 No
X1285 16 0 0 0 0 No
X1286 2 1 1 0 0 No
X1287 7 304 10 0 0 No
X1288 2 0 0 0 0 No
X289 2 34 3 0 0 No
X1290 61 0 0 148 0 No
X1291 4 0 0 0 0 No
X1292 1 0 0 0 0 No
X1293 1 0 0 1 0 No
X904 2 251 2 3 0 No
X905 8 12 1 2 0 No
X1296 16 23 4 0 0 No
X1297 63 32 2 0 0 No
X1298 1 0 0 1 0 No
X299 1 0 0 0 729 Yes
X1300 1 0 0 3 0 No
X1301 1 0 0 0 0 No
X1302 2 41 2 0 0 No
X1303 5) 424 6 52 3,687 Yes
X1304 2 0 0 4 0 No
X1305 3 0 0 0 0 No
X1306 5 0 0 0 0 No
X1307 3 6 2 70 0 No
X1308 1 1 1 16 0 No
X1309 1 0 0 0 0 No
X1310 1 0 0 1 0 No
X1311 5 0 0 0 0 No
X1312 9 9 2 377 0 No
X1313 1 0 0 0 0 No
X1314 2 0 0 3 0 No
Xi315 2 0 0 0 0 No
Xi316 1 248 5 485 0 No
X1317 1 3 1 2 0 No

Continued on next page

C.3. UBUNTU

Author QA Other Lists Bugs Comments Code
e-mails e-mails Contributor

X1318 1 0 0 0 0 No
Xi319 1 0 0 0 0 No
X1320 1 8 3 254 0 No
X1321 1 20 3 83 0 No
X1322 6 110 4 0 0 No
X1323 1 0 0 0 0 No
X324 1 1,124 9 90 0 No
X1395 25 37 4 0 0 No
X1326 1 0 0 0 0 No
X1327 1 0 0 10 0 No
X395 1 1 1 0 0 No
X1329 1 0 0 0 0 No
X 1330 1 1 1 97 0 No
X1331) 13 2 462 0 No
X1332 18 134 2 69 0 No
X1333 11 254 7 250 0 No
X1334 1 0 0 0 0 No
X335 1 0 0 26 0 No
X1336 1 0 0 0 0 No
X1337 1 20 4 174 0 No
X1338 3 5) 1 3 0 No
X1339 1 0 0 10 0 No
X1340 1 0 0 0 0 No
X1341 3 7 4 61 0 No
X1342 1 232 9 718 8,387 Yes
X1343 1 0 0 0 0 No
X1344 1 0 0 0 0 No
X345 7 0 0 39 0 No
Xi346 4 o1 1 0 0 No
X1347 2 0 0 0 0 No
X134g 4 7 2 659 0 No
X140 2 1 1 1 0 No
X1350 2 0 0 0 0 No
Xiss1 8 10 4122 0 No
X1352 2 0 0 0 0 No

Continued on next page

263

264 Appendix C

Author QA Other Lists Bugs Comments Code

e-mails e-mails Contributor
X1353 1 0 0 0 0 No
X354 1 0 0 0 0 No
X1355 1 12 1 7 0 No
X1356 1 0 0 0 0 No
X1357 2 0 0 0 0 No
X1358 1 0 0 211 0 No
X359 1 0 0 0 0 No
X1360 1 0 0 0 0 No
X1361 4 1 1 0 0 No
X1362 1 0 0 0 0 No
X363 2 99 6 1,040 4,381 Yes
X364 2 0 0 0 0 No
X365 2 0 0 0 0 No
X1366 5) 7 1 2 0 No
X1367 2 0 0 64 0 No
X368 1 111 6 227 0 No
X369 6 33 5 142 0 No
X1s70 1 1 1 0 0 No
X1371 1 0 0 0 0 No
X1372 1 0 0 5} 0 No
X1373 1 0 0 0 0 No
X1374 1 0 0 0 0 No
X375 2 0 0 0 0 No
X1376 2 0 0 0 0 No
X1377 1 1 1 0 0 No
X1378 10 476 8 3,329 0 No
X1379 1 0 0 0 0 No
X380 1 0 0 0 0 No
Xi3s1 1 0 0 0 0 No
X1382 1 0 0 0 0 No
X1383 3 85 6 407 0 No
X1384 5} 17 2 26 0 No
X385 1 0 0 0 0 No
X386 1 0 0 0 0 No
X1387 2 0 0 0 0 No

Continued on next page

C.3. UBUNTU 265

Author QA Other Lists Bugs Comments Code

e-mails e-mails Contributor
X1388 1 79 6 0 0 No
X1389 13 0 0 13 0 No
X1390 2 0 0 0 0 No
X1391 1 0 0 0 0 No
X1392 5) 2 1 52 0 No
X1393 7 0 0 31 0 No
X1304 1 0 0 0 0 No
X105 1 12 1 0 0 No
X1396 21 117 5) 160 0 No
X1397 1 1 1 63 0 No
X1398 1 0 0 4 0 No
X300 1 1 1 0 0 No
X 1400 1 5 2 54 0 No
X1401 1 0 0 0 0 No
X1402 1 0 0 5 0 No
X14()3 1 13 1 0 0 No
X1404 1 0 0 0 0 No
X1405 1 0 0 0 0 No
X1406 69 6 1 36 0 No
X1407 10 0 0 18 0 No
X1408 1 0 0 0 0 No
X1409 1 0 0 3 0 No
X110 4 0 0 1 0 No
X1411 1 0 0 17 0 No
X1412 1 0 0 2 0 No
X1413 5 446 11 654 4,719 Yes
X1414 1 0 0 0 0 No
Xi415 3 0 0 3 0 No
X116 1 0 0 0 0 No
Xia17 5 491 6 826 26,259 Yes
X1418 3 0 0 0 0 No
X1419 8 0 0 0 0 No
X1420 1 0 0 0 0 No
X1 119 11 2 0 0 No
X420 1 0 0 0 0 No

Continued on next page

266 Appendix C

Author QA Other Lists Bugs Comments Code

e-mails e-mails Contributor
X1423 12 31 1 0 0 No
X14Q4 4 3 1 0 0 No
X1425 3 0 0 0 0 No
X1426 42 288 8 309 0 No
X1427 3 0 0 0 0 No
X1428 1 0 0 6 0 No
X490 1 11 2 319 0 No
X140 1 0 0 1 0 No
X1431 1 0 0 3 0 No
X1432 4 0 0 45 0 No
X1433 1 0 0 0 0 No
X1434 3 0 0 0 0 No
X435 1 0 0 0 0 No
X1436 2 74 5 85 943 Yes
X1437 11 34 5} 0 0 No
X1438 4 0 0 0 0 No
X1439 1 0 0 6 0 No
X 1440 2 0 0 215 0 No
X1441 2 0 0 275 0 No
X1442 9 0 0 0 0 No
X1443 2 14 3 46 0 No
X1444 2 0 0 0 0 No
X1445 2 0 0 0 0 No
X1446 1 0 0 0 0 No
X1447 7 20 2 7 0 No
X1448 2 0 0 0 0 No
X1449 1 0 0 0 0 No
X1450 3 0 0 0 0 No
X1451 5 5 2 48 0 No
X1452 1 18 2 172 0 No
X1453 1 4 1 0 0 No
X1454 1 0 0 0 0 No
X455 1 2 2 928 0 No
X456 2 0 0 0 0 No
X1457 34 0 0 42 0 No

Continued on next page

C.3. UBUNTU
Author QA Other Lists Bugs Comments Code
e-mails e-mails Contributor

Xiass p 22 1 0 0 No
X150 1 0 0 2 0 No
X1460 2 0 0 0 0 No
X1461 1 24 2 0 0 No
X1462 1 0 0 0 0 No
X1463 1 92 5 0 0 No
X1464 1 34 4 0 0 No
X465 5 2 1 0 0 No
X1466 1 104 3 0 0 No
X1467 7 812 7 0 0 No
X1468 207 436 5! 23 0 No
X1469 2 0 0 0 0 No
Xaro 1 4 1 0 0 No
X1471 2 0 0 0 0 No
X1472 1 0 0 0 0 No
X1473 1 0 0 5 0 No
X1474 1 0 0 0 0 No
Xyu7s 1 0 0 9 0 No
X1476 16 0 0 0 0 No
X1477 5 35 5 39 0 No
X1478 3 0 0 7 0 No
X1479 40 14 1 0 0 No
X1480 6 0 0 26 0 No
X1481 1 0 0 4 0 No
X1482 1 0 0 0 0 No
X1483 1 0 0 4 0 No
X1484 21 189 6 235 0 No
X485 2 0 0 0 0 No
X486 1 0 0 1 0 No
X14g7 1 0 0 0 0 No
X1488 1 0 0 0 0 No
X1489 4 37 6 5 0 No
X 1400 55 426 4 1,232 4,014 Yes
Xi401 8 0 0 0 0 No
X1492 2 0 0 2 0 No

Continued on next page

267

268 Appendix C
Author QA Other Lists Bugs Comments Code
e-mails e-mails Contributor

X1493 3 0 0 2 0 No
X1494 1 0 0 0 0 No
X14g5 1 0 0 0 0 No
X1496 1 0 0 3 0 No
X1497 3 7 1 0 0 No
X1498 1 0 0 0 0 No
X499 1 0 0 0 0 No
X1500 20 480 11 979 5,411 Yes
X1501 2 0 0 0 0 No
X1502 1 0 0 14 0 No
X1s03 22 43 2 1 0 No
X504 1 0 0 0 0 No
X1505 1 0 0 0 0 No
X1506 5) 26 2 0 0 No
X1507 5 0 0 78 0 No
X1508 67 669 5 352 0 No
X1509) 11 3 169 456 Yes
Xis10 2 1 1 0 0 No
X1511 5 185 3 51 0 No
X1512 1 0 0 0 0 No
X1513 1 0 0 0 0 No
X514 8 96 5 110 0 No
Xi515 2 0 0 0 0 No
X1516 1 34 2 0 0 No
X1517 1 0 0 7 0 No
X1518 1 0 0 0 0 No
X519 1 145 3 155 0 No
X520 1 3 1 96 0 No
X151 1 6 1 0 0 No
X520 1 4 1 24 0 No
X1523 1 0 0 0 0 No
X1524 3 1 1 0 0 No
X150 12 7 1 20 0 No
X506 1 3 1 0 0 No
X1527 1 0 0 4 0 No

Continued on next page

C.3. UBUNTU 269

Author QA Other Lists Bugs Comments Code

e-mails e-mails Contributor
X1528 1 0 0 0 0 No
X190 1 2 1 2 0 No
X1530 1 0 0 0 0 No
X1531 1 0 0 0 0 No
X1532 4 110 5) 171 0 No
X1533 1 0 0 0 0 No
X1sa4 1 2 1 1 0 No
X1535 1 0 0 0 0 No
X1536 2 1,145 10 518 0 No
X1537 1 0 0 0 0 No
X1538 2 0 0 73 0 No
X1539 1 0 0 0 0 No
X1540 1 0 0 0 0 No
X1541 2 0 0 177 0 No
X1542 15 1 1 16 0 No
X1543 1 0 0 0 0 No
X1544 3 0 0 0 0 No
X155 2 0 0 0 0 No
X1546 5 94 8 0 0 No
X1547 1 74 2 0 0 No
X1548 1 0 0 0 0 No
X1549 36 1 1 652 0 No
X1550 1 0 0) 0 No
X1551 1 0 0 137 0 No
X1552 3 0 0 0 0 No
X1553 2 0 0 0 0 No
X1554 4 7 1 2 0 No
X1555 4 67 1 0 0 No
X1556 2 0 0 0 0 No
X1557 3 0 0 6 0 No
X155g 2 0 0 113 0 No
X1559 1 0 0 0 0 No
X1560 1 0 0 1 0 No
X561 21 0 0 3 0 No
X1562 1 0 0 0 0 No

Continued on next page

270 Appendix C
Author QA Other Lists Bugs Comments Code
e-mails e-mails Contributor
Xis63 3 1,109 8 168 0 No
X564 1 3 1 0 0 No

Table C.8: Ubuntu activity levels on a yearly basis

Channel 2000 2001 2002 2003 2004 2005 2006
E-mails 0 0 0 0 20,142 61,100 67,227
QA e-mails 0 0 0 0 0 338 921
Bugs 327 392 1,459 2,155 8,124 25,707 42,000
Bug comments 655 1,065 4,394 7,258 42516 98,446 178,512
Channel 2007 2008 2009 2010 2011 2012 2013
E-mails 59,443 69,147 68,502 54,387 37,058 37,595 13,086
QA e-mails 498 846 785 1,899 1,123 1,526 862
Bugs 88,443 121,861 169,975 164,447 184,826 149,616 34,029
Bug comments 361,402 568,934 705,424 726,786 664,882 612,333 141,725

NLNNEN €D

1L¢

272 Appendix C

C.4 Plone

Table C.9: Plone QA mailing list participants’ activity levels on other chan-
nels

Author QA Other Lists Bugs Comments Code

e-mails e-mails Contributor
X, 1 1 1 0 0 No
Xo 1 0 0 0 0 No
X3 1 266 6 0 0 Yes
X4 1 0 0 0 0 No
X5 1 0 0 0 0 No
Xe 6 0 0 0 0 No
X7 1 17 2 0 0 No
Xg 1 0 0 0 0 No
Xy 1 0 0 0 0 No
X10 2 221 2 0 0 No
X1 8 1,590 7 0 0 Yes
Xy 1 0 0 0 0 No
Xi3 59 520 7 76 886 Yes
X4 3 1,063 10 o1 834 Yes
X15 1 0 0 0 0 No
Xi6 1 0 0 0 0 No
X7 1 0 0 0 0 No
X18 1 0 0 0 0 No
Xig 1 273 10 31 127 Yes
X20 2 1 1 0 0 No
Xy 1 1,126 10 113 10,848 Yes
X9 3 0 0 0 0 No
Xog 3 974 9 40 170 Yes
X24 2 331 6 0 0 No
X25 1 0 0 0 0 No
X26 1 81 6 4 3 No
Xo7 1 1,659 13 0 0 Yes
Xog 1 256 6 37 96 Yes
X29 2 0 0 0 0 No
X30 1 0 0 0 0 No
X31 2 81 4 0 0 Yes

Continued on next page

C.4. PLONE 273

Author QA Other Lists Bugs Comments Code

e-mails e-mails Contributor
X3 4 888 10 0 0 Yes
X33 1 0 0 0 0 No
X3y 1 1,153 8 0 0 Yes
X35 1 0 0 0 0 No
X36 1 27 3 0 0 Yes
X37 1 0 0 0 0 No
X3 4 71 3 0 0 No
X3 3 276 4 0 0 Yes
X40 1 0 0 0 0 No
X4 2 1,110 2 0 0 No
X42 1 34 3 0 0 Yes
X3 1 65 3 0 0 No
Xy 1 0 0 0 0 No
X45 2 0 0 0 0 No
X46 1 24 1 0 0 No
Xy 8 924 9 0 0 Yes
Xus 1 217 6 0 0 Yes
X9 1 0 0 0 0 No
X50 1 0 0 0 0 No
Xs51 1 162) 0 0 No
X52 1 1 1 0 0 No
X3 1 0 0 0 0 No
Xsy 1 201 6 0 0 Yes
X5 2 78) 0 0 No
Xsg 1 190 7 15 233 Yes
Xs7 15 0 0 0 0 No

Appendix C

274

Table C.10: Plone activity levels on a yearly basis

Channel 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 Total
Bug No. 748 1,503 1,461 1,349 944 1,482 1,336 1,132 1,391 1,060 620 - 13,026
Comment No. 1,102 3,106 3,322 4,057 3,636 5,193 5592 1,1251 6,297 4,015 8,312 -~ 55,883
No. 2,742 12,228 19,951 17,486 22,312 23,959 23,323 18,508 11,403 10,930 8,973 4,177 175,992
QA mail No. - - - - - - - - - 47 64 59 170

C.5. KDE 275

C.5 KDE

Table C.11: KDE QA mailing list participants’ activity levels on other chan-
nels

Author QA Other Lists Bugs Comments Code

e-mails e-mails Contributor
X, 2 5,128 22 366 5,332 Yes
X5 65 2,267 17 329 12,642 Yes
X3 1 81 9 0 0 Yes
Xy 3 236 17 96 319 Yes
X5 2 29 4 0 0 No
Xs 1 114 10 17 75 No
Xy 4 1,317 13 14 1,219 Yes
Xg 17 1,071 15 956 3,391 No
Xy 35 126 9 30 1,676 No
X1 2 11 3 2 60 No
X1 4 0 0 0 0 No
X2 1 537 16 19 273 Yes
X13 1 0 0 0 0 No
X14 4 40 4 0 0 No
X5 1 155 30 186 1,166 Yes
Xie 1 301 20 8 264 Yes
X7 3 626 33 87 1,570 Yes
Xis 4 1,580 24 122 2736 Yes
X1 1 1,049 10 116 397 No
Xo1 115 509 13 0 0 No
Xo9 2 0 0 0 0 No
Xo3 3 88 10 142 1,171 Yes
X24 1 0 0 0 0 No
Xos 9 143 9 12 30 No
Xog 45 3,610 13 251 1,863 Yes
Xo7 1 1,648 4 533 1,397 No
Xog 1 3 3 6 80 No
Xog 10 310 20 73 6,206 Yes
X3 4 2,369 16 100 1,164 Yes
X3 1 1,854 36 80 13,494 No

Continued on next page

276 Appendix C
Author QA Other Lists Bugs Comments Code
e-mails e-mails Contributor

X3 64 844 16 141 1,316 No
X33 3 7 3 0 0 No
X34 4 5,388 17 452 5,588 No
X35 12 190 13 36 6,173 Yes
X3 1 6,362 37 85 11,737 Yes
X7 3 46 9 13 35 Yes
X3 2 759 20 17 1,320 Yes
X3 6 34 2 11 310 No
X0 18 402 21 0 0 No
Xq 8 430 8 0 0 Yes
Xy 1 26 1 2 11 Yes
X3 31 806 14 216 2,109 Yes
X44 2 0 0 0 0 No
X5 28 6,248 22 78 34,075 No
X6 2 269 13 0 0 No
X 1 1 1 0 1 No
Xy 2 8 3 0 3 No
X550 2 217 17 75 343 No
X551 1 5 2 1 50 Yes
X5 3 690 17 5 952 Yes
Xs3 6 144 6 17 545 No
X554 2 71 5 21 49 Yes
Xss 1 44 1 0 0 No
X56 1 0 0 0 0 Yes
X57 1 3 1 0 0 No
Xsg 8 638 11 21 402 No
X59 3 18 2 0 0 No
Xeo 3 187 17 0 0 Yes
X1 1 6 2 0 0 No
X2 6 5 2 1 28 No
X3 4 4,824 37 387 17,054 Yes
Xeu4 42 543 26 121 3,224 Yes
Xe5 1 178 12 153 348 Yes
Xes 2 0 0 0 34 No

Continued on next page

C.5. KDE

Author QA Other Lists Bugs Comments Code
e-mails e-mails Contributor

X7 1 2 2 32 68 No
Xes 6 9,812 23 220 11,350 Yes
Xe9 3 112 9 8 325 Yes
X7 2 271 16 19 6,124 Yes
X7 22 4,718 51 342 5,525 Yes
X72 10 27 3 0 0 No
X3 3 514 10 154 1,352 Yes
X7y 1 335 18 103 12,168 Yes
X5 2 2 2 1 31 Yes
X6 1 131 14 0 0 No
X77 2 583 14 0 0 No
X7g 3 2,472 24 60 1,911 Yes
X9 7 2,257 27 0 0 No
Xgo 1 6 2 6 592 Yes
Xg1 2 127 18 99 1,319 Yes
ng 6 212 6 7 110 Yes
Xg3 1 154 7 0 0 No
Xsy 1 98 8 162 652 Yes
Xgs 8 607 16 97 1,065 No
Xgg 2 566 27 84 1,567 Yes
Xg7 1 503 19 809 3,591 No
Xgg 1 2 2 84 1,337 Yes
Xz 36 657 13 0 0 No
Xogo 19 58 8 90 614 No
X91 1 1 1 0 0 No
ng 2 32 7 0 0 No
Xoa 1 44 12 0 0 Yes
Xoy4 1 3 1 2 7 No
Xos 1 208 13 38 1,469 Yes
Xog 8 316 6 51 244 Yes
X7 1 88 13 215 608 Yes
ng 1 7 4 9 14 No
Xo9g 1 0 0 0 0 No
X100 76 2,491 28 119 23,887 No
X101 1 2,610 19 43 406 Yes

Continued on next page

277

278 Appendix C
Author QA Other Lists Bugs Comments Code
e-mails e-mails Contributor

X102 1 80 9 98 225 Yes
X103 1 88 12 24 231 Yes
X104 1 459 20 100 1,404 No
X105 25 57 5 23 169 No
X106 4 15 4 0 22 Yes
X107 2 360 22 0 0 No
X108 2 4,988 37 38 7,469 Yes
X109 2 7,660 64 0 0 No
X110 6 1 1 1 121 No
X1 4 4,256 19 44 4,566 Yes
X119 1 2 2 0 0 No
X113 4 1,046 26 47 484 Yes
X114 1 2,753 27 123 11,010 Yes
X115 2 2 2 0 0 No
X116 1 55 10 34 1,139 Yes
X7 6 513 19 129 3,926 No
X118 2 282 16 81 268 Yes
X119 2 317 13 0 0 No
X120 1 3 2 0 1 No
X191 30 567 25 47 869 Yes

Table C.12: KDE activity levels on a yearly basis

Channel 1999 2000 2001 2002 2003 2004 2005 2006
Mail No. 3,472 5,081 6,647 7,089 9,910 13,928 18,264 29,860
QA Mail No. 0 0 0 0 0 0 0 0
BugSquad Mail No. 0 0 0 0 0 0 0 0
Bug No. 389 12,107 18,618 15,741 19,115 24,531 23,253 20,161
Comments No. 415 21,112 41,899 46,936 79,065 108,157 104,285 94,593
Channel 2007 2008 2009 2010 2011 2012 2013
Mail No. 38,319 53,061 78574 81,781 77,262 76,478 29,751
QA Mail No. 0 0 0 0 0 236 83
BugSquad Mail No. 0 312 128 88 40 52 15
Bug No. 15,475 24,347 41,852 39,224 27,752 21,395 8,887
Comments No. 70,118 123,141 197,682 171,779 137,500 117,210 50,143

HAM ¢D

6.LC

280

C.6 LibreOffice

Table C.13: LibreOffice QA mailing list participants activity levels on other

Appendix C

channels
Author QA Other Lists Bugs Comments Code
e-mails e-mails Contributor

X 33 3,086 4 10 320 Yes
X5 1 4 1 0 0 No
X3 1 0 0 0 0 No
Xy 17 2,185 3 50 1,757 Yes
X5 1 0 0 0 0 No
X 1 0 0 0 0 No
X5 1 2 1 5 49 No
Xg 237 2,462 4 42 1,042 Yes
Xy 1 7 1 0 0 No
X0 3 0 0 0 0 No
X1 1 115 2 5 19 Yes
X2 1 0 0 0 0 No
X13 1 2 2 0 0 No
X14 1 0 0 0 0 No
X5 2 887 4 3 182 No
X6 1 1 1 0 0 No
Xi7 1 3 2 0 0 No
X18 1 0 0 0 0 No
X1 136 663 2 152 1,535 Yes
X20 1 0 0 0 0 No
X21 3 0 0 0 0 No
X 54 9 1 0 0 No
X23 2 0 0 0 0 No
X24 1 1 1 0 0 No
X25 3 2 1 0 0 No
Xog 1 1 1 0 0 No
Xo7 1 0 0 0 0 No
Xog 2 0 0 0 0 No
Xog 45 4 1 38 2,779 Yes
X3 33 41 2 12 245 No
X31 1 0 0 0 0 No

Continued on next page

281

C.6. LIBREOFFICE

Code
Contributor

Comments

QA Other Lists Bugs

e-mails

Author

e-mails

No

X32

Yes

31

25

X33

No

X4

No

X35

No

X36

No

X37

No

X38

No

X39

No

X

No

X41

No

18

93

X42

No

X3

No

Xaa

No

Xus

No

Xae

No

Xz

No

Xus

No

X49

No

X50

No

Xs1

No

X5

No

86

26

121

Xs3

No

Xs4

No

X55

No

X56

No

X57

Yes

383

23

18

100

Xss

No

X59

No

XGO

No

13
992

Xe1

1,088 Yes

130

Xe2

No

X63

No

Xea

No

X65

No

Continued on next page

X66

282 Appendix C
Author QA Other Lists Bugs Comments Code
e-mails e-mails Contributor

X67 7 56 1 0 0 No
Xes 1 0 0 0 0 No
Xeo 11 0 0 0 0 No
X0 3 208 3 0 0 No
X7 101 5) 1 58 4,327 Yes
X7 2 2 1 3 10 No
X3 1 1 1 92 717 No
X 1 0 0 0 0 No
X7 1 1 1 83 950 Yes
X76 3 0 0 1 2 No
X77 1 0 0 0 0 No
Xrg 19 73 1 0 0 No
X9 3 1 1 5 20 No
Xso 192 1,009 3 0 0 Yes
Xgq1 1 1 1 0 181 No
Xgo 69 38 1 0 0 No
Xgs3 23 1 1 0 0 No
Xy 1 23 1 0 12 No
X85 1 1 1 0 0 Yes
X86 1 0 0 0 0 No
X87 14 2 1 0 0 No
ng 2 0 0 0 9 No
Xz 23 212 2 39 570 Yes
Xg() 1 1 1 0 0 No
X91 1 0 0 0 0 No
Xogo 7 278 3 0 0 No
X93 1 0 0 0 0 No
Xoy4 1 0 0 0 0 No
Xos 1 0 0 0 0 No
X96 1 9 1 0 0 No
X97 1 0 0 0 0 No
ng 1 0 0 0 0 No
Xog9 1 0 0 0 0 No
X100 124 4,067 3 126 1,876 Yes
Xi01 29 440 2 9 153 Yes

Continued on next page

C.6. LIBREOFFICE 283

Author QA Other Lists Bugs Comments Code

e-mails e-mails Contributor
X102 1 0 0 0 0 No
X103 1 0 0 0 0 No
X104 1 0 0 0 0 No
X105 1 0 0 0 0 No
X106 1 0 0 0 0 No
X107 1 0 0 0 0 No
X108 1 141 3 33 369 Yes
X109 1 0 0 0 0 No
X110 1 0 0 0 0 No
X11 1 13 0 0 0 0 No
X11s 1 1 1 0 0 No
X113 3 45 2 4 18 Yes
X114 1 0 0 0 0 No
X115 2 0 0 0 0 No
X116 4 290 2 68 398 No
X117 1 0 0 0 0 No
Xi1s 4 44 1 0 0 Yes
X119 1 0 0 0 0 No
X120 23 1,650 2 34 616 Yes
X121 1 0 0 0 0 No
X122 1 0 0 0 0 No
X123 1 0 0 0 0 No
Xi24 1 0 0 0 0 No
X125 1 0 0 0 0 No
X126 1 20 1 0 0 No
X127 1 0 0 0 0 No
X128 3 102 2 11 39 Yes
X129 1 0 0 0 0 No
X130 3 0 0 0 0 No
X131 1 0 0 0 0 No
X132 1 0 0 0 0 No
X1 1 1 1 0 0 No
X34 1 3 2 0 0 No
X135 65 0 0 6 46 No
X136 2 0 0 0 0 No

Continued on next page

284 Appendix C

Author QA Other Lists Bugs Comments Code

e-mails e-mails Contributor
X137 1 0 0 0 0 No
Xi3s 1 0 0 0 0 No
X139 7 8 1 0 0 No
Xi40 130 320 2 20 2,620 Yes
X141 28 6 2 38 594 No
X142 1 0 0 0 0 No
Xi43 3 111 2 36 250 Yes
X4 1 0 0 1 1 No
X145 4 0 0 1 1 No
X146 1 0 0 0 0 No
X147 2 2 1 0 0 No
X8 1 0 0 0 0 No
Xi49 1 0 0 0 0 No
X150 1 0 0 0 0 No
X151 1 0 0 0 0 No
X152 17 3 1 0 0 No
Xis53 443 176 2 0 0 No
Xi54 1 0 0 0 0 No
X155 5 839 1 0 0 Yes
X156 2 2 1 0 0 No
X157 1 0 0 2 148 No
Xis8 3 0 0 0 0 No
X159 4 o6 1 0 0 No
X160 1 1 1 0 0 No
X161 1 0 0 0 0 No
X162 1 0 0 0 0 No
X163 1 0 0 0 0 No
Xi64 8 0 0 8 30 Yes
X165 1 0 0 0 0 No
X166 2 0 0 0 0 No
X6 25 130 1 32 436 Yes
X168 1 0 0 0 0 No
Xi69 1 0 0 0 0 No
X170 13) 1 2 35 No
Xin 3 36 1 39 263 No

Continued on next page

C.6. LIBREOFFICE 285

Author QA Other Lists Bugs Comments Code

e-mails e-mails Contributor
X172 2 0 0 0 0 No
X173 1 0 0 0 0 No
X174 1 0 0 0 0 No
X175 18 3 1 0 0 No
X176 5) 17 1 0 0 Yes
X177 6 1 1 0 0 No
X7 1 0 0 2 7 No
X179 39 36 1 0 0 No
X180 2 0 0 0 0 No
X181 2 3 2 0 0 No
Xis 1 p 2 0 0 No
Xis3 4 333 1 3 7 Yes
X1 5 1 1 34 139 No
X185 1 0 0 0 0 No
X186 1 0 0 0 0 No
X187 1 0 0 0 0 No
Xiss 3 0 0 0 0 No
X189 30 13 1 6 15 No
X190 25 148 3 23 153 No
X191 1 0 0 0 0 No
X192 1 0 0 0 0 No
X193 2 0 0 0 0 No
Xi94 11 0 0 0 0 No
X195 1 0 0 0 0 No
X106 1 1 1 4 16 No
X197 1 0 0 0 0 No
X198 1 0 0 0 0 No
X199 1 0 0 0 0 No
X200 1 0 0 0 0 No
X201 1 0 0 0 0 No
X202 1 0 0 0 0 No
X203 1 0 0 0 0 No
Xooa 1 0 0 0 0 No
Xo05 1 30 1 0 0 No
X206 1 0 0 0 0 No

Continued on next page

286 Appendix C

Author QA Other Lists Bugs Comments Code

e-mails e-mails Contributor
X207 1 0 0 0 0 No
Xoos 1 72 1 0 0 No
X209 3 39 1 0 0 Yes
X210 11 0 0 0 0 No
X211 1 0 0 0 0 No
X212 1 3 1 31 o8 No
Xo13 1 0 0 0 0 No
Xo14 1 0 0 0 0 No
X215 4 0 0 0 0 No
X216 1 0 0 0 0 No
Xo17 70 108 1 0 0 Yes
Xo1g 1 0 0 0 0 No
Xo19 1 0 0 0 0 No
X220 30 245 2 78 1,365 Yes
X221 1 0 0 0 0 No
X222 1 0 0 0 0 No
X923) 1 1 0 0 No
Xoo4 1 0 0 0 0 No
X225 1 265 1 0 0 Yes
X226 2 8 1 26 69 No
X227 1 0 0 0 0 No
X228 1 0 0 0 0 No
X929 4 0 0 0 79 No
Xa30 42 109 1 34 257 Yes
X231 5 2 1 0 0 No
X232 30 1,349 4 0 0 Yes
X233 1 0 0 0 0 No
Xo34 2 0 0 0 0 No
Xoss 2 0 0 0 0 No
X236 1 0 0 0 0 No
X237 1 0 0 0 0 No
X238 2 0 0 0 0 No
X 1 1 1 0 0 No
Xouo 11 355 2 91 344 Yes
X241 20 832 3 90 1,346 Yes

Continued on next page

C.6. LIBREOFFICE 287

Author QA Other Lists Bugs Comments Code

e-mails e-mails Contributor
X242 2 55 2 0 0 No
Xous 26 0 0 19 378 No
X244 1 12 1 0 0 No
X245 1 0 0 1 1 No
X246 3 80 2 0 0 Yes
Xour 1 1 1 0 0 No
Xous 7 1 1 2 60 No
Xo49 1 0 0 0 0 No
X250 1 0 0 0 0 No
X251 1 251 2 0 0 Yes
Xoso 4 216 1 13 122 Yes
Xoss 1 11 1 0 0 No
Xos4 1 0 0 0 0 No
X255 3 6 2 1 1 No
Xos6 9 1,008 2 8 279 Yes
X257 1 0 0 0 0 No
Xoss 1 0 0 0 0 No
Xo59 1 0 0 0 0 No
X260 1 1 1 0 0 No
X261 1 0 0 0 0 No
X262 11 28 2 0 0 No
Xogs 1 1 1 0 0 No
Xo6a 3 0 0 0 0 No
X265 15 221 2 0 0 Yes
X266 1 0 0 0 0 No
X267 1 0 0 0 0 No
X268 2 0 0 0 0 No
Xo69 36 930 2 25 841 Yes
Xor0 1 3 2 0 0 No
X271 1 0 0 0 0 No
X272 1 0 0 0 0 No
X273 1 0 0 0 0 No
Xomg p 1 1 0 0 No
Xors 1 12 1 0 0 Yes
X276 3 0 0 0 5 No

Continued on next page

288 Appendix C

Author QA Other Lists Bugs Comments Code

e-mails e-mails Contributor
X277 1 0 0 0 0 No
Xorg 1 60 1 3 13 Yes
Xorg 3 804 2 8 286 Yes
ng() 7 0 0 0 0 No
X281 1 0 0 0 0 No
ngg 1 0 0 0 0 No
Xog3 42 66 2 0 0 No
Xoga 59 491 2 0 0 Yes
Xogs 21 635 3 46 1,681 Yes
X286 1 1 1 0 0 No
X287 1 0 0 0 0 No
Xoss 1 1 1 0 0 No
Xogo 3 4 p 0 0 No
ngo 1 0 0 0 0 No
X291 1 0 0 0 0 No
ngg 1 0 0 0 0 No
Xoos 9254 134 1 0 0 No
Xogyg 1 0 0 0 0 No
X295 1 2 2 0 0 No
X296 2 0 0 0 0 No
X297 1 0 0 0 0 No
X298 1 0 0 0 0 No
Xogo 1 1 1 0 0 No
X300 5) 1 1 0 0 No
X301 o6) 2 0 0 No
X302 2 0 0 0 0 No
X303 1 0 0 0 0 No
X304 1 0 0 0 0 No
X305 1) 2 0 0 No
X306 1 0 0 0 0 No
X307 1 4 1 1 1 Yes
Xaos 21 48 1 11 69 No
X0 25 3 1 4 20 No
Xa10 1 2 2 0 0 No
Xan 7 1,592 3 4 64 Yes

Continued on next page

C.6. LIBREOFFICE 289

Author QA Other Lists Bugs Comments Code

e-mails e-mails Contributor
X312 3 698 2 25 561 Yes
X313 1 0 0 0 0 No
X314 4 0 0 0 0 No
X315 2 0 0 0 0 No
X316 1 0 0 0 0 No
X317 1 0 0 3 10 No

Table C.14: LibreOffice activity levels on a yearly basis

Venue 2010 2011 2012 2013
Mail No. 12,344 57,745 82,658 39,962
QA Mail No. 0 285 1,848 948
Bugs No. 691 5,959 8,603 4,179

Comment No. 6,565 47,927 52,041 20,675

290 Appendix C

C.6. LIBREOFFICE 291

292 Appendix C

Bibliography

1]

2]

[4]

[5]

Mark Aberdour. Achieving quality in open source software. I[EEE Soft-
ware, 24(1):58-64, January 2007.

Philippe Aigrain. Positive intellectual rights and information exchanges.
In Rishab Aiyer Ghosh, editor, CODE: Collaborative OQwnership and the
Digital Economy, pages 287-315. MIT Press, 2005.

Sinan Aral, Erik Brynjolfsson, and Marshall W. van Alstyne. Productiv-
ity effects of information diffusion in e-mail networks. In Proceedings of
the International Conference on Information Systems, ICIS 2007, Mon-
treal, Quebec, Canada, December 9-12, 2007, page 17. Association for
Information Systems, 2007.

Martin Aspeli. Plone: A model of a mature open source project. Mas-
ter’s thesis, London School of Economics, 2004.

Yoris A. Au, Darrell Carpenter, Xiaogang Chen, and Jan Guynes Clark.
Virtual organizational learning in open source software development
projects. Information and Management, 46(1):9-15, 2009.

Jono Bacon. The Art of Community - Building the New Age of Partic-
wpation, 2nd Edition. O’Reilly, 2012.

Albert-Laszlo Barabasi. Linked: How Everything Is Connected to Fuv-
erything Else and What It Means for Business, Science, and Everyday
Life. Plume Books, 2003.

Donato Barbagallo, Chlara Francalenei, and Francesco Merlo. The im-
pact of social networking on software design quality and development
effort in open source projects. In Proceedings of the International Con-
ference on Information Systems, ICIS 2008, Paris, France, December
14-17, 2008, page 201. Association for Information Systems, 2008.

293

294

[9]

[10]

[11]

[12]

BIBLIOGRAPHY

Flore Barcellini, Francoise Détienne, Jean-Marie Burkhardt, and War-
ren Sack. Thematic coherence and quotation practices in OSS design-
oriented online discussions. In Proceedings of the 2005 International
ACM SIGGROUP Conference on Supporting Group Work, GROUP ’05,
pages 177-186. ACM, 2005.

Adina Barham. The emergence of quality assurance in open source soft-
ware development. In Proceedings of the OSS 2011 Doctoral Consortium,
volume 20, pages 1-19. Tampere University of Technology, 2011.

Adina Barham. The impact of QA practices on FLOSS communities. In
Proceedings of the OSS 2013 Doctoral Consortium, volume 22. Skovde
University Studies in Informatics (SUSI), 2013.

Andrea Bonaccorsi, Silvia Giannangeli, and Cristina Rossi. Entry
strategies under competing standards: Hybrid business models in the
open source software industry. Management Science - Management,
52(7):1085-1098, July 2006.

Frederick P. Brooks. The Muythical Man-Month: Essays on Software
Engineering. Addison-Wesley Professional, 2nd edition, 1995.

Andrea Capiluppi and Karl Beecher. Structural complexity and decay in
FLOSS systems: An inter-repository study. 13th European Conference
on Software Maintenance and Reengineering (CSMR 2009), pages 169—
178, 2009.

Kevin Carillo and Chitu Okoli. The open source movement: a revolution
in software development. Journal of Computer Information Systems,
49(7):1-9, July 2008.

Paul E Ceruzzi. A History of Modern Computing. MIT Press, 2000.

InduShobha N. Chengalur-Smith, Anna Sidorova, and Sherae L. Daniel.
Sustainability of free/libre open source projects: A longitudinal study.
Journal of the Association for Information Systems, 11(11), 2010.

S. R. Chidamber and C. F. Kemerer. A metrics suite for object ori-
ented design. IEEE Transactions on Software Engineering, 20(6):476—
493, 1994.

Scott Christley and Greg Madey. Global and temporal analysis of social
positions at SourceForge.net. In Proceedings of the Third International
Conference on Open Source Systems (0SS), Limerick, Ireland, 2007.
IFIP WG 2.13.

[20]

[21]

[22]

[23]

[24]

[25]

[30]

[31]

295

J. Daniel Couger and Robert A. Zawacki. Motivating and Managing
Computer Personnel. John Wiley & Sons, Inc., 1st edition, 1980.

Alan Cox. Cathedrals, Bazaars and the Town Council. Slashdot, October
1998.

Philip B Crosby. Quality Is Free. McGraw-Hill, 1979.

Kevin Crowston, Hala Annabi, and James Howison. Defining open
source software project success. In Proceedings of the 24th International
Conference on Information Systems (ICIS 2003, pages 327-340, 2003.

Kevin Crowston and James Howison. The social structure of free and
open source software development. First Monday, 10(2), 2005.

Kevin Crowston, Qing Li, Kangning Wei, U. Yeliz Eseryel, and James
Howison. Self-organization of teams for free/libre open source software
development. Information & Software Technology, 49(6):564-575, 2007.

B. Curtis and et al. People management capability maturity model.
Technical report, Software Engineering Institute, 1994.

Jean-Michel Dalle, Matthijs den Besten, and Héla Masmoudi. Channel-
ing Firefox developers: Mom and Dad aren’t happy yet. In Open Source
Development, Communities and Quality, IFIP 20th World Computer
Congress, Working Group 2.3 on Open Source Software, OSS 2008,
September 7-10, 2008, Milano, I[taly, volume 275 of IFIP, pages 265—
271. Springer, 2008.

Tom DeMarco and Timothy Lister. Peopleware: Productive Projects
and Teams. Dorset House, 2nd edition, 1999.

Hla Masmoudi & Matthijs L. den Besten & Claude De Loupy& Jean-
Michel Dalle. “Peeling the onion”: The words and actions that distin-
guish core from periphery in bug reports and how core and periphery

interact together. In Fifth International Conference on Open Source
Systems - OSS 2009, Sweden, June 2009, FLOSS 10, 2009.

Chris DiBona, Mark Stone, and Danese Cooper. Open sources 2.0.
O’Reilly, 1st edition, 2005.

Edsger W. Dijkstra. Notes on structured programming. In O. J. Dahl,
E. W. Dijkstra, and C. A. R. Hoare, editors, Structured programming,
pages 1-82. Academic Press Ltd., 1972.

296

[32]

33]

[34]

[40]

[41]

[42]

BIBLIOGRAPHY

Michael English, Chris Exton, Irene Rigon, and Brendan Cleary.
Fault detection and prediction in an open-source software project. In

Thomas J. Ostrand, editor, PROMISE, page 17. ACM, 2009.

Joseph Feller and Brian Fitzgerald. Understanding Open Source Soft-
ware Development. Addison-Wesley, 2002.

Brian Fitzgerald. The transformation of open source software. MIS
Quarterly, 30(3):587-598, September 2006.

Bent Flyvbjerg. Five misunderstandings about case-study research.
Qualitative Inquiry, 12(2):219-245, 2006.

Karl Fogel. Producing Open Source Software : How to Run a Successful
Free Software Project. O’Reilly, October 2005.

Cristina Gacek, Tony Lawrie, and Budi Arief. The Many Meanings of
Open Source. IEEE Software, 21(1):34-40, January 2004.

Daniel M. German and Jesis M. Gonzalez-Barahona. An empirical
study of the reuse of software licensed under the gnu general public li-
cense. In Proceedings of the 5th IFIP WG 2.13 International Conference
on Open Source Systems, OSS 2009, Skovde, Sweden, June 3-6, 2009,
volume 299, pages 185-198. Springer, 2009.

Rishab Aiyer Ghosh, Riidiger Glott, Bernhard Krieger, and Gregorio
Robles. Free/libre and open source software: Survey and study (FLOSS)
part 4: Survey of developers. Technical report, International Institute
of Infonomics, University of Maastricht, 2002.

Mark S. Granovetter. The Strength of Weak Ties. The American Journal
of Sociology, 78(6):1360-1380, 1973.

A. Gilines Koru and Hongfang Liu. Identifying and characterizing
change-prone classes in two large-scale open-source products. Journal
of Systems and Software, 80(1):63-73, January 2007.

Jungpil Hahn, Jae Y. Moon, and Chen Zhang. Emergence of new project
teams from open source software developer networks: Impact of prior
collaboration ties. Information Systems Research, 19(3):369-391, 2008.

T. Halloran and W. Scherlis. High quality and open source software
practices. In Proceedings of the 2nd ICSE Workshop on Open Source,
2002.

[44]

[45]

[46]

[47]

[48]

[51]

[52]

[53]

[54]

297

Alexander Hars and Shaosong Ou. Working for free? Motivations for
participating in open-source projects. International Journal of FElec-
tronic Commerce, 6(3):25-39, April 2002.

Henrik Hedberg, Netta livari, Mikko Rajanen, and Lasse Harjumaa.
Assuring quality and usability in open source software development. In
Proceedings of the 29th International Conference on Software Engineer-
ing Workshops, Washington, DC, USA, ICSEW 07, pages 122-127.
[EEE Computer Society, 2007.

Pieter Hooimeijer and Westley Weimer. Modeling bug report quality.
In R. E. Kurt Stirewalt, Alexander Egyed, and Bernd Fischer, editors,
22nd IEEE/ACM International Conference on Automated Software En-
gineering (ASE 2007), November 5-9, 2007, Atlanta, Georgia, USA,
pages 34-43. ACM, 2007.

Janet Hope. Biobazaar the open source revolution and biotechnology.
Harvard University Press, 2008.

Liaquat Hossain and David Zhu. Social networks and coordination per-
formance of distributed software development teams. The Journal of
High Technology Management Research, 20(1):52-61, 2009.

James Howison, Kevin Crowston, and Andrea Wiggins. Validity issues
in the use of social network analysis with digital trace data. Journal of
the Association for Information Systems, 12, 2011.

Chris Jensen and Walt Scacchi. Role migration and advancement pro-
cesses in OSSD projects: A comparative case study. In Proceedings of
the 29th International Conference on Software Engineering, ICSE "07,
pages 364-374. IEEE Computer Society, 2007.

Christopher Kelty. Two Bits: The Cultural Significance of Free Software.
Duke University Press, 2008.

Terhi Kilamo. Essential properties of open development communities.
In Proceedings of the OSS 2011 Doctoral Consortium, volume 20, pages
20-27. Tampere University of Technology, 2011.

Terhi Kilamo, Timo Aaltonen, and Teemu J. Heiniméki. BULB: Onion-
based measuring of OSS communities. In 0SS, pages 342-347, 2010.

Terhi Kilamo, Tommi Mikkonen, and Santtu Mikkonen. My summer
as a mole: Evaluating an open source community via participation. In

298

[63]

BIBLIOGRAPHY

proceedings of Open Source Workshop 2009 in conjunction with the 4th
IEEFE Systems and Software Week, 2009.

J. Lakhani, B. Wolf, J. Bates, and C. DiBona. The Boston Consulting
Group Hacker Survey. Technical report, Bosting Consulting Group and
Open Source Developers Network, 2002.

Timothy C. Lethbridge, Susan Elliott Sim, and Janice Singer. Studying
software engineers: Data collection techniques for software field studies.
Empirical Software Engineering, 10(3):311-341, July 2005.

Martin Michlmayr, Francis Hunt, and David Probert. Quality practices
and problems in free software projects. In Marco Scotto and Giancarlo
Succi, editors, Proceedings of the First International Conference on Open
Source Systems, pages 24-28, Genova, Italy, 2005.

Audris Mockus, Roy T. Fielding, and James Herbsleb. A case study of
open source software development: the Apache server. In Proceedings of

the 22nd International Conference on Software Engineering, ICSE 00,
pages 263-272. ACM, 2000.

Audris Mockus, Roy T. Fielding, and James D. Herbsleb. Two case
studies of open source software development: Apache and Mozilla. ACM
Transactions on Software Engineering and Methodology, 11(3):309-346,
July 2002.

Glyn Moody. Rebel Code: Linuz and the Open Source Revolution.
Perseus Publishing, 2002.

Kumiyo Nakakoji, Yasuhiro Yamamoto, Yoshiyuki Nishinaka, Kouichi
Kishida, and Yunwen Ye. Evolution patterns of open-source software
systems and communities. Proceedings of the International Workshop
on Principles of Software Fvolution, pages 76-85, 2002.

Tetsuo Noda, Terutaka Tansho, and Shane Coughlan. The effect of open
source licensing on the evolution of business strategy. In Proceedings of
the 8th IFIP WG 2.13 International Conference on Open Source Sys-
tems, OSS 2012, Hammamet, Tunisia, September 10-13, 2012, pages
344-349, 2012.

Wouter De Nooy, Andrej Mrvar, and Vladimir Batagelj. FExploratory
Social Network Analysis with Pajek. Cambridge University Press, 2011.

[64]

[65]

[66]

[69]

[70]

[71]

[72]

299

Christopher Oezbek, Lutz Prechelt, and Florian Thiel. The onion
has cancer: some social network analysis visualizations of open source
project communication. In Proceedings of the 3rd International Work-

shop on Emerging Trends in Free/Libre/Open Source Software Research
and Development, FLOSS ’10, pages 5-10. ACM, 2010.

Tim O’Reilly. Lessons from open-source software development. Com-
munications of the ACM, 42(4):32-37, 1999.

Dewayne E. Perry, Susan Elliott Sim, and Steve M. Easterbrook. Case
studies for software engineers. In Software Engineering Workshop —
Tutorial Notes. 29th Annual IEEE/NASA, pages 96-159, 2005.

Roger S. Pressman. Software Engineering: A Practitioner’s Approach.
McGraw-Hill Higher Education, 5th edition, 2001.

Eric S. Raymond. The Cathedral and the Bazaar. O'Reilly, 1st edition,
1999.

Howard Rheingold. The virtual community : homesteading on the elec-
tronic frontier. MIT Press, 2000.

C. Robson. Real World Research - A Resource for Social Scientists and
Practitioner-Researchers. Blackwell Publishing, 2nd edition, 2002.

Per Runeson and Martin Host. Guidelines for conducting and reporting
case study research in software engineering. Empirical Software Engi-
neering, 14(2):131-164, 20009.

Douglas C. Schmidt and Adam Porter. Leveraging open-source commu-
nities to improve the quality performance of open-source software. In
Paper presented at the First Workshop on Open-Source Software En-
gineering at 23rd International Conference on Software Engineering,
Toronto, Canada, 2001.

Sonali K. Shah. Motivation, governance, and the viability of hybrid
forms in open source software development. Management Science - Man-
agement, 52(7):1000-1014, 2006.

Siraj Ahmed Shaikh and Antonio Cerone. Towards a metric for open
source software quality. Flectronic Communications of the EASST, 20,
2009.

300

[75]

78]

[81]

[82]

[84]

[85]

BIBLIOGRAPHY

Srinarayan Sharma, Vijayan Sugumaran, and Balaji Rajagopalan. A
framework for creating hybrid-open source software communities. In-
formation Systems Journal, 12(1):7-26, 2002.

lan Sommerville. Software engineering (5th ed.). Addison Wesley Long-
man, 1995.

Sulayman K. Sowe, loannis Samoladas, loannis Stamelos, and Lefteris
Angelis. Are FLOSS developers committing to CVS/SVN as much as
they are talking in mailing lists? Challenges for integrating data from
multiple repositories. In 3rd Workshop on Public Data about Software
Development (WoPDaSD 2008), pages 49-54, 2008.

Diomidis Spinellis, Georgios Gousios, Vassilios Karakoidas, Panagiotis
Louridas, Paul J. Adams, Ioannis Samoladas, and Ioannis Stamelos.
Evaluating the quality of open source software. FElectronic Notes in
Theoretical Computer Science (ENTCS), 233:5-28, 2009.

Ioannis Stamelos, Lefteris Angelis, Apostolos Oikonomou, and Geor-
gios L. Bleris. Code quality analysis in open source software develop-
ment. Information Systems Journal, 12:43-60, 2002.

Klaas Stol and Brian Fitzgerald. Uncovering theories in software engi-
neering. In 2nd Workshop on a General Theory of Software Engineering
(GTSE) collocated with ICSE 2013, 2013.

Steven H. Strogatz. Exploring complex networks. Nature,
410(6825):268-276, 2001.

F. Tonnies and J. Harris. Tonnies: Community and Civil Society. Cam-
bridge Texts in the History of Political Thought. Cambridge University
Press, 2001.

Sergi Valverde, Guy Theraulaz, Jacques Gautrais, Vincent Fourcassi,
and Ricard V. Sol. Self-organization patterns in wasp and open source
communities. IEEFE Intelligent Systems, 21(2):36-40, 2006.

Stanley Wasserman and Stephen D Berkowitz. Advances in social net-
work analysis: research in the social and behavioural sciences. Sage
Publications, 1994.

Duncan J. Watts. Siz Degrees: The Science of a Connected Age. W. W.
Norton, 2004.

[36]

[87]

[33]

[89]

[90]

[92]

93]

301

Duncan J. Watts. A twenty-first century science. Nature, 445(7127):489—
489, 2007.

Steven Weber. The Success of Open Source. Harvard University Press,
April 2004.

Barry Wellman and Joseph Galaskiewicz. Social structures: a network
approach. Cambridge University Press, 1988.

Ken Whitaker. Managing software maniacs: finding, managing, and
rewarding a winning development team. Wiley, 1994.

Andrea Wiggins, James Howison, and Kevin Crowston. Social dynamics
of FLOSS team communication across channels. In Proceedings of the
IFIP 2.18 Working Conference on Open Source Software (OSS), pages
131-142. Springer, 2008.

John Willinsky. The unacknowledged convergence of open source, open
access, and open science. First Monday, 10(8), 2005.

Robert K. Yin. Case Study Research: Design and Methods (Applied
Social Research Methods). Sage Publications, 4th edition, 2008.

Luyin Zhao and Sebastian Elbaum. Quality assurance under the open
source development model. Journal of Systems and Software, 66(1):65—
75, 2003.

	List of Figures
	List of Tables
	1 Introduction
	1.1 Significance and Contributions of this Thesis
	1.2 Research Questions
	1.3 Outline of the Research Project
	1.4 Thesis Structure

	2 Literature Review
	2.1 Free/Libre Open Source Software
	2.2 Software Quality Assurance and FLOSS
	2.3 Communities and FLOSS development
	2.4 Summary

	3 Research Methodology
	3.1 The Case Study Approach
	3.2 Data
	3.3 Social Network Analysis
	3.4 Summary

	4 Preliminary Research and Pilot Case Study
	4.1 Working Definition of Quality Assurance
	4.2 Preliminary Study of QA Adoption in FLOSS projects
	4.3 Pilot Case Study: Mozilla
	4.4 Summary

	5 Case studies
	5.1 Ubuntu
	5.2 Plone
	5.3 KDE
	5.4 LibreOffice

	6 Conclusions and Discussion
	6.1 Comparative Analysis
	6.2 Answers to the Research Questions
	6.3 Discussion and Limitations

	Appendix A
	A.1 Preliminary Analysis

	Appendix B
	B.1 Data Models
	B.2 Datasets

	Appendix C
	C.3 Ubuntu
	C.4 Plone
	C.5 KDE
	C.6 LibreOffice

	Bibliography

