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Abstract

A decision maker is presented with two preference orders overn objects and chooses the

one which is “closer” to his own preference order. We consider several plausible comparison

rules that the decision maker might employ. We show that whenn is large and the pair of

orders to be compared randomly realizes, different comparison rules lead to statistically almost

independent choices. Thus, two people with a common preference relation may nonetheless

exhibit almost uncorrelated choice patterns.
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1 Introduction

Consider a questionnaire that asks a voter: “Which candidate,A or B, has a policy preference

closer to yours?” Unless the meaning of “closer” is provided in advance, even voters with the same

policy preference may respond differently. Yet, if the above question is repeated for a sufficiently

large variety of candidates and two voters exhibit significantly distinct choice patterns, one might

be tempted to conclude that they have distinct policy preferences.

This short paper shows a case where in a general situation like the above, almost uncorrelated

choice patterns arise from individuals with a common underlying preference. We consider five

comparison rulesthat map the decision maker’s underlying preference over objects (e.g., the voter’s

preference over policies) to his ranking over preference orders (e.g., his ranking over candidates).

One is theKemeny rulewhich treats all pairs of objects equally,1 and the other four arelexicographic

ruleswhich are procedurally simpler. We show that while these rules frequently induce identical

comparisons when the numbern of objects is small, this similarity disappears asn becomes large.

More precisely, when the pair of preference orders to be compared randomly realizes, for largen,

the comparisons made under the five rules are almost statistically (pairwise) independent; in other

words, the Kendall rank correlation coefficients between them converge to 0.

One way to interpret this result is to assume that the decision maker has some “welfare” pref-

erence, as distinguished from his “behavioral” preference, both defined on the set of preference

orders (see Rubinstein and Salant (2012)). For instance, suppose a voter must cast a ballot for

either candidateA or B. Suppose further that after the election, the winning candidate will face

the choice between any two policies equally likely. Hence the voter’s welfare preference over can-

didates would be the one which is defined by the Kemeny rule applied to his policy preference.

However, the actual choices made by the voter may be inconsistent with this preference. For exam-

1This rule is based on theKemeny distance function(Kemeny and Snell, 1962) defined on the set of linear orders
overn objects (the original definition allows for weak orders). The Kemeny distance between two orders is defined to
be the number of pairs of objects on which the two orders disagree. See Kemeny and Snell (1962) for an axiomatic
characterization of this distance function, and Burak and Storcken (2013) for an improved characterization result.
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ple, he may adopt the quicker decision procedure in which he first compares the top policies for the

two candidates according to his own policy preference. If he prefersA’s top policy then he votes for

A; if he is indifferent, then he compares the second-ranked policies for the candidates, and so on.

This procedure induces choices that are consistent with a lexicographic rule. Our result suggests

that when the number of policies is large, the distortion in voting behavior caused by employing the

alternative procedure is quite large: the behavioral preference coincides with the welfare preference

only with probability around one-half.

Some of the comparison rules considered in this paper have already appeared in previous stud-

ies, especially in the literature on the incentive problem arising in preference aggregation.2 This

literature addresses the question of whether and how society can prevent individuals from manip-

ulating the social preference. To describe this problem, one needs to make an assumption about

how each individual ranks possible social preference orders based on his own preference order.

Bossert and Storcken (1992) assume that individuals follow the Kemeny rule. Sato (2013c) allows

for a wide class of comparison rules which include all rules considered here. Bossert and Sprumont

(2014) assume a “domination”-type rule. In the case of a voter’s comparison between candidatesA

andB, we say thatA dominatesB (in terms of the voter’s policy preference) if the following holds:

D: whenever the voter agrees with candidateB on a pair of policies, he also agrees with candi-

dateA on that pair of policies.

The rule defined by the domination relation is incomplete in that some pairs of preference orders

are incomparable. The five comparison rules discussed in this paper are complete and satisfies the

domination principle; hence they are different complete extensions of the domination rule.

2In a somewhat different context, Laffond and Lainé (2000) provide a characterization of two lexicographic rules.

3



2 Comparison rules

2.1 A voting example

Suppose there are three political goals,

{Defense, Equality, Growth}.

A voter has the priority order

Equality≻ Growth≻ Defense.

Two candidates,A andB, have the priority orders

Defense≻A Equality≻A Growth

Growth≻B Defense≻B Equality.

Which candidate does the voter choose? We discuss fivecomparison rulesthat the voter might

employ. One is theKemeny rulewhich puts equal weights on all possible pairs of goals. The other

four arelexicographic ruleswhich are procedurally less demanding.

Kemeny rule. The voter measures hisKemeny distancefrom each candidate (i.e., the number

of pairs of goals on which he disagrees with the candidate) and chooses the candidate closer to

him. His distance from each candidate is 2, since he disagrees withA on {Defense, Equality} and

{Defense, Growth}, and disagrees with candidateB on {Equality, Growth} and{Defense, Equality}.

Thus in this case, the rule does not select a single candidate.

Descending rule.3 The voter first compares the top-priority goals for candidatesA andB (i.e.,

Defense and Growth) according to his own priority order. If he ranks one candidate’s top goal

3See Sato (2013c) for the concept of non-manipulability of social preferences when agents follow the descending
rule.
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higher then he chooses that candidate; if he is indifferent then he goes on to compare the second-

priority goals for the two candidates, and so on. As Growth≻ Defense, the voter chooses candidate

B.

Ascending rule.The voter first compares thebottom-priority goals for candidatesA and B

(i.e., Equality and Growth). If he ranks one candidate’s bottom goallower then he votes for that

candidate; if he is indifferent then he goes on to compare the second-priority goals for the two

candidates, and so on. As Equality≻ Growth, the voter chooses candidateA.

Inverse descending rule.The voter first compares therankswhich his top-priority goal (Equal-

ity) receives from the two candidates. If one candidate ranks it higher then he chooses that candi-

date; if the two candidates rank it equally then he goes on to compare the ranks which his second-

priority goal receives, and so on. As candidateA ranks Equality higher thanB does, the voter

choosesA.

Inverse Ascending rule.The voter first compares the ranks which his bottom-priority goal

(Defense) receives from the two candidates. If one candidate ranks it lower then he chooses that

candidate; if the two candidates rank it equally then he goes on to compare the ranks which his

second-priority goal receives, and so on. As candidateB ranks Defense lower thanA does, the

voter choosesB.

2.2 General definitions

Formally, let{1,2, ...,n} be the set ofobjects. In this paper a(preference or priority) orderrefers to

a linear order over objects. We fix the decision maker’s preference order over objects as

1 ≻ 2 ≻ ... ≻ n.
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Any order is expressed as a permutation of{1, ...,n},

π = (π(1), ..., π(n)).

This notation means that “π(i ) is thei th-ranked object in the orderπ.” Let Π be the set of orders.

In principle, acomparison ruleis a rule that maps the decision maker’s underlying order≻ to his

ordering over orders. However, since we have fixed≻ as above, we can identify a comparison rule

as an ordering onΠ.

An inversionin an orderπ is a pair{i , j } of ranks such thati < j andπ(i ) > π( j ). Denote by

I (π) the number of inversions inπ. I (π) measures the frequency with which the decision maker

disagrees with another person with preferenceπ.

Our five comparison rules are defined as follows:

• Kemeny rule≿K : π ≿K π
′ if and only if I (π) ≤ I (π′).

• Descending rule≿D: π ≻D π
′ if and only if there existsi ≤ n such thatπ( j ) = π′( j ) for all

j < i andπ(i ) < π′(i ) (andπ ∼D π
′ if and only if π = π′).

• Ascending rule≿A: π ≻A π
′ if and only if there existsi ≤ n such thatπ( j ) = π′( j ) for all

j > i andπ(i ) > π′(i ).

• Inverse descending rule≿−D: π ≿−D π
′ if and only if π−1 ≿D (π′)−1.4

• Inverse ascending rule≿−A: π ≿−A π
′ if and only if π−1 ≿A (π′)−1.

The Kemeny rule is at least theoretically appealing especially when the decision maker has no

reason to attach more importance to an object pair than another object pair. Even in this case,

however, it is not quite obvious that when presented with the orderπ = 2743156, he approaches it

by counting the number of inversions. If alternatively he first pays attention to the object occupying

4π−1 denotes the inverse of permutationπ.
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the first rank inπ, then it seems plausible that he adopts the descending rule. Likewise, if he first

focuses on object 1, then it seems plausible that he follows the inverse descending rule. On the

other hand, ifπ is presented not as a permutation but as a directed graph (with an arc emanating

from objecti to object j if and only if π(i ) < π( j )), then the decision maker might more easily

come up with the Kemeny rule than before.

3 Asymptotic independence

We consider an experiment in which the decision maker faces a randomly drawn pair of orders

(π,π′) ∈ Π × Π. The sample space isΠ × Π and the probability measureP assigns 1/n!2 to each

sample point(π,π′). Let ≿∗ and≿∗∗ be two comparison rules. We say that the two comparison

rules areasymptotically independentif

lim
n→∞
P{π ≿∗ π′, π ≿∗∗ π′} = lim

n→∞
P{π ≿∗ π′}P{π ≿∗∗ π′}.

Any two of our five rules,≿∗ and≿∗∗, are asymptotically independent ifP{π ≻∗ π′, π′ ≻∗∗ π} →

1/4.5

Proposition 1. The comparison rules,≿K , ≿D, ≿A, ≿−D, ≿−A, are asymptotically pairwise indepen-

dent.

We divide the proof into Claim 1 for asymptotic independence between lexicographic rules and

Claim 2 for asymptotic independence between the Kemeny rule and lexicographic rules.

Claim 1. The lexicographic comparison rules,≿D, ≿A, ≿−D, ≿−A, are asymptotically pairwise inde-

pendent.

5This is because for any comparison rule≿ considered here, indifference occurs with probability converging to 0 as
n→ ∞. This is obvious for lexicographic rules, since they are strict orders onΠ and hence indifference occurs only if
π = π′. The Kemeny rule is a weak order. But it is known that whenπ is drawn randomly, a certain normalization of
I (π) converges in law to a normal distribution (see e.g., Chung (2001)). Hence, for independently drawnπ andπ′, the
probability thatπ ∼K π′ (i.e., the probability thatI (π) = I (π′)) converges to 0.
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Proof. We only show the asymptotic independence between≿D and≿−D, and between≿D and≿A.

The remaining part can be similarly shown.

Part 1: ≿D and≿−D are asymptotically independent.

Proof. We count the numberN of pairs(π,π′) such thatπ ≻D π
′ but π′ ≻−D π. This occurs if and

only if either: (a)π(1) < π′(1) andπ−1(1) > (π′)−1(1); or (b)π(1) = π′(1) or π−1(1) = (π′)−1(1)

with some additional condition. The number of pairs(π,π′) satisfying each of the equations in (b)

is n(n − 1)!2. (a) is equivalent to that (i) 2≤ π(1) < π′(1) and (ii) object 1’s rank inπ′ is higher

than that inπ. There are exactly
(
n−1

2

)
pairs{π(1), π′(1)} of objects satisfying (i). The first ranks

in the two orders being occupied by one such pair of objects, there are exactly
(
n−1

2

)
ways to place

object 1 subject to (ii). Finally, there are exactly(n − 2)!2 ways to fill the remaining ranks in the

two orders. Thus, we haveN =
(
n−1

2

)2
(n − 2)!2 +O(n(n − 1)!2), and

P{π ≻D π
′, π′ ≻−D π} =

N

n!2
=

(
n−1

2

)2
(n − 2)!2 +O(n(n − 1)!2)

n!2
→ 1

4
.

□

Part 2: ≿D and≿A are asymptotically independent.

Proof. We count the numberN of pairs (π,π′) such thatπ ≻D π
′ but π′ ≻A π. This occurs if

and only if either: (a)π(1) < π′(1) and π(n) < π′(n); or (b) π(1) = π′(1) or π(n) = π′(n)

with some additional condition. The number of pairs(π,π′) satisfying each of the equations in

(b) is againn(n − 1)!2. The number of combinations{π(1), π′(1), π(n), π′(n)} satisfying (a) is(
n

2,2,n−4

)
= n!

2!2!(n−4)! . The number of pairs(π,π′) satisfying (a) is therefore
(

n
2,2,n−4

)
(n − 2)!2.

HenceN =
(

n
2,2,n−4

)
(n − 2)!2 +O(n(n − 1)!2), and

P{π ≻D π
′, π′ ≻A π} =

N

n!2
=

(
n

2,2,n−4

)
(n − 2)!2 +O(n(n − 1)!2)

n!2
→ 1

4
.
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□

□

Claim 2. Each lexicographic rule is asymptotically independent of≿K .

Proof. In Steps 1-4 below, we will show that≿D and≿K are asymptotically independent. To

deduce from this that≿−D and≿I are also asymptotically independent, recall the definition of≿−D as

≿D applied to the inverses of permutations. It is easy to check thatI (π−1) = I (π) for anyπ. Thus

≿−D and≿K disagree as frequently as≿D and≿K do. It is therefore enough to establish the result

for ≿D and≿K . The asymptotic independence between≿A and≿K and between≿−A and≿K can be

similarly proved.

For each orderπ, define theleft inversion vectorL(π) = (Li (π))n
i=1 and theright inversion

vectorR(π) = (Ri (π))n
i=1 by

Li (π) = number ofj < i such that{i , j } is an inversion inπ,

Ri (π) = number ofj > i such that{i , j } is an inversion inπ.

Obviously,

I (π) =
n∑

i=1

Ri (π).

It is also well known that the mappingR is a bijection fromΠ to {0, ...,n−1}× {0, ...,n−2}× ...×{0}.

Define a new comparison rule≿R as follows:

• Rule≿R: π ≻R π
′ if and only if there existsi ≤ n such thatRj (π) = Rj (π′) for all j < i and

Ri (π) < Ri (π′), andπ ∼R π
′ if and only if π = π′.

Define two random variablesXi andYi by

Xi (π,π
′) = Rn−i+1(π), Yi (π,π

′) = Rn−i+1(π′).
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Let

Di := Xi −Yi , Si :=
i∑

j=1

D j .

Step 1:≿D=≿R.

Proof. ≿D is a linear order onΠ. Recalling thatR is a bijection, it also follows that≿R is a linear

order onΠ. Thus it suffices to show thatπ ≻D π
′ impliesπ ≻R π

′. Supposeπ ≻D π
′. There exists

i such that: (a)π( j ) = π′( j ) for all j < i ; and (b)π(i ) < π′(i ). (a) implies thatL j (π) = L j (π′) for

all j < i . But it is easy to see that

π( j ) = j − L j (π) + Rj (π)

for anyπ and anyj . Thus,Rj (π) = Rj (π′) for all j < i . (a) and (b) imply thatLi (π) ≤ Li (π′).

Combining this inequality with (b), the above equation yieldsRi (π) < Ri (π′). Therefore,π ≻R

π′. □

Step 2: The random variablesDi , 1 ≤ i ≤ n, are independent with the following symmetric

distributions:

P{Di = ±x} = (i − x)/i2, 0 ≤ x ≤ i − 1.

Moreover,si :=
√

Var(Si ) = i3/2/2
√

3+ o(i3/2), and for each real numberx,

P{Sn/sn ≤ x} → Φ(x)

whereΦ is the standard normal distribution function.

Proof. The proof of Step 2 is only technical and mostly coincides with a known proof that “the

distribution of the numberI (π) of inversions in the randomly drawn permutationπ, with some

appropriate normalization, converges to the standard normal distribution” (see, e.g., Chung (2001)).

Thus we defer it to the Appendix. □
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Step 3:

P{π ≻K π
′, π′ ≻D π} =

n−1∑
x=1

n − x

n2
P{Sn−1 < −x} +O(1/n).

Proof. By Step 1,π ≻K π
′ andπ′ ≻D π occur at the same time if and only if either: (a)Dn > 0 and

Sn < 0; or (b) Dn = 0 with some additional condition. By Step 2, the probability thatDn = 0 is 1
n;

hence the probability of (b) isO(1/n). SinceDi ’s are independent by Step 2, the probability of (a)

can be written as
∑n−1

x=1P{Dn = x}P{Sn−1 < −x}, where, by Step 2,P{Dn = x} = n−x
x2 . □

Step 4:P{π ≻K π
′, π′ ≻D π} → 1

4.

Proof. Consider the right-hand side expression in Step 3. Observe that

n−1∑
x=1

n − x

n2
P{Sn−1 < −x} ≤

n−1∑
x=1

n − x

n2
P{Sn−1 < −1} = n − 1

2n
P{Sn−1 < −1}.

SinceSn−1 is distributed symmetrically about 0,P{Sn−1 < −1} ≤ P{Sn−1 < 0} = 1/2. Hence

lim supn→∞
∑n−1

x=1
n−x
n2 P{Sn−1 < −x} ≤ 1

4.

Now observe that

n−1∑
x=1

n − x

n2
P{Sn−1 < −x} ≥ n − 1

2n
P{Sn−1 < −(n − 1)}.

By Step 2,P{Sn < −n} = P{Sn/sn < −n/sn} ∼ P{Sn/sn < −c/
√

n} for a positive constant

c. For any two numbersn > N we haveP{Sn/sn < −c/
√

n} ≥ P{Sn/sn < −c/
√

N}. Letting

n→ ∞, by Step 2 we have lim infnP{Sn/sn < −c/
√

n} ≥ Φ(−c/
√

N). Letting N → ∞, we have

lim inf nP{Sn < −n} ≥ 1/2. Therefore, lim infn→∞
∑n−1

x=1
n−x
n2 P{Sn−1 < −x} ≥ 1

4. □

□
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4 Concluding remarks

For small specificn, simple enumeration shows that the five comparison rules induce quite similar

choice patterns. Forn = 2, there are only two ordersΠ = {12,21} and each of the five rules places

12 over 21. Forn = 3, each lexicographic rule always agrees with≿K .6 On the other hand, there

are small positive chances that lexicographic rules disagree with each other. For example,

123≻D 132≻D 213≻D 231≻D 312≻D 321

123≻A 213≻A 132≻A 312≻A 231≻A 321

123≻−D 132≻−D 213≻−D 312≻−D 231≻−D 321

123≻K 132∼K 213≻K 231∼K 312≻K 321.

We observe that:≿D and≿A disagree at exactly two pairs of orders (i.e., with probability2·2
3!2
=

0.11);≿D and≿−D disagree at exactly one pair of orders (i.e., with probability2
3!2
∼ 0.06). Forn = 4,

each lexicographic rule disagrees with≿K at some pairs of orders. For example, 1342≻D 2134,

but 2134 ≻K 1342. We can show that≿D and≿K disagree at exactly 17 pairs of orders (i.e.,

with probability 2·17
4!2
∼ 0.06), and so on. These observations pose the question of whether some

comparison rules have a positive amount of correlation bounded from zero for alln. In this paper

we have shown that the answer is negative.

In some cases, our approach has limited applicability. For instance, in a social choice context

where society selects an outcome based on reported preferences of individuals, Sato (2013a, b)

explores implications of the assumption that “each individual makes only small lies.” Sato assumes

that each individual follows the Kemeny rule to rank preferences he may report, in order of “sin-

cereness” (i.e., closeness to his true preference). It would be worthwhile to also consider the case

where individuals adopt other comparison rules to assess the sincereness of their reported prefer-

ences. However, the result in this paper cannot be directly applied to demonstrate the impact of

6Here we say that two rules≿ and≿′ agree on an object pair{π,π′} even ifπ ≻ π′ andπ ∼′ π′.
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alternative comparison rules in such circumstances, since the result itself tells us little about the

extent to which the set of sufficiently sincere preference orders for an individual (i.e., his topk

preference orders for some smallk) depends on his comparison rule. Future research may address

this question.

Finally, we have focused on the choice situation where alternatives take the form of preference

orders. Similar analysis may be conducted for other kinds of choice problems. One example is

choice from subsets of objects. There is a large amount of literature on axiomatic characterizations

of rules that extend an individual’s preference over objects to his preference over subsets of objects

(e.g., Bossert (1995)).7 It would be interesting to see whether a result like the one presented in this

paper also holds for such extension rules satisfying natural axioms.

Appendix: Proof of Step 2 for Claim 2

The 2n random variablesXi andYi , i = 1, ..,n, are independent with the following distributions:

P{Xi = x} = P{Yi = x} = 1/i , 0 ≤ x ≤ i − 1.

It is well known thatXi ’s (or Yi ’s) are independent and have the above distributions (Chung (2001)

provides a very careful proof). Independence betweenXi ’s andYi ’s is obvious. The distributions of

Di ’s described in Step 2 then follow from simple calculation. The following is also immediate:

Var(Di ) =
i2 − 1

6

Var(Si ) =
i∑

j=1

j 2 − 1
6
=

1
36

(2i3 + 3i2 − 5i )

si =
√

Var(Si ) =
i3/2

2
√

3
+ o(i3/2).

7One motivation that underlies works on such extension rules relates to individuals’ incentives to manipulate the
social choicecorrespondence; to describe such incentives, one needs to model each individual’s ranking over subsets
of outcomes.
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Now observe that the triangular array
{

Di

sn
; i = 1, ...,n; n = 1,2, ...

}
satisfies Lindeberg’s condition.

Thus, by the Lindeberg-Feller Central Limit Theorem,Sn/sn converges in law to the standard

normal distribution. □
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