
ESSAYS ON UNOBSERVED

HETEROGENEITY AND ENDOGENEITY

IN HEALTH ECONOMETRICS

by

HIROAKI MASUHARA

Submitted in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

in

Economics

Graduate School of Economics

Hitotsubashi University

2014





Contents

Acknowledgments ix

Introduction 1

Microdata in Health Economics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Microeconometrics in Health Economics . . . . . . . . . . . . . . . . . . . . . . . . 3

Linear and Nonlinear Regression Models . . . . . . . . . . . . . . . . . . . . . 3

An Evaluation Problem in Regression Analysis . . . . . . . . . . . . . . . . . 5

Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

I Unobserved Heterogeneity in Health Econometrics 11

1 Nonlinear Estimation and Heterogeneity in Health Econometrics 13

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 Continuous Heterogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2.1 Mixtures of Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2.2 Interpreting the Mixture Hazard Function . . . . . . . . . . . . . . . . 18

1.2.3 Specification of the Heterogeneity Distribution . . . . . . . . . . . . . 18

1.3 Discrete Heterogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.3.1 Finite Mixture Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.3.2 Estimation of Finite Mixture Models . . . . . . . . . . . . . . . . . . . 26

1.3.3 Limitations of Finite Mixture Models . . . . . . . . . . . . . . . . . . 27

2 Semiparametric Estimation of Regression-Based Survival Models 29

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3 An Application to Fertility . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

i



A. The Box-Cox Transformed Semi-Nonparametric Survival Model . . . . . . 36

3 An Alternate Approach to Estimate a Finite Mixture Cross-Sectional

Probit Model 39

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Identification of Probit Finite Mixtures . . . . . . . . . . . . . . . . . . . . . 40

3.3 Monte Carlo Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

A. Proof of Corollary 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

B. Proof of Corollary 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

II Endogeneity in Health Econometrics 47

4 Endogenous Variables in Health Econometrics 49

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Examples of Microdata in Health Economics . . . . . . . . . . . . . . . . . . 51

4.2.1 The Health and Lifestyle Survey . . . . . . . . . . . . . . . . . . . . . 51

4.2.2 The British Household Panel Survey . . . . . . . . . . . . . . . . . . . 51

4.2.3 The Medical Expenditures Panel Survey . . . . . . . . . . . . . . . . . 54

4.3 Endogenous Regressors in Linear Health Econometrics . . . . . . . . . . . . . 56

4.3.1 Inconsistency of OLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3.2 Instrumental Variables Estimation . . . . . . . . . . . . . . . . . . . . 58

4.3.3 Two-Stage Least Squares . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3.4 A Binary Endogenous Regressor in Linear Models . . . . . . . . . . . 60

4.4 Endogenous Regressors in Nonlinear Health Econometrics . . . . . . . . . . . 62

4.4.1 Endogenous Regressors in Binary Response Models . . . . . . . . . . . 63

4.4.2 Endogenous Regressors in Count Data Models . . . . . . . . . . . . . 67

4.5 Monte Carlo Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.6 Limitations and Extensions of Endogenous Regressors in Health Econometrics 75

5 Semiparametric Count Data Estimation with an Endogenous

Binary Variable 79

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2 Poisson Estimation with an Endogenous Binary Variable . . . . . . . . . . . . 80

5.3 An Application to Drinking Behavior . . . . . . . . . . . . . . . . . . . . . . . 83

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

ii



Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6 Semiparametric Duration Analysis with an Endogenous Binary Variable:

An Application to Hospital Stays 91

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.2 Semiparametric Duration Analysis with an Endogenous Binary Variable . . . 92

6.3 Application to Hospital Stays . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

References 101

iii





List of Tables

2.1 Age at First Birth: Variable Description . . . . . . . . . . . . . . . . . . . . . 33

2.2 Estimation Results of Age at First Birth . . . . . . . . . . . . . . . . . . . . . 34

3.1 Monte Carlo Results (σ2,1 = 0.5 and σ2,2 = 2) . . . . . . . . . . . . . . . . . . 43

3.2 Monte Carlo Results (σ2,1 = 1 and σ2,2 = 2) . . . . . . . . . . . . . . . . . . . 44

4.1 Consistency in Linear and Nonlinear Regression with Endogenous Variables . 50

4.2 An Example of the British Health and Lifestyle Survey . . . . . . . . . . . . . 52

4.3 An Example of British Household Panel Survey . . . . . . . . . . . . . . . . . 53

4.4 An Example of Medical Expenditure Panel Survey . . . . . . . . . . . . . . . 55

4.5 Monte Carlo Results of Linear Models with an Endogenous Continuous Variable 71

4.6 Monte Carlo Results of Linear Models with an Endogenous Binary Variable . 71

4.7 Monte Carlo Results of Probit Models with an Endogenous Continuous Variable 72

4.8 Monte Carlo Results of Probit Models with an Endogenous Binary Variable . 73

4.9 Monte Carlo Results of Poisson Models with an Endogenous Continuous Variable 74

4.10 Monte Carlo Results of Poisson Models with an Endogenous Binary Variable 74

5.1 Drinking Behavior: Variable Description . . . . . . . . . . . . . . . . . . . . . 84

5.2 Estimates of the Selection Equation . . . . . . . . . . . . . . . . . . . . . . . 85

5.3 Estimates of the Drinking Equation . . . . . . . . . . . . . . . . . . . . . . . 86

6.1 Hospital Stays: Variable Description . . . . . . . . . . . . . . . . . . . . . . . 95

6.2 Estimated Results of Hospital Stays (Selection Equation) . . . . . . . . . . . 96

6.3 Estimated Results of Hospital Stays (Duration Equation) . . . . . . . . . . . 97

v





List of Figures

1.1 PDFs of Gamma Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2 PDFs of Generalized Normal Distributions . . . . . . . . . . . . . . . . . . . . 21

1.3 PDFs of Generalized Normal and Log-exponential Distributions . . . . . . . . 22

1.4 PDFs of Generalized Normal and Log-gamma Distributions . . . . . . . . . . 22

1.5 PDFs of Finite Mixture Normal Distributions . . . . . . . . . . . . . . . . . . 23

1.6 PDFs of Finite Mixture Bivariate Normal Distributions . . . . . . . . . . . . 24

2.1 The Estimated Density Function of εi . . . . . . . . . . . . . . . . . . . . . . 35

4.1 Semi-nonparametric Bivariate Normal Distributions . . . . . . . . . . . . . . 76

5.1 Estimated Densities of Heterogeneity . . . . . . . . . . . . . . . . . . . . . . . 87

6.1 Estimated Densities of Heterogeneity . . . . . . . . . . . . . . . . . . . . . . . 98

vii





Acknowledgments

In writing this dissertation, I benefited from the help and support of a number of people

whom I would like to thank here.

First of all, I am grateful to my supervisor, Prof. Dr. Motohiro Sato, for his support

and guidance. I would also like to thank Prof. Dr. Masako Ii and Prof. Dr. Eiji Tajika

for cosupervising my dissertation for thought-provoking discussions on my research. Besides

my advisor, I would like to thank the rest of my thesis committee: Prof. Dr. Kazumitsu

Nawata, Prof. Dr. Takashi Oshio, and Prof. Dr. Hiroyuki Kawaguchi, for their encouragement,

insightful comments, and hard questions. I am grateful to my past colleagues at the graduate

school of economics in Hitotsubashi University—Kei Hosoya, Yukinari Hayashi—for valuable

comments and suggestions on my essays.

I am especially grateful to the late Dr. Tadahiko Tokita. He guided me to the field of

health econometrics and encouraged me tremendously. Finally, special thanks go to my family

and to my friends for their constant encouragement and support.

ix





Introduction

Microdata in Health Economics

During the past two decades, applied econometric analysis has been widely adopted among

health economists. Its adoption is accelerating, producing ever-richer research as electronic

recording and collection make available more data about individual patients. In addition,

computational power for analyzing large, complex datasets is increasing, facilitating econo-

metric analysis involving latent variables, unobserved heterogeneity, and nonlinear models

in the field now established as “health econometrics.” Jones and O’Donnell (2002), Jones

(2007), and Jones et al. (2007) review health econometrics comprehensively, and many text-

books examine microdata and related topics (Amemiya, 1985; Maddala, 1986; Cameron and

Trivedi, 1998, 2005; Gouriéroux, 2000; Wooldridge, 2002; Winkelmann, 2004; Winkelmann

and Boes, 2006; Greene, 2007a).

Extensive individual-, household-, and establishment-level microdata are available from

cross-sectional and longitudinal sample surveys and the census. Health economics primarily

employs cross-sectional data. That is, observations are independent of each other, and pure

time series applications are excluded.1 Microdata used in health econometrics have two no-

table features. First, they are often measured on a non-continuous scale: data are not only

continuous and discrete variables but also on a non-continuous scale, such as quantitative and

qualitative (or categorical) variables. This leads inconsistency of linear regression models. For

example, analyzing expenditure data is complicated when samples feature a preponderance of

observations with zero expenditures. The consistency of standard approaches to the problem

relies on the validity of distributional assumptions. To analyze these data, health economet-

rics requires disparate nonlinear models, including binary responses, multinomial responses,

limited dependent variables, integer counts, and measures of duration. Moreover, variables

denoting health or quality of life are often unobservable and perhaps measurable only with

1Panel data, which contain both time series and cross-sectional properties, are regarded as microdata.

However, this dissertation focuses on only cross-section microdata.
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error (through subjective reports, for example). This situation induces latent variables and

selection problems.

Second, health data are observational, i.e., they are neither experimental nor collected from

surveys and administrative records through randomized experiment. Although availability of

“experimental” data is increasing in the social sciences, their use is restricted, and empirical

works continue to rely on non-experimental data. Accordingly, sample selection bias may

pervade observational data in health econometrics. In analyzing smoking-related illness, for

example, smokers acknowledge their risks and rationally select their behavior. Failing to

consider self-selection distorts the estimated health effects of smoking based on comparisons

between smoking and non-smoking samples.

Microdata used in health econometrics are quantitative and qualitative (categorical).

Qualitative data are discrete and are of three types: binary, multinomial, and ordered. A

binary variable addresses only two possible outcomes and indicates presence or absence of a

property. It arises, for example, in answers to questions about the fulltime employment status

(yes/no). A multinomial variable is a natural extension of binary data and has at least three

possible outcomes. It indicates the quality of an object using a set of mutually exclusive and

exhaustive non-ordered categories. For instance, it arises from questions about employment

status featuring several alternatives (full-time · part-time · unemployed · not in a labor force).

Ordered variables have three or more possible outcomes. They indicate qualitative features

using sets of mutually exclusive and exhaustive ordered categories, but differences between

categories are undefined. Ordered variables arise from questions such as “How satisfied are

you with the medical system” (completely satisfied · somewhat satisfied · neutral · somewhat

dissatisfied · completely dissatisfied)?

Quantitative data are discrete or continuous and also restricted or unrestricted. Discrete

and unrestricted quantitative data are count variables. They take the form of non-negative

integers {0, 1, 2, . . . }. The number of physician visits is an example. Count data fill an

intermediate position between qualitative and quantitative data. If the number of counts is

relatively low, responses are treated as categories.

Limited dependent variables are the continuous and restricted data and consist of three

types: non-negative variables with frequent zeros, truncated variables, and censored vari-

ables. In non-negative variables with frequent zeros, there is a continuous positive variable

with a discrete cluster of observations at zero. For example, data about monthly medical

expenditures have many zeros and right-skewed distributions. Such data provide two kinds

of information: how medical care is utilized and in what quantity.

The data are truncated if all observations with realizations above or below a specified

threshold are excluded from the sample. For instance, if we observe data for medical ex-
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penditures above zero and the possibility of zero is not eliminated, the data are truncated.

Consequently, observed data no longer represent the population even if the sampling is oth-

erwise admitted.

Data are censored if only an interval rather than a numerical value is observed. Censored

data are common in duration analysis. For example, when we observe the duration of leaving

hospital but the study terminates one week later, we do not know complete spell of the

sample leaving hospital after one week. This is a censored observation. Unlike truncated

data, censoring does not exclude those observations from the sample and its proportion is

known.

Microeconometrics in Health Economics

Linear and Nonlinear Regression Models

Applied econometric studies often employ standard linear regression models. These mod-

els assume that the relation between an outcome (dependent variable) yi and explanatory

variables (independent variables, regressors, or covariates) xi; is a linear function of the xi;

variables and of a random error term εi. This relation can be noted in shorthand as

yi = x′
iβ + εi,

where xi = (1, xi1, . . . , xiK−1)
′
is a K × 1 vector and β is a K × 1 parameter vector. For

simplicity, we drop the subscript i and write the model for typical observation as y = x′β+ε.

The random error term ε captures all the variation in y not explained by the x variables.

The classical model makes four assumptions about the error term: (i) its mean is zero; (ii)

its variance σ2 is the same across all observations (homoskedasticity); (iii) its values are

independent across observations (serial independence); (iv) its values are independent of the

values of the x variables (exogeneity).

Investigators often assume the error term has a normal distribution. This implies that,

conditional on each x, each observation of dependent variable y follows a normal distribution

with mean E (y | x) = x′β. This assumption has two implications. First, the ordinary least

squares (OLS) estimator is asymptotically efficient among all possible estimators. Second,

the small sample distribution of the OLS estimator is known, and exact inference can there-

fore be based on t- or F -statistics. This standard linear regression model is easily estimated

and interpreted, and it provides optimal inference if standard regularity assumptions are ful-

filled. Under these Gauss-Markov assumptions, the OLS estimator is the best linear unbiased

estimator.
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However, if the dependent variable is neither quantitative nor continuous, the OLS esti-

mator may be inappropriate. First, we consider the case of a binary dependent variable that

takes 0 or 1. In this case, the linear regression is interpreted as a probability model, since

E (y | x) = 0× P (y = 0 | x) + 1× P (y = 1 | x). Therefore, we obtain

P (y = 1 | x) = x′β.

If we calculate the prediction using this model, it is required that 0 ≤ P (ŷ = 1 | x0) ≤
1. However, the restriction on linearity is violated for certain values x0 of the regressors.

Moreover, this model is not homoskedastic since the variance of a binary variable conditional

on the regressors takes the values of Var (y = 1 | x) = P (ŷ = 1 | x) [1− P (ŷ = 1 | x)], which
is a function of x. A similar discussion applies to multinomial dependent variables. The

computed expected value of a multinomial variable has no meaning using a linear model.

Since the numerical coding of outcomes is qualitative and arbitrary, no ranking affects the

analysis.

Second, consider a count dependent variable that takes the value of non-negative integer.

Count data are quantitative and have well-defined expectations, but the linear regression

model is again inappropriate. The expectation of a count must be non-negative, but this

expectation is not assured by the functional form above. Moreover, variance in count data

analysis generally depends on x, and that dependence violates the assumption of homoskedas-

ticity.

Third, examine the case of limited dependent variables. If the dependent variable is

continuous with support over the real line, there is no argument against using the linear

regression model, and it indeed is the best. However, it is inappropriate and other models are

required if the dependent variable is limited to positive real numbers and zeros are important.

Since the limited dependent variable is censored or truncated and it is undesirable to regard

the observed sample as representative of the population, to estimate the linear regression

model directly takes the biased estimator. The estimator fails because the assumption of

mean independence between the error terms and regressors must fail under sample selection.

Similar considerations apply to duration analysis.

In health econometrics, empirical analysis is complicated because outcomes of individual-

level survey data often are based on qualitative or limited dependent variables and nonlinear

models are necessary. Moreover, the discipline’s theoretical models often involve unobservable

(latent) concepts such as health endowments, physician agency and supplier inducement, or

quality of life. Therefore, health econometrics requires nonlinear regression models such as

binary responses, multinomial responses, limited dependent variables, duration, and count

data.
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Methods for modeling such data are interrelated and based on maximum likelihood esti-

mation (MLE). The MLE method differs from the least squares method used to fit a regression

line to data. It assumes a distribution of the data-generating process and the estimate pa-

rameters based on this distribution. Therefore, distributional assumptions dictate whether

estimated parameters are strongly true, but many applications using maximum likelihood

are parametric. This disadvantage has been discussed, and this dissertation addresses this

problem later.

An Evaluation Problem in Regression Analysis

An evaluation problem is how to identify causal effects from empirical data. Consider an

outcome yit for individual i at time t—for example, the extent to which someone sought

health care during the past year. If we analyze the influence of health maintenance activities,

such as hours of exercise per month, on outcome yit, it is difficult to identify the causal

effect of treatment. The causal effect of interest is the difference between the outcome with

treatment and without treatment. However, this pure treatment effect is not identifiable from

empirical data because the counterfactual can never be observed, i.e., the patient cannot be

two places simultaneously.

To analyze this problem, it is useful to estimate the average treatment effect using sample

data by comparing the average outcome among those receiving treatment with the average

outcome and with those who do not receive treatment. However, if unobserved factors in-

fluence both the selection of treatment and the response to it, this method promotes biased

estimators of the treatment effect. It is best to use a randomized experimental design that

randomly allocates individuals into treatments, and in some circumstances it is better to use

natural experiment data. Because this method is prohibitively expensive, however, many

empirical studies use non-experimental data. In the absence of experimental data, we require

alternative estimation strategies, such as instrumental variables, corrections for selection bias,

and longitudinal data.

Because health econometrics employs quantitative and qualitative (categorical) data, non-

linear models are necessary. Hence, the instrumental variables method based on linear re-

gression is sometimes inappropriate for analyzing non-experimental health econometrics data.

Here we use MLE based on a parametric distribution. We consider this problem later when

introducing semiparametric distribution.
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Outline

Part I of this dissertation analyzes a heterogeneity problem in nonlinear health econometrics.

Part II considers an endogeneity problem in nonlinear health econometrics.

Unobserved heterogeneity causes problems in nonlinear regression models such as duration

models and count data models. Here, heterogeneity means that data differ across observa-

tions. In linear regression models, when the heterogeneity is independent of regressors, the

OLS estimator is not always efficient but consistent because the conditional mean is un-

changed, the unobserved heterogeneity is absorbed into the error term, and omitted variables

bias is absent. In nonlinear regression models, omitting unobserved heterogeneity causes spu-

rious results, i.e., spurious negative (or positive) dependence in duration analysis or a greater

(smaller) variance in count data analysis. Chapter 1 in Part I reviews unobserved hetero-

geneity in nonlinear health econometric models. First, we consider continuous heterogeneity

and introduce gamma distributed heterogeneity, which is often used in duration and count

data analysis. Second, we investigate discrete heterogeneity, which is referred as a finite mix-

ture model and is semiparametric. Moreover, we show the limitations of nonlinear regression

models to introduce heterogeneity and suggest alternatives to avoid these problems.

Chapter 2 suggests generalized and semiparametric log-normal survival analysis using

Hermite polynomials and Box-Cox transformation. It is empirically difficult to separate the

effects of duration dependence from those of unobserved heterogeneity, so many survival

models do not explicitly assume unobserved heterogeneity. However, omitted variables are

inevitable, and controlling population heterogeneity is not always adequate. The model with-

out unobserved heterogeneity overestimates (underestimates) the degree of negative (positive)

duration dependence in the hazard. We propose new semiparametric (semi-nonparametric)

survival models that generalize unobserved heterogeneity, as well as a dependent variable of

the log-normal survival model. First, we generalize the log-transformed dependent variable

using Box-Cox transformation, which contains various function forms. Second, we generalize

the normally distributed unobserved heterogeneity using Hermite polynomials, which include

a normal distribution as a special case. The General Social Survey in 2002 shows that the

proposed model performs well in empirical application.

Chapter 3 proposes and demonstrates the identifiability of a finite mixture cross-sectional

probit model in selected situations, i.e., a probit model with a single linear equation. Although

finite mixture models are semiparametric and flexible, a cross-sectional finite mixture probit

(binomial) model is not estimated for an identification problem. However, it is not enough to

apply only a cross-sectional probit model because we do not know the true data-generating

process of a binary variable. Therefore, this chapter investigates the possibility of estimating
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a cross-sectional finite mixture probit model. We show the identifiability of bivariate random

variables using a natural expansion of Teicher’s theorem. Using this result, the chapter then

investigates the identifiability of a finite mixture cross-sectional probit model with one linear

equation. We demonstrate that the class of all finite mixtures of a probit model with one

linear equation is identifiable even if the number of components does not exceed three. That

is, a finite mixture cross-sectional probit model sometimes can be estimated. Monte Carlo

simulations support our demonstration.

It is known in microeconometrics, especially in health econometrics, that endogenous

regressors may cause inconsistent parameter estimation. Health econometrics faces no endo-

geneity problem if data are randomly assigned or regressors are not the results of incentives,

as in the experimental sciences. However, these conditions are seldom fulfilled in social sci-

ences, and endogeneity bias is inevitable. Therefore, a method to treat it correctly is required.

Focusing on health econometrics, Chapter 4 in Part II reviews the problem of endogeneity and

explains the estimation of regression models with endogenous regressors. First, we analyze

the problem of endogeneity using a simple linear regression model, explain the instrumen-

tal variable method that obtains the consistent estimator even if endogenous variables exist,

and describe the two-stage least squares method (2SLS) often used in applied fields. Al-

though the discussion of instrumental variable estimators is based on continuous endogenous

regressors, we extend this discussion to a binary endogenous variable, referred to as treat-

ment effects. Second, we explain, using examples of probit and count data models, that the

two-stage method is applied in nonlinear models with endogenous continuous regressors. We

demonstrate that, in nonlinear regression with endogenous discrete, censored, or truncated

regressors, the two-stage method is insufficient, and the full information maximum likelihood

method (FIML) is consistent. Third, we provide Monte Carlo simulations of the four cases

and analyze the consistency of proposed models. We show the consistency of linear models

with an endogenous continuous, discrete, censored, or truncated regressor and the inconsis-

tency of probit models with an endogenous binary variable. Finally, we show the limitation of

nonlinear health econometric regressions containing endogenous variables and propose more

desirable analysis.

Chapter 5 proposes a semiparametric (semi-nonparametric) Poisson model with an endoge-

nous binary variable, which generalizes bivariate correlated unobserved heterogeneity using

Hermite polynomials, and compares this model with a parametric model. Health econometrics

encounters occasions in which explanatory variables are simultaneously determined with the

dependent variable. In such cases, Poisson or negative binomial models yield biased estimates

of parameters of interest because they assume perfect explanatory variables are perfectly ex-

ogenous. Therefore, count data models with an endogenous binary variable are required, and
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many studies have analyzed this problem. Chapter 5 considers a Poisson model with one

endogenous binary variable and the heterogeneity of both count dependent and binary vari-

ables. We propose a Poisson model that comprises a semiparametric joint distribution using

Hermite polynomials. Our model is semiparametric and includes the natural extension of a

bivariate normal distribution. In an example using 1990 National Health Interview Survey

data, the semi-parametric model overcomes rival models in terms of the likelihood ratio test.

Absolute values of the endogenous binary regressor coefficients of the semiparametric models

are smaller than those of the parametric model, and those in the semiparametric model are

the smallest among the three. Moreover, estimated densities of the semiparametric models

have fatter tails than the parametric model.

Chapter 6 proposes a robust duration model with an endogenous binary variable. As

with many nonlinear models, endogeneity in duration analysis is a problem because censored

duration data lead to nonlinearity, prompting the two-stage method toward inconsistency.

Studies have addressed endogeneity in duration analysis, but models based on a hazard rate

do not explicitly assume heterogeneity. Chapter 6 proposes an alternative semiparametric

duration model with an endogenous binary variable that generalizes the heterogeneity of

both duration and endogeneity. Heterogeneity is generalized as follows. First, we consider a

simple log-normal duration model with an endogenous binary variable. Second, we assume

heterogeneity that follows a semiparametric bivariate distribution using Hermite polynomials.

Under these setups, we investigate the difference between the endogenous binary variable’s

coefficients of the parametric and semiparametric models using Medical Expenditure Panel

Survey (MEPS) data. When applied to the duration of hospital stays in MEPS data, the esti-

mated results of non-censored and artificially censored semiparametric (semi-nonparametric)

models show good performance. The absolute values of the endogenous binary regressor coef-

ficients of the semiparametric models are larger than in parametric models whether data are

censored or not. This introduces the interpretation of the binary endogenous variable, that

is, the variable denoting insurance coverage. The parametric model underestimates the effect

of a survey respondent’s insurance coverage in our example. The difference of the estimated

endogenous coefficients in the two models is smaller than in parametric models. This means

that the parametric model has a large inconsistency if the data are censored. Moreover,

estimated densities of the semiparametric models have twin peak distributions.

The main contributions of this dissertation are as follows. First, since the true distribu-

tion of heterogeneity is usually unknown, to generalize a distribution leads to the consistent

estimators of coefficients. In linear regression models, independent unobserved heterogeneity

to regressors causes no complications. However, in nonlinear regression models, an observed

positive or negative relationship may be spurious due to unobserved heterogeneity across

8



samples. The only way to obtain consistent estimators of coefficients is to use semiparametric

models that generalize unobserved heterogeneity.

Second, using generalized unobserved heterogeneity, average treatment effects in health

economics is correctly estimated and is accurately tested. In general, large-scale cross-section

or panel microdata (or survey datasets) are applied to measuring the effect of some treatment

to health. Since these data are based on a face-to-face interview or a self-completion postal

questionnaire, there are many discrete, censored, or truncated variables and is a few contin-

uous variables. Moreover, these data contain a potential problem of endogeneity because it

is difficult to assume some variable as an exogenous variable. Therefore, to evaluate average

treatment effects in health economics is inevitable to use nonlinear regression models with

discrete endogenous variables. This dissertation obtains robust and more accurate methods

to estimate and test the average treatment effects.

The methods that this dissertation investigates may be cumbersome and conventional

methods that are often used in health economics are tractable. However, if and only if the

method discussed in this dissertation demonstrates that unobserved heterogeneity follows

some specific distribution, then to utilize conventional methods is justified. Therefore, it is

very important to generalize unobserved heterogeneity for robust and correct estimators of

coefficients.
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Unobserved Heterogeneity in

Health Econometrics
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Chapter 1

Nonlinear Estimation and

Heterogeneity in Health

Econometrics

1.1 Introduction

Many statistical and econometric studies investigate unobserved heterogeneity, also known

as frailty in biostatistics. Roughly speaking, heterogeneity means that data differ across ob-

servations. Either regressors (observables) or unobservables cause heterogeneity in regression

analysis. Observed heterogeneity is inter-individual differences that are measured by regres-

sors, and unobserved heterogeneity is all other differences. Unobserved heterogeneity causes

no complications in linear regression models if heterogeneity is independent of regressors. In

such cases, the conditional mean is unchanged, the unobserved heterogeneity is absorbed into

the error term, and there is no omitted variables bias. Unobserved heterogeneity does cause

problems in nonlinear models, such as duration models and count data analysis. For example,

in survival analysis, especially in Cox proportional hazard models, the baseline hazard con-

tains observed and unobserved heterogeneity and thus even individuals presenting the same

values for all covariates may have different hazards.

We consider this problem using a well-known empirical example discussed by Cameron and

Trivedi (2005) and Winkelmann and Boes (2006). Assume the population is composed of two

groups in a 50/50 proportion. Group 1 has a hazard rate of 0.5 and Group 2 a hazard rate of

0.1. For 100 people in Group 1, we observe 50 transitions in the first period, 25 in the second,

and 12.5 in the third. For Group 2, we observe 10, 9, and 8.1 transitions in the first, second,

13



and third periods, respectively. Therefore, an aggregate hazard rate is (50 + 10) /200 = 0.3,

(25 + 9) /140 = 0.24, and (12.5 + 8.1) /106 = 0.19. The average hazard rate drops from 30%

to 24%, and then to 19% in the next period. If the empirical evidence shows negative duration

dependence—that is, the hazard rate falls over time—this character may be spurious. The

declining aggregate hazard is a consequence of aggregation across heterogeneous groups that

have constant but different hazard rates.

Count data analysis encounters the same problem. Assume two homogeneous groups of

equal size in the population under study. Each is characterized by a Poisson distributed

random variable, denoted by y1 and y2, with parameters λ1 = 0.5 and λ2 = 1.5, respectively.

The analyst cannot distinguish between both groups because of the lack of data. The results

above obtains

E (y) =0.5× E (y1) + 0.5× E (y2)

=0.5× 0.5 + 0.5× 1.5 = 1,

Var (y) =0.5×Var (y1) + 0.5×Var (y2)

+ 0.5× [E (y1)− E (y)]
2
+ 0.5× [E (y2)− E (y)]

2

=0.5× 0.5 + 0.5× 1.5 + 0.5× (−0.5)2 + 0.5× 0.52 = 1.25.

The unconditional variance of y in the population is greater than its unconditional mean, and

the population cannot be Poisson distributed.

It is important to consider the consequences of this unavoidable misspecification. It is

known from ordinary linear multiple regression analysis that such an omission can lead to

omitted variable bias. However, analysis of unobserved heterogeneity is more complex in non-

linear models. Introducing unobserved heterogeneity leads to an important class of models

called mixture models. This chapter explains unobserved heterogeneity in nonlinear health

econometric models. Section 2 analyzes continuous heterogeneity. Section 3 investigates dis-

crete heterogeneity, using examples of duration and count data models common in health

econometrics. Moreover, the following chapters establish the limitations of nonlinear regres-

sion models to introduce heterogeneity and suggest alternatives that avoid these problems.

1.2 Continuous Heterogeneity

1.2.1 Mixtures of Distribution

To understand the effect of unobserved heterogeneity in nonlinear econometric models, we first

consider an exponential duration model. In the exponential regression without heterogeneity,

14



the distribution of non-censored spells ti is specified conditional on observable exogenous

covariates xi. We formulate the hazard function λ (ti | xi, εi) with an additive error term εi

as

lnλ (ti | xi, εi) = x′
iβ + εi, (1.1)

where β is a K×1 vector of parameters. For notational simplicity, we omit subscript i in the

following analysis. The random error ε shows the unobserved heterogeneity and can arise if

additional information affects the hazard but is unobserved.

Equation (1.1) can be rewritten as λ (t | x, ε) = exp (x′β) ν, where ν = exp (ε). This

model is said to have multiplicative heterogeneity. Without loss of generality, let E (ν | x) =
1. Thus, E [λ (t | x, ν) | x] = exp (x′β) E [ν | x] = exp (x′β). The cumulative distribution

function conditional on ν for the exponential model takes the form

F (t | x, ν) = 1− exp (− exp (x′β) νt) . (1.2)

The unconditional cumulative distribution function is obtained by averaging the conditional

function. The technique for doing so is to marginalize (1.2) with respect to ν, (e.g., to integrate

out the unobservables). Let g (ν | x) denote the density function of ν given x. We obtain the

marginal distribution function by integrating the product of F (t | x, ν) and ν (u | x) over ν:

F (t | x) =
∫ ∞

0

F (t | x, ν) g (ν | x) d ν. (1.3)

A parametric density function of g (ν | x) is usually specified. The gamma distribution

is a suitable candidate since it satisfies ν > 0 and leads to relatively simple derivations and

closed-form solutions. When ν is gamma distributed with parameters θ > 0 and γ > 0, the

density function is obtained by

g (ν | x) = γθ

Γ (θ)
νθ−1e−γν , (1.4)

where E [ν | x] = θ/γ, Var [ν | x] = θ/γ2, and Γ (θ) is the gamma function defined as∫∞
0
zθ−1e−zd z. For the normalization condition of E [ν | x] = 1, we impose the restriction

θ = γ. Figure 1.1 shows two probability density functions (PDF) of the gamma distribution

with E [ν | x] = 1, Var [ν | x] = 0.5 and Var [ν | x] = 0.25. Therefore, the unconditional

cumulative distribution function takes the following form:

F (t | x) =
∫ ∞

0

[1− exp (− exp (x′β) νt)]
θθ

Γ (θ)
νθ−1e−θνd ν

= 1− θθ

Γ (θ)

∫ ∞

0

νθ−1e−(θ+exp(x′β)t)νd ν

= 1−
(

θ

θ + exp (x′β) t

)θ

. (1.5)
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Figure 1.1: PDFs of Gamma Distributions

Because the integrand equals the density function of a Gamma (θ, θ + exp (x′β) t) distribution

and integrate to unity, the last equality is obtained. The unconditional duration density

function is given by differentiating with respect to t, which yields

f (t | x) = exp (x′β)
[
1 + θ−1 exp (x′β) t

]−θ−1
. (1.6)

The unconditional hazard function in the exponential model with gamma distributed unob-

served heterogeneity is written as

λ (t | x) = f (t | x)
1− F (t | x) = exp (x′β)

[
1 + θ−1 exp (x′β) t

]−1
. (1.7)

For θ−1 → 0, the hazard function is the simple exponential model; for θ−1 > 0 the hazard

rate becomes a decreasing function of t.

Poisson Regression Analysis

The same discussion applies to unobserved heterogeneity when analyzing count data, but first

we explain count data models.1 Count data use non-negative integers {0, 1, 2, . . . } with no

explicit upper limit to describe how many times an event occurs within a fixed interval. The

natural stochastic model for counts is a Poisson point process for occurrence of the event. Let

1Winkelmann and Zimmermann (1995), Cameron and Trivedi (1998), and Winkelmann (2003) compre-

hensively explain various count data models.
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y = 0, 1, 2, . . . denote a random variable that takes the non-negative integer. The PDF of a

Poisson distribution takes

P (Y = y) =
exp (−μ) (μ)y

y!
, (1.8)

where μ is the intensity parameter. The Poisson distribution is a one-parameter distribution

and parameter μ uniquely determines mean and variance: E (y) = Var (y) = μ. The Pois-

son regression model is derived from the Poisson distribution by parameterizing the relation

between the mean parameter μi and covariates xi, introducing the observation subscript i,

attached to both yi, μi, and xi.
2 It is convenient to specify μ as a log-linear function of

covariates x ∼ K × 1 that account for observed sample heterogeneity: μ = exp (x′β), where

β denote a K × 1 vector of unknown parameters. Since Var (y) = exp (x′β), the Poisson

regression is intrinsically heteroskedastic.

The Poisson regression has the property of equidispersion, i.e., expectation and variance

are equal. However, equidispersion is frequently violated in empirical applications through

overdispersion (variance exceeds the mean) or underdispersion (variance smaller than the

mean). Therefore, by introducing unobserved heterogeneity ε, the Poisson regression specifies

as follows:

f (y) =

∫
exp (− exp (x′β + ε)) (exp (x′β + ε))

y

y!
g (ε) d ε, (1.9)

where g (ε) is an unknown PDF. We assume that random term ν enters the conditional mean

function multiplicatively like the above duration analysis. That is, ν = exp (ε). The marginal

distribution of y is obtained by integrating out ν,

f (y | x) =
∫ ∞

0

f (y | x, ν) g (ν | x) d ν, (1.10)

where g (ν | x) is the density function of unobserved heterogeneity ν. As in exponential-

gamma distribution, we specify that ν has a gamma distribution obtained by (1.4). Setting

θ = γ for normalization of E [ν | x] = 1, the marginal distribution of y is given by

f (y | x) = μy

y!

∫ ∞

0

exp (−μν) νy θθ

Γ (θ)
νθ−1e−θνd ν

=
μy

y!

θθ

Γ (θ)

∫ ∞

0

e−(μ+θ)ννy+θ−1d ν

=
μy

Γ (y + 1)

θθ

Γ (θ)

Γ (y + θ)

(μ + θ)
y+θ

=
Γ (y + θ)

Γ (y + 1)Γ (θ)

(
μ

μ + θ

)y (
θ

μ + θ

)θ

. (1.11)

2We omit subscript i in the following analysis for notational simplicity.
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Since the integrand equals the density function of a Gamma (y + θ, θ + μ) distribution and

integrate to unity, the third equality is obtained. This PDF is the mixed distribution of

Poisson and gamma-distributed unobserved heterogeneity and is a type II negative binomial

distribution with E [y] = μ and Var [y] = μ (1 + μ/θ) > μ if θ > 0.3

1.2.2 Interpreting the Mixture Hazard Function

Duration dependence is the process whereby a hazard is not constant over time. If dλ (t) /d t >

0, it is positive at time t; if dλ (t) /d t < 0, it is negative at time t. Positive or negative, du-

ration dependence is important when considering economic duration data. For example,

the probability of quitting smoking may decline because of rational addiction as a term of

unemployment increases. However, if unobserved heterogeneity is present, it is difficult to

distinguish hazard rates that decline over time from simple variation in rates across individ-

uals.

Consider the hazard function when unobserved heterogeneity is present in the exponential-

gamma mixture model. From (1.7), even if individual hazard is constant at μ = exp (x̃′β),

where x̃ = xi; for all i, the average or aggregate hazard λ (t) is declining in t. This suggests not

negative duration dependence in individual hazard rates but aggregation across individuals

whose hazard rates differ randomly. That is, when each person has a constant but different

hazard rate, raw data show a decreasing hazard rate because of aggregation across individuals.

It is difficult to distinguish hazard rates that decline over time from simple variations across

individuals. Moreover, neglecting unobserved heterogeneity may promote underestimating

the slope of the hazard function.

1.2.3 Specification of the Heterogeneity Distribution

It is important but difficult to consider unobserved heterogeneity because health econometrics

often employs nonlinear models. The preceding analysis assumed parametric unobserved het-

erogeneity for the sake of computational tractability. However, Heckman and Singer (1984b)

point out that parametric specifications of unobserved heterogeneity can be arbitrary and that

these assumptions distort parameters to be estimated. Since imposing ad hoc restrictions on

the functional form of unobserved heterogeneity causes the estimator to be inconsistent, quasi-

likelihood methods are inefficient. A parametrically flexible or nonparametric specification is

desirable.

3Andrews (1988), Cameron and Windmeijer (1996), and Santos Silva (2001) discuss useful specification

tests for fully parametric models. Wedel et al. (1993), Winkelmann (1996, 2000), Santos Silva (1997b), and

Greene (2007b) analyze count data models with various degrees of heterogeneity.
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To deal with ad hoc parametric distribution of unobserved heterogeneity, Gurmu (1997)

and Gurmu et al. (1999) propose semiparametric Poisson estimation based on series expan-

sions for the unknown unobserved heterogeneity.4 They approximate g (·) by Laguerre poly-

nomials, derive the corresponding moment-generating function, and use it to estimate β

together with additional approximation parameters by maximum likelihood. Doing so avoids

the a priori specification of a density function for the unobserved heterogeneity component.

They show that the resulting estimator is consistent. We rewrite the marginal PDF of the

Poisson mixture model as

f (y | x) = μy

y!

∫ ∞

0

exp (−μν) νyg (ν | x) d ν ≡ μy

y!
M (y) (−μ) , (1.12)

where M (y) (−μ) is regarded as the yth-order moment-generating function of ν. Recall the

domain of a moment-generating function

M (s) =

∫
eszh (z) d z. (1.13)

Taking y-th order derivatives with respect to s yields

M (y) (s) =

∫
eszzyh (z) d z = E [eszzy] . (1.14)

For s = −μ and z = ν, this is precisely the expectation on the right side of (1.12). To specify

semiparametric unobserved heterogeneity of g (ν), let

g (ν) =
1

SP
[PK (ν)]

2
w (ν) , (1.15)

where w (ν) is a gamma distribution with parameter (θ, γ) presented in (1.4). Further, PK (ν)

are the following polynomials that contain a Laguerre series,

PK (ν) =

K∑
j=0

cjhjL
α−1
j (ν) , (1.16)

Lα−1
j (ν) ≡

j∑
�=0

⎛⎝j
�

⎞⎠ Γ (j + α)

Γ (�+ α) Γ (j + 1)
(−1)� (γν)� , (1.17)

hj ≡ Γ (j + α)

Γ (α) Γ (j + 1)
, (1.18)

and SP =
∫∞
0
PK (ν)w (ν) d ν ensures integration to 1 by scaling density. Gurmu (1997) and

Gurmu et al. (1999) demonstrate the analytical solution of (1.12):

M (y) (−μ) =
(
1 +

μ

γ

)−θ

(γ + μ)
−y Γ (θ)∑K

j=0 c
2
j

K∑
j=0

K∑
k=0

j∑
�=0

k∑
m=0

cjck (hjhk)
1
2

×
⎛⎝j
�

⎞⎠⎛⎝ k
m

⎞⎠ Γ (θ + �+m+ y)

Γ (θ + �) Γ (θ +m)

(
−1− μ

γ

)−(�+m)

, (1.19)

4This discussion of duration analysis is essentially the same as for count data models.
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where hj ≡ Γ (j + θ) / (Γ (θ) Γ (j + 1)), and (β, θ, γ, cj) , j = 0, . . . ,K are parameters to be es-

timated. The normalization restriction c0 = 1 and the restrictionM (1)|−μ=0 = 1 are imposed

to assure that the mean of unobserved heterogeneity is unity. When cj = 0, ∀j ≥ 1 (that is,

γ = θ), the above model results in the preceding Poisson gamma mixture model. Although

this model is structurally complex, maximization of the log-likelihood is not complicated.

Another specification of unobserved heterogeneity is Hermite polynomials, which resemble

Laguerre polynomials and are a natural extension of a normal distribution. Gallant and

Nychka (1987) proposed a semiparametric series estimator that approximates an unknown

error term. Based on Gallant and Nychka (1987), we generalize a normally distributed error

term using a Hermite series.5 Let ε = ln ν. Then unobserved heterogeneity takes this form:

g (ε) =
1

SH
[HK (ε)]

2
w (ε) , (1.20)

HK (ε) ≡
K∑

k=0

ckε
k, (1.21)

w (ε) ≡ 1√
2πσ

exp

(
−1

2

( ε
σ

)2)
, (1.22)

where HK (ε) are polynomials that contain an Hermite series, ck is the parameter of the

Hermite series to be estimated, and SH =
∫∞
−∞ [HK (ε)]

2
w (ε) d ε assures integration to 1 by

scaling density. Figure 1.2 graphs examples of generalized normal distributions with Hermite

series; dashed lines show the standard normal distributions; solid lines show generalized

normal distributions K = 2. In Figure 1.2, we find that the generalized normal distribution

is occasionally skewed and has twin- or triplet-peaks.

Moreover, the generalized normal distribution approximates other famous distributions,

such as exponential and gamma distributions. In Figure 1.3 and 1.4, dashed lines show the

log-exponential distributions E (γ) and log-gamma distributions G (θ, γ)6; solid lines show

generalized normal distributions with Hermite series (K = 5). The generalized normal distri-

bution is a good candidate for the approximation of the exponential or gamma distribution.

This means that the generalized normal distribution is flexible semiparametric one and con-

tains many distributions as a special case. Moreover, since this heterogeneity generalizes

additive separable normal distributed heterogeneity, it is easy to interpret in health eco-

nomics. We briefly discuss unobserved heterogeneity of survival analysis using this Hermite

polynomials in Chapter 2.

5See also Gabler et al. (1993) and van der Klaauw and Koning (2003).
6A gamma distribution with θ = 1 results in an exponential distribution E (γ).
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Figure 1.2: PDFs of Generalized Normal Distributions
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Figure 1.3: PDFs of Generalized Normal and Log-exponential Distributions
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Figure 1.4: PDFs of Generalized Normal and Log-gamma Distributions

1.3 Discrete Heterogeneity

1.3.1 Finite Mixture Models

The preceding discussion assumes that unobserved heterogeneity follows a (parametric or

semiparametric) continuous distribution. An alternative approach to consider unobserved

heterogeneity is known as a finite mixture or latent class model. It assumes the sample of

individuals is extracted from a population containing a finite number of latent classes j and

that each element is drawn from one of these j latent subpopulations or strata. Heckman and

Singer (1984a) point out that its attractive features are semiparametric heterogeneity and a

flexible parametric distribution.

To simplify discussion, consider a two-component finite mixture model. The mixture

density is obtained by

f (y | x) = π1f1 (y | μ1 (x)) + (1− π1) f2 (y | μ2 (x)) , (1.23)

where f1 (·) and f2 (·) are subpopulations, 0 ≤ π1 ≤ 1 is a mixing proportion, and (π1, μ1, μ2)
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Figure 1.5: PDFs of Finite Mixture Normal Distributions

are parameters to be estimated. Observations are drawn from f1 and f2, with probabilities

π1 and 1 − π1, respectively. This means that the finite mixture model has two types of

individuals: those extracted from f1 (·) and those extracted from f2 (·).7

Figure 1.5 graphs examples of two-component finite mixture normal distributions. Dashed

lines show the standard normal distributions. Solid lines show finite mixture normal distribu-

tions that differ from variance parameters (σj , j = 1, 2) and both the mean (μj , j = 1, 2) and

variance parameters. Figure 1.5 indicates that although these two finite mixture distributions

have the same mean and variance as a standard normal distribution, their shapes differ from

it; a finite mixture distribution is sometimes fat-tailed and sometimes skewed (or has twin

peaks). Moreover, Figure 1.6 shows examples of two-component finite mixture bivariate nor-

mal distributions Nj

(
(μ1j , μ2j) ,

(
σ2
1j , ρjσ1jσ2j , σ

2
2j

))
, j = 1, 2. In the bivariate case, a finite

7Finite mixture models are not exclusive to microeconometrics. A Markov switching model used in time

series analysis is a type of finite mixture model. Alfò et al. (2008) apply finite mixture models to economic

growth analysis. See McLachlan and Peel (2000) for statistical features of finite mixture models and a

comprehensive review.
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Figure 1.6: PDFs of Finite Mixture Bivariate Normal Distributions

mixture distribution is sometimes fat-tailed and has twin peaks.

Parameter π1 is constant or further parameterized using, for example, the logit function

π1 = exp (λ) / [1 + exp (λ)]. Since the property of J components finite mixture models is

essentially that of two components finite mixture models, it is easy to generalize finite mixture

models to J components. However, extending finite mixtures to three or more components

may interfere with identifiability of the components.

Although the distribution of the unobserved heterogeneity was infinite and continuous in

all previous examples, Heckman and Singer (1984a) propose the discrete approximation of

population heterogeneity using finite mixture models in duration analysis. Theirs is another

interpretation of finite mixture models. If the continuous distribution g (νi) is approximated

by a discrete distribution, denoted by πj (j = 1, . . . , J) with a finite number of support points
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J , then the marginal distribution takes the following form:

h (y | x, πj ,β) =
J∑

j=1

f (y | x, νj ,β)π (νj) , (1.24)

where νj is an estimated support point and πj (
∑
πj = 1) is the associated probability.

Moreover, finite mixture models cause another discussion in health econometrics. Recent

empirical studies of count data models for medical care demand compare the performance

of the two most common approaches: the hurdle (two-part) model and the finite mixture

model. The hurdle model that is first discussed by Mullahy (1986) distinguishes the decision

to seek care from the level of utilization, and the finite mixture model contains the frequent

and infrequent users’ behavior. The hurdle model focuses on the difference between users and

non-users for medical care demand. The first part of the hurdle model specifies the decision

to seek care, and the second part models the level of utilization. The probability density

function of the hurdle model is given by

f (y) = f1 (0)
d
[(1− f1 (0))× fT (y | y > 0)]

1−d
,

where y is a count dependent variable that takes a non-integer value and d = 1−min (1, y).

The first part of the hurdle model is generally specified as the logistic type; the zero-truncated

distribution fT (y) assumes the 0 truncated Poisson (or negative binomial) distribution. Be-

cause the hurdle model is occasionally regarded as the approximation of the principal-agent

hypothesis (Pohlmeier and Ulrich, 1996), and the finite mixture model is considered as stan-

dard demand theory, there are many studies to analyze medical care demand using both the

models. Gerdtham (1997) analyzes medical care demand using the hurdle model; Deb and

Trivedi (1997, 2001, 2002), Deb and Holmes (2000), and Gerdtham and Trivedi (2001) find

that the finite mixture model is a better approach for medical care demand. Jemernéz-Mart́ın

et al. (2002) criticize that the finite mixture model is not based on economics but on statistical

reasoning, and find good performance of the hurdle model in EU countries. Bago d’Uva (2005,

2006) analyzes demand for medical care in Britain using the panel finite mixture and panel

finite mixture hurdle models. Santos Silva and Windmeijer (2001) propose a multi-episode

model for medical care demand and compare with the finite mixture and hurdle models.

Winkelmann (2004b) shows that the hurdle model based on bivariate normally distributed

heterogeneity surpasses the finite mixture model.8

8Many studies involve a hurdle model and/or discrete analysis of demand for medical care. For detailed

discussions, see Cameron et al. (1988), Deb (2001), Deb and Holmes (1998), Manning et al. (1987), Mullahy

(1997b), Santos Silva (1997a), Santos Silva and Covas (2000), van Outri (2004), Winkelmann (2004a, 2006),

and Wang and Alba (2006). Gurmu and Trivedi (1996) and Gurmu (1997, 1998) propose the generalized

version of a hurdle model. DeSarbo and Choi (1998) and Mart́ınez-Espiñeira (2006) discuss a double hurdle
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1.3.2 Estimation of Finite Mixture Models

Computational problems arise when estimating finite mixture models. Because their log-

likelihood is cumbersome and flat, the traditional Newton-Raphson algorithm sometimes

works poorly. Even though it produces satisfactory results using numerical derivatives for es-

timating finite mixture models (Cameron and Trivedi, 2005), the Newton-Raphson algorithm

is sensitive to initial values and features problems of local maxima. Thus, the expectation and

maximization (EM) algorithm (Dempster et al., 1977) based on latent class models, is often

used to estimate finite mixture models.9 In presenting the EM algorithm, we first explain the

latent class interpretation of finite mixture models.

Let d = (d1, . . . , dJ) define an indicator (dummy) variable such that
∑J

j=1 dj = 1 indicates

y was drawn from the jth (latent) group for each observation. That is, each observation may

be regarded as a sample from one of the j latent subpopulations, classes, or “types.” The

following discussion assumes the model is identified.

The model specifies that (y | dj , μj , πj) are independently distributed with densities

J∑
j=1

djf (y | μj) =
J∏

j=1

f (y | μj)
dj , (1.25)

where μj = μ (x,β), μ = (μ1, . . . , μJ ), and (d | μ, πj) are identically and independently

distributed with multinomial distribution

J∏
j=1

π
dj

j , 0 < πj < 1,
J∑

j=1

πj = 1. (1.26)

Therefore, the likelihood function is obtained by

L (β,π | y) =
N∏
i=1

J∑
j=1

π
dj

j fj (y | μj)
dj , (1.27)

which is called a latent class model.

Using Bayes’ theorem, if πj is given, the posterior probability that observation y belongs

to population j, which denotes zj , takes this form:

zj =
πjfj (y | μj)∑J
j=1 πjfj (y | μj)

. (1.28)

model. Terza and Wilson (1990), Cameron and Johansson (1998), Munkin and Trivedi (1999), Gurmu and

Elder (2000), Riphahn et al. (2003), Wang (2003), Alfò and Trovato (2004), Cameron et al. (2004), and

Hellström (2006) analyze bivariate (or multivariate) count data models. The discussion of hurdle (two part)

and sample-selection models appears in Duan et al. (1983, 1984), Newey et al. (1990), Leung and Yu (1996),

Melenberg and van Soest (1996), Lopez-Nicolas (1998), Mullahy (1998, 2001), Martins (2001), Chen and

Khan (2003), Christofides et al. (2003), Dow and Norton (2003), Buntin and Zaslavsk (2004), Lahiri and Xing

(2004), Raikou and McGuire (2004), Lee (2005b), and Cantoni and Ronchetti (2006).
9McLachlan and Krishnan (1996) show examples of EM algorithms. Ueda and Nakano (1998) propose a

modified version of the EM algorithm that attains the global optimum with a high probability
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The advantage value of zj is the probability that a randomly chosen individual belongs to

subpopulation j and equals πj . That is, E [zj ] = πj .

Now we turn to the EM algorithm. Let the parameter vectors of each density be Θ =

[μ1, . . . , μJ , π1, . . . , πJ ]
′
and Θ(t) be a parameter vector at the t-th iteration step. In the

E-step, given an initial parameter Θ(0), the EM algorithm directly maximizes the likelihood

function (1.27), in which the variable dj is treated as missing data. Replacing dj by its

expected value E [dj ] = zj yields the conditional expected log-likelihood:

Q(t)
(
Θ | Θ(t)

)
=

N∑
i=1

J∏
j=1

zj ln [πjfj (y | μj)] .

The M-step of the algorithm maximizes the Q(t) function, given zj , by solving the first-order

conditions. Further, setting t ← t + 1, we calculate new values of zj obtained by (1.28)

and iterate through the E- and M-steps until Θ converges.10 The EM algorithm is slow to

convergence but is easily evaluated because the log-likelihood is separable.

1.3.3 Limitations of Finite Mixture Models

Finite mixture models have limitations. First, their number of components J is unknown a

priori, and no theory aids in determining it. Since the dimension of parameters to be esti-

mated is J dim [β] + J − 1, where β = [β′
1, . . . ,β

′
J ]

′
, we can estimate many parameters. To

start with J = 2 and then to check the fit of the model using diagnostic tests, an additional

component is determined if the fit is poor. When the difference of two or more components

is small, the additional component is optional. Moreover, additional components may simply

reflect the presence of outliers. The likelihood ratio test is insufficient to select the number

of components because of the parameter boundary hypothesis problem. Therefore, we deter-

mine the number of components based on the Akaike or the Bayesian information criterion,

although many applications use J = 2. The parameters are not identified if the model is

overparameterized. Overparameterization is revealed by the presence of multiple optima or a

flat likelihood surface.

Second, the finite mixture model presents difficulty in maximization. Although the EM

algorithm is helpful in understanding the computational structure and theoretically attains

the global maxima, it is often slow in attaining the local maxima in practice. As noted, the

Newton-Raphson algorithm based on numerical derivatives may work well in practice, but it

is cumbersome for checking local maxima. Other algorithms estimate finite mixture models,

such as the simulated annealing EM and stochastic evolution algorithms. Both achieve global

10For application of the EM algorithm to econometrics, see Ruud (1991), Nielsen (2000), Arcidiacono and

Jones (2003), and Ferrall (2005).
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maxima with a high probability, but convergence is slow.

Third and most important, some finite mixture models cannot be estimated for an identifi-

cation problem. Health econometrics often employs cross-sectional binary dependent variable

models, such as the probit or logit model. However, the following finite mixture binary model

is not identified:

f (y) =
J∑

j=1

πj

⎛⎝T
y

⎞⎠ [F (x′βj)]
y
[1− F (x′βj)]

T−y
, (1.29)

where T is the number of Bernoulli trials and 0 < F (·) < 1 is a cumulative density function,

usually specified as a standard normal or logit distribution. When T = 1, the result is a

cross-sectional finite mixture binary model; when T ≥ 2, the result is a panel data finite mix-

ture binary model. Teicher (1960, 1963) and Blischke (1978) obtain necessary and sufficient

conditions for identifiability of a finite mixture binomial model. Their results summarize as

follows: The J-component finite mixture binary model is identifiable if and only if

J ≤ (T + 1) /2. (1.30)

Therefore, even if J = 2, any cross-sectional finite mixture binary model is not identified and

panel finite mixture binary models with T ≥ 3 are identified.

Consequently, it is impossible to analyze a cross-sectional binary outcome using finite

mixture models in health econometrics. This problem has remained unsolved since Teicher’s

demonstration and is troublesome because available data often are limited to cross-sectional

binary variables. In this case, we must apply probit or logit estimation even if a true data-

generating process is a finite mixture. Of course, the estimated covariates are inconsistent

and the results lack value. Therefore, we take up estimating cross-sectional finite mixture

binary models in Chapter 3. We demonstrate that finite mixture binomial models sometimes

are identifiable and that this type of model has a consistent estimator.
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Chapter 2

Semiparametric Estimation of

Regression-Based Survival

Models

2.1 Introduction1

Survival analysis is widespread in applied econometrics such as labor economics, industrial

organizations, health economics, and population economics. Many survival models, including

the most popular Cox’s proportional hazard model, do not explicitly assume unobserved het-

erogeneity. It is empirically difficult to separate the effect of duration dependence from those

of unobserved heterogeneity. However, in social science, the existence of omitted variables

is inevitable, and it is always inadequate to control population heterogeneity. Therefore,

the model without unobserved heterogeneity overestimates (or underestimates) the degree of

negative (positive) duration dependence in the hazard, even if this model has consistency of

coefficients.

One way to introduce unobserved heterogeneity into survival models is to assume that the

heterogeneity is multiplicative to the hazard function and follows a gamma distribution. This

method is simple and has a closed form solution. However, this is a parametric method, and

the distribution assumption of heterogeneity is rather important. Furthermore, we do not

determine the econometric interpretation of this method if the probability density function is

not an exponential or Weibull distribution.

In this chapter, we propose new semiparametric (semi-nonparametric) survival models

1This chapter is the modified version of Masuhara (2007).
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that generalize unobserved heterogeneity, as well as a dependent variable of the log-normal

survival model. First, we generalize the log-transformed dependent variable using the Box-Cox

transformation, which contains various function forms. Second, we generalize the normally

distributed unobserved heterogeneity using Hermite polynomials, which include a normal

distribution as a special case. In the empirical application, this chapter compares the per-

formance of the proposed models, using the General Social Survey (GSS) in 2002 following

Winkelmann and Boes (2006).

This chapter is organized as follows. Section 2 proposes the semiparametric regression-

based survival model. Section 3 depicts the application of the fertility data, and Section 4

presents our concluding remarks.

2.2 The Model

We consider the standard survival analysis. Suppose that a random variable, Ti, i = 1, . . . , N ,

has a continuous probability distribution f (ti), where ti is a realization of Ti. The cumu-

lative distribution function of this variable takes the following form: F (ti) =
∫ ti
0
f (si) d si.

We define a censoring indicator ci = 1 if the observation is censored, and ci = 0 if the ob-

servation is uncensored. Further, the log-likelihood function is obtained as follows: lnL =∑N
i=1 (1− ci) ln f (ti) + ci ln [1− F (ti)] .

In the log-normal survival model, a logarithmic survival variable consists of a linear index

of independent variables and an additive normally distributed error term: ln ti = x′
iβ +

εi, where xi is a K × 1 covariate vector of covariates and β ∼ K × 1 is a parameter to

be estimated. Although the log-normal model clearly assumes heterogeneity, it has some

disadvantages. First, the transformation of the dependent variable ti is quite arbitrary. The

log transformation may not always be the best choice. Second, this model is parametric; we

assume the normally distributed unobserved heterogeneity and estimate the parameters using

the maximum likelihood (ML) method. However, the incorrect specification of the error term

causes the inconsistency of the ML. Therefore, we require a more flexible method to estimate

survival data.

First, we generalize the log-transformed dependent variable using the Box-Cox transfor-

mation, such as
(
tλi − 1

)
/λ = x′

iβ+εi, where λ is a parameter of the Box-Cox transformation.

In this model, when λ → 0, the left-hand side (LHS) is ln (ti), and when λ = 1, the LHS

is ti − 1. The Box-Cox transformation contains the log-linear and linear models as a special

case.2

Second, we generalize the error term. If the relation between the error term and the

2Cai et al. (2005) also use the Box-Cox transformation in duration analysis.
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survival random variable is quasi-linear, like the log-normal model, we obtain the following

conditions using the Jacobian of the transformation d ti/d εi: f (εi) = f (ti) d ti/d εi and

F (εi) = F (ti). Therefore, we concentrate the distribution of εi. Following Gallant and

Nychka (1987), who proposed the semiparametric (semi-nonparametric) series based on a

normal distribution, we approximate the unknown error term using Hermite polynomials.3

The approximated density is obtained as follows:

f (εi) =
1

P

(
K∑

k=0

αkε
k
i

)2

1√
2πσ

exp

(
−1

2

(εi
σ

)2)
≡ f∗ (εi)

P
, (2.1)

where σ is a standard deviation parameter, αk is a parameter of a Hermite series to be

estimated, and P =
∫∞
−∞ f∗ (εi) d εi ensures integration to 1 by scaling density. Moreover,

we impose α0 = 1 to ensure the identification of the parameters. This Hermite series density

contains not only a normal distribution as a special case but also fat-tailed and twin peak

distributions.

We discuss two generalizations for survival data and term the above model as the Box-Cox

transformed semi-nonparametric (BC-SN), or semiparametric model. This model generalizes

not only the error terms using Hermite polynomials but also the dependent variable using

the transformation of ti, and includes the log-normal model as a special case. In estimating

survival data, the calculation of F (εi) =
∫ εi
−∞ f (νi) d νi is required. Fortunately, this integral

has a closed-form solution and is easy to evaluate.

The log-likelihood function is usually maximized by gradient-based methods such as New-

ton, BFGS, or BHHH algorithms. However, these algorithms are sensitive to initial values

and contain the problem of local maxima. It is difficult to estimate parameters αk of the

semiparametric model correctly, and it is practically impossible to attempt several initial

conditions. To avoid the problem of local maxima, we use the stochastic evolution algorithm

(StocE), which attains the global maxima with a high probability (Saab and Rao, 1990; Sait

and Youssef, 2000).

Let the parameter vector of this density be θ = [β′, σ, λ, α1, α2, . . . ]
′
. Further, the StocE

algorithm obtains the parameters as follows:

1) Set the initial parameters p0, θ0, R, pup, r and t← 0. Calculate the log-likelihood lnL0

under θ0.

2) Set θbest = θ0 and lnLbest = lnL0.

3) Generate θ̂ in the neighborhood of θ; e.g., calculate θ̂ = θt + a · u1 and ln L̂
(
θ̂
)
, where

a is a positive constant number and u1 is a uniform random vector on [−1, 1].
3For more discussion, see Gallant (1981), Gallant and Tauchen, Gabler et al. (1993), Coppejans (2001),

Coppejans and Gallant (2002), van der Klaauw and Koning (2003), and Stewart (2004, 2005).
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4) If ln L̂− lnLt > −pt ·u2, where u2 is a uniform random number, then θt+1 = θ̂; otherwise,

θt+1 = θt. Calculate lnL (θt+1).

5) If lnL (θt+1) = lnL (θt), then set pt+1 = pt + pup; otherwise, pt+1 = p0.

6) If lnL (θt+1) > lnLbest, then θbest = θt+1, lnLbest = lnLt+1, and r = r − R; otherwise,

r = r + 1. Set t← t+ 1.

7) Repeat steps 3 to 6 until r > R.

The StocE algorithm resembles the simulated annealing (SA) method 4, which is a stochas-

tic technique using the Metropolis algorithm. If the annealing process is slow, the SA algo-

rithm is similar to a random search and its convergence speed is slow. The StocE algorithm

eliminates the inefficient path with a probability ptu2. Therefore, in general, the StocE algo-

rithm is faster than the SA. However, the StocE algorithm does not ensure the convergence

of the global maximum, because the sequence of the StocE is not a perfect Markov chain.

Nonetheless, in practice, the StocE is effective.

2.3 An Application to Fertility

We present the results of the application of the proposed model. In this example, we analyze

the factors that affect the time until a woman bears her first child, using the data obtained

from the GSS in 2002, an annual or biannual cross-section survey that began in 1972.Following

Winkelmann and Boes (2006), we regard the variable age at the time of the first child’s birth

as duration and employ women under the age of 40. The total number of observations is 1,371.

There are two types of women: Type A includes women who have had their first child (the

number of uncensored sample is 1,154); Type B includes women who are childless under the

age of 40 (the number of right-censored samples is 217). Moreover, this survey considers the

number of years of formal schooling, the number of siblings, four dummy variables, namely,

those in the low-income group at age 16 (less than average income), those who were urban

residents at age 16, those who are white, and those who are immigrants. The summary

statistics of these data are obtained by Table 2.1.

We investigate the result of the BC-SN model but find that the parameter λ is nearly

zero (and not significant). Further, we estimate the semi-nonparametric (LN-SN), or semi-

parametric model with log transformation (λ = 0). For comparison purposes, we include

the standard log-normal survival model and the log-normal model with gamma distributed

unobserved heterogeneity (LN-G). Table 2.2 shows the estimated results of the four models

4See Goffe et al. (1994).
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Table 2.1: Age at First Birth: Variable Description

Variable Mean Std. Dev. Min. Max.

age at first birth 23.463 5.340 11 39

dummy of right censored sample 0.158 0.365 0 1

years of education 13.241 2.783 0 20

number of siblings 3.694 2.947 0 23

white 0.761 0.427 0 1

immigrant 0.123 0.328 0 1

low income at age 16 0.199 0.400 0 1

lived in city at age 16 0.458 0.498 0 1

number of kids 2.144 1.604 0 8

age at 2002 45.692 17.720 19 89

Data: GSS 2002. The data are downloadable from

http://www.uzh.ch/sts/research/publications/microdata/index.html.

and also presents the values of the log-likelihood, Akaike’s information criteria (AIC), and

Bayesian information criteria (BIC). The maximum value of the log-likelihood and the mini-

mum value of the AIC is the LN-SN model (the reason for the positive log-likelihood is σ < 1).

The minimum value of the BIC is the LN-G model. Further, we use Vuong’s (1989) test to

select the unique model between the LN-SN and LN-G models. Let f (1) be the likelihood of

model 1 and f (2) be that of model 2. Under the null hypothesis that both the models are

equivalent (E
[
ln f (1) − ln f (2)

]
= 0), the test statistic∑N

i=1

[
ln f (1) − ln f (2)

]√∑N
i=1

[(
ln f (1) − ln f (2)

)2 − ((∑N
i=1 ln f

(1) − ln f (2)
)
/N
)2] (2.2)

follows a standard normal distribution. If the statistic exceeds the critical value c, model f (1)

is better than model f (2). If the statistic is smaller than −c, model f (2) is better than model

f (1). The test statistic for the LN-SN model against the LN-G model is 1.252, and its value

at the significant level is 0.105.5 Hence, there is (weak) evidence that the LN-SN model is

the best of the four.

In Table 2.2, we find three features of the estimated parameters. First, the estimated

parameters of the four models closely resemble each other. Second, the significant level of the

estimated parameters also resemble each other. Third, the values of the estimated parameters

5The tests for the LN-SN model, the BC-SN model, and the LN-G model against the log-normal model

are 6.327, 6.320, and 4.999, respectively. This means that the log-normal assumption is strongly rejected.
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Table 2.2: Estimation Results of Age at First Birth

log-normal LN-G LN-SN BC-SN

years of education 0.031 0.032 0.031 0.031

(0.002) (0.002) (0.002) (0.002)

number of siblings −0.005 −0.003 −0.004 −0.004

(0.002) (0.002) (0.002) (0.002)

white 0.083 0.091 0.088 0.088

(0.015) (0.013) (0.012) (0.012)

immigrant 0.056 0.060 0.054 0.054

(0.019) (0.018) (0.016) (0.016)

low income at age 16 −0.021 −0.038 −0.031 −0.031

(0.016) (0.015) (0.013) (0.013)

lived in city at age 16 0.008 −0.004 −0.004 −0.004

(0.013) (0.011) (0.011) (0.011)

constant 2.696 2.615 2.693 2.693

(0.038) (0.036) (0.032) (0.032)

σ 0.219 0.150 0.214 0.214

(0.005) (0.007) (0.004) (0.004)

γ−1 0.673

(0.085)

λ 0.000

(0.001)

α1 −1.555 −1.555

(0.065) (0.065)

α2 −0.171 −0.166

(0.211) (0.208)

α3 15.489 15.493

(0.379) (0.379)

α4 1.458 1.447

(0.728) (0.735)

α5 −19.030 −19.039

(1.139) (1.139)

log-likelihood −72.933 −8.699 0.534 0.440

AIC 161.865 35.398 24.932 27.119

BIC 203.652 82.407 92.835 100.245

number of regressors 8 9 13 14

Notes: Standard errors are in parentheses; LN-G, LN-SN, and BC-SN denote the log-normal model with gamma-

distributed unobserved heterogeneity, the semi-nonparametric model with the log transformation, and the Box-Cox

transformed semi-nonparametric, respectively; AIC = −2 lnL + 2K, BIC = −2 lnL + K lnN , where L is the

maximized likelihood, K is the number of parameters, and N is the number of observations (N = 1,371); γ is the

parameter of the gamma frailty.

of the BC-SN and LN-SN models are midway of those of the log-normal and LN-G models.

The reason for these features is that the BC-SN, LN-SN, and LN-G models are based on and

extended to the standard log-normal model.

However, there are large differences among the four models. For example, in the log-normal
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Figure 2.1: The Estimated Density Function of εi

model, the value of low income at age 16 is −0.021 and is not statistically significant; in all

the remaining models, its value ranges from −0.031 to −0.038 and is statistically significant

at the 5% level. Moreover, the value of white is 0.091 in the LN-G model and 0.088 in the

LN-SN model. The difference between these two models is small but negligible in these data.

Figure 2.1 shows the estimated density of εi. The solid line is the LN-SN model,6 the

dotted line is the log-normal model, and the dashed line is the LN-G model. The density

of the LN-SN model is skewed to the left and has a fatter tail. However, the density of the

LN-G model has the fattest tail among the three models.

2.4 Conclusion

This chapter proposes new semiparametric survival models that generalize both an explana-

tory variable and unobserved heterogeneity. The former is Box-Cox transformation and the

latter is a Hermite series. In an example using the GSS data, the Box-Cox transformation does

not work well. However, the LN-SN model overcomes the other models, except for the BIC,

6The densities of the LN-SN and BC-SN models are almost identical. Thus, we omit the latter in Figure

2.1.
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and shows a good performance. Therefore, there is (weak) evidence that the LN-SN model

is the best of the four. Moreover, the coefficients of the models, except for the log-normal

model, resemble each other but the difference is not negligible.

In both econometric and statistic interpretations, the results may show a small difference

between the LN-G and semiparametric models. This view is incorrect. The LN-G model

does not have a clear econometric interpretation because this model assumes multiplicative

heterogeneity not to the probability density function but to the hazard function. That is, the

LN-G model explicitly assumes multi-heterogeneity. Therefore, in applied econometrics, the

semiparametric model proposed in this chapter is an important method to estimate a demand

or supply function because it assumes only single and additively separable heterogeneity.

Appendix

A. The Box-Cox Transformed Semi-Nonparametric Survival Model

Following Gabler et al. (1993), (2.1) takes

f (εi) =
1

P

(
K∑

k=0

αkε
k
i

)2

1√
2πσ

exp

(
−1

2

(εi
σ

)2)
≡ f∗ (εi)

P
, (A2.1)

where εi =
(
tλi − 1

)
/λ− x′iβ and

P =

∫ ∞

−∞

(
K∑

k=0

αkε
k
i

)2

1√
2πσ

exp

(
−1

2

(εi
σ

)2)
d εi. (A2.2)

We require algebraic computations of (A2.2). Van der Klaauw and Koning (2003) show the

following recursion formulas:

Ik (a, b) =

∫ b

a

uk exp

(
−
(u
δ

)2)
du. (A2.3)

Equation (A2.3) obtains

Ij (−∞,∞) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
δ
√
π, j = 0.

0, j = 1, 3, 5, . . .

(j−1)δ2

2 Ij−2 (−∞,∞) , j = 2, 4, 6, . . .

(A2.4)

Substituting δ =
√
2σ into (A2.4) and calculating up to j = 10 yields

I0 =
√
2σ
√
π, I2 =

1

2

(√
2σ
)3√

π,

I4 =
3

4

(√
2σ
)5√

π, I6 =
15

8

(√
2σ
)7√

π,

I8 =
105

16

(√
2σ
)9√

π, I10 =
945

32

(√
2σ
)11√

π.
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When K = 5, we obtain the following relation after some algebraic manipulation.

(
5∑

k=0

αkε
k
i

)2

=
(
α2
0

)
+ εi (2α0α1) + ε2i

(
2α0α2 + α2

1

)
+ ε3i (2α0α3 + 2α1α2)

+ ε4i
(
2α0α4 + 2α1α3 + α2

2

)
+ ε5i (2α0α5 + 2α1α4 + 2α2α3)

+ ε6i
(
2α1α5 + 2α2α4 + α2

3

)
+ ε7i (2α2α5 + 2α3α4)

+ ε8i
(
2α3α5 + α2

4

)
+ ε9i (2α4α5) + ε10i

(
α2
5

)
. (A2.5)

Substituting (A2.3), (A2.4), and (A2.5) into (A2.2) yields

P =α2
0 +
(
2α0α2 + α2

1

) 1
2

(√
2σ
)2

+
(
2α0α4 + 2α1α3 + α2

2

) 3
4

(√
2σ
)4

+
(
2α1α5 + 2α2α4 + α2

3

) 15
8

(√
2σ
)6

+
(
2α3α5 + α2

4

) 105
16

(√
2σ
)8

+
(
α2
5

) 945
32

(√
2σ
)10

. (A2.6)

Therefore, the probability density function of heterogeneity consists of (A2.1) and (A2.6). To

ensure a zero mean, we impose the restriction α0 = 1 and E [εi] = 0. The expectation term

E [εi] takes the form as follows:

E [εi] =
1

P

∫ ∞

−∞
εif

∗ (εi) d εi

=
1

P
[2α1 (2α0I2 + 2α2I4 + 2α4I6)

+ 2α3 (2α0I4 + 2α2I6 + 2α4I8)

+2α5 (2α0I6 + 2α2I8 + 2α4I10)] . (A2.7)

From the (A2.7), we obtain the following relation:

α5 = −α1

(
α0δ

3 + 3
2α2δ

5 + 15
4 α4δ

7
)
+ α3

(
3
2α0δ

5 + 15
4 α2δ

7 + 105
8 α4δ

9
)(

15
4 α0δ7 +

105
8 α2δ9 +

945
16 α4δ11

) . (A2.8)

Next, we present the calculation of F (εi) =
∫ εi
−∞ f (νi) d νi. When K = 5, we obtain the
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following relation using (A2.3):

I0 (−∞, εi) =
√
2πσΦ

(εi
σ

)
,

I1 (−∞, εi) = −σ2 exp

(
−1

2

(εi
σ

)2)
,

I2 (−∞, εi) = −σ2εi exp

(
−1

2

(εi
σ

)2)
+ σ2I0 (−∞, εi) ,

I3 (−∞, εi) = −σ2ε2i exp

(
−1

2

(εi
σ

)2)
+ 2σ2I1 (−∞, εi) ,

I4 (−∞, εi) = −σ2ε3i exp

(
−1

2

(εi
σ

)2)
+ 3σ2I2 (−∞, εi) ,

I5 (−∞, εi) = −σ2ε4i exp

(
−1

2

(εi
σ

)2)
+ 4σ2I3 (−∞, εi) , (A2.9)

I6 (−∞, εi) = −σ2ε5i exp

(
−1

2

(εi
σ

)2)
+ 5σ2I4 (−∞, εi) ,

I7 (−∞, εi) = −σ2ε6i exp

(
−1

2

(εi
σ

)2)
+ 6σ2I5 (−∞, εi) ,

I8 (−∞, εi) = −σ2ε7i exp

(
−1

2

(εi
σ

)2)
+ 7σ2I6 (−∞, εi) ,

I9 (−∞, εi) = −σ2ε8i exp

(
−1

2

(εi
σ

)2)
+ 8σ2I7 (−∞, εi) ,

I10 (−∞, εi) = −σ2ε9i exp

(
−1

2

(εi
σ

)2)
+ 9σ2I8 (−∞, εi) .

Therefore,

F (εi) =

∫ εi

−∞
f (νi) d νi

=
[
α2
0I0 (−∞, εi) + 2α0α1I1 (−∞, εi)

+
(
2α0α2 + α2

1

)
I2 (−∞, εi) + (2α0α3 + 2α1α2) I3 (−∞, εi)

+
(
2α0α4 + 2α1α3 + α2

2

)
I4 (−∞, εi)

+ (2α0α5 + 2α1α4 + 2α2α3) I5 (−∞, εi)
+
(
2α1α5 + 2α2α4 + α2

3

)
I6 (−∞, εi)

+ (2α2α5 + 2α3α4) I7 (−∞, εi) +
(
2α3α5 + α2

4

)
I8 (−∞, εi)

+ 2α4α5I9 (−∞, εi) + α2
5I10 (−∞, εi)

]
× 1

P

1√
2πσ

. (A2.10)
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Chapter 3

An Alternate Approach to

Estimate a Finite Mixture

Cross-Sectional Probit Model 1

3.1 Introduction

Because finite mixture models are semiparametric and flexible, they enjoy widespread use

in applied econometrics, including health economics. The Markov switching model in time

series analysis is a specific version of finite mixture models. McLachlan and Peel (2000)

present a comprehensive account of finite mixture models and examples of their applications.

However, some finite mixture models—a finite mixture cross-sectional probit (binomial) model

for example—are not estimated for an identification problem.

Teicher (1960, 1963) and Blischke (1964) indicated this problem and presented necessary

and sufficient conditions for the identifiability of a finite mixture probit model. Their results

summarize as follows: The J component probit mixture with T Bernoulli trials is identifiable

if and only if J ≤ (T + 1) /2. In other words, a two-component finite mixture cross-sectional

probit model is not identifiable and the panel probit model with T ≥ 3 is.2 Hettmansperger

and Thomas (2000), Cruz-Medina et al. (2004), and Elmore and Wang (2003) present the

same results in a binomial model. Hall et al. (2005) show that the sufficient condition for

identification in a binomial model requires T ≥ (1 + o (1)) 6J ln J as J → ∞. Kasahara and

1This chapter was supported by JSPS Grant-in-Aid for Young Scientists (B) Number 26780137.
2If unrealistic restrictions are imposed on the covariates, this finite mixture cross-sectional probit model

is identifiable. See Follmanna and Lambert (1989) and Brooks et al. (1997).
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Shimotsu (2010) demonstrate that in finite mixture binomial models the number of compo-

nents is nonparametrically identified if T ≥ 2 and the mixing proportions and distribution of

components are identified when T ≥ 3. That is, the above results show it is impossible to

estimate a finite mixture cross-sectional probit model.

However, many applied econometric analyses have only cross-sectional data with a binary

endogenous variable. In this situation, even if a true data generating process is a finite mixture,

we need only apply the cross-sectional probit (or logit) analysis to these data because we do not

estimate a finite mixture probit model for an identification problem. Of course, the estimated

coefficients of this analysis are inconsistent and the result is unreliable. This problem is

cumbersome. Hence, this chapter analyzes the possibility of estimating a finite mixture cross-

sectional probit model. First, we show the identifiability of bivariate random variables using

a natural expansion of Teicher’s (1963) theorem. Second, using this result, this chapter

investigates the identifiability of a finite mixture cross-sectional probit model with a linear

single equation. This chapter demonstrates that the class of all finite mixtures of a probit

model with a linear single equation is identifiable even if the number of components exceeds

three. That is, sometimes a finite mixture cross-sectional probit model can be estimated.

This chapter is organized as follows. Section 2 proposes three corollaries according to a

finite mixture probit model using Teicher’s (1963) theorem. Section 3 depicts the results of

Monte Carlo experiments. Section 4 concludes.

3.2 Identification of Probit Finite Mixtures

Teicher (1963) has shown the necessary and sufficient conditions of identifiability for univariate

finite mixtures. The bivariate version of Theorem 2 in Teicher (1963) takes the following form:

Corollary 1. Let F = {F} be a family of the cumulative density function (CDF) with the

moment-generating function (MGF) M (t1, t2) defined for t1 ∈ SM.,1 and t2 ∈ SM.,2 , where

SM.,1 and SM.,2 are the domains of definition of M and the mapping M : F → M is linear

and one-to-one. Suppose there is a total ordering � of F . The relation F1 ≺ F2 implies:

(i) SM1,1 ⊆ SM2,1 and SM1,2 ⊆ SM2,2 , (ii) there exists some t̃1 ∈ S̃M1,1 and t̃2 ∈ S̄M1,2 that

satisfies limt1→˜t1,t2→˜t2
M2 (t1, t2) /M1 (t1, t2) = 0 (or ∞), where t̃1 and t̃2 are independent of

M2,1 and M2,2. Then the class H ′ of all finite mixtures of F is identifiable.

Proof. See Appendix.

Using Corollary 1, we obtain a second corollary.

Corollary 2. The class of all finite mixtures of a bivariate probit model is not identifiable.
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Proof. See Appendix.

Next, we consider a probit model with a linear single equation. Let y1 represent a binary

variable that is assumed to be generated by the process y1 = 1 if y∗1 = x′
1β1 + ε1 ≥ 0 and

y1 = 0 otherwise. Moreover, y2 is an observed continuous outcome that has y2 = x′
2β2 + ε2,

where y∗1 is a latent variable, ε1 and ε2 are unobserved heterogeneity, β1 and β2 denote vectors

of parameters, and x1 and x2 are vectors of covariates. The unobserved heterogeneity (ε1, ε2)

follows bivariate normal distribution with mean zero and covariance matrix
(
1, ρσ2, σ

2
2

)
.

The PDF of the probit model with a linear single equation takes the form

f (y1, y2) = [1− Φ(y2)]
1−y1 [Φ (y2)]

y1
1√
2πσ2

exp

[
− 1

2σ2
2

(y2 − x′
2β2)

2
]
, (3.1)

where Φ (y2) ≡ Φ
[(
x′
1β1 + ρσ−1

2 (y2 − x′
2β2)
)
/
√
1− ρ2

]
and Φ (·) is a CDF of a standard

normal distribution.

Using Corollary 1, we obtain the following:

Corollary 3. The class of all finite mixtures of a probit model with a linear single equation

is identifiable.

Proof. The MGF M (t1, t2) of a probit model with a linear single equation is obtained by

M (t1, t2) = exp

(
t2x

′
2β2 +

σ2
2

2
t22

)∫ ∞

−∞

[
1− Φ(y2) + Φ (y2) e

t1
]

× 1√
2πσ2

exp

[
− 1

2σ2
2

{
y2 −

(
x′
2β2 + σ2

2t2
)}2]

d y2. (3.2)

Since (3.2) has no explicit solution, we approximate this MGF using a numerical integra-

tion method, Gauss-Hermite quadrature. When u2q =
{
y2 −

(
x′
2β2 + σ2

2t2
)}
/
(√

2σ2
)
, the

transformation of the Jacobian is d y2 =
√
2σ2du2. The MGF takes the following form:

M (t1, t2) = exp

(
t2x

′
2β2 +

σ2
2

2
t22

) Q∑
q=1

1

π
ω2qe

t1

[{1− Φ(u2q)}
et1

+Φ(u2q)

]
, (3.3)

where ω2q is a weight, u2q is the qth evaluation point over [−∞,∞], Q is the number of

weights, and Φ (u2q) ≡ Φ
[(
x′
1β1 + ρ

√
2u2q + ρσ2t2

)
/
√
1− ρ2

]
. When t1 → ∞, the square

bracket of (3.3) converges to Φ (u2q). Moreover, when 0 < ρ < 1, limt2→∞ Φ(·) = 1; when

−1 < ρ < 0, limt2→−∞ Φ(·) = 1.

Let F = F
(
y1, y2;x

′
1β1,x

′
2β2, ρ, σ

2
2

)
denote the CDF of a probit model with a single linear

equation. Without loss of generality, order the family lexicographically by:

F1 = F
(
y1, y2;x

′
1β1,1,x

′
2β1,2, ρ1, σ

2
1,2

) ≺ F
(
y1, y2;x

′
1β2,1,x

′
2β2,2, ρ2, σ

2
2,2

)
= F2,
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when (i) σ1,2 > σ2,2, (ii) σ1,2 = σ2,2 and x′
2β1,2 > x′

2β2,2, (iii) σ1,2 = σ2,2, x
′
2β1,2 = x′

2β2,2,

and x′
1β1,1 > x′

1β2,1, or (iv) σ1,2 = σ2,2, x
′
2β1,2 = x′

2β2,2, x
′
1β1,1 = x′

1β2,1, and ρ1 > ρ2.

Then,

lim
t1→∞

M2 (t1, t2)

M1 (t1, t2)
=

exp
(
t2x

′
2β2,2 +

σ2
2,2

2 t22

)
exp
(
t2x′

2β1,2 +
σ2
1,2

2 t22

) .
Thus, (i) when ρ1 > 0, limt1→∞,t2→∞M2 (t1, t2) /M1 (t1, t2) = 0 since limt2→∞ Φ(·) = 1 if

ρ1 > 0. (ii) when ρ1 ≤ 0, limt1→∞,t2→−∞M2 (t1, t2) /M1 (t1, t2) = 0 since limt2→−∞ Φ(·) = 1

if ρ1 ≤ 0. Therefore, from Corollary 1, the class of all finite mixtures of a probit model with

a linear single equation is identifiable.

Although the results of previous work require T ≥ 3 Bernoulli trials to identify at most

two components in finite binomial mixtures, our result identifies all finite mixtures if another

continuous endogenous variable exists. An interesting feature of this corollary is that a finite

mixture probit model with one linear equation is identifiable even without a correlation be-

tween binary and continuous endogenous variables. That is, if another endogenous continuous

variable exists in probit estimation, we can estimate a finite mixture cross-sectional probit

model.

3.3 Monte Carlo Experiments

This section presents results of Monte Carlo experiments of a finite mixture probit model

with a linear single estimation. The number of simulations in all experiments is set to 100,

and the sample size N is 1,000 and 2,000 observations per Monte Carlo iteration.

We generate two unobserved heterogeneity terms ε1,j and ε2,j , j = 1, 2, normally dis-

tributed as N ((0, 0) , (1, ρjσ2,j , σ2
2,j

))
. The probit component is obtained by y∗1 = x′

1β1,j +

ε1,j , and a linear component is given by y2 = x′
2β2,j+ε2,j , where x1 = [1,x12]

′
, x12 ∼ N (0, 1),

and x2 = [1]
′
. The true values of the parameters of the first component are β1,1 = [−0.3, 0.3]′,

β2,1 = 1, and σ2,1 = 0.5 or 1. True values of the second are β1,2 = [0.3,−0.3]′, β2,2 = 1,

and σ2,2 = 2. That is, two components are the same except for the probit part and variance

parameter σ2,j . This is a severe condition for estimating finite mixture models. The correla-

tion parameter ρj varies from −0.9 to 0.9. The mixing probability of the first component p1

is 0.3.

Tables 3.1 and 3.2 present Monte Carlo results of the finite mixture probit model with a

single linear estimation for N = 1,000 and 2,000. Results for (β1,j ,β2,j) are given in Tables

3.1 and 3.2 and show that the parameter estimates are unbiased for each estimation and for

the value of the correlation parameter. Although the bias does not always decrease, root mean
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Table 3.1: Monte Carlo Results (σ2,1 = 0.5 and σ2,2 = 2)

ρ = 0.9 ρ = 0 ρ = −0.9

Truth N = 1,000 N = 2,000 N = 1,000 N = 2,000 N = 1,000 N = 2,000

β11,1 −0.3 0.0016 −0.0005 −0.0199 0.0029 −0.0092 −0.0001

(0.1329) (0.0931) (0.1345) (0.1015) (0.1342) (0.0856)

β12,1 0.3 0.0047 0.0097 0.0238 0.0125 −0.0022 0.0038

(0.0814) (0.0550) (0.1554) (0.0976) (0.0825) (0.0591)

β21,1 0 −0.0009 −0.0023 0.0017 0.0001 0.0050 0.0007

(0.0462) (0.0319) (0.0491) (0.0336) (0.0472) (0.0336)

ρ1 −0.0034 −0.0031 −0.0085 −0.0019 0.0056 0.0043

(0.0445) (0.0312) (0.1503) (0.1009) (0.0442) (0.0340)

σ2,1 0.5 −0.0077 −0.0088 −0.0063 −0.006 −0.0016 −0.0066

(0.0438) (0.0257) (0.0485) (0.0312) (0.0456) (0.0318)

β11,2 0.3 0.0007 −0.0034 0.0016 −0.0002 0.0006 0.0023

(0.0518) (0.0423) (0.0721) (0.0464) (0.0599) (0.0405)

β12,2 −0.3 −0.0039 −0.0072 −0.0006 −0.0045 −0.0005 −0.0037

(0.0409) (0.0299) (0.0780) (0.0504) (0.0423) (0.0319)

β21,2 0 0.0068 −0.0014 0.0067 −0.0022 0.0057 −0.0022

(0.0756) (0.0602) (0.0760) (0.0608) (0.0748) (0.0610)

ρ2 0.0000 0.0020 0.0028 −0.005 −0.0049 −0.003

(0.0164) (0.0109) (0.0551) (0.0382) (0.0138) (0.0100)

σ2,2 2 0.0032 −0.0014 0.0032 0.0000 0.0089 −0.0001

(0.0637) (0.0434) (0.0636) (0.0480) (0.0596) (0.0429)

p1 0.3 −0.0008 −0.0005 −0.0008 0.0006 0.0041 0.0007

(0.0297) (0.0195) (0.0344) (0.0238) (0.0292) (0.0199)

Notes: The mean bias reports appear without parentheses. Root mean squared errors are in parentheses.

squared errors (RMSE) decrease when the number of samples increases for each experiment.

The bias and RMSE of ρj do not depend on the value of ρj , and the performance of these

parameters is good. An interesting feature of these results is that the finite mixture probit

model is identifiable if we find an endogenous (correlated or uncorrelated) continuous variable

other than a binary endogenous variable.

3.4 Conclusion

Teicher (1960, 1963) and Blischke (1964) indicated that a finite mixture cross-sectional pro-

bit model is not identifiable. Nonetheless, this chapter demonstrated the identifiability of

a cross-sectional probit model with one linear estimation based on Teicher’s (1963) result.

43



Table 3.2: Monte Carlo Results (σ2,1 = 1 and σ2,2 = 2)

ρ = 0.9 ρ = 0 ρ = −0.9

Truth N = 1,000 N = 2,000 N = 1,000 N = 2,000 N = 1,000 N = 2,000

β11,1 −0.3 −0.0632 −0.0158 −0.1416 −0.036 −0.0139 −0.0138

(0.3132) (0.1640) (0.8206) (0.2580) (0.2255) (0.1838)

β12,1 0.3 0.0505 0.0363 0.2499 0.0560 0.0056 0.0094

(0.2254) (0.1128) (1.5717) (0.2839) (0.1662) (0.1351)

β21,1 0 −0.0123 0.0014 −0.0079 0.0070 −0.0003 0.0022

(0.1209) (0.0953) (0.1237) (0.0924) (0.1262) (0.0965)

ρ1 0.0064 0.0009 −0.0247 −0.0044 0.0017 0.0000

(0.0518) (0.0387) (0.3119) (0.1483) (0.0611) (0.0353)

σ2,1 1 −0.0153 −0.0246 −0.0205 −0.0046 0.0040 −0.0065

(0.1852) (0.1180) (0.2394) (0.1127) (0.1788) (0.1218)

β11,2 0.3 0.0055 −0.0053 0.0052 0.0074 0.0119 0.0058

(0.0817) (0.0643) (0.1266) (0.0775) (0.0951) (0.0595)

β12,2 −0.3 0.0004 −0.008 0.0152 −0.0118 −0.0014 −0.005

(0.0744) (0.0384) (0.1801) (0.0801) (0.0621) (0.0454)

β21,2 0 0.0163 −0.0026 0.0166 −0.0049 0.0114 −0.0006

(0.0904) (0.0702) (0.0949) (0.0705) (0.0957) (0.0710)

ρ2 0.0002 0.0019 0.0032 −0.0031 −0.0074 −0.0037

(0.0217) (0.0142) (0.0780) (0.0480) (0.0203) (0.0124)

σ2,2 2 −0.0165 −0.0059 −0.019 0.0045 0.0141 0.0049

(0.1358) (0.0555) (0.1623) (0.0663) (0.0870) (0.0551)

p1 0.3 −0.0034 −0.0048 −0.0001 0.0071 0.0196 0.0093

(0.0784) (0.0602) (0.1143) (0.0698) (0.0880) (0.0630)

Notes: The mean bias reports appear without parentheses. The root mean squared errors are in parentheses.

The identifiability comes from the linear estimation. Monte Carlo experiments supported our

demonstration and showed good performance. These results suggest that the finite mixture

probit model is identifiable if we find a continuous correlated or uncorrelated endogenous vari-

able that does not follow a single distribution. That is, there is little possibility of estimating

the finite mixture cross-sectional probit model.
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Appendix

A. Proof of Corollary 1

Proof. Suppose there are two finite sets of elements of F , say F1 = {Fj , 1 ≤ j ≤ J} and

F2 =
{
Fĵ, 1 ≤ ĵ ≤ Ĵ

}
such that

J∑
j=1

pjFj (y1, y2) ≡y1,y2

̂J∑
ĵ=1

pĵFĵ (y1, y2) , 0 < pj , pĵ ≤ 1,
J∑

j=1

pj =

̂J∑
ĵ=1

pĵ = 1. (A3.1)

Without loss of generality, index the CDF’s so that Fj ≺ Fĵ, F̂j ≺ F̂ĵ for j < ĵ. If F1 �= F̂1,

suppose also without loss of generality that F1 ≺ F̂1. Then, F1 ≺ F̂ĵ, 1 ≤ ĵ ≤ Ĵ and from the

transformed version of (A3.1), it follows that for t1, t2 ∈ SM1,. [t1, t2 :M1,. (t1, t2) �= 0],

p1 +
J∑

j=2

pj

[
Mj (t1, t2)

M1 (t1, t2)

]
≡t

̂J∑
ĵ=1

p̂ĵ

[
M̂ĵ (t1, t2)

M1 (t1, t2)

]
. (A3.2)

Letting t1 → t̃1 and t2 → t̃2 through values in T1 and T2 (this is possible), p1 = 0 contradicting

the supposition of (A3.1) that p1 > 0. Then, F1 = F̂1 and for any t1 ∈ T1, t2 ∈ T2,

(p1 − p̂1) +
J∑

j=2

pj

[
Mj (t1, t2)

M1 (t1, t2)

]
≡t

̂J∑
ĵ=2

p̂ĵ

[
M̂ĵ (t1, t2)

M1 (t1, t2)

]
. (A3.3)

Again letting t1 → t̃1 and t2 → t̃2 through values in T1 and T2, p1 = p̂1 whence

J∑
j=2

pjFj (y) ≡y

̂J∑
ĵ=2

p̂ĵF̂ĵ (y) . (A3.4)

Repeating the prior argument a finite number of times, we conclude that Fj = F̂j and pj = p̂j

for j = 1, 2, . . . ,min (j, ĵ). Further, if j �= ĵ say j > ĵ, then

J∑
j= ̂J+1

pjFj (y) = 0 (A3.5)

implying that pj = 0, Ĵ + 1 ≤ j ≤ J in contradiction to (A3.1). Thus J = Ĵ , pj = p̂j and

Fj = F̂j , 1 ≤ j ≤ J , implying F1 = F2 and identifiability of H ′.

B. Proof of Corollary 2

Proof. The bivariate probit model summarizes as follows: Let y1 and y2 represent binary

variables assumed to be generated by the process y1 = 1 if y∗1 = x′
1β1 + ε1 ≥ 0 and y1 = 0

otherwise; y2 = 1 if y∗2 = x′
2β2+ε2 ≥ 0 and y2 = 0 otherwise, where y∗1 and y∗2 are latent vari-

ables; ε1 and ε2 are unobserved heterogeneity; β1 and β2 denote vectors of parameters; and
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x1 and x2 are vectors of covariates. The unobserved heterogeneity (ε1, ε2) follows bivariate

normal distribution with mean zero and covariance matrix (1, ρ, 1).

The log-likelihood function of the bivariate probit model takes the following form:

ln f (y1, y2) = (1− y1)× (1− y2)× ln

[∫ −x′
1β1

−∞

∫ −x′
2β2

−∞
φ (ε1, ε2) d ε1d ε2

]

+ y1 × (1− y2)× ln

[∫ ∞

−x′
1β1

∫ −x′
2β2

−∞
φ (ε1, ε2) d ε1d ε2

]

+ (1− y1)× y2 × ln

[∫ −x′
1β1

−∞

∫ ∞

−x′
2β2

φ (ε1, ε2) d ε1d ε2

]

+ y1 × y2 × ln

[∫ −x′
1β1

−∞

∫ −x′
2β2

−∞
φ (ε1, ε2) d ε1d ε2

]
≡ ln p

(1−y1)(1−y2)
00 + ln p

y1(1−y2)
10 + ln p

(1−y1)y2

01 + ln py1y2

11 , (B3.1)

where φ (·) is a PDF of a bivariate standard normal distribution. Thus, the MGF M (t1, t2)

is obtained by

M (t1, t2) =
1∑

y1=0

1∑
y2=0

et1y1+t2y2p
(1−y1)(1−y2)
00 p

y1(1−y2)
10 p

(1−y1)y2

01 py1y2

11

=p00 + p10e
t1 + p01e

t2 + p11e
t1+t2 . (B3.2)

Note that

M2 (t1, t2)

M1 (t1, t2)
=
p2,00 + p2,10e

t1 + p2,01e
t2 + p2,11e

t1+t2

p1,00 + p1,10et1 + p1,01et2 + p1,11et1+t2

=
p2,00/e

t1+t2 + p2,10/e
t2 + p2,01/e

t1 + p2,11
p1,00/et1+t2 + p1,10/et2 + p1,01/et1 + p1,11

.

Then,

lim
t1→∞,t2→∞

M2 (t1, t2)

M1 (t1, t2)
=
p2,11
p1,11

> 0. (B3.3)

Therefore, from Corollary 1, the class of all finite mixtures of the bivariate probit model is

not identifiable.
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Endogeneity in Health

Econometrics
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Chapter 4

Endogenous Variables in Health

Econometrics

4.1 Introduction

In microeconometrics, especially in health econometrics, it is widely known that endogenous

regressors cause the possibility of inconsistent parameter estimation. Here endogeneity is

defined as a regressor that is correlated with the error term. For example, when we analyze

the influence of a physician’s advice to reduce alcohol consumption, the error term contains

all factors other than the advice concerning alcohol, such as whether the patient has private

medical insurance (Kenkel and Terza, 2001). If privately insured patients are more likely to

receive lifestyle advice, the error term and the advice are correlated, and endogeneity occurs.

Endogeneity is a problem because OLS estimates of all regression parameters are generally

inconsistent if any regressor is endogenous (unless the exogenous regressor is uncorrelated

with the endogenous regressor).

Endogeneity does not arise in health econometrics if data are randomly assigned or regres-

sors are not the results of incentives. However, these conditions are seldom fulfilled in social

sciences research; endogeneity is inevitable, and a method to treat it correctly is required.

This chapter analyzes the problem of endogeneity and explains the estimation of regression

models with an endogenous regressor, focusing on health econometrics per Wooldridge (2002),

Cameron and Trivedi (1998, 2005), Winkelmann (2004), and Winkelmann and Boes (2006).1

Section 2 introduces examples of famous microdata, the British Health and Lifestyle Survey

(HALS), the British Household Panel Survey (BHPS), and the Medical Expenditures Panel

1See also Davidson and Mackinnon (1993, 2003) and Greene (2007).
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Table 4.1: Consistency in Linear and Nonlinear Regression with Endogenous Variables

dependent variable endogenous variable Two-stage

(i) continuous continuous consistent

(ii) continuous discrete, censored, or truncated consistent

(iii) discrete, censored, or truncated continuous consistent

(iv) discrete, censored, or truncated discrete, censored, or truncated inconsistent

Survey (MEPS), that are often used in health economics. The examples show that there are

many discrete, censored, or truncated variables and few continuous variable and that the data

contain potential problems of endogeneity.

Section 3 explains the problem of endogeneity using a simple linear regression model,

explains the instrumental variable method that obtains the consistent estimator even if there

are endogenous variables, and describes the 2SLS method used in applied fields. Although the

discussion of instrumental variable estimators is based on continuous endogenous regressors,

we extend it to a binary endogenous variable, referred as treatment effects. The main result

of treatment effects is that the instrumental variable or two-stage estimator has a consistent

estimator when an endogenous regressor is binary.

In nonlinear (discrete, censored, or truncated) regression used in health econometrics,

such as binary variable and count data models, correlation between a regressor and error

term (endogeneity) leads to inconsistently estimated regression parameters. Even so, the

two-stage method used in many linear models sometimes works poorly in nonlinear regres-

sion with endogeneity. More concretely, if the two stage method is applied in estimating

nonlinear models, such as probit and count data models, with endogenous discrete, censored,

or truncated regressors, the estimated parameters have no consistency.

Table 4.1 explains this chapter’s discussion. Rows 2 and 3 in Table 4.1 present the dis-

cussion in Section 2, and the two-stage method has consistency in linear models regardless

irrespective of any endogenous regressors. Rows 4 and 5 discuss Section 3. In nonlinear

models, the two-stage method is consistent when endogenous variables are continuous, but

the FIML has consistency when endogenous variables are discrete, censored, or truncated.

Using examples of probit and count data models, Section 4 explains the two-stage method

used in nonlinear models with endogenous continuous regressors. Moreover, we demonstrate

that, in nonlinear regression with endogenous discrete, censored, or truncated regressors, the

two-stage method is inadequate and the FIML is consistent.

Section 5 provides simple Monte Carlo simulations of the four cases in Table 4.1 and
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analyzes the consistency of proposed models. We show the consistency of linear models with

an endogenous continuous, discrete, censored, or truncated regressor and the inconsistency

of probit models with an endogenous binary variable. Section 5 shows the limits of nonlinear

econometric regression with endogenous variables and proposes more desirable analysis.

4.2 Examples of Microdata in Health Economics

4.2.1 The Health and Lifestyle Survey

The British Health and Lifestyle Survey (HALS) is a health interview survey and is designed as

a representative survey of adults (age 18 and over) in Great Britain. The HALS was designed

originally as a cross-section survey in 1985 and was collected in three stages: a one-hour

face-to-face interview, that includes experience and attitudes towards to health and lifestyle

along with general socioeconomic information; a nurse visit to collect physiological measures

and indicators of cognitive function, such as memory and reasoning; a self-completion postal

questionnaire to measure psychiatric health and personality. The HALS is an example of a

clustered random sample; addresses were randomly selected from electoral registers using a

three-stage design. Then, individuals were randomly selected from households. This selection

procedure obtained a target of 12,672 interviews.

Table 4.2 shows the example of the HALS data. The main variables from the HALS sample

are indicators of health (sah) and lifestyle (nsmoker and alqprud) indicators; socioeconomic

indicatros (scl2, sc3, sc45, lhqdg, lhqO, lhqnone, lhqoth, full, part, unemp, sick, retd, and

keephse); geographical and area indicators (omitted in Table 4.2); marital status (married,

widow, divorce, seprd, and single); ethnicity (ethwheur); demographic characteristics (male,

height, age, housown, and hou) and parental smoking and drinking behaviors (smother, moth-

smo, fathsmo, bothsmo, alpa, and alma). The data also show that there are many binary

and discrete variables and few continuous variable.

4.2.2 The British Household Panel Survey

While the HALS has only two waves of panel data, the British Household Panel Survey

(BHPS) is a longitudinal survey from 1991 to the present in Great Britain. The BHPS is an

annual survey of each adult (age 16 and over) member of a nationally representative sample

of more than 5,000 households, with a total of approximately 10,000 individual interviews.

The initial selection of households is a two-stage clustered systematic sampling and the same

individuals are re-interviewed in successive waves. If they move overseas or geographic areas,

households are also re-interviewed along with all adult members of their new households.
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Table 4.2: An Example of the British Health and Lifestyle Survey

Variable Definition Type

alpa Father, non to heavy drinker (0-4) Categorical

alma Mother, non to heavy drinker (0-4) Categorical

male 1 = male Binary

ethwheur White European Binary

smother 1 = anyone else in house smoked Binary

housown 1 = own or rent house Binary

hou Number of other people in the house Count

height Height in inches Continuous

widow Widow Binary

divorce Divorced Binary

seprd Separated Binary

married Married Binary

single Single Binary

full Full time worker or student Binary

part Part time worker Binary

sick Absent from work due to sickness Binary

retd Retired Binary

keephse Housekeeper Binary

unemp Unemployed Binary

lhqnone No qualification Binary

lhqO O level/Certificate of Secondary Education (CSE) Binary

lhqdg University degree Binary

lhqoth Other vocational/professional qualifications Binary

age Age in years Continuous

sah Self-assessed health is excellent or good Binary

nsmoker = 1 if does not smoke, 0 if current smoker Binary

breakfast Does a healthy breakfast Binary

sleepgd Sleeps between 7 and 9 hours Binary

alqprud Consume alcohol prudently Binary

nobese Not obese Binary

exercise Did physical exercise in the last fortnight Binary

wkshft1 Shift worker Binary

suburb Lives in the suburbs of the city Binary

rural Lives in the countryside Binary

sc12 Professional/student or managerial/intermediate Binary

sc45 Partly skilled, unskilled, unclass. or never occupied Binary

sc3 Skilled or armed service Binary

scgr Social class Categorical

lhqhndA Higher vocational qualifications or A level or equivalent Binary

mothsmo Only mother smoked Binary

fathsmo Only father smoked Binary

bothsmo Both parents smoked Binary

Note: Jones et al., 2007, Chapter 5.

The BHPS contains one measure of health outcomes of self-assessed health (sah) defined

by a response to: ‘Please think back over the last 12 months about how your health has

been. Compared to people of your own age, would you say that your health has on the
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Table 4.3: An Example of British Household Panel Survey

Variable Definition Type

retired Respondent states they are retired Binary

hlltyes Health limits daily activities Binary

sah Self-assessed health; Categorical

very poor or poor, fair, good or very good, and excellent

m2lnhinc Individual-specific mean of log equivalized real household labor Continuous

and non-labor income

HseMort House has outstanding mortgage Binary

HseRent House is rented Binary

HseAuthAss House is owned by housing authority/association Binary

martcoup Married or living as a couple Binary

deghdeg Highest educational attainment is degree or higher degree Binary

hndalev Highest educational attainment is HND or A level Binary

ocse Highest educational attainment is O level or CSE Binary

everppenr Has made contributions to private pension plan Binary

everemppr A member of an occupational pension plan Binary

job Respondent’s spouse/partner has a job Binary

age5054 Aged 50 to 54 Binary

age5559 Aged 55 to 59 Binary

age6064 Aged 60 to 64 Binary

age6569 Aged 65 to 69 Binary

hlthprb Self-reported health problems Binary

Note: Jones et al., 2007, Chapter 7.

whole been excellent/good/fair/poor/very poor?’ Therefore, the self-assessed health variable

(sah) is regarded as a relative health perceived status based on the individual’s ‘norm’ for

their age group. This variable is also a simple subjective measure of health that supplies an

ordinal raking of perceived health status and is used widely in previous empirical studies of

the relationship between health and socioeconomic.

Moreover, there are different indicators of morbidity in the BHPS. The variable health lim-

itation (hlltyes) measures self-reported functional limitations. Respondents determine their

own concepts of health and their daily activities. In contrast, for the variable measuring

specified health problems (hlthprb), respondents are presented with a prompt card. The list

contains arms, legs, hands, etc.; sight; hearing; skin conditions/allergies; chest/breathing;

heart/blood pressure; stomach/digestion; diabetes; anxiety/depression; alcohol/drug-related;

epilepsy, migraine and other.

Health economic analysis often focuses on two main measures of socioeconomic status:

income and education. Income (m2lnhinc) is measured as equivalent and retail price index
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(RPI) defined annual household income. Education is measured by the highest educational

qualification attained by the end of the sample period. Moreover, variables that reflect indi-

viduals’ demographic characteristics and stage of life: age, ethnic group, marital status and

family composition are included. Table 4.3 obtains the example of the BHPS and we also

find that there are many binary and discrete variables and few continuous variable like the

HALS.

In both the HALS and BHPS obtained in Table 4.2 and 4.3, we find a potential problem

of endogeneity. For example, when we identify a causal effect of health on the retirement

decision of older people, it is difficult to assume self-assessed measures of health status as

an exogenous variable. First, self-assessed measures are based on subjective judgements

and these judgements are different among individuals. Second, self-assessed health may not

be independent of working behavior. Third, respondents may answer health problems to

rationalize behavior since ill health represents a reason for retirement. Therefore, the role

of health on retirement contains the potential problem of endogeneity. Moreover, since the

variable of self-assessed health is also binary and the retirement decision takes the form of a

discrete (or censored) variable, it is inevitable to estimate a discrete (or censored) variable

with an endogenous binary covariate.

4.2.3 The Medical Expenditures Panel Survey

The Medical Expenditures Panel Survey (MEPS) is a panel survey in the United States since

1996. The MEPS covers families and individuals, employers, and information on the use of

medical services (doctors, hospitals, pharmacies, etc.). Moreover, the data include health

services assessed, frequency of contact, the cost of services used, and information on health

insurance status. The MEPS consists of two basic survey components: a Households Com-

ponent and Insurance Component. The Household Component collects data on families and

individuals in selected areas across the United States drawn from a nationally representative

subsample of households. The Insurance Component contains information on the health in-

surance plans offered to their employees, such as the number and type of private insurance

plans offered, premiums, contributions, eligibility criteria, and the benefits associated with

the plans.

In the MEPS, obtained in Table 4.4, health care expenditures are defined as the sum of

direct payments for care providers during the year, which include out-of-pocket payments

and payments by private insurance, Medicaid, Medicare, and other sources. Annual direct

payments consist of the use of and associated expenditures for office and hospital-based care,

home health care, dental services, prescribed medicines, vision aids, and other medical supplies
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Table 4.4: An Example of Medical Expenditure Panel Survey

Variable Definition Type

age Age Continuous

famsze Size of the family Count

educyr Years of education Continuous

totexp Total medical expenditure Continuous

private Private supplementary insurance Binary

retire Retired Binary

female Female Binary

white White Binary

hisp Hispanic Binary

marry Married Binary

northe Northeast area Binary

mwest Midwest area Binary

south South area (West is excluded) Binary

phylim Has functional limitation Binary

actlim Has activity limitation Binary

msa Metropolitan statistical area Binary

income Annual household income/1000 Continuous

injury Condition is caused by an accident/injury Binary

priolist Has medical conditions that are on the priority list Binary

totchr Number of chronic problems Count

omc Other managed care Binary

hmo Private insurance is Health Maintenance Organization (HMO) Binary

suppins Has supplementary private insurance Binary

hvgg Health status is excellent, good or very good Binary

hfp Health status is fair or poor Binary

hins Excellent health indicator Categorical

hdem Demographic group indicator Categorical

Note: Jones et al., 2012, Chapter 3.

and equipment. However, payments for over-the-consumer drugs, alternative care services,

and phone contacts with medical providers are excluded.

Moreover, the MEPS collects data on respondent age, race (American Indian, Alaska

Native, Asian or Pacific Islander, black, white, or other), household income, household poverty

status (income relative to poverty thresholds measured as poor, near poor, low income, middle

income, or high income), region and place of residence (Northeast, Midwest, South, or West),

and employment status (employed if age 16 or over, and had a job for pay, owned a business,

or worked without pay in a family business). Health status is recorded by asking respondents

to rate the health of each person in the family using the following categories: excellent, very
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good, good, fair, and poor. Health insurance details for individuals under age 65 is categorized

as: private health insurance (individuals who had insurance that provides cover for hospital

and physician care, other than Medicare, Medicaid, or other public cover); public cover only

(individuals not covered by private insurance and we not covered by Medicare, or other public

cover); and uninsured. The older individuals (age 65 and over) are classified under Medicare

only; Medicare and private insurance; Medicare and other public insurance. In Table 4.4, we

find that there are many binary and discrete variables and a few continuous variable.

Using the MEPS in Table 4.4, to analyze health care expenditures contains the potential

problem of endogeneity. When we identify how the individual’s insurance choice affects the

health care expenditures, it is difficult to assume that an individual’s insurance choice is

exogenous since healthy people may not select any insurance and their expenditures may be

quite low. The insurance choice has the potential problem of endogeneity. Moreover, health

status in the MEPS data may be another candidate for endogeneity.

Large-scale microdata (or survey datasets), discussed in this section, have many variables

and provide a rich source of information. As in Table 4.2, 4.3, and 4.4, many variables are

binary or categorical data and there are a few continuous variables. When variables increase

and information is rich, the risk of the potential problem of endogeneity is high. Therefore,

it is important to treat an endogenous variable correctly in health economics.

4.3 Endogenous Regressors in Linear Health Economet-

rics

4.3.1 Inconsistency of OLS

We consider a simple regression model with a dependent variable yi and one explanatory

variable xi, i = 1, . . . , N , where N is the number of observations.2 For simplicity, we omit

the intercept and subscript i. A linear conditional mean model specifies E [y | x] = xβ, where

β is an estimated parameter. The OLS model specifies

y = xβ + ε, (4.1)

where ε is an error term. Regression of y on x yields an OLS estimate β̂ of β.

Standard regression results assume the explanatory variable x is uncorrelated with the

error term ε in the model (4.1). This means that parameter β is the direct effect of x on y

2The following discussion is based on Cameron and Trivedi (2005).

56



and obtains the following path analysis diagram:

x −→ y

↗
ε

where there is no association between x and ε.

However, an explanatory variable and the error term may be associated. For example,

when we analyze the influence of healthy activities x, (e.g., monthly exercise) on y (the inverse

of health expenditure), the error term ε embodies all other factors that influence the inverse

of health expenditure, such as distance to the fitness club. Moreover, we assume people

have a high level of ε if they participate extensively in health maintenance activities. Since

y = xβ + ε, this increases the inverse of health expenditure. However, it may also lead to

higher values of x since health maintenance activities were higher when the fitness club was

nearby. Therefore, the following path diagram is more appropriate:

x −→ y

↑ ↗
ε

where x and ε are associated.

When a correlation exists between x and ε, higher levels of x have two effects on y: a direct

effect via xβ and an indirect effect via ε affecting x which in turn affects y. The regression

estimates only the first effect β, but the OLS estimate combines the two effects and obtains

β̂ > β in this example where both effects are positive. Now we write the OLS equation as

y = xβ + ε (x) and take the total derivative:

d y

dx
= β +

d ε

dx
.

The OLS estimator is biased and inconsistent for β, unless x and ε have no association.3

The phenomena by which changes in x are linked to changes in y and the error term ε is

endogeneity and causes inconsistency in OLS estimates. Randomized experimental data are

required to avoid endogeneity, but experiments are expensive and infeasible.

Definition of Instruments

If we find an appropriate instrument z which has the property that changes in z are linked to

changes in x but do not lead to changes in y, it is possible to estimate β using observational

3The linear regression model with K explanatory variables leads to the same conclusion.
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data. This leads to the following path diagram:

z −→ x −→ y

↑ ↗
ε

which introduces a variable z that is associated with x but is independent of ε.

Note that z does not determine y directly. It determines y indirectly through x and, as

a consequence, z is correlated with y. Correctly, there are two conditions under which z is

an instrument or instrumental variable for explanatory variable x: z is uncorrelated with ε

and is correlated with x. The first condition requires that, if z is an explanatory variable

and y is regressed on x alone, z contains the error and is correlated with error term ε. The

second condition requires there to be an association between the instrumental variable and

the explanatory variable that is instrumented.

4.3.2 Instrumental Variables Estimation

Consider the regression model with K explanatory variables,

y = x′β + ε,

where x and β areK×1 vectors. Assume there is an r×1 vector of instruments z, with r ≥ K,

which satisfies three conditions: (i) z is uncorrelated with the error term ε, (ii) z is correlated

with the explanatory variable vector x, and (iii) z is strongly, not weakly, correlated with the

explanatory variable vector x. The first two conditions are necessary for consistency. The

third assures good finite-sample performance of the instrumental variables (IV) estimator of

the second condition.

Moreover, the number of instruments must at least equal the number of independent

endogenous variables, r ≥ K. This is called the order condition. The model is just-identified

when r = K and overidentified when r > K. An instrument fails the first condition is an

invalid instrument. An instrument that fails the second condition is an irrelevant instrument,

and the model may be unidentified. The third condition fails when correlation between the

instrument and the endogenous variable is very low. The model is weakly identified, and the

instrument is a weak instrument.

When the model is just-identified (r = K), the IV takes the form:

β̂IV = (Z′X)
−1

Z′y, (4.2)

where y is an N×1 vector, X and Z are N×K matrices with ith rows x′
i and z′i. Substituting
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y = Xβ + ε into (4.2) yields

β̂IV = (Z′X)
−1

Z′ [Xβ + ε] = β +
(
N−1Z′X

)−1
N−1Z′ε. (4.3)

Therefore, the IV estimator is consistent if and only if

plimN−1Z′ε = 0 and plimN−1Z′X �= 0. (4.4)

These are essentially the same as conditions (i) and (ii): z is uncorrelated with ε and correlated

with x. To assure that the inverse of N−1Z′X exists, it is assumed Z′X is of full rank K. This

is a stronger assumption than the order condition r = K. With heteroskedastic errors, the

IV estimator is asymptotically normal with mean β and the variance matrix is consistently

estimated by

V̂ar
[
β̂IV

]
= (Z′X)

−1
Z′Ω̂Z (X′Z)−1

,

where Ω̂ = Diag
[
ε̂2i
]
.4

4.3.3 Two-Stage Least Squares

The IV estimator in (4.2) requires that the number of instruments equals the number of ex-

planatory variables. When r > K, some instrument variables are dropped, and the model

becomes just-identified. However, discarding these instruments diminishes asymptotic effi-

ciency. Then the following 2SLS estimator is applied:

β̂2SLS =
[
X′Z (Z′Z)−1

Z′X
]−1 [

X′Z (Z′Z)−1
Z′y
]
.

The 2SLS estimator is the generalization of an IV estimator, and it is often calculated

in two stages. First, X is regressed on instrumental variable Z to obtain a predicted value

of X. That is, X̂ = Z (Z′Z)−1
Z′X. Second, y is regressed on X̂, which obtains β̂2SLS. If

the model is just-identified (r = K), first-stage regression is unnecessary, and X serves as its

own instrument. If the model is overidentified, the 2SLS estimator equals the IV estimator

in (4.2) and the instruments are X̂.

Moreover, the 2SLS estimator is often expressed more compactly as

β̂2SLS = [X′PZX]
−1

[X′PZy] ,

where PZ = Z (Z′Z)−1
Z′ is an idempotent projection matrix that satisfies PZ = PZ

′,

PZPZ
′ = PZ, and PZZ = Z. The 2SLS estimator can be shown to be asymptotically

normally distributed with estimated asymptotic variance

V̂ar
[
β̂2SLS

]
= N [X′P′

ZX]
−1
[
X′Z (Z′Z)−1

Ŝ (Z′Z)−1
Z′X
]
[X′P′

ZX]
−1
,

4For more details, see also White (2001).
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where in the usual case of heteroskedastic errors Ŝ = N−1
∑

i ε̂
2
i ziz

′
i and ε̂i = yi − x′

iβ̂2SLS.

A commonly used small-sample adjustment is to divide by N − K rather than N in the

formula for Ŝ. In the special case that errors are homoskedastic, simplification occurs and

V̂ar
[
β̂2SLS

]
= s2 [X′P′

ZX]
−1

.

Although the IV (or 2SLS) estimator is consistent, it leads to a loss of efficiency in practice.

Intuitively, the IV (or 2SLS) estimator does not work well if instrument z has low correlation

with the regressor x. To simplify discussion, we consider the just-identified case, K = 1, and

no intercept. The IV estimator takes the form

plimβ̂IV = β +

⎡⎣ ∑N
i=1 ziεi√∑N

i=1 z
2
i

√∑N
i=1 ε

2
i

√∑N
i=1 ε

2
i√∑N

i=1 z
2
i

⎤⎦ /
⎡⎣ ∑N

i=1 zixi√∑N
i=1 z

2
i

√∑N
i=1 x

2
i

√∑N
i=1 x

2
i√∑N

i=1 z
2
i

⎤⎦
= β +

Corr (z, ε)
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Therefore, if z is weakly correlated with explanatory variable x and Corr (z, x) is relatively

smaller than Corr (z, ε), the bias of the IV estimator β̂IV is large.

4.3.4 A Binary Endogenous Regressor in Linear Models

Next, we consider linear estimation with a binary endogenous variable. For simplicity, consider

the case of a single binary endogenous variable. A binary endogenous regressor in linear

models takes this form:

y1 = x′β1 + α1y2 + ε1, (4.6)

y∗2 = z′β2 + ε2, (4.7)

y2 =

⎧⎪⎨⎪⎩1 if and only if y∗2 > 0

0 if and only if y∗2 ≤ 0

, (4.8)

where β1 ∼ K1 × 1 and β2 ∼ K2 × 1 are vectors of unknown parameters and y∗2 is a latent

variable that depends on z.

Linear models with a binary endogenous regressor are essentially the same as the well-

known treatment effect model discussed in Rubin (1974), Heckman and Rob (1985), Holland

(1986), Moffitt (1991), Mroz (1999), Wooldridge (2002, Chapter 18), and Lee (2005b). In

treatment literature, y1 is the outcome variable of interest, and y2 denotes an indicator for

treatment. For example, outcome y1 is the inverese of health expenditure and indicator

y2 is treatment, such as participation in a health maintenance program. If y2 = 1, the

individual participated and received the treatment, and if y2 = 0, the individual is part of the

untreated control group. Moreover, let y11 be the outcome for someone who participates in

the health maintenance program, and let y10 be the outcome of someone who does not. The
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causal effect of treatment, the average treatment effect (ATE), and the average treatment

effect on the treated (ATT) are defined as y11 − y10, ATE = E (y11 − y10), and ATT =

E (y11 − y10 | y2 = 1), respectively.

The fundamental problem of treatment evaluation is to observe either y11 or y10 but

never both. We can directly identify E (y11 | y2 = 1) and E (y10 | y2 = 0) from the data since

y1 = y10 + y2 (y11 − y10). However, this is not in itself sufficient for estimating ATE or ATT.

Since E (y11 − y10 | y2 = 1) = E (y11 | y2 = 1) − E (y10 | y2 = 1) by definition and the second

term is unobserved, ATT is not estimated. If we assume the expected outcome without

treatment is the same for the treated and control groups (independence between y10 and y2),

we can replace the unobserved term E (y10 | y2 = 1) with the observed term E (y10 | y2 = 0)

and estimate ATT, but doing so is arbitrary. In ATE, the assumption is somewhat stronger

and requires independence between not only y10 and y2 but also y11 and y2, because

ATE = P (y2 = 1)E (y11 − y10 | y2 = 1) + P (y2 = 0)E (y11 − y10 | y2 = 0) . (4.9)

Using randomized experiment data is the ideal way to avoid this problem and to estimate

ATE and ATT correctly. In randomized experiments, treatment and outcome are independent

by definition. ATE = ATT = E (y1 | y2 = 1)− E (y1 | y2 = 0), and simple regression of y1 on

y2 estimates ATE. However, the assumption of independence is implausible with observational

data, and a weaker assumption is required. First, we assume that selection into treatment

and outcome are independent, conditional on regressor x, such that E (y10 | y2 = 1,x) =

E (y10 | y2 = 0,x) and E (y11 | y2 = 1,x) = E (y11 | y2 = 0,x).

If we further assume that the joint distribution of ε1 and ε2 is a bivariate normal distri-

bution with variance matrix Σ =
[
σ2
1 , ρσ1, 1

]
, we can immediately derive the expectation of

the dependent variable conditional on treatment, since

E (y1 | y2 = 1) = x′β1 + α1 + E (ε1 | y2 = 1)

= x′β1 + α1 + E (ε1 | ε2 > −z′β2)

= x′β1 + α1 + ρσ1
φ (z′β2)

Φ (z′β2)
. (4.10)

For non-participants, the counterpart is

E (y1 | y2 = 0) = x′β1 − ρσ1 φ (z′β2)

1− Φ(z′β2)
. (4.11)

The difference between participants and non-participants is

E (y1 | y2 = 1)− E (y1 | y2 = 0) = α1 + ρσ1
φ (z′β2)

Φ (z′β2) [1− Φ(z′β2)]
. (4.12)

Without correction for endogeneity, the OLS coefficient on the treatment dummy estimates

this difference. If ρ > 0, it follows that E (y1 | y2 = 1) − E (y1 | y2 = 0) > α1. OLS overesti-

mates the treatment effect; there is an upward bias. A consistent estimator of the treatment
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effect can be obtained from a Heckman-type two-stage estimator or by full MLE. However,

both procedures rely on joint normality of ε1 and ε2, and the assumption of bivariate nor-

mality of ε1 and ε2 is too restrictive. The model with a binary endogenous variable also can

be estimated under weaker assumptions: E (ε1 | x, z) = 0; E (ε2 | z) = 0; E (ε1y2 | x, z) �= 0;

and y2 is linear on both x and z. Under these assumptions, α1 and the other parameters

in (4.6) are identified, and 2SLS on (4.6) is consistent and asymptotically normal. That is,

β̂ =
[
X̃′PZX̃

]−1 [
X̃′PZy1

]
, where β̂ =

[
β̂′
1, α̂1

]′
, X̃ = [X,y2], and PZ = Z (Z′Z)−1

Z′.

Since the only endogenous explanatory variable in equation (4.6) is binary, this equation is

called a dummy endogenous variable model (Heckman, 1978). As discussed above, there is no

special consideration in estimating equation (4.6) by 2SLS when the endogenous explanatory

variable is binary.

We can find a more efficient IV estimator by making stronger assumptions as follows: (i)

P (y2 = 1 | x, z) �= P (y2 = 1 | x) and P (y2 = 1 | x, z) = F (x, z;β2) is a known parametric

form (usually probit or logit); and (ii) Var (ε1 | x, z) is constant. Therefore, we can use a

two-stage IV method: In stage 1, estimate the binary response model P (y2 = 1 | x, z) =

F (x, z;β2) by MLE. Obtain the fitted probabilities, F̂i. In stage 2, estimate (4.6) by IV

using instruments xi and F̂i. That is, β̂ =
(
Z̃′X̃
)−1

Z̃′y1, where β̂ =
[
β̂′
1, α̂1

]′
, X̃ = [X,y2],

and Z̃ =
[
X, F̂

]
.

This procedure has an important robustness property. Even if we use F̂i as an instrument

for y2i, the model for P (y2 = 1 | x, z) need not be correctly specified. For example, if we

specify a probit model for P (y2 = 1 | x, z), we do not need the probit model to be correct.

This requirement is weak when z is partially correlated with y2.

4.4 Endogenous Regressors in Nonlinear Health Econo-

metrics

Endogeneity leads to inconsistency of the estimated regression parameters in nonlinear health

econometric models. Correlation occurs when there is simultaneous determination of the

regressor through a related model, especially in estimation of treatment effects. Since persons

participating in clinical trials are randomly assigned to a treatment group or a control group,

differences in outcomes are a good estimator of the treatment effect. It is observed, for

example, in a drug’s effect on the number of epileptic seizures and on the duration of lung

cancer.

However, non-experimental observational data are not always drawn from randomly as-

signed treatment. For instance, the decision to seek care may depend on a patient’s private
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health insurance status (the treatment variable), but private insurance coverage is a choice

variable that might depend on subjective health status, age, and income. To obtain consis-

tent estimators of an endogenous regressor, we disregard the standard two-stage method in

nonlinear regression models with endogenous variables. This section accounts for endogenous

regressors in health econometrics based on Wooldridge (2002), Cameron and Trivedi (2005),

and Winkelmann (2004).

4.4.1 Endogenous Regressors in Binary Response Models

The assumption of exogenous regressors might not hold for binary response models such

as probit and logit applications. Evans and Schwab (1995) demonstrated this problem in

analyzing the probability of graduating high school using the binary regressor of attending

a Catholic school. They suggested that the Catholic school dummy is endogenous because

parents who care about child’s welfare stress good grades and willingly pay for a private

school. Costa (1995) analyzed this example of a continuous endogenous variable. This paper

estimated a binary (yes/no) retirement decision as a function of a pension benefit. In fact, the

estimation may have been plagued with endogeneity because the decision depends on earlier

decisions and the decision setting is continuous. This subsection considers estimation for

probit models with an endogenous binary or continuous variable. For simplicity, we discuss

one endogenous regressor.

A Continuous Endogenous Regressor in Binary Models

A probit model with a continuous endogenous explanatory variable takes the following form:

y∗1 = x′β1 + α1y2 + ε1, (4.13)

y2 = z′β2 + ε2, (4.14)

where (ε1, ε2) has a zero mean, a bivariate normal distribution, and is independent of z.

The observed binary outcome is y1 = 1 if y∗1 > 0 and y1 = 0 otherwise. If ε1 and ε2 are

independent, there is no endogeneity. Since ε2 is normally distributed, we assume y2 is normal

given z. Therefore, y2 is a normal random variable.

Rivers and Vuong (1988) proposed a method for estimating a probit model with a contin-

uous endogenous explanatory variable. Their method is a useful two-stage approach leading

to a simple test for endogeneity of y2. See also Wooldridge (2002) and Wikelmann and

Boes (2006) for a discussion of the procedure. Assume that ε1 and ε2 are bivariate normal

distributed with zero mean, correlation ρ, and variance 1 and σ2
2 , respectively. We can write

ε1 = θ1ε2 + u1, (4.15)
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where θ1 = ρ/σ2, σ
2
2 = Var (ε2), and u1 is independent of z and ε2 (and therefore of y2).

Because of joint normality of (ε1, ε2), u1 is also normally distributed with E (u1) = 0 and

Var (u1) = Var (ε1)− ρ2. We can now write

y∗1 = x′β1 + α1y2 + θ1ε2 + u1,

u1 | z, y2, ε2 ∼ N
(
0, 1− ρ2) .

Thus, ε1 =
√
1− ρ2u + ρε2/σ2, where u ∼ N (0, 1). We can write the first equation

conditional on ε2 as

y∗1 = α1y2 + x′β1 +
√
1− ρ2u + θ1ε2.

A standard calculation shows that

P (y1 = 1 | z, y2, ε2) = Φ
[
(x′β1 + α1y2 + θ1ε2) /

(
1− ρ2)1/2] . (4.16)

Assuming for the moment that we observe ε2, then probit of y1 on z, y2, and ε2 consistently

estimates βρ1 ≡ β1/
(
1− ρ2)1/2, αρ1 ≡ α1/

(
1− ρ2)1/2, and θρ ≡ θ1/

(
1− ρ2)1/2. Note that

because ρ2 < 1, each scaled coefficient is greater than its unscaled counterpart unless y2 is

exogenous (ρ = 0).

The Rivers and Vuong (1988) approach takes the following two stages. First, run the

OLS regression y2 on z and save the residuals ε̂2. Second, the probit y1 on x, y2, and ε̂2

obtains consistent estimators of the scaled coefficients βρ1, αρ1, and θρ. The probit pa-

rameters are estimated only up to scale, with factor
(
1− ρ2)−1/2

. An estimate for ρ is

ρ̂2 = θ̂2ρσ̂
2
2/
(
1 + θ̂2ρσ̂

2
2

)
, where σ̂2 is the square root of the usual error variance estimator from

the first stage regression.

The Rivers and Vuong approach simplifies testing the exogeneity of y2. A z-test of the

null hypothesis H0: θ1 = 0 tests whether y2 is exogenous. If there is evidence of endogeneity

(θ1 �= 0) and we apply a two-stage procedure to find consistent estimators, the usual probit

parameters must be adjusted to account for the first stage estimation. Under H0: θ1 = 0, we

find u1 = ε1, and the distribution of ε2 plays no role under the null. Therefore, the test of

exogeneity is effective without assuming normality or homoskedasticity of ε2. Unfortunately,

if y2 and ε1 are correlated, normality of ε2 is crucial.5

An alternative approach is to estimate a probit model with a continuous endogenous

explanatory variable using conditional maximum likelihood. The joint distribution of (y1, y2)

conditional on z takes the form

f (y1, y2 | z) = f (y1 | y2, z) f (y2 | z) . (4.17)

5The Rivers and Vuong two-stage approach discusses average partial effects. For more detail, see

Wooldridge (2002).
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Since y2 | z ∼ N (z′β2, σ
2
2

)
, the PDF f (y2 | z) is easily evaluated. Moreover, since ε2 =

y2 − z′β2 and y1 = 1 [y∗1 > 0], we also can derive the conditional density of y1 given (y2, z):

P (y1 = 1 | y2, z) = Φ

[
x′β1 + α1y2 + (ρ/σ2) (y2 − z′β2)

(1− ρ2)1/2
]
. (4.18)

Then we have derived

f (y1, y2 | z) = {Φ (·)}y1 {1− Φ (·)}1−y1 (1/σ2)φ [(y1 − z′β2) /σ2] (4.19)

and the log likelihood for observation i is

y1 lnΦ (·) + (1− y1) ln [1− Φ(·)]− 1

2
ln (2π)− lnσ2 − 1

2σ2
2

(y1 − z′β2)
2
. (4.20)

Summing (4.20) across all i and maximizing with respect to all parameters obtains the esti-

mators of (β1, α1, ρ,β2, σ2). Standard errors can be calculated using the estimated Hessian,

the estimated expected Hessian, or the outer product of the score.

Conditional maximum likelihood estimation offers advantages over two-stage procedures.

First, it is more efficient than any two-stage procedure. Second, we acquire direct estimators

of β1 and α1 and the parameters of interest for computing partial effects. Third, it is easy

to examine exogeneity of y2 using the asymptotic t test under H0: ρ = 0 or a likelihood ratio

test.

The Rivers and Vuong approach is a limited information procedure and focuses on the

conditional density f (y1 | y2, z), where they replace the unknown β2 with the OLS estimator

β̂2. However, the conditional maximum likelihood method estimates the parameters using

the information in f (y1 | y2, z) and f (y2 | z) simultaneously. Therefore, Rivers and Vuong

has significant computational advantages in testing whether y2 is exogenous, and using the

conditional maximum likelihood method is worthwhile if exogeneity is rejected.

A Binary Endogenous Regressor in Binary Models

We now consider the case where the probit model contains an endogenous binary explanatory

variable.6 The model describes as follows:

y1 = 1 [x′β1 + α1y2 + ε1 > 0] , (4.21)

y2 = 1 [z′β2 + ε2 > 0] , (4.22)

where 1 [·] is an indicator function, (ε1, ε2) is independent of z and distributed as bivariate

normal with mean zero and covariance matrix (1, ρ, 1). If ρ �= 0, then ε1 and y2 are correlated,

and the probit estimation is inconsistent for β1 and α1. In this model, the effect of y2 is often

6The following discussion is based on van de Ven et al. (1981) and Winkelmann and Boes (2006).
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of primary interest, especially when y2 indicates participation in some program, such as health

maintenance, and the binary outcome y1 might denote a subjective health index. Then the

average treatment effect (for a given value of x) is calculated by Φ (x′β1 + α1)− Φ (x′β1).

The likelihood function is easily calculated using the conditional density and truncated

normal distributions. The conditional density of y1 given (y2, z) takes the following form:

P (y1 = 1 | y2, z) = Φ

[
x′β1 + α1y2 + ρε2

(1− ρ2)1/2
]
. (4.23)

Moreover, the truncated density of ε2 given ε2 > −z′β2 obtains

φ (ε2)

P (ε2 > −z′β2)
=

φ (ε2)

Φ (z′β2)
. (4.24)

Therefore, the density P (y1 = 1 | y2 = 1, z) takes

P (y1 = 1 | y2 = 1, z) = E

{
Φ

[
x′β1 + α1y2 + ρε2

(1− ρ2)1/2
]
| y2 = 1, z

}

=
1

Φ (z′β2)

∫ ∞

−z′β2

Φ

[
x′β1 + α1 + ρε2

(1− ρ2)1/2
]
d ε2. (4.25)

Similarly, P (y1 = 1 | y2 = 0, z) is

P (y1 = 1 | y2 = 0, z) =
1

1− Φ(z′β2)

∫ −z′β2

−∞
Φ

[
x′β1 + ρε2

(1− ρ2)1/2
]
d ε2. (4.26)

Combining the four possible outcomes of (y1, y2), we obtain the log-likelihood function of the

probit model with a binary endogenous explanatory variable.

Since the log-likelihood function includes a single integral but has no analytical solution, we

evaluate the likelihood using a numerical integral. If the integral is distributed over [−∞,∞],

the log-likelihood is easily evaluated by applying Gauss-Hermite quadrature. In this model,

we calculate the log-likelihood function using εq > −z′β2, where εq is the evaluation point of

the Gauss-Hermite quadrature. Since −z′β2 is not constant under the maximization process,

a small change in the value of β2 does not alter the likelihood, and thus the performance of

the Gauss-Hermite quadrature is low. The simulated maximum likelihood method avoids this

problem but needs many evaluation points to approximate the integral accurately.7 Moreover,

calculating the accurate likelihood is time consuming.

Therefore, it is possible to apply the Rivers and Vuong two-stage approach for estimating

the probit model with an endogenous binary explanatory variable: since E (y2 | z) = Φ (z′β2)

and β2 is consistently estimated by the probit of y2 on z, it is tempting to estimate β1 and

α1 from the probit of y1 on x and Φ̂2, where Φ̂2 ≡ Φ
(
z′β̂2

)
. However, the two-stage method

7Judd (1998, Chapter 7) accounts for numerical integrals like the Gauss-Hermite quadrature. For details

of the simulated likelihood, see Gouriéroux and Monfort (1996) and Gouriéroux (2000).
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is inappropriate because the estimated coefficients are inconsistent. Although the two-stage

method requires P (y1 = 1 | z) = Φ [x′β1 + α1Φ (z′β2)], we can compute only the expected

value P (y1 = 1 | z) = E (y1 = 1 | z) = E (1 [x′β1 + α1y2 + ε1 > 0]). Since the indicator func-

tion 1 [·] is nonlinear, we cannot correctly specify the expected value. If, substituting β̂2, we

can compute the correct and complicated formula for P (y1 = 1 | z), the two-stage approach

produces consistent estimators, but the full maximum likelihood method is easier and more

efficient.8

4.4.2 Endogenous Regressors in Count Data Models

It is easy to expand the Poisson regression model into one with endogenous variables and,

as with a probit model containing endogenous variables, count data models present the same

problem.9 Fortunately, the two-stage approach discussed concerning binary models can be

applied to the Poisson regression model with a continuous endogenous variable, and the

estimated coefficients are consistent. The following analysis discusses count data models with

endogenous binary variables. For simplicity, we discuss a single endogenous regressor only.

A Binary Endogenous Regressors in Count Data Models

A Poisson model with a binary endogenous variable is essentially the same as a binary response

model with a binary endogenous variable. We consider the triangular model

y1 = exp (α1y2 + x′β1 + ε1) , (4.27)

y∗2 = z′β2 + ε2, (4.28)

where ε1 and ε1 are unobserved heterogeneity that satisfy E (ε1 | x, z) = E (ε2 | x, z) = 0 and

Cov (ε1, ε2) �= 0. Moreover, y∗2 is a latent variable, and a binary variable y2 is observed when

y2 =

⎧⎪⎨⎪⎩1 if y∗2 > 0

0 otherwise

.

8If a sample is censoring or truncated and might have endogenous explanatory variables, microeconometrics

utilizes Tobit models. In this case, the same discussion of binary models is applied because the properties of

censored or truncated data are essentially same as those of binary data. See Angrist (2001) and Lee and Vella

(2006).
9The following discussion derives from Greene (1997), Windmeijer and Santos Silva (1997), Terza (1998),

Schellhorn (2001), and Winkelmann (2003). Miranda and Rabe-Hesketh (2006) provide a useful stata ado file

to estimate binary, count, and ordinal variables with endogenous variables.
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Next, we consider the consequences of ignoring the endogeneity of y2. From (4.27),

E (y1 | x, y2 = 1)

E (y1 | x, y2 = 0)
=

Eε1E (y1 | x, ε1, y2 = 1)

Eε1E (y1 | x, ε1, y2 = 0)

=
exp (α1 + x′β1) E (ε1 | y2 = 1)

exp (x′β1) E (ε1 | y2 = 0)
. (4.29)

To simplify the discussion and to evaluate expectations easily, we specify that the vec-

tor (ε1, ε2) follows a bivariate normal distribution with zero mean and covariance matrix(
σ2
1 , ρσ1, 1

)
. Moreover, using the results on truncation in the log-normal distribution, we

obtain

E (exp (ε1) | y2 = 1) = exp
(
1/2σ2

1

) Φ (z′β2 + ρσ1)

Φ (z′β2)
(4.30)

and

E (exp (ε1) | y2 = 0) = exp
(
1/2σ2

1

) Φ (−z′β2 − ρσ1)
Φ (−z′β2)

. (4.31)

Therefore, under the assumption of this model,

E (y1 | x, y2 = 1)

E (y1 | x, y2 = 0)
= exp (α1)

Φ (z′β2 + ρσ1)

Φ (z′β2)

Φ (−z′β2)

Φ (−z′β2 − ρσ1) . (4.32)

If ρ > 0, the factor following exp (α1) is greater than 1. That is, the overall relative difference

between the two expected counts exceeds exp (α1) − 1. This leads to an upward bias in the

estimated effect, making it important to treat the endogeneity of y2 carefully.

In estimation, we can, as before, replace y2 in the first equation with its probability

F (z′β2), say, Φ (z′β2). However, as in binary models, this procedure will not work in this

nonlinear model. In this case,

E (y1 | z′β2,x, y2) = exp (α1F (z′β2) + x′β1) exp (α1u2) ,

where u2 = y2 − F (z′β2). Under this assumption, since the moments of u2 depend on

z, e.g., E
(
u22 | z

)
= F (z′β2) [1− F (z′β2)], exp (u2) and z are not independent However,

E (exp (u2)) is an increasing function of its variance because of the convexity of the exponential

transformation and depends on both parameters and regressors. Therefore, as with a binary

model containing a binary endogenous variable, the two-stage approach is inappropriate for

count data models with a binary endogenous variable.

Another explanation is as follows. As before, we assume for simplicity that the vector

(ε1, ε2) follows a bivariate normal distribution with zero mean and covariance matrix. Using

the results for truncation in the log-normal distribution,

E (y1 | x, y2 = 1) = exp

(
α1 + x′β1 +

σ2
1

2

)(
Φ(z′β2 + ρσ1)

Φ (z′β2)

)
, (4.33)
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This regression may be estimated by nonlinear least squares after substituting in the first stage

estimators of β2 denoted β̂2. This stage introduces heteroskedastic errors into the regression

and complicates the estimation of asymptotic covariance matrix. The effect of sample selection

on the exponential conditional mean of the count data models is multiplicative, not additive

as in the normal linear case. This means that ad hoc adjustment based on adding Mill’s ratio

to the conditional mean does not work well. Windmeijer and Santos Silva (1997) propose an

instrumental variables estimator, instrumenting y2 by F
(
z′β̂2

)
, where β̂2 is obtained from

estimating a probit or logit model first. Terza (1998) derives a two-stage moment estimator

that does not require the specification of the full distribution of y1, and Kozumi (1999)

provides a Bayesian analysis of this model. However, the full maximum likelihood method is

easier and more efficient. We describe it below.10

We consider a fully specified count data model with endogenous binary regressors. As

before, error terms ε1 and ε2 follow a bivariate normal distribution with correlation parameter

ρ. The joint PDF takes the form

f (y1, y2) = y2f (y1, y2 = 1) + (1− y2) f (y1, y2 = 0)

= y2 [f (y1 | y2 = 1)P (y2 = 1)] + (1− y2) [f (y1 | y2 = 0)P (y2 = 0)] .

Under the independence assumption, expectations f (y1 | y2 = 1)P (y2 = 1) are easily calcu-

lated by multiplying standard distributions. We must consider these expressions conditional

on ε1 and obtain the desired quantities by integrating f (y1, y2, ε1) over ε1 in a second stage:

f (y1, y2) =

∫ ∞

−∞
f (y1, y2, ε1) d ε1

=

∫ ∞

−∞
f (y1 | y2, ε1) f (y2 | ε1) g (ε1) d ε1. (4.34)

The first distribution under the integral is simply the specified count data PDF with mean

function exp (α1y2 + x′β1). The second distribution under the integral is a Bernoulli distri-

bution

f (y2 | ε1) = P (y2 = 1 | ε1)y2

[
1− P (y2 = 0 | ε1)1−y2

]
, (4.35)

where

P (y2 = 1 | ε1) = P (ε2 > −z′β2 | ε1) ≡ Φ∗ (ε1) (4.36)

10For other methods to estimate count data or nonlinear models with endogenous regressors, see Freund et

al. (1999), Windmeijer (2000), Romeu and Vera-Hernández (2000, 2005), van Ophem (2000), Munkin (2003),

Munkin and Trivedi (2003), Lee (2004), Deb and Trivedi (2006), Deb et al. (2006a, 2006b), Zimmer and

Trivedi (2006), and Firpo (2007).
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and Φ∗ (ε1) is the cumulative distribution function of a standard normal distribution. Finally,

g (ε1) is a normal distribution with mean 0 and variance σ2
1 .

Therefore, the log-likelihood function of count data models with an endogenous binary

variable takes the form

f (y1, y2) =

∫ ∞

−∞
f (y1 | y2, ε1) Φ∗ (ε1)

y2 [1− Φ∗ (ε1)]
1−y2 g (ε1) d ε1. (4.37)

The integral is easily evaluated using quadrature or other simulation methods. The parameter

can be estimated by maximizing the log-likelihood function of the sample with respect to α1,

β1, β2, σ1, and ρ.

4.5 Monte Carlo Results

This section is devoted to a Monte Carlo study to evaluate the finite sample performance of

the various analyzed models with endogenous variables. We show the inconsistency of the

two-stage method in estimating nonlinear models, such as probit and Poisson models, with

an endogenous binary variable.

First, we summarize results of the Monte Carlo experiments of linear estimation with en-

dogenous continuous and binary variables. The Monte Carlo simulations are designed as fol-

lows. We generate one explanatory variable, z1, drawn independently fromN (0, 1/4), and two

unobserved heterogeneity terms, ε1 and ε2, normally distributed asN ((0, 0) , (σ2
1 , ρσ1σ2, σ

2
2

))
.

The variable y2 represents an endogenous continuous variable assumed to be generated by

the process y2 = z′β2 + ε2; d represents an endogenous binary variable and is assumed to be

generated by the process d = 1 if d∗ = z′β2 + ε2 > 0 and d = 0; otherwise, where z = [1, z1]
′

and β2 = [β21, β22]
′
. Moreover, y1 represents a continuous variable assumed to be generated

by the process y1 = β11 + β12y2 + ε1 or y1 = β11 + β12d + ε1.

All true values for parameters β11 = β12 = β21 = β22 = 0.5 and σ1 = σ2 = 1 are the

same for each experiment. Correlation parameter ρ takes values of 0.3, 0.6, and 0.9. The

number of simulations used in all experiments is set to 100, and the sample sizes are 1,000

and 2,000 observations per Monte Carlo iteration. Simulations are performed on Intel Core

2 Duo workstations using GAUSS.

Tables 4.5 and 4.6 show the results of Monte Carlo experiments on linear models with

endogenous continuous and binary variables. We estimate both experiments by 2SLS using

instrumental variable z. Results for parameters (β11, β12), given in Tables 4.5 and 4.6, show

the estimates are consistent for each estimation and the value of the correlation parameter.

Actually, the test statistics ofH0: β11 = 0.5 or β12 = 0.5 are not rejected at the 50% level in all

experiments. Moreover, the bias decreases when the sample size increases for each iteration.

70



Table 4.5: Monte Carlo Results of Linear Models with an Endogenous Continuous Variable

Truth N = 1,000 N = 2,000 N = 1,000 N = 2,000 N = 1,000 N = 2,000

Two-stage

β11 0.5 0.012 −0.002 0.014 0.002 0.016 0.006

(0.077) (0.053) (0.079) (0.055) (0.082) (0.058)

β12 0.5 −0.018 −0.001 −0.020 −0.008 −0.019 −0.017

(0.141) (0.091) (0.146) (0.096) (0.150) (0.101)

σ1 1 0.009 0.004 0.014 0.009 0.016 0.016

(0.050) (0.029) (0.096) (0.059) (0.142) (0.093)

ρ 0.008 0.000 0.002 0.001 −0.001 0.001

(0.129) (0.088) (0.092) (0.065) (0.027) (0.020)

Notes: Figures without parentheses are mean bias (BIAS) values. Root mean squared errors (RMSE) appear

in parentheses. Two-stage and FIML are the two-stage estimation and full information MLE, respectively.

Table 4.6: Monte Carlo Results of Linear Models with an Endogenous Binary Variable

ρ = 0.3 ρ = 0.6 ρ = 0.9

Truth N = 1,000 N = 2,000 N = 1,000 N = 2,000 N = 1,000 N = 2,000

Two-stage

β11 0.5 0.041 −0.003 0.048 0.012 0.047 0.031

(0.287) (0.187) (0.295) (0.195) (0.305) (0.207)

β12 0.5 −0.056 0.000 −0.062 −0.022 −0.059 −0.048

(0.418) (0.268) (0.430) (0.281) (0.442) (0.297)

σ1 1 0.017 0.007 0.023 0.012 0.026 0.020

(0.055) (0.030) (0.102) (0.060) (0.150) (0.096)

ρ −0.057 −0.075 −0.141 −0.146 −0.224 −0.218

(0.173) (0.119) (0.145) (0.104) (0.096) (0.073)

Note: See Table 4.5 for notes.

In particular, the bias of endogenous variable parameter β12 shows good performance in

equations featuring an endogenous continuous or a binary variable. RMSE decreases as the

sample size increases for each experiment. In the case of binary variables, the bias of ρ does

not necessarily decrease when the number of observations is large, but it increases when ρ

increases. This may be the limitation of 2SLS.

Second, we present results of the Monte Carlo experiments of probit estimations in models

containing an endogenous continuous or a binary variable. As demonstrated, the two-stage

procedure does not yield consistent estimation in the case of a binary endogenous variable.
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Table 4.7: Monte Carlo Results of Probit Models with an Endogenous Continuous Variable

ρ = 0.3 ρ = 0.6 ρ = 0.9

Truth N = 1,000 N = 2,000 N = 1,000 N = 2,000 N = 1,000 N = 2,000

Two-stage

β11 0.5 −0.003 −0.011 0.006 −0.008 0.007 −0.001

(0.086) (0.064) (0.057) (0.051) (0.041) (0.033)

β12 0.5 −0.005 0.001 −0.010 0.019 −0.016 0.014

(0.237) (0.154) (0.245) (0.180) (0.242) (0.194)

Note: See Table 4.5 for notes.

However, we attempt this method and compare results with the FIML method. The data-

generating processes of endogenous variables are the same as those of linear models. Variable

y1 represents a binary dependent variable assumed to be generated by the process y1 = 1 if

y∗1 = β11+β12d+ε1 > 0 (for an endogenous binary variable) or y∗1 = β11+β12y2+ε1 > 0 (for

an endogenous continuous variable) and y1 = 0; otherwise. All true values for the parameters

β11 = β12 = β21 = β22 = 0.5 and σ1 = σ2 = 1 are the same for each experiment. Correlation

parameter ρ takes values of 0.3, 0.6, and 0.9.

In estimating the probit model with an endogenous binary variable using FIML, the log-

likelihood function includes a single integral but has no analytical solution. Moreover, it is

obvious in (4.25) that the integral is not distributed over [−∞,∞] and contains a censored

part. In this case, it is difficult to apply Gauss-Hermite (GH) quadrature, which is often

used in a numerical integral and is easily evaluated. Instead, we use the simulated maximum

likelihood (SML) method, Halton (1960) sequences, and the GHK simulator,11 due to Geweke

(1992), Hajivassiliou and McFadden (1994), and Keane (1994) to evaluate log-likelihood in

the censored part. Chapter 6 discusses details.

Tables 4.7 and 4.8 show the results of Monte Carlo experiments on probit models with

endogenous continuous and binary variables. The experiment is estimated using the two-stage

method in Table 4.7 and both 2SLS and FIML in Table 4.8. Although, as previously analyzed,

the two-stage method is inconsistent in estimating the probit model with an endogenous

binary variable, we confirm the extent of this problem. From Table 4.7, the mean bias (BIAS)

and RMSE of an endogenous continuous variable decrease when the number of observations

11Train (2003) explains the simplified version of the GHK simulator and applies it to mixed logit models. See

also McFadden and Train (2000), Train (2000), and Bhat (2001). For the discussion of simulated maximum

likelihood or numerical integration, see Gouriéroux and Monfort (1991), Geweke (1995), and Geweke and

Keane (1999).
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Table 4.8: Monte Carlo Results of Probit Models with an Endogenous Binary Variable

ρ = 0.3 ρ = 0.6 ρ = 0.9

Truth N = 1,000 N = 2,000 N = 1,000 N = 2,000 N = 1,000 N = 2,000

FIML

β11 0.5 0.012 −0.014 0.009 −0.001 0.010 0.005

(0.307) (0.216) (0.231) (0.170) (0.123) (0.094)

β12 0.5 −0.030 0.008 −0.007 −0.002 0.013 0.005

(0.494) (0.331) (0.436) (0.304) (0.316) (0.226)

N = 1,000 N = 2,000 N = 1,000 N = 2,000 N = 1,000 N = 2,000

Two-stage

β11 0.5 0.056 0.011 0.133 0.114 0.362 0.351

(0.348) (0.240) (0.292) (0.220) (0.178) (0.142)

β12 0.5 −0.123 −0.049 −0.274 −0.250 −0.792 −0.787

(0.581) (0.385) (0.574) (0.416) (0.444) (0.343)

Note: See Table 4.5 for notes.

is large. Since the test statistics that an endogenous variable equals the true value are not

rejected at 50%, this experiment shows consistency of the parameter β12.

The results of probit models with an endogenous binary variable appear in Table 4.8.

FIML results show the phenomena of consistency, although BIAS and RMSE do not always

decrease. The test statistics of H0: β11 = 0.5 or β12 = 0.5 are not rejected at the 50% level.

However, in the two-stage method, the values of BIAS and RMSE are larger than those of

FIML. The test statistics of H0: β11 = 0.5 or β12 = 0.5 are rejected at the 5% level in the

case of N = 2,000 and ρ = 0.9. That is, the estimated estimators of the two-stage method

are statistically different from the true values. Although the test statistics are not rejected if

ρ is small, the inconsistency is apparent if ρ is large. These results suggest it is necessary to

use the FIML estimator and not the two-stage method when estimating a probit model with

an endogenous binary variable.

Finally, we examine results of Monte Carlo experiments on Poisson log-normal estimation

with an endogenous continuous and binary variable. The data-generating processes of en-

dogenous variables are the same as those of linear models, and that of the Poisson component

is obtained by y1 ∼ Poisson (λ) with λ = exp (β11 + β12y2 + ε1), where ε1 is an unobserved

error term. All true values for parameters β11 = β12 = β21 = β21 = β22 = 0.5 and σ1 = σ2 = 1

are the same for each experiment, and correlation parameter ρ takes values of 0.3, 0.6, and

0.9.
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Table 4.9: Monte Carlo Results of Poisson Models with an Endogenous Continuous Variable

ρ = 0.3 ρ = 0.6 ρ = 0.9

Truth N = 1,000 N = 2,000 N = 1,000 N = 2,000 N = 1,000 N = 2,000

Two-stage

β11 0.5 0.010 0.007 0.005 0.004 0.005 0.008

(0.090) (0.082) (0.094) (0.074) (0.098) (0.065)

β12 0.5 −0.008 −0.007 0.004 0.003 −0.002 −0.017

(0.164) (0.146) (0.168) (0.125) (0.180) (0.118)

Note: See Table 4.5 for notes.

Table 4.10: Monte Carlo Results of Poisson Models with an Endogenous Binary Variable

ρ = 0.3 ρ = 0.6 ρ = 0.9

Truth N = 1,000 N = 2,000 N = 1,000 N = 2,000 N = 1,000 N = 2,000

FIML

β11 0.5 −0.028 −0.009 −0.017 −0.042 −0.026 −0.031

(0.283) (0.210) (0.219) (0.189) (0.159) (0.116)

β12 0.5 0.037 0.013 0.016 0.059 0.030 0.038

(0.404) (0.296) (0.302) (0.266) (0.205) (0.144)

N = 1,000 N = 2,000 N = 1,000 N = 2,000 N = 1,000 N = 2,000

Two-stage

β11 0.5 0.034 −0.029 −0.045 −0.069 −0.141 −0.167

(0.370) (0.235) (0.356) (0.219) (0.332) (0.239)

β12 0.5 −0.044 0.039 0.057 0.085 0.155 0.184

(0.534) (0.336) (0.505) (0.314) (0.481) (0.346)

Note: See Table 4.5 for notes.

Tables 4.9 and 4.10 present the results of Monte Carlo experiments on Poisson models

with endogenous continuous and binary variables. Table 4.9 presents using the two-stage

method and Table 4.10 the results of both 2SLS and FIML although the two-stage method

is theoretically inconsistent in the probit model with an endogenous binary variable. Table

4.9 shows that the BIAS and RMSE of an endogenous continuous variable decrease when the

number of observations is large. Moreover, this experiment shows consistency of parameters

(β11, β12) because the test statistics of H0: β11 = 0.5 or β12 = 0.5 are not rejected at the 50%

level.

In Table 4.10, Monte Carlo results of Poisson models with an endogenous binary variable
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show that the FIML results show the phenomena of consistency, but the BIAS and RMSE of

the two-stage method are larger than those of the FIML. Test statistics that an endogenous

variable equals the true value are not rejected at 50% confidence in the FIML; this experiment

shows the parameter β12 is consistent. In the case of the two-stage method, the test statistics

for β12 = 0.5 are rejected at the 50% level for N = 2,000 and ρ = 0.9. However, no

clear evidence of inconsistency appears in our setup. When ρ = 0.9 and N = 5,000, the

test statistics are rejected at the 25% level. There are two reasons why we find no clear

inconsistency with the two-stage method in the Poisson estimation with an endogenous binary

variable: the count variables take the non-negative integer, and the Poisson estimation is

easily approximated by linear models. That is, the nonlinearity of count data models is

weaker than that of binary variable models. Nonetheless, when estimating the Poisson model

with an endogenous binary variable, the two-stage method is not recommended because it is

theoretically inconsistent and we document inconsistency when ρ is large.

4.6 Limitations and Extensions of Endogenous Regres-

sors in Health Econometrics

As explained, regardless of whether endogenous regressors are continuous, linear models with

those variables display consistency using 2SLS. This characteristic is convenient because OLS

achieves a range of consistency. Therefore, although it is difficult to obtain instruments that

are uncorrelated with the error term and correlated with regressors, the two-stage method in

linear models with endogenous variables presents no serious theoretical problem.

If the two-stage method is applied in estimating nonlinear models with endogenous dis-

crete, censored, or truncated regressors, the estimated parameter has no consistency. Hence,

estimating such models requires FIML. However, this method always contains the problem of

specifications of distribution. That is, if the distributions of both nonlinear dependent and en-

dogenous variables are not specified correctly, estimated coefficients fail to attain consistency.

Since the true distribution remains unknown, this problem is always discussed. One way

to avoid a specification problem is to generalize distributions of dependent and endogenous

variables. That is, introduce semi- or non-parametric distributions.

The following chapters discuss semiparametric nonlinear models with an endogenous bi-

nary variable. Chapter 5 generalizes a count data model with an endogenous binary variable.

Chapter 6 analyzes duration analysis with treatment effects. Both chapters introduce semi-

parametric (semi-nonparametric) binary distribution with Hermite polynomials, proposed by

van der Klaauw and Koning (2003). This distribution is natural expansion of bivariate normal
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Figure 4.1: Semi-nonparametric Bivariate Normal Distributions

distribution and takes the following form:

g (ε1, ε2) =
1

P

⎛⎝ K∑
j=0

K∑
k=0

αjkε
j
1ε

k
2

⎞⎠2

1

2πσ1σ2
√
1− ρ2

× exp

[
− 1

2 (1− ρ2)

{(
ε1
σ1

)2

− 2ρ
ε1
σ1

ε2
σ2

+

(
ε2
σ2

)2
}]

≡ g∗

P
, (4.38)

where ε1 and ε2 are random variables, P =
∫∫∞

−∞ g∗d ε1 d ε2 ensures integration to 1 by scaling

the density, σ1 and ρ are standard deviation and correlation parameters, respectively, and

αjk is the parameter to be estimated. When αjk = 0 (∀j ≥ 1 and ∀k ≥ 1), this density results

in a bivariate normal distribution. Figure 4.1 shows some examples of semiparametric (semi-

nonparametric) bivariate normal distributions and this distribution is sometimes fat-tailed

and has twin peaks.

76



This distribution is simple but has difficulty to built in nonlinear regression models with

an endogenous binary variable because there are computation problems in estimating these

models. In Chapters 5 and 6, we avoid computational difficulties and propose generalized

models with endogeneity.
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Chapter 5

Semiparametric Count Data

Estimation with an Endogenous

Binary Variable

5.1 Introduction1

Count data models explain the behavior of discrete and non-negative dependent random vari-

ables and are used in applied econometrics such as industrial organization, health economics,

and population economics. A Poisson model is one of the methods to estimate count data.

Moreover, many recent studies use a negative binomial 2 (NB2) model that assumes additive

separable log-gamma distributed heterogeneity.

In microeconometric applications, we often come across situations where explanatory vari-

ables (in particular, an endogenous binary variable) are simultaneously determined with the

dependent variable. In this case, the Poisson and NB2 models yield biased estimates of pa-

rameters of interest because these models assume perfect exogeneity of explanatory variables.

Therefore, count data models with an endogenous binary variable are required, and many

studies have been conducted to analyze this problem. For example, Terza (1998) proposes a

nonlinear weighted least squares (NWLS) estimator; Mullahy (1997a) and Windmeijer and

Santos-Silva (1997) use Generalized Method of Moments (GMM) to estimate such a model;

and Kenkel and Terza (2001) analyze the endogeneity bias using Box-Cox transformation.2

1This chapter is the modified version of Masuhara (2008).
2From a Bayesian point of view, Kozumi (2002), Jochmann (2003), Munkin and Trivedi (2003), and Deb

et al. (2006b) analyze the endogeneity of count data.
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Moreover, Romeu and Vera-Hernández (2005) develop another count data model with an en-

dogenous binary variable on the basis of the polynomial Poisson model proposed by Cameron

and Johannson (1997). The main feature of their model is that it comprises a semipara-

metric model using a polynomial expansion by a dependent variable. However, the binary

endogenous variable part is parametric, and the dependent variable does not explicitly assume

heterogeneity.

This chapter proposes another semiparametric model to estimate a count data variable

with an endogenous binary variable. This chapter considers a simple Poisson model, which has

one endogenous binary variable, and the heterogeneity of both count dependent and binary

variables. In this model setup, we propose a Poisson model that comprises a semiparametric

(semi-nonparametric) joint distribution using Hermite polynomials based on the discussion

of Gallant and Nychka (1987), Gabler et al. (1993), and van der Klaauw and Koning (2003).

Our model is semiparametric and includes the natural extension of a bivariate normal distri-

bution. That is, both the count dependent and endogenous binary variables explicitly assume

semiparametric heterogeneity. We investigate the difference between the endogenous binary

variable’s coefficients of the parametric and semiparametric models using the 1990 National

Health Interview Survey (NHIS) data employed by Kenkel and Terza (2001).

The rest of the chapter is organized as follows. Section 2 proposes a semiparametric

count data model with an endogenous binary variable and discusses an efficient maximization

algorithm that contains a numerical integral. Section 3 depicts the application of the NHIS

data, and Section 4 presents our concluding remarks.

5.2 Poisson Estimation with an Endogenous Binary Vari-

able

We consider a count data model with an endogenous binary variable proposed by Terza

(1998). Let yi, i = 1, . . . , N , denote a count dependent variable that takes a nonnegative

integer value; let xi and zi denote explanatory variables (covariates), where xi is a k1 × 1

vector and zi is a k2 × 1 vector. The marginal distribution of yi takes the following form:

f (yi | di, ε1i) = exp (−λi) (λi)yi

yi!
, λi = exp (βddi + x′

iβ1 + ε1i) , (5.1)

where β1 and βd denote vectors of unknown parameters, and ε1i is unobserved heterogeneity.

Moreover, di represents an endogenous binary variable and is assumed to be generated by the

process di = 1 if d∗i = z′iβ2 + ε2i ≥ 0 and di = 0; otherwise, where d∗i is a latent variable, ε2i

is unobserved heterogeneity, and β2 denotes a vector of parameters.
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Many studies assume that the vector (ε1i, ε2i) follows a bivariate normal distribution with

zero mean and covariance matrix
(
σ2, ρσ, 1

)
. In this assumption, the joint density is easily

evaluated using a numerical integral. However, this normally distributed assumption leads

to a specification problem. Under a linear-exponential mean specification assumption and a

set of instruments, Mullahy (1997a) shows that the GMM estimators have consistency. In

the GMM, to improve the efficiency of the estimators, it is necessary to use higher order

moment conditions. The NWLS proposed in Terza (1998), which requires some additional

distributional assumptions, has the same properties. Therefore, we require an alternative

robust method for this count data model with an endogenous binary regressor.

Semiparametric estimation of this model implies approximating an unknown error term

using Hermite polynomials (Gallant and Nychka, 1987; Gabler et al., 1993). Following van

der Klaauw and Koning (2003), the joint distribution of ε1i and ε2i takes the following

semiparametric (semi-nonparametric) bivariate normal density:

g (ε1i, ε2i) =
1

P

⎛⎝ K∑
j=0

K∑
k=0

αjkε
j
1iε

k
2i

⎞⎠2

1

2πσ1σ2
√
1− ρ2

× exp

[
− 1

2 (1− ρ2)

{(
ε1i
σ1

)2

− 2ρ
ε1i
σ1

ε2i
σ2

+

(
ε2i
σ2

)2
}]

≡ g∗

P
, (5.2)

where P =
∫∫∞

−∞ g∗d ε1i d ε2i ensures integration to 1 by scaling the density, σ1 and ρ are

standard deviation and correlation parameters, respectively, and αjk is the parameter to be

estimated. To identify the parameters, we set α00 = 1 and σ2 = 1. When αjk = 0 (∀j ≥ 1

and ∀k ≥ 1), this density results in a bivariate normal distribution.

Hence, the log-likelihood function of a Poisson model with a semiparametric bivariate

normal density takes the following form:

ln fi =(1− di) ln
[∫ −z′

iβ2

−∞

∫ ∞

−∞
f (yi | di, ε1i) g (ε1i, ε2i) d ε1i d ε2i

]

+ di ln

[∫ ∞

−z′
iβ2

∫ ∞

−∞
f (yi | di, ε1i) g (ε1i, ε2i) d ε1i d ε2i

]
. (5.3)

Substituting (5.1) and (5.2) into (5.3) yields the full information maximum likelihood (FIML)

of the semiparametric Poisson model with an endogenous dummy variable.3 This model

generalizes heterogeneity and contains the FIML model with a bivariate normal distribution

as a special case.

The model in (5.3) includes double integrals and has no analytical solution. Fortunately,

3This model has another restriction of E [ε1i] = E [ε2i] = 0 (location normalization). However, this

restriction is cumbersome when K ≥ 2. Following Melenberg and van Soest (1996), we use an alternative

restriction, setting the constant terms equal to those in the parametric model.
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we simplify the double integrals to the following single integral:

ln fi = ln

[∫ ∞

−∞
f (yi | ε1i) G2 (ε1i)

P
g1 (ε1i) d ε1i

]
, (5.4)

where g1 is the probability density function of a normal distribution. The term G2 contains

Hermite series and depends only on ε1, which takes the following form:

G2 (ε1i) =

⎧⎪⎨⎪⎩
∫ −z′

iβ2

−∞ g2 (ε2i | ε1i) d ε2i if di = 0∫∞
−z′

iβ2
g2 (ε2i | ε1i) d ε2i if di = 1

. (5.5)

After some algebraic computation, (5.5) has an analytical solution.4

Since (5.4) has a single integral over [−∞,∞], the Gauss-Hermite quadrature method is

applied to evaluate the log-likelihood. However, Rabe-Hesketh et al. (2002, 2005) demon-

strate the results of Monte Carlo simulation and conclude that the log-likelihood function

approximated by this method often has a sharp peak and is poorly approximated by a low-

degree polynomial. Moreover, they propose the adaptive Gaussian quadrature based on im-

portance sampling and the Bayesian Markov chain method.5 Following Rabe-Hesketh et al.

(2002, 2005), this chapter applies the adaptive Gaussian quadrature to estimate the proposed

model.6

Let the parameter vector of this density and the mean and variance of the posterior density

be θ = [β′
1,β

′
2, σ1, ρ, αjk, . . . ]

′
, μi, and τi, respectively. Recall that (5.4) can be rewritten as

follows:

ln fi = ln

[
Q∑

q=1

ωqf (yi | θ, uq) G2 (uq | θ)
P

g1 (uq | θ)
h (uq | μ, τ)

1√
π

]
≡ ln

[
Q∑

q=1

ωqfi (θ | uq)
]
,

where ωq is the qth weight, uq is the qth evaluation point of the Gauss-Hermite quadrature

over [−∞,∞], Q is the number of weights, and h (·) is the importance function of a normal

distribution with mean μi and variance τi. Further, the adaptive Gaussian quadrature obtains

the parameters as follows:

1) Set the initial parameters θ(t), μ
(t)
i , τ

(t)
i , and t← 0.

4See the Appendix for further detail.
5Using the adaptive Gaussian quadrature, Miranda and Rabe-Hesketh (2006) propose the stata program

(ssm.ado) of the parametric binary, ordinary, and Poisson models with an endogenous binary variable.
6Prior to investigating the proposed model, we estimate a parametric Poisson model with an endogenous

binary variable using both the Gauss-Hermite and adaptive Gaussian quadratures. The value of the log-

likelihood under the latter is higher than that under the former. Moreover, the difference between the

endogenous binary variable’s coefficients is not negligible (See Table 5.3 and Footnote 7).
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2) Calculate the following posterior density based on μ
(t)
i,T−1 and τ

(t)
i,T−1 until convergence:

μ
(t)
i,T =

∑Q
q=1

(
μ
(t)
i,T−1 +

√
2τ

(t)
i,T−1uq

)
ωqfi

(
θ(t) | uq

)
fi
(
θ(t)
) ,

τ
(t)
i,T =

√√√√√∑Q
q=1

(
μ
(t)
i,T−1 +

√
2τ

(t)
i,T−1uq

)2
ωqfi

(
θ(t) | uq

)
fi
(
θ(t)
) −

(
μ
(t)
i,T

)2
,

where fi
(
θ(t)
)
=
∑Q

q=1 ωqfi
(
θ(t) | uq

)
and T is the number of iterations in this step.

3) Maximize the log-likelihood function with respect to θ(t) given μ
(t)
i and τ

(t)
i .

4) Set t← t+ 1. Repeat steps 2 to 3 until convergence.

5.3 An Application to Drinking Behavior

We present the results of the simplified application of the proposed model using a subsample

of 2,467 observations from the 1990 National Health Interview Survey (NHIS) data, originally

employed by Kenkel and Terza (2001).All observations comprise males and current drinkers

with high blood pressure. The dependent variable is the number of alcoholic beverages con-

sumed in the last two weeks (D). The mean of this variable is 14.70 (21% of the observations

are zero observations), and the minimum and maximum values of this variable are 0 and 168,

respectively. Moreover, 687 of the individuals have been advised by a physician to reduce

drinking (ADVICE). The explanatory variables are as follows: monthly income (EDITINC),

years of schooling (EDUC), a dummy for 30 < age ≤ 40 (AGE30), 40 < age ≤ 50 (AGE40),

50 < age ≤ 60 (AGE50), 60 < age ≤ 70 (AGE60), age > 70 (AGEGT70), black (BLACK),

non-white and non-black (OTHER), married (MARRIED), widowed (WIDOW), divorced or

separated (DIVSEP), employed (EMPLOYED), unemployed (UNEMPLOY), northeastern

residents (NORTHE), midwestern residents (MIDWEST), south resident (SOUTH), medi-

care status (MEDICARE), public insurance status (MEDICAID), military insurance status

(CHAMPUS), health insurance status (HLTHINS), regional source of care (REGMED), con-

sulting the same doctor (DRI), limits on major daily activity (MAIORLIM), limits on some

daily activity (SOMELIM), having diabetes (HVDIAB), having a heart condition (HHRT-

COND), and having had stroke (HADSTROKE). The entire description of the variables and

summary statistics is obtained by Table 5.1.

Table 5.2 shows the estimated result of the selection equation and Table 5.3 shows that of

the drinking equation of the parametric, K = 1, and K = 2 models. Since the semiparametric

models nest the parametric model as a special case, we apply the log-likelihood ratio (LR) test

to select the best model. The test statistics of normality against the semiparametric models

with K = 1 and K = 2 equal 9.408 and 226.890, respectively. This implies that we must
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Table 5.1: Drinking Behavior: Variable Description

Variable Definition Mean Std. Dev. Min. Max.

Dependent variable

D Total drinks 14.698 22.753 0 168

ADVICE Drinking advice 0.279 0.448 0 1

Socioeconomic variables (x and z)

EDITINC Monthly income ($1000) 2.575 5.008 −1 101

AGE30 30 < age ≤ 40 0.180 0.384 0 1

AGE40 40 < age ≤ 50 0.195 0.397 0 1

AGE50 50 < age ≤ 60 0.182 0.386 0 1

AGE60 60 < age ≤ 70 0.199 0.399 0 1

AGEGT70 70 < age 0.122 0.327 0 1

EDUC Years of schooling 12.925 3.087 0 18

BLACK Black d.v. 0.133 0.340 0 1

OTHER Non-white, non-black 0.018 0.132 0 1

MARRIED Married 0.645 0.479 0 1

WIDOW Widowed 0.052 0.223 0 1

DIVSEP Divorced or separated 0.160 0.367 0 1

EMPLOYED Employed 0.666 0.472 0 1

UNEMPLOY Unemployed 0.029 0.168 0 1

NORTHE Northeast 0.217 0.413 0 1

MIDWEST Midwest 0.275 0.447 0 1

SOUTH South 0.295 0.456 0 1

MEDICARE Insurance through Medicare 0.252 0.434 0 1

MEDICAID Insurance through Medicaid 0.031 0.174 0 1

CHAMPUS Military insurance 0.059 0.236 0 1

HLTHINS Health insurance 0.815 0.389 0 1

REGMED Reg. source of care 0.821 0.384 0 1

DRI See same doctor 0.721 0.449 0 1

MAIORLIM Limits on major daily activ. 0.086 0.280 0 1

SOMELIM Limits on some daily activ. 0.077 0.266 0 1

HVDIAB Have diabetes 0.061 0.239 0 1

HHRTCOND Have heart condition 0.146 0.353 0 1

HADSTROKE Had stroke 0.036 0.186 0 1

Data: NHIS 1990. The data are downloadable from the Journal of Applied Econometrics Data Archive

(http://econ.queensu.ca/jae/).

reject the hypothesis that heterogeneity follows a bivariate normal distribution. Moreover,

the test statistic of K = 1 against the semiparametric model with K = 2 equals 217.482.

Hence, the semiparametric model with K = 2 is the best of the three models.
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Table 5.2: Estimates of the Selection Equation

parametric semiparametric

K = 1 K = 2

EDITINC −0.001 (0.005) 0.000 (0.005) 0.001 (0.007)

AGE30 0.206 (0.107) 0.141 (0.124) 0.237 (0.121)

AGE40 0.104 (0.109) 0.050 (0.118) 0.087 (0.119)

AGE50 0.061 (0.112) 0.003 (0.119) 0.044 (0.122)

AGE60 0.051 (0.123) −0.068 (0.133) 0.015 (0.135)

AGEGT70 0.115 (0.151) −0.088 (0.164) 0.019 (0.168)

EDUC −0.028 (0.010) −0.065 (0.026) −0.032 (0.012)

BLACK 0.299 (0.080) 0.253 (0.126) 0.350 (0.106)

OTHER 0.262 (0.215) 0.174 (0.235) 0.327 (0.230)

MARRIED 0.147 (0.089) 0.028 (0.096) 0.122 (0.097)

WIDOW 0.244 (0.142) 0.155 (0.163) 0.286 (0.161)

DIVSEP 0.294 (0.105) 0.166 (0.128) 0.249 (0.119)

EMPLOYED −0.005 (0.082) −0.146 (0.103) −0.049 (0.089)

UNEMPLOY 0.220 (0.176) 0.017 (0.187) 0.124 (0.194)

NORTHE 0.062 (0.083) −0.033 (0.089) 0.102 (0.093)

MIDWEST −0.052 (0.079) −0.155 (0.100) −0.041 (0.086)

SOUTH −0.046 (0.079) −0.155 (0.100) −0.038 (0.086)

MEDICARE −0.023 (0.081) −0.053 (0.091) 0.001 (0.094)

MEDICAID 0.039 (0.113) 0.000 (0.125) 0.013 (0.129)

CHAMPUS 0.017 (0.082) 0.024 (0.090) −0.034 (0.092)

HLTHINS −0.142 (0.060) −0.166 (0.094) −0.179 (0.076)

REGMED 0.126 (0.090) 0.115 (0.103) 0.258 (0.107)

DRI 0.032 (0.081) 0.038 (0.088) −0.051 (0.088)

MAJORLIM 0.148 (0.083) 0.126 (0.107) 0.072 (0.102)

SOMELIM 0.033 (0.081) 0.023 (0.087) 0.031 (0.093)

HVDIAB 0.302 (0.087) 0.337 (0.162) 0.344 (0.121)

HHRTCOND 0.183 (0.063) 0.204 (0.102) 0.181 (0.079)

HADSTROK 0.085 (0.128) 0.091 (0.145) 0.206 (0.158)

CONSTANT −0.583 (0.182) −0.583 −− −0.583 −−

Note: Standard errors are in parentheses.

In Tables 5.2 and 5.3, we find certain features of the estimated parameters. First, both

the estimated parameters and standard errors of the three models, except for the endogenous

binary variable’s coefficients, closely resemble each other. Second, the parameter values of the

endogenous variable (ADVICE) are statistically significant at the 1% level; however, the values

differ among the three models: −2.291 in the parametric model, −1.979 in the semiparametric
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Table 5.3: Estimates of the Drinking Equation

parametric semiparametric

K = 1 K = 2

ADVICE −2.291 (0.248) −1.979 (0.341) −1.566 (0.213)

EDITINC 0.010 (0.011) 0.013 (0.013) 0.005 (0.012)

AGE30 0.153 (0.193) 0.010 (0.189) 0.142 (0.157)

AGE40 −0.075 (0.194) −0.173 (0.188) −0.005 (0.156)

AGE50 −0.243 (0.194) −0.330 (0.188) −0.101 (0.157)

AGE60 −0.201 (0.204) −0.420 (0.197) −0.066 (0.164)

AGEGT70 −0.285 (0.238) −0.661 (0.227) −0.280 (0.188)

EDUC −0.027 (0.017) −0.084 (0.019) −0.041 (0.014)

BLACK 0.048 (0.146) −0.102 (0.139) −0.097 (0.118)

OTHER −0.233 (0.400) −0.441 (0.365) −0.379 (0.296)

MARRIED 0.012 (0.154) −0.207 (0.151) −0.071 (0.125)

WIDOW 0.329 (0.245) 0.141 (0.238) 0.172 (0.200)

DIVSEP 0.403 (0.187) 0.135 (0.181) 0.335 (0.150)

EMPLOYED 0.084 (0.131) −0.126 (0.128) −0.035 (0.105)

UNEMPLOY 0.729 (0.304) 0.353 (0.288) 0.424 (0.241)

NORTHE −0.063 (0.148) −0.231 (0.142) −0.077 (0.120)

MIDWEST −0.272 (0.140) −0.429 (0.137) −0.212 (0.114)

SOUTH −0.238 (0.139) −0.403 (0.135) −0.170 (0.113)

CONSTANT 2.584 (0.318) 2.584 − 2.584 −
σ1 2.199 (0.094) 1.843 (0.237) 1.730 (0.398)

ρ 0.835 (0.039) 0.755 (0.101) 0.784 (0.097)

α01 0.326 (2.125) −1.206 (1.205)

α02 −0.643 (0.437)

α10 0.051 (0.956) 0.717 (0.735)

α11 0.156 (0.090) 0.805 (0.166)

α12 0.183 (0.238)

α20 −0.220 (0.115)

α21 −0.061 (0.130)

α22 −0.018 (0.011)

log-likelihood −10,202.043 −10,197.339 −10,088.598

Note: Standard errors are in parentheses.

model with K = 1, and −1.566 in the semiparametric model with K = 2.7 This means that

7Using the Gauss-Hermite quadrature, the log-likelihood values of the parametric, K = 1, and K = 2

models are −10,732.920, −10,460.757, and −10,271.797, respectively. The coefficient values of the endogenous

binary variable (ADVICE) are −1.235, −1.038, and −0.819, respectively. Moreover, the advice effects of the

three models are −70.9%, −64.6%, and −55.9%, respectively.
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Figure 5.1: Estimated Densities of Heterogeneity

advice appears to reduce the consumption of alcoholic beverages by [exp (−2.291)− 1]×100 =

−89.9% in the parametric model, [exp (−1.979)− 1] × 100 = −86.2% in the semiparametric

model with K = 1, and [exp (−1.566)− 1]×100 = −79.1% in the semiparametric model with

K = 2. Compared to the result of the parametric model, the reduction of alcoholic beverages

in the two semiparametric models is small. Based on the LR test and estimated results, the

influence of the doctor’s advice has a negative effect on drinking behavior; however, it can be

overestimated by the parametric model.

Figure 5.1 graphs the estimated densities of the three models using the 10% significant
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coefficients. We find that the semiparametric (semi-nonparametric) model with K = 1 has a

fatter tail than the normal density (parametric) model; moreover, the semiparametric model

with K = 2 is a twin-peak distribution.

5.4 Conclusion

This chapter proposes a new semiparametric count data estimation with an endogenous binary

variable that generalizes bivariate correlated unobserved heterogeneity using Hermite poly-

nomials. In an example using the 1990 NHIS data, the semiparametric model with K = 2

overcomes the other models in terms of the LR test. The absolute values of the endogenous

binary regressor coefficients of the semiparametric models are smaller than that of the para-

metric model, and that of the semiparametric model with K = 2 is the smallest of the three.

This introduces the interpretation of the binary endogenous variable, that is, the effect of

the advice variable. The parametric model overestimates the effect of doctor’s advice in our

example. Moreover, the estimated densities of the semiparametric models have fatter tail

than that of the parametric model.

One major advantage of the semiparametric model is the flexibility of bivariate distributed

heterogeneity. The difference between the endogenous binary variable’s coefficients of the

parametric and semiparametric models is not negligible in our example. Therefore, it is

useful to generalize bivariate heterogeneity using Hermite polynomials.

Appendix

Following van der Klaauw and Koning (2003), we specify the bivariate semiparametric (semi-

nonparametric) normal density as follows:

g (ε1i, ε2i) =
1

P

⎛⎝ K∑
j=0

K∑
k=0

αjkε
j
1iε

k
2i

⎞⎠2

× 1

2πσ1σ2
√
1− ρ2

× exp

[
− 1

2 (1− ρ2)

{(
ε1i
σ1

)2

− 2ρ
ε1i
σ1

ε2i
σ2

+

(
ε2i
σ2

)2
}]

, (A5.1)

where

P =

∫∫ ∞

−∞

⎛⎝ K∑
j=0

K∑
k=0

αjkε
j
1iε

k
2i

⎞⎠2

× 1

2πσ1σ2
√
1− ρ2

× exp

[
− 1

2 (1− ρ2)

{(
ε1i
σ1

)2

− 2ρ
ε1i
σ1

ε2i
σ2

+

(
ε2i
σ2

)2
}]

d ε1i d ε2i.
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We now consider the case of K = 2. The round bracket of (A5.1) can be rearranged as⎛⎝ 2∑
j=0

2∑
k=0

αjkε
j
1iε

k
2i

⎞⎠2

= γ0 + γ1ε2i + γ2ε
2
2i + γ3ε

3
2i + γ4ε

4
2i,

where

γ0 =
(
α00 + α10ε1i + α20ε

2
1i

)2
,

γ1 = 2
(
α00 + α10ε1i + α20ε

2
1i

) (
α01 + α11ε1i + α21ε

2
1i

)
,

γ2 = 2
(
α00 + α10ε1i + α20ε

2
1i

) (
α02 + α12ε1i + α22ε

2
1i

)
+
(
α01 + α11ε1i + α21ε

2
1i

)2
,

γ3 = 2
(
α01 + α11ε1i + α21ε

2
1i

) (
α02 + α12ε1i + α22ε

2
1i

)
,

γ4 =
(
α02 + α12ε1i + α22ε

2
1i

)2
.

We require the following algebraic computation to obtain (5.4) or P :∫ ∞

−∞

∫ b̂

â

f (yi | di, ε1i) g (ε1i, ε2i) d ε2i d ε1i

=

∫ ∞

−∞
f (yi | di, ε1i) 1√

2πσ1
exp

(
−1

2

(
ε1i
σ1

)2
)

× 1

P

∫ b̂

â

4∑
j=0

γjε
j
2

1√
2πσ2

√
1− ρ2

× exp

⎡⎢⎣− 1(
σ2
√
2 (1− ρ2)

)2 (ε2i − ρσ2σ1 ε1i
)2

⎤⎥⎦ d ε2i d ε1i
≡
∫ ∞

−∞
f (yi | di, ε1i) g1 (ε1i)

∫ b̂

â

g2 (ε2i | ε1i)
P

d ε2i d ε1i

≡
∫ ∞

−∞
f (yi | di, ε1i) g1 (ε1i) G2 (ε1i)

P
d ε1i, (A5.2)

where g1 (·) is the probability density function of a normal distribution. When â = −∞ and

b̂ = ∞, (A5.2) results in P . Substituting ξ = ρσ2ε1i/σ1, u = ε2i − ξ and δ = σ2
√
2 (1− ρ2)

into (A5.2) yields

G2

P
=

1√
πδ

1

P

∫ b̂−ξ

â−ξ

4∑
j=0

γj (u+ ξ)
j
exp

[
−
(u
δ

)2]
du

≡ 1√
πδ

1

P

∫ b

a

4∑
j=0

ηju
j exp

[
−
(u
δ

)2]
du,

where a = â− ξ, b = b̂− ξ, and

η0 = γ4ξ
4 + γ3ξ

3 + γ2ξ
2 + γ1ξ + γ0, η1 = 4γ4ξ

3 + 3γ3ξ
2 + 2γ2ξ + γ1,

η2 = 6γ4ξ
2 + 3γ3ξ + γ2, η3 = 4γ4ξ + γ3,

η4 = γ4.
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Therefore, using the following recursion formula (van der Klaauw and Koning, 2003):

Ik (a, b) =

∫ b

a

uk exp

(
−u

2

δ2

)
du

=
δ2

2

[
ak−1 exp

(
−a

2

δ2

)
− bk−1 exp

(
− b

2

δ2

)]
+

(k − 1) δ2

2
Ik−2 (a, b)

and substituting b = −z′iβ2 − ξ, we obtain the following relation:

G2 (ε1i | di = 0)

P
=

1√
πδ

1

P
[η0I0 (−∞, b) + η1I1 (−∞, b) + η2I2 (−∞, b)

+η3I3 (−∞, b) + η4I4 (−∞, b)] .

Using the same procedure, we can calculate the term P .
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Chapter 6

Semiparametric Duration

Analysis with an Endogenous

Binary Variable: An Application

to Hospital Stays

6.1 Introduction

Recently, duration (survival) analysis has been widely used in applied econometrics. More-

over, we find situations where covariates (especially an endogenous binary variable) are simul-

taneously determined along with the duration variable. As is the case with many nonlinear

models, the endogeneity problem in duration analysis is cumbersome because the existence

of censored duration data leads to nonlinearity, leading the two-stage method to become

inconsistent (Wooldridge, 2002, p.478). Some studies have been conducted to analyze the

endogeneity problem in duration analysis. Bijwaard and Ridder (2005) propose a two-stage

instrumental variable estimator for duration data based on the generalized accelerated failure

model that contains the proportional hazard model as a special case. However, the models

based on a hazard rate do not explicitly assume heterogeneity. In applied econometrics, the

possibility of omitted variables is inevitable and controling population heterogeneity alone is

inadequate. Therefore, in duration analysis, it is important to consider both heterogeneity

and endogeneity.

This chapter proposes an alternative semiparametric duration model with an endogenous
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binary variable that generalizes the heterogeneity of both duration and endogeneity. The

generalization of heterogeneity is done as follows: first, we consider a simple log-normal

duration model with an endogenous binary variable; next, we assume heterogeneity that

follows a semiparametric bivariate distribution using Hermite polynomials based on van der

Klaauw and Koning (2003). Under these setups, we investigate the difference between the

endogenous binary variable’s coefficients of the parametric and semiparametric models using

the Medical Expenditure Panel Survey (MEPS) data employed by Prieger (2002).

Section 2 proposes a semiparametric duration model with an endogenous binary variable

and censored data. Section 3 depicts the application of the length of hospitalizations, and

Section 4 presents our concluding remarks.

6.2 Semiparametric Duration Analysis with an Endoge-

nous Binary Variable

We consider a log-normal model in duration analysis based on Masuhara (2007): ln ti =

βddi+x′
iβ1+ε1i, where ti, i = 1, . . . , N , is an observed duration outcome that has a continuous

probability density f (ti); xi ∼ k1×1 and zi ∼ k2×1 denote explanatory variables (covariates);

β1 and βd denote vectors of unknown parameters; ε1i is unobserved heterogeneity. Moreover,

di represents a binary endogenous variable and is assumed to be generated by the process

di = 1 if d∗i = z′iβ2 + ε2i ≥ 0 and di = 0 otherwise, where d∗i is a latent variable; ε2i

is unobserved heterogeneity; β2 denotes a vector of parameters. In this model, a random

variable ti is a linear function of ε1i. Therefore, we concentrate on the joint distribution of

(ε1i, ε2i). It is natural to assume that (ε1i, ε2i) follows bivariate normal distribution with

mean zero and covariance matrix
(
σ2
1 , ρσ1, 1

)
, i.e., a linear model with an endogenous binary

variable. However, this normally distributed assumption leads to a specification problem.

Therefore, we require a more flexible and robust estimation for this duration analysis with

an endogenous binary variable.

Semiparametric estimation of this model is to approximate an unknown error term using

Hermite polynomials. Following van der Klaauw and Koning (2003), the joint distribution of

(ε1i, ε2i) takes the following semi-nonparametric (SNP) normal density:

f (ε1i, ε2i) =
1

P

⎛⎝ K∑
j=0

K∑
k=0

αjkε
j
1iε

k
2i

⎞⎠2

1

2πσ1σ2
√
1− ρ2

× exp

[
− 1

2 (1− ρ2)

{(
ε1i
σ1

)2

− 2ρ
ε1i
σ1

ε2i
σ2

+

(
ε2i
σ2

)2
}]

≡ f∗

P
, (6.1)

where P =
∫∫∞

−∞ f∗d ε1i d ε2i ensures integration to 1 by scaling the density, σ1 and ρ are
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standard deviation and correlation parameters, and αjk are parameters to be estimated. To

identify the parameters, we set α00 = 1 and σ2 = 1.1

This model includes double integrals but has no analytical solution. Therefore, we eval-

uate the likelihood using a numerical integral. Fortunately, the log-likelihood results in the

following single integral:

lnL =
N∑
i=1

(1− ci) ln
[
Ψ(ε1i)

P

1

σ1
φ

(
ε1i
σ1

)]
+ ci ln

[∫ ∞

ε1i

Ψ(ε1i)

P

1

σ1
φ

(
ε1i
σ1

)
d ε1i

]
,

where ci is a censoring indicator (ci = 1 if the observation is censored and ci = 0 if the

observation is uncensored) and ε1i ≡ ln ti − βddi − x′
iβ1. The term φ (·) is the probability

density function of the standard normal distribution; Ψ (·) contains a Hermite series and

depends only on ε1i,
2 which takes the following form:

Ψ (ε1i) =

⎧⎪⎨⎪⎩
∫ −z′

iβ2

−∞ ψ (ε2i | ε1i) d ε2i if di = 0∫∞
−z′

iβ2
ψ (ε2i | ε1i) d ε2i if di = 1

. (6.2)

After some algebraic computation, Equation (6.2) has an analytical solution.

Although we avoid double integrals, lnL remains a single integral over [ε1i,∞] in a cen-

sored part. If the integral is distributed over [−∞,∞], the log-likelihood is easily evaluated

by applying the Gauss-Hermite (GH) quadrature. In this censored part, we can calculate the

log-likelihood function using εs > ε1i, where εs is the evaluation point of the GH quadrature.

Since ε1i contains the vector β1 (or βd), a small change in the value of β1 (or βd) does not

change the likelihood, and thus, the performance of the GH quadrature is low. When we

use the simulated maximum likelihood (SML) method instead of the GH quadrature, this

problem still holds. It is necessary to use many evaluation points to approximate the integral

accurately. Hence, it takes much time to calculate the accurate likelihood. To maximize the

log-likelihood, it is not realistic to use the GH quadrature or SML.

This paper applies the GHK simulator, due to Geweke (1992), Hajivassiliou and McFad-

den (1994), and Keane (1994) to evaluate the log-likelihood in the censored part.3 The GHK

simulator is described as follows: (i) Generate the value of ε1s from a truncated normal dis-

tribution at ε1i as follows: (a) generate a standard uniform random variable us; (b) calculate

ε1s = σ1Φ
−1 (Φ (ε1i/σ1) + us {1− Φ(ε1i/σ1)}), where Φ (·) is a cumulative distribution of the

standard normal distribution. (ii) Calculate [1− Φ(ε1i/σ1)] Ψ (ε1s) /P . iii) Repeat the steps 1

to 2 S times, and calculate the simulated probability: [1− Φ (ε1i/σ1)]
∑S

s=1 Ψ(ε1s) / (P × S).
1This model has another restriction: E [ε1i] = E [ε2i] = 0. The restriction is equivalent to setting the

constant term equal to that in the parametric model.
2For further details, see Masuhara (2008).
3Train (2003) explains the simplified version of the GHK simulator and applies this simulator to mixed

logit models.
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Although the random variable ε1s should be generated from a censored normal distri-

bution, the GHK simulator generates the truncated normal distribution. Therefore, it is

necessary to use the weight [1− Φ(ε1i/σ1)] for Ψ (ε1s) /P . Unlike the GH quadrature or

SML, the GHK simulator calculates the log-likelihood on fixed evaluation points.

Moreover, this chapter uses Halton (1960) sequences for a standard uniform random vari-

able us. The SML method requires a large number of pseudo-random draws us to achieve a

suitable level of precision. However, it is computationally expensive to increase the number of

simulation draws in order to reduce the simulation error to acceptable levels. Quasi-random

numbers like the Halton sequence, which use non-random points within the domain of inte-

gration, are another method to evaluate the simulated likelihood. In general, the convergence

rate for the quasi-random numbers is faster than that for the pseudo-random numbers. Bhat

(2001) and Train (2003) report that the Halton sequences are more uniformly distributed

than pseudo-random numbers.

Halton sequences are constructed as follows. Consider the prime number 2. Take the unit

interval (0, 1) and divide it into two parts. The dividing point 1/2 is the first element of the

Halton sequence. Next, divide each part into two parts. The dividing points, 1/4 and 3/4,

are the next two elements of the sequence. Divide each of the four parts into two parts each.

The dividing points are 1/8, 5/8, 3/8, and 7/8 (which are 1/8 added to zero and the previous

numbers: 0, 1/2, 1/4, and 3/4). Continue this process to obtain the Halton sequences based

on the prime number 2 (1/2, 1/4, 3/4, 1/8, 5/8, 3/8, 7/8, . . . ). Similar sequences are defined for

other prime numbers, such as 3 (1/3, 2/3, 1/9, 4/9, 7/9, 2/9, 5/9, 8/9, . . . ). In order to obtain

corresponding standard normal points from each Halton draw, we take the inverse standard

normal distribution transformation: Φ−1 (1/2) = 0, Φ−1 (1/4) = −0.67, Φ−1 (3/4) = 0.67,

. . . , where Φ−1 is an inverse of the cumulative density function of the standard normal.

6.3 Application to Hospital Stays

We present the results of the simplified application of the model, using a subsample of 1,257

observations from the 1996 Medical Expenditure Panel Survey (MEPS), originally employed

by Prieger (2002).We regard the variable length of all hospitalizations (HOSPDUR) as du-

ration and employ the data with HOSPDUR > 0 on 1,257 out of the original 14,956 ob-

servations to concentrate on the duration analysis. The average of the annual length of all

hospitalizations is 7.105 although it is strange that the minimum is 0.5 and the maximum

is 99. The explanatory variables are as follows: (1) health status measures — the num-

ber of self-reported medical conditions (CONDN), the number of conditions on the priority

list (PROLIST), a dummy for self-perceived excellent health (EXCLHLTH), self-perceived
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Table 6.1: Hospital Stays: Variable Description

Variable Definition Mean Std. Dev. Min. Max.

HOSPDUR Length of all hospitalizations 7.105 10.958 0.5 99

HOSPNUM Number of hospitals stays 1.403 0.836 1 9

PRIVINS 1 = covered by private insurance of any type 0.637 0.481 0 1

MEDICARE 1 = currently covered by Medicare 0.353 0.478 0 1

MEDICAID 1 = currently covered by Medicaid 0.177 0.382 0 1

HMO 1 = enrolled in a HMO 0.369 0.483 0 1

CONDN Number of self-reported medical conditions 2.970 2.696 0 22

PRIOLIST Number of conditions on the priority list 1.194 1.551 0 11

EXCLHLTH 1 = individual reports health to be ’excellent’ 0.164 0.370 0 1

POORHLTH 1 = individual reports health to be ’poor’ 0.121 0.326 0 1

ADLHELP 1 = requires assistance with daily living tasks 0.149 0.356 0 1

MIDWEST Regional indicator (EAST is the excluded dummy) 0.238 0.426 0 1

SOUTH Regional indicator (EAST is the excluded dummy) 0.363 0.481 0 1

WEST Regional indicator (EAST is the excluded dummy) 0.203 0.402 0 1

FEMALE 1 = female 0.652 0.476 0 1

AGE Age 51.080 20.193 18 90

BLACK 1 = black (not Hispanic) 0.126 0.332 0 1

HISPANIC 1 = of Hispanic ethnicity 0.173 0.378 0 1

EDUC Years of education 11.691 3.318 0 17

MARRIED Marital status: 1 = currently married 0.563 0.496 0 1

EMPLOYED Employment status: 1 = currently employed 0.425 0.495 0 1

PRIVMCAR 1 = covered by private insurance and Medicare 0.201 0.401 0 1

INSCUR Health insurance offered from the current main job 0.284 0.451 0 1

INSPREV Health insurance offered through a job 0.219 0.414 0 1

other than the current main job

INSURED Insured 0.908 0.290 0 1

Data: MEPS 1996. The data are downloadable from the Journal of Applied Econometrics Data Archive

(http://econ.queensu.ca/jae/).

poor health (POORHLTH), and assistance for the physical limitations in daily living (ADL-

HELP); (2) socioeconomic variables — exact age (AGE), years of education (EDUC), a

dummy for south residents (SOUTH), midwestern residents (MIDWEST), western residents

(WEST), African-Americans (BLACK), Hispanic (HISPANIC), female (FEMALE), marital

status (MARRIED), employment status (EMPLOYED), health insurance offered from the

current main job (INSCUR), and health insurance offered through a job other than the cur-

rent main job (INSPREV). The entire description of the variables and summary statistics is

obtained by Table 6.1.
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Table 6.2: Estimated Results of Hospital Stays (Selection Equation)

non-censored data artificial censored data at t = 30

parametric SNP (K = 2) parametric SNP (K = 2)

INSCUR 1.283 (0.173) 1.525 (0.198) 1.276 (0.172) 1.403 (0.176)

INSPREV 0.328 (0.183) 0.292 (0.172) 0.313 (0.182) 0.259 (0.162)

CONDN 0.017 (0.033) 0.013 (0.037) 0.017 (0.033) 0.020 (0.033)

PRIOLIST 0.091 (0.069) 0.110 (0.072) 0.089 (0.069) 0.087 (0.067)

EXCLHLTH 0.454 (0.171) 0.535 (0.182) 0.448 (0.170) 0.480 (0.166)

POORHLTH 0.052 (0.193) 0.092 (0.200) 0.056 (0.193) 0.106 (0.186)

ADLHELP 0.376 (0.227) 0.334 (0.212) 0.382 (0.226) 0.336 (0.202)

MIDWEST −0.438 (0.204) −0.437 (0.204) −0.444 (0.203) −0.436 (0.190)

SOUTH −0.741 (0.181) −0.846 (0.193) −0.743 (0.180) −0.807 (0.176)

WEST −0.307 (0.202) −0.256 (0.206) −0.311 (0.201) −0.252 (0.191)

FEMALE 0.130 (0.131) 0.096 (0.132) 0.128 (0.130) 0.078 (0.123)

AGE 0.021 (0.004) 0.024 (0.004) 0.021 (0.004) 0.021 (0.004)

BLACK 0.050 (0.178) 0.083 (0.197) 0.048 (0.178) 0.059 (0.180)

HISPANIC −0.188 (0.141) −0.183 (0.158) −0.190 (0.140) −0.199 (0.144)

EDUC 0.040 (0.018) 0.047 (0.020) 0.040 (0.018) 0.041 (0.018)

MARRIED −0.022 (0.118) −0.037 (0.127) −0.022 (0.118) −0.057 (0.117)

EMPLOYED −0.494 (0.139) −0.605 (0.174) −0.495 (0.138) −0.567 (0.152)

CONSTANT 0.037 (0.350) 0.037 − 0.045 (0.349) 0.045 −

α01 −0.148 (0.059) −0.177 (0.039)

α02 2.857 (0.055) 1.963 (0.034)

α10 −0.135 (0.056) −0.418 (0.032)

α11 4.361 (0.051) 3.047 (0.029)

α12 −0.894 (0.018) −0.440 (0.011)

α20 1.843 (0.047) 1.267 (0.024)

α21 −0.802 (0.020) −0.384 (0.011)

α22 0.004 (0.009) −0.010 (0.005)

log-likelihood −2,081.017 −2,068.231 −2,076.447 −2,063.234

Notes: SNP denotes the semi-nonparametric duration model; standard errors are in parentheses.

Many empirical works demonstrate that an individual’s insurance choice is endogenous

when health outcomes are considered to be a dependent variable. We are interested in how the

individual’s insurance choice affects the duration of hospital stays (HOSPDUR). Following

Prieger (2002), this chapter uses a single insurance indicator (INSURED), which includes all

types of insurance such as indemnity private insurance, medicare, medicaid, and HMO; this

is done so as to avoid the difficulties involved in estimating multivariate probit models of high
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Table 6.3: Estimated Results of Hospital Stays (Duration Equation)

non-censored data artificial censored data at t = 30

parametric SNP (K = 2) parametric SNP (K = 2)

INSURED 0.676 (0.097) 0.986 (0.074) 0.713 (0.096) 1.037 (0.076)

CONDN −0.013 (0.016) −0.014 (0.016) −0.015 (0.016) −0.014 (0.015)

PRIOLIST 0.056 (0.029) 0.054 (0.028) 0.056 (0.029) 0.053 (0.028)

EXCLHLTH −0.144 (0.081) −0.155 (0.076) −0.148 (0.081) −0.162 (0.077)

POORHLTH 0.330 (0.096) 0.329 (0.093) 0.328 (0.097) 0.330 (0.093)

ADLHELP 0.315 (0.091) 0.323 (0.088) 0.335 (0.092) 0.323 (0.089)

MIDWEST −0.041 (0.088) −0.009 (0.084) −0.043 (0.088) 0.005 (0.086)

SOUTH 0.068 (0.082) 0.131 (0.078) 0.068 (0.082) 0.139 (0.079)

WEST −0.238 (0.092) −0.185 (0.088) −0.242 (0.092) −0.181 (0.089)

FEMALE −0.261 (0.063) −0.219 (0.060) −0.256 (0.063) −0.204 (0.061)

AGE 0.009 (0.002) 0.008 (0.002) 0.009 (0.002) 0.008 (0.002)

BLACK 0.221 (0.091) 0.225 (0.086) 0.225 (0.092) 0.239 (0.088)

HISPANIC 0.074 (0.084) 0.099 (0.078) 0.080 (0.084) 0.121 (0.079)

EDUC −0.018 (0.010) −0.015 (0.009) −0.017 (0.010) −0.014 (0.009)

MARRIED −0.134 (0.060) −0.120 (0.056) −0.133 (0.060) −0.111 (0.057)

EMPLOYED −0.186 (0.066) −0.163 (0.061) −0.191 (0.066) −0.163 (0.062)

CONSTANT 0.657 (0.198) 0.657 − 0.617 (0.198) 0.617 −
σ1 1.032 (0.020) 0.913 (0.013) 1.034 (0.021) 1.038 (0.016)

ρ −0.473 (0.047) −0.776 (0.010) −0.491 (0.046) −0.817 (0.010)

Notes: SNP denotes the semi-nonparametric duration model; standard errors are in parentheses.

order. Although, when analyzing duration data, censored data play an important role, our

data do not have censored data. Hence, we compare the coefficients between (1) non-censored

data and (2) artificial censored data at t = 30 (the proportion of right-censored samples is

4.14%).

Table 6.2 and 6.3 show the estimated results of parametric and SNP duration analysis

with K = 2.4 The parameter values of the endogenous variable (INSURED) are statistically

significant at the 1% level; however, the values differ among the four models: 0.676 in the

non-censored parametric model, 0.986 in the non-censored SNP model with K = 2, 0.713

in the censored parametric model, and 1.037 in the censored SNP model with K = 2. This

means that the any type of insurance choice increases the length of hospital stays by 96.696%

in the non-censored parametric model, 168.168% in the non-censored SNP model with K = 2,

104.010% in the censored parametric model, and 182.074% in the censored SNP model with

4Since the log-likelihood ratio tests support the SNP model with K = 2, we omit the results of the SNP

model with K = 1.
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Figure 6.1: Estimated Densities of Heterogeneity

K = 2.5 Compared with the parametric models, the increase of hospital stays in the two SNP

models is large, especially in the case of non-censored data. Although there is the difference

between the INSURED of the censored and non-censored parametric models, the values of

INSURED in the two SNP models resemble each other.

Figure 6.1 graphs the estimated densities of the three models using the 5% significant

coefficients. We find that the semiparametric model with K = 2 is a twin-peak distribution

and that the contour lines differ from the usual ellipsoids of the bivariate normal density.

6.4 Conclusion

This chapter proposes a new semiparametric duration model with an endogenous binary

variable and censored data that generalizes bivariate correlated unobserved heterogeneity

using Hermite polynomials. When applied to the duration of hospital stays of the MEPS

5In the case of the artificial censored data at t = 15, the INSURED values of the parametric and SNP

models are 0.861 and 1.074, respectively.
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data, the estimated results of both the non-censored and artificial censored SNP models show

a good performance. The absolute values of the endogenous binary regressor coefficients

of the semiparametric models are larger than that of the parametric models, if the data are

censored or not. This introduces the interpretation of the binary endogenous variable, that is,

the individual’s insurance choice variable. The parametric model underestimates the effect of

the individual’s insurance choice in our example. The difference of the estimated endogenous

coefficients of both the two models is smaller than those of the parametric models. This means

that, if the data are censored, the parametric model have a large inconsistency. Moreover,

the estimated densities of the semiparametric models have twin peak distribution.

The semiparametric model proposed in this chapter has one major advantage of the flex-

ibility of bivariate distributed heterogeneity. When the difference between the endogenous

binary variable’s coefficients of the parametric and semiparametric models is not negligible,

it is useful to generalize bivariate heterogeneity using Hermite polynomials.
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No. 452.

109



Romeu, A. and M. Vera-Hernández (2005), “Counts with an Endogenous Binary Regressor:

A Series Expansion Approach,” Econometrics Journal, 8 (1), 1–22.

Rubin, D.B. (1974), “Estimating Causal Effects of Treatments in Randomized and Nonran-

domized Studies,” Journal of Educational Psychology, 66 (5), 688–701.

Ruud, P.A. (1991), “Extensions of Estimation Methods Using the EM Algorithm,” Journal

of Econometrics, 49 (3), 305–341.

Saab, Y.G. and V.B. Rao (1990), “Stochastic Evolution: A Fast Effective Heuristic for Some

Genericlayout Problems,” Design Automation Conference 1990 Proceedings, ACM/IEEE.

Sait, S.M. and H. Youssef (2000), Iterative Computer Algorithms with Applications in Engi-

neering: Solving Combinatorial Optimization Problems, Wiley IEEE Computer Society

Press, New York.

Santos Silva, J.M.C. (1997a), “Generalized Poisson Regression for Positive Count Data,”

Communications in Statistics Part B: Simulation and Computation, 26 (3), 1089–1102.

Santos Silva, J.M.C. (1997b), “Unobservables in Count Data Models for On-Site Samples,”

Economics Letters, 54 (3), 217–220.

Santos Silva, J.M.C. (2001), “A Score Test for Non-Nested Hypotheses with Applications to

Discrete Data Models,” Journal of Applied Econometrics, 16 (5), 577–597.

Santos Silva, J.M.C. and F. Covas (2000), “A Modified Hurdle Model for Completed Fertil-

ity,” Journal of Population Economics, 13 (2), 173–188.

Santos Silva, J.M.C. and F. Windmeijer (2001), “Two-Part Multiple Spell Models for Health

Care Demand,” Journal of Econometrics, 104 (1), 67–89.

Schellhorn, M. (2001), “A Comparison of Alternative Methods to Model Endogeneity in

Count Models. An Application to the Demand for Health Care and Health Insurance

Choice,” Social and Economic Dimensions of an Aging Population Research Papers No.

40.

Stewart, M.B. (2004), “Semi-Nonparametric Estimation of Extended Ordered Probit Mod-

els,” Stata Journal, 4 (1), 27–39.

Stewart, M.B. (2005), “A Comparison of Semiparametric Estimators for the Ordered Re-

sponse Model,” Computational Statistics and Data Analysis, 49 (2), 555–573.

Teicher, H. (1960), “On the Mixture of Distributions,” Annals of Mathematical Statistics,

31 (1), 55–73.

Teicher, H. (1963), “Identifiability of Finite Mixtures,” Annals of Mathematical Statistics,

34 (4), 1265–1269.

Terza, J.V. (1998), “Estimating Count-Data Models with Endogenous Switching: Sample

Selection and Endogenous Treatment Effects,” Journal of Econometrics, 84 (1), 129–54.

110



Terza, J.V. and P.W. Wilson (1990), “Analyzing Frequencies of Several Types of Events:

A Mixed Multinomial-Poisson Approach,” Review of Economics and Statistics, 72 (1),

108–115.

Train, K.E. (2000), “Halton Sequences for Mixed Logit,” Working Paper No. E00–278,

Department of Economics, University of California Berkley.

Train, K.E. (2003), Discrete Choice Methods with Simulation, Cambridge University Press,

Cambridge.

Ueda, N. and R. Nakano (1998), “Deterministic Annealing EM Algorithm,” Neural Networks,

11 (2), 271–282.

van de Ven, W.P.M.M. and B.M.S. van Praag (1981), “The Demand for Deuctibles in Private

Health Insurance: A Probit Model with Sample Selection,” Journal of Econometrics,

17 (2), 229–252.

van der Klaauw, B. and R.H. Koning (2003), “Testing the Normality Assumption in the

Sample Selection Model with an Application to Travel Demand,” Journal of Business

and Economic Statistics, 21 (1), 31–42.

van Ophem, H. (2000), “Modeling Selectivity in Count-Data Models,” Journal of Business

and Economic Statistics, 18 (4), 503–511.

van Outri, T. (2004), “Measuring Horizontal Inequity in Belgian Health Care Using a Gaus-

sian Random Effects Two Part Count Data Model,” Health Economics, 3 (7), 705–724.

Vuong, Q.H. (1989), “Likelihood Ratio Tests for Model Selection and Non-Nested Hypothe-

ses,” Econometrica, 57 (2), 307–333.

Wang, P. (2003), “A Bivariate Zero-Inflated Negative Binomial Regression Model for Count

Data with Excess Zeros,” Economics Letters, 78 (3), 373–378.

Wang, P. and J.D. Alba (2006), “A Zero-Inflated Negative Binomial Regression Model with

Hidden Markov Chain,” Economics Letters, 92 (2), 209–213.

Wedel, M., W.S. Desarbo, J.R. Bult, and V. Ramaswamy (1993), “A Latent Class Poisson

Regression Model for Heterogeneous Count Data,” Journal of Applied Econometrics, 8

(4), 397–411.

White, H. (2001), Asymptotic Theory for Econometricians, Academic Press, Orlando.

Windmeijer, F.A.G. (2000), “Moment Conditions for Fixed Effects Count Data Models with

Endogenous Regressors,” Economics Letters, 68 (1), 21–24.

Windmeijer, F.A.G. and J.M.C. Santos Silva (1997), “Endogeneity in Count Data Models:

An Application to Demand for Health Care,” Journal of Applied Econometrics, 12 (3),

281–294.

111



Winkelmann, R. (1996), “A Count Data Model for Gamma Waiting Times,” Statistical

Papers, 37 (2), 177–187.

Winkelmann, R. (2000), “Seemingly Unrelated Negative Binomial Regression,” Oxford Bul-

letin of Economics and Statistics, 62 (4), 553–560.

Winkelmann, R. (2003), Econometric Analysis of Count Data 4th ed., Springer, Berlin.

Winkelmann, R. (2004a), “Co-Payments for Prescription Drugs and the Demand for Doctor

Visits: Evidence from a Natural Experiment,” Health Economics, 13 (11), 1081–1089.

Winkelmann, R. (2004b), “Health Care Reform and the Number of Doctor Visits: An

Econometric Analysis,” Journal of Applied Econometrics, 19 (4), 455–472.

Winkelmann, R. (2006), “Reforming Health Care: Evidence from Quantile Regressions for

Counts,” Journal of Health Economics, 25 (1), 131–145.

Winkelmann, R. and S. Boes (2006), Analysis of Microdata, Springer, Berlin.

Winkelmann, R. and K.F. Zimmermann (1995), “Recent Developments in Count Data Mod-

elling: Theory and Application,” Journal of Economic Surveys, 9 (1), 1–24.

Wooldridge, J.M. (2002), Econometric Analysis of Cross Section and Panel Data, MIT Press,

Cambridge.

Zimmer, D.M. and P.K. Trivedi (2006), “Using Trivariate Copulas to Model Sample Selec-

tion and Treatment Effects: Application to Family Health Care Demand,” Journal of

Business and Economic Statistics, 24 (1), 63–76.

112


