
 

Evolution of Copulas 
: Continuous, Discrete, and its application to 

Quantitative Risk Management 

 
 
 
 
 
 
 
 

By Yasukazu YOSHIZAWA 
 
 

Submitted in partial fulfillment of the degree of 
Doctor of Philosophy in Economics 
 
 
 

Graduate School of Economics  
Hitotsubashi University 

March 2015 



1 
 

Contents 
 
 
 
 

 
 
Page 

 
 
1. Introduction 

 
 

2 

 

 
 
2. Evolution of copulas 

 
 

15 
2.1 Evolution of copulas 16 
2.2 Rank correlations of evolution of copulas 24 

 2.3 Extension of evolution of copulas 28 
 
 
3. Evolution of copulas in discrete processes 

 
 

35 

 

 3.1 Evolution of copulas in discrete processes 36 
 3.2 Convergence to evolution of copulas in continuous time 45 
 3.3 Rank correlations of evolution of copulas in discrete processes 51 
 3.4 Extension of evolution of copulas in discrete processes 53 
 3.5 Application to empirical data 57 
 
 
4. Conclusion 

 
 

62 

 

 
 

Appendix A. Quantitative risk management  

 
 

65 
Appendix B. Time variance of dependence structure 67 

 
 
References 

 
 

71 

 

 

 
 
 
 
 
 
 



2 
 

1. Introduction 
 

 

Dependence relations among random variables are one of the most important 

subjects for probability and statistics research. Analysis of dependence structures is 

critical from both theoretical and applied viewpoints. 

 For example, the damage caused by typhoons in Taiwan and Japan is randomly 

related; some typhoons move from Taiwan to Japan, but others do not. An insurance 

company whose business includes these two countries must estimate the effect of this 

dependence. Damage is caused not only by typhoons but also by financial crises, the 

euro crisis, the East Japan earthquake, large hurricanes in the United States, and floods 

in Thailand. These catastrophic phenomena emerge suddenly, and the related losses are 

enormous; this concept is gaining increasing attention. 

Recently, members of the financial sector, like banks and insurance companies, 

and their regulators have recognized that it is critical to manage these risks in a 

sophisticated way, that is, quantitatively. Quantitatively measured risks play a central 

role in this management framework. These entities face many kinds of risks, and the 

relations between them are very complicated. Thus, it is crucial to reflect the 

dependence relations to measure the risks quantitatively: the more dependence there is 

among risks, the less aggregated the risks are. See Appendix A and Yoshizawa, Y. [26], 

[27]. 

 

Linear correlation is often recognized as a satisfactory measure of dependence in 

risk management. However, it cannot capture the non-linear dependence relations that 
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exist among many risk factors. It is a canonical measure only in the world of normal 

distributions, and is used more generally in spherical and elliptical distributions. See 

Embrechits, P. et al. [6], [10]. 

What expresses the dependence relations among risk factors? If we capture a 

multivariate joint distribution of all the risk factors, we can recognize their dependence 

structure probabilistically or statistically. 

 For this reason, there has been much interest in a copula function, or simply a 

copula. A copula links multivariate joint distribution and univariate marginal 

distributions. Copulas are often employed to investigate the dependence structure 

among random variables. The name copulas is derived from “couples” in Latin. The 

fundamental theorem of copulas, “Sklar’s theorem,” first appeared in 1959. See 

Schweizer, B., & Sklar, A. [4], and Sklar, A. [23]. This elegant theorem claims that all 

multivariate distributions have copulas, and that copulas are used in conjunction with 

univariate distributions to construct multivariate distribution. As for the study of 

copulas, Free, E.W. et al. [11] and Tsukahara, H. [25] provide useful introductive 

reviews. Nelsen, R.B. [3] wrote the excellent standard textbook, providing a systematic 

development of the theory of copulas, particularly bivariate copulas. The book by Joe, 

H. [1] is also helpful and covers multivariate copulas. Moreover, McNeil, A. J. et al. 

[2] introduce copulas theoretically and practically, examining quantitative risk 

management for financial sectors.  

Because of their flexibility, copulas have been extensively studied and applied in 

a wide range of areas concerning dependence relations, including risk management, 

insurance and/or financial mathematics, and seismological analysis,. See Breymann, W. 
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et al. [8], Genest, G. et al. [12], Goda, K. [13], [14], Goorbergh, R.W.J. et al. [15], and 

Lebrun, R. [21]. 

 

Dependence relations, which transform over time, are dynamic rather than static 

in nature. We analyze the time variance of a dependence structure, taking foreign 

exchange rates as an example. We collect the daily foreign exchange rates for the U.S. 

dollar and the euro against the Japanese yen for 10 years, and use copulas to analyze 

these distributions annually. From this analysis, we can see that copula functions are 

transforming every year. See Appendix B. 

However, copulas are useful mainly for static matters; their definitions themselves 

do not contain time variables. Mikosch, T. [22] suggests, “Copulas do not fit into the 

existing framework of stochastic processes and time series analysis; they are 

essentially static models and are not useful for modeling dependence through time”. 

However, a few exceptions exist: copulas and the Markov process, as in Darsow, W.F. 

et al. [9], and dynamic copulas, as in Patton, A.J. [24]. Copulas and Markov processes 

can be used to analyze the dependence relations between Markov processes at different 

times. Dynamic copulas involve the development of dynamic time series models for 

financial return data using conditional copulas. Furthermore, Kallsen, J., and Tankov, P. 

[20] propose the Lévy copula for the Lévy process, and a survey by Bielecki, T.R. et 

al. [5] introduces some copulas for stochastic processes. 

 

It is well known that rank correlations, one of the prevailing measures of 

dependence, are derived only by copulas. That is to say, copulas determine rank 

correlations. Thus, it is natural to analyze only copulas in the study of transformations 
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of dependence structures through time. As a first step, we start to investigate how 

copulas transform, and if they evolve in accordance with the heat equation, which is 

one of the basic partial differential equations used to describe dynamic movements.  

In this thesis, we introduce evolving copulas, which transform through time 

autonomously as governed by the heat equation. Our aims are to prove that their 

solutions are time dependent, and to analyze the transitions of their rank correlations. 

Moreover, we construct discrete type of the time-dependent evolution of copulas to 

apply empirical data analysis, investigate their properties, and prove that they converge 

to their original continuous type. Finally, we apply empirical data to discrete evolution 

copulas in order to verify their practicality 

 

In this Chapter, we marshal the basic concepts and properties of copulas for the 

preparation of the subsequent chapters. We illustrate the definition of bivariate copulas; 

provide some examples; describe Sklar’s theorem, which plays a central role in copula 

theories; and provide the definition and properties of rank correlations like Kendall’s 

tau and Spearman’s rho. Finally, we explain empirical copulas, which are used in the 

basic theory of copulas in discrete processes, in Chapter 3. For background issues in 

this chapter, we refer mainly to McNeil, A. J. et al. [2] and Nelsen, R.B. [3]. 

 

In Chapter 2, we propose that time-dependent evolving copulas transform 

autonomously through time. First, we prove the existence of solutions for the evolution 

of copulas that evolve in accordance with the heat equation; moreover, we prove that 

they converge to the product copula as time . Next, we prove that their rank 

correlations converge to zero exponentially as time . Finally, we extend the 
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evolution of copulas backward and with coefficients. In this chapter, we refer to 

Ishimura, N. & Yoshizawa, Y. [16], [17], and Yoshizawa, Y. & Ishimura, N. [28]. 

 

In general, it is difficult to solve partial differential equations analytically; 

furthermore, numerical analysis using discrete data is suitable for calculation by 

computer. In Chapter 3, we study the evolution of copulas in discrete processes that 

satisfy the discrete version of the heat equation (we call these copulas “discrete 

evolution of copulas” and this type of evolution the “discrete type”). We define these 

copulas, and prove that they converge to the product copulas and that their rank 

correlations converge to zero exponentially. Moreover, we prove that these discrete 

evolution of copulas converge to their original evolution of copulas (we call these 

copulas “continuous evolution of copulas” and this type of evolution the “continuous 

type”). Thus, we can treat discrete evolution of copulas as an approximation of the 

continuous type. Next, we extend them backward and with coefficients for discrete 

evolution of copulas. Finally, we apply empirical data to discrete evolution of copulas 

to verify their practicality. In this chapter, we refer to Ishimura, N. & Yoshizawa, Y. 

[18], [19], and Yoshizawa, Y. & Ishimura, N. [29]. 
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Copulas 

Let us begin by recalling the definition of a copula and the fundamental theorem 

created by Sklar, A. [23]. Sklar, A. first developed the theorem of copulas in 1959. The 

structure of a copula is shown diagrammatically in Figure 1.1. In this chapter, we recall 

the definition of copulas, provide some examples, describe Sklar’s theorem, and 

examine rank correlations and empirical copulas with reference to Joe, H. [1], McNail, 

A. J. et al. [2], and Nelsen, R.B. [3]. 

 
Figure 1.1. Copula 

 

  The bivariate copulas are defined by three properties described in the following 

(1.1), (1.2) and (1.3). The properties (1.1) and (1.2) are the boundary conditions, and 

the property (1.3) is called the 2-increasing condition. 

 

Definition 1.1 (Copulas). Bivariate copula is a function  from  to  

defined by three properties as 

 

 

C (u, v) 

v u
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The 2-increasing condition (1.3) induce that the probability density function is 

not less than zero. Moreover on account of this property copulas satisfy the 1 

-increasing condition as well as continuous properties. 

 

    Among many kinds of copulas, the following Fréchet-Hoeffding bounds of 

copulas, such as lower bound copula and upper bound copula, are well known. The 

images of these copulas are plotted in Figure 1.2. Fréchet-Hoeffding bounds of copulas 

are defined as 

 

Upper bound copula;   

Lower bound copula;  

 

 

There are important relations among Fréchet-Hoeffding bounds copulas. 

 and , thus we have 

. Using 2-increasing condition, we obtain

, that is , and . Thus we can 

say . According to these inequities all the 

copulas are between lower bound copula and upper bound copula as 
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Lower bound copula 

 

 

Upper bound copula 

 

 
Figure 1.2. Fréchet-Hoeffding bounds of copulas 

 

 

    The product copula is important and often appears in this thesis. The product 

copula is called the independent copula, which express the independent relations 

between random variables. The image of the product copula is plotted in Figure 1.3. 

 

 

 

 

 

Figure 1.3. Product copula 
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Besides above Fréchet-Hoeffding bounds copulas and the product copula, Clayton 

copula , Gumbel copula , Frank copula , Gaussian copula  and t 

copula  are popular. 

We introduce Clayton copula  , which is used in Appendix B. It is well-known 

that in the limit  Clayton copula approaches the product copula, and as 

 it approaches the Upper bound copula. 

 

Clayton copula is defined as 

where . 

                 

 

 

 

Sklar’s theorem 

The following Sklar’s theorem is the core theory among various copula theories. 

Thanks to this theorem we can construct multivariate distribution by coupling 

univariate marginal distributions. The Figure 1.4 is the conceptual image of the 

coupling using Sklar’s theorem where the bivariate distribution H (x, y) are generated 

by coupling the marginal distributions F (x) = u and G (y) = v using copula C (u, v). As 

for the proof of this theorem, see Schweizer, B., & Sklar, A. [4] and Nelsen, R.B. [3]. 
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Bivariate Distribution  H (x, y)  Copula   C (u, v) 

 

 F(x) = u   Marginal Distribution 

 

G(y) = v  Marginal Distribution 

 
Figure 1.4. coupling of marginal distribution by Copula 

 

 

 

Theorem 1.4 (Sklar’s theorem). Let  be a bivariate joint distribution function with 

marginal distribution function  and ; that is 

 

Then there exists a copula, which is uniquely determined on , such that 

 

Conversely, if  is a copula and  and  are distribution functions, then the 

function  defined by (1.5) is a bivariate joint distribution function with marginal 

distribution functions  and . 

 

 

Rank correlations 

Next we explain the concept of rank correlations. Rank correlations are a sort of 

dependence measures, and Kendall’s tau ( ) and Spearman’s rho ( ) are typical rank 

correlations. Their special feature is that they do not depend on marginal distributions, 

y 

 

x 

v u x 
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but depend only on their copulas. Kendall’s tau is defined in the Definition 1.5 and 

Spearman’s rho is also defined in the Definition 1.6. 

 

Definition 1.5 (Kendall’s tau). Kendall’s tau for a pair  is the probability of 

concordance minus the probability of dis- concordance. Kendall’s tau is defined as 

 

where  and  are independent and identically distributed random 

vector with joint distribution. 

Moreover the popular version of Kendall’s tau is derived using copula as 

 

where  and  are uniform random variables.  

 

 

Definition 1.6 (Spearman’s rho). Spearman’s rho for and  is 

proportional to the probability of concordance minus the probability of dis-cordance. 

Spearman’s rho is defined as 

 

where , and are independent and identically distributed 

random vectors with a common joint distribution functions. 

The well-known version of Spearman’s rho is derived as  
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Empirical copulas 

We introduce copulas for sample data, which are called empirical copulas, with 

reference to Nelson, R.B. [3]. Empirical copulas are used for evolution of copulas in 

discrete processes in Chapter 3 as the core technique and theory. The definition of 

empirical copulas, empirical copula frequency function and their relations are as 

follows., 

 

Definition 1.7 (Empirical copulas). Let denote a sample with size n from a 

continuous bivariate distribution. The empirical copula  is the function given by 

 

where  and , , denote order statistics from the sample. 

 

Empirical copula frequency functions. Empirical copula frequency function  is 

given by  

 

 

Furthermore the relation between  and  is deduced by the definition as 
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We present sample version of rank correlations using the above empirical copulas 

and empirical copulas frequency functions in the following Theorem 1.8. See Nelson, 

R.B. [3]. 

 

 

Theorem 1.8. Let  and  denote respectively the empirical copula and the 

empirical copula frequency function as for the sample . We denote the 

corresponding empirical version of Kendall’s tau as  and that of Spearman’s rho as 

.  

Then the empirical version of Kendall’s tau  is derived as  

 

 

 

and the empirical version of Spearman’s rho of discrete copula  is  
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2. Evolution of copulas 
 

Copulas are excellent tools for investigating dependence structures among 

random variables. Although they vary through time (see Appendix B), copulas are used 

mainly for static problems. Two exceptions are the study of time-dependent copulas, 

such as the Markov process in Darsow, W.F. et al. [9], and dynamic copulas, as in 

Patton, A.J. [24]. The former study investigates the dependencies between Markov 

processes at different times. They assume that  

satisfies the Chapman-Kolmogorov equation as 

where  is the stochastic process. 

A copula of variables  and  is denoted as , and product 

operator  is defined as 

 

where  

Darsow, W.F. et al. [9] prove the relations among  as 

 

     

The dynamic copulas in Patton, A.J. [24] are provided as 

,  with . 

where  is an Archimedean copula,  is a parameter whose value belongs 

to some interval ;  means some time-series model, say an ARMA(p, q) 

type process; and  is the transformation function designed to keep . 
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We propose that time-dependent copulas autonomously evolve as governed by the 

heat equation. It is well known that the heat equation is one of the basic partial 

differential equations which used to describe dynamic movements. Thus, it is 

considered natural to study these copulas. 

In Section 2.1, we prove the existence of the solution for the evolution of copulas. 

Moreover, we prove that they converge to the product copula  as . 

In Section 2.2, we prove that rank correlations of evolution of copulas converge to zero 

exponentially as . In Section 2.3, we extend this evolution of copulas to 

backward evolution and evolution with coefficients. 

 

 

2.1 Evolution of copulas 

We introduce the evolution of bivariate copulas, which are a kind of time 

dependent copulas. The images of the evolution of bivariate copulas are graphically 

charted in Figure 2.1, which is an image of evolution copula varying with time. In the 

following Theorem 2.1 we propose evolution of bivariate copulas, and prove the 

existence for their solutions with reference to Ishimura, N. & Yoshizawa, Y. [16], and 

Yoshizawa, Y. & Ishimura, N. [28]. 
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Figure 2.1 Image of evolution copulas(initial copula is Clayton copula with  

 

 

 

Theorem 2.1 (Evolution of copulas). For any bivariate copula , there exists a 

unique family of time dependent bivariate copula , which satisfies the 

heat equation  

 

for   

The solution of the partial differential equation (2.1) is  

π  

where . 

(Proof) We prove this theory by three steps. In first step we prove that the solution 

(2.2) satisfies the heat equation (2.1) as well as the boundary conditions. In second step 

we prove that the solution (2.2) satisfies the 2-increasing condition in the case where 

 
t = 0 (Clayton Copula) 
 

 
 

t = 3/50 
 

 

t = ∞  
 

 
 

0

1

0

1

0

1



18 
 

the initial copulas are of - Class copulas. In final step we extend the result of the 

second step to all the continuous copulas. 

 

First step: We prove the solution (2.2) satisfies the heat equation (2.1) with two 

boundary conditions, such as 

               

 

We define  as 

 

Then we can rewrite the boundary conditions (2.3) as 

           

 

It is easy to verify that  also fulfill the heat equation with the boundary 

conditions (2.5). Then partial differential equation (2.1) is rewritten as 

∞  

∞   

  

 

The solution of the heat equation (2.6) are solved by use of the well-known 

formula involving the kernel  as   

π π π
∞
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π π  

By applying the relation (2.4) to the solution (2.7), we can deduce the solution 

(2.2) which satisfies the heat equation (2.1) and the boundary conditions (2.3). 

 

Second step: We verify that the solution (2.2) satisfies the 2- increasing condition,  

 

for where we assume 

 is of -Class. 

First, we prove that if the initial copula  is - Class then  

 is also of -Class for .  

According to (2.1), there exist  and , thus  is 

two times partial differentiable by  respectively. If we prove that  is 

differentiable both by , then  is of -Class.     

We define  as 

π  

Therefore we can say 

 

Since   

  

Applying this equation (2.9) to the solution (2.2), is two times differentiable 
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by both  which means  exists. 

 

Second, we verify that  satisfies the heat equation with the 

Neumann boundary condition. As the initial copula  is of 

-Class, then the 2 increasing condition is equivalent to 

 

We define  as 

 

π  

π  

where  

We can confirm that also satisfies the heat equation as  

 

because  

 

π π   
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Moreover satisfies the Neumann boundary condition 

 

where , and  are the boundaries of , 

since  

 and .   

Hence we have verified that  is the solution of the heat equation with 

the Neumann boundary condition (2.13).  

 

Finally, we prove , which indicates that fulfill the 2- 

increasing condition. According to the definition (2.11) and the inequality (2.10), we 

obtain the initial condition as 

 

Furthermore the boundary value of  is 

 

because 

  

  

Therefore, as  fulfills the initial condition (2.14) and boundary condition 

(2.15), the maximum principle implies 

 

According to the inequality (2.16) and the definition (2.11) of , we have 
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Thus we have proved that  satisfies the 2-increasing condition in the 

case where the initial copula  is of -class.  

 

Final step: We turn our attention to the case where the initial copula

 is not of -Class. We approximate  by a sequence of -class copulas 

family , which converge to  as  

 

For any  it corresponds to a family of copulas  which 

satisfies the heat equation (2.1) with the initial value  Thanks to the 

proof of the second step we can say that  verifies the 2-increasing condition 

as 

 

for , i =1,2,    

According to the solution (2.2),  is expressed as 

π , 

where . 

Therefore the difference between  is computed as 

 

π  
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By using (2.18), for any  we can set  as , 

where . Therefore we obtain  

   

Thus we have verified that we can set a family of  class copulas , 

which converges to  uniformly at any t as 

 

Applying (2.20) to (2.19), we have proved that  satisfies the 2 

increasing condition, where the initial copula  is not of Class. 

We conclude that the proof of the theorem is finally completed. 

 

 

 

In addition to Theorem 2.1, evolution of copulas  converge to the 

product copula as ∞, which means their marginal distributions become 

independent. We prove this convergence in the following Theorem 2.2. See Ishimura, 

N. & Yoshizawa, Y. [16], and Yoshizawa, Y. & Ishimura, N. [28]. 

 

Theorem 2.2. Evolution of bivariate copulas converge to product copula as 

∞
 

  

(Proof) We prove that  converges to zero uniformly. 

With reference to the solution (2.7), we have 
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π π  

Thus we  converge to zero as 

  

According to the definition (2.4),  converges to  as 

 

 

 

 

2.2 Rank correlations of evolution of copulas 

As we explain in Chapter 1, rank correlations are simple scalar measures of 

dependence, moreover which depend only on their copulas, not on their marginal 

distributions. We introduce the special properties of rank correlations of evolution of 

copulas. Our conclusion is that both Kendall’s tau  and Spearman’s rho  

converge to zero exponentially as . We prove these properties in the following 

Theorem 2.3. See to Ishimura, N. & Yoshizawa, Y. [17], and Yoshizawa, Y. & Ishimura, 

N. [28]. 

 

Theorem 2.3 (Rank correlation of evolution of copulas). Rank correlations, 

Kendall’s tau  and Spearman’ rho , of evolution of copulas  are less 

than  as 

 

Furthermore Kendall’s tau  and Spearman’ rho  converge to zero 

exponentially as  
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(Proof) If the following inequality  

   

and            

            

hold, then the inequality (2.22) is proved by setting  . 

 

Spearman’s rho   

We prove the above inequality (2.23) regarding Spearman’s rho  Recall the 

formula (1.7) in Chapter 1 as  

  

     

We define  as 

 

According to the heat equation (2.1) and differentiating (2.26) by t, we obtain   

 

 

 

Using Poincaré’s inequality, we obtain 

 

 

Applying the inequality (2.28) to the differential equation (2.27), we have 
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The differential equation (2.29) is solved as 

 

 

where is the initial value  

We apply this inequality (2.30) to (2.25), and then  is expressed as 

 

 

Replacing  by , we prove the inequality (2.23). 

 

Kendall’s tau  

We prove the above formula (2.24) for Kendall’s tau  Recall the formula 

(1.6) in Chapter 1 as  

 

 

We apply Spearman’ rho (2.25) to Kendall’ tau (2.31) as 

 

 

By multiplying to the equation (2.32) and using the inequality (2.30), we obtain 
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Next we verify that the second term of the right side of the inequality (2.33) is 

bounded and is less than M as 

∞  

As  is continuous for , then it is sufficient only to confirm 

  

We differentiate  by t, and apply the equation (2.27) to it, and then 

we have 

 

 

Applying the inequality (2.30) to the differential equation (2.35), we obtain 

 

 

We integrate the inequality (2.36) by variables s on  and apply the inequality 

(2.30) to it, and then we have 

 

 

Thus we can proclaim , that is to say that we have 

verified the inequality (2.34). 
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Applying the inequality (2.34) to the inequality (2.33), we obtain 

 

Replacing  by , the inequality (2.24) holds. Hence we have 

proved the inequality (2.22) by use of the inequality (2.23) and (2.24). Furthermore the 

inequality (2.22) indicates that Kendall’s tau  and Spearman’ rho  converge 

to zero exponentially as  

 

 

On account of Theorem 2.3, we claim that rank correlations, Kendall’ s tau  

and Spearman’s rho , of evolution of copulas converge to zero exponentially 

as  This conclusion is consistent with the fact that as  evolution of 

copulas converge to the product copula whose rank correlations are 

zero. 

 

 

2.3 Extension of evolution of copulas 

We extend the evolution of copulas in the Theorem 2.1 to the following backward 

evolution of copulas and evolution of copulas with coefficients. We introduce 

backward evolution of copulas is in Theorem 2.4, evolution of copulas with 

coefficients is from Corollary 2.5 to Corollary 2.7, and backward evolution of copulas 

with coefficients is in Corollary 2.8. 
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Backward evolution of copulas 

Backward evolution of copulas has a property to strengthen the dependencies 

between random variables through time. Their graphical images are charted in Figure 

2.2. We prove the existences for the solution of backward evolution of copulas in the 

following Theorem 2.4. See Yoshizawa, Y. & Ishimura, N. [28].  

 

 

 
Fgure 2.2 Image of backward evolution copula 

 

 

Theorem 2.4 (backward evolution of copulas). There exist backward evolution of 

copulas which satisfy 

 

 

The solutions of  (2.37) is 

π  

where  

t = 0  

 

 
 

 

t = T  
 

 
 

0

1

0

1

0

1
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(Proof) Backward evolution of copulas transforms backwardly in comparison to 

evolution of copulas. Backward evolution of copulas at  is the same as evolution 

of copulas at maturity time . For any midpoint of time, backward evolution of copulas 

at time  is the same as evolution of copulas at time . 

We prove the existence for the solution of the backward evolution of copulas in 

the similar way as evolution of copulas in Theorem 2.1. Replacing , the 

partial differential equation (2.37) is rewritten as 

′ ′  

Applying the analogy of Theorem 2.1, the solution of (2.39) is 

′ π ′  

where  

The above solution (2.40) is the same as the solution (2.2) in Theorem 2.1 except 

for the domain of variables. The domain of variable ′ of the backward evolution of 

copulas is , although that of variable  of evolution of copulas is . The 

solution (2.2) involves the range of the solution (2.40). Replacing ′ by , we 

obtain the solution (2.38). 
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EEvolution of copulas with coefficients 

We extend evolution of copulas to evolution of copulas with coefficients which 

satisfy the heat equation with diffusion coefficient, and prove the existences for their 

solutions. See Yoshizawa, Y. & Ishimura, N. [28].  

First, in the following Corollary 2.5 we introduce evolution of copulas with 

coefficient, and prove the existence for their solutions. 

 

Corollary 2.5 For any bivariate copula , there is a unique family of time 

dependent bivariate copula , which satisfies  

 

where  is the diffusion coefficient and . 

The solution of (2.41) is  

π  

where . 

(Proof) We prove this theorem using variable transformation. Replacing  by , the 

equation (2.41) is rewritten as  

’
’ ’ ’  

The above heat equation is the same as the equation (2.1) in Theorem 2.1. Using the 

analogy of (2.2), the solution is deduced to  

’ π ’  
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where . 

Thus, the proof of (2.42) is completed. 

 

 

 

 

Second, we prove that evolution of copulas with coefficient (2.41) also converge 

to the product copula in the following Corollary 2.6. See Yoshizawa, Y. & Ishimura, 

N. [28]. 

 

Corollary 2.6 The evolution of copulas with coefficients converge to the product 

copula  as 

 

(Proof) We prove this corollary in the same way as the Theorem 2.2.  is 

defined as  in (2.4), and then using the equation 

(2.42) we obtain 

π  

π  

Thus we can say that  converge to zero uniformly as 

 

Recalling the definition of ,  converge to the product copulas 

uniformly as 
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Thus, the proof of (2.43) is completed. 

 

 

Third, rank correlations, Kendall’s  and Spearman’s rho , of evolution of 

copulas with coefficient also converge to zero exponentially as . We prove them 

in the following Corollary 2.7. See Yoshizawa, Y. & Ishimura, N. [28]. 

 

Corollary 2.7 The rank correlations Kendall’ tau  and Spearman’ rho   of 

evolution of copulas with coefficients  in Corollary 2.5 is  

  

(Proof) By the variable transformation  = , the heat equation (2.41) in the 

Corollary 2.5 is rewritten as 

′ ′  

and the solution (2.42) is transcribed as  

′ π ′  

Applying the Theorem 2.3, we can proclaim 

′ ′ ′ ′  

By replacing ′ by , we have 

 

Hence we have proved the inequality (2.44). 
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Backward evolution of copulas with coefficients 

We can develop the backward evolution of copulas with coefficients and, prove 

the existences for the solutions in the following Corollary 2.8. See Yoshizawa, Y. & 

Ishimura, N. [28]. 

 

 

Corollary 2.8 There exist backward evolution of copulas with coefficients which 

satisfy 

 

where  

The resolution of (2.45) is  

π  

where . 

(Proof) We prove this corollary in the same way as the proof of Theorem 2.4 by use of 

the variable transformation . The solution (2.46) is the same as (2.2) by 

replacing  to . The difference between backward evolution of copulas with 

coefficient and evolution of copulas is the domain of their variables. The domain of 

variables of backward evolution of copulas with coefficient is , although that of 

evolution of copulas is . The range of the solution (2.2) involves that of the 

solution (2.46). By replacing ′ by again, we obtain the solution (2.46). 
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3. Evolution of Copulas in discrete processes 
 

In the previous chapter, we studied the bivariate evolution of copulas, which is 

continuous. In general, it is difficult to solve partial differential equations analytically; 

therefore, numerical approaches are often applied in practice, especially where 

analytical solutions do not exist. Moreover, numerical analysis is only suitable for 

computer calculation. Even if analytical solutions do exist, it is often difficult to 

compute their solutions numerically. 

In this chapter, we study the bivariate discrete evolution of copulas, which satisfies 

the discrete version of the heat equation, and prove that it converges to the product 

copula. In Section 3.2 we prove that discrete evolution copulas converge to continuous 

evolution copulas. Based on this proof, we can treat discrete evolution copulas as 

approximate versions of continuous evolution copulas. Then, in Section 3.3, we prove 

that the rank correlations of discrete evolution copulas also converge to zero 

exponentially. In Section 3.4, we introduce the backward type discrete evolution of 

copulas and the discrete evolution of copulas with coefficient. Finally, in Section 3.5 

we apply discrete type evolution copula to empirical data, foreign exchange rates, to 

confirm their practicality. 

 

First, in the following Definition 3.1, we define the properties that bivariate 

discrete evolution of copulas satisfies. 
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Definition 3.1. Bivariate discrete evolution of copulas are defined as the functions 

which satisfy the following three properties. 

Boundary conditions; 

 

 

The 2-increasing condition; 

 

        

 

 

3.1 Evolution of copulas in discrete processes 

We introduce bivariate discrete evolution copulas which satisfy the following 

discrete version of the heat equation (3.3). First, we prove that their discrete solution 

described by recurrence formula fulfills the three properties of copulas. Second, we 

define the interpolation, and we interpolate the discrete solutions to be continuous 

on . Finally, we prove that this interpolated discrete solutions are copulas, and that 

converge to the product copula as . See Ishimura, N. & Yoshizawa, Y. [18], and 

Yoshizawa, Y. & Ishimura, N. [29]. 

 

Let , we put 
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At any  , the value  is governed by the 

system of the difference equation  

 

 

together with the boundary conditions as 

 

 

The difference equation (3.3) approximates the heat equation (2.1), because we can 

describe its left hand side  as , and its right hand side  

 as . 

     

First, we proclaim that the solution of above difference equation (3.3) satisfies the 

2- increasing condition (3.5) in the following Proposition 3.2. 

 

Proposition 3.2. fulfills the 2- increasing condition 

  

where  satisfies the difference 

equation (3.3) and the constrain 

   

(Proof) We employ mathematical induction to prove that  fulfills the 2- 

increasing condition (3.5). By use of the relation , we transform the 

difference equation (3.3) into the recurrence formula as  
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We illustrate the image of (3.7) diagrammatically in Figure 3.1.  

 

First, we confirm that the initial conditions satisfy the 2- increasing condition, 

because they are the discrete points of the copula .  

Second, we assume that  satisfies the 2-increasing condition. 

Finally, we verify that  also fulfills the 2-increasing condition. Using the 

recurrence formula (3.7) we can rewrite the 2-increasing condition (3.5) as  

 

 

  

 

Based on the constrain (3.6) as   and the assumption that  satisfies 

the 2- increasing condition, we can verify 

 . 

Hence we have proved that  satisfy the 2-increasing condition (3.5). 

 

 

 

Figure 3.1. Sequence of discrete evolution copula 
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    , which satisfies the difference equation (3.3) and the boundary 

condition (3.4), fulfills the three properties of copulas thanks to Proposition 3.2.       

However copulas must be defined on  and continuous, we have to extend the 

domain of the variable from discrete points  to continuous points . 

Therefore we define the interpolation for the purpose of this extension in the following 

Definition 3.3. 

 

 

Definition 3.3. We define the interpolation as 

 

 

 

 

As to the point  other than , the value   is 

provided by the interpolation (3.8). It is trivial that  is continuous. In the 

following Theorem 3.4 we proclaim and prove that  have the properties of 

copulas. See Ishimura, N. & Yoshizawa, Y. [18], and Yoshizawa, Y. & Ishimura, N. 

[29]. 
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Theorem 3.4 (Evolution of copulas in discrete processes). For any initial copula , 

there exists a sequence of copula  on  which satisfy the 

system of difference equation (3.3) at every . We call these copulas 

 as evolution of copulas in discrete processes. 

(Proof) According to Definition 3.3,  is defined on , and satisfy 

the system of difference equations (3.3) at every , where 

 Then what we have to check is if  

fulfill the boundary conditions (3.4) as well as the 2- increasing condition (3.5). 

 

First, we verify that  satisfy the boundary conditions. 

 Because  by the 

formula (3.8). We also obtain  in the same way as  

Because 

 We also obtain 

 in the same way as  

 

Second, we verify  fulfills the 2-increasing condition (3.5). 

Let , , then 
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Hence we have proved that   satisfy the properties of copulas, 

such as two boundary conditions and the 2-increasing condition, on . 

 

 

 

Next we prove that evolution of copulas in discrete processes  converge 

to the product copula  in the following Theorem 3.5. It is remarkable 

that the convergences do not depend on the fineness of mesh , but depend only on the 

number of times . See Ishimura, N. & Yoshizawa, Y. [18], and Yoshizawa, Y. & 

Ishimura, N. [29]. 

 

Theorem 3.5. Evolution of copulas in discrete processes converge to the 

product copula as 

 

(Proof) We define  as 

 

In addition we denote  is described as   

 

and the difference equation (3.3) can be rewritten by  as 
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for .  

We derive the null boundary conditions from the original boundary conditions (3.4) as 

 

 

By use of the relation  and the constrain (3.6)  the 

difference equation (3.13) is rewritten as 

 

 

First, we verify that  converges to zero on . Using the recurrent  

equation (3.15), we derive  

Taking the maximum of the left hand side (3.16), we have 

 

We set K and  as 

       and  

  

We obtain 

 

Thus we can proclaim that  converges to zero as    
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Second, we prove converge to zero on  Based on the 

definition (3.11) and the interpolation (3.8), 

 

 

 

 

 

where , 

. 

We take the maximum the equation (3.18) on  and apply it to the 

inequality (3.17), we obtain  

 

  

  

  

We verify that  converge to zero as  

. 

 

Hence the proof of the formula (3.10) is completed by use of the definition (3.11). 
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Furthermore we define the density of discrete evolution of copulas , which 

is well defined and consistent with continuous type evolution of copulas. 

 

Definition 3.6. The densities of discrete evolution of copula  is defined as 

 

 

 

 

Using the above definition we can calculate densities of copulas, and their 

images are illustrated in Figure 3.2. Upper stands are evolution of copulas ,and 

lower stands are densities of evolution of copulas.   

 

 

 

Figure 3.2. Evolution of copulas and their densities 

 

t = 0 (Clayton Copula) 

 

t = 3/50 

 

t = ∞  (Product Copula) 
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3.2 Convergence to evolution of copulas in continuous time  

We have studied both continuous evolution of copulas and discrete evolution of 

copulas respectively. In this section we focus on their relation, and prove that evolution 

of copulas in discrete processes converge to evolution of copulas in continuous time. 

First of all, we define the discrete points of continuous evolution of copulas in the 

following Definition 3.7. 

 

Definition 3.7. Let  Then we define the discrete points of the 

corresponding continuous evolution of copulas as 

 

where is the continuous evolution of copulas which are already solved in 

Theorem 2.1, and  is the discrete point  of . 

We also define the corresponding points of the discrete evolution of copulas as 

 

where  is derived from the boundary conditions (3.4) and the recurrent 

formula (3.7). 

 

 

First, we prove that the discrete evolution of copulas converge to the continuous 

type evolution of copulas at any discrete points and times  in Proposition 

3.8. Next in Proposition 3.9 we extend this domain of variables, prove this 

convergence holds on , where   and discrete time . Finally, we 

prove that the discrete type converge to the continuous type on  

in Theorem 3.10. 
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Proposition 3.8. At any points  and any times  the discrete evolution 

of copulas converge to the correspondent continuous evolution of copulas as 

 

  

(Proof) We define  and as 

 

 

 

The discrete points of the left hand side of the heat equation (2.6) are described as  

 

where  denotes Landau’s symbol and  

The discrete points of the right hand side of the heat equation (2.6) are described as 

 

where  denotes Landau’s symbol and . 

As  satisfies the heat equation (2.6), we obtain 

 

We can rewrite the above equation as 

 

where  and the constrain    
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According to (3.15), the discrete evolution of copulas satisfies 

 

We define  as  

 

Then  satisfy  

 

Both  and  are positive, thus we have 

 

 

Taking the maximum both side of the above inequality, we obtain 

 

 

 

 

 

By use of , we have  

Therefore we obtain 

 

 

Using the inequality (3.27) inductively, we can calculate  as 

  

 

where ,  
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We can rewrite (3.28) as 

 

Thus we verify that  converges to  as 

 

Applying the definitions (3.24) and (3.25) to the above equation, we can proclaim 

that  also converge to  as  

 

 

 

 

We have proved that at any discrete points  the discrete type converge to 

the continuous type uniformly as . Furthermore in the next Proposition 3.9 we 

propose that the discrete evolution of copulas converge to the continuous evolution of 

copulas uniformly on  as . For the preparation of this proof, we define 

 as 

 

where  is the continuous type evolution of copulas at discrete time .     

We also define  as 

 

where  is the discrete type evolution copulas  to which the 

interpolation (3.8) is applied on . 
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Proposition 3.9. The discrete type evolution of copulas  converge to the 

continuous type  in nth process as 

 

 

  

(Proof) We define  and   on as 

 

 

By the above equities and the analogy of the inequity (3.19), the difference 

between  is 

 

 

 

 

where . 

 

According to (3.27)  holds for any  , as well 

as .  In addition, , 

  , , and . Thus 

we have verified that  converge to zero as  
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Finally, we extend this result of Proposition 3.9 to prove that the discrete 

evolution of copulas converge to the continuous evolution of copulas both by space 

and time simultaneously. We prove this convergence in the following Theorem 3.10. 

For the preparation of this proof, we set time  as 

 

where .  

We also define the interpolation of  as 

 

for  

 

The above  is rewritten as  

 

 

Theorem 3.10 (Convergence to continuous type). The evolution copulas in discrete 

processes converge to the evolution of copulas in continuous time as 

 

  

(Proof) Based on the equation (3.31) we define the interpolation of the continuous 

evolution of copulas between discrete time  and  as 

 

 Using the equation (3.31) and the above equation, the difference between 

and  is described as 
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The first term  and the second term   

 converge to zero as , because  is 

continuous for  

By use of Proposition 3.9 and , the third term 

 and the fourth term  converge 

to zero as   

Hence we have proved that the discrete evolution of copulas converge to the 

continuous type evolution of copulas as  

 

 

 

 

 

3.3 Rank correlations of evolution of copulas in discrete processes 

We proved that rank correlations, the Kendall’s tau and Spearman’s rho, of the 

continuous evolution of copulas converge to zero exponentially in Theorem 2.3. 

Corresponding to this theorem we propose and prove that rank correlations of discrete 

evolution of copulas also converge to zero exponentially in the following 

Theorem 3.11. See Yoshizawa, Y. & Ishimura, N. [29]. 
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Theorem 3.11 For any initial copulas , a sequence of copulas   

provided by the formula (3.3) fulfill 

 

(Proof) Let’s recall empirical copulas and their rank correlations in Chapter 1, where 

the discrete versions of Spearman’s rho (1.12) is derived as 

 

and the discrete versions of Kendall’s tau (1.11) is derived as 

 

 

First, we prove that nth Spearman’s rho  converges to zero exponentially 

as  According to the formula of discrete version Spearman’s rho (3.35) and the 

inequality (3.17), we obtain 

 

 

Thus we have proved that Spearman’s rho converges to zero as 

 

 

Second, we prove that nth Kendall’s tau  converges to zero exponentially 

as  Based on the formula of discrete version Kendall’s tau (3.36), the inequality 

(3.17) and the relation , we obtain 
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where  

 

Thus we have proved that Kendall’s tau converge to zero as 

 

 

 

 

 

3.4 Extension of evolution of copulas in discrete processes 

 We extend continuous type evolution of copulas to backward evolution of 

copulas and evolution of copulas with coefficients. In order to keep the consistency 

with the continuous type, we extend evolution of copulas in discrete processes to 

backward evolution of copulas in discrete processes, and evolution of copulas with 

coefficients in discrete processes. 
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Backward evolution of copulas in discrete processes 

We proposed continuous type backward evolution of copulas in Section 2.4. 

Therefore it is natural to think of their discrete type. We proclaim and prove that the 

existence of backward evolution of copulas in discrete processes in the following 

Theorem 3.12. We refer to Yoshizawa, Y. & Ishimura, N. [29]. 

 

 

Theorem 3.12. For any initial copula , there exists a sequence of 

copula  on  which satisfy the system of difference 

equations  

 

, at every , , 

 denotes given maturity copula  together 

with the boundary condition (3.4). 

 We call  as backward evolution of copulas in discrete processes. 

(Proof) First, we replace  in the difference equation (3.3), then its left 

hand side  is transformed into  , and its right hand side  

 is transformed into 

. Therefore we have confirmed that the 

difference equation (3.39) holds. We also can calculate its solution backwardly in the 

same method as we compute the solution of the difference equation (3.3). 
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We can verify that  satisfy the 2-increasing condition, in the same way as 

the proof in Proposition 3.2.  

Applying the interpolation (3.8) to , we obtain 

 

 

 

We confirm that the interpolation of backward evolution of copulas in discrete 

processes  satisfy two boundary conditions and the 2-increasing condition 

on  in the same method as the proof in the Theorem 3.4. 

 

Hence we have proved that   are copulas on ,  

which fulfill the three properties of copulas, such as two boundary conditions and the 

2-increasing condition. 

 

 

 

Evolution of copulas with coefficients in discrete processes 

We recall that evolution of copulas with coefficient which satisfy the following 

heat equation with the diffusion coefficient in Corollary 2.5.   

 

 is the diffusion coefficient 
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Corresponding to the above partial differential equation we define the 

deference equation for discrete type evolution of copulas with coefficient as 

 

for , , , ,  is 

copula,  and  is the diffusion coefficient. 

 

 

Corollary 3.13. For any initial copula , there exists a sequence of copula 

 on  which satisfy the system of difference equation 

(3.40) at every . We call these copulas  as evolution of 

copulas in discrete processes. 

(Proof) We can rewrite (3.40) as the following recurrence formula as 

         (3.41) 

The proof is analogous Theorem 3.4, where the only difference is that  is 

replaced     
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3.5 Application to empirical data 

 

In this subsection, we apply the above results to real data to confirm the quality of 

practically using the evolution of copulas. As an example, we analyze the dependence 

of euro–Japanese yen foreign exchange rates with those of the Swiss franc–Japanese 

yen. The evolution of copulas has properties to suit events whose dependence 

monotonically increases or decreases. Therefore, we focus on rapidly changing events 

when their directivities are almost stable. We select foreign exchange rates on January 

15, 2015, when the Swiss franc endured a shock breakout after the announcement that 

the Swiss central bank had stopped monetary policy efforts to maintain the Swiss franc 

against the euro at more than 1.20. Moreover, we collect data on the second time scale 

in order to capture their monotonic directivity. 

 

First we construct empirical copulas of the euro–Japanese yen rates and the 

Swiss franc–Japanese yen rates for every second of 40 minutes using the formula (1.8). 

Then, we calculate their Kendall’s tau correlation measure by applying the formula 

(1.11). Figure 3.3 charts the transition of the Kendall’s tau, as well as the euro–Swiss 

franc foreign exchange rates. 
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Notes: Tau: Kendall’s Tau of the euro against the Japanese yen and the Swiss franc 

against the Japanese yen; EURO/CHF: The euro against the Swiss franc 

Data source: Bloomberg, exchange rate 

We collect the foreign exchange rates on the second scale interval from 18:20 to 

19:00 on January 15, 2015. We calculate the euro–Japanese yen rates by multiply the 

Swiss franc–Japanese yen rates by the euro–Swiss franc rates. With reference to the 

formula (1.8), we construct empirical copulas for every second by using 60 datasets 

for both the euro–Japanese yen and the Swiss franc–Japanese yen, where we collect 

60 datasets in 1 minute. Then, we calculate Kendall’s tau by applying the formula 

(1.11) to the empirical copulas to every second. 

Figure 3.3. Kendall’s tau versus the euro against the Swiss franc 

 

Second, we apply a smoothing technique to the transitions of Kendall’s tau, since 

they fluctuate and include some singular data. We apply a moving average method and 

the results are shown in Figure 3.4.   
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Notes: Tau: Kendall’s Tau of the euro against the Japanese yen and the Swiss franc 

against the Japanese yen; TauAve600: Moving averages of “Tau” for 600 datasets 

We apply a moving average method to 600 datasets of Kendall’s tau, as shown 

in Figure 3.3. The average of 600 datasets for every second refers to the data average 

over 10 minutes. Thus, the start point of the average of 600 datasets is 18:30. 

Figure 3.4. Moving averages of Kendall’s tau 

 

Finally, we compare Kendall’s tau of the evolution of empirical copulas to the 

abovementioned moving averages of Kendall’s tau of empirical copulas. We choose the 

start time at which Kendall’s tau of the empirical copula and its moving average are 

almost equal. We evolve the empirical copula at the start time using the recursion 

equation for 20 minutes. The results are plotted in Figure 3.5, which shows that the 

evolution of empirical copulas approximate the smoothed transition of empirical 

copulas from the viewpoint of Kendall’s tau.  
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  Notes: TauAve600: Moving averages of “Tau” for 600 data; Evolution of Tau: 

Kendall’s tau of evolution of copulas. 

We extract the empirical copula at 18:31:47, at which time the Kendall’s tau of the 

empirical copulas is almost equal to the smoothed Kendall’s tau. We evolve them 1,200 

times, which means for 20 minutes. For this evolution, we set parameters for the 

recursion equation 

, as 

, second, , and   Thus, we 

derive the equation  which is used to 

evolve the empirical copulas. 

   Figure 3.5. Kendall’s tau of evolution of copulas 

 

 

Using these flexible discrete copula models, we analyze the movement of 

dependence relations between the Swiss franc and the euro against the Japanese yen 

approximately. We can verify the practicality of some theories of the evolution of 
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copulas, although this is restricted to events whose essential dependence does not 

fluctuate but transforms monotonically. 
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4. Conclusion 
 

In this thesis, we studied the evolution of copulas in continuous as well as discrete 

processes. As a first step, we focus on the evolution of copulas as governed by the heat 

equation, which is a basic partial differential equation used to describe dynamic 

movements. We find some excellent theorems, but several problems remain to be 

solved. Our main discoveries are summarized in the following paragraphs. 

  

 

Main Findings 

First, we find that solutions exist for the evolution of copulas that transform 

autonomously through time in accordance with the heat equation. Moreover, we prove 

that they converge to the product copula and that their rank correlations converge to 

zero exponentially as time . These facts ensure consistency and mean that 

dependence decreases over time. However, for many phenomena, dependences 

increase from moment to moment. Thus, we propose the backward evolution of 

copulas, in which they evolve in reverse, in accordance with dependence-increasing 

events, and we prove the existence of their solutions.  

 

Second, we study the evolution of copulas in discrete processes to satisfy the 

discrete version of the heat equation. We define these processes and prove that these 

discrete evolution copulas converge to the original continuous evolution copulas; thus, 

we can treat discrete evolution copulas as approximations of the continuous type. 

Furthermore, we prove that these discrete evolution copulas also converge to the 
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product copula, and that their rank correlations converge exponentially to zero, 

regardless of their mesh size. 

 

Third, discrete evolution copulas are a good fit for numeric analysis when 

constructing mathematical models on computers. In order to maintain the flexibility to 

create a model, we extend the plain discrete type evolution of copulas backward and/or 

with coefficients of the discrete as well as continuous types. Using these flexible 

discrete copula models, we analyze the movement of dependence relations between the 

Swiss franc and the euro against the Japanese yen. Hence, we can verify the 

practicality of several theories of the evolution of copulas. 

 

 

Future Prospects 

First, for conciseness, we studied only bivariate copulas in this thesis. However, 

most events in the real world are complicated and consist of many factors or variables. 

Thus, it is of use to establish some theories about the evolution of multivariate copulas, 

corresponding to the evolution of bivariate copulas. We ourselves have studied the 

evolution of multivariate copulas in discrete processes. See Ishimura, N. & Yoshizawa, 

Y. [18], [19].  

  

Second, the evolution of copulas is not versatile; it is restricted to events whose 

essential dependences do not fluctuate but transform monotonically. The evolution of 

copulas fits with events where dependence decreases; conversely, the backward 

evolution of copulas conforms to dependence-increasing events. We expect that the 
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evolution of copulas will be applied in many fields, such as risk management, natural 

science, engineering, medical science, and social science. Thus, it is our task to 

uncover the events, phenomena, and theories that the evolution of copulas fits and, 

apply them. 

 

 Third, we think that finding events with which the evolution of copulas fits is not 

enough. As the evolution of copulas is in the first stage, we should enter the next stage 

to study other time-dependent copulas that also transform autonomously as governed 

by the equations containing time variables. We hope that new time-dependent copulas 

will fit into various transformations of dependence structures, and will contribute to the 

analysis of all events in any field, as well as to the progress of copula theories. 
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Appendix A. Quantitative risk management 
 

Progressive insurance companies in developed countries have adopted enterprise 

risk management (ERM), which manages all company risks; companies use it not only 

to avoid their own losses but also to profit by taking reasonable risks with their capital. 

In Europe, new solvency regulations have been introduced: the Swiss Solvency Test 

and Solvency . Switzerland introduced the Swiss Solvency Test in 2008, and the 

European Union will introduce Solvency  in the near future. Their common factor is 

quantitatively measured risk, which is called economic capital (EC) in ERM and the 

solvency capital requirement (SCR) in solvency regulations. Economic capital plays a 

central role in ERM, as it is used to evaluate and control risks, and it relates not only to 

risk management but also to capital management. In solvency regulations, the SCR is 

the key criterion for judging whether an insurance company has enough capital to be 

solvent. The conceptual image of the capital requirement in solvency regulations is 

charted in Figure A.1. 

 

Figure A.1. Capital requirement in Solvency II; Source, Yoshizawa, Y. [27] 
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We cannot measure risks without Quantitative Risk Management (QRM), such as 

risk measures and risk aggregating approaches. Value at risk (VaR) and tail value at 

risk (Tail VaR) are commonly used to measure EC and SCR. In practice, many kinds of 

risks exist within financial entities like insurance companies, and the relations among 

those risks are complicated. Insurance companies’ total aggregated risks vary widely 

based on their dependencies. When we measure risks, it is critical to consider the 

dependencies among risks as well as risk measures. Traditionally, the 

variance-covariance approach has been adapted to aggregate risks, taking account of 

their dependencies.  

However, this approach has the defect that it does not reflect the details of risk 

factor distribution. It applies constant dependency factors, such as coefficients of 

variance and covariance, to the entire range of risk distributions, including tail risks. 

Therefore, copulas have recently come to attract much attention for their ability to 

reflect detailed dependencies. Using copulas, we can obtain a multivariate distribution 

of risk factors, which expresses their dependencies throughout the range. In this 

Appendix, we refer to Yoshizawa, Y. [26] and [27]. 
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Appendix B. Time variance of dependence structure 

 

     We analyze the time variance of the dependence structure, taking foreign 

exchange rates as an example. We collect daily data for the U.S. dollar against the 

Japanese yen, and the euro against the yen, from January 1, 2002, to December 31, 

2011; this is charted in Figure B.1. 

 

Data source: ONDA 

                  Figure B.1. Transition of foreign exchange rates (USD vs. JPY and EURO vs. JPY) 

 

The chart in Figure B.2 is a scatter graph for the years 2002 to 2011, charting the 

foreign exchange rates of each of the U.S. dollar and the euro against the Japanese yen, 

and their frequencies. 

Total (2002–2011) 
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Figure B.2. Scatter graph of foreign exchange rates (2002–2011) 

 

 

We use of copulas to modify the original empirical data to suit the theoretical data. 

We approximate the original 10 years’ data, from 2002 to 2011, using copulas, and 

chart their distributions in Figure B.3, where we expose the original data on the left 

side and the data approximated using a Clayton copula on the right side. We use 

MATLAB R2011a to analyze these data. 

 

Original data 

 

Data approximated by Clayton copula 

 

Figure B.3. Approximating dependency between foreign exchange rates using copulas (2002–2011) 

EURO/JPY 

USD /JPY 
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We study the transition of distributions annually using the same method to 

analyze Figure B.3. We divide the above 10 years’ data by fiscal year into 10 blocks, 

each of which consists of approximately 365 data points. We use Clayton copulas to 

approximate the original empirical data to suit the theoretical data, which are charted 

in Figure B.4. 
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Figure B.4. Transformation of distributions approximated by Clayton copulas (2002–2011) 

 

Moreover, we pick up the sequence of  of Clayton copulas and draw a diagram 

of them in Figure B.5. The parameter  is neither constant nor monotonous; it 

fluctuates. We can guess that foreign exchange rates have the complicated property of 

fluctuating, because they are sometimes affected by various economic, political, social, 

and psychological events. 
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Figure B.5. Transition of parameter  of Clayton copulas 
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