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Abstract

In this paper we propose a modification of the Dynamic Theilʼs Entropy that considers the

inequality in the whole population. We decompose it into three addends and we show how to

compute them within a Markov model of income evolution. In this way the income inequality

can be measured in the whole population and not only among a given number of classes in

which the economic agents are classified. The model is implemented with statistics from

Eurostat data applied on France, Germany, Greece and Italy. The results reveal different

inequality behaviors characterizing the considered European countries.
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I. Introduction

The problem of the income inequality measurement is an actual and relevant object of
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investigation. Recent contributions include the study of top income shares, quintile share ratio

and the statistical techniques of inference, [e.g. Brzezinski (2013); Langel and Tillé (2011)] .

Moreover the influences of political regimes, financial reforms, state sector and tax effects on

income inequality have been extensively studied, [e.g. Kemp-Benedict (2011); Agnello et al.

(2012); Lee (2013); DʼAmico et al. (2013)].

Another recent line of research was interested in measuring the income inequality through

dynamic indices instead of the classical static indices, [Theil (1967)]. The first contribution in

this direction was the paper by DʼAmico and Di Biase (2010) where the Dynamic Theilʼs

Entropy (DTE) has been proposed as a valuable tool for measuring and forecasting income

inequality dynamically. This generalization was made possible by considering a population that

evolves over time among a finite number of classes according to a semi-Markov process and by

considering the income of each economic agent as a reward process. Therefore it is possible to

justify changes in indices when the population configuration varies over time. The mathematical

apparatus coincides with Markov and semi-Markov systems widely developed and investigated

by Vassiliou and Papadopoulou (1992) and subsequent contributions.

The model was implemented in DʼAmico et al. (2011) to simulate an artificial economic

system with immigration, however critical points that occur when handling with real-world

applications were never faced. A further advancement was presented in DʼAmico et al. (2012)

were the authors proposed an application methodology that makes possible the application of

the model when only the averages and medians evolution of the incomes in a country are

available. The methodology was considered for a Markov Chain model of income evolution.

A different approach to the measurement of the dynamic inequality based on lognormal

stochastic volatility model appeared in Nishimo et al. (2012).

Several types of decompositions have been proposed for the static Theilʼs Entropy, [e.g.

Shorrocks (1984); Duro and Esteban (1998); GoerlichGisbert (2001)] and the extension of the

decomposability of the Theilʼs Entropy appeared in Kakamu and Fukushige (2009). Motivated

by these articles in this note we extend the DTE and we propose a decomposition into three

addenda which permit the evaluation of the inequality on the whole considered population and

not only among the classes of agents as done in DʼAmico and Di Biase (2010). Indeed, it is

important to evaluate the inequality on the total population and therefore we propose here a

modification of the DTE that permits the execution of more realistic applications thorough a

more reliable procedure. Definitely, in this paper, it was advanced a more general dynamic

inequality index that permits the relaxing of the homogeneity assumption between agents

belonging to the same income class in favour of the more realistic heterogeneity hypothesis.

The model is applied on Eurostat data for four European countries and reveals to be able

to reproduce different inequality behaviors characterizing the considered European countries.

The paper is organized as follows: Section II describes the Dynamic inequality indices, the

decomposition and the computation methodology. Section III presents an application to real

data for France, Germany, Greece and Italy. Finally, some conclusions can be found in Section

IV.

II. Dynamic Inequality Indices

One of the most popular income inequality measure is the Theilʼs Entropy (TE) defined in
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Theil (1967) by

TE=∑
N

i1
ai (log Nai), (1)

where ai represents the share of the total income of agent i and N is the number of the agents

in the economic system. This index was generalized into a dynamic version by DʼAmico and Di

Biase (2010). The generalization allows the shares of income to be random processes rather

than constant deterministic numbers. Obviously, if the shares of income are known constant in

time, then the classic Theilʼs index and the dynamic version coincide.

Suppose that each agent produces at time t∈ℕ a quantity yi(t) of income. We classify

each agent by allocating it depending on its own income, at each time, in one of K mutually

exclusive classes of income E=C1, C2, ..., CK following any rule. An operative criterion of

allocation has been adopted in Quah (1996) and DʼAmico et al. (2012).

We suppose that once the economic agents are allocated into the classes they can leave the

initial class and enter a new income class according to a discrete time Markov Chain with

transition probability matrix P. The element pij denotes the probability that an agent, now

allocated in Ci, will enter the next allocation Cj.

We would like to remark that the Markovian hypothesis could be relaxed in favor of the

weaker semi-Markovian hypothesis that was originally advanced by DʼAmico and Di Biase

(2010). Anyway here we consider a Markov chain model of income dynamic for easiness of

exposition and for avoiding the computational complexity of the semi-Markov framework.

We assume that each agent allocated in the class Cj∈E produces an income equal to yCj.

Let t=0 be the initial observation time, nCi(0) be the number of agents in class Ci at time

zero and n(0)=nC1(0), nC2(0), ..., nCk(0) be the population structure at time zero. Moreover let

aCj(n(0)) be the initial share of income due to class Cj.

Given the population configuration n(0) and the vector of average incomes y(0)= (yC1(0),

yC2(0), ..., yCK(0)), the DTE, see DʼAmico and Di Biase (2010), is the stochastic process:

DTE(t ; K ):=∑
K

i1
aCi(n(t))(log KaCi(n(t))), (2)

where the process a(n(t))=(aC1(n(t)), aC2(n(t)), ..., aCK(n(t))), describes the time evolution of

the shares of income among the classes of population:

aCj(n(t))=
nCj(t)yCj

<n(t), y(t)>
(3)

where

n(t)={nC1(t), nC2(t), ..., nCk(t)} (4)

is the multivariate stochastic process describing the evolution of the population in time and

<⋅, ⋅> is the usual scalar product.

The range of values of DTE(t ; K) is between 0 and log K. At a fixed time t, the index is

0 when the income is equidistributed among the classes, whereas it reaches the value of log K

when one class holds all the income.

One important point is that the DTE index (2) is a measure of the income inequality
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among the K classes that have to be rendered uniform with respect to the population allocation.

Nevertheless it does not represent the inequality in the whole population and this constitutes a

serious limitation of the model.

Indeed, when we measure the inequality with the DTE at a fixed time t implicitly we

replace the current population structure (4) that produces the income y(t) =( yC1(t), yC2(t),

..., yCK(t)), with an uniformized population n(t)={1, 1, ..., 1} that produces the income y(t)=

(nC1(t)yC1(t), nC2(t)yC2(t), ..., nCK(t)yCK(t)).

Therefore the DTE suffers of two inconveniences. First it is due to the uniformization of

the population. Second problem concerns the lack of a measure of inequality within the K

classes of the economy.

In order to overcome these inconveniences and to be able to measure the inequality in the

population we propose here a modification of the DTE and through a decomposition into three

addend we show how to compute it.

As well known, the TE (1) can be represented as follows:

TE=
1

N∑
N

i1

yi

y log
yi

y , (5)

where y is the average income in the population and yi is the income of the i-th agent.

If we allocate all agents in K classes we can represent the TE by using the

decomposability property by

TE=∑
K

g1
aCgTE(yCg ; nCg)+∑

K

g1
aCglog

yCg

y , (6)

where aCg is the share of production of class Cg, TE(yCg ; nCg) is the Theilʼs entropy of the class

Cg and yCg is the average income of the class Cg.

The entropy (6) can be represented as follows:

TE=∑
K

g1
aCgTE(yCg ; nCg)+∑

K

g1
aCglog

KyCgnCgN

K y nCgN 
=∑

K

g1
aCg TE(yCg ; nCg)+∑

K

g1
aCg log KaCg+∑

K

g1
aCg log

N

K nCg

.

(7)

Now if the share of income aCg are assumed to be random processes as in (3), then (7)

becomes the dynamic Theilʼs entropy on the whole population (PDTE):

PDTE(t ; N )=∑
K

g1
aCg(n(t))TE(yCg ; nCg(t))

+∑
K

i1
aCg(n(t))log KaCg(n(t))+∑

K

g1
aCg(n(t))log

N

K nCg(t)
.

(8)

Notice that the second addendum of (8) coincides with the DTE (2) that, as remarked

before, measures the income inequality among the classes after the uniformization of the

population. If K=N then the first and third addenda become zero and the differences between

the DTE and PDTE disappear.

The entire process can be summarized by computing the first order moment addendum by
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addendum.

The expectation of the second addendum was computed in DʼAmico et al. (2012) and is

given by:

E ∑
K

g1
aCg(n(t))log KaCg(n(t))

=∑
K

g1 ∑
n’p.c.

Pn(t)=n'n(0) =n aCg(n'(t))(log K aCg(n'(t))) (9)

=∑
K

g1 ∑
n'p.c.

N !

∏
K

h1
n'Ch!

∏
K

h1

(Ph(t))
n'Ch

log K aCg(n' (t))

a1
Cg (n' (t)) ,

where p.c. is the set of all possible population configurations,

Pi (t)=∑
K

h1

nCh(0)

N
p (t)

h i

and p (t)
h i are the t-step transition probabilities of the Markov Chain.

The expectation of the third addendum is given by:

E ∑
K

g1
aCg(n(t))log

N

KnCg(t) 
=∑

K

g1 ∑
n'p.c.

N !

∏
K

h1
n'Ch!

∏
K

h1

(Ph (t))
n'Ch aCg(n' (t))log

N

K n'Ch(t)
.

(10)

Here we give an interpretation of this addendum. The quantity
N

K
is equal to the average

number n of agents per class. Therefore the third addendum can be rewritten for each t∈ℕ as

follows:

∑
K

g1
aCg(n(t))log

n

nCg(t)

=−∑
K

g1
aCg(n(t))log

nCg(t)

n
=Eℑ tlog

nCg(t)

n ,
(11)

where ℑ t=(aC1(n(t)), aC2(n(t))..., aCk(n(t))) is the share of production probability measure at

time t∈ℕ. Thus formula (11) is the opposite of the mean logarithmic deviation of the

population distribution (4) with respect to the uniform distribution

(n, n, ..., n), (12)

computed using the share of production probability measure.

In this way (11) is an inequality measure that summarizes the divergence of the population

distribution (4) about the uniform population distribution (12).

It should be remembered that this third addendum is always less or equal than zero as we

will demonstrate in a next proposition and, then, it represents a correction term to be applied to

the DTE when computing the inequality among the classes C1, C2, ..., CK that compensates the
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increase in the inequality caused by the uniformization of the population required for the

computation of the DTE.

Proposition II.1. For each t∈ℕ, −∑
K

g1
aCg(n(t))log

nCg(t)

n
≤0.

Proof.

−∑
K

g1
aCg(n(t))log

nCg(t)

n
=−∑

K

g1

nCg(t)yCg

<n(t), y(t)>
log

nCg(t)N

nN

=−∑
K

g1

NyCg

<n(t), y(t)>

nCg(t)

N
log

nCg(t)N

nN
.

(13)

Let denote by ymin=ming1, 2, ...K yCg then

−∑
K

g1
aCg(n(t))log

nCg(t)

n
≤

−N ymin

<n(t), y(t)>∑
K

g1

nCg(t)

N
log

nCg(t)N

nN

=− −N ymin

<n(t), y(t)>⋅KL
nC1(t)

N
, ...,

nCK(t)

N ; nN , ...,
n

N ,
(14)

where the symbol ℒ represents the Kullback-Leiber distance between the distributions


nC1(t)

N
, ...,

nCK(t)

N  and  nN , ...,
n

N . The proof is complete once we note that for any pair of

probability distributions the Kullback-Leibler distance is always nonnegative, see Kullback and

Leibler (1951).

The moment of the first addendum is evaluated first by replacing the term TE(yCg ; nCg(t))

with the value TE( yCg ; ng(t)). The latter is the value of the Theilʼs Entropy function that

measures the inequality within group g computed by replacing the random variable nCg(t) with

the expected population configuration ng(t) that represents its average. Secondly it is possible to

proceed to compute the expectation as follows:

E∑
K

g1
aCg(n(t))TE(yCg, nCg(t))

=∑
K

g1 ∑
n'p.c.

N !

∏
K

h1
n'Ch!

∏
K

h1

(Ph(t))
n'Ch aCg(n' (t)) TE( yCg, nCg(t)).

(15)

The DTE index is able to capture the randomness in the inequality evolution and, consequently,

through its first moment, provides a function that is an effective tool for forecasting income

inequality for a given horizon time. With the new PDTE representation of the dynamic income

inequality, that is adopted in this paper, the forecast of the inequality refers to the complete

population and not only to the inequality among the classes, and therefore incorporates also the

effect due to the heterogeneity of the agents within the same income class.
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III. Application to real data for France, Germany, Greece and Italy

We used the Eurostat data concerning population, means and medians of the equivalised

net income for France, Germany, Greece and Italy as reported in DʼAmico et al. (2012). Data

refer to years from 2005 to 2008. The choice of the countries and the time interval is motivated

by the fact that they represent the sole case for which there are no missing data.

In order to implement the model we followed the scheme of the procedure advanced in

DʼAmico et al. (2012). Nevertheless, the computation of the PDTE requires the evaluation of

the entropies TE( yCg ; nCg) for all classes g∈{C1, C2, ..., CK}. Therefore, the step 3 of that

procedure has been modified by considering not simply the average income of the classes but

the complete income distribution within each class. To do this we executed a partition of the

income brackets that identifies the single class first into 100 subintervals, then in more and

more finer partitions. The results on the PDTE are here reported only for the subdivision with

400 subintervals because a finer partition does not affect significantly the results.

The procedure allows the recovering of the transition matrices for all the four countries

that are necessary for the computation of the expectation of the PDTE. These matrices are the

same reported in Table 3 in DʼAmico et al. (2012) where it is possible also to find a discussion

about their properties.

Once we dispose of the transition probability matrix for each country, we can then

compute the expected evolution of the PDTE.

We report the expected values of (15), (9) and (10) in Figure 1, Figure 2 and Figure 3,

respectively. It should be noted that the curves in Figure 2 represent the values of the DTE.

The values in Figure 1 are of one order of magnitude lower than those of Figure 2 and

Figure 3. This means that the inequality within each class is less important than the others

inequalities. This argument applies for all the considered countries. Moreover the inequality
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FIG. 1. FIRST ADDENDUM OF THE DECOMPOSITION OF THE PDTE

Note: x axis is t (time in years), y axis is the expectation of the PDTE.
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within the classes is expected to decrease in France and Germany, to stay stable in Greece and

to increase in Italy.

Figure 2 shows the values of the DTE which measures the inequality among the classes

C1, C2, ..., CK after the uniformization of the population. Here again Greece inequality is stable,

France and Germany share similar monotonic decreasing behavior and Italy is the unique

country with an increasing DTE.

Figure 3 shows the opposite of the mean logarithmic deviation of the real population

structure with respect to the uniform distribution (n, n, ..., n).
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FIG. 2. SECOND ADDENDUM OF THE DECOMPOSITION OF THE PDTE: THE DTE

Note: x axis is t (time in years), y axis is the expectation of the PDTE. 
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FIG. 3. THIRD ADDENDUM OF THE DECOMPOSITION OF THE PDTE

Note: x axis is t (time in years), y axis is the expectation of the PDTE. 
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According to Proposition II.1, all the values are negative. The increasing path of France

reveals that the population will move toward a more uniform distribution. The same argument

applies for Germany. Also in this case Italy exhibits an opposite behavior with respect to those

of France and Germany.

In Figure 4 we report the PDTE which is obtained by summing the three curves showed

As we can see, in France there is a tendency toward increasing inequality. Also for

Germany the graphical forecast shows an increasing inequality. The difference is that, in the

early periods, the inequality in Germany is lower than in France, but it increases more rapidly.

These results are opposite to those showed in Figure 2 and obtained using only the DTE.

This fact suggests that the measurement of inequality in the whole population cannot be

correctly approximated by using only the inequality among classes through an uniformization of

the population, as performed by the DTE in a dynamic framework.

The information revealed in Figure 4 is, in our opinion, useful for planning an economic

policy aimed at the reduction of income inequality.

IV. Conclusion and future research

This note extends the Dynamic Theilʼs Entropy and proposes a decomposition of the new

index into three addenda which permit the evaluation of the inequality on the whole considered

population and not only among a given number of classes of agents as done in DʼAmico and Di

Biase (2010).

Indeed the curves measuring the inequality are quite different in the two situations. As a

consequence the forecast of the inequality in the whole population cannot be correctly executed

by using only the corresponding forecast among classes as performed by the DTE in a dynamic

framework.
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FIG. 4. POPULATION DYNAMIC THEILʼS ENTROPIES

Note: x axis is t (time in years), y axis is the expectation of the PDTE. 
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The results showed different types of temporal evolutions of the index. These differences

suggest the necessity to implement an European policy of economic integration, given the very

different behaviors of inequality in the studied countries. For these reasons we think that the

results are relevant for the adoption of an economic and social policy of inequality

maintenance.

Possible avenues for future developments of our model include:

a) the application to the measurement of income polarization by extending different well-

behaved polarization indexes (see e.g. Esteban and Ray (1994), Duro (2005) and Esteban

et al. (2007)) to a dynamic framework;

b) measuring the variability of each income yCg by considering the income as a random

variable and then the vector y(t) as a random process. This major complexity could be

addressed by using Markov (or semi-Markov) reward processes as done for the

computation of the Dynamic Herfindahl-Hirschman index by DʼAmico et al. (2014).
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