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Abstract

A decision maker is presented with two preference orders wadjects and chooses the
one which is “closer” to his own preference order. We consider several plausible comparison
rules that the decision maker might employ. We show that whénlarge and the pair of
orders to be compared randomly realizeffedlent comparison rules lead to statistically almost
independent choices. Thus, two people with a common preference relation may nonetheless

exhibit almost uncorrelated choice patterns.
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1 Introduction

Consider a questionnaire that asks a voter: “Which candidatey, B, has a policy preference
closer to yours?” Unless the meaning of “closer” is provided in advance, even voters with the same
policy preference may respondidirently. Yet, if the above question is repeated for ficently

large variety of candidates and two voters exhibit significantly distinct choice patterns, one might
be tempted to conclude that they have distinct policy preferences.

This short paper shows a case where in a general situation like the above, almost uncorrelated
choice patterns arise from individuals with a common underlying preference. We consider five
comparison ruleshat map the decision maker’s underlying preference over objects (e.g., the voter’'s
preference over policies) to his ranking over preference orders (e.g., his ranking over candidates).
One is theKemeny rulevhich treats all pairs of objects equallgind the other four adexicographic
ruleswhich are procedurally simpler. We show that while these rules frequently induce identical
comparisons when the numhepof objects is small, this similarity disappearsragecomes large.

More precisely, when the pair of preference orders to be compared randomly realizes, for, large
the comparisons made under the five rules are almost statistically (pairwise) independent; in other
words, the Kendall rank correlation déieients between them converge to 0.

One way to interpret this result is to assume that the decision maker has some “welfare” pref-
erence, as distinguished from his “behavioral” preference, both defined on the set of preference
orders (see Rubinstein and Salant (2012)). For instance, suppose a voter must cast a ballot for
either candidated or B. Suppose further that after the election, the winning candidate will face
the choice between any two policies equally likely. Hence the voter's welfare preference over can-
didates would be the one which is defined by the Kemeny rule applied to his policy preference.

However, the actual choices made by the voter may be inconsistent with this preference. For exam-

IThis rule is based on théemeny distance functiqikemeny and Snell, 1962) defined on the set of linear orders
overn objects (the original definition allows for weak orders). The Kemeny distance between two orders is defined to
be the number of pairs of objects on which the two orders disagree. See Kemeny and Snell (1962) for an axiomatic
characterization of this distance function, and Burak and Storcken (2013) for an improved characterization result.
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ple, he may adopt the quicker decision procedure in which he first compares the top policies for the
two candidates according to his own policy preference. If he pré&er®p policy then he votes for

A; if he is indifferent, then he compares the second-ranked policies for the candidates, and so on.
This procedure induces choices that are consistent with a lexicographic rule. Our result suggests
that when the number of policies is large, the distortion in voting behavior caused by employing the
alternative procedure is quite large: the behavioral preference coincides with the welfare preference
only with probability around one-half.

Some of the comparison rules considered in this paper have already appeared in previous stud-
ies, especially in the literature on the incentive problem arising in preference aggregdins.
literature addresses the question of whether and how society can prevent individuals from manip-
ulating the social preference. To describe this problem, one needs to make an assumption about
how each individual ranks possible social preference orders based on his own preference order.
Bossert and Storcken (1992) assume that individuals follow the Kemeny rule. Sato (2013c) allows
for a wide class of comparison rules which include all rules considered here. Bossert and Sprumont
(2014) assume a “domination”-type rule. In the case of a voter's comparison between candlidates

andB, we say thatA dominatesB (in terms of the voter’s policy preference) if the following holds:

D: whenever the voter agrees with candidBten a pair of policies, he also agrees with candi-

dateA on that pair of policies.

The rule defined by the domination relation is incomplete in that some pairs of preference orders
are incomparable. The five comparison rules discussed in this paper are complete and satisfies the

domination principle; hence they areférent complete extensions of the domination rule.

2|In a somewhat diierent context, Léiond and Lainé (2000) provide a characterization of two lexicographic rules.
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2 Comparison rules

2.1 Avoting example

Suppose there are three political goals,
{Defense, Equality, Growth
A voter has the priority order
Equality > Growth > Defense

Two candidatesA andB, have the priority orders

Defense- 5 Equality > o Growth

Growth>g Defense>-g Equality.

Which candidate does the voter choose? We discusséingparison ruleghat the voter might
employ. One is th&emeny rulevhich puts equal weights on all possible pairs of goals. The other
four arelexicographic rulesvhich are procedurally less demanding.

Kemeny rule The voter measures hi&emeny distanc&om each candidate (i.e., the number
of pairs of goals on which he disagrees with the candidate) and chooses the candidate closer to
him. His distance from each candidate is 2, since he disagreesAvath{Defense, Equalityand
{Defense, Growth and disagrees with candidddeon {Equality, Growth) and{Defense, Equality
Thus in this case, the rule does not select a single candidate.

Descending rulé. The voter first compares the top-priority goals for candid#&esdB (i.e.,

Defense and Growth) according to his own priority order. If he ranks one candidate’s top goal

3See Sato (2013c) for the concept of non-manipulability of social preferences when agents follow the descending
rule.



higher then he chooses that candidate; if he isfiatBnt then he goes on to compare the second-
priority goals for the two candidates, and so on. As Growibefense, the voter chooses candidate
B.

Ascending rule. The voter first compares thHsottompriority goals for candidate# and B
(i.e., Equality and Growth). If he ranks one candidate’s bottom vedr then he votes for that
candidate; if he is indierent then he goes on to compare the second-priority goals for the two
candidates, and so on. As EqualityGrowth, the voter chooses candid#te

Inverse descending rul&@he voter first compares thiankswhich his top-priority goal (Equal-
ity) receives from the two candidates. If one candidate ranks it higher then he chooses that candi-
date; if the two candidates rank it equally then he goes on to compare the ranks which his second-
priority goal receives, and so on. As candid&teanks Equality higher thaB does, the voter
choosesA.

Inverse Ascending ruleThe voter first compares the ranks which his bottom-priority goal
(Defense) receives from the two candidates. If one candidate ranks it lower then he chooses that
candidate; if the two candidates rank it equally then he goes on to compare the ranks which his
second-priority goal receives, and so on. As candi@atanks Defense lower thaA does, the

voter chooses8.

2.2 General definitions

Formally, let{1,2,...,n} be the set obbjects In this paper gpreference or priority) orderefers to

a linear order over objects. We fix the decision maker’s preference order over objects as

1>2>..>n.



Any order is expressed as a permutationf.., n},

= (n(2),...,7(n)).

This notation means thair{i) is theith-ranked object in the order.” Let I1 be the set of orders.
In principle, acomparison rulds a rule that maps the decision maker’s underlying osdés his
ordering over orders. However, since we have fixeas above, we can identify a comparison rule
as an ordering ofil.

An inversionin an orderr is a pairf{i, j } of ranks such that < j andx (i) > n(j). Denote by
| (x) the number of inversions in. | (7) measures the frequency with which the decision maker
disagrees with another person with preferemce

Our five comparison rules are defined as follows:

e Kemeny rulezg: m zx n’ ifand only if I (x) < 1 (n’).

Descending rulesp: 7 >p #’ if and only if there exists < n such thatr(j) = n’(j) for all

j <iandrz(i) < n'(i) (andzx ~p #” if and only if r = 7).

Ascending ruleza: © >a 7’ if and only if there exists < n such thatr(j) = #’(j) for all

i > iandx(i) > 7'().

Inverse descending rutey: 7 x5 #’ if and only if 7~ xp (/) 1.4

Inverse ascending rule,: = x 7’ ifand only if 7~ x4 (7).

The Kemeny rule is at least theoretically appealing especially when the decision maker has no
reason to attach more importance to an object pair than another object pair. Even in this case,
however, it is not quite obvious that when presented with the orde2743156, he approaches it

by counting the number of inversions. If alternatively he first pays attention to the object occupying

4r~1 denotes the inverse of permutation



the first rank inr, then it seems plausible that he adopts the descending rule. Likewise, if he first
focuses on object 1, then it seems plausible that he follows the inverse descending rule. On the
other hand, ifr is presented not as a permutation but as a directed graph (with an arc emanating
from objecti to object]j if and only if 7(i) < n(j)), then the decision maker might more easily

come up with the Kemeny rule than before.

3 Asymptotic independence

We consider an experiment in which the decision maker faces a randomly drawn pair of orders
(r,7’) € I1 x I1. The sample space i$ x I1 and the probability measuf assigns In!? to each
sample point(r,n’). Let >* andx** be two comparison rules. We say that the two comparison
rules areasymptotically independerit

im Plr = 7', n =™ 7'} = lim Pl{n 2 7"\P{x = 7'}.

n—oo n—oo

Any two of our five rulesx* andx**, are asymptotically independentf{r >* n’, n’ >** n} —

1/45

Proposition 1. The comparison rulessk, xp, xa, g, X5 are asymptotically pairwise indepen-

dent.

We divide the proof into Claim 1 for asymptotic independence between lexicographic rules and

Claim 2 for asymptotic independence between the Kemeny rule and lexicographic rules.

Claim 1. The lexicographic comparison rulesp, xa, 2, X, are asymptotically pairwise inde-

pendent.

5This is because for any comparison rileonsidered here, infierence occurs with probability converging to 0 as
n — oo. This is obvious for lexicographic rules, since they are strict ordeid and hence indierence occurs only if
n = n’. The Kemeny rule is a weak order. But it is known that wieis drawn randomly, a certain normalization of
| (r) converges in law to a normal distribution (see e.g., Chung (2001)). Hence, for independentlyrdradit , the
probability thatr ~x 77 (i.e., the probability that(x) = I (n”)) converges to 0.
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Proof. We only show the asymptotic independence betwggmandx 5, and betweerp andx a.
The remaining part can be similarly shown.

Part 1: xp andx are asymptotically independent.

Proof. We count the numbeX of pairs(r,7n’) such thatr >p n’ butz’ > n. This occurs if and
only if either: (@) (1) < 7’(1) andzx~1(1) > (7")~1(1); or (b) 7 (1) = 7’ (1) or z~1(1) = (7)~1(2)
with some additional condition. The number of pditsn’) satisfying each of the equations in (b)
is n(n — 1)!2. (a) is equivalent to that (i) 2 (1) < /(1) and (ii) object 1's rank i’ is higher
than that inr. There are exactl(“;l) pairs{n(1),n’(1)} of objects satisfying (i). The first ranks
in the two orders being occupied by one such pair of objects, there are eé&g&blwvays to place
object 1 subject to (ii). Finally, there are exacfly— 2)!? ways to fill the remaining ranks in the

two orders. Thus, we havd = (”El)z(n - 2)12+0(n(n-1)!?), and

N (Y (=224 0(n(n-1)1?)
niz - n!2 -

Al

Pln>pn',n’ >pn} =

Part 2: >p andx are asymptotically independent.

Proof. We count the numbeN of pairs (r,n’) such thatr >p n’ butn’ > 7. This occurs if
and only if either: (ayr(1) < /(1) andx(n) < n’(n); or (b) 7(1) = n’(1) or n(n) = n’(n)
with some additional condition. The number of pairsn’) satisfying each of the equations in
(b) is againn(n — 1)!2. The number of combinationgr(1),x’(1),7(n),7’(n)} satisfying (a) is
(2’2}‘]_4) = WA_Q, The number of pairgr,n’) satisfying (a) is thereforféz’z”r‘]_ll)(n - 2)12,
HenceN = (,,7_,)(n—2)12+O(n(n - 1)!?), and

' N (2,2,?1_4)(n— 2)!1? + O(n(n - 1)!?)
Pin>prn',n’ >pn}=— = ~

AP



Claim 2. Each lexicographic rule is asymptotically independent pf

Proof. In Steps 1-4 below, we will show thaip and x>k are asymptotically independent. To
deduce from this that; andx, are also asymptotically independent, recall the definitiog pas
>p applied to the inverses of permutations. It is easy to check trat) = | (x) for anyz. Thus
>p andxk disagree as frequently as andxk do. It is therefore enough to establish the result
for xp andxk. The asymptotic independence betwegnandxk and betweern, andxk can be
similarly proved.

For each orderr, define theleft inversion vectorl (7) = (Li(r))_, and theright inversion

vectorR(n) = (R(n)){L, by
Li () = number ofj < i such thati, j} is an inversion im,
R (7) = number of] > i such thatfi, j} is an inversion inr.

Obviously,
I(r) => R(x).
i=1

Itis also well known that the mappirigis a bijection from1 to {0,...,n—1} x{0,...,n—2} x ... x {0}.

Define a new comparison ruier as follows:

e Rulexgr: m >r n’ if and only if there exist$ < nsuch thatR; () = Rj(n’) forall j < i and

R(n) < R(n’), andr ~g n’ ifand only if 7 = n’.

Define two random variables andY, by

Xi(m,7") = Raiza(n), Y(7,7") = Rajsa (7).



Let

Step 1: >p=xr.

Proof. >p is a linear order oril. Recalling thatR is a bijection, it also follows thatr is a linear
order onlIl. Thus it sufices to show that >p n’ impliesz >r n’. Supposer >p n’. There exists
I such that: (a)r(j) = n’(j) forall j <i;and (b)x(i) < n’(i). (a) implies thal () = Lj(x’) for

all j <i. Butitis easy to see that

n(j) =1 - Lj(m) + Ry ()

for anym and anyj. Thus,Rj(r) = Rj(x’) for all j < i. (a) and (b) imply that(r) < Li(x’).
Combining this inequality with (b), the above equation yieRI§r) < R (n’). Therefores >g

. |

Step 2: The random variable®;, 1 < i < n, are independent with the following symmetric
distributions:

P(D; = +x} = (i — x)/i> 0< x<i-1

Moreover,s := VVar(S) = i%2/2V3 + o(i%2), and for each real numbex,

P{S/sn < X} = O(X)

where® is the standard normal distribution function.

Proof. The proof of Step 2 is only technical and mostly coincides with a known proof that “the
distribution of the numbet (x) of inversions in the randomly drawn permutatisnwith some
appropriate normalization, converges to the standard normal distribution” (see, e.g., Chung (2001)).

Thus we defer it to the Appendix. O
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Step 3:
n-1 n—x
Pla >k n'.n’ >pr}=Y S P{Si1 < =X} +O(1/).

x=1

Proof. By Step 1, > n’ andn’ >p n occur at the same time if and only if either: &) > 0 and
S < 0; or (b) D, = 0 with some additional condition. By Step 2, the probability that= 0 is %;
hence the probability of (b) ©(1/n). SinceD;’s are independent by Step 2, the probability of (a)
can be written agﬂ;iP{Dn = X}P{S,_1 < —Xx}, where, by Step 2P{D, = x} = % m]

Step 4. P{n > o', n’ >p 1} — %1.

Proof. Consider the right-hand side expression in Step 3. Observe that

n-1 n-1
n-X n- X
- -1} = —— -1
>~ Pl Z S PlSa<-1) = e “P(Sh1 < -1

Since §,_1 is distributed symmetrically about ®{S,-1 < -1} < P{S-1 < 0} = 1/2. Hence
lim sup,_ o > % %”nzx {S-1<-x} < 1.

Now observe that

n-1

ey = P80 < ~(n- D),

n2 2n
X=

By Step 2,P{S, < -n} = P{S/sn < —n/sn} ~ P{S/sn < —c/y/n} for a positive constant
c. For any two numbera > N we haveP{S,/sn < —c/yn} > P{S\/sn < —¢/VN}. Letting
n — oo, by Step 2 we have lImiRfP{S,/s, < —c/yn} > ®(—c/VN). LettingN — oo, we have

liminf, P{S, < —n} > 1/2. Therefore, liminf_. > % }”n;p{Sh 1< =X} > O

Bl
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4 Concluding remarks

For small specifie, simple enumeration shows that the five comparison rules induce quite similar
choice patterns. Far = 2, there are only two ordeii$ = {12 21} and each of the five rules places
12 over 21. Fon = 3, each lexicographic rule always agrees with® On the other hand, there

are small positive chances that lexicographic rules disagree with each other. For example,

123 >D 132 >D 213>D 231 >D 312 >D 321
123>p 213 >4 132> 312> 231> 321
123>5 13255 213>5 312>5 231> 321

123>k 132~k 213>k 231~k 312> 321

We observe thatzp andxa disagree at exactly two pairs of orders (i.e., with probabi%’gé/:
0.11);xp andx disagree at exactly one pair of orders (i.e., with probab'ﬁgw 0.06). Forn = 4,
each lexicographic rule disagrees with at some pairs of orders. For example, 1342 2134,

but 2134 >k 1342. We can show thatp and >k disagree at exactly 17 pairs of orders (i.e.,

217
412

with probability ~ 0.06), and so on. These observations pose the question of whether some
comparison rules have a positive amount of correlation bounded from zero forlalthis paper
we have shown that the answer is negative.

In some cases, our approach has limited applicability. For instance, in a social choice context
where society selects an outcome based on reported preferences of individuals, Sato (2013a, b)
explores implications of the assumption that “each individual makes only small lies.” Sato assumes
that each individual follows the Kemeny rule to rank preferences he may report, in order of “sin-
cereness” (i.e., closeness to his true preference). It would be worthwhile to also consider the case
where individuals adopt other comparison rules to assess the sincereness of their reported prefer-

ences. However, the result in this paper cannot be directly applied to demonstrate the impact of

SHere we say that two rulesandx’ agree on an object palirr, 7’} even ifr > n” andnr ~ n’.
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alternative comparison rules in such circumstances, since the result itself tells us little about the
extent to which the set of fliciently sincere preference orders for an individual (i.e., hiskop
preference orders for some smig)ldepends on his comparison rule. Future research may address
this question.

Finally, we have focused on the choice situation where alternatives take the form of preference
orders. Similar analysis may be conducted for other kinds of choice problems. One example is
choice from subsets of objects. There is a large amount of literature on axiomatic characterizations
of rules that extend an individual’s preference over objects to his preference over subsets of objects
(e.g., Bossert (1995))It would be interesting to see whether a result like the one presented in this

paper also holds for such extension rules satisfying natural axioms.

Appendix: Proof of Step 2 for Claim 2

The 2nh random variable¥; andY,, i = 1,..,n, are independent with the following distributions:
PiXi=x}=P{Y¥=x}=1/i,0<x<i-1

It is well known thatX;'s (or ¥’s) are independent and have the above distributions (Chung (2001)
provides a very careful proof). Independence betwéénandy,’s is obvious. The distributions of
D;’s described in Step 2 then follow from simple calculation. The following is also immediate:

i2-1
6

Var(Dj) =
21 1,4 .,

Var(§) = — =—=(2°+3“-5)
j:zl 6 36

s = yVar(S) = [ 0(i*?)
B 2v3 '

7One motivation that underlies works on such extension rules relates to individuals’ incentives to manipulate the
social choicecorrespondenceao describe such incentives, one needs to model each individual's ranking over subsets
of outcomes.
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Now observe that the triangular arr{a%’; i=1..nn=1, 2} satisfies Lindeberg’s condition.
Thus, by the Lindeberg-Feller Central Limit Theore®,/s, converges in law to the standard

normal distribution. O
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