<table>
<thead>
<tr>
<th>Title</th>
<th>Alternative Approaches to Commercial Property Price Indexes for Tokyo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Diewert, Erwin; Shimizu, Chihiro</td>
</tr>
<tr>
<td>Citation</td>
<td></td>
</tr>
<tr>
<td>Issue Date</td>
<td>2014-09</td>
</tr>
<tr>
<td>Type</td>
<td>Technical Report</td>
</tr>
<tr>
<td>Text Version</td>
<td>Publisher</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10086/26846</td>
</tr>
</tbody>
</table>
Alternative Approaches to Commercial Property Price Indexes for Tokyo

Erwin Diewert
Chihiro Shimizu

September, 2014
Alternative Approaches to Commercial Property Price Indexes for Tokyo

Erwin Diewert and Chihiro Shimizu

School of Economics, The University of British Columbia, Vancouver, Canada, V6T 1Z1.

First version: July 12, 2014
This version: Aug 28, 2014

Abstract
The paper studies the problems associated with the construction of price indexes for commercial properties that could be used in the System of National Accounts. Property price indexes are required for the stocks of commercial properties in the Balance Sheets of the country and related price indexes for the land and structure components of a commercial property are required in the Balance Sheet accounts of the country for the calculation of the Multifactor Productivity of the Commercial Property Industry. The paper uses a variant of the builder’s model that has been used to construct Residential Property Price Indexes. Geometric depreciation rates are estimated for commercial offices in Tokyo using assessment data for REITs. The problems associated with the decomposition of asset value into land and structure components are addressed. The problems associated with depreciating capital expenditures on buildings and with measuring the loss of asset value due to early retirement of the structure are also addressed.

Key Words: Commercial property price indexes, System of National Accounts, Balance Sheets, methods of depreciation, land and structure price indexes, demolition depreciation.

* W. Erwin Diewert: School of Economics, University of British Columbia, Vancouver B.C., Canada, V6T 1Z1 and the School of Economics, University of New South Wales, Sydney, Australia (email: erwin.diewert@ubc.ca) and Chihiro Shimizu, Reitaku University, Kashiwa, Chiba, 277-8686, Japan and the School of Economics, University of British Columbia, (email: cshimizu@reitaku-u.ac.jp). The authors thank David Geltner for helpful discussions. The first author gratefully acknowledges the financial support of the SSHRC of Canada.
1 Introduction

In this paper, we will use quarterly data on the performance of 50 Real Estate Income Trusts (REITs) that have single location commercial office buildings in Tokyo. The period covered is the first quarter of 2007 through the second quarter of 2012 or 22 quarters in all. We will make use of the quarterly assessed value information that is required for REIT properties and treat these end of quarter assessed property values as approximations to the beginning of the quarter market value of the properties. In addition to assessed value information, we also have information on the age of the building, the floor space area of the structure and the area of the land plot. We also have data on some other characteristics of the property but for this paper, we will only use information on assessed values, age of structure, floor space area, land space area and two other variables: quarterly capital expenditures on the property and an exogenous construction price index for the construction of new office buildings in Tokyo.

Our goal is to obtain not only an overall commercial property price index for this group of 50 properties but to have a decomposition of the overall index into structure and land components. This decomposition is required in order to construct industry balance sheets and to measure the Total Factor Productivity of a commercial building.

In section 2, we briefly describe our data set.

In section 3, we construct our first (overall) price index that requires only information on assessed values of the properties. This index is conceptually flawed because it does not take into account depreciation of the building or capital expenditures that have been made to the property. However, as we shall see, this very simple index does provide a useful approximation to a more accurate index.*1

In section 4, we develop an overall price index and component subindexes for capital expenditures, the basic structure and the land area of the properties using the same type of techniques that national income accountants use to construct estimates of the capital stock. “Reasonable” assumptions about the form of structure depreciation are required in order to implement this method.

In section 5, we try out the traditional approach to hedonic regressions where the logarithm of the selling price of a property is the dependent variable and the various characteristics of the property are used as explanatory variables. For our hedonic regressions, we use property assessed values in place of selling prices.

In sections 6 and 7, we move away from the traditional hedonic regression approach and use assessed value as the dependent variable (in place of the logarithm of assessed value) and we are able to decompose overall value into separate land and structure components. In section 6, we use a geometric model of structure depreciation where there is only one constant over time depreciation rate that is estimated by the hedonic regression. In section 7, we generalize this model to allow for changing geometric depreciation rates as the building ages.

The models described in sections 6 and 7 provide a decomposition of the assessed value of a commercial property into the sum of a land plot value plus the value of the structure. However, our sample of properties includes only properties where the same structure continued to exist throughout the sample period. Our models capture the decline in structure value throughout the sample period but they do not capture the (unanticipated) depreciation of structures that

*1 This index is an assessed value counterpart to a repeat sales index, which also suffers from the same conceptual problems.
are prematurely demolished during the sample period. This unanticipated decline in structure asset value needs to be estimated separately. In section 8, we show how this can be done with the help of historical data on the demolition of commercial office structures in Japan. Section 9 concludes.

2 The Tokyo REIT Data

This paper uses published information on the Japanese Real Estate Investment Trust (REIT) market in the Tokyo area.\(^2\) We used a balanced panel of observations on 50 REITs for 22 quarters, starting in Q1 of 2007 and ending in Q2 of 2012. The variables that were used in this paper were \(V\), the assessed value of the property;\(^3\) \(CE\), the quarterly capital expenditures made on the property during the quarter; \(L\), the area of the land plot in square meters \((m^2)\); \(S\), the total floor area of the structure in \(m^2\) and \(A\), the age of the structure in quarters. \(V\) and \(CE\) were reported in yen. In order to reduce the size of these variables, we divided by one million so the units of measurement for these financial variables is in millions of yen. The basic descriptive statistics for the above variables are listed in Table 1 below.\(^4\)

<table>
<thead>
<tr>
<th>Name</th>
<th>No. of Obs.</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V)</td>
<td>1100</td>
<td>4984.8</td>
<td>3417.8</td>
<td>984.3</td>
<td>18600.0</td>
</tr>
<tr>
<td>(S)</td>
<td>1100</td>
<td>5924.8</td>
<td>3568.1</td>
<td>2099.0</td>
<td>18552.0</td>
</tr>
<tr>
<td>(L)</td>
<td>1100</td>
<td>1106.3</td>
<td>718.2</td>
<td>294.5</td>
<td>3355.0</td>
</tr>
<tr>
<td>(A)</td>
<td>1100</td>
<td>83.9</td>
<td>25.2</td>
<td>16.7</td>
<td>156.7</td>
</tr>
<tr>
<td>(CE)</td>
<td>1100</td>
<td>6.08</td>
<td>11.94</td>
<td>0.06</td>
<td>85.49</td>
</tr>
</tbody>
</table>

Thus over the sample period, the sample average assessed value of the properties was approximately 4985 million yen, the average structure area was 5925\(m^2\), the average lot size was 1106\(m^2\), the average age of the structure was 84 quarters or 21 years and the average quarterly capital expenditure was about 6 million yen.

There were fairly high correlations between the \(V\), \(S\) and \(L\) variables. The correlations of the selling price \(V\) with structure and lot area \(S\) and \(L\) were 0.725 and 0.532 respectively and the correlation between \(S\) and \(L\) was 0.840. Given the large amount of variability in the data and the relatively high correlations between \(V\), \(S\) and \(L\), we can expect multicollinearity problems in a simple linear regression of \(V\) on \(S\) and \(L\).\(^5\)

In order to eliminate the multicollinearity problem between the lot size \(L\) and floor space area \(S\) for an individual REIT property when running hedonic regressions in later sections, we will assume that the value of a new structure in any quarter is proportional to a Construction

\(^2\) REIT data were supplied by MSCI-IPD, Japan. The authors thank Toshiro Nishioka and Hideaki Suzuki for their assistance.

\(^3\) The REITs were chosen so that each REIT consisted of a single commercial property located somewhere in Tokyo. The assessed values are reported at the end of each quarter. However, the actual assessments take place either during the quarter or prior to it. We will regard the published assessed values as approximations to the true market values of the property as of the beginning of the relevant quarter.

\(^4\) Additional variables were made available to us such as (quarterly) net operating income, property taxes, rentable floor space, number of basement floors, number of above ground floors and the distance to the Tokyo main station. We did not use these property characteristics in the present paper.

\(^5\) See Dievert, de Haan and Hendriks (2011a)\(^{13}\) (2011b)\(^{14}\) for evidence on this multicollinearity problem for house prices using Dutch data.
Cost Price Index for Tokyo.*6 In order to approximate beginning of the quarter values for this construction cost index, we will lag the official index by one quarter. In section 4 below, we also will require an estimate of construction cost per square meter for the first quarter in our sample. We obtained a starting value for construction cost at the beginning of our sample period from a commercial provider of data, Turner and Townsend (2012)[35].

3 The Asset Value Price Index for Commercial Properties in Tokyo

Denote the estimated asset value for REIT n during quarter t by V_{tn} for $t = 1, \ldots, 22$ and $n = 1, \ldots, 50$ where $t = 1$ corresponds to the first quarter of 2007 and $t = 22$ corresponds to the second quarter of 2012. If we ignore capital expenditures and depreciation of the structures on the properties, each property can be regarded as having a constant quality over the sample period.*8 Thus each property value at time t for REIT n, V_{tn}, can be decomposed into a price component, P_{tn}, times a quantity component, Q_{tn}, which can be regarded as being constant over time. We can choose units of measurement so that each quantity is set equal to unity. Thus the price and quantity data for the 50 REITs has the following structure: $Q_{tn} \equiv 1$; $P_{tn} = V_{tn}$ for $t = 1, \ldots, 22$ and $n = 1, \ldots, 50$. The asset value price index for period t for this group of REITs is the following Lowe (1823)[27]*9 index:

$$P^t_A \equiv \frac{\sum_{n=1}^{50} P_{tn} Q_{1n}}{\sum_{n=1}^{50} P_{1n} Q_{1n}} = \frac{\sum_{n=1}^{50} V_{tn}}{\sum_{n=1}^{50} V_{1n}}; \quad t = 1, \ldots, 22. \quad (1)$$

Thus the asset value price index for period t is simply the total asset value for the 50 REITs in period t divided by the corresponding total asset value for sample period 1. The series P^t_A is graphed in Figure 1 in the following section and the series is listed in Table 2 in the Appendix.

This index is very much analogous to a repeat sales index,*10 except instead of using actual sales of properties, the index uses the assessed values for the properties that are supplied by professional assessors.

There are three major problems with the assessed value price index:

- The index relies on assessed values for the properties and there is some evidence that assessed values are smoother and lag behind indexes that are based strictly on sales at market values;*11

*6 This index, denoted as P_{St} for quarter t, was constructed by the Construction Price Research Association which is now an independent agency but prior to 2012 was part of the Ministry of Land, Infrastructure, Transport and Tourism (MLIT), a ministry of the Government of Japan. The quarterly values for this index are listed in Table 2 in the Appendix; see the listing for the variable P_{S}. The quarterly values were constructed from the Monthly Commercial Construction Cost index for Tokyo for reinforced concrete buildings.

*7 On page 20 of Turner and Townsend (2012)[35], the 2011 construction cost for a prestige CBD office in Japan is listed as 303,800 yen per m2. Since construction prices in 2011 were very close to construction prices in 2007, in section 4 we will assume that the construction cost of a new commercial office was approximately 300,000 yen per m2 at the start of our sample period.

*8 We are also ignoring changes in the amenities around the property over the sample period.

*9 A Lowe index is a fixed basket price index where the quantity basket remains fixed over the sample period.

*11 See for example, Shimizu and Nishimura (2006)[31].
The index does not take into account that *capital expenditures* will generally change the quality of each property over time (so that the Q_{tn} are not in fact constant) and

- The index does not take into account *depreciation* of the underlying structure, which of course also changes the quality of each property.

The last problem mentioned above will generally impart a downward bias to the asset value indexes, P_{At}. We cannot address the first problem mentioned above but in the following section, we will attempt to address problems 2 and 3 listed above.

4 A National Balance Sheet Accounting Approach to the Construction of Commercial Property Price Indexes

In this section, we will implement an approach to the construction of commercial property price indexes that is similar to the approach used by national income accountants to construct capital stock estimates. National income accountants build up capital stock estimates for a production sector by deflating investments by asset and then adding up depreciated real investments made in prior periods. For commercial property capital expenditures and for the expenditures on the initial structure, we will more or less follow national income capital stock construction procedures. Next, we will assume that the assessed values for each property represents a good estimate for the total value of the structure and the land that the structure sits on. Once we have formed estimates for the stock values for capital expenditures and the value of the initial structure on the property, the value of land is set equal to assessed value less our imputed value for the initial structure and the capital improvements made to the structure. The weakness in this approach is that one must make estimates for the structure depreciation rates based on limited information.

We postulate that the assessed asset value of REIT n in quarter t, V_{tn}, is equal to the sum of three components:

- The *value of the land plot* V_{Ltn} for the property;
- The *value of the initial structure* on the property, V_{Stn}, and
- The *value of the cumulated (but also depreciated) capital expenditures* on the property made in prior periods, V_{CEtn}.

Thus we assume that the following asset value decomposition holds for property n in period t:

$$V_{tn} = V_{Ltn} + V_{Stn} + V_{CEtn}; \quad n = 1, \ldots, 50; \quad t = 1, \ldots, 22. \quad (2)$$

We know the assessed values, V_{tn}, on the left hand side of equations (2) and our strategy will be to determine the components of the values on the right hand side of equations (2) by making plausible assumptions about the prices and quantities involved in the right hand side values. We start off by considering the decomposition of the property land values, V_{Ltn}, into...
price and quantity components; i.e., we assume that the following equations hold:

\[V_{Lt_n} = P_{Lt_n} Q_{Lt_n}; \quad Q_{Lt_n} = L_{tn} = L_n; \quad n = 1, \ldots, 50; \quad t = 1, \ldots, 22 \]

(3)

where \(L_n \) (which is equal to \(L_{tn} \)) is the area of the land plot for REIT \(n \), which is part of our data base (and constant from period to period), and \(P_{Lt_n} \) is the price of a square meter of land for REIT \(n \) in quarter \(t \) (which is not known yet).

Turn now to the value of the structure for property \(n \) in period \(t \). If the structure is a new one, its value should be approximately equal to its cost of construction. Recall that an approximation to the cost of a square meter of new commercial property construction in quarter \(n \) is 300,000 times \(P_{St_n} S_{tn} \) where \(P_{St} \) is the construction price index per \(m^2 \) for Tokyo for quarter \(t \) (normalized to equal one in quarter 1) and \(S_{tn} \) is the floor area for property \(n \) in period \(t \). Upon noting that \(V_{tn} \) has been rescaled to units of million yen from a single yen, if the structure for REIT \(n \) is new in period \(t \), then its value in millions of yen, \(V_{St_n} \), should be approximately equal to \(.3 P_{St_n} S_{tn} \). We now assume that the quarterly geometric (or declining balance) depreciation rate for the structure is \(\delta_S = 0.005 \) or 0.5% per quarter.*15

Thus the structure value for REIT \(n \) in quarter \(t \) (where the age of the structure in quarters at time \(t \) is \(A_{tn} \)) should be approximately equal to:

\[V_{St_n} = .3 P_{St_n} S_{tn} (1 - \delta_S)^{A(t,n)}; \quad n = 1, \ldots, 50; \quad t = 1, \ldots, 22 \]

(4)

where \(A(t,n) \equiv A_{tn} \). Thus we obtain the following decomposition of \(V_{St_n} \) into price and quantity components:

\[V_{St_n} = P_{St_n} Q_{St_n}; \quad P_{St_n} \equiv P_{St}; \quad Q_{St_n} \equiv .3 S_{tn} (1 - \delta_S)^{A(t,n)}; \quad n = 1, \ldots, 50; \quad t = 1, \ldots, 22 \]

(5)

where \(P_{St} \) is the known official construction price index for quarter \(t \) (lagged one quarter), \(S_{tn} \) is the known floor space for REIT \(n \) in quarter \(t \) (this is almost always constant across quarters), \(A(t,n) \) is the known age of REIT \(n \) in quarter \(t \) and \(\delta_S = 0.005 \) is the assumed known quarterly geometric structure depreciation rate. Thus \(V_{St_n} \) can be calculated.

Finally, we need to determine the contribution of capital expenditures to REIT asset values. This is a more difficult task.*16 Define the capital expenditures of REIT \(n \) in quarter \(t \) as \(CE_{tn} \). We need a deflator to convert these nominal expenditures into real expenditures. It is difficult to know precisely what the appropriate deflator should be. We will simply assume that the official structure price index, \(P_{St} \), is a suitable deflator. Thus define real capital expenditures for REIT \(n \) in quarter \(t \), \(q_{CEtn} \), as follows:

\[q_{CEtn} \equiv \frac{CE_{tn}}{P_{St}}; \quad n = 1, \ldots, 50; \quad t = 1, \ldots, 22. \]

(6)

We know both series on the right hand side of (6) so the \(q_{CEtn} \) can also be determined. Now we require starting capital stocks for these capital expenditures and a geometric depreciation

*15 Hulten and Wykoff (1981)[22] obtain annual geometric depreciation rates for office buildings in the U.S. around 1% for continuing structures and around 2.5% when premature retirement is taken into account. Other studies often obtain higher rates. Our later analysis in section 6 below justifies our assumption of a 1/2 percent quarterly depreciation rate.

*16 Crosby, Devaney and Law acknowledge the importance of capital expenditures in explaining property value but they also point out the scarcity of research on this topic: “Other important issues are the roles of maintenance expenditure and replacement investment. ... Thus, expenditure is central to interpreting depreciation rates but it has received little attention in much of the commercial real estate literature.” Neil Crosby, Steven Devaney and Vicki Law (2012; 230)[6].
rate that determine how these capital expenditures are written off over time. It is difficult
to determine an appropriate depreciation rate for capital expenditures since this problem has
not been studied very extensively (if at all) in the literature. In section 7 below, we will bring
some limited econometric evidence to bear on this issue and using this evidence, we assume
that the quarterly geometric depreciation rate for capital expenditures is \(\delta_{CE} = 0.10 \) or 10% per quarter.\(^{17}\) The next problem is the problem of determining the starting stock of capital expenditures for each REIT, given that we do not know what capital expenditures were before the sample period. We provide a solution to this problem in two stages. First, we generate sample average real capital expenditures for each REIT \(n \), \(q_{CEn} \), as follows:

\[
q_{CEn} \equiv \frac{1}{22} \sum_{t=1}^{22} q_{CEtn}; \quad n = 1, ..., 50. \quad (7)
\]

Our next assumption is that each REIT \(n \) has a starting stock of capital expenditures equal to depreciated investments for 20 quarters (or 5 years) equal to the REIT \(n \) sample average investment, \(q_{CEn} \), defined above by (7).\(^{18}\) Thus the starting stock of CE capital for REIT \(n \) is \(Q_{CE1n} \) defined as follows:

\[
Q_{CE1n} \equiv q_{CEn} \cdot \frac{1 - (1 - \delta_{CE})^{21}}{\delta_{CE}}; \quad n = 1, ..., 50. \quad (8)
\]

The REIT capital stocks for capital expenditures can be generated for quarters subsequent to quarter 1 using the usual geometric model of depreciation recommended by Hulten and Wykoff (1981)[22], Jorgenson (1989)[24] and Schreyer (2001)[29] (2009)[30] as follows:

\[
Q_{CEtn} \equiv (1 - \delta_{CE})Q_{CE,t-1,n} + q_{CE,t-1,n}; \quad t = 2, 3, ..., 22; \quad n = 1, ..., 50. \quad (9)
\]

Note that \(Q_{CEtn} \) is now completely determined for \(t = 1, ..., 22 \) and \(n = 1, ..., 50 \) and the corresponding price \(P_{St} \) is also determined. Thus an estimated value for the stock of capital expenditures of REIT \(n \) for the beginning of period \(t \), \(V_{CEtn} \), can be determined by multiplying \(P_{St} \) by \(Q_{CEtn} \); i.e., we have:

\[
V_{CEtn} \equiv P_{CEtn}Q_{CEtn}; \quad P_{CEtn} \equiv P_{St}; \quad t = 1, ..., 22; \quad n = 1, ..., 50 \quad (10)
\]

where the \(Q_{CEtn} \) are defined by (8) and (9).

Now that the asset values \(V_{tn}, V_{Stn} \) and \(V_{CEtn} \) have all been determined, the price of land for REIT \(n \) in quarter \(t \), \(P_{Ltn} \), can be determined residually using equations (2) and (3):

\[
P_{Ltn} \equiv \frac{V_{tn} - V_{Stn} - V_{CEtn}}{L_n}; \quad n = 1, ..., 50; \quad t = 1, ..., 22. \quad (11)
\]

The above material shows how to construct estimates for the price of land, structures and capital expenditures for each REIT \(n \) for each quarter \(t \) (\(P_{Ltn}, P_{Stn} \) and \(P_{CEtn} \)) and the corresponding quantities (\(Q_{Ltn}, Q_{Stn} \) and \(Q_{CEtn} \)). Now use this price and quantity information in order to construct quarterly value aggregates (over all 50 REITs in our sample) for the

\(^{17}\) After 20 quarters or 5 years, only 12% of a initial real investment in capital expenditures contributes to asset value; after 40 quarters or 10 years, only 1.5% of a initial real investment in capital expenditures contributes to asset value.

\(^{18}\) The smallest age of structure in our sample is 4 years and so virtually all structures in our sample are at least 5 years old.
properties and for the land, structure and capital expenditure components; i.e., make the following definitions:*19

\[V^t \equiv \sum_{n=1}^{50} V_{tn}; \quad V^t_L \equiv \sum_{n=1}^{50} V_{Ltn}; \quad V^t_S \equiv \sum_{n=1}^{50} V_{Stn}; \quad V^t_{CE} \equiv \sum_{n=1}^{50} V_{CEtn}; \quad t = 1, \ldots, 22. \]

We form aggregate overall and component price and quantity indexes using chained Fisher (1922)[16] ideal indexes.*20 In order to define these indexes, it is necessary to define Laspeyres and Paasche indexes and their chain link components. We will indicate how this is done when constructing aggregate land price indexes for the group of 50 REITs for each quarter. Define the Laspeyres chain link land index going from quarter \(t-1 \) to quarter \(t \), \(P^t_{L,Land} \), as follows:

\[P^t_{L,Land} = \frac{\sum_{n=1}^{50} P_{Ltn} Q_{Ltn}}{\sum_{n=1}^{50} P_{L,t-1,n} Q_{L,t-1,n}}; \quad t = 2, 3, \ldots, 22. \]

The above chain links are used in order to define the overall Laspeyres land price indexes, \(P^t_{L,Land} \), as follows:

\[P^t_{L,Land} \equiv 1; \quad P^t_{L,Land} = P^t_{L,Land} P^{t-1}_{L,Land}; \quad t = 2, 3, \ldots, 22. \]

Thus the Laspeyres price index starts out at 1 in period 1 and then we form the index for the next period by updating the index for the previous period by the chain link indexes defined by (13). A similar procedure is used in order to define the sequence of Paasche chained indexes for land, \(P^t_{P,Land} \), First Define the Paasche chain link land index going from quarter \(t-1 \) to quarter \(t \), \(P^t_{P,Land} \), as follows:

\[P^t_{P,Land} = \frac{\sum_{n=1}^{50} P_{Ltn} Q_{Ltn}}{\sum_{n=1}^{50} P_{L,t-1,n} Q_{L,t-1,n}}; \quad t = 2, 3, \ldots, 22. \]

The above chain links are used in order to define the overall Paasche land price indexes, \(P^t_{P,Land} \), as follows:

\[P^t_{P,Land} \equiv 1; \quad P^t_{P,Land} = P^t_{P,Land} P^{t-1}_{P,Land}; \quad t = 2, 3, \ldots, 22. \]

Once the sequences of Laspeyres and Paasche land price indexes, \(P^t_{L,Land} \) and \(P^t_{P,Land} \), have been constructed, the Fisher ideal land price index for quarter \(t \), \(P^t_{F,Land} \), is defined as the geometric mean of the corresponding Laspeyres and Paasche indexes; i.e., define

\[P^t_{F,Land} \equiv \left[P^t_{L,Land} P^t_{P,Land} \right]^{1/2}; \quad t = 1, \ldots, 22. \]

The Fisher chained price indexes for structures and capital expenditures, \(P^t_{F,S} \) and \(P^t_{F,CE} \), are constructed in an entirely analogous way, except that the REIT micro price and quantity data on land, \(P_{Ltn} \) and \(Q_{Ltn} \), are replaced by the corresponding REIT micro price and quantity data on structures, \(P_{Stn} \) and \(Q_{Stn} \), or on capital expenditures, \(P_{CEtn} \) and \(Q_{CEtn} \), in equations (13)-(17).

*19 These aggregate value series are listed in the Appendix in Table 2.

*20 Laspeyres, Paasche and Fisher indexes are explained in much more detail in Fisher (1922)[16] and in the 2004 Consumer Price Index Manual [23]. The Fisher indexes have very good axiomatic and economic properties.
Finally, an overall chained Fisher property price index, P^t_F, can be constructed in the same way except that the summations in the numerators and denominators of (13) and (15) above sum over 150 separate price components (all of the P_{Ltn}, P_{Stn} and P_{CEtn}) instead of just 50 price components. The Fisher price indexes $P^t_F, P^t_{F,Land}, P^t_{F,S}$ and $P^t_{F,CE}$ are listed in Table 2 in the Appendix, except that we dropped the subscript F; i.e., in what follows, denote these series by P^t, P^t_L, P^t_S and P^t_{CE} respectively.

The price series P^t, P^t_L, P^t_S and P^t_{CE} can be used to deflate the corresponding aggregate value series defined above by (12), V^t, V^t_L, V^t_S and V^t_{CE}, in order to form implicit quantity or volume indexes; i.e., define the following aggregate quantity indexes:

$$Q^t_L = \frac{V^t_L}{P^t_L}; \quad Q^t_S = \frac{V^t_S}{P^t_S}; \quad Q^t_{CE} = \frac{V^t_{CE}}{P^t_{CE}}; \quad t = 1, \ldots, 22. \quad (18)$$

Q^t can be interpreted as an estimate of the real stock of assets across all 50 REITs at the beginning of quarter t, Q^t_L is an estimate of the aggregate real land stock used by the REITs and Q^t_{CE} is an estimate of the real stock of capital improvements made by the REITs since they were constructed.\(^{22}\)

Because the price of structures for each REIT is proportional to the exogenous official construction price index for Tokyo, the aggregate structure price index, P^t_S, defined above as a Fisher index turns out to equal the official price index, P_{St} defined earlier.\(^{23}\) Similarly, the Fisher price index of capital expenditures, P^t_{CE}, defined above also turns out to equal the official index, P_{St}. Thus the fairly complicated construction of the Fisher implicit quantity indexes that was explained above can be replaced by the following very simple shortcut equations:

$$Q^t_S = \frac{V^t_S}{P^t_{St}}; \quad Q^t_{CE} = \frac{V^t_{CE}}{P^t_{St}}; \quad t = 1, \ldots, 22. \quad (19)$$

The asset value (or repeat sales) overall price index, P^t_A, is graphed in Figure 1 below along with the overall commercial property price index P^t, where the method used to construct P^t might be termed a “national accounts” method for constructing a capital stock price index. We also show the “national accounts” land price index P^t_L and the official structures construction cost price index P^t_S which we have used as a price deflator for both capital expenditures and the estimated value of the structure.\(^{24}\)

It can be seen that the asset value price index P^t_A defined in the previous section is consistently below the more accurate economic accounting index P^t and the gap widens over time.\(^{25}\) In our Japanese sample of commercial properties, our estimated average land value divided by total property value turned out to be 74.7%; i.e., approximately 75% of the property value is due to land value. In the U.S., the land ratio is very much less so that the bias in the asset value price index would be correspondingly much larger since it is the neglect of structure depreciation.

\(^{21}\) This remains constant over time since the quantity of land used by each REIT remained constant over time.

\(^{22}\) The four implicit quantity series defined by (18) are also listed in Table 2 of the Appendix.

\(^{23}\) The chained Laspeyres and Paasche price indexes for structures are also equal to the official index (and so are the corresponding fixed base indexes). And since the quantity of land is fixed for each REIT, the chained (and fixed base) Laspeyres and Paasche land price indexes are also equal to the chained Fisher land price indexes.

\(^{24}\) P^t_A, P^t_S, P^t_S and P^t_L are listed as PA, P, PS and PL in Figure 1.

\(^{25}\) From Table 2 in the Appendix, we see that $P^2_A = 0.8798$ and $P^{22} = 0.9027$. This translates into an approximate (geometric) downward bias in the asset value price index of about 0.5 percentage points per year, which is fairly significant.
that causes the differences in P^t and P^t_A. The movements in the price of structures, P^t_S, versus the price of land, P^t_L, are also of some interest. It appears that land prices peaked in period 6 (Q2-2008) while construction prices peaked somewhat later in period 8 (Q4-2008). Land prices continued to fall steadily after Q2-2008, ending up at 0.8752. Structure prices fell from Q8-2008 until Q2-2010 and remained more or less steady until the end of the sample period to end up at 0.9887.

In the following sections, we will construct alternative price indexes using hedonic regression techniques rather than using assumptions about depreciation rates (and the form of depreciation) along with assessed value information.

5 Traditional Hedonic Regression Approaches to Index Construction

Most hedonic commercial property regression models are based on the \textit{time dummy approach} where the log of the selling price of the property is regressed on either a linear function of the characteristics or on the logs of the characteristics of the property along with time dummy variables.\footnote{26} In this section, instead of using selling prices for commercial properties, we will use the quarterly assessed values for the properties. The time dummy method does not generate decompositions of the asset value into land and structure components and so it is not suitable when such decompositions are required but the time dummy method can be used to generate overall property price indexes, which can then be compared with the overall price

\footnote{26} Since the asset value price index is a variant of the repeat sales index that is frequently used to construct property price indexes, we expect that these repeat sales indexes also have a substantial downward biases compared to indexes that take structure depreciation into account.

\footnote{27} This methodology was developed by Court (1939; 109-111)[5] as his Hedonic Suggestion Number Two.
indexes P_A^t and P_t that were described in the previous 2 sections.

Recall that V_{tn} is the assessed value for REIT n in quarter t, $L_{tn} = L_n$ is the area of the plot, $S_{tn} = S_n$ is the floor space area of the structure and A_{tn} is the age of the structure for REIT n in period t. In the time dummy linear regression defined below by (20), we have replaced V_{tn}, L_{tn} and S_{tn} by their logarithms, $\ln V_{tn}$, $\ln L_{tn}$ and $\ln S_{tn}$. Our first time dummy hedonic regression model is defined for $t = 1, \ldots, 22$ and $n = 1, \ldots, 50$ by the following equations:

$$\ln V_{tn} = \alpha + \alpha_t + \beta \ln L_{tn} + \gamma \ln S_{tn} + \delta A_{tn} + \varepsilon_{tn}$$

where $\alpha_1, \ldots, \alpha_{22}, \alpha, \beta, \gamma$ and δ are 25 unknown parameters to be estimated and the ε_{tn} are independently distributed normal error terms with mean 0 and constant variance. The α_t are the quarter t time coefficients which shift the hedonic surface during each quarter, α is a constant term, γ and β are parameters which adjust the asset value for the size of the lot and the floor space area respectively and δ is a parameter which adjusts the asset value for the age of the structure (essentially a depreciation parameter). We expect β and γ to be positive and δ to be negative. The time dummy variables associated with the α_t and the constant term α are linearly dependent and so we need to impose a normalization on the parameters in order to identify the remaining parameters. We choose the following normalization:

$$\alpha_1 = 0.$$

This normalization makes the overall commercial property price index equal to 1 in the first period.

The ordinary least squares estimates for the 25 remaining parameters in Model 1 are listed in Table 3 of the Appendix. For later reference, we note that the log likelihood for Model 1 was -583.955 and the R^2 between the dependent variable and the corresponding predicted variable was 0.6339. The estimated coefficients are listed in Table 3 of the Appendix. The estimated coefficient associated with the log of land area was $\beta = -0.1713$ (which is the wrong sign for this parameter) and with the log of the structure area was $\gamma = 1.1264$ and was highly significant (t statistic equal to 25.9). The estimated age coefficient was $\delta = 0.0020$, which is also the wrong sign for this parameter (t statistic equal to 3.9). The results for Model 1 were not very encouraging.

The overall commercial property price indexes for Model 1, P_1^t, are defined as the exponentials of the estimated time coefficients α_t:

$$P_1^t \equiv \exp[\alpha_t]; \quad t = 1, \ldots, 22.$$

The resulting overall commercial property price indexes generated by Hedonic Model 1, the P_1^t, are graphed in Figure 2 below and are listed in Table 5 of the Appendix. We will discuss these estimated price indexes after we have presented the results for our second “traditional” hedonic regression model.

Our second time dummy hedonic regression model is defined for $t = 1, \ldots, 22$ and $n = 1, \ldots, 50$ by the following equations which introduce a dummy variable ω_n for each property n:

$$\ln V_{tn} = \alpha + \alpha_t + \beta \ln L_{tn} + \gamma \ln S_{tn} + \delta A_{tn} + \omega_n + \varepsilon_{tn}$$

This led to a better fitting regression model.

The hedonic regression models defined by (20) and (23) can be set up as linear regression models by defining suitable dummy variables for the α_t and ω_n parameters that appear in these equations.
where \(\alpha_1, \ldots, \alpha_{22}, \omega_1, \ldots, \omega_{50}, \alpha, \beta, \gamma \) and \(\delta \) are 76 unknown parameters to be estimated and the \(\varepsilon_{tn} \) are independently distributed normal error terms with mean 0 and constant variance. The linear regression model defined by equations (23) is the same as the model defined by equations (20) except that we have now added 50 additional property dummy variables where \(\omega_n \) is the parameter which shifts the hedonic surface when the dependent variable is the logarithm of property value for property \(n \). As before, the \(\alpha_t \) are the quarter \(t \) time coefficients which shift the hedonic surface during each quarter, \(\alpha \) is a constant term, \(\gamma \) and \(\beta \) are parameters which adjust the asset value for the size of the lot and the floor space area respectively and \(\delta \) is a parameter which adjusts the asset value for the age of the structure (essentially a depreciation parameter). However, not all parameters can be identified in this model. Since \(L_{tn} = L_n \) and \(S_{tn} = S_n \) (so that the floor area and land areas of each REIT in our sample are constant over our sample period), it can be seen that the effects of the \(\beta \ln L_{tn} \) and \(\gamma \ln S_{tn} \) terms in (23) can be absorbed into the REIT specific parameters \(\omega_n \). Thus we set \(\beta = \gamma = 0 \). As was the case with (20), the dummy variables associated with the \(\alpha_t \) and the constant term \(\alpha \) are also linearly dependent, so as before, we set \(\alpha_1 = 0 \). However, the dummy variables associated with \(\alpha_2, \ldots, \alpha_{22} \) when combined with the dummy variables associated with \(\omega_1, \ldots, \omega_{50} \) are also linearly dependent so to eliminate this linear dependence, we set \(\alpha = 0 \). Finally, it turns out that the age variable \(A_{tn} \) is also linearly dependent on the dummy variables associated with \(\omega_2, \ldots, \omega_{22} \) and \(\omega_1, \ldots, \omega_{50} \). In order to eliminate this linear dependence in the regression model, we could set \(\delta = 0 \). However, if we replace \(A_{tn} \) by the logarithm of \(A_{tn} \), this leads to a regression model where all of the parameters are identified. Thus our second linear regression model is the following one which has 72 independent parameters:\(^{30}\)

\[
\ln V_{tn} = \alpha_t + \omega_n + \delta \ln A_{tn} + \varepsilon_{tn}; \quad t = 1, \ldots, 22; \quad n = 1, \ldots, 50. \tag{24}
\]

Equations (24) and (21) define Hedonic Model 2. The \(\alpha_t \) parameters explain how, on average, the property values of the REIT sample shift over time and the REIT specific parameters, the \(\omega_n \), reflect the effect on REIT value of the size of the structure and the size of the land plot as well as any locational characteristics that can be attributed to each REIT. The \(\delta \) parameter reflects the effects of aging of the structure on property value (we would expect this parameter to be negative: the value of the structure should decline as it ages).\(^{31}\)

The ordinary least squares estimates for the 72 parameters in Model 2 are listed in Table 4 of the Appendix. The log likelihood for Model 2 was 1687.33, a massive increase from the Model 1 log likelihood which was \(-583.955\). The Model 2 \(R^2 \) between the dependent variable and the corresponding predicted variable was 0.9941, a big increase over the Model 1 \(R^2 \) which was 0.6339. The estimated coefficients for Model 2 have relatively small standard errors and high \(T \) statistics. However the estimated age coefficient for this model was a huge \(\delta = 0.2896 \) (with a standard error of 0.0476 and \(t \) statistic equal to 6.1), which is the wrong sign for this parameter.

The overall commercial property price indexes for Model 2, \(P^t_n \), were defined as the exponentials of the estimated time coefficients \(\alpha_t \):

\[
P^t_n \equiv \exp[\alpha_t]; \quad t = 1, \ldots, 22. \tag{25}
\]

The \(P^t_n \) are graphed in Figure 2 below and are listed in Table 5 of the Appendix.

\(^{30}\) We still impose the normalization (21) on the parameters in (24); i.e., we set \(\alpha_1 = 1 \).

\(^{31}\) The problem is that the parameter \(\delta \) will be an imperfect indicator of the effects of structure aging, due to the fact that the age variable (before transformation) will be subject to a multicollinearity problem in our original specification. We attempt to solve this problem by taking a nonlinear transform of the age variable in order to negate the exact multicollinearity but this solution does not really solve the problem.
From viewing Figure 2, it can be seen that our accounting based overall commercial property price index, P^t, shows the least amount of deflation over the sample period, ending up at an index value of 0.9027. The simple asset value price index, P^t_A, lies below P^t, ending up at 0.8798. Our first traditional log value hedonic regression model generated the index P^t_1 which ended up at 0.8382 while the second model P^t_2 ended up even lower at 0.8066. These large downward biases for Models 1 and 2 are due to the fact that the estimated coefficient δ for the age variable was positive in both regressions rather than the expected negative coefficients; i.e., as the structure ages, other factors held constant, we would expect asset value to fall. Thus Models 1 and 2 fail for our particular application.

It is of interest to rerun Model 2 after setting the age parameter δ equal to 0, which results in Model 3. It turns out that Model 3 is identical to the *Country Product Dummy regression model* that was originally introduced by Summers (1973)\[34\] in the context of making international comparisons between countries.\[32\] The R^2 for Model 3 turned out to be 0.9939 and the log likelihood was 1667.89, a drop of about 20 from the previous Model 2. We constructed the resulting Commercial Property Price index P^t_3 in the usual way (use the counterparts to equations (23) above).\[33\] The index values for P^t_3 are listed in Table 5 and the series is graphed on Figure 2 above. It can be seen that P^t_3 is virtually identical to the asset value series P^t_A. This is perhaps not too surprising since the two indexes simply aggregate up the individual REIT asset prices into an overall price index; the form of aggregation is somewhat different but the basic ingredients are the same. Of course, the problem with both P^t_A and P^t_3 is that they make no allowance for structure depreciation (or for capital expenditures) and

\[\text{*32}\] In the original Country Product Dummy (CPD) model, the two categories were countries and commodities. In our present context, the two categories are REITs and time. In the time series context, the CPD model also has an application as the Time Product Dummy (TPD) model.

\[\text{*33}\] We did not list the coefficient estimates in the Appendix for Model 3.
thus both of these indexes will generally have a downward bias relative to an index that takes structure depreciation into account.

There are two major problems with traditional log value hedonic regression models applied to property prices:

- These models often do not generate reasonable estimates for structure depreciation and
- These models essentially allow for only one factor that shifts the hedonic regression surface over time (the \(\alpha_t \)) when in fact, there are generally two major shift factors: the price of structures and the price of land. Unless these two price factors move in a proportional manner over time, the usual hedonic approach will not generate accurate overall price indexes.

In the following section, we will estimate two alternative hedonic regression models that will address the above two difficulties.

6 The Builder’s Model Applied to Commercial Property Assessed Values

The builder’s model for valuing a residential property postulates that the value of a residential property is the sum of two components: the value of the land which the structure sits on plus the value of the residential structure.*34

In order to justify the model, consider a property developer \(n \) who builds a structure on a particular property that is ready for commercial use at the beginning of quarter \(t \). The total cost of the property after the structure is completed will be equal to the floor space area of the structure, say \(S_{tn} \) square meters, times the building cost per square meter, \(\beta_t \) say, plus the cost of the land, which will be equal to the land cost per square meter, \(\gamma_{tn} \) say, times the area of the land site, \(L_{tn} \). Thus if REIT \(n \) has a new structure on it at the start of quarter \(t \), the value of the property, \(V_{tn} \), should be equal to the sum of the structure and land value, \(\beta_t S_{tn} + \gamma_{tn} L_{tn} \).*35 Note that as in section 3 above, we assume that the building cost price \(\beta_t \) depends on time only and not on the location of the building. On the other hand, the property prices \(\gamma_{tn} \) will generally depend on both the time period \(t \) and the location of the property which is indexed by \(n \).

The above model applies to new structures. But it is likely that a similar model applies to older structures as well. Older structures will be worth less than newer structures due to the depreciation of the structure. Assuming that we have information on the age of the structure \(n \) at time \(t \), say \(A_{tn} \equiv A(t, n) \) and assuming a geometric depreciation model, a more realistic

*34 This model has been applied to residential property sales by de Haan and Diewert (2011)[8], Diewert, de Haan and Hendriks (2011a)[13] (2011b)[14] and Diewert and Shimizu (2013)[15] except that straight line or piece-wise linear depreciation was used as the depreciation model for the structure whereas in the present paper, we will use geometric depreciation models. In the following section, we will estimate a more complex geometric depreciation model where the depreciation rates change as the building ages. Geometric depreciation models have the advantage that the implied structure asset values that the models generate always remain positive whereas piece-wise linear depreciation models can generate negative asset values.

*35 Other papers that have suggested hedonic regression models that lead to additive decompositions of property values into land and structure components include Clapp (1980)[3], Francke and Vos (2004)[18], Gyourko and Saiz (2004)[20], Bostic, Longhofer and Redfearn (2007)[2], Davis and Heathcote (2007)[7], Francke (2008)[17], Koev and Santos Silva (2008)[25], Statistics Portugal (2009)[33], Diewert (2010)[10] (2011)[11] and Rambaldi, McAllister, Collins and Fletcher (2010)[28].
hedonic regression model is the following basic builder’s model:

\[V_{tn} = \beta_t S_{tn}[e^\phi]^{A(t,n)} + \gamma_{tn} L_{tn} + \varepsilon_{tn}; \quad t = 1, \ldots, 22; \quad n = 1, \ldots, 50 \]

(26)

where the parameter \(e^\phi \) is defined to be \(1 - \delta \) and \(\delta \) in turn is defined as the quarterly depreciation rate for the structure.*36 Note that (26) is now a nonlinear regression model (whereas all of the regression models in the previous section were linear in the unknown parameters).*37 There are two problems with the model defined by (26):

- We have only 22 times 50 observations (1100 observations in all) on \(V \) but there are 1100 land price parameters \(\gamma_{tn} \) to be estimated;
- The above model does not take into account the capital expenditures that were made in order to improve the structure after its initial construction.

We deal with the second problem by subtracting our section 3 estimated period \(t \) capitalized value of capital expenditures estimate \(V_{CEn} \) from total asset value \(V_{tn} \) in order to obtain a new dependent variable. Then we will use a hedonic regression to decompose \(V_{tn} - V_{CEn} \) into structure and land components. We deal with the first problem by applying the Country Product Dummy methodology to the land component on the right hand side of equations (26) above; i.e., we set

\[\gamma_{tn} = \alpha_t \omega_n; \quad t = 1, \ldots, 22; \quad n = 1, \ldots, 50. \]

(27)

We also set the new structure prices for each quarter \(t \), \(\beta_t \), equal to a single price of structure in quarter 1, say \(\beta \), times our official construction cost index \(P_S^t \) described in earlier sections. Thus we have:

\[\beta_t = \beta P_S^t; \quad t = 1, \ldots, 22. \]

(28)

Replacing \(V_{tn} \) by \(V_{tn} - V_{CEn} \) and substituting (27) and (28) into equations leads to the following nonlinear regression model:

\[V_{tn} - V_{CEn} = \beta P_S^t S_{tn}[e^\phi]^{A(t,n)} + \alpha_t \omega_n L_{tn} + \varepsilon_{tn}; \quad t = 1, \ldots, 22; \quad n = 1, \ldots, 50. \]

(29)

This nonlinear regression has one unknown structure price \(\beta \), one unknown \(\phi \) (where \(\delta = 1 - e^\phi \) and \(\delta \) is the quarterly geometric depreciation rate), 22 unknown \(\alpha_t \) (the overall land price series for our sample) and 50 unknown \(\omega_n \) (which reflect the relative discount or premium in the land price for REIT \(n \) relative to other REITs). This is a total of 74 parameters but not all of the \(\alpha_t \) and \(\omega_n \) can be identified so we impose the normalization (21), \(\alpha_1 = 1 \). Thus there are 73 independent parameters to be estimated with 1100 degrees of freedom.

Shazam had no trouble estimating the unknown parameters.*38 At first glance, the results appeared to be satisfactory. The \(R^2 \) between the observed variable and the predicted variable turned out to be 0.9943 and the log likelihood was \(-7658.84\). The estimated \(\phi \) parameter turned out to be \(-0.00454\) and the corresponding quarterly depreciation rate was 0.00453, which is very close to our assumed rate of 0.005 that was used in section 3. The land price series (the estimated \(\alpha_t \) ended up at \(\alpha_{22} = 0.8754 \)) turned out to be very similar to our accounting generated land price series \(P_L^t \) listed in Table 2 (which ended up at \(P_L^{22} = 0.8752 \)).

*36 Note that \(\delta = 1 - e^\phi \).
*37 We used the nonlinear option in Shazam to estimate the nonlinear regressions in this section and the OLS option to estimate the linear regressions in the previous section; see White (2004)[36].
*38 It was necessary to define two sets of dummy variables (one set of dummy variables for the time periods and one set for the REITs) and then interact these dummy variables in order to set up the nonlinear regression. This was a straightforward exercise.
However, the estimated β coefficient turned out to be 0.1524, which is far below our estimated cost of construction for the first period in our sample which is around 0.3.

Thus we decided to set β equal to 0.3 and rerun the nonlinear regression model defined by equations (29) (and $\alpha_1 = 1$). Call the resulting hedonic regression model, Model 4. The R^2 between the observed variable and the predicted variable for this model turned out to be 0.9943 and the log likelihood was -7659.58, a very small drop in log likelihood of about 1.2 points due to the fact that we now set $\beta = 0.3$ rather than estimate it as in the previous regression.

Thus the cost in terms of fit and log likelihood of imposing this parameter constraint appears to be small. The estimated ϕ parameter turned out to be -0.00515 and the corresponding quarterly depreciation rate was 0.00514, which is very close to our assumed rate of 0.005 that was used in section 3. The land price series for Model 4 is denoted by $P_{L4}^t \equiv \alpha_t^*$ and it is graphed in Figure 4 below and listed in Table 5 in the Appendix. The Model 4 land prices turned out to be very similar to our accounting generated land price series P_{L}^t listed in Table 2.

We need to explain how our new land price series P_{L4}^t can be combined with our structures (and capital expenditures) price series P_S^t. Denote the estimated Model 4 parameters as $\beta^*, \alpha_1^* = 1, \alpha_2^*, \ldots, \alpha_{22}^*, \phi^*$ and $\omega_1^*, \ldots, \omega_{50}^*$. We can break up the fitted value on the right hand side of equation (29) for observation t_n into a fitted structures component, V_{S4tn}^*, and a fitted land component, V_{L4tn}^*, for $n = 1, \ldots, 50$ and $t = 1, \ldots, 22$ as follows:

$$V_{S4tn}^* \equiv \beta^* P_S^t S_{tn} e^{\phi^*} A(t,n); \quad (30)$$
$$V_{L4tn}^* \equiv \alpha_t^* \omega_n^* L_{tn}. \quad (31)$$

Now form structures and capital expenditures aggregate (over all REITS), V_{S4tn}^*, by adding up the fitted structure values V_{S4tn}^* defined by (30) and the capital expenditures capital stocks V_{CEtn} that were defined by equations (10) in section 4 for each quarter:

$$V_{S4tn}^* \equiv \sum_{n=1}^{50} [V_{S4tn}^* + V_{CEtn}^*]; \quad t = 1, \ldots, 22. \quad (32)$$

In a similar fashion, form a land value aggregate (over all REITS), V_{L4tn}^*, by adding up the fitted land values V_{L4tn}^* defined by (31) for each quarter t:

$$V_{L4tn}^* \equiv \sum_{n=1}^{50} V_{L4tn}^*; \quad t = 1, \ldots, 22. \quad (33)$$

Now define the period t aggregate structure (including capital expenditures) quantity or volume, Q_{S4t}, by (34) and the period t aggregate land quantity or volume, Q_{L4t}, by (35):

$$Q_{S4t}^* \equiv \frac{V_{S4tn}^*}{P_S^t}; \quad t = 1, \ldots, 22; \quad (34)$$
$$Q_{L4t}^* \equiv \frac{V_{L4tn}^*}{P_L^t}; \quad t = 1, \ldots, 22. \quad (35)$$

Thus for each period t, we have 2 prices, P_S^t and P_L^t, and the corresponding 2 quantities, Q_{S4t}^* and Q_{L4t}^*. We form an overall commercial property price index, P_4^t, by calculating the
chained Fisher price index of these two price components. This overall index P_t^4 is graphed in Figure 3 below along with our accounting method overall index P^t and the asset value price index, P_t^A.

From Figure 3, it can be seen that our accounting method overall commercial property price index series, P^t, is extremely close to the builder’s model hedonic regression approach index P_t^4 that was just explained in this section. The geometric depreciation rate for capital expenditures is exactly the same (10% per quarter by assumption) in both models and the geometric depreciation rates for the main structure are almost identical in both models but the method of land price aggregation is different in the two approaches so the close correspondence between the two methods is a bit surprising. The asset value price index, P_t^A, lies well below P^t and P_t^4 and the price index P_t^5 lies a bit above P^t and P_t^4. The index P_t^5 will be explained in the following section.

Our method for aggregating over REITs can be viewed as an application of Hicks' Aggregation Theorem; i.e., if the prices in a group of commodities vary in strict proportion over time, then the factor of proportionality can be taken as the price of the group and the deflated group expenditures will obey the usual properties of a microeconomic commodity. "Thus we have demonstrated mathematically the very important principle, used extensively in the text, that if the prices of a group of goods change in the same proportion, that group of goods behaves just as if it were a single commodity." J.R. Hicks (1946; 312-313)[21]. Our REIT structure (and capital expenditure) prices move in a proportional manner over time for all REITs, where each REITs’ structure prices are proportional to the exogenous construction price index. Our REIT land prices also move in a manner that is proportional to the movements in the α_t because we have forced this movement by our choice of functional form in the regression model.
The Builder’s Model with Geometric Depreciation Rates that Depend on the Age of the Structure

The age of the structures in our sample of Tokyo commercial office buildings ranges from about 4 years to 40 years. One might question whether the quarterly geometric depreciation rate does not change as the structure on the property ages. Thus in this section, we experimented with a model that allowed for different rates of geometric depreciation every 10 years. However, we found that there were not enough observations of “young” buildings to accurately determine separate depreciation rates for the first and second age groups so we divided observations up into three groups where the change in the depreciation rates occurred at ages (in quarters) 80 and 120, observations where the building was 0 to 80 quarters old, 80 to 120 quarters old and over 120 quarters old. Thus we found that 550 observations fell into the interval \(0 \leq A_{tn} < 80\), 424 observations fell into the interval \(80 \leq A_{tn} < 120\) and 126 observations fell into the interval \(120 \leq A_{tn} \leq 160\). We label the three sets of observations that fall into the above three groups as groups 1-3. For each observation \(n\) in period \(t\), we define the three age dummy variables, \(D_{tnm}\), for \(m = 1, 2, 3\) as follows:

\[
D_{tnm} \equiv 1 \text{ if observation } tn \text{ has a building whose age belongs to group } m; \\
\equiv 0 \text{ if observation } tn \text{ has a building whose age is not in group } m.
\]

(36)

These dummy variables are used in the definition of the following function of age \(A_{tn}\), \(g(A_{tn})\), defined as follows where the break points, \(A_1\) and \(A_2\), are defined as \(A_1 \equiv 80\) and \(A_2 \equiv 120\):

\[
g(A_{tn}) \equiv \exp \left\{ D_{tn1} \phi_1 A_{tn} + D_{tn2} [\phi_1 A_1 + \phi_2 (A_{tn} - A_1)] \\
+ D_{tn3} [\phi_1 A_1 + \phi_2 (A_2 - A_1) + \phi_3 (A_{tn} - A_2)] \right\}
\]

(37)

where \(\phi_1, \phi_2\) and \(\phi_3\) are parameters to be estimated. As in the previous section, each \(\phi_i\) can be converted into a depreciation rate \(\delta_i\) where the \(\delta_i\) are defined as follows:

\[
\delta_i \equiv 1 - \exp[\phi_i]; \quad i = 1, 2, 3.
\]

(38)

Note that the logarithm of \(g(A)\) is a piecewise linear function of the variable \(A\). The economic meaning of all of this is as follows: first the first 80 quarters of a building’s life, the constant price quantity of the structure declines at the quarterly geometric rate \((1 - \delta_1)\). Then for the next 40 quarters, the quarterly geometric rate of depreciation switches to \((1 - \delta_2)\). Finally after 120 quarters, the quarterly geometric rate of depreciation switches to \((1 - \delta_3)\).

Now we are ready to define our new nonlinear regression model that generalizes the model defined by (29) and (21) in the previous section. Model 5 is the following nonlinear regression model:

\[
V_{tn} - V_{CETn} = \beta \hat{P}^0_{tn} S_{tn} g(A_{tn}) + \alpha_t \omega_n L_{tn} + \varepsilon_{tn}; \quad t = 1, \ldots, 22; \quad n = 1, \ldots, 50
\]

(39)

where \(g(A_{tn})\) is defined by (37). This nonlinear regression has one unknown structure price \(\beta\), 3 unknown \(\phi_i\) (where \(\delta_i = 1 - \exp[\phi_i]\) and \(\delta_3\) is a quarterly geometric depreciation rate), 22 unknown \(\alpha_t\) (the overall land price series for our sample) and 50 unknown \(\omega_n\) (which reflect

\[\text{Note that for each observation, the Age dummy variables sum to one; i.e., for each } tn, D_{tn1} + D_{tn2} + D_{tn3} = 1.\]
the relative discount or premium in the land price for REIT \(n \) relative to other REITs). This is a total of 76 parameters but not all of the \(\alpha_i \) and \(\omega_n \) can be identified so, as usual, we impose the normalization (21), \(\alpha_1 = 1 \). Thus there are 75 independent parameters to be estimated with 1100 degrees of freedom.

Again, Shazam had no trouble estimating the unknown parameters using the Nonlinear Regression option. The \(R^2 \) between the observed variable and the predicted variable turned out to be 0.9946 and the log likelihood was \(-7633.63\), which is a large increase in log likelihood of 26 over Model 4 for the addition of two depreciation parameters and one structure price parameter \(\beta \) that sets the level of structure prices in quarter 1. The estimated parameters are listed in Table 6 in the Appendix. The estimated \(\phi_i \) parameters turned out to be \(-0.00328, -0.00705 \) and \(-0.03623\) and the corresponding quarterly depreciation rates turned out to be \(\delta_1 = 0.00327, \delta_2 = 0.00702 \) and \(\delta_3 = 0.03558 \). Compare these rates to the single quarterly geometric depreciation rate from Model 4, which was 0.00514. Thus the new results indicate that the quarterly depreciation rate is around 0.33% for the first 20 years of building life, increasing to 0.70% for the next 10 years and then finishing its useful life with a 3.6% per quarter depreciation rate. The estimated \(\beta \) turned out to be 0.2963 which is very close to the assumed rate of 0.3 that we have used in earlier sections of this paper. The land price series for Model 5 is denoted by \(P_{L5}^t \equiv \alpha_t^* \) and it is graphed in Figure 4 below and listed in Table 5 in the Appendix. It can be seen that the new land price series \(P_{L5}^t \) lies a bit above the accounting land price index \(P_{L4}^t \) and the previous builder’s model land price index \(P_{L4}^t \) that was described in the previous section.

Finally, we can carry out the same procedure that was used in the previous section to generate an overall commercial property price index series, \(P_5^t \), using the fitted values that are generated by Model 5. The series \(P_5^t \) are listed in Table 5 of the Appendix and are graphed in Figure 3 in the previous section. It can be seen that \(P_5^t \) lies slightly above \(P_4^t \) and our accounting...
method index P^t.

8 Estimating Demolition or Obsolescence Depreciation

The models that were described in the previous two sections are useful for national income accountants because they facilitate the accurate estimation of structure depreciation, which is required for the national accounts. The depreciation estimates that are generated by our models are wear and tear depreciation estimates that apply to structures that continue in existence over the sample period. However, there is another form of structure depreciation that we have not estimated; namely the loss of residual structure value that results from the early demolition of the structure. This problem was noticed and addressed by Hulten and Wykoff (1981)[22]*41 but we will propose a somewhat different solution to the problem.

Our suggested solution to the problem of measuring the effects of the early retirement of a building will draw on the framework suggested by Komatsu, Kato and Yashiro (1994)[26]. Their method requires the existence of data on the date of construction and the date of retirement of each building in the class of buildings under consideration and for the region that is in scope.*42 Komatsu, Kato and Yashiro collected date of construction and date of retirement data for reinforced concrete office buildings in Japan for the reference year 1987. Thus for each age of building s (in years), they were able to calculate the number of office buildings of age s (in years), N_s, as of January 1, 1987 along with the number of office buildings of age s, n_s, that were demolished in 1987 for ages $s = 1, 2, ..., 75$. Given this information, they were able to calculate the conditional probability, ρ_s, that a surviving structure of age s at the beginning of the year would be demolished during 1987; i.e., they defined ρ_s as follows:

$$\rho_s \equiv \frac{n_s}{N_s}; \quad s = 1, ..., 75.$$ \hspace{1cm} (40)

Under the assumption that the conditional probabilities defined by (40) have persisted through time, KKY defined the unconditional probability π_s that a building of age s is still in existence at the beginning of the year 1987 as follows:

$$\pi_0 \equiv 1; \quad \pi_s \equiv \pi_{s-1}(1 - \rho_s); \quad s = 1, ..., 75.$$ \hspace{1cm} (41)

It can be seen that the series π_s are a building counterpart to life expectancy tables; i.e., the births and deaths of a population of buildings are used to construct the probability of building survival as a function of age instead of the probability of individual survival as a function of age.

Using the Japanese data for the π_s for 1987 that is on Figure 7 in Komatsu, Kato and Yashiro (1994; 8)[26], we were able to construct (slightly smoothed) numerical estimates for their estimated survival probabilities, π_s. Once the probabilities of survival π_s have been determined, then the conditional probabilities of demolition ρ_s can be determined from the

*41 "Any analysis based only on survivors will therefore tend to overstate both the value and productivity of estimated capital stocks." Charles Hulten and Frank Wykoff (1981; 377)[22]. Wear and tear depreciation is often called deterioration depreciation and demolition or early retirement depreciation is sometimes called obsolescence depreciation. Crosby, Devaney and Law (2012; 230)[6] distinguish the two types of depreciation and in addition, they provide a comprehensive survey of the depreciation literature as it applies to commercial properties.

*42 Usually, land registry offices and/or municipal authorities issue building permits for the construction of new buildings and demolition permits for the tearing down of buildings. It may be difficult to classify buildings into the desired economic categories.
The resulting estimates for \(\pi_s \) and \(\rho_s \) are listed in Table 7 in the Appendix. See Figure 5 below for plots of these series.

Figure 5 Unconditional Probabilities of Building Survival and Conditional Probabilities of Demolition

Note that as could be expected, the conditional probabilities of demolition are very small for the first 20 years or so of building life. From 20 to 42 years, these probabilities gradually increase from 1.4% to about 11% and then the probabilities fluctuate around the 10% level from age 43 to 67. Finally, after age 67, the conditional probabilities of demolition increase rapidly to end up close to unity at age 75.

It is likely that the underlying probabilities of demolition are smoother than the \(\rho_s \) exhibited in Figure 5. Thus a closer approximation to these underlying probabilities could be obtained by smoothing the above estimates. However, for our purposes in this section, the data listed in Table 7 in the Appendix and graphed above will suffice.

Recall that the wear and tear structure geometric depreciation rate that we estimated for our sample of continuing structures in section 6 above was about 0.5% per quarter. We want to form a rough idea of the possible magnitude of demolition depreciation using the information in Table 7. This component of depreciation is not included in our estimate of wear and tear depreciation.

Suppose that the annual wear and tear geometric depreciation rate is 2% so that we define \(\delta \equiv 0.02 \). Suppose further that investment in Tokyo office buildings has been constant for 75 years. We will normalize the annual structure investment to equal unity in constant yen units. Finally, suppose that the survival probabilities \(\pi_s \) listed in Table 7 apply to our hypothetical

*43 Define \(\rho_0 \equiv 0 \).

*44 Recall that Komatsu, Kato and Yashiro carried out their life table estimation exercise for the year 1987. Ideally, the national statistical agency could carry out a similar exercise every year. Then the panel of life tables could be smoothed, leading to more accurate estimates for the underlying conditional probabilities.
investment data. Thus after 75 years of steady investment, the constant yen value of the
Tokyo commercial office building stock can be \(K \) defined as follows:

\[
K = \pi_0 + \pi_1 (1 - \delta) + \pi_2 (1 - \delta)^2 + \cdots + \pi_{75} (1 - \delta)^{75}.
\]

(42)

The corresponding real value of wear and tear depreciation \(\Delta \) is defined as follows:

\[
\Delta = \delta \pi_0 + \delta \pi_1 (1 - \delta) + \delta \pi_2 (1 - \delta)^2 + \cdots + \delta \pi_{75} (1 - \delta)^{75} = \delta K.
\]

(43)

The corresponding amount of demolition depreciation \(D \) is defined as each component of the
surviving capital stock on the right hand side of equation (42), \(\pi_s (1 - \delta)^s \), multiplied by the
-corresponding conditional probability of demolition, \(\rho_s \); i.e., define \(D \) as follows:

\[
D = \rho_0 \pi_0 + \rho_1 \pi_1 (1 - \delta) + \rho_2 \pi_2 (1 - \delta)^2 + \cdots + \rho_{75} \pi_{75} (1 - \delta)^{75}.
\]

(44)

Once the surviving capital stock \(K \), the amounts of wear and tear depreciation \(\Delta \) and demolition
depreciation \(D \) have been defined, the average wear and tear depreciation and demolition
depreciation rates, \(\delta \) and \(d \), are defined as the following ratios:

\[
d = \frac{D}{K}; \delta = \frac{\Delta}{K}.
\]

(45)

Of course, our assumed annual wear and tear depreciation rate of 2% turns out to equal the
average wear and tear depreciation rate defined in (45) and the average demolition depreciation rate \(d \) turned out to equal 0.01795. Thus for the depreciation model considered in section 6
above, it is likely that demolition depreciation is almost equal to wear and tear depreciation.
Note that the sum of the two depreciation rates is approximately 3.8% per year.\(^{45}\)

A similar set of calculations can be carried out for the more complex depreciation model
defined in section 7 above. Recall that our three quarterly geometric depreciation rates were
estimated as follows:

\[
\delta_1^* = 0.00327; \delta_2^* = 0.00702; \delta_3^* = 0.03558.
\]

(46)

We need to convert these quarterly depreciation rates into annual rates. Define \(\phi_i^* \equiv 1 - \delta_i^* \)
for \(i = 1, 2, 3 \). Define \(\phi_i \equiv [\phi_i^*]^4 \) and \(\delta_i \equiv 1 - \phi_i \) for \(i = 1, 2, 3 \). The \(\delta_i \) turned out to be the
following numbers:

\[
\delta_1 = 0.01302; \delta_2 = 0.02779; \delta_3 = 0.13490.
\]

(47)

The geometric depreciation rates \(\delta_i \) defined by (47) are the annualized counterparts to the
quarterly rates defined by (46). Thus for the first 20 years of building life, annual wear and
tear geometric depreciation is about 1.3% per year, about 2.8% per year for the next 10 years
and about 13.5% per year for the remaining life of the building.

A hypothetical capital stock component that is \(s \) years old (adjusted for wear and tear
depreciation), \(K_s \), is defined as follows: \(K_0 \equiv 1 \); \(K_s \equiv (1 - \delta_1)K_{s-1} \) for \(s = 1, 2, ..., 19 \);
\(K_s \equiv (1 - \delta_2)K_{s-1} \) for \(s = 20, 21, ..., 29 \) and \(K_s \equiv (1 - \delta_3)K_{s-1} \) for \(s = 30, 31, ..., 75 \). The

\[^{45}\] Our method for adjusting wear and tear depreciation rates for the early retirement of assets is similar
to the method suggested by Hulten and Wykoff. The main difference between our suggested method
and their method is that we use a building life table to form estimates of building survivor probabilities
whereas Hulten and Wykoff used somewhat arbitrary assumptions to form their estimates of survivor
probabilities: “Our survivor probabilities are based upon the set of retirement distributions developed
by Winfrey (1935)[37].”

22
aggregate constant yen capital stock (adjusted for survival and wear and tear depreciation), \(K\), is defined as follows:

\[
K \equiv \pi_0 K_0 + \pi_1 K_1 + \pi_2 K_2 + \cdots + \pi_{75} K_{75}.
\] (48)

Aggregate wear and tear constant yen depreciation, \(\Delta\), is defined as follows:

\[
\Delta \equiv \delta_1 \sum_{s=0}^{19} \pi_s K_s + \delta_2 \sum_{s=20}^{29} \pi_s K_s + \delta_3 \sum_{s=30}^{75} \pi_s K_s.
\] (49)

Finally, aggregate demolition depreciation \(D\) is defined as follows:

\[
D \equiv \sum_{s=0}^{75} \rho_s \pi_s K_s.
\] (50)

Once the surviving capital stock \(K\), the amounts of wear and tear depreciation \(\Delta\) and demolition depreciation \(D\) have been defined, the average wear and tear depreciation and demolition depreciation rates, \(\delta\) and \(d\), can again be defined by equations (45).

The annual wear and tear depreciation rate \(\delta\) for our new model turned out to equal 0.02563 and the average demolition depreciation rate \(d\) turned out to equal 0.01234. Thus for the depreciation model considered in section 7 above, the “traditional” wear and tear depreciation rate is approximately 2.6% per year under our stationary state assumptions on building investment and the corresponding demolition depreciation rate is approximately 1.2% per year.

Note that the sum of the two depreciation rates is approximately 3.8% per year, which is the same “total” depreciation rate that was generated by our section 6 model for wear and tear depreciation.*46

Our estimated demolition depreciation rates are only rough approximations to actual demolition depreciation rates. The actual rates of demolition depreciation depend on actual investments in commercial property office buildings in Tokyo for the past 75 years and this information is not available to us. However, the above calculations indicate that accounting for premature retirements of buildings adds significantly to the wear and tear depreciation rates that are estimated using hedonic regressions on continuing buildings. Thus it is important that national statistical agencies construct a data base for building births and retirements so that depreciation rates for buildings that are not retired can be adjusted to reflect the loss of building asset value that is due to premature retirement.

The analysis presented in this section does not invalidate our earlier analysis of alternative methods for constructing constant quality price indexes for commercial properties, since price indexes compare like to like and thus apply only to continuing structures. However, as a product of our hedonic regressions in sections 6 and 7, we were able to form estimates of wear and tear depreciation for buildings that remained in use. The analysis in this section simply warns the reader that wear and tear depreciation*47 is not the entire story: there is also a loss of asset value that results from the early retirement of a building that needs to be taken into account when constructing national income accounting estimates of depreciation.

*46 For comparison purposes, Hulten and Wykoff (1981; 387)[22] found that their best fitting geometric model of depreciation for office buildings in the U.S. generated an estimated annual rate of 2.47%. This estimate includes early retirement or demolition depreciation and so is comparable to our rough estimate of 3.8% for Tokyo office buildings.

*47 What we have labeled as wear and tear depreciation could be better described as anticipated amortization of the structure rather than wear and tear depreciation. Once a structure is built, it becomes a fixed asset which cannot be transferred to alternative uses (like a truck or machine). Thus amortization of the cost
9 Conclusion

Some conclusions that we can draw from the paper are as follows:

- The traditional time dummy approach to hedonic property price regressions does not always work well. The basic problem is that there are two main drivers of property prices over time: changes in the price of land and changes in the price of structures. The hedonic time dummy method allows for only one shifter of the hedonic surface when in fact there are at least two major shifters. Moreover, the traditional approach does not lead to sensible decompositions of overall price change into land and structure component changes.

- The simple asset value price index suggested in section 3 seemed to work better than indexes based on the traditional time dummy hedonic regression approach.

- The accounting method for constructing land, structure and overall property price indexes that was described in section 4 turned out to generate price indexes that were pretty close to the hedonic indexes based on the builder’s model that were developed in sections 6 and 7.

- The methods suggested in sections 4, 6, 7 and 8 are practical and could be used by statistical agencies to improve their balance sheet estimates for commercial properties and their estimates of depreciation.

However, there are many additional avenues that could be explored.

- We experimented with capitalizing REIT Net Operating Income into capital stock indexes but the volatility in REIT cash flows presents practical problems in implementing this method. Even after smoothing cash flows, we could not generate sensible capital stock estimates with our data set.

- We also tried to use an econometric model to determine what an appropriate quarterly depreciation rate for capital expenditures should be but we found that the likelihood function was very flat over a very large range of depreciation rates so we simply settled on a quarterly rate of 10% without completely convincing evidence to back up this rate.

- The depreciation rates that we estimate in sections 6 and 7 understate the actual amount of structure depreciation that takes place. Our approach is fine as far as it goes but it applies only to continuing structures. Unfortunately, structures are not all demolished at the same age: many structures still generate cash flow but yet they are demolished before their initial cost of construction is fully amortized. We take this effect into account in section 8 and generate estimates of demolition (or premature retirement or obsolescence) depreciation.

Our overall conclusion is that constructing usable commercial property price indexes is a very challenging task; a much more difficult task than the construction of residential property price indexes.
References

Appendix A Model Estimated Coefficients and Index Number
Tables
<table>
<thead>
<tr>
<th>t : Q-Y</th>
<th>V^t</th>
<th>V_{CE}^t</th>
<th>V_S^t</th>
<th>V_L^t</th>
<th>Q^t</th>
<th>Q_{CE}^t</th>
<th>Q_S^t</th>
<th>Q_L^t</th>
<th>P_A^t</th>
<th>P_{CE}^t</th>
<th>P_S^t</th>
<th>P_L^t</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Q1-07</td>
<td>255096</td>
<td>2695</td>
<td>62262</td>
<td>190139</td>
<td>255096</td>
<td>2695</td>
<td>62262</td>
<td>190139</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td>2</td>
<td>Q2-07</td>
<td>260300</td>
<td>2831</td>
<td>62149</td>
<td>195320</td>
<td>254913</td>
<td>2822</td>
<td>61951</td>
<td>190139</td>
<td>1.0204</td>
<td>1.0211</td>
<td>1.0032</td>
</tr>
<tr>
<td>3</td>
<td>Q3-07</td>
<td>265139</td>
<td>2979</td>
<td>62162</td>
<td>199998</td>
<td>254741</td>
<td>2954</td>
<td>61641</td>
<td>190139</td>
<td>1.0394</td>
<td>1.0408</td>
<td>1.0084</td>
</tr>
<tr>
<td>4</td>
<td>Q4-07</td>
<td>269661</td>
<td>3124</td>
<td>62117</td>
<td>204520</td>
<td>254474</td>
<td>2986</td>
<td>61333</td>
<td>190139</td>
<td>1.0571</td>
<td>1.0597</td>
<td>1.0128</td>
</tr>
<tr>
<td>5</td>
<td>Q1-08</td>
<td>273556</td>
<td>3149</td>
<td>62268</td>
<td>208139</td>
<td>254278</td>
<td>3086</td>
<td>61026</td>
<td>190139</td>
<td>1.0724</td>
<td>1.0758</td>
<td>1.0203</td>
</tr>
<tr>
<td>6</td>
<td>Q2-08</td>
<td>275886</td>
<td>3270</td>
<td>62920</td>
<td>209695</td>
<td>254054</td>
<td>3156</td>
<td>60721</td>
<td>190139</td>
<td>1.0815</td>
<td>1.0859</td>
<td>1.0362</td>
</tr>
<tr>
<td>7</td>
<td>Q3-08</td>
<td>275517</td>
<td>3452</td>
<td>65502</td>
<td>206563</td>
<td>253785</td>
<td>3184</td>
<td>60418</td>
<td>190139</td>
<td>1.0801</td>
<td>1.0856</td>
<td>1.0842</td>
</tr>
<tr>
<td>8</td>
<td>Q4-08</td>
<td>273372</td>
<td>3500</td>
<td>66543</td>
<td>203328</td>
<td>251467</td>
<td>3162</td>
<td>60116</td>
<td>190139</td>
<td>1.0716</td>
<td>1.0786</td>
<td>1.0694</td>
</tr>
<tr>
<td>9</td>
<td>Q1-09</td>
<td>266347</td>
<td>3424</td>
<td>64809</td>
<td>198114</td>
<td>253146</td>
<td>3160</td>
<td>59815</td>
<td>190139</td>
<td>1.0441</td>
<td>1.0521</td>
<td>1.0835</td>
</tr>
<tr>
<td>10</td>
<td>Q2-09</td>
<td>256628</td>
<td>3315</td>
<td>61991</td>
<td>191322</td>
<td>252622</td>
<td>3183</td>
<td>59516</td>
<td>190139</td>
<td>1.0060</td>
<td>1.0149</td>
<td>1.0416</td>
</tr>
<tr>
<td>11</td>
<td>Q3-09</td>
<td>248934</td>
<td>3288</td>
<td>60146</td>
<td>185500</td>
<td>252612</td>
<td>3237</td>
<td>59218</td>
<td>190139</td>
<td>0.9758</td>
<td>0.9854</td>
<td>1.0157</td>
</tr>
<tr>
<td>12</td>
<td>Q4-09</td>
<td>243575</td>
<td>3238</td>
<td>59052</td>
<td>181285</td>
<td>252299</td>
<td>3231</td>
<td>58922</td>
<td>190139</td>
<td>0.9548</td>
<td>0.9654</td>
<td>1.0022</td>
</tr>
<tr>
<td>13</td>
<td>Q1-10</td>
<td>239770</td>
<td>3189</td>
<td>57760</td>
<td>178821</td>
<td>251999</td>
<td>3236</td>
<td>58628</td>
<td>190139</td>
<td>0.9399</td>
<td>0.9515</td>
<td>0.9852</td>
</tr>
<tr>
<td>14</td>
<td>Q2-10</td>
<td>237035</td>
<td>3115</td>
<td>56654</td>
<td>177266</td>
<td>251666</td>
<td>3207</td>
<td>58334</td>
<td>190139</td>
<td>0.9292</td>
<td>0.9419</td>
<td>0.9712</td>
</tr>
<tr>
<td>15</td>
<td>Q3-10</td>
<td>235115</td>
<td>3111</td>
<td>57527</td>
<td>174477</td>
<td>251290</td>
<td>3139</td>
<td>58043</td>
<td>190139</td>
<td>0.9217</td>
<td>0.9356</td>
<td>0.9911</td>
</tr>
<tr>
<td>16</td>
<td>Q4-10</td>
<td>233465</td>
<td>2981</td>
<td>56768</td>
<td>173717</td>
<td>250870</td>
<td>3032</td>
<td>57753</td>
<td>190139</td>
<td>0.9152</td>
<td>0.9306</td>
<td>0.9829</td>
</tr>
<tr>
<td>17</td>
<td>Q1-11</td>
<td>232450</td>
<td>2908</td>
<td>56021</td>
<td>173521</td>
<td>250514</td>
<td>2983</td>
<td>57464</td>
<td>190139</td>
<td>0.9112</td>
<td>0.9279</td>
<td>0.9749</td>
</tr>
<tr>
<td>18</td>
<td>Q2-11</td>
<td>231272</td>
<td>2835</td>
<td>56422</td>
<td>172015</td>
<td>250093</td>
<td>2873</td>
<td>57176</td>
<td>190139</td>
<td>0.9066</td>
<td>0.9247</td>
<td>0.9868</td>
</tr>
<tr>
<td>19</td>
<td>Q3-11</td>
<td>230234</td>
<td>2766</td>
<td>56612</td>
<td>170855</td>
<td>249866</td>
<td>2780</td>
<td>56891</td>
<td>190139</td>
<td>0.9026</td>
<td>0.9221</td>
<td>0.9951</td>
</tr>
<tr>
<td>20</td>
<td>Q4-11</td>
<td>228861</td>
<td>2680</td>
<td>55994</td>
<td>170188</td>
<td>249303</td>
<td>2709</td>
<td>56606</td>
<td>190139</td>
<td>0.8972</td>
<td>0.918</td>
<td>0.9892</td>
</tr>
<tr>
<td>21</td>
<td>Q1-12</td>
<td>226650</td>
<td>2643</td>
<td>55639</td>
<td>168368</td>
<td>248961</td>
<td>2675</td>
<td>56323</td>
<td>190139</td>
<td>0.8885</td>
<td>0.9104</td>
<td>0.9879</td>
</tr>
<tr>
<td>22</td>
<td>Q2-12</td>
<td>224437</td>
<td>2621</td>
<td>55403</td>
<td>166414</td>
<td>248622</td>
<td>2651</td>
<td>56036</td>
<td>190139</td>
<td>0.8798</td>
<td>0.9027</td>
<td>0.9887</td>
</tr>
</tbody>
</table>
Table 3 Estimated Coefficients for Model 1

<table>
<thead>
<tr>
<th>Name</th>
<th>Est Coef</th>
<th>T Stat</th>
<th>Name</th>
<th>Est Coef</th>
<th>T Stat</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>-0.2726</td>
<td>-1.2710</td>
<td>α_{14}</td>
<td>-0.09780</td>
<td>-1.171</td>
</tr>
<tr>
<td>α_2</td>
<td>0.0190</td>
<td>0.2281</td>
<td>α_{15}</td>
<td>-0.1098</td>
<td>-1.314</td>
</tr>
<tr>
<td>α_3</td>
<td>0.0371</td>
<td>0.4459</td>
<td>α_{16}</td>
<td>-0.1205</td>
<td>-1.441</td>
</tr>
<tr>
<td>α_4</td>
<td>0.0510</td>
<td>0.6126</td>
<td>α_{17}</td>
<td>-0.1270</td>
<td>-1.519</td>
</tr>
<tr>
<td>α_5</td>
<td>0.0624</td>
<td>0.7497</td>
<td>α_{18}</td>
<td>-0.1337</td>
<td>-1.597</td>
</tr>
<tr>
<td>α_6</td>
<td>0.0689</td>
<td>0.8276</td>
<td>α_{19}</td>
<td>-0.1414</td>
<td>-1.689</td>
</tr>
<tr>
<td>α_7</td>
<td>0.0672</td>
<td>0.8072</td>
<td>α_{20}</td>
<td>-0.1521</td>
<td>-1.814</td>
</tr>
<tr>
<td>α_8</td>
<td>0.0581</td>
<td>0.6976</td>
<td>α_{21}</td>
<td>-0.1649</td>
<td>-1.966</td>
</tr>
<tr>
<td>α_9</td>
<td>0.0308</td>
<td>0.3701</td>
<td>α_{22}</td>
<td>-0.1765</td>
<td>-2.103</td>
</tr>
<tr>
<td>α_{10}</td>
<td>-0.0085</td>
<td>-0.1018</td>
<td>β</td>
<td>-0.1713</td>
<td>-4.338</td>
</tr>
<tr>
<td>α_{11}</td>
<td>-0.0427</td>
<td>-0.5120</td>
<td>γ</td>
<td>1.1264</td>
<td>25.930</td>
</tr>
<tr>
<td>α_{12}</td>
<td>-0.0664</td>
<td>-0.7953</td>
<td>δ</td>
<td>0.0020</td>
<td>3.941</td>
</tr>
<tr>
<td>α_{13}</td>
<td>-0.0836</td>
<td>-1.0020</td>
<td> </td>
<td> </td>
<td> </td>
</tr>
</tbody>
</table>

Table 4 Estimated Coefficients for Model 2

<table>
<thead>
<tr>
<th>Name</th>
<th>Est Coef</th>
<th>T Stat</th>
<th>Name</th>
<th>Est Coef</th>
<th>T Stat</th>
<th>Name</th>
<th>Est Coef</th>
<th>T Stat</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ</td>
<td>0.2896</td>
<td>6.082</td>
<td>ω_3</td>
<td>7.3748</td>
<td>37.90</td>
<td>ω_{27}</td>
<td>8.0236</td>
<td>40.40</td>
</tr>
<tr>
<td>α_2</td>
<td>0.0165</td>
<td>1.524</td>
<td>ω_4</td>
<td>7.7596</td>
<td>37.61</td>
<td>ω_{28}</td>
<td>6.6051</td>
<td>31.46</td>
</tr>
<tr>
<td>α_3</td>
<td>0.0322</td>
<td>2.566</td>
<td>ω_5</td>
<td>7.8609</td>
<td>30.33</td>
<td>ω_{29}</td>
<td>7.8269</td>
<td>36.00</td>
</tr>
<tr>
<td>α_4</td>
<td>0.0438</td>
<td>3.973</td>
<td>ω_6</td>
<td>7.7669</td>
<td>38.65</td>
<td>ω_{30}</td>
<td>6.8843</td>
<td>33.74</td>
</tr>
<tr>
<td>α_5</td>
<td>0.0529</td>
<td>4.737</td>
<td>ω_7</td>
<td>7.4183</td>
<td>38.40</td>
<td>ω_{31}</td>
<td>5.8602</td>
<td>29.60</td>
</tr>
<tr>
<td>α_6</td>
<td>0.0573</td>
<td>5.035</td>
<td>ω_8</td>
<td>8.0808</td>
<td>39.60</td>
<td>ω_{32}</td>
<td>6.0074</td>
<td>27.26</td>
</tr>
<tr>
<td>α_7</td>
<td>0.0555</td>
<td>4.608</td>
<td>ω_9</td>
<td>7.4382</td>
<td>35.60</td>
<td>ω_{33}</td>
<td>6.2018</td>
<td>31.43</td>
</tr>
<tr>
<td>α_8</td>
<td>0.0424</td>
<td>3.568</td>
<td>ω_{10}</td>
<td>7.0035</td>
<td>31.61</td>
<td>ω_{34}</td>
<td>6.6439</td>
<td>33.34</td>
</tr>
<tr>
<td>α_9</td>
<td>0.0131</td>
<td>1.079</td>
<td>ω_{11}</td>
<td>7.2203</td>
<td>37.96</td>
<td>ω_{35}</td>
<td>6.2384</td>
<td>31.72</td>
</tr>
<tr>
<td>α_{10}</td>
<td>-0.0281</td>
<td>-2.255</td>
<td>ω_{12}</td>
<td>6.0359</td>
<td>29.83</td>
<td>ω_{36}</td>
<td>6.7646</td>
<td>34.52</td>
</tr>
<tr>
<td>α_{11}</td>
<td>-0.0642</td>
<td>-5.013</td>
<td>ω_{13}</td>
<td>6.0571</td>
<td>31.02</td>
<td>ω_{37}</td>
<td>6.1642</td>
<td>32.54</td>
</tr>
<tr>
<td>α_{12}</td>
<td>-0.0896</td>
<td>-6.816</td>
<td>ω_{14}</td>
<td>6.5959</td>
<td>29.56</td>
<td>ω_{38}</td>
<td>6.4691</td>
<td>31.44</td>
</tr>
<tr>
<td>α_{13}</td>
<td>-0.1086</td>
<td>-8.041</td>
<td>ω_{15}</td>
<td>7.0383</td>
<td>36.04</td>
<td>ω_{39}</td>
<td>7.4075</td>
<td>35.54</td>
</tr>
<tr>
<td>α_{14}</td>
<td>-0.1241</td>
<td>-8.963</td>
<td>ω_{16}</td>
<td>6.6352</td>
<td>32.99</td>
<td>ω_{40}</td>
<td>6.6638</td>
<td>34.25</td>
</tr>
<tr>
<td>α_{15}</td>
<td>-0.1380</td>
<td>-9.676</td>
<td>ω_{17}</td>
<td>6.8393</td>
<td>34.66</td>
<td>ω_{41}</td>
<td>6.7752</td>
<td>32.19</td>
</tr>
<tr>
<td>α_{16}</td>
<td>-0.15027</td>
<td>-10.25</td>
<td>ω_{18}</td>
<td>5.9573</td>
<td>28.73</td>
<td>ω_{42}</td>
<td>7.4138</td>
<td>39.14</td>
</tr>
<tr>
<td>α_{17}</td>
<td>-0.15833</td>
<td>-10.52</td>
<td>ω_{19}</td>
<td>8.3453</td>
<td>54.31</td>
<td>ω_{43}</td>
<td>6.4641</td>
<td>28.16</td>
</tr>
<tr>
<td>α_{18}</td>
<td>-0.16647</td>
<td>-10.77</td>
<td>ω_{20}</td>
<td>8.1428</td>
<td>54.23</td>
<td>ω_{44}</td>
<td>7.0462</td>
<td>35.83</td>
</tr>
<tr>
<td>α_{19}</td>
<td>-0.17561</td>
<td>-11.06</td>
<td>ω_{21}</td>
<td>7.7022</td>
<td>38.66</td>
<td>ω_{45}</td>
<td>7.0326</td>
<td>36.54</td>
</tr>
<tr>
<td>α_{20}</td>
<td>-0.18764</td>
<td>-11.52</td>
<td>ω_{22}</td>
<td>7.6575</td>
<td>39.08</td>
<td>ω_{46}</td>
<td>6.2644</td>
<td>29.29</td>
</tr>
<tr>
<td>α_{21}</td>
<td>-0.20182</td>
<td>-12.08</td>
<td>ω_{23}</td>
<td>7.4996</td>
<td>36.35</td>
<td>ω_{47}</td>
<td>7.0350</td>
<td>31.27</td>
</tr>
<tr>
<td>α_{22}</td>
<td>-0.21488</td>
<td>-12.55</td>
<td>ω_{24}</td>
<td>7.0084</td>
<td>34.15</td>
<td>ω_{48}</td>
<td>6.6572</td>
<td>32.18</td>
</tr>
<tr>
<td>ω_1</td>
<td>7.0285</td>
<td>34.07</td>
<td>ω_{25}</td>
<td>8.2189</td>
<td>39.73</td>
<td>ω_{49}</td>
<td>8.2911</td>
<td>35.91</td>
</tr>
<tr>
<td>ω_2</td>
<td>7.6391</td>
<td>33.28</td>
<td>ω_{26}</td>
<td>8.0236</td>
<td>40.40</td>
<td>ω_{50}</td>
<td>8.2489</td>
<td>43.37</td>
</tr>
</tbody>
</table>
Table 5 Accounting Price Index P^t, Asset Value Index P^A_t, Hedonic Model Price Indexes, $P^t_1 - P^t_5$, and Land Price Indexes P^L_t, P^L_{1A} and P^L_{15}

<table>
<thead>
<tr>
<th>t</th>
<th>Q-Y</th>
<th>P^t</th>
<th>P^A_t</th>
<th>P^t_1</th>
<th>P^t_2</th>
<th>P^t_3</th>
<th>P^t_4</th>
<th>P^t_5</th>
<th>P^L_t</th>
<th>P^L_{1A}</th>
<th>P^L_{15}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Q1-07</td>
<td>1.0000</td>
</tr>
<tr>
<td>2</td>
<td>Q2-07</td>
<td>1.0211</td>
<td>1.0204</td>
<td>1.0192</td>
<td>1.0166</td>
<td>1.0212</td>
<td>1.0203</td>
<td>1.0208</td>
<td>1.0272</td>
<td>1.0260</td>
<td>1.0273</td>
</tr>
<tr>
<td>3</td>
<td>Q3-07</td>
<td>1.0408</td>
<td>1.0394</td>
<td>1.0378</td>
<td>1.0327</td>
<td>1.0420</td>
<td>1.0362</td>
<td>1.0368</td>
<td>1.0518</td>
<td>1.0455</td>
<td>1.0473</td>
</tr>
<tr>
<td>4</td>
<td>Q4-07</td>
<td>1.0597</td>
<td>1.0571</td>
<td>1.0523</td>
<td>1.0447</td>
<td>1.0588</td>
<td>1.0544</td>
<td>1.0553</td>
<td>1.0756</td>
<td>1.0683</td>
<td>1.0711</td>
</tr>
<tr>
<td>5</td>
<td>Q1-08</td>
<td>1.0758</td>
<td>1.0724</td>
<td>1.0644</td>
<td>1.0544</td>
<td>1.0731</td>
<td>1.0720</td>
<td>1.0739</td>
<td>1.0947</td>
<td>1.0893</td>
<td>1.0937</td>
</tr>
<tr>
<td>6</td>
<td>Q2-08</td>
<td>1.0859</td>
<td>1.0815</td>
<td>1.0714</td>
<td>1.0590</td>
<td>1.0823</td>
<td>1.0833</td>
<td>1.0861</td>
<td>1.1029</td>
<td>1.0991</td>
<td>1.1045</td>
</tr>
<tr>
<td>7</td>
<td>Q3-08</td>
<td>1.0856</td>
<td>1.0800</td>
<td>1.0695</td>
<td>1.0550</td>
<td>1.0827</td>
<td>1.0845</td>
<td>1.0888</td>
<td>1.0864</td>
<td>1.0849</td>
<td>1.0908</td>
</tr>
<tr>
<td>8</td>
<td>Q4-08</td>
<td>1.0786</td>
<td>1.0716</td>
<td>1.0598</td>
<td>1.0433</td>
<td>1.0750</td>
<td>1.0795</td>
<td>1.0850</td>
<td>1.0694</td>
<td>1.0707</td>
<td>1.0775</td>
</tr>
<tr>
<td>9</td>
<td>Q1-09</td>
<td>1.0521</td>
<td>1.0441</td>
<td>1.0313</td>
<td>1.0132</td>
<td>1.0482</td>
<td>1.0517</td>
<td>1.0575</td>
<td>1.0419</td>
<td>1.0415</td>
<td>1.0484</td>
</tr>
<tr>
<td>10</td>
<td>Q2-09</td>
<td>1.0149</td>
<td>1.0060</td>
<td>0.9915</td>
<td>0.9723</td>
<td>1.0099</td>
<td>1.0128</td>
<td>1.0184</td>
<td>1.0062</td>
<td>1.0036</td>
<td>1.0103</td>
</tr>
<tr>
<td>11</td>
<td>Q3-09</td>
<td>0.9854</td>
<td>0.9758</td>
<td>0.9582</td>
<td>0.9379</td>
<td>0.9779</td>
<td>0.9831</td>
<td>0.9886</td>
<td>0.9756</td>
<td>0.9727</td>
<td>0.9792</td>
</tr>
<tr>
<td>12</td>
<td>Q4-09</td>
<td>0.9654</td>
<td>0.9548</td>
<td>0.9358</td>
<td>0.9143</td>
<td>0.9570</td>
<td>0.9614</td>
<td>0.9669</td>
<td>0.9534</td>
<td>0.9482</td>
<td>0.9545</td>
</tr>
<tr>
<td>13</td>
<td>Q1-10</td>
<td>0.9515</td>
<td>0.9399</td>
<td>0.9198</td>
<td>0.8971</td>
<td>0.9425</td>
<td>0.9472</td>
<td>0.9529</td>
<td>0.9405</td>
<td>0.9349</td>
<td>0.9415</td>
</tr>
<tr>
<td>14</td>
<td>Q2-10</td>
<td>0.9419</td>
<td>0.9292</td>
<td>0.9068</td>
<td>0.8830</td>
<td>0.9311</td>
<td>0.9383</td>
<td>0.9443</td>
<td>0.9323</td>
<td>0.9277</td>
<td>0.9348</td>
</tr>
<tr>
<td>15</td>
<td>Q3-10</td>
<td>0.9356</td>
<td>0.9217</td>
<td>0.8960</td>
<td>0.8711</td>
<td>0.9219</td>
<td>0.9344</td>
<td>0.9412</td>
<td>0.9176</td>
<td>0.9163</td>
<td>0.9238</td>
</tr>
<tr>
<td>16</td>
<td>Q4-10</td>
<td>0.9306</td>
<td>0.9152</td>
<td>0.8865</td>
<td>0.8605</td>
<td>0.9139</td>
<td>0.9292</td>
<td>0.9362</td>
<td>0.9136</td>
<td>0.9120</td>
<td>0.9199</td>
</tr>
<tr>
<td>17</td>
<td>Q1-11</td>
<td>0.9279</td>
<td>0.9112</td>
<td>0.8807</td>
<td>0.8536</td>
<td>0.9098</td>
<td>0.9254</td>
<td>0.9325</td>
<td>0.9126</td>
<td>0.9095</td>
<td>0.9177</td>
</tr>
<tr>
<td>18</td>
<td>Q2-11</td>
<td>0.9247</td>
<td>0.9066</td>
<td>0.8748</td>
<td>0.8466</td>
<td>0.9056</td>
<td>0.9226</td>
<td>0.9306</td>
<td>0.9047</td>
<td>0.9022</td>
<td>0.9111</td>
</tr>
<tr>
<td>19</td>
<td>Q3-11</td>
<td>0.9221</td>
<td>0.9025</td>
<td>0.8681</td>
<td>0.8389</td>
<td>0.9005</td>
<td>0.9215</td>
<td>0.9300</td>
<td>0.8986</td>
<td>0.8981</td>
<td>0.9076</td>
</tr>
<tr>
<td>20</td>
<td>Q4-11</td>
<td>0.9180</td>
<td>0.8972</td>
<td>0.8589</td>
<td>0.8289</td>
<td>0.8927</td>
<td>0.9190</td>
<td>0.9278</td>
<td>0.8951</td>
<td>0.8967</td>
<td>0.9066</td>
</tr>
<tr>
<td>21</td>
<td>Q1-12</td>
<td>0.9104</td>
<td>0.8885</td>
<td>0.8479</td>
<td>0.8172</td>
<td>0.8831</td>
<td>0.9111</td>
<td>0.9201</td>
<td>0.8855</td>
<td>0.8869</td>
<td>0.8968</td>
</tr>
<tr>
<td>22</td>
<td>Q2-12</td>
<td>0.9027</td>
<td>0.8798</td>
<td>0.8382</td>
<td>0.8066</td>
<td>0.8746</td>
<td>0.9016</td>
<td>0.9108</td>
<td>0.8752</td>
<td>0.8742</td>
<td>0.8841</td>
</tr>
</tbody>
</table>
Table 6 Estimated Coefficients for Model 5

<table>
<thead>
<tr>
<th>Name</th>
<th>Est Coef</th>
<th>T Stat</th>
<th>Name</th>
<th>Est Coef</th>
<th>T Stat</th>
<th>Name</th>
<th>Est Coef</th>
<th>T Stat</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta)</td>
<td>0.2963</td>
<td>3.889</td>
<td>(\omega_{22})</td>
<td>2.680</td>
<td>8.955</td>
<td>(\omega_{47})</td>
<td>3.179</td>
<td>12.167</td>
</tr>
<tr>
<td>(\phi_1)</td>
<td>−0.00328</td>
<td>−2.559</td>
<td>(\omega_{23})</td>
<td>1.222</td>
<td>9.428</td>
<td>(\omega_{48})</td>
<td>7.608</td>
<td>40.656</td>
</tr>
<tr>
<td>(\phi_2)</td>
<td>−0.00705</td>
<td>−3.773</td>
<td>(\omega_{24})</td>
<td>3.499</td>
<td>13.005</td>
<td>(\omega_{49})</td>
<td>2.205</td>
<td>7.893</td>
</tr>
<tr>
<td>(\phi_3)</td>
<td>−0.03623</td>
<td>−3.923</td>
<td>(\omega_{25})</td>
<td>18.17</td>
<td>43.141</td>
<td>(\omega_{50})</td>
<td>3.910</td>
<td>13.640</td>
</tr>
<tr>
<td>(\omega_1)</td>
<td>1.708</td>
<td>3.851</td>
<td>(\omega_{26})</td>
<td>3.520</td>
<td>13.513</td>
<td>(\alpha_2)</td>
<td>1.0273</td>
<td>94.363</td>
</tr>
<tr>
<td>(\omega_2)</td>
<td>4.791</td>
<td>22.480</td>
<td>(\omega_{27})</td>
<td>3.571</td>
<td>14.261</td>
<td>(\alpha_3)</td>
<td>1.0473</td>
<td>95.380</td>
</tr>
<tr>
<td>(\omega_3)</td>
<td>2.387</td>
<td>7.200</td>
<td>(\omega_{28})</td>
<td>7.422</td>
<td>35.534</td>
<td>(\alpha_4)</td>
<td>1.0711</td>
<td>93.637</td>
</tr>
<tr>
<td>(\omega_4)</td>
<td>1.934</td>
<td>9.490</td>
<td>(\omega_{29})</td>
<td>3.424</td>
<td>12.843</td>
<td>(\alpha_5)</td>
<td>1.0937</td>
<td>90.191</td>
</tr>
<tr>
<td>(\omega_5)</td>
<td>3.029</td>
<td>10.706</td>
<td>(\omega_{30})</td>
<td>1.395</td>
<td>5.775</td>
<td>(\alpha_6)</td>
<td>1.1045</td>
<td>89.152</td>
</tr>
<tr>
<td>(\omega_6)</td>
<td>3.511</td>
<td>8.808</td>
<td>(\omega_{31})</td>
<td>1.682</td>
<td>9.379</td>
<td>(\alpha_7)</td>
<td>1.0908</td>
<td>94.379</td>
</tr>
<tr>
<td>(\omega_7)</td>
<td>4.245</td>
<td>10.747</td>
<td>(\omega_{32})</td>
<td>3.514</td>
<td>9.509</td>
<td>(\alpha_8)</td>
<td>1.0775</td>
<td>95.514</td>
</tr>
<tr>
<td>(\omega_8)</td>
<td>5.710</td>
<td>31.715</td>
<td>(\omega_{33})</td>
<td>1.914</td>
<td>6.677</td>
<td>(\alpha_9)</td>
<td>1.0484</td>
<td>94.111</td>
</tr>
<tr>
<td>(\omega_9)</td>
<td>4.261</td>
<td>21.745</td>
<td>(\omega_{34})</td>
<td>3.873</td>
<td>9.657</td>
<td>(\alpha_{10})</td>
<td>1.0103</td>
<td>92.033</td>
</tr>
<tr>
<td>(\omega_{10})</td>
<td>2.173</td>
<td>32.331</td>
<td>(\omega_{35})</td>
<td>3.830</td>
<td>12.783</td>
<td>(\alpha_{11})</td>
<td>0.9792</td>
<td>90.516</td>
</tr>
<tr>
<td>(\omega_{11})</td>
<td>2.825</td>
<td>13.940</td>
<td>(\omega_{36})</td>
<td>1.628</td>
<td>6.578</td>
<td>(\alpha_{12})</td>
<td>0.9545</td>
<td>90.552</td>
</tr>
<tr>
<td>(\omega_{12})</td>
<td>1.650</td>
<td>5.024</td>
<td>(\omega_{37})</td>
<td>2.736</td>
<td>9.251</td>
<td>(\alpha_{13})</td>
<td>0.9415</td>
<td>89.175</td>
</tr>
<tr>
<td>(\omega_{13})</td>
<td>0.3942</td>
<td>1.832</td>
<td>(\omega_{38})</td>
<td>5.724</td>
<td>17.738</td>
<td>(\alpha_{14})</td>
<td>0.9348</td>
<td>86.293</td>
</tr>
<tr>
<td>(\omega_{14})</td>
<td>4.878</td>
<td>19.939</td>
<td>(\omega_{39})</td>
<td>0.7083</td>
<td>2.836</td>
<td>(\alpha_{15})</td>
<td>0.9238</td>
<td>86.733</td>
</tr>
<tr>
<td>(\omega_{15})</td>
<td>3.150</td>
<td>12.429</td>
<td>(\omega_{40})</td>
<td>3.258</td>
<td>14.320</td>
<td>(\alpha_{16})</td>
<td>0.9199</td>
<td>85.759</td>
</tr>
<tr>
<td>(\omega_{16})</td>
<td>1.747</td>
<td>13.458</td>
<td>(\omega_{41})</td>
<td>6.468</td>
<td>13.977</td>
<td>(\alpha_{17})</td>
<td>0.9177</td>
<td>83.972</td>
</tr>
<tr>
<td>(\omega_{17})</td>
<td>0.928</td>
<td>6.371</td>
<td>(\omega_{42})</td>
<td>3.561</td>
<td>20.078</td>
<td>(\alpha_{18})</td>
<td>0.9111</td>
<td>83.358</td>
</tr>
<tr>
<td>(\omega_{18})</td>
<td>1.993</td>
<td>7.877</td>
<td>(\omega_{43})</td>
<td>0.9705</td>
<td>5.984</td>
<td>(\alpha_{19})</td>
<td>0.9076</td>
<td>82.737</td>
</tr>
<tr>
<td>(\omega_{19})</td>
<td>10.316</td>
<td>18.279</td>
<td>(\omega_{44})</td>
<td>1.594</td>
<td>6.319</td>
<td>(\alpha_{20})</td>
<td>0.9066</td>
<td>80.694</td>
</tr>
<tr>
<td>(\omega_{20})</td>
<td>4.281</td>
<td>9.534</td>
<td>(\omega_{45})</td>
<td>4.539</td>
<td>15.388</td>
<td>(\alpha_{21})</td>
<td>0.8908</td>
<td>79.997</td>
</tr>
<tr>
<td>(\omega_{21})</td>
<td>15.410</td>
<td>40.295</td>
<td>(\omega_{46})</td>
<td>7.338</td>
<td>29.390</td>
<td>(\alpha_{22})</td>
<td>0.8841</td>
<td>79.780</td>
</tr>
</tbody>
</table>
Table 7 Unconditional Probabilities of Building Survival π_s and Conditional Probabilities of Demolition ρ_s as Functions of Age s

<table>
<thead>
<tr>
<th>Age s</th>
<th>π_s</th>
<th>ρ_s</th>
<th>Age s</th>
<th>π_s</th>
<th>ρ_s</th>
<th>Age s</th>
<th>π_s</th>
<th>ρ_s</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.0000</td>
<td>0.0000</td>
<td>19</td>
<td>0.91</td>
<td>0.0096</td>
<td>38</td>
<td>0.4400</td>
<td>0.0435</td>
</tr>
<tr>
<td>1</td>
<td>0.9990</td>
<td>0.0010</td>
<td>20</td>
<td>0.8971</td>
<td>0.0142</td>
<td>39</td>
<td>0.4199</td>
<td>0.0455</td>
</tr>
<tr>
<td>2</td>
<td>0.9980</td>
<td>0.0010</td>
<td>21</td>
<td>0.8799</td>
<td>0.0192</td>
<td>40</td>
<td>0.3939</td>
<td>0.0620</td>
</tr>
<tr>
<td>3</td>
<td>0.9970</td>
<td>0.0010</td>
<td>22</td>
<td>0.8599</td>
<td>0.0227</td>
<td>41</td>
<td>0.3592</td>
<td>0.0882</td>
</tr>
<tr>
<td>4</td>
<td>0.9960</td>
<td>0.0010</td>
<td>23</td>
<td>0.8399</td>
<td>0.0233</td>
<td>42</td>
<td>0.3190</td>
<td>0.1119</td>
</tr>
<tr>
<td>5</td>
<td>0.9947</td>
<td>0.0013</td>
<td>24</td>
<td>0.8199</td>
<td>0.0238</td>
<td>43</td>
<td>0.2787</td>
<td>0.1261</td>
</tr>
<tr>
<td>6</td>
<td>0.9930</td>
<td>0.0017</td>
<td>25</td>
<td>0.7999</td>
<td>0.0244</td>
<td>44</td>
<td>0.2384</td>
<td>0.1446</td>
</tr>
<tr>
<td>7</td>
<td>0.9910</td>
<td>0.0020</td>
<td>26</td>
<td>0.7799</td>
<td>0.0250</td>
<td>45</td>
<td>0.2103</td>
<td>0.1179</td>
</tr>
<tr>
<td>8</td>
<td>0.9890</td>
<td>0.0020</td>
<td>27</td>
<td>0.7599</td>
<td>0.0257</td>
<td>46</td>
<td>0.1973</td>
<td>0.0621</td>
</tr>
<tr>
<td>9</td>
<td>0.9870</td>
<td>0.0020</td>
<td>28</td>
<td>0.7399</td>
<td>0.0263</td>
<td>47</td>
<td>0.1933</td>
<td>0.0204</td>
</tr>
<tr>
<td>10</td>
<td>0.9836</td>
<td>0.0035</td>
<td>29</td>
<td>0.7199</td>
<td>0.0270</td>
<td>48</td>
<td>0.1892</td>
<td>0.0208</td>
</tr>
<tr>
<td>11</td>
<td>0.9780</td>
<td>0.0057</td>
<td>30</td>
<td>0.6940</td>
<td>0.0360</td>
<td>49</td>
<td>0.1852</td>
<td>0.0213</td>
</tr>
<tr>
<td>12</td>
<td>0.9710</td>
<td>0.0072</td>
<td>31</td>
<td>0.6695</td>
<td>0.0497</td>
<td>50</td>
<td>0.1791</td>
<td>0.0329</td>
</tr>
<tr>
<td>13</td>
<td>0.9640</td>
<td>0.0072</td>
<td>32</td>
<td>0.6194</td>
<td>0.0607</td>
<td>51</td>
<td>0.1700</td>
<td>0.0510</td>
</tr>
<tr>
<td>14</td>
<td>0.9570</td>
<td>0.0073</td>
<td>33</td>
<td>0.5794</td>
<td>0.0647</td>
<td>52</td>
<td>0.1589</td>
<td>0.0652</td>
</tr>
<tr>
<td>15</td>
<td>0.9491</td>
<td>0.0082</td>
<td>34</td>
<td>0.5393</td>
<td>0.0692</td>
<td>53</td>
<td>0.1478</td>
<td>0.0698</td>
</tr>
<tr>
<td>16</td>
<td>0.9400</td>
<td>0.0096</td>
<td>35</td>
<td>0.5054</td>
<td>0.0629</td>
<td>54</td>
<td>0.1367</td>
<td>0.0751</td>
</tr>
<tr>
<td>17</td>
<td>0.9300</td>
<td>0.0106</td>
<td>36</td>
<td>0.4800</td>
<td>0.0502</td>
<td>55</td>
<td>0.1275</td>
<td>0.0674</td>
</tr>
<tr>
<td>18</td>
<td>0.9200</td>
<td>0.0108</td>
<td>37</td>
<td>0.4600</td>
<td>0.0417</td>
<td>56</td>
<td>0.1208</td>
<td>0.0522</td>
</tr>
</tbody>
</table>