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Abstract

Varying coefficient models have numerous applications in a wide scope of sci-

entific areas. While enjoying nice interpretability, they also allow flexibility in

modeling dynamic impacts of the covariates. But, in the new era of big data, it

is challenging to select the relevant variables when there are a large number of

candidates. Recently several works are focused on this important problem based

on sparsity assumptions; they are subject to some limitations, however. We in-

troduce an appealing forward variable selection procedure. It selects important

variables sequentially according to a reduction in sum of squares criterion and it

employs a BIC-based stopping rule. Clearly it is simple to implement and fast to

compute, and it possesses many other desirable properties from both theoretical

and numerical viewpoints. Notice that the BIC is a special case of the EBIC, when

an extra tuning parameter in the latter vanishes. We establish rigorous screening

consistency results when either BIC or EBIC is used as the stopping criterion,

although the BIC is preferred to the EBIC on the bases of its superior numerical

performance and simplicity. The theoretical results depend on some conditions

on the eigenvalues related to the design matrices, and we consider the situation

where we can relax the conditions on the eigenvalues. Results of an extensive

simulation study and a real data example are also presented to show the efficacy

and usefulness of our procedure.
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1 Introduction

We consider variable selection problem for the varying coefficient model defined by

Y =

p∑
j=0

β0j(T )Xj + ε, (1)

where Y is a scalar response variable, X0 ≡ 1, X1, . . . , Xp are the candidate covariates,

ε is the random error, and T ∈ [0, 1]. The coefficient functions β0j, j = 0, 1, . . . , p, are

assumed to vary smoothly with T , and are non-zero for only a subset. See Assumption

B in Section 3 for the required properties of the β0j’s. The variable T is an influential

variable, such as age or income in econometric studies, and is sometimes called the

index variable. As for the candidate variables Xj, . . . , Xp, they are uniformly bounded

for simplicity of presentation. This assumption can be relaxed as discussed in Remark 3

at the end of Section 3. Since we always include X0 ≡ 1 in the model and consider the

sum of squared residuals (see Section 2), we can further assume that E{Xj} = 0, j =

1, . . . , p. We also assume that the error ε satisfies the sub-Gaussian property uniformly

conditionally on the covariates. See Assumption E in Section 3.

The varying coefficient model is a popular and useful structured nonparametric ap-

proach to modeling data that may not obey the restrictive form of traditional linear

models. While it retains the nice interpretability of the linear models, it also allows for

good flexibility in capturing the dynamic impacts of the relevant covariates on the re-

sponse. In practical applications, some of the true covariates may have simply constant

effects while the others have varying effects. Such situation can be easily accommo-

dated by a variant, the so called semi-varying coefficient model [33, 38]. Furthermore,

model (1) has been generalized in order to model various data types including count

data, binary response, clustered/longitudinal data, time series, etc. We refer to [14] for

a comprehensive review.

Due to recent rapid development in technology for data acquisition and storage,

nowadays a lot of high-dimensional data sets are collected in various research fields,

such as medicine, marketing and so on. In this case, the true model is usually sparse,

that is, the number of important covariates is not large even when the dimensionality p

is very large. Under this sparsity condition, some effective variable selection procedures

are necessary. Existing general penalized variable selection methods include the Lasso

[29], group Lasso [23, 36], adaptive Lasso [39], SCAD [8] and Dantzig selector [3].

In ultra-high dimensional cases where p is very large selection consistency, i.e. ex-

actly the true variables are selected with probability tending to 1, becomes challenging
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and even nearly impossible for existing variable selection methods to achieve. Thus, an

additional independence screening step is usually necessary before variable selection is

carried out. For example, sure independence screening (SIS) methods are introduced by

[9, 11] for linear models and generalized linear models respectively, and nonparametric

independence screening (NIS) is suggested for additive models by [7]. Under general

parametric models, [12] suggested using the Lasso at the screening stage. Under model

(1), there are some existing works on penalized variable selection in several different

setups of the dimensionality p, using the Lasso or folded concave penalties such as the

SCAD [1, 18, 24, 28, 31, 32, 34]. In ultra-high dimensional cases, for the independence

screening purpose, the Lasso is recommended by [32] and NIS is considered by several

authors [5, 10, 20, 27]. The NIS procedure of [10] uses marginal spline regression mod-

els, and the iterative NIS procedures use group SCAD implicitly. In all of the above

mentioned methods, some tuning parameter or threshold value is involved which needs

to be determined by the user or by some elaborated means.

More recently, alternative forward selection approaches receive increasing attention

in linear regression. This includes the least angle regression [6], the forward iterative

regression and shrinkage technique [16], the forward regression [30], the forward Lasso

adaptive shrinkage [25], and the sequential Lasso (SLASSO) [22]. Such methods en-

joy desirable theoretical properties and have advantages from numerical aspects. The

SLASSO employes Lasso in the forward selection of candidate variables and uses the

EBIC [4] as the stopping criterion. The consistency result of the EBIC-based model

selection in ultra-high dimensional additive models is established by [19] when the num-

ber of true covariates is bounded. It assumes some knowledge of the number of true

covariates, which may be unrealistic or difficult to obtain in some cases. On the other

hand, without this kind of knowledge, the number of all possible subsets of the candidate

variables is too large and there is no guarantee that EBIC-based model selection will

perform properly. Therefore, it makes sense to consider a forward procedure, which does

not require such prior knowledge, and use the EBIC as the stopping criterion.

Motivated by the above facts, we propose and investigate thoroughly a groupwise for-

ward selection procedure for the varying coefficient model in the ultra-high dimensional

case. The proposed method is constructed in a spirit similar to that of the SLASSO

[22]. However, we recommend to use the BIC rather than the EBIC as the stopping

criterion for the following reasons. In our extensive simulation study, we tried the AIC,

BIC and EBIC for this purpose, and the BIC yielded the best performance. Also, the
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EBIC contains a parameter η which needs to be chosen. Besides, instead of the Lasso

we use the reduction in the sum of squared residuals as the selection criterion, as in

[30]. This is suggested by our preliminary simulation studies, which showed the latter

performs better. It is also more natural as the (E)BIC takes into account the sum of

squared residuals while the Lasso is based on the estimated coefficient functions.

Under some assumptions we establish the screening consistency of our forward selec-

tion method, that is, all the true variables will be included in the model with probability

tending to 1. We consider the effects of eigenvalues related to design matrices explicitly,

and the situation where we can relax the conditions on the eigenvalues from a theoretical

point of view in Theorem 3.2. Our theoretical results hold when either the EBIC or the

BIC is used in the stopping rule, although the latter is preferred. We exploited desirable

properties of B-spline bases to drive these theoretical results. After the screening, if

necessary, we can identify consistently the true covariates in a second stage by applying

the group SCAD or the adaptive group Lasso [5]. Selection consistency of the proposed

forward procedure can be obtained under stronger conditions like those in [22]. Such

results and the proofs are given in the supplement.

The proposed method has many merits compared to existing methods, from both

practical and theoretical viewpoints. First, since the variables are selected sequentially,

the final model has good interpretability in the sense that we can rank the importance of

the variables according to the order they are selected. Second, since no tuning parameters

or threshold parameters are present, the implementation and computation are simple

and fast. Third, we impose assumptions only on the original model, and no faithfulness

assumptions in which marginal models reflect the original model is assumed. Fourth, in

this article p can be O(exp(ncp2)) for some sufficiently small positive cp2. See Lemma

3.1 and Assumption D in Section 3 for the details. Therefore, the forward procedure

can reduce the dimensionality more effectively, as illustrated in Section 4. Finally, our

method requires milder regularity conditions than the sparse Riesz condition [32] and the

restricted eigenvalue conditions [2] for the Lasso, which are related to all the variables.

In Section 2, we describe the proposed forward selection procedure. At each step, it

uses the residual sum of squares resulted from spline estimation of an extended marginal

model to determine the next candidate feature, and it uses the BIC to decide whether

to stop or to include the newly selected feature and continue. In Section 3 we state

the assumptions and theoretical results and give some remarks on forward selection for

additive coefficient models. Results of simulation studies and a real data example are
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presented in Section 4. Proofs of the theoretical results are given in Section 5.

2 Method

Before we describe the proposed forward feature selection procedure, we introduce some

notation. Let #A denote the number of elements of a set A and write Ac for the

complement of A. We write ‖f‖L2 and ‖f‖∞ for the L2 and sup norm of a function

f on [0, 1], respectively. When g is a random variable or a function of some random

variable(s) we define its L2 norm by ‖g‖ = [E(g2)]1/2. For a k-dimensional vector x,

|x| stands for the Euclidean norm and xT is the transpose. We use the same symbol

for transpose of matrices. Suppose we have n i.i.d. observations {(Xi, Ti, Yi)}ni=1, where

Xi = (Xi0, Xi1, . . . , Xip), taken from the varying coefficient model (1):

Yi =

p∑
j=0

β0j(Ti)Xij + εi, i = 1, . . . , n. (2)

We write S0 for the set of indexes of the true covariates in model (1), that is, β0j 6≡ 0 for

j ∈ S0 and β0j ≡ 0 for j ∈ Sc0. In addition, we write p0 for the number of true covariates,

i.e. p0 ≡ #S0. In this paper, our model is sparse and p0 is much smaller than n and p

and we assume that 0 ∈ S0. In addition, the total number of covariates p can be O(ncp1)

for any positive cp1 or O(exp(ncp2)) for some sufficiently small positive cp2. More details

on p will be given later in Lemma 3.1, Assumption D, and Corollary 3.1.

Now we discuss how to construct elements of our method. Suppose that we have

selected covariates sequentially as follows:

S1 = {0} ⊂ S2 ⊂ · · · ⊂ Sk ≡ S.

That is, Sj is the index set of the selected covariates upon the completion of the jth

step, for j = 1, . . . , k. We can also start with a larger set than just {0} according to

some a priori knowledge. Then, at the current (k+1)th step, we need to choose another

candidate from Sck, and then we need to decide whether we should stop or add it to Sk

and go to the next step. Our forward feature selection criterion defined in (9) is based

on the reduction in sum of squared residuals, and we employ the BIC as the stopping

criterion, which is a special case of the EBIC given in (10) with the parameter η = 0.

See [30] and [22] for more details about forward variable selection and [4] about EBIC

in linear regression.
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To estimate the coefficient functions in the varying coefficient model (2), we employ

an equi-spaced B-spline basis B(x) = (B1(x), . . . , BL(x))T on [0, 1], where L = cLn
1/5

and the order of the B-spline basis is larger than or equal to two. This is due to our

smoothness assumption (Assumption B in Section 3) on the coefficient functions. The

existence of the second order derivatives of the coefficient functions is a usual one in

the nonparametric literature. See [26] for the definition of B-spline bases. The spline

regression model used to approximate model (2) is then given by

Yi =

p∑
j=0

W T
ij γ0j + ε′i, (3)

where Wij = B(Ti)Xij ∈ RL, γ0j ∈ RL, and ε′i is different from εi in (2).

Now we consider spline estimation of the extended marginal model when we add

another index to the index set S, which we will make use of in deriving our forward

selection criterion. Hereafter we write S(l) for S ∪ {l} for any l ∈ Sc. Temporarily we

consider the following extended marginal model for S(l), l ∈ Sc:

Y =
∑
j∈S(l)

βj(T )Xj + εS(l). (4)

Here, the coefficient functions βj, j ∈ S(l), are defined in terms of minimizing the

following mean squared error with respect to βj, j ∈ S(l),

E
{(
Y −

∑
j∈S(l)

βj(T )Xj

)2}
,

where the minimization is over the set of L2 integrable functions on [0, 1]. Note that

‖βj‖L2 should be larger when j ∈ S0 − S than when j ∈ Sc0.

We write

WiS = (W T
ij )Tj∈S ∈ RL#S, Wj = (W1j, . . . ,Wnj)

T and WS = (W1S, . . . ,WnS)T .

Note that Wj and WS are respectively n×L and n× (L#S) matrices. Then, the spline

model to approximate the extended marginal model (4), in which l ∈ Sc, is given by

Yi =
∑
j∈S(l)

γTjWij + ε′iS(l) = γTSWiS + γTl Wil + ε′iS(l), i = 1, . . . , n, (5)

where γTS = (γTj )j∈S and γj, j ∈ S(l), are defined by minimizing with respect to γj ∈ RL,

j ∈ S(l), the following mean squared spline approximation error:

E
{ n∑

i=1

(
Yi −

∑
j∈S(l)

γTj Wij

)2
}

= E
{∣∣Y −WSγS −Wlγl

∣∣2}
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with γTS = (γTj )j∈S. Note that γTl B(t) should be close to the coefficient function βl(t)

in the extended marginal model (4). In particular, when l ∈ S0 − S, ‖βl‖L2 should be

large enough, and thus |γ l| should be also large enough.

We can estimate the vector parameters γj, j ∈ S(l), in model (5) by the ordinary

least squares estimates, denoted by γ̂j, j ∈ S(l). Let ŴlS and ŶS denote respectively

the orthogonal projections of WlS and Y = (Y1, . . . , Yn)T onto the linear space spanned

by the columns of WS, that is,

ŴlS = WS(W T
SWS)−1W T

SWl and ŶS = WS(W T
SWS)−1W T

S Y .

Note that ŴlS is an n × L matrix. Then γ̂l, the ordinary least square estimate of γ l,

can be expressed as

γ̂l = (W̃ T
lSW̃lS)−1W̃ T

lSỸS, (6)

where W̃lS = Wl − ŴlS and ỸS = Y − ŶS.

Recall that at the current step we are given S, the index set of the covariates already

selected, and the job is to choose from Sc another candidate and then decide whether we

should add it to S or we should not and stop. To select the next candidate, we consider

the reduction in the sum of squared residuals (SSR) when adding l ∈ Sc to the model.

Specifically, we compute nσ̂2
S−nσ̂2

S(l), where for an index set Q the SSR nσ̂2
Q is given by

nσ̂2
Q = Y TY − Y TWQ(W T

QWQ)−1W T
QY (7)

and is the sum of squared residuals from least squares regression of

Yi =
∑
j∈Q

W T
ij γj + ε′i.

Using (6), we can rewrite n(σ̂2
S − σ̂2

S(l)) as

n(σ̂2
S − σ̂2

S(l)) =
(
W̃ T

lSỸS
)T (
W̃ T

lSW̃lS

)−1(
W̃ T

lSỸS
)

= γ̂Tl

(
W̃ T

lSW̃lS

)
γ̂l ≈ nE

{(
βl(T )X̃lS

)2
}
, (8)

where X̃lS = Xl−X̂lS and X̂lS is the projection of Xl onto
{∑

j∈S βj(T )Xj

}
with respect

to the L2 norm ‖ · ‖. As noted earlier, if l ∈ S0 then ‖βl‖L2 will be large enough. Hence,

following from expression (8) and noticing that γ̂Tl B(t) is the spline estimate of βl(t) in

the extended marginal model (4), we choose the candidate index as

l∗ = argmin
l∈Sc

σ̂2
S(l) . (9)
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Then, we have high confidence that l∗ belongs to S0 − S provided that the latter is

non-empty.

To determine whether or not to include the candidate feature Xl∗ in the set of selected

ones, we employ the BIC criterion. Since the BIC criterion is a special case of the EBIC,

we define the EBIC of a subset of covariates indexed by Q as the following:

EBIC(Q) = n log(σ̂2
Q) + #Q× L(log n+ 2η log p), (10)

where η is a fixed nonnegative constant and nσ̂2
Q is given in (7). When η = 0, the EBIC

is the BIC. Then, we should include the new candidate covariate Xl∗ , where l∗ is defined

in (9), provided that the BIC decreases when we add l∗ to S and form S(l∗). Otherwise,

if the BIC increases, we should not select any more covariates and stop at the kth step.

In the following, we define formally the proposed forward feature selection algorithm.

We can also implement it with the BIC replaced by the EBIC throughout.

Initial step: Take S1 = {0} or a larger set based on some a priori knowledge of S0 and

compute BIC(S1).

Sequential selection: At the (k + 1)th step, compute σ̂2
Sk(l) for every l ∈ Sck, and find

l∗k+1 = argmin
l∈Sck

σ̂2
Sk(l) .

Then, let Sk+1 = Sk ∪ {l∗k+1} and compute BIC(Sk+1).Stop and declare Sk as the

set of selected covariate indexes if BIC(Sk+1) > BIC(Sk); otherwise, change k to

k + 1 and continue to search for the next candidate feature.

Remark 1 In practice, the forward procedure with the EBIC or the BIC stopping rule

may stop a little too early due to rounding errors and fails to select some relevant vari-

ables. For example, it may happen that the stopping criterion value drops in one step,

then increases in the next step, and then drops again. To avoid interference caused by

such small fluctuations, we can continue the forward selection process until the stopping

criterion value continuously increases for several consecutive steps before the forward

selection procedure is stopped.

Remark 2 At first, instead of (9), we considered choosing the candidate index as

l† = argmax
j∈Sc

∣∣W̃ T
lSỸS

∣∣ (11)
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as the next candidate index, as motivated by the sequential Lasso for linear models pro-

posed by [22]. However, after some preliminary simulation studies we found that (9)

performs better. The intuition is that in each step the selection criterion (9) gives the

smallest value of the stopping criterion value, while this property is not necessarily true

for (11).

3 Assumptions and theoretical properties

In this section, we describe technical assumptions and present theoretical properties of

the proposed forward procedure. Specifically, we prove a desirable property of the sum

of regression residuals in Theorem 3.1 and then establish the screening consistency in

Corollaries 3.1 and 3.2. In Theorem 3.2, we consider relaxing the eigenvalue conditions in

Assumption V. Note that we treat the EBIC and the BIC (when η = 0 in the definition

of EBIC) in a unified way. Therefore the theoretical results hold when either of them is

used in the stopping rule. The proofs are given in Section 5.

First, we define some notation and symbols. For a vector of regression coefficient

functions β = (β1, . . . , βp)
T , we define its L2 norm by ‖β‖2

L2
=
∑p

j=1 ‖βj‖2
L2
. We denote

the maximum and minimum eigenvalues of a symmetric matrix A by λmax(A) and

λmin(A), respectively. Let Ik be the k dimensional identity matrix.

The following assumption assures that regression coefficient functions can be approx-

imated accurately enough by spline functions.

Assumption B: For some positive constant CB0, the coefficient functions {β0j | j ∈ S0}
are twice differentiable and satisfy∑

j∈S0

‖β0j‖∞ < CB0,
∑
j∈S0

‖β′′0j‖∞ < CB0, and L2 min
j∈S0
‖β0j‖L2 →∞.

We present another expression of (2) under Assumption B:

Yi =
∑
j∈S0

W T
ij γ
∗
j + ri + εi, i = 1, . . . , n, (12)

where, for some positive constant Cr, {ri} satisfies

1

n

n∑
i=1

r2
i ≤ CrL

−4 (13)
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with probability tending to 1, and for some positive constants CB1 and CB2, {γ∗j | j ∈ S0}
satisfies

CB1L‖β0j‖2
L2
≤ |γ∗j |2 ≤ CB2L‖β0j‖2

L2
(14)

for any j ∈ S0. Note that Cr, CB1, and CB2 depend on CB0. Properties (13) and (14)

follow from Assumption B and are standard results in spline function approximation.

For example, see Corollary 6.26 of [26].

The following sub-Gaussian assumption is necessary when we evaluate quadratic

forms of {εi}.

Assumption E: There is a positive constant Cε such that, for any u ∈ R,

E{exp(uε) |X1, . . . , Xp} ≤ exp(Cεu
2/2) .

Recall that we start with S1 = {0} or a larger set, so hereafter let all the subsets

denoted by S satisfy {0} ⊂ S. We can say that Assumption V given in the following is

the definition of τmin(M) and τmax(M) except the positivity of τmin(M).

Assumption V: For any given integer M larger than p0, there exist positive functions

τmin(M) and τmax(M) such that

τmin(M)

L
≤ λmin(E{W1SW

T
1S}) ≤ λmax(E{W1SW

T
1S}) ≤

τmax(M)

L

uniformly in S ⊂ {0, 1, . . . , p} satisfying #S ≤M .

To give an idea when Assumption V will hold, consider the case where there are

positive functions τXmin(M) and τXmax(M) such that

τXmin(M) ≤ λmin(E{X1SX
T
1S|T}) ≤ λmax(E{X1SX

T
1S|T}) ≤ τXmax(M)

uniformly in S ⊂ {0, 1, . . . , p} satisfying #S ≤ M , where XiS is defined in the same

way as WiS, we have

τXmin(M)/C < τmin(M) < CτXmin(M) and τXmax(M)/C < τmax(M) < CτXmax(M)

for some positive constant C.

Our results crucially depend on τmin(M) and τmax(M) as in [30], [15], and other

papers on variable selection. However, it seems to be almost impossible to evaluate

τmin(M) and τmax(M) explicitly. In some papers, for example [30] and [17], τmin(M) and

10



τmax(M) are assumed to be constant. In Theorem 3.2, we show that we may be able to

relax the uniformity requirement on the eigenvalues in Assumption V.

We evaluate sample covariance matrices of the covariates in Lemma 3.1. We exploit

the local properties of B-spline bases in its proof.

Lemma 3.1 Suppose that Assumption V holds with M2 max{log p, log n} = o(n4/5(τmin(M))2).

Then, with probability tending to 1, we have uniformly in S satisfying #S ≤M that

τmin(M)

L
(1− δ1n) ≤ λmin(n−1W T

SWS) ≤ λmax(n−1W T
SWS) ≤ τmax(M)

L
(1 + δ1n),

where {δ1n} is a sequence of positive numbers tending to 0 sufficiently slowly.

We use the following assumption to determine the lower bound of the reduction in

the sum of squared residuals when S0 6⊂ S, given in Theorem 3.1. First, we set

DM = p−1
0

C2
B1

CB2

τ 2
min(M)

τmax(M)

minj∈S0 ‖β0j‖4
L2

‖β0‖2
L2

.

This DM is similar to an expression in (B.7) of [30].

Assumption D: For some positive dm < 1,

DML
4

(log n)dm
→∞ and M log p = O(L(log n)dm).

The second condition in Assumption D is necessary in order to evaluate quadratic forms

of {εi} uniformly in S. We can deal with ultra-high dimensional cases if M increases

slowly; see the condition on p given in Lemma 3.1.

Theorem 3.1 Suppose that assumptions B, E, V and D, and those in Lemma 3.1 hold.

Then there exists a sequence of positive numbers {δ2n} satisfying δ2n → 0 and
√
nδ2n →

∞ such that, with probability tending to 1,

max
l∈Sc
{nσ̂2

S − nσ̂2
S(l)} ≥ n(1− δ2n)DM

uniformly in S satisfying #(S ∪ S0) ≤M and S0 6⊂ S.

Let TM be the smallest integer which is larger than or equal to

Var(Y )

(1− 2δ2n)DM

.

Then, following from Theorem 3.1, Corollary 3.1 gives a sufficient condition for screening

consistency of the forward procedure.
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Corollary 3.1 Suppose that we have the same assumptions as in Theorem 3.1. If TM ≤
M − p0 and L(log n+ 2η log p) = o(nDM), then we have

S0 ⊂ Sk for some k ≤ TM

with probability tending to 1.

To give an idea of when the conditions on M in Corollary 3.1 would hold, suppose

p0 and {β0j | j ∈ S0} are independent of n. Then a sufficient condition for the existence

of M in Corollary 3.1 is that for some M = Mn →∞ sufficiently slowly, we have

τmax(Mn)

Mnτ 2
min(Mn)

→ 0.

This condition on τmax(M) and τmin(M) may be restrictive and difficult to check. Nev-

ertheless, Theorem 3.2 given later suggests that we may be able to relax the uniformity

requirement on the eigenvalues in Assumption V in some cases.

The following corollary follows easily from the proof of Theorem 3.1. A similar result

is given in [19]. It assures the screening consistency of the proposed forward procedure

and we expect it to stop early with S0 ⊂ Sk for some k. Then, if necessary, following the

screening we can carry out variable selection using adaptive Lasso or SCAD procedures

to find exactly the true model or equivalently S0.

Corollary 3.2 Suppose that we have the same assumptions as in Theorem 3.1. If S0 6⊂
Sk−1, S0 ⊂ Sk, and k ≤ M , our forward selection procedure stops at the kth step with

probability tending to 1.

Next we consider relaxing the uniformity condition in Assumption V. Suppose the

covariate indexes can be divided into V and Vc such that S0 ⊂ V and

E{X1jBl(T1)X1sBm(T1)} =

0, Bl(t)Bm(t) ≡ 0

O(κ0n/L), Bl(t)Bm(t) 6≡ 0
, (15)

uniformly in l, m, j ∈ Vc, and s ∈ V , where {κ0n} is a sequence satisfying κ0n → 0. We

define τVmin(M) and τVmax(M) in the same way as τmin(M) and τmax(M) in Assumption

V but consider only S ⊂ V . Besides, we define τS0max by

τS0max

L
= λmax(E{W1S0W

T
1S0}).

12



The following assumption is about the correlations between covariates indexed by V
and those indexed by Vc.

Assumption Z : Assume that there exists some κn → 0 such that

1

n

n∑
i=1

XijBl(Ti)XisBm(Ti) =

0, Bl(t)Bm(t) ≡ 0

Op(κn/L), Bl(t)Bm(t) 6≡ 0

and

λmin(n−1W T
j Wj) >

Cm
L

(1 + op(1))

uniformly in j ∈ Vc and s ∈ V , where Cm is a positive constant. We assume κ2
nM/τVmin(M)→

0 for simplicity of presentation.

Assumption Z may look a little general and we give an example when it holds. When

{Xj | j ∈ V}∪{T} and {Xj | j ∈ Vc} are mutually independent and p = O(ncp1) for some

positive fixed constant cp1, we have κ0n = 0 and

κn = n−2/5
√

log n

with some regularity conditions. Recall that E{Xj} = 0, j = 1, . . . , p, in this paper. In

general we have κn = κ0n + n−2/5
√

log n.

Next we give an upper bound for the reduction in the sum of squared residuals.

Theorem 3.2 Suppose that Assumptions B, E, and Z and those in Lemma 3.1 for V
hold. Then we have, with probability tending to 1,

max
l∈Sc∩Vc

{nσ̂2
S − nσ̂2

S(l)} ≤ C
(nLp0κ

2
n

Cm
+
nLτS0maxMκ2

n

CmτVmin(M)
+

n

L4
+ o(L log n)

)
uniformly in S satisfying #S ≤M and S ⊂ V, where C is some positive constant.

We define DVM by replacing τmin(M) and τmax(M) with τVmin(M) and τVmax(M) in the

definition of DM and confine the uniformity requirement in Assumption V to V . If

L(log n+ 2η log p) = o(nDVM),
p0Lκ

2
n

Cm
= o(DVM), and

τS0maxLMκ2
n

CmτVmin(M)
= o(DVM)

under the assumptions of Theorem 3.1, Theorem 3.2 implies we will never choose any

covariates from Vc with probability tending to 1. Then we actually have only to consider

the uniformity requirement in Assumption V on V . When #V grows slowly compared

13



to p, DVM also decreases slowly compared to M and the assumption on TM in Corollary

3.1 will hold with DM replaced by DVM . Then we will still have screening consistency.

Before closing this section, we discuss the boundedness condition on the covariates

in Remark 3 and we comment on forward selection for additive models in Remark 4.

Remark 3 The boundedness condition on Xj, j = 1, . . . , p, can be relaxed. We use the

condition only for the evaluation of
∑n

i=1 r
2
i and when applying the Bernstein inequality.

Recall dm is defined in Assumption D. If instead we have

E
{∑
j∈S0

X2
j

}
= O((log n)dm) and max

1≤j≤p
|Xj| ≤ C

√
n

L log n
,

then we will still have the same theoretical results. Since we have from Assumption B

and the former condition in the above that

1

n

n∑
i=1

r2
i = O(L−4)

1

n

n∑
i=1

∑
j∈S0

X2
ij = Op(L

−4(log n)dm),

∑n
i=1 r

2
i is still negligible. Besides, the latter condition assures the same uniform con-

vergence rate based on the Bernstein inequality.

Remark 4 We can handle other models that can be represented as in (12) in almost

the same way, for example, additive models as in [17]. When we consider the additive

model:

Yi =
∑
j∈S0

fj(Xij) + εi, i = 1, . . . , n,

we have an expression similar to (12):

Yi = µ∗ +
∑
j∈S0

W T
ij γ
∗
j + ri + εi, i = 1, . . . , n,

where Wij are defined conformably with the additive model. Therefore we can deal with

additive models in almost the same way as in this paper, except that we cannot fully use

the local properties of B-spline bases due to the identification issue.

4 Simulation and empirical studies

We carried out some simulation studies and a real data analysis based on a genetic

dataset to assess the performance of the proposed forward feature selection method

14



with AIC, BIC or EBIC as the stopping criterion. For simplicity, we denote these

three variants by fAIC, fBIC and fEBIC respectively. At the initial step of the forward

selection, we let S1 = {0}. To prevent the forward procedures from stopping too early

and missing some true variables, we terminated the sequential selection only if the

stopping criterion value increases for five consecutive steps, as suggested in Remark

1. The value of the parameter η in the definition of EBIC was taken as η = 1 −
log(n)/(3 log p), as suggested by [4]. Notice that BIC can be regarded as a special

version of EBIC when η = 0 while AIC can be obtained from BIC via replacing log(n)

with 2. This shows that the penalty terms of AIC, BIC, and EBIC are getting larger in

turns and hence the model selected by fAIC is the largest, followed by the one selected

by fBIC, while the one selected by fEBIC is the smallest. Also notice that the model

selected by fAIC is usually not consistent while, under some regularity conditions, the

models selected by fBIC and fEBIC can be consistent when n is sufficiently large.

In the simulation studies, we generated data from the two varying coefficient models

studied by [10] under different levels of correlation. Following the paper, we used the

cubic B-spline with L = [2n1/5] where [·] denotes the function rounding to the nearest

integer. We set the sample size as n = 200, 300, or 400 and the number of covariates as

p = 1000, and we repeated each of the simulation configurations for N = 1000 times.

The experiments were run on a Dell PC intel Core i7 vPro, in Matlab and in Windows

7 environment.

4.1 Simulation Studies

In this section, we compare the finite sample performance of the fAIC, fBIC and fEBIC

with that of the greedy-INIS algorithm of [10] (denoted as gNIS for simplicity of nota-

tion). Note that, based on the simulation results presented in [10], their conditional-INIS

approach performs similarly to the greedy-INIS approach. Thus, we shall not include it

in the comparison for the shake of time saving.

Example 1 Following Example 3 of [10], we generated N samples from the following

varying coefficient model:

Y = 2 ·X1 + 3T ·X2 + (T + 1)2 ·X3 +
4 sin(2πT )

2− sin(2πT )
·X4 + σε,

where Xj = (Zj + t1U1)/(1 + t1), j = 1, 2, · · · , p, and T = (U2 + t2U1)/(1 + t2), with

Z1, Z2, · · · , Zp
i.i.d∼ N(0, 1), U1, U2

i.i.d∼ U(0, 1), and ε ∼ N(0, 1) being all mutually inde-

pendent with each other. The noise variance σ is used to control the noise level.
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Table 1: Correlations between the covariates Xj’s and the index variable T .

[t1, t2] [0, 0] [2, 0] [2, 1] [3, 1] [4, 5] [6, 8]

corr(Xj , Xk) 0 0.25 0.25 0.43 0.57 0.75

corr(Xj , T ) 0 0 0.36 0.46 0.74 0.86

In this example, the number of true covariates p0 is four. The parameters t1 and

t2 control the correlations between the covariates Xj’s and the index covariate T . It

is easy to show that corr(Xj, Xk) = t21/(12 + t21) for any j 6= k, and corr(Xj, T ) =

t1t2/[(12+ t21)(1+ t22)]1/2, independent of j. Table 1 lists the values of [t1, t2] which define

six cases of the correlations. In the first case the Xj’s and T are all uncorrelated. In the

second case the Xj’s are correlated but they are uncorrelated with T . In the last four

cases the Xj’s are increasingly correlated and the correlations between the Xj’s and T

are also increasing. Notice that the correlations in the last two cases are rather big and

it is quite challenging to correctly identify the true covariates.

In Table 2, we report the average numbers of true positive (TP) and false posi-

tive (FP) selections, and their robust standard deviations (in parentheses) for all the

four considered approaches for n = 200, 300 or 400, when σ = 1 and p = 1000. The

tuning parameters [t1, t2], the signal-to-noise-ratio, denoted by SNR and defined as

Var(βT (T )X)/Var(ε), and the approaches considered are listed in the first three columns.

Notice that the larger the TP values and the smaller the FP values are, the better the as-

sociated approach performs. From this point of view, it is seen that with the correlations

between Xj’s and the correlations between Xj and T increasing, the performance of the

approaches is generally getting worse. This is not surprising since when the correlations

are getting larger, it is more challenging to distinguish the true covariates from the false

covariates. At the same time, with n increasing from 200 to 400, the performance of all

the approaches is generally getting better. This is also expected since larger sample sizes

generally provide more information and better estimation of the underlying quantities.

We now compare the performance of the four approaches. From Table 2, it is seen

that for each setting, the fAIC selects more true covariates than the other three ap-

proaches but it also selects much more false covariates. In addition, with increasing

n, the fAIC performs worse in terms of selecting more false covariates. This is due to

the fact that in the penalty term of AIC the sample size n is not involved while in the

penalty terms of BIC and EBIC n is involved to different degrees. From this point of
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Table 2: Average numbers of true positive (TP) and false positive (FP) over 1000

repetitions and their robust standard deviations (in parentheses) for the gNIS, fAIC,

fBIC and fEBIC approaches under the varying coefficient model defined in Example 1

with σ = 1 and p = 1000.

n = 200 n = 300 n = 400

[t1, t2] SNR Approach TP FP TP FP TP FP

[0, 0] 17.15 gNIS 3.99(0.00) 3.10(1.49) 4.00(0.00) 0.37(0.75) 4.00(0.00) 0.08(0.00)

fAIC 4.00(0.00) 65.8(11.2) 4.00(0.00) 83.2(13.4) 4.00(0.00) 106(16.40)

fBIC 4.00(0.00) 5.73(0.00) 4.00(0.00) 0.00(0.00) 4.00(0.00) 0.00(0.00)

fEBIC 4.00(0.00) 0.00(0.00) 4.00(0.00) 0.00(0.00) 4.00(0.00) 0.00(0.00)

[2, 0] 3.71 gNIS 3.84(0.00) 0.31(0.00) 3.95(0.00) 0.00(0.00) 3.99(0.00) 0.00(0.00)

fAIC 3.99(0.00) 68.2(13.4) 4.00(0.00) 85.3(14.9) 4.00(0.00) 106(17.91)

fBIC 3.99(0.00) 6.16(0.00) 4.00(0.00) 0.01(0.00) 4.00(0.00) 0.00(0.00)

fEBIC 1.64(0.00) 0.00(0.00) 2.56(0.00) 0.00(0.00) 3.73(0.00) 0.00(0.00)

[2, 1] 3.24 gNIS 3.50(0.00) 1.72(2.23) 3.81(0.00) 1.16(1.49) 3.96(0.00) 0.34(0.00)

fAIC 4.00(0.00) 82.9(14.9) 4.00(0.00) 105(16.41) 4.00(0.00) 134(20.89)

fBIC 3.98(0.00) 2.24(0.00) 4.00(0.00) 0.01(0.00) 4.00(0.00) 0.00(0.00)

fEBIC 1.34(0.75) 0.00(0.00) 2.24(0.00) 0.00(0.00) 3.41(0.75) 0.00(0.00)

[3, 1] 2.85 gNIS 3.22(0.75) 0.82(0.75) 3.63(0.75) 0.53(0.75) 3.84(0.00) 0.19(0.00)

fAIC 3.88(0.00) 82.1(14.2) 3.99(0.00) 106(18.66) 4.00(0.00) 132(23.88)

fBIC 3.58(0.75) 1.99(0.00) 3.89(0.00) 0.01(0.00) 3.99(0.00) 0.00(0.00)

fEBIC 1.10(0.00) 0.01(0.00) 1.68(0.75) 0.00(0.00) 2.14(0.00) 0.00(0.00)

[4, 5] 2.96 gNIS 1.55(0.75) 0.11(0.00) 2.39(0.75) 0.05(0.00) 3.28(0.75) 0.04(0.00)

fAIC 3.47(0.75) 74.6(16.4) 3.91(0.00) 92.7(18.7) 3.99(0.00) 115.7(20)

fBIC 2.82(0.75) 2.65(0.75) 3.40(0.75) 0.02(0.00) 3.80(0.00) 0.00(0.00)

fEBIC 0.98(0.00) 0.02(0.00) 1.09(0.00) 0.00(0.00) 1.72(0.75) 0.00(0.00)

[6, 8] 3.16 gNIS 0.26(0.00) 0.02(0.00) 0.47(0.75) 0.01(0.00) 1.09(1.49) 0.00(0.00)

fAIC 2.37(0.75) 73.7(14.9) 3.26(0.75) 90.7(19.4) 3.75(0.00) 111(22.76)

fBIC 1.18(0.00) 0.99(0.75) 1.85(0.75) 0.09(0.00) 2.58(0.75) 0.04(0.00)

fEBIC 0.86(0.00) 0.14(0.00) 0.98(0.00) 0.02(0.00) 1.03(0.00) 0.01(0.00)
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view, the fAIC is not recommended. The fEBIC, on the other hand, selects much fewer

true covariates than the other three approaches in various settings although it also se-

lects slightly fewer false covariates. This is because the penalty term of EBIC involves

the dimensionality p and is much larger than the penalty terms of AIC and BIC. For

the forward selection procedures, the sub-models under consideration are usually much

smaller than the full model with p covariates, thus the EBIC may be less appropriate in

this context. It is not difficult to see that the fBIC generally outperforms the fAIC and

fEBIC in terms of selecting more true covariates and less false covariates. In addition,

under various settings, we can see that the fBIC in general outperforms the gNIS ap-

proach. When n = 300 and 400 the fBIC generally selects more true covariates and fewer

false covariates than the gNIS does, and when n = 200 it selects more false covariates

but it also selects much more true covariates.

The varying coefficient model in Example 1 has only four true underlying covariates.

In the varying coefficient model defined in the following example, there are eight true

underlying covariates.

Example 2 Following Example 4 of [10], we generated N samples from the following

varying coefficient model:

Y = 3T ·X1 + (T + 1)2 ·X2 + (T − 2)3 ·X3 + 3 · sin(2πT ) ·X4

+ exp(T ) ·X5 + 2 ·X6 + 2 ·X7 + 3
√
T ·X8 + σε,

while T, X, Y and ε were generated in the same way as described in Example 1 and

again the noise variance σ is used to control the noise level.

Table 3 displays the simulation results under the varying coefficient model defined in

Example 2 with σ = 1 and p = 1000. The conclusions are similar to those drawn based

on the simulation results summarized in Table 2. That is, the fAIC selects too many

false covariates while the fEBIC selects too fewer true covariates. The fBIC approach

generally outperforms the other three.

We also repeated the above simulation studies with σ = 2. To save space the sim-

ulation results are not presented here and are place in the supplement. The above

conclusions can also be drawn similarly except now all the four approaches perform

worse than they do when σ = 1 as presented in Tables 2 and 3.

In addition, we would like to mention that the gNIS approach often uses more com-

putational time than the fAIC approach does. They both sometimes take 10 times
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Table 3: The same caption as that of Table 2 but now under the varying coefficient

model defined in Example 2 with σ = 1 and p = 1000.

n = 200 n = 300 n = 400

[t1, t2] SNR Approach TP FP TP FP TP FP

[0, 0] 47.94 gNIS 7.94(0.00) 7.58(11.9) 7.98(0.00) 1.64(0.75) 8.00(0.00) 0.17(0.00)

fAIC 8.00(0.00) 61.1(11.2) 8.00(0.00) 78.7(12.7) 8.00(0.00) 102(16.42)

fBIC 8.00(0.00) 48.1(10.5) 8.00(0.00) 0.34(0.00) 8.00(0.00) 0.00(0.00)

fEBIC 1.61(0.00) 0.00(0.00) 5.48(5.22) 0.00(0.00) 8.00(0.00) 0.00(0.00)

[2, 0] 9.46 gNIS 7.41(0.00) 3.37(2.24) 7.92(0.00) 0.04(0.00) 7.98(0.00) 0.00(0.00)

fAIC 7.96(0.00) 64.7(13.4) 8.00(0.00) 82.4(15.7) 8.00(0.00) 104(17.91)

fBIC 7.94(0.00) 53.3(14.9) 8.00(0.00) 0.85(0.00) 8.00(0.00) 0.00(0.00)

fEBIC 0.96(0.00) 0.05(0.00) 1.40(0.00) 0.01(0.00) 5.32(3.73) 0.00(0.00)

[2, 1] 8.68 gNIS 4.71(5.97) 4.87(2.24) 5.78(5.97) 2.43(2.24) 7.85(0.00) 1.05(1.49)

fAIC 7.96(0.00) 78.7(14.5) 8.00(0.00) 103(18.66) 8.00(0.00) 13.2(20.9)

fBIC 7.92(0.00) 43.5(54.5) 7.99(0.00) 0.13(0.00) 8.00(0.00) 0.01(0.00)

fEBIC 0.98(0.00) 0.02(0.00) 1.08(0.00) 0.00(0.00) 3.51(4.48) 0.00(0.00)

[3, 1] 7.66 gNIS 4.68(4.48) 2.97(2.24) 6.19(0.75) 1.99(1.49) 7.73(0.00) 1.06(0.75)

fAIC 7.38(0.75) 80.3(15.7) 7.98(0.00) 103(17.91) 8.00(0.00) 130(23.13)

fBIC 6.53(2.24) 32.2(52.2) 7.60(0.75) 0.08(0.00) 7.94(0.00) 0.01(0.00)

fEBIC 0.98(0.00) 0.02(0.00) 1.01(0.00) 0.00(0.00) 1.44(0.00) 0.00(0.00)

[4, 5] 9.20 gNIS 2.43(2.24) 0.16(0.00) 4.14(2.98) 0.10(0.00) 6.64(1.49) 0.10(0.00)

fAIC 6.11(1.49) 71.4(14.9) 7.73(0.00) 90.2(19.4) 7.97(0.00) 112(20.89)

fBIC 4.34(2.24) 16.5(2.24) 5.94(1.49) 0.11(0.00) 7.27(0.75) 0.01(0.00)

fEBIC 0.93(0.00) 0.07(0.00) 0.99(0.00) 0.01(0.00) 1.04(0.00) 0.00(0.00)

[6, 8] 10.26 gNIS 0.79(0.75) 0.05(0.00) 1.25(1.49) 0.01(0.00) 2.38(1.49) 0.00(0.00)

fAIC 4.17(1.49) 72.1(14.9) 6.20(1.49) 88.1(18.7) 7.32(0.75) 109(22.39)

fBIC 2.00(1.49) 3.97(0.75) 2.88(0.00) 0.19(0.00) 3.86(0.75) 0.05(0.00)

fEBIC 0.80(0.00) 0.20(0.00) 0.96(0.00) 0.04(0.00) 0.99(0.00) 0.01(0.00)
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more computational time than the fBIC and fEBIC do. For example, for the setting

“[t1, t2] = [0, 0] and n = 200” in Table 2, on average the gNIS, fAIC, fBIC, and fEBIC

approaches took 1041, 126, 19 and 10 minutes to finish the 1000 runs, respectively. This

is because the gNIS iterates many times before it stops while the fAIC often selects too

many false covariates (often in hundreds). While the time used by the fBIC and fEBIC

are comparable, the fEBIC uses less computational time than the fBIC does since it

selects much fewer true and false covariates.

4.2 Illustrative examples using a breast cancer dataset

In the United States, breast cancer is one of the leading causes of deaths from can-

cer among women. To help the breast cancer diagnosis, it is important to predict the

metastatic behavior of breast cancer tumor jointly using clinical risk factors and gene ex-

pression profiles. In the breast cancer study reported by [21], expression levels for 24481

gene probes and clinical risk factors (age, tumor size, histological grade, angioinvasion,

lymphocytic infiltration, estrogen receptor, and progesterone receptor status) were col-

lected for 97 lymph node-negative breast cancer patients 55 years old or younger. Among

them, 46 developed distant metastases within 5 years and 51 remained metastases free

for more than 5 years. Recently, [35] proposed a ROC based approach to rank the genes

via adjusting for the clinical risk factors. They removed genes with severe missingness,

leading to an effective number of 24188 genes. The gene expression data are normal-

ized such that they all have sample mean 0 and standard deviation 1. In this section,

we illustrate our forward selection procedures using two examples based on this breast

cancer dataset. However, they are not meant to serve as formal analyses of the data.

In the first illustrative example, we are interested in selecting some useful genes whose

expressions can be used to predict the tumor size (TS). To set up a varying coefficient

regression model, we use the estrogen receptor (ER) as the index variable, aiming to

see if it has strong impact on the effects of gene expression profiles. That is to say, we

are interested if the tumor size is determined by some genes with effects adjusted by

the value of estrogen receptor. The resulting varying coefficient regression model can be

expressed as

TSi = β0(ERi) +
∑24188

j=1 βj(ERi)geneij, i = 1, 2, · · · , 97.

It is expected that not all of the 24188 genes can have impact on the tumor size. Applying

the fBIC approach with the cubic B-spline with 2 knots (selected by BIC) to the data, we
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Figure 1: First illustrative example based on the breast cancer data: fitted coefficient

functions.
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Figure 2: First illustrative example based on the breast cancer data: variable selection

by fBIC and residual analysis.
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identified 4 genes, 20938, 23300, 19846, and 7844, with strong impact on the tumor size.

The estimated coefficient functions are presented in Figure 1. Applying the generalized

likelihood ratio test of [13] to compare this selected varying coefficient model against the

linear regression model obtained via replacing all the coefficient functions with constants

shows that the varying coefficient model is indeed statistically significant with p-value

0. The left panel of Figure 2 presents the BIC curve for variable selection by the fBIC

approach and the right panel shows the standardized residuals from the fitted varying

coefficient model are generally scattered in a proper range. It seems that the varying

coefficient model generally fits the data well. We would also like to mention that the

fEBIC selected gene 20938 only, the fAIC selected 9 more genes than those obtained by

fBIC, while the gNIS approach of [10] selected 14 genes which are different from what

we have obtained.
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Figure 3: Second illustrative example based on the breast cancer data.

In the second illustrative example, we are interested in finding some useful genes

whose expressions can be used to predict the values of estrogen receptor (ER) and this

time we used the clinical risk factor age as the index variable since the effects of the gene

profiles on the estrogen receptor may change over age. The resulting varying coefficient
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regression model can now be expressed as

ERi = β0(agei) +
∑24188

j=1 βj(agei)geneij, i = 1, 2, · · · , 97.

Similarly, by applying the fBIC approach with the cubic B-spline with 2 knots (selected

by BIC), we found 2 genes, 15835 and 13695, have strong impact on the estrogen recep-

tor. The estimated coefficient functions are presented in the upper panels of Figure 3.

The BIC curve for variable selection and the residual analysis are presented in the lower

panels. It is seen that the varying coefficient model fits the data reasonably well. Ap-

plying the generalized likelihood ratio test of [13] to compare this model against the

linear model obtained via replacing the three coefficient functions with constants shows

that the varying coefficient model is statistically significant with p-value 0.011. In this

example, the fEBIC selected gene 15835 only, the fAIC selected 11 more genes than

those obtained by fBIC, while the gNIS approach of [10] did not select any genes.

5 Proofs

In this section, we prove Theorem 3.1, Corollaries 3.1 and 3.2, and Theorem 3.2. We

postpone the proof of Lemma 3.1 to the end of this section.

Proof of Theorem 3.1. First we define some notation. Let

QS = In −HS, HS = WS(W T
SWS)−1W T

S , and H̃lS = W̃lS(W̃ T
lSW̃lS)−1W̃ T

lS .

They are orthogonal projection matrices. Notice that

H̃lSQS = H̃lS, nσ̂2
S − nσ̂2

S(l) = |H̃lSY |2,

and

max
l∈Sc
{nσ̂2

S − nσ̂2
S(l)} ≥ max

l∈S0−S
|H̃lSY |2. (16)

We evaluate the right-hand side of (16). Writing γ∗ = (γ∗j )j∈S0 , we have

|H̃lSY | ≥ |H̃lSWS0γ
∗| − |H̃lSr| − |H̃lSε| (17)

= A1l − A2l − A3l (say),

where r = (r1, . . . , rn)T and ε = (ε1, . . . , εn)T . Since H̃lS is an orthogonal projection

matrix whose rank is L, we have

|A2l| ≤ |r| ≤ (nCrL
−4)1/2 (18)
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uniformly in l and S. On the other hand, we have from Assumptions D and E that

uniformly in l ∈ S0 − S and S,

A2
3l = εT H̃lSε = Op(L(log n)dm). (19)

Here we applied Proposition 3 of [37] with x = C(log n)dm conditionally on all the

covariates. Then we have

P
(εT H̃lSε

LCε
≥ 1 + x

{1− 2/(ex/2
√

1 + x− 1)}2
+

)
≤ exp{−Lx/2}(1 + x)L/2,

where {a}+ = max{0, a}. We should take a sufficiently large C.

We evaluate A1l as in the proof of Theorem 1 of [30]. With probability tending to 1,

we have that

A2
1l = |H̃lSQSWS0γ

∗|2 = γ∗TW T
S0QSW̃lS(W̃ T

lSW̃lS)−1W̃ T
lSQSWS0γ

∗ (20)

≥ λmin((W̃ T
lSW̃lS)−1)|W̃ T

lSQSWS0γ
∗|2

≥ L

nτmax(M)(1 + δ1n)
|W̃ T

lSQSWS0γ
∗|2

uniformly in l ∈ S0 − S and S. We will give a lower bound of

max
l∈S0−S

|W̃ T
lSQSWS0γ

∗|2 = max
l∈S0−S

|W T
l QSWS0γ

∗|2.

We have

|QSWS0γ
∗|2 = γ∗TW T

S0QSWS0γ
∗ =

∑
l∈S0

γ∗Tl W
T
l QSWS0γ

∗

≤
(∑
l∈S0

|γ∗l |2
)1/2(∑

l∈S0

|W T
l QSWS0γ

∗|2
)1/2

≤ (CB2L‖β0‖2)1/2p
1/2
0 max

l∈S0−S
|W T

l QSWS0γ
∗|.

Here we used (14). Therefore we have

max
l∈S0−S

|W T
l QSWS0γ

∗|2 ≥ (CB2L‖β0‖2
L2

)−1p−1
0 |QSWS0γ

∗|4. (21)

Note that we derived (21) by just using elementary linear algebra and calculus. On the

other hand, we have with probability tending to 1 that

|QSWS0γ
∗|2 = γ∗TW T

S0QSWS0γ
∗ = (γ∗Tj )Tj∈S0−SW

T
S0−SQSWS0−S(γ∗Tj )Tj∈S0−S (22)

≥ CB1n
∑

j∈S0−S

‖β0j‖2
2τmin(M)(1− δ1n)
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uniformly in S. Combining (20)-(22), we have with probability tending to 1 that

max
l∈S0−S

A2
1l ≥

C2
B1(1− δ1n)2

p0CB2(1 + δ1n)

n(τmin(M))2

τmax(M)

minj∈S0 ‖β0j‖4
L2

‖β0‖2
L2

(23)

uniformly in S.

It follows from (17)-(19), (23), and Assumption D that there exists a positive sequence

δ2n → 0 such that

max
l∈Sc
{nσ̂2

S − nσ̂2
S(l)} ≥ (1− δ2n)

C2
B1

p0CB2

n(τmin(M))2

τmax(M)

minj∈S0 ‖β0j‖4
L2

‖β0‖2
L2

uniformly in S with probability tending to 1. Hence the proof of Theorem 3.1 is complete.

Proof of Corollary 3.1. We have

EBIC(S)− EBIC(S(l)) = n log
( nσ̂2

S

nσ̂2
S(l)

)
− L(log n+ 2η log p)

and

nσ̂2
S

nσ̂2
S(l)

= 1 +
nσ̂2

S − nσ̂2
S(l)

nσ̂2
S(l)

≥ 1 +
nσ̂2

S − nσ̂2
S(l)∑n

i=1(Yi − Y )2
,

where Y =
∑n

i=1 Yi. Thus

EBIC(S)− EBIC(S(l)) ≥
nσ̂2

S − nσ̂2
S(l)

n−1 log 2
∑n

i=1(Yi − Y )2
− L(log n+ 2η log p).

Theorem 3.1 and the assumption of this corollary imply that we don’t stop when

S0 6⊂ S and #(S ∪ S0) ≤M

with probability tending to 1. If S0 6⊂ S1, . . . ,S0 6⊂ Sk−1, and #(Sk−1 ∪ S0) ≤ M , we

have
1

n

n∑
i=1

(Yi − Y )2 ≥ σ̂2
S1
− σ̂2

Sk

with probability tending to 1. Recall that S1 = {0}. Therefore we have with probability

tending to 1,

Var(Y ) > (k − 1)DM(1− δ2n) (24)

uniformly in {Sj}k−1
j=1 such that #(Sk−1 ∪ S0) ≤ M and S0 6⊂ Sk−1. Suppose that we

have S0 6⊂ STM (k − 1 = TM). Then (24) implies that with probability tending to 1,

Var(Y )

DM(1− δ2n)
> TM ,
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which contradicts the definition of TM . Hence we have some k− 1 such that k− 1 ≤ TM

and S0 ⊂ Sk−1. Hence the proof of the corollary is complete.

Proof of Corollary 3.2. We have

EBIC(Sk(l))− EBIC(Sk) = n log
(

1−
nσ̂2

Sk
− nσ̂2

Sk(l)

nσ̂2
Sk

)
+ L(log n+ 2η log p). (25)

As in the proof of Theorem 3.1, we can apply Proposition of [37] and obtain

σ̂2
Sk

= E{ε2}+ op(1) (26)

uniformly in Sk. As in the proof of Theorem 3.1 again, we have uniformly in Sk,

max
l∈Sck
{nσ̂2

Sk
− nσ̂2

Sk(l)} = Op(nL
−4) +Op(L(log n)dm). (27)

Note that we used the fact that S0 ⊂ Sk. From (25)-(27), we have

EBIC(Sk(l))− EBIC(Sk) = L(log n+ 2η log p)(1 + op(1))

uniformly in Sk and l ∈ Sck. Hence the proof of the corollary is complete.

Proof of Theorem 3.2. Recalling (16) and (17) in the proof of Theorem 3.1, we

have

max
l∈Sc∩Vc

{nσ̂2
S − nσ̂2

S(l)} = max
l∈Sc∩Vc

|H̃lSY |2 and |H̃lSY | ≤ A1l + A2l + A3l.

In this proof, we have only to evaluate A1l since we can handle A2l and A3l as in (18)

and (19). First, we have

A1l = |H̃lSQSWS0γ
∗|2 = γ∗TW T

S0QSH̃lSQSWS0γ
∗ (28)

≤ {λmin(W̃ T
lSW̃lS)}−1|W T

l QSWS0γ
∗|2 .

The latter half of Assumption Z implies that

{λmin(W̃ T
lSW̃lS)}−1 ≤ L

nCm
(1 + op(1)) , (29)

uniformly in S and l ∈ Vc. Next we evaluate |W T
l QSWS0γ

∗|2. Recalling QS = I −HS,

we have

|W T
l QSWS0γ

∗|2 ≤ 2|W T
l WS0γ

∗|2 + 2|W T
l HSWS0γ

∗|2. (30)
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As for the first term of the right-hand side of (30), it follows from the former half of

Assumption Z that

|W T
l WS0γ

∗|2 = L|γ∗|2p0Op

((nκn
L

)2)
= Op(κ

2
nn

2p0) (31)

uniformly in S and l ∈ Vc. We exploited the local properties of B-spline bases. Finally

we consider the second term in the right-hand side of (30). Notice that

|W T
l HSWS0γ

∗|2 ≤ tr(W T
l HSWl)|γ∗TW T

S0HSWS0γ
∗|

We have from Assumption Z that

tr(W T
l HSWl) = tr{W T

l WS(W T
SWS)−1W T

SWl}

= Op

( nκ2
nM

τVmin(M)(1− δ1n)

)
,

uniformly in S and l ∈ Vc. We exploited the local properties of B-spline bases again.

We also have

|γ∗TW T
S0HSWS0γ

∗| = Op

(
L
nτS0max

L

)
= Op(nτ

S0
max).

uniformly in S. Combining the above results, we obtain

|W T
l HSWS0γ

∗|2 = Op

( nκ2
nM

τVmin(M)
nτS0max

)
, (32)

uniformly in S and l ∈ Vc. The desired results follow from (18)-(19) and (28)-(32).

Proof of Lemma 3.1. Let an increase to infinity. Then we have

1

n
W T

SWS − E
{ 1

n
W T

SWS

}
= Op

(
an

√
log n

nL

)
componentwise , (33)

uniformly in S, if

max{log p, log n} = O(a2
n log n). (34)

This is just an application of the Bernstein inequality and we have only to consider every

pair of covariates. Equation (33) implies that

|λmin(n−1W T
SWS)− λmin(E{n−1W T

SWS})| = Op

(
Man

√
log n

nL

)
,

uniformly in S. Here we used the local properties of B-spline bases. If

Man

√
log n

nL
= o
(τmin(M)

L

)
(35)
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we obtain the desired result. Equation (35) is equivalent to

a2
n = o

( n4/5

log n

(τmin(M)

M

)2)
. (36)

The assumption of the lemma and (36) imply the existence of {an} satisfying (34) and

(35). We can handle the maximum eigenvalues in the same way. Hence the proof of the

lemma is complete.
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Supplement to “Forward variable selection for sparse

ultra-high dimensional varying coefficient models”

by Ming-Yen Cheng, Toshio Honda, and Jin-Ting Zhang

S.1 Selection Consistency

In this section we state selection consistency of the forward selection procedure. The

proofs are given in Section S.2. Here, we deal with the ultra-high dimensional case where

log p = O(n1−cp/L), (S.1)

where cp is a positive constant. In addition, recalling S0 is the index set of the true

variables and p0 is the number of true covariates, i.e. p0 ≡ #S0, we consider the case

that

p0 = O((log n)cS) (S.2)

for some positive constant cS. Condition (S.2) on p0 is imposed for simplicity of presen-

tation; it can be relaxed at the expense of restricting slightly the order of the dimension

p specified in (S.1). Note that we treat the EBIC and the BIC (η = 0) in a unified way.

The proofs are given in Section S.2.

First we state some assumptions. These assumptions, along with Assumption E given

in Section 3, are needed for the results in this supplement. The following assumption

on the index variable T in the varying coefficient model (1) is a standard one when we

employ spline estimation.

Assumption T. The index variable T has density function fT (t) such that CT1 <

fT (t) < CT2 uniformly in t ∈ [0, 1], for some positive constants CT1 and CT2.

We define some more notation before we state our assumptions on the covariates.

Recall that XS consists of {Xj}j∈S and then XS is a #S-dimensional random vector.

For a symmetric matrix A, recall that λmax(A) and λmin(A) are the maximum and

minimum eigenvalues respectively, and we define |A| as

|A| = sup
|x|=1

|Ax| = max{|λmax(A)|, |λmin(A)|}.

When g is a function of some random variable(s), we define the L2 norm of g by ‖g‖ =

[E{g2}]1/2.

1



Assumption X.

X(1) There is a positive constant CX1 such that |Xj| ≤ CX1, j = 1, . . . , p.

X(2) Uniformly in S ( S0 and l ∈ Sc,

CX2 ≤ λmin(E{XS(l)X
T
S(l)|T}) ≤ λmax(E{XS(l)X

T
S(l)|T}) ≤ CX3

for some positive constants CX2 and CX3.

We use assumption X(2) when we evaluate eigenvalues of the matrix E{n−1W T
S(l)WS(l)}.

We can relax Assumption X(1) slightly by replacing CX1 with CX1(log n)cX for some pos-

itive constant cX . These are standard assumptions in the variable selection literature.

We need some assumptions on the coefficient functions of the marginal models given

in (4) in order to establish selection consistency of the proposed forward procedure,

especially Assumption C(1) given below. Here, C1, C2, . . . are generic positive constants

and their values may change from line to line. Recall that S0 is the index set of the true

variables in model (1).

Assumption C

C(1) For some large positive constant CB1,

max
l∈S0−S

‖βl‖L2/max
l∈Sc0
‖βl‖L2 > CB1

uniformly in S ( S0. Note that CB1 should depend on the other assumptions on

the covariates, specifically Assumptions X and T given in Section 3.

C(2) Set κ̄n = inf
S(S0

max
l∈S0−S

‖βl‖L2 . We assume

nκ̄2
n

Lmax{log p, log n}
> ncβ and κ̄n >

L

n1−cβ

for some small positive constant cβ. In addition, if η = 0 in (10) i.e. if BIC is used,

we require further that
L log n

log p
→∞ .

C(3) κ̄nL
2 →∞ and κ̄n = O(1), where κ̄n is defined in Assumption C(2).

C(4) βj is twice continuously differentiable for every j ∈ S(l) for any S ⊆ S0 and

l ∈ Sc.

2



C(5) There are positive constants CB2 and CB3 such that
∑
j∈S(l)

‖βj‖∞ < CB2 and∑
j∈S(l)

‖β′′j‖∞ < CB3 uniformly in S ⊂ S0 and l ∈ Sc.

Assumptions C(1) and C(2) are the sparsity assumptions. An assumption similar to

Assumption C(1) is imposed in Luo and Chen (2014) and such assumptions are inevitable

in establishing selection consistency of forward procedures. These assumptions ensure

that the chosen index l∗, given in (9), will be coming from S0−S instead of Sc0. The first

condition in Assumption C(2) is related to the convergence rate of γ̂l, and it ensures

that the signals are large enough to be detected. If C1 < κ̄n < C2 for some positive

constants C1 and C2, this condition is simply log p < n1−cβ/L for some small positive

constant cβ, which is fulfilled by assumption (S.1) on p. When these assumptions fail

to hold, our method may choose some covariates from Sc0. However, we can use the

proposed method as a screening approach and remove the selected irreverent variables

using variable selection methods such as group SCAD (Cheng, et al., 2014). The last

condition in Assumption C(2) is to ensure that, when the BIC is used as the stopping

criterion, our method can deal with ultra-high dimensional cases. For example, if L is

taken of the optimal order n1/5 then p can be taken as p = exp(nc) for any 0 < c ≤ 1/5.

Assumptions C(3)-C(5) on the coefficient functions βj in the extended marginal model

(4) are needed in order to approximate them by the B-spline basis. Note that, in

Assumptions C(4)-C(5), βj ≡ β0j for all j ∈ S0 and βj ≡ 0 for all j ∈ Sc0 when S = S0.

Theorem S.1.1 given below suggests that the forward selection procedure using crite-

rion (9) can pick up all the relevant covariates in the varying coefficient model (1) when

CB1 in Assumption C(1) is large enough.

Theorem S.1.1 Assume that Assumptions T, X, C, and E hold, and define l∗ as in

(9) for any S ( S0. Then, with probability tending to 1, there is a positive constant CL

such that ∥∥βl∗∥∥L2

max
l∈S0−S

∥∥βl∥∥L2

> CL

uniformly in S ( S0, and thus we have l∗ ∈ S0 − S for any S ( S0 when CB1 in

Assumption C(1) is larger than 1/CL.
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Theorem S.1.2 given next implies that the proposed forward procedure will not stop

until all of the relevant variables indexed by S0 have been selected, and it does stop

when all the true covariates in model (1) have been selected.

Theorem S.1.2 Assume that Assumptions T, X, B, and C hold. Then we have the

following results.

(i) For l∗ as in Theorem S.1.1, we have

EBIC(S(l∗)) < EBIC(S)

uniformly in S ( S0, with probability tending to 1.

(ii) We have

EBIC(S0(l)) > EBIC(S0)

uniformly in l ∈ Sc0, with probability tending to 1.

S.2 Proofs of Theorem S.1.1 and Theorem S.1.2

First, based on the B-spline basis, we can approximate the varying coefficient model (2)

by the following approximate regression model:

Yi =

p∑
j=0

γT0jWij + ε′i, i = 1, . . . , n, (S.3)

where γ0j ∈ RL and γT0jB(t) ≈ β0j(t), j = 0, 1, . . . , p. We define some notation related

to the approximate regression models (S.3) and (5). Let

DlSn = n−1W T
S(l)WS(l) and DlS = E{DlSn},

dlSn = n−1W T
S(l)Y and dlS = E{dlSn}, and

∆lSn = D−1
lSndlSn −D

−1
lS dlS .

Then, the parameter vector γ l in model (5) can be expressed as γ l = (0L, . . . ,0L, IL)D−1
lS dlS,

where 0L denotes the L× L zero matrix and IL is the L-dimensional identity matrix.

Before we prove Theorems S.1.1 and S.1.2, we present Lemmas S.2.1-S.2.3 whose

proofs are deferred to Section S.2.1. We verify these lemmas at the end of this section.

In Lemma S.2.1 we evaluate the minimum and maximum eigenvalues of some matrices.
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Lemma S.2.1 Assume that Assumptions T, X, and E hold. Then, with probability

tending to 1, there are positive constants M11, M12, M13, and M14 such that

L−1M11 ≤ λmin(DlSn) ≤ λmax(DlSn) ≤ L−1M12

and

L−1M13 ≤ λmin(n−1W̃ T
lSW̃lS) ≤ λmax(n−1W̃ T

lSW̃lS) ≤ L−1M14

uniformly in S ( S0 and l ∈ Sc.

Lemma S.2.2 is about the relationship between βl and γ l in the extended marginal

models (4) and (S.3).

Lemma S.2.2 Assume that Assumptions T, X, and C(4)-(5) hold. Then there are

positive constants M21 and M22 such that

M21

√
L
(
‖βl‖L2 −O(L−2)

)
≤ |γ l| ≤M22

√
L
(
‖βl‖L2 +O(L−2)

)
uniformly in S ( S0 and l ∈ Sc.

We use Lemma S.2.3 to evaluate the estimation error for γj, j ∈ S(l), in model (S.3).

Lemma S.2.3 Assume that Assumptions T, X, and C(4)-(5) hold. Then, for any δ > 0,

there are positive constants M31, M32, M33, and M34 such that

|∆lSn| ≤M31L
3/2p

3/2
0 δ/n

uniformly in S ( S0 and l ∈ Sc, with probability

1−M32 p
2
0 L exp

{
− δ2

M33nL−1 +M34δ
+ log p+ p0 log 2

}
.

Now we prove Theorems S.1.1 and S.1.2 by employing Lemmas S.2.1-S.2.3.

Proof of Theorem S.1.1. Note that S ( S0 and l ∈ Sc. We can write

γ̂l = γ l + (0L, . . . ,0L, IL)∆lSn. (S.4)

Lemma S.2.1 implies we should deal with ∆lSn on the right-hand side of (S.4) when we

evaluate σ̂2
S − σ̂2

S(l) given in equation (8). For this purpose, Assumption C(2) suggests
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that we should take δ in Lemma S.2.3 as δ = n1−cβ/4κ̄n/L tending to ∞. Recall the

definition of κ̄n in Assumption C(2). Then we have from Assumption C(2) that
√
Lκ̄n

L3/2p
3/2
0 δ/n

=
ncβ/4

p
3/2
0

→∞ (S.5)

and

p2
0L exp

{
− 1

2M33

δ2

nL−1
+ log p+ p0 log 2

}
(S.6)

= p2
0L exp

{
− (2M33)−1n1−cβ/2κ̄2

nL
−1 + log p+ p0 log 2

}
< p2

0L exp
{
− (2M33)−1ncβ/2 log p+ log p+ p0 log 2

}
→ 0.

It follows from (S.5), (S.6), and Lemma S.2.3 that, with probability tending to 1,

(0L, . . . ,0L, IL)∆lSn is negligible compared to γ l on the right-hand side of (S.4). There-

fore Lemmas S.2.1 and S.2.2 and Assumption C(3) imply that we should focus on
√
L‖βl‖L2 in evaluating σ̂2

S(l) in (8). Hence the desired result follows from Assump-

tion C(1). 2

Proof of Theorem S.1.2. To prove result (i), we evaluate

EBIC(S)− EBIC(S(l)) = n log
( nσ̂2

S

nσ̂2
S(l)

)
− L(log n+ 2η log p).

Since

nσ̂2
S − nσ̂2

S(l) = (W̃ T
lSỸS)T (W̃ T

lSW̃lS)−1(W̃ T
lSỸS) = γ̂Tl W̃

T
lSW̃lSγ̂l,

we have
nσ̂2

S

nσ̂2
S(l)

≥ 1 + (n−1Y TY )−1γ̂Tl

( 1

n
W̃ T

lSW̃lS

)
γ̂l. (S.7)

Then Lemma S.2.1 and (S.7) imply that we have for some positive C,

EBIC(S)− EBIC(S(l)) ≥ CnL−1|γ̂l|2 − L(log n+ 2η log p) (S.8)

uniformly in S ( S0 and l ∈ Sc, with probability tending to 1. Here we use the fact that

L−1|γ̂l|2 is uniformly bounded with probability tending to 1. Then as in the proof of

Theorem S.1.1, we should consider
√
L‖βl‖L2 in evaluating the right-hand side of (S.8).

Since Assumption C(2) implies that

nL−1(
√
Lκ̄n)2

L(log n+ 2η log p)
=

nκ̄2
n

L(log n+ 2η log p)
→∞,
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we have from (S.8) that

EBIC(S)− EBIC(S(l)) > 0

uniformly in S ( S0 and l ∈ Sc satisfying ‖βl‖L2

/
max
j∈S0−S

‖βj‖L2 > CL, with probability

tending to 1. Hence the proof of result (i) is complete.

To prove result (ii), we evaluate

EBIC(S0(l))− EBIC(S0) (S.9)

= n log
{

1−
Y TW̃lS0(W̃

T
lS0W̃lS0)

−1W̃ T
lS0Y

nσ̂2
S0

}
+ L(log n+ 2η log p)

for l ∈ Sc0. It is easy to prove that σ̂2
S0 converges to E{ε2} in probability and the

details are omitted. We denote W̃lS0(W̃
T
lS0W̃lS0)

−1W̃ T
lS0 by P̃lS0 , which is an orthogonal

projection matrix. Thus, from (S.9) we have for some positive C,

EBIC(S0(l))− EBIC(S0) ≥ − C

E{ε2}
Y T P̃lS0Y + L(log n+ 2η log p) (S.10)

uniformly in l ∈ Sc0, with probability tending to 1.

Now we evaluate Y T P̃lS0Y on the right-hand side of (S.10). From the definition of

W̃lS0 , we have

Y T P̃lS0Y = (Y −WS0γS0)
T P̃lS0(Y −WS0γS0)

for any γS0 ∈ RL#S0 . Therefore we obtain

Y T P̃lS0Y ≤ εT P̃lS0ε+ |b|2

where ε = (ε1, . . . , εn)T and b is some n-dimensional vector of spline approximation

errors satisfying |b|2 = O(nL−4) uniformly in l ∈ Sc0. By applying Proposition 3 of

Zhang (2010), we obtain

P
(εT P̃lS0ε

LCE2

≥ 1 + x

{1− 2/(ex/2
√

1 + x− 1)}2
+

)
≤ exp(−Lx/2)(1 + x)L/2, (S.11)

where {x}+ = max{0, x}. We take x = log(p2ηn)an/2 with an tending to 0 sufficiently

slowly. Then from the above inequality, we have εT P̃lS0ε = op(L log(p2ηn)) uniformly in

l ∈ Sc0. Thus we have

Y T P̃lS0Y = O(nL−4) + op(L log(p2ηn)) (S.12)

uniformly in l ∈ Sc0. Hence the desired result follows from (S.10), (S.12), and the

assumption that L = cLn
κ̄L with κ̄L ≥ 1/5. Note that, here we use the condition that

L log n/ log p→∞ when η = 0, which is stated in Assumption C(2). 2
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S.2.1 Proofs of Lemmas S.2.1 – S.2.3

We use the following inequalities in the proofs of Lemmas S.2.1-S.2.2.

CS1

L
≤ λmin(E{B(T )B(T )T}) ≤ λmax(E{B(T )B(T )T}) ≤ CS2

L
, (S.13)

where CS1 and CS2 are positive constants independent of L. See Huang, et al. (2008)

for the proof of (S.13).

Proof of Lemma S.2.1. Write

n−1DlSn = n−1

n∑
i=1

(XiS(l)X
T
iS(l))⊗ (B(Ti)B(Ti)

T ), (S.14)

where XiS(l) is the ith sample version of XS(l) and ⊗ is the kronecker product. Note

that (S.13), (S.14), and Assumption X(2) imply that, for any δ > 0,

C1

L
≤ λmin(DlS) ≤ λmax(DlS) ≤ C2

L
. (S.15)

for some positive C1 and C2. In addition, by exploiting the band-diagonal property of

DlSn and DlS and an exponential inequality, we can demonstrate that

|DlSn −DlS| ≤ n−1δp0 (S.16)

uniformly in S ( S0 and l ∈ Sc with probability

1− C3p
2
0L exp{−δ2(C4nL

−1 + C5δ)
−1} × p exp(p0 log 2), (S.17)

where C3, C4, and C5 are positive constants independent of p0, L, n, p, and δ. When

we take δ = n1−cβ/4L−1, the probability in (S.17) tends to 0 and the former result

follows since δp0/n = p0n
−cβ/4/L = o(L−1). The latter result follows from the following

relationship between D−1
lSn and n−1W̃ T

lSW̃lS:

D−1
lSn =

(
∗ ∗
∗
(
n−1W̃ T

lSW̃lS

)−1

)
.

2
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Proof of Lemma S.2.2. Let {bj}j∈S(l) be a set of square integrable functions on [0, 1].

Then Assumption X(2) implies that

CX2

∑
j∈S(l)

‖bj(T )‖2 ≤ ‖
∑
j∈S(l)

Xjbj(T )‖2 ≤ CX3

∑
j∈S(l)

‖bj(T )‖2. (S.18)

Besides, Assumption T implies

CT1‖b‖2
L2
≤ ‖b(T )‖2 ≤ CT2‖b‖2

L2
(S.19)

for any square integrable function b. In addition, due to Assumptions C(4) and C(5),

we can choose some positive constant C1 and a set of L-dimensional vectors {γ̃j}j∈S(l)

such that ∑
j∈S(l)

‖βj − γ̃Tj B‖∞ ≤ C1L
−2, (S.20)

where C1 depends only on the assumptions. By exploiting (S.18)-(S.20), we obtain

CX2

∑
j∈S(l)

‖βj(T )− γTj B(T )‖2

≤ ‖
∑
j∈S(l)

(βj(T )− γTj B(T ))Xj‖2 ≤ ‖
∑
j∈S(l)

(βj(T )− γ̃Tj B(T ))Xj‖2

≤
∑
j∈S(l)

‖βj(T )− γ̃Tj B(T )‖2 ≤ CX3

∑
j∈S(l)

‖βj − γ̃Tj B‖2
∞ ≤ CX3C

2
1L
−4.

Therefore, there is a positive constant C2 such that

‖βj(T )− γTj B(T )‖ ≤ C2L
−2.

This implies that

‖βj(T )‖ − C2L
−2 ≤

{
γTj E{B(T )B(T )T}γj

}1/2

≤ ‖βj(T )‖+ C2L
−2. (S.21)

The desired result follows from (S.13) and (S.21). 2

Proof of Lemma S.2.3. First we deal with |dlS| and |dlSn − dlS|. We have |dlS| ≤
C1(p0/L)1/2 from the definition of the B-spline basis. Also, as in the proof of Lemma 2

of Cheng, et al. (2014). we have

|dlSn − dlS| ≤ δ(Lp0)1/2/n

uniformly in S ( S0 and l ∈ Sc with probability

1− C2p0L exp{−δ2(C3nL
−1 + C4δ)

−1} × p exp(p0 log 2),
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where C2, C3, and C4 are positive constants independent of p0, L, n, p, and δ. By

combining the above results, (S.16), and Lemma S.2.1, we obtain

|D−1
lSn(dlSn − dlS)| ≤ C5L

3/2p
1/2
0 δ/n (S.22)

and

|(D−1
lSn −D

−1
lS )dlS| ≤ |D−1

lS ||DlSn −DlS||D−1
lSn||dlS| ≤ C5L

3/2p
3/2
0 δ/n (S.23)

uniformly in S ( S0 and l ∈ Sc, with probability given in the lemma. Note that C5 is

independent of p0, L, n, and δ. Hence the desired result follows from (S.22) and (S.23).

2

S.3 Additional simulation results

In this section we present more simulation results. In particular, we summarize results

of the simulations considered in Examples 1 and 2 in Section 4.1 when the noise level is

large (σ = 2). Comparing Tables S.1 and S.2 with Tables 2 and 3 given in the paper,

we can see that when σ = 2 we still have similar conclusions as when σ = 1. In addition,

when σ = 2 all the four considered approaches, fAIC, fBIC, fEBIC, and gNIS, perform

worse than they do when σ = 1. This is expected because, as the signal-to-noise ratio

decreases, less information is available from the data and it is harder to detect the true

variables. Overall, we can conclude that the fBIC is more reliable than the other three.
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Table S.1: Average numbers of true positive (TP) and false positive (FP) over 1000

repetitions and their robust standard deviations (in parentheses) for the gNIS, fAIC,

fBIC and fEBIC approaches under the varying coefficient model defined in Example 1

with σ = 2 and p = 1000.

n = 200 n = 300 n = 400

[t1, t2] SNR Approach TP FP TP FP TP FP

[0, 0] 4.32 gNIS 3.77(0.00) 9.47(16.4) 3.91(0.00) 8.24(20.9) 4.00(0.00) 0.85(0.75)

fAIC 4.00(0.00) 65.9(11.9) 4.00(0.00) 83.5(13.4) 4.00(0.00) 106(15.7)

fBIC 4.00(0.00) 7.27(0.00) 4.00(0.00) 0.01(0.00) 4.00(0.00) 0.00(0.00)

fEBIC 2.91(0.00) 0.00(0.00) 3.95(0.00) 0.00(0.00) 4.00(0.00) 0.00(0.00)

[2, 0] 0.91 gNIS 0.41(0.00) 0.43(0.00) 0.26(0.00) 0.00(0.00) 0.59(0.00) 0.00(0.00)

fAIC 2.89(0.75) 69.3(13.4) 3.64(0.75) 85.8(16.8) 3.93(0.00) 107(19.4)

fBIC 1.97(0.00) 1.98(0.75) 2.55(0.75) 0.08(0.00) 3.12(0.75) 0.01(0.00)

fEBIC 0.93(0.00) 0.07(0.00) 0.99(0.00) 0.01(0.00) 1.07(0.00) 0.00(0.00)

[2, 1] 0.80 gNIS 0.09(0.00) 0.07(0.00) 0.22(0.00) 0.06(0.00) 0.27(0.00) 0.03(0.00)

fAIC 2.89(1.50) 83.3(14.2) 3.62(0.75) 104(17.2) 3.90(0.00) 133(23.1)

fBIC 1.93(0.00) 0.85(0.75) 2.36(0.75) 0.06(0.00) 2.90(0.75) 0.01(0.00)

fEBIC 0.96(0.00) 0.04(0.00) 0.99(0.00) 0.01(0.00) 1.01(0.00) 0.00(0.00)

[3, 1] 0.69 gNIS 0.37(0.75) 0.27(0.00) 0.43(0.75) 0.14(0.00) 0.74(0.75) 0.10(0.00)

fAIC 1.96(1.50) 84.1(15.6) 2.78(0.75) 105(19.40) 3.37(0.75) 131(24.63)

fBIC 1.11(0.75) 0.80(0.75) 1.63(0.75) 0.33(0.75) 2.01(0.00) 0.12(0.00)

fEBIC 0.78(0.00) 0.22(0.00) 0.94(0.00) 0.06(0.00) 0.99(0.00) 0.01(0.00)

[4, 5] 0.75 gNIS 0.04(0.00) 0.01(0.00) 0.04(0.00) 0.00(0.00) 0.12(0.00) 0.00(0.00)

fAIC 1.39(0.75) 75.4(16.4) 2.09(1.12) 92.3(18.7) 2.72(0.75) 115.0(22)

fBIC 0.64(0.75) 1.00(0.75) 1.05(0.00) 0.43(0.75) 1.52(0.75) 0.30(0.75)

fEBIC 0.54(0.75) 0.46(0.75) 0.82(0.00) 0.18(0.00) 0.95(0.75) 0.05(0.00)

[6, 8] 0.80 gNIS 0.01(0.00) 0.02(0.00) 0.00(0.00) 0.00(0.00) 0.01(0.00) 0.00(0.00)

fAIC 0.83(0.75) 73.9(16.4) 1.23(0.75) 90.3(20.9) 1.66(0.75) 110(21.64)

fBIC 0.26(0.75) 1.22(0.00) 0.47(0.75) 0.57(0.75) 0.69(0.75) 0.43(0.75)

fEBIC 0.25(0.75) 0.75(0.75) 0.46(0.75) 0.54(0.75) 0.64(0.75) 0.36(0.75)
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Table S.2: The same caption as that of Table S.1 but now under the varying coefficient

model defined in Example 2 with σ = 2 and p = 1000.

n = 200 n = 300 n = 400

[t1, t2] SNR Approach TP FP TP FP TP FP

[0, 0] 11.9 gNIS 7.23(0.75) 10.0(13.4) 7.31(0.75) 10.3(19.4) 7.61(0.00) 13.5(27.6)

fAIC 8.00(0.00) 61.6(11.2) 8.00(0.00) 78.9(12.7) 8.00(0.00) 102(15.67)

fBIC 8.00(0.00) 48.9(10.4) 8.00(0.00) 0.24(0.00) 8.00(0.00) 0.00(0.00)

fEBIC 1.01(0.00) 0.00(0.00) 1.24(0.00) 0.00(0.00) 5.51(5.22) 0.00(0.00)

[2, 0] 2.36 gNIS 1.41(2.24) 2.49(0.00) 1.32(2.24) 0.10(0.00) 2.99(4.48) 0.08(0.00)

fAIC 4.99(1.49) 67.7(14.2) 7.05(0.75) 83.9(15.7) 7.77(0.00) 105(20.15)

fBIC 3.80(1.49) 15.8(3.73) 5.08(1.49) 0.37(0.00) 6.34(0.75) 0.04(0.00)

fEBIC 0.85(0.00) 0.15(0.00) 0.97(0.00) 0.03(0.00) 1.03(0.00) 0.00(0.00)

[2, 1] 2.18 gNIS 0.50(0.00) 0.39(0.00) 1.03(0.00) 0.25(0.00) 2.94(5.22) 0.71(0.75)

fAIC 5.06(1.49) 80.5(14.2) 7.07(0.75) 103(18.65) 7.79(0.00) 129(21.6)

fBIC 3.25(1.49) 7.73(1.49) 4.82(1.49) 0.22(0.00) 6.06(1.49) 0.04(0.00)

fEBIC 0.88(0.00) 0.12(0.00) 0.98(0.00) 0.02(0.00) 1.03(0.00) 0.00(0.00)

[3, 1] 1.91 gNIS 0.47(0.75) 0.42(0.00) 1.15(1.49) 0.17(0.00) 2.27(2.99) 0.30(0.00)

fAIC 3.58(1.12) 83.2(15.7) 5.32(0.75) 105(20.89) 6.75(0.75) 131(23.88)

fBIC 1.59(0.75) 1.87(1.11) 2.38(0.75) 0.38(0.75) 3.73(1.49) 0.17(0.00)

fEBIC 0.74(0.75) 0.26(0.75) 0.92(0.00) 0.08(0.00) 0.98(0.00) 0.02(0.00)

[4, 5] 2.31 gNIS 0.11(0.00) 0.02(0.00) 0.15(0.00) 0.00(0.00) 0.43(0.75) 0.00(0.00)

fAIC 2.56(0.75) 74.6(15.7) 4.11(1.49) 92.8(19.4) 5.44(0.75) 115(21.64)

fBIC 1.01(0.75) 1.82(0.75) 1.55(0.75) 0.62(0.75) 2.30(0.75) 0.31(0.75)

fEBIC 0.54(0.75) 0.46(0.75) 0.80(0.00) 0.20(0.00) 0.93(0.00) 0.07(0.00)

[6, 8] 2.60 gNIS 0.02(0.00) 0.03(0.00) 0.01(0.00) 0.00(0.00) 0.07(0.00) 0.00(0.00)

fAIC 1.67(0.75) 73.4(14.9) 2.49(0.75) 90.9(19.4) 3.62(0.75) 113(25.37)

fBIC 0.41(0.75) 1.39(0.00) 0.68(0.75) 0.83(0.75) 1.12(0.75) 0.79(0.75)

fEBIC 0.32(0.75) 0.68(0.75) 0.53(0.75) 0.47(0.75) 0.70(0.75) 0.30(0.75)
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