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Chapter 1

Introduction

1.1 Background

Externalities are common phenomena observed in various economic activities. A tra-
ditional example of externalities is pollution. A polluter is reluctant or short of infor-
mation to consider the indirect costs of pollution, such as pressures on the ecological
system, lower quality of life for those living near the polluting spot, and forgone op-
portunities of other economic activities like tourism. Without charges on pollution, a
polluter’s private costs of production would be lower than the social costs, and so he
often overproduces from the social point of view.

Externalities are not necessarily bad. Research and development (R&D) often add
to the general body of knowledge, and so other producers and R&D activities can
benefit. Without subsidies on R&D, private firms’ costs of R&D are higher than the
social costs, leading to insufficient R&D.

Economists have long recognized the importance of externalities and discussed its
various forms–production externalities and consumption externalities, input-generated
and output-generated, economies and diseconomies, unpaid factor and creation of
atmosphere–in many fields of economics including microeconomics, welfare economics,
public economics, growth theory, trade theory, environmental and resource economics.

Despite the large body of literature on externalities, there are still questions not
resolved or addressed yet, as well as issues newly emerging. In the dissertation, I focus
on production externalities and deal with four related questions and issues in two
fields of economics. In Chapter 2 and Chapter 3, I examine the production possibility
frontier (PPF) from the perspective of microeconomics. In Chapter 4 and Chapter 5, I
consider production externalities in the context of trade and the environment. Chapter
6 provides some concluding remarks.

1



2 CHAPTER 1. INTRODUCTION

1.2 Research Questions

In Chapter 2, I ask whether production efficiency requires full employment of factors
of production in the presence of production externalities. Here, production efficiency
indicates the situation that the economy is operating on the PPF. The question is im-
portant. First, full employment is a presumption applied in many economic models:
once assuming inelasticity of factor supply, full employment follows immediately in a
market-based economy. Second, if the answer is NOT necessarily, government inter-
ventions are expected. To my knowledge, surprisingly, there seems no formal answer
to this basic but essential question.

In Chapter 3, I examine the properties of the PPF in the presence of strong input-
generated externalities. Here, “strong” indicates the situation that full use of factors
is not efficient. The problem is important. First, strong input-generated externalities
such as traffic jams are often seen in real life. Second, the convexity of the PPF (or, non-
convexity of the production possibility set) provides an explanation to the symmetry
breaking among ex-ante identical agents, such as division of labor and comparative
advantages: if the PPF is convex, each agent can enjoy higher efficiency by cooperating
and specializing in narrower range of tasks.

In Chapter 4, I try to understand the endogenous link between trade, economic
development, and the environment. The issue is important. In recent years, the rapid
process of globalization promotes the separation of production and consumption, ag-
gravating externality problems that affect the environment. The globalization often
stimulates economic development, too, imposing more environmental pressures. It
becomes an increasingly pressing issue to understand the close nexus between the
three elements. However, possibly due to the complexity of the problem, existing the-
oretical studies on this issue are far from satisfactory.

In Chapter 5, we work on narrowing the gap between the multi-functional envi-
ronment in reality and its single role in theoretical economic models. Those theoretical
models usually formulate only the aspect of the environment directly relating to the
issue of interest. For example, if renewable resources is the interest, the environment
is then a place that grows resources. If environmental pollution is the concern, the en-
vironment then becomes a pollution sink. These extreme simplifications come at risks
of misleading implications.

1.3 Main Messages

In Chapter 2, to answer whether production efficiency requires full employment in the
presence of production externalities, I consider two general formulations of produc-
tion externalities: input-generated and output-generated. The result is impressive. If
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externalities are input-generated, the answer is NOT necessarily, that is, full employ-
ment may be inefficient. In contrast, if externalities are output-generated, the answer
is YES.

In Chapter 3, to highlight the effect of strong input-generated externalities on the
properties of the PPF, I focus on the single-factor case and examine monotonicity, conti-
nuity, and convexity of the PPF. I show that, in the presence of strong input-generated
externalities, a sufficient condition for the PPF to be (strictly) convex is the (strict)
quasi-concavity of the by-product generation function. Moreover, under reasonable
conditions, the PPF is either entirely strictly convex, or entirely linear.

In Chapter 4, to investigate the close link between trade, economic development,
and the environment, I develop a two-sector dynamic general equilibrium model, in
which economic development is described by the accumulation of private capital. In
terms of model structure, my model extends Copeland and Taylor (1999) by introduc-
ing households behaving in a Ramsey fashion. I also conduct policy analysis. Among
a rich set of results, the following two are especially interesting. First, in the short run,
trade can be good or bad to the environment, depending on the direction of composi-
tion effect. However, in the long run, trade necessarily harms the environment thanks
to the scale effect. Second, the social optimum can be achieved through a pollution
tax. I show that the optimal pollution tax is a dynamic version of the Pigouvian tax.

In Chapter 5, to move one step toward modeling the multi-dimensional roles of the
environment, we construct a two-sector dynamic general equilibrium model allowing
environmental impacts from both sectors. This small step brings in a new agenda for
considering the link between trade and the environment. Beside a rich set of results
on the properties of the model, the following two provide important insights. First,
countries can be categorized into two types depending on the slope of long-run sup-
ply curve: the Copeland–Taylor type with an upward-sloping supply curve and the
Brander–Taylor type with a downward-sloping one. Thus, a country of Copeland–
Taylor type tends to specialize in trade. Second, both countries can export their own
dirty goods to each other and may lose from trade.





Chapter 2

The Efficiency of Full Employment
under Production Externalities

2.1 Introduction

Full employment of factors of production is a starting point for many economic mod-
els, which comes as the equilibrium outcome of inelastic factor supplies. If produc-
tion processes are independent of each other, full employment is, as well known, a
necessary condition for production efficiency–operating on the production possibility
frontier (PPF).1 However, production processes often affect each other. For example,
toxic wastes from a pulp mill may harm fishery resources, which is a bad news to local
fishermen. So the following question arises naturally. In the presence of production
externalities, does production efficiency still require full employment?

In terms of economic theory, the question is essential since production externalities
are common phenomena in reality and have be extensively discussed in economics.
In terms of policy, the question helps to understand whether we need regulations on
investment and when. Surprisingly, in the literature there seems no formal answer to
this essential question. This study attempts to provide one.

2.2 Production Externalities: Input-generated and Output-

generated

In general, production externalities can come from inputs, or from outputs, or from
both. Consider m goods and n factors, we can write

Fj
(
v−j, x−j, vj, xj

)
= 0 j = 1, ..., m, (2.1)

1The underlying requirement is that all factors are marginally productive, otherwise the statement
is not necessarily true. The Leontief technology is an example.

5



6 CHAPTER 2. EFFICIENCY OF FULL EMPLOYMENT

where Fj presents the production process of good j, the non-negative vector vj ≡
(
v1j, ..., vnj

)′ denotes the vector of inputs in good j, xj the output of good j. Pro-
duction externalities are reflected by the presence of v−j ≡

(
v1, ..., vj−1, vj+1, ..., vm

)
,

namely the vector with all input vectors as the components except for vj, and x−j ≡(
x1, ..., xj−1, xj+1, ..., xm

)
, namely the vector with all outputs as the components except

for xj, in the production process good j. The formulation (2.1) is very general, but too
general to derive clear answer to the question above.

In this note, I focus on two formulations of production externalities that are still
quit general, though less general than (2.1), and widely used in economics: input-
generated and output-generated production externalities (Kemp, 1955). Formally, input-
generated production externalities can be expressed by

xj = f j
(
v−j, vj

)
, j = 1, ..., m, (2.2)

where f j represents the production function of good j. The output of good j depends
on the input in the production of good j, as well as the inputs in other goods. In
contrast, output-generated production externalities can be expressed by

xj = f j
(

x−j, vj
)

, j = 1, ..., m. (2.3)

That is, the output of good j depends on the input in the production of good j, as well
as the outputs of other goods.

Finally, the factor constraint can be written into

E − e · v ≥ 0, (2.4)

where E ≡ (E1, ..., En)
′ is the non-negative vector of factor endowments, v ≡ (v1, ..., vm)

is the vector of input vectors, e is the unitary vector with all components as one.

2.3 Production Efficiency of Full Employment

Assume that the technology satisfies

(A1) f j is continuous in all augments;

(A2) f j is non-decreasing in vkj, k ∈ {1, ..., n}, and strictly increasing if f j > 0;

(A3) f j (·, 0) = 0;

(A4) the production possibility set (PPS) Ω is bounded.

Assumption (A2) requires the inputs to be productive when the output is positive,
thereby excluding the Leontief technology and good-specific factors. Assumption (A3)
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formulates the idea of no free lunch, implying that the origin belongs to the PPS. As-
sumption (A4) ensures the existence of the PPF, which is defined as the boundary
of the PPS. Formally, let M ≡ {1, ..., m} denote the index set of goods, M0 (x) ≡
{

j ∈ M; xj = 0
}

the index set of those goods with zero output, then the PPF can be
defined as

Definition 2.1. PPF ≡
{

x ∈ Ω; ∃u ̸= 0 satisfying uj = 0 if j ∈ M0 (x) , ∀δ > 0, x + δu /∈ Ω
}

,
where u ≡ (u1, ..., um)

′.

That is, staring from a point on the PPF, there exists a direction along which any
movement leaves the PPS. Since we do not assume free disposal of outputs, nor ex-
clude positive production externalities, the PPF defined above may have positively
sloping intervals. These positive sloping intervals, if any, disappear once allowing for
free disposal.

2.3.1 Production Efficiency under Input-generated Externalities

If production externalities are input-generated, the answer to the question is simply
NOT necessarily. To see this, consider a two-good one-factor economy with the factor
endowment E = 2 and satisfying the following technology:

x1 =

⎧
⎨

⎩
(1 − v2) v1 if v2 ≤ 1,

0 if v2 > 1,

x2 =

⎧
⎨

⎩
(1 − v1) v2 if v1 ≤ 1,

0 if v1 > 1.

One way to derive the PPF is to solve the maximization problem maxx2 x1 subject to
the technology and the factor constraint. For positive x1 and x2, the Lagrangian can be
written as

L = (1 − v2) v1 − p (x2 − (1 − v1) v2) + λ (E − v1 − v2) .

The first-order condition requires that v1 + v2 = 1 < E = 2: full employment does not
hold on the part of the PPF where both outputs are positive. Given the same technol-
ogy, however, if the factor endowment becomes E = 1/2, then full employment holds
on the PPF.

The following is another example:

x1 =

⎧
⎨

⎩
(1 − v1 − v2) v1 if v1 + v2 ≤ 1,

0 if v1 + v2 > 1,

x2 =

⎧
⎨

⎩
(1 − v1 − v2) v2 if v1 + v2 ≤ 1,

0 if v1 + v2 > 1,
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with the factor endowment E = 1. Clearly, full employment is not efficient since it
leads to zero outputs. The two examples above suggest that

Remark 2.2. Given (A1)–(A4), full employment of factors does not necessarily hold on
the PPF in the presence of input-generated production externalities (2.2).

2.3.2 Production Efficiency under Output-generated Externalities

In contrast, if production externalities are output-generated, the answer to the ques-
tion above is YES. Formally,

Theorem 2.3. Given (A1)–(A4), full employment of factors holds on the PPF in the presence
of output-generated production externalities (2.3).

Proof. Let x∗ = (x∗1, ..., x∗m)
′ denote a point on the PPF and v∗j =

(
v∗1j, ..., v∗nj

)′
the

corresponding input in good j. Toward a contradiction, assume that ∃k ∈ {1, ..., n},

∑j∈M v∗kj < Ek. Then we shall show that x∗ is not on the PPF. According to Definition
2.1, this is equivalent to show that for any direction u = (u1, ..., um)

′ ̸= 0 satisfying
uj = 0 if j ∈ M0 (x), there exist δ > 0 and ∆ such that x∗ + δu can be produced by
using v∗ + ∆ and that v∗ + ∆ ≤ E holds.

For this purpose, note that the j-th component of v∗+∆, v∗j +∆j, satisfies x∗j + δuj =

f j

(
x∗−j + δu−j, v∗j + ∆j

)
, where u−j is obtained from u by dropping uj. If x∗j = 0,

namely j ∈ M0 (x∗), v∗j = 0 and uj = 0. So, we can let ∆j = 0 and δ be any number. If
x∗j > 0, namely j ∈ M \ M0 (x∗), the following two steps help to find δ and ∆j.

Step 1: Subtract x∗j = f j

(
x∗−j, v∗j

)
from x∗j + δuj = f j

(
x∗−j + δu−j, v∗j + ∆j

)
and

obtain

δuj = f j

(
x∗−j + δu−j, v∗j + ∆j

)
− f j

(
x∗−j, v∗j

)
= Aj

(
δu−j, ∆j

)
+ Bj

(
δu−j

)
,

where

Aj
(
δu−j, ∆j

)
≡ f j

(
x∗−j + δu−j, v∗j + ∆j

)
− f j

(
x∗−j + δu−j, v∗j

)
,

Bj
(
δu−j

)
≡ f j

(
x∗−j + δu−j, v∗j

)
− f j

(
x∗−j, v∗j

)
.

Note that v∗ and x∗ are dropped in Aj (·, ·) and Bj (·) to save notations. It follows that

Aj
(
δu−j, ∆j

)
= δuj − Bj

(
δu−j

)
(2.5)

Step 2: Consider two possible cases: (i) v∗kj > 0 or δuj − Bj
(
δu−j

)
≥ 0; (ii) v∗kj = 0

and δuj − Bj
(
δu−j

)
< 0. Let M1 and M2 denote the index sets that belong to case (i)

and case (ii), respectively.
In case (i), let the candidate of ∆j take the form of tjek, where tj is a scalar variable

and ek is the vector with the k-th component being one and others zero. That is, the
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new input vector vj + ∆j only adjusts the input of factor k in the original vj. In doing
so, (2.5) can be rewritten into

Aj
(
δu−j, tjek

)
= δuj − Bj

(
δu−j

)
, j ∈ M1. (2.6)

By (A1), Aj
(
δu−j, tjek

)
is a continuous function of tj, and δuj − Bj

(
δu−j

)
is a con-

tinuous function of δ. Thus Aj
(
δu−j, tjek

)
→ 0 as tj → 0, and δuj − Bj

(
δu−j

)
→ 0 as

δ → 0. Choose δ small enough such that x∗j + δuj > 0 holds. So, by (A2), Aj
(
δu−j, tjek

)

is a strictly increasing function of tj. As a result, tj and δuj − Bj
(
δu−j

)
have the same

sign according to (2.6), and tj → 0 as δ → 0. Therefore, the non-negative constraint
v∗kj + tj ≥ 0 holds if δuj − Bj

(
δu−j

)
≥ 0, or if v∗kj > 0 and δ is small enough.

In case (ii), however, the input of factor k is already zero, and thus we cannot use
less factor k due to the non-negative constraint. Note that x∗j > 0, by (A3), ∃k′ ∈
{1, ..., n} ̸= k such that vk′ j > 0. Let the candidate of ∆j take the form of tjek′ , then

Aj
(
δu−j, tjek′

)
= δuj − Bj

(
δu−j

)
, j ∈ M2, k′ ̸= k (2.7)

It follows from the continuity that tj → 0 as δ → 0, and from δuj − Bj
(
δu−j

)
< 0 that

tj < 0. Choose δ small enough such that v∗k′ j + tj > 0.
Finally, check if the factor constraint remains not violated. As for factor k, the

required amount is ∑j∈M1

(
v∗kj + tj

)
(noting that v∗kj = tj = 0 if j /∈ M1). Since

∑j∈M v∗kj < Ek and tj → 0 as δ → 0, ∑j∈M1

(
v∗kj + tj

)
≤ Ek holds as we choose δ > 0

small enough. As for other factors, the required amount is the same, or smaller in case
(ii). That is, v∗ + ∆ ≤ E holds as long as δ > 0 is small enough.

Therefore, if ∑j∈M v∗kj < Ek, then for any direction u ̸= 0 satisfying uj = 0, j ∈
M0 (x), we can find δ > 0 and ∆ such that the new output bundle x∗ + δu can be
produced by v∗ + ∆ ≤ E, which means that x∗ is not on the PPF. The contradiction
implies that ∀k ∈ {1, ..., n}, ∑j∈M v∗kj = Ek. That is, all factors are fully employed on
the PPF.

It is noteworthy that although Theorem 2.3 is derived without assuming free dis-
posal, it holds when free disposal is available. This is because, if a point on the PPF
can be achieved by dropping some outputs, the input required is the same as another
point on the PPF without dropping those outputs, to which the result applies.

2.4 Discussion

2.4.1 Nonequivalence of Input-generated and Output-generated

One may misunderstand the relationship between input-generated and output-generated
production externalities in the following way: the outputs are produced from inputs,
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so output-generated production externalities are a special case of input-generated pro-
duction externalities. This statement, however, misses the point that, in the presence
of output-generated production externalities, the outputs are produced not only from
inputs, but also “from” other outputs, which are further produced from other inputs
and, again, “from” some other outputs, and so on. It is true that in some cases we can
equivalently express output-generated production externalities in the input-generated
form, as in the following example:

x1 = v1,

x2 =

⎧
⎨

⎩
(1 − x1) v2 = (1 − v1) v2 if v1 ≤ 1,

0 if v1 > 1,

where the scalar variables v1 and v2 denote the inputs in goods 1 and 2, respectively.
However, in many other cases, it is impossible to rewrite one formulation into another
equivalently. Consider the following two-good one-factor production externalities:

x1 = f1 (x2, v1) ,

x2 = f2 (x1, v2) .

Substitute the second equation into the first for x2 and obtain

x1 = f1 ( f2 (x1, v2) , v1) .

In general, x1 is not necessarily a function of (v1, v2), depending on functional forms
of f1 and f2. The implicit function theorem suggests that, given that both f1 and f2 are
differentiable, x1 cannot be written as a function of (v1, v2) if there exists (x1, v1, v2)

such that
1 − ∂ f1

∂x2

∂ f2
∂x1

= 0.

Another specific example is as follows:

x1 =

⎧
⎨

⎩
(1 − x2) v1 if x2 ≤ 1,

0 if x2 > 1,

x2 =

⎧
⎨

⎩
(1 − x1) v2 if x1 ≤ 1,

0 if x1 > 1,

where v1 and v2 are also scalar variables. The factor endowment is E = 4. Letting
(v1, v2) = (2, 2), it is easy to check that three output bundles are feasible: (x1, x2) =

(2, 0), (2/3, 2/3), and (0, 2). Since an input bundle can produce only a unique out-
put bundle in the presence of input-generated production externalities as in (2.2), the
example above cannot be rewritten into the input-generated form equivalently.
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2.4.2 When Full Employment is Inefficient?

The analysis above focuses on the yes-no question about the production efficiency of
full employment. We may ask further when that happens, since full employment can
be inefficient in the presence of input-generated production externalities? To answer
this question, assume in what follows that

(A1′) f j is continuously differentiable in all augments.

Then we can apply calculus to analyze the problem precisely.
To derive the PPF, solve the maximization problem maxx−1 x1 subject to constraints.

The Lagrangian can be written as

L = x1 −
m

∑
j=1

pj
(

xj − f j
(
v−j, vj

))
+

n

∑
i=1

λi

(
Ei −

m

∑
j=1

vij

)
+

n

∑
i=1

m

∑
j=1

µijvij,

where pj, λi, µij are the Lagrange multipliers corresponding to the technology of pro-
ducing good j, the constraint of factor i and the non-negativity of inputs. The first-
order condition requires

∂L
∂x1

= 1 − p1 = 0,

∂L
∂vlk

=
m

∑
j=2

pj
∂ f j

∂vlk
− λl + µlk = 0, l = 1, ..., n, k = 1, ..., m,

λl ≥ 0, λl

(
El −

m

∑
j=1

vij

)
= 0, l = 1, ..., n,

µlk ≥ 0, µlkvlk = 0, l = 1, ..., n, k = 1, ..., m.

Assume that factor l′ is not fully used on the PPF, namely that El′ > ∑m
j=1 vl′ j. From

the first-order condition, λl′ = 0 and
m

∑
j=1

pj
∂ f j

∂vl′k
= −µl′k ≤ 0, k = 1, ..., m. (2.8)

Define
G (x) ≡

m

∑
j=1

pjxj.

Note that pj is the shadow price of good j and satisfies p1 = 1, so G can be interpreted
as the GDP measured by good 1. The condition (2.8) can be rewritten into

dG
dvl′k

= −µl′k ≤ 0, k = 1, ..., m.

Therefore,

Remark 2.4. A necessary condition for a factor not to be fully used on the PPF is that
the factor’s marginal effect (through any production process) on the GDP is zero or
negative.
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2.5 Conclusion

Focusing on two general and wildly applied formulations of production externalities:
input-generated and output-generated, I show that full employment can be inefficient
if production externalities are input-generated, but is a necessary condition for pro-
duction efficiency if production externalities are output-generated. The result has a
significant policy implication. If production externalities are input-generated, we shall
be careful about whether there are too many factors and, if this is the case, the use of
and investment on factors should be regulated. In contrast, if production externalities
are output-generated, more factors is better and thus the policy should promote full
employment.



Chapter 3

The Production Possibility Frontier
under Strong Input-generated
Production Externalities1

3.1 Introduction

The strong input-generated production externalities denotes the situation that input-
generated production externalities are strong such that full employment of factors be-
comes inefficient. This seemingly special situation is very common in real life. For
example, although we have 24 hours a day, working for 24 hours without rest is not
wise. Traffic jams is another example, which is caused by too many cars on the road.

In the presence of strong input-generated production externalities, factor use along
the PPF becomes endogenously determined. The purpose of this study is to carefully
examine the properties of the production possibility frontier (PPF) including mono-
tonicity, continuity, and convexity in such situation. I focus on the single-factor case
to highlight the effect of strong input-generated externalities on the PPF. I show that a
sufficient condition for the PPF to be (strictly) convex is the (strict) quasi-concavity of
the by-product generation function. I also show that the PPF is either entirely strictly
convex or entirely linear under reasonable conditions.

In the literature, the analysis of the PPF under production externalities usually fo-
cuses on output-generated externalities (e.g., Herberg and Kemp, 1969; Herberg et al.,
1982; Dalal, 2006). However, as shown previously, full employment holds on the PPF
in the case of output-generated production externalities, thus leaving no space for the
focus of this study: how the trade-off between factor use and productivity affects the
PPF. Another closely related literature is on public intermediate goods (e.g., Manning

1This chapter were presented at Hitotsubashi University, Summer Workshop on Economic Theory
2013.

13
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and McMillan, 1979; Tawada and Abe, 1984). The model in this study embraces the
“constant returns to scale” case in Manning and McMillan (1979) as a special case.2

Moreover, although the model is static in the sense that time is not involved in the
specification, it can be regarded as the steady-state version of a dynamic model. Thus,
the properties derived from the model hold for the steady-state PPF in corresponding
dynamic models.

Other results are summarized as follows. Proposition 3.6 employs calculus and
is a precise version of Proposition 3.5 on the convexity of the PPF. Proposition 3.8
shows how the output of by-product changes when moving along the PPF. Corollary
3.7 and 3.9 are, respectively, the application of Proposition 3.6 and 3.8 into a special
by-product generation function. Proposition 3.13 provides the sufficient condition for
the set of factor use on the PPF to be convex-valued and, even stronger, single-valued.
Proposition 3.14 tells when the difference in the sensitivity (to by-product) remains the
same sign along the PPF. In a special case that factor use yields the same amount of
by-product, Proposition 3.16 considers the change of the aggregate factor use when
moving along the PPF. In a special two-factor case, Proposition 3.17 demonstrates that
if the difference in factor intensities is small, the PPF tends to be convex given the
quasi-concave by-product generation function.

The rest of this chapter is organized as follows. Section 3.2 gives the basic model
and assumptions. Section 3.3 examines three basic properties of the PPF without using
calculus. Section 3.4 obtains some calculus-based properties. Section 3.5 considers two
extensions. The last section concludes.

3.2 Formulation of Strong Input-generated Externalities

There is a single factor of production (v), two final goods (x and y), and a by-product
(z). The technology satisfies

x = Gx (z) vx, (3.1a)

y = Gy (z) vy, (3.1b)

z = R
(
vx, vy

)
, (3.1c)

where vi ≥ 0 (i = x, y) denotes the use of factor in good i, R (·, ·) ≥ 0 is the gener-
ation function of by-product, Gi (·) ≥ 0 is the productivity function representing the

2Tawada and Abe (1984) analyze a two-factor model of pure public intermediate goods and focus
on the special case that industries have identical sensitivity to by-product. They find that the PPF is
necessarily concave. Abe et al. (1986) obtain the same result while allowing non-separability of the
production function and any number of factors. This study has very different focus from theirs and
attempts to highlight the effect on the PPF of the difference in the sensitivity to by-product.
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product-specific relationship between the productivity and the amount of by-product.
It can be shown that3

Remark 3.1. Manning and McMillan’s (1979) “constant returns to scale” (or pure public
intermediate good) case is a special case of (3.1).

Following Dalal (2006), the PPF is defined by the maximum value function4

y = T (x) ≡ max
C(x)

Gy (z) vy, (3.2)

where C (x) denotes the constraint set

C (x) ≡
{(

z, vx, vy
)

; Gx (z) vx ≥ x, z = R
(
vx, vy

)
, vx + vy ≤ E

}
. (3.3)

The inequality Gx (z) vx ≥ x means that free disposal is available, E is the factor en-
dowment. Let S (x) denote the solution set

S (x) = arg max
C(x)

Gy (z) vy.

To exclude trivial cases, assume that the feasible maximum outputs of x and y, denoted
x̄ and ȳ, are positive. By the definition of T (x), we have T (0) = ȳ and T (x̄) = 0.

The analysis proceeds by assuming that

(A1) R and Gi are continuous in all augments;

(A2) R is strictly increasing in all arguments;

(A3) vx + vy ≤ E is slack on the PPF.

Assumption (A2) implies that for each z, there is a bijective mapping between vx and
vy. It also follows that

Lemma 3.2. Given (A1) and (A2), Gx (z) vx = x holds on the PPF.

Proof. Let (x′, T (x′)) denote a point on the PPF and
(

z′, v′x, v′y
)

denote the corre-
sponding factor use and by-product output. Assume to the contrary that Gx (z′) v′x >

x′. Then it is possible to find v′′x < v′x and v′′y > v′y so that R
(

v′′x , v′′y
)

= z′ and
Gx (z′) v′′x ≥ x′ hold. Hence (x′, y′′) is feasible, where y′′ = Gy (z′) v′′y . Note that
y′′ > Gy (z′) v′y = T (x′), which leads to a contradiction to the definition of T (x′).

3To see this, introduce a constant L, two variables Lr and r, and two functions fr (·) and Ai (·). Let
Lr = L − z, r = fr (Lr), Ai ( fr (L − z)) = Gi (z), then Gi (z) = Ai ( fr (Lr)) = Ai (r). Moreover, let
R
(
vx, vy

)
= vx + vy, then Lr = L − z = L − vx − vy. Now, (3.1) can be rewritten into x = Ax (r) vx,

y = Ay (r) vy, r = fr (Lr) and L = vx + vy + Lr, which is exactly the “constant returns to scale” case in
Manning and McMillan (1979).

4The way of defining the PPF as in (3.2) has a limitation. That is, if there is non-bijective mapping
between x and y on the frontier, then (3.2) describes only the upper locus of the PPF (in terms of y). This
limitation will not present a problem here since Proposition 3.3 shows that (3.2) is strictly decreasing
over its domain. This means that, at most, some vertical lines are degenerated to discontinuous jump
points.
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Assumption (A3) is imposed so as to focus on strong input-generated production
externalities. If (A3) does not hold, the shape of the PPF depends on the specific forms
of R and Gi. This can be seen in the following examples.

Example 1: x =
(
101 − vx − vy

)
vx, y =

(
101 − vx − vy

)
v2

y.
Example 2: x =

(
101 − vx − vy

)
v0.5

x , y =
(
101 − vx − vy

)
vy.

Example 3: x =
(
101 − vx − vy

)
v0.5

x , y =
(
101 − vx − vy

)
v2

y.
Example 4: x =

(
1.01 − vx − vy

)
vx, y =

(
1.01 − vx − vy

)
v2

y.
Example 5: x =

(
1.01 − vx − vy

)
v0.5

x , y =
(
1.01 − vx − vy

)
vy.

Example 6: x =
(
1.01 − vx − vy

)
v0.5

x , y =
(
1.01 − vx − vy

)
v2

y.
The factor endowment is E = 1. Clearly, from Example 1 to Example 3, full em-

ployment holds on the PPF. The PPF derived from Example 1 is

y =
(

10 − x
10

)2
,

which is convex to the origin. The PPF derived from Example 2 is

y = 100 − x2

100
,

which is concave to the origin. The PPF derived from Example 3 is

y =

(
10 − x2

1000

)2

,

which is convex when close to x axis and concave when close to y axis.
In contrast, full employment is inefficient from Example 4 to Example 6. From

the proposition in the subsequent section, the PPFs derived from these examples are
convex to the origin. But if one insists on full employment, the resulting “PPFs” (pre-
cisely, transformation loci) have similar curvatures to those derived from Example 1
to Example 3.

Assumption (A3) is worthy of further explanation. First, it implicitly excludes
those by-products with nonnegative effect (dGi (z) /dz ≥ 0 for all z ≥ 0) such as
knowledge spillover.5 Although growth theorists might not like this, it is plausible
when one is concerned with the context in which agents, such as workers, firms, re-
gions, or countries, face some underlying constraints, such as health condition, public
infrastructure, resource stock, or environmental quality.

3.3 Monotonicity, Continuity and Convexity

In what follows I establish monotonicity, continuity and convexity of T (x). Define

x̃ ≡ inf {x; T (x) = 0} . (3.4)

Thus, x̃ ∈ [0, x̄]. We can show that
5Note that (A3) does not exclude positive externalities in some ranges.
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Figure 3.1: Jump discontinuity on the PPF

Proposition 3.3 (Monotonicity). Given (A1) and (A2), T (x) is strictly decreasing over
[0, x̃], and satisfies T (x) = 0 over (x̃, x̄].

Proof. See Appendix 3.A.1.

Does T (x̃) = 0 hold? This depends on the continuity of T (x) at x = x̃, which is
established in the following proposition. For convenience, let Z (x) denote the set of
corresponding by-product outputs on the PPF.

Proposition 3.4 (Continuity). Given (A1) and (A2), T (x) is continuous over (0, x̄]. More-
over, T (x) is continuous at x = 0 if and only if

∀σ > 0, ∃z0 ∈ Z (0) and z′ ∈
(

z0 − σ, z0 + σ
)

so that Gx (z′
)
> 0.

Proof. See Appendix 3.A.2 for the proof of continuity over (0, x̄] and Appendix 3.A.3
for the condition for continuity at x = 0.

As is well known, the PPF is discontinuous at the corner in the presence of fixed
cost. This model suggests another channel for the discontinuity on the PPF. Since
discontinuity, if any, arises only at x = 0, T (x̃) = 0 if x̃ > 0. Figure 3.1 gives an
example of discontinuous PPF. In the figure, y is assumed to reach the maximum ȳ at
z = z0. As shown in the left diagram, z′ < z0 and Gx (z) = 0 for z ≥ z′. As a result, as
shown in the right diagram, the PPF is discontinuous at x = 0. Note that Gx (z0) = 0
for all z0 ∈ Z (0) does not mean that T (x) is discontinuous at x = 0. As long as there
exists z0 ∈ Z (0) so that Gx (z) > 0 in an arbitrarily small neighborhood of z0, T (x) is
continuous at x = 0. For example, T (x) is continuous at x = 0 if Gx (z0) = 0 and if
Gx (z) > 0 for z < z0.

The following proposition is about the convexity of the PPF.
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Proposition 3.5 (Convexity). Given (A1), (A2) and (A3), if R (·, ·) is quasi-concave, T (x)
is convex over (0, x̄]. If R (·, ·) is strictly quasi-concave, T (x) is strictly convex over (0, x̃).

Proof. According to Lemma 3.2, the PPF can be equivalently defined by, instead of
(3.2),

y = T (x) ≡ max
z

Y (z, x) ,

where Y (z, x) is the output of good y given z and x, that is, Y (z, x) = Gy (z) vy, x =

Gx (z) vx. There are two cases: Gy (z) > 0 and Gy (z) = 0. If Gy (z) > 0, we have z =

R (x/Gx (z) , Y (z, x) /Gy (z)). Given any z, changing x in (x/Gx (z) , Y (z, x) /Gy (z))
gives a locus convex to the origin, according to (A2) and the quasi-concavity of R (·, ·).
This simply means that Y (z, x) is a convex function of x. If Gy (z) = 0, Y (z, x) = 0.
In both cases, Y (z, x) is a convex function of x. Since T (x) is the upper envelope of
Y (z, x) by changing z and since assumption (A3) ensures that all output bundles on
this upper envelope are feasible, T (x) is necessarily convex over (0, x̄].

If R (·, ·) is strictly quasi-concave, following similar arguments we show that Y (z, x)
is a strictly convex function of x for any z satisfying Gy (z) > 0. Let Ω denote the set of
z’s such that Y (z, x) contributes to the upper envelope. According to Proposition 3.3,
T (x) > 0 for any x ∈ (0, x̃), which implies Gy (z) > 0 for any z ∈ Ω. Since the upper
envelope of Y (z, x) by changing z within Ω also gives T (x), it is necessarily strictly
convex over (0, x̃).

Proposition 3.5 provides a clear-cut result about the curvature of the PPF in the
single-factor case. The intuition of the proof is straightforward. If we fix z at cer-
tain level, feasible output bundles will lie on a locus convex to the origin due to the
quasi-concavity of R (·, ·). Fix z at another level, we can obtain another convex curve.
Repeating this yields a family of loci convex to the origin. As shown in Figure 3.2, in
which a linear R (·, ·) is assumed, five line segments are generated by changing z from
z1 to z5. The PPF is the upper envelope of these convex loci and thus is necessarily
convex.6

3.4 Calculus-based Properties

To derive richer results by exploiting calculus, replace assumption (A1) with

(A1′) R (·, ·) and Gi (·) are of class C2.

6Some values of z may generate loci not contributing to the PPF, such as z4 and z5 in the figure.
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Figure 3.2: PPF as the upper envelope

It is convenient to define the sensitivity to by-product as the elasticity of a good’s pro-
ductivity with respect to the level of by-product:7

εi ≡ −d ln Gi

d ln z
, i = x, y.

In the following we shall focus on the interval (0, x̃) for two reasons. First, T (x) = 0
over [x̃, x̄], which is of no special interest. Second, x ∈ (0, x̃) ensures the positive out-
puts and thus the positive optimal factor uses. This simplifies the first-order necessary
conditions from Kuhn–Tucker type to a system of equations.

From Lemma 3.2 and (A3), the original problem (3.2) is equivalent to

T (x) ≡ max Gy (R
(
vx, vy

))
vy,

subject to Gx (R
(
vx, vy

))
vx = x. The difference lies in that R

(
vx, vy

)
is now substi-

tuted into Gi (z) for z. The Lagrangian can be written as

L = Gy (R
(
vx, vy

))
vy + p

(
Gx (R

(
vx, vy

))
vx − x

)
,

where p is the Lagrange multiplier representing the shadow price of x in terms of y.
For any x ∈ (0, x̃), the first-order condition requires

∂L
∂vx

= Gy′Rxvy + p
(
Gx′Rxvx + Gx) = 0, (3.5a)

∂L
∂vy

= Gy′Ryvy + Gy + pGx′Ryvx = 0, (3.5b)

7When no confusion arises, hereafter let Gi, Gi′ and Gi′′ denote respectively Gi (z), dGi (z) /dz and
d2Gi (z) /dz2.
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where Rx and Ry denotes respectively ∂R/∂vx and ∂R/∂vy. From the first-order con-
dition, we have

p =
GyRx
GxRy

> 0, (3.6a)

1 = εx
Rxvx

z
+ εy

Ryvy

z
. (3.6b)

Define w ≡ pGx/Rx > 0, then the first-order condition requires that w = Gy/Ry =

−
(

pGx′vx + Gy′vy
)
.8 Let H denote the Hessian matrix of L, i.e.

H ≡ ∂2L
∂
(

p, vx, vy
)2 .

The second-order necessary condition requires that |H| ≥ 0. However, if |H| = 0,
then there is a kink on T (x) and thus T′′ (x) is not well-defined. To exploit calculus,
we shall focus on the case of |H| > 0.

3.4.1 Local Properties

The following proposition provides a precise version of Proposition 3.5.

Proposition 3.6. Given (A1′), (A2) and (A3), then

T′′ (x) =
wRx
Gx2︸︷︷︸
>0

Q +

(
wRxRy

)2

z2 |H|︸ ︷︷ ︸
>0

D2, x ∈ (0, x̃) (3.7)

where

Q ≡ 2
Rxy

RxRy
− Rxx

R2
x
−

Ryy

R2
y

,

D ≡ εy
(
1 − Ryvyq2

)
− εx (1 − Rxvxq1) ,

q1 ≡
Rxy

RxRy
− Rxx

R2
x

, q2 ≡
Rxy

RxRy
−

Ryy

R2
y

.

Proof. See Appendix 3.A.4.

Note that Q is related to the bordered Hessian matrix of R (·, ·):

Q =
1

(
RxRy

)2

∣∣∣∣∣∣∣∣

0 Rx Ry

Rx Rxx Rxy

Ry Rxy Ryy

∣∣∣∣∣∣∣∣
.

8The intuition is as follows. On one hand, a unit of increase in the by-product implies 1/Rx (1/Ry)
units of increase in factor use in good x (good y) if the factor use in the other good remains unchanged.
This gives rise to a return of pGx/Rx (Gy/Ry) if the productivity is the same. On the other hand, a
marginal increase in the by-product affects the productivity and leads to a marginal loss of pGx′vx +

Gy′vy, which is a negative number. On the PPF, the marginal returns in both goods must be equalized,
and must be equal to the absolute value of the marginal loss.
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Hence, if R (·, ·) is quasi-concave, then Q ≥ 0. Furthermore, along with (A2), if R (·, ·)
is strictly quasi-concave, then we have Q > 0. On the other hand, if R (·, ·) is quasi-
convex, then Q ≤ 0 and the PPF is not necessarily entirely concave or convex. The
curvature at each point on the PPF depends on the relative magnitude of each term in
(3.7) at that point.

Moreover, if R (·, ·) takes the special form

R
(
vx, vy

)
= I

(
r1vx + r2vy

)
, (3.8)

where I′ > 0 and r1, r2 > 0 are constants, then Q = q1 = q2 = 0 and D =
(
εy − εx

)
.

Therefore,

Corollary 3.7. Given (A1′), (A2), (A3) and by-product generation function (3.8), the PPF,
T (x), is strictly convex at a point x ∈ (0, x̃) if and only if εx ̸= εy there.

Proof. The result directly follows that given (3.8), (3.7) becomes

T′′ (x) =
(wr1r2)

2 I′4

z2 |H|︸ ︷︷ ︸
>0

(
εy − εx

)2 . (3.9)

This corollary highlights how the difference in the sensitivity between two goods
renders the PPF convex. It is also interesting to see how the output of by-product
changes along the PPF.

Proposition 3.8. Given assumption (A1′), (A2) and (A3), then along the PPF

dz
dx

=
GxGyRxRy

z |H|︸ ︷︷ ︸
>0

D, x ∈ (0, x̃) (3.10)

where D is defined as in Proposition 3.6.

Proof. See Appendix 3.A.5.

The sign of dz/dx depends on that of D, and thus is ambiguous without further
information on the specific forms of R (·, ·), Gi (·), and the value of x. If R (·, ·) is
linearly homogeneous, it can be shown that

D =
(
εy − εx

) (
1 +

Ryyvyz
RxRyvx

)
.

Thus, the sign of dz/dx crucially depends on
(
εy − εx

)
and the curvature of R (·, ·).

Moreover, if R
(
vx, vy

)
takes the form (3.8), we have
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Corollary 3.9. Given assumption (A1′), (A2), (A3) and by-product generation function (3.8),
the sign of dz/dx on the PPF for x ∈ (0, x̃) is determined by the sign of

(
εy − εx

)
there.

Proof. If follows (3.8) and (3.10) that

dz
dx

=
GxGyr1r2 I′2

z |H|︸ ︷︷ ︸
>0

(
εy − εx

)
. (3.11)

Corollary 3.7 and 3.9 are similar with Manning and McMillan’s (1979) Proposition
5 and 6. Note that R

(
vx, vy

)
= vx + vy in Remark 3.1 is a special case of R

(
vx, vy

)
=

I
(
r1vx + r2vy

)
in Corollary 3.7 and 3.9. The two corollaries are stronger results than

their propositions.

3.4.2 Global Properties

So far, we have obtained several local properties of the PPF. In what follows, we shall
prove two important results on the global properties of the PPF. The first is to find un-
der what conditions the set of

(
z, vx, vy

)
for a point on the PPF, namely the solution set

S (x), is convex-valued or single-valued. For this purpose, we focus on the following
situation that

(A4) Gi (·) (i = x, y) is quasi-concave.

The role of (A4) is to ensure the convexity of the domain of relevant functions. That is,

Lemma 3.10. Given (A4),
{

z; Gi (z) > 0
}

and
{
(z, vi) ; Gi (z) vi > 0

}
are open convex sets.

Proof. The quasi-concavity Gi (z) means that
{

z; Gi (z) > 0
}

is an open connected in-
terval, which is convex. As for Gi (z) vi, note that Gi (z) vi > 0 is equivalent to Gi (z) >
0 and vi > 0 since Gi (z) ≥ 0, i.e.,

{
(z, vi) ; Gi (z) vi > 0

}
=

{
(z, vi) ; Gi (z) > 0

}
∩

{(z, vi) ; vi > 0}, which is clearly an open convex set if Gi (z) is quasi-concave.

The following two lemmas are also useful.

Lemma 3.11. Given (A1′), if 1/Gi (·) is (strictly) convex, then Gi (z) vi is (strictly) pseudo-
concave with respect to (z, vi).

Proof. See Appendix 3.A.6.

Lemma 3.12. If Gi (z) vi (i = x, y) is (strictly) pseudo-concave with respect to (z, vi) and if
R (·, ·) is convex, then Gi (R

(
vx, vy

))
vi is (strictly) pseudo-concave with respect to

(
vx, vy

)
.

Proof. See Appendix 3.A.7.
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Using these lemmas, it can be shown that

Proposition 3.13. Given (A1′), (A2), (A3), and (A4), the solution set S (x) is convex-valued
for any x ∈ (0, x̃) if 1/Gi (·) (i = x, y) and R (·, ·) are convex. Moreover, if either 1/Gx (·) or
1/Gy (·) is strictly convex, then S (x) is single-valued and can be represented by a C1 vector
function S (x) =

(
z (x) , vx (x) , vy (x)

)
.

Proof. See Appendix 3.A.8.

Note that the condition of convex 1/Gi (·) is not as strong as it seems to be. It is
easy to check that the (strict) concavity of Gi (·) is sufficient for the (strict) convexity
1/Gi (·). In Manning and McMillan (1979), applying their assumptions (11) and (12)
to the constant-returns-to-scale form (9) implies that Ai ( fr (Lr)) is a concave function
of Lr in their model. Thus, according to Remark 3.1, they actually assume concave
Gi (·).

As shown in Corollary 3.7 and 3.9, the sign of
(
εx − εy

)
determines the curvature

of the PPF when the by-product generation function R (·, ·) is linearly homogeneous
or takes the form (3.8). Our second result about the global property of the PPF is to
answer whether the sign of

(
εx − εy

)
can change along the PPF given linearly homo-

geneous R (·, ·). Before giving the result, define the set of the sensitivity bundles on
the PPF over (0, x̃) by Ψ ≡

{(
εx, εy

)
; εx ∈ εx (x) , εy ∈ εy (x) , x ∈ (0, x̃)

}
.

Proposition 3.14. Given (A1′), (A2), (A3), and (A4), the sign of
(
εx − εy

)
remains the same

when moving along the PPF over (0, x̃) if 1/Gi (·) (i = x, y) is convex and R (·, ·) is linearly
homogeneous and quasi-convex.

Proof. See Appendix 3.A.9.

Figure 3.3 depicts a possible path of
(
εx, εy

)
that corresponds with moving along

the PPF. All points within Region I satisfy εy > 1 > εx, all point within Region II
satisfy εy < 1 < εx, and the point (1, 1) corresponds with εx = εy = 1. The first-order
necessary condition and the linear homogeneity of R (·, ·) together imply that, on the
PPF over (0, x̃), z takes the value such that

(
εx, εy

)
lies within either Region I, II or

one point (1, 1). Proposition 3.14 says that, given the above mentioned conditions,
the path of

(
εx, εy

)
must either always be within Region I, or Region II, or on point

(1, 1). Figure 3.3 demonstrates only the case in which Ψ is located within Region I.
The intuition for Proposition 3.14 is that, if Ψ is connected, the path must pass through
point (1, 1) when the sign of

(
εx − εy

)
can change. However, given the conditions, the

value of z satisfying εx = εy = 1 is the optimal value for all x ∈ (0, x̃). Therefore, it
is impossible for some points on the PPF to satisfy

(
εx, εy

)
= (1, 1), while other points

satisfy
(
εx, εy

)
̸= (1, 1).

From Proposition 3.14, it follows directly that
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Figure 3.3: A path of
(
εx, εy

)
on the PPF

Corollary 3.15. Given (A1′), (A2), (A3), and (A4), the PPF is either entirely strictly convex
or entirely linear if 1/Gi (·) (i = x, y) is convex and R (·, ·) = r1vx + r2vy.

Manning and McMillan’s (1979) Proposition 6 implies that the strictly convex and
linear intervals may coexist on a PPF. Our Corollary 3.15 excludes this possibility.

3.5 Extension

This section discusses two extensions of the basic model. The first extension focuses
on a special form of R (·, ·) to see what happens when assumption (A3) is relaxed.
The second extension analyzes a special two-factor case of identical factor intensity
between two goods.

3.5.1 Total Factor Use: A Special Case

So far, we do not consider how the total factor use v ≡ vx + vy changes along the PPF
since it depends on the specific forms of R (·, ·) and Gi (·). The expression of dv/dx
looks even more cumbersome than that of dz/dx. However, if R (·, ·) takes the special
form R

(
vx, vy

)
= vx + vy, then z = v and consequently a simple expression for dv/dx

directly follows (3.11):
dv
dx

=
GxGy

v |H|︸ ︷︷ ︸
>0

(
εy − εx

)
.
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Figure 3.4: The PPF with z = vx + vy and binding factor constraint

It can be seen clearly, in this special case, what happens when the factor constraint is
binding on the PPF.

Proposition 3.16. Given (A1′), (A2), and (A4), the part of the PPF corresponding to the
binding constraint vx + vy = E (if any) is a straight line segment and must be located on the
end of the PPF if 1/Gi (·) (i = x, y) is convex and R

(
vx, vy

)
= vx + vy.

Proof. According to Proposition 3.14 and Corollary 3.9, as long as vx + vy < E, the
value of z either increases uniformly, decrease uniformly, or remain unchanged when
moving along the PPF over (0, x̃). This is also true for the aggregate use of factor
vx + vy since z = R

(
vx, vy

)
= vx + vy. Suppose ∃x′ ∈ (0, x̃) such that z = vx + vy = E.

There are three cases depending on the sign of ∂z/∂x, namely the sign of εy − εx, at
x′. If ∂z/∂x > 0 holds at x′, then z = vx + vy < E must hold over (0, x′), while
z = vx + vy = E holds over (x′, x̃). If ∂z/∂x < 0 holds at x′, then z = vx + vy < E
must hold over (x′, x̃), while z = vx + vy = E holds over (0, x′). If ∂z/∂x = 0 at x′, z =

vx + vy = E must hold over (0, x̃). Since z = E is a constant when the factor constraint
binds, from (3.1a), the corresponding part of the PPF is necessarily linear.

Figure 3.4 demonstrates the case in which ∂z/∂x > 0 holds at x′.

3.5.2 Two Factors: A Special Case

What happens if there are more than one factors? In general, the answer is ambiguous,
even given the special form of by-product generation function (3.8). This is because,
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compared to the difference in the sensitivity (to by-product) that renders the PPF more
convex, the difference in the factor intensity between two goods works in just the
opposite way driving the PPF to be more concave. Hence, the curvature at any point
on the PPF depends on which force dominates there.

Here, instead of focusing on the general multi-factor case to derive the detailed
condition for the PPF to be convex or concave, we examine a special two-factor model
in which the factor intensity is identical between two goods. We begin by writing
down the general two-good, two-factor model:

x = Gx (z) Fx (v1x, v2x) , (3.12a)

y = Gy (z) Fy (v1y, v2y
)

, (3.12b)

z = R
(
v1x, v1y, v2x, v2y

)
(3.12c)

where vji (j = 1, 2; i = x, y) is the use of factor j in good i. R
(
v1x, v1y, v2x, v2y

)
describes

the relationship between the output of by-product and factor uses. Fi (v1i, v2i) has the
standard properties of a Neoclassical production function that reflect the contribution
of factors.

The PPF is defined by the following maximum value function

y = T (x) ≡ max
z,v1y,v2y

Gy (z) Fy (v1y, v2y
)

, (3.13)

subject to Gx (z) Fx (v1x, v2x) = x and z = R
(
v1x, v1y, v2x, v2y

)
. Again, assume that the

factor constraint is slack on the PPF. It follows from the first-order conditions that
Fx

1
Fx

2
=

Fy
1

Fy
2

.

Two goods share the same factor intensity, i.e. Fx and Fy satisfy the following:

Fx
1

Fx
2
=

Fy
1

Fy
2

if
v1x
v2x

=
v1y

v2y
. (3.14)

According to the first-order necessary conditions, v1x/v2x = v1y/v2y on the PPF. Let c
denote this ratio, then we have v1x = cv2x and v1y = cv2y. The PPF can be expressed
equivalently as

T (x) ≡ max
c

t (x, c) ,

where
t (x, c) ≡ max

z,v2y
Gy (z) Fy (c, 1) v2y, (3.15)

subject to Gx (z) Fx (c, 1) v2x = x and z = R
(
cv2x, cv2y, v2x, v2y

)
. For convenience, let

r
(
v2x, v2y

)
≡ R

(
cv2x, cv2y, v2x, v2y

)
.

Clearly, problem (3.15) is the single-factor case with a constant c. From Proposition
3.5, t (x, c) is convex with respect to x, given that r

(
v2x, v2y

)
is quasi-concave with

respect to
(
v2x, v2y

)
. Since the upper envelope of t (x, c) by changing c constructs T (x),

T (x) is also convex. The following proposition summarizes the argument.
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Proposition 3.17. In the two-factor case (3.12) and given assumptions (A1′), (A2), (A3),
and (A4), the PPF is convex if two goods share the identical factor intensity and R (·, ·) is
quasi-concave.

3.6 Conclusion

The curvature of the PPF is crucial for many issues in economic theory. For example, if
the PPFs of two economies are convex to the origin, both economies can achieve higher
efficiencies by specializing and trading with each other. This provides an explanation
to the source of comparative advantages. This study shows that in the presence of
strong input-generated production externalities, the PPF tends to be convex. To neu-
tralize the substitution between factors that renders the PPF more concave, the model
has only a single factor. Two forces that drive the PPF to be more convex are high-
lighted: the quasi-concavity of the by-product generation function and, second, the
difference in the sensitivity to by-product. Although the model has only two goods,
most results apply when there are many goods.

3.A Appendix

3.A.1 Monotonicity

Note that the envelope theorem is not applicable because we do not assume the dif-
ferentiability of Gi (·) and R (·, ·). We prove firstly that T (x) is strictly decreasing over
[0, x̃]. There are two possible cases: x̃ = 0 and x̃ > 0. The case of x̃ = 0 is trivial. Thus
we can deal with only the case of x̃ > 0. Assume to the contrary that there exist two
values of x ∈ [0, x̃], say x′ and x′′, so that x′ > x′′ and T (x′) ≥ T (x′′). Note that x′ > 0
for x′ > x′′ ≥ 0, and that x̃ > x′′ for x̃ ≥ x′ > x′′. Then we have T (x′′) > 0 by the defi-
nition of x̃, and have T (x′) > 0 since T (x′) ≥ T (x′′). Letting

(
v′x, v′y

)
denote the opti-

mal factor input vector corresponding to x′, then x′ = Gx (z′) v′x and T (x′) = Gy (z′) v′y
where z′ = R

(
v′x, v′y

)
. It follows x′ > 0 and T (x′) > 0 that Gi (z′) > 0 (i = x, y). Let

(
v′′x , v′′y

)
denote the factor input vector so that x′′ = Gx (z′) v′′x and z′ = R

(
v′′x , v′′y

)
.

Since x′ > x′′, we have v′′x < v′x and thus, by assumption (A2), v′′y > v′y. This means
y′′ ≡ Gy (z′) v′′y > Gy (z′) v′y = T (x′). Since (x′′, y′′) is a feasible production bundle,
we have T (x′′) ≥ y′′ by the definition of T (x). This implies T (x′′) > T (x′) and leads
to a contradiction.

Now we move on to the proof that T (x) = 0 over (x̃, x̄]. There are two cases: x̃ = x̄
and x̃ < x̄. The case of x̃ = x̄ is trivial for (x̃, x̄] = ∅. Thus we can focus on only the
case of x̃ < x̄. Assume to the contrary there exists a value of x, say x′, so that x′ ∈ (x̃, x̄]
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and T (x′) > 0. By similar procedures, we can show that T (x) > T (x′) > 0 for any
x < x′. This leads to a contradiction to the definition of x̃.

3.A.2 Continuity over (0, x̄]

According to Berge’s theorem of the maximum, if the constraint set C (x) defined by
(3.3) is continuous over (0, x̄], then T (x) is also continuous. To prove this, we shall
check both the upper semi-continuity and the lower semi-continuity of C (x).

Upper semi-continuity Take a sequence {xn} → x′ ∈ (0, x̄] so that xn ∈ (0, x̄],
and take a sequence

{(
vn

x , vn
y

)}
→

(
vs

x, vs
y

)
so that

(
zn, vn

x , vn
y

)
∈ C (xn) for all n.

By the sequential characterization, if
(

zs, vs
x, vs

y

)
∈ C (x′), then C (x) is upper semi-

continuous.
We first consider the case that

{(
zn, vn

x , vn
y

)}
or its subsequence (for simplicity, we

use the same notation here) satisfies Gx (zn) vn
x > xn, then it is obvious that

∃N so that ∀n > N, Gx
(

zN
)

vN
x > x′,

which actually implies that
(

zs, vs
x, vs

y

)
∈ C (x′).

Second, we consider the case that
{(

zn, vn
x , vn

y

)}
or its subsequence satisfying Gx (zn) vn

x =

xn. Note that real analysis requires one of the following cases to hold: (i) {xn} con-
tains an increasing subsequence {xnk}; (ii) {xn} contains a decreasing subsequence
{xnk}; (iii) {xn} contains both types of subsequence. In case (i), for any nk and cor-
responding

(
znk , vnk

x , vnk
y
)
∈ C (xnk), there are further two situations: vnk

y > 0 and
vnk

y = 0. We first discuss the situation of vnk
y > 0. Since {xnk} → x′ and vnk

y > 0,
there exist a number N1 and

(
znk , vN1

x , vN1
y

)
∈ C (x′) satisfying Gx (znk) vN1

x = x′, so

that
∥∥∥
(

znk , vN1
x , vN1

y

)
,
(
znk , vnk

x , vnk
y
)∥∥∥ ≤ c1 (x′ − xnk) for all nk > N1. It is obvious that

vN1
x > vnk

x and vN1
y < vnk

y for x′ > xnk . Assumption (A1) ensures the existence of such
constant c1 > 0. The distance from

(
znk , vnk

x , vnk
y
)

to C (x′) can be defined as follows.

d
((

znk , vnk
x , vnk

y
)

, C
(

x′
))

≡ inf
(z′,v′x,v′y)∈C(X′)

∥∥∥
(
znk , vnk

x , vnk
y
)

,
(

z′, v′x, v′y
)∥∥∥ .

Then we have, for any nk > N1,

d
((

znk vnk
x , vnk

y
)

, C
(

x′
))

≤
∥∥∥
(

znk , vN1
x , vN1

y

)
,
(
znk , vnk

x , vnk
y
)∥∥∥ ≤ c1

(
x′ − xnk

)
. (3.16)

Now we discuss the situation of vnk
y = 0 in case (i). It is impossible to find an element

in C (x′), as is done previously, by replacing vnk
x with a larger value without changing

znk . However, there exists a number N2 and
(

znk , vN2
x , 0

)
∈ C (x′) satisfying x′ =

Gx (znk) vN2
x , so that

∥∥∥
(

znk , vN2
x , 0

)
,
(
znk , vnk

x , 0
)∥∥∥ ≤ c1 (x′ − xnk) for all nk > N2. Again,
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(A1) ensures the existence of such constant c2 > 0. The distance from
(
znk , vnk

x , 0
)

to
C (x′) satisfies, for all nk > N2,

d
((

znk , vnk
x , 0

)
, C

(
x′
))

≤
∥∥∥
(

znk , vN2
x , 0

)
,
(
znk , vnk

x , 0
)∥∥∥ ≤ c1

(
x′ − xnk

)
. (3.17)

Equations (3.16) and (3.17) together implies that d
((

znk , vnk
x , vnk

y
)

, C (x′)
)
→ 0 when

xnk → x′. Hence,
{(

znk , vnk
x , vnk

y
)}

→
(

zs, vs
x, vs

y

)
∈ C (x′).

The similar method can be applied to case (ii), which is rather simpler since now
it is always possible, for sufficiently large nk, to find an element in C (x′) by replacing
vnk

x by a smaller value without changing znk . Because we have proved the upper semi-
continuity in both case (i) and case (ii), case (iii) becomes trivial and requires no further
discussion.

Lower semi-continuity Take a sequence of {xn} → x′ ∈ (0, x̄] and a point
(

z′, v′x, v′y
)
∈

C (x′). By the sequential characterization, if there exists a sequence
{(

zn, vn
x , vn

y

)}

so that
(

zn, vn
x , vn

y

)
∈ C (xn) and

{(
zn, vn

x , vn
y

)}
→

(
z′, v′x, v′y

)
, then C (x) is lower

semi-continuous. To show this, we construct a sequence
{(

vn
x , vn

y

)}
by letting vn

x =

a (n)+ v′x and vn
y = b (n)+ v′y. Then we choose a number N large enough, so that there

exist a (n) and b (n) for all n > N satisfying that xn = Gx (z′) vn
x and R

(
vn

x , vn
y

)
= z′ =

R
(

v′x, v′y
)

. Hence
(

z′, vn
x , vn

y

)
∈ C (xn) for all n > N.

Note that xn = Gx (z′) vn
x = Gx (z′) (a (n) + v′x) = x′ + Gx (z′) a (n) for all n > N.

Thus we obtain a (n) = (xn − x′) /Gx (z′) since Gx (z′) > 0 due to x′ > 0. This implies
that a (n) → 0 when xn → x′. Furthermore, by assumption (A2) and R

(
vn

x , vn
y

)
=

z′ = R
(

v′x, v′y
)

, b (n) → 0 when a (n) → 0. Therefore,
(

z′, vn
x , vn

y

)
→

(
z′, v′x, v′y

)
when

xn → x′.

3.A.3 Continuity at x = 0

First note that when x = 0, the optimal factor input in good x, v0
x = 0. Otherwise it is

possible to, according to (A2), raise the output of y by reducing vx and increasing vy

in such a way that z remains unchanged.

Sufficiency It follows from (A1) that

∀ε > 0 and ∀z0 ∈ Z (0) , ∃σ > 0 so that ∀z ∈
(

z0 − σ, z0 + σ
)

,
∣∣T (0)− Gy (z) vy

∣∣ < ε

2
,

(3.18)
where vy satisfies z = R

(
0, vy

)
. The sufficient condition implies that there exists z0′ ∈

Z (0) satisfying that

∀σ > 0, ∃z′ ∈
(

z0′ − σ, z0′ + σ
)

so that Gx (z′
)
> 0. (3.19)
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Together, (3.18) and (3.19) imply

∀ε > 0, ∃σ > 0 so that ∀z′ ∈
(

z0′ − σ, z0′ + σ
)

,
∣∣∣T (0)− Gy (z′

)
v′y
∣∣∣ <

ε

2
,

where v′y satisfies R
(

0, v′y
)

= z′. Provided a small enough value of x, say x1 > 0,

there exist
(

v1
x, v1

y

)
so that Gx (z′) v1

x = x1 and R
(

v1
x, v1

y

)
= z′. It follows from the

continuity of R (·, ·) that

∀ε > 0, ∃δ > 0 so that ∀x′ < δ,
∣∣∣Gy (z′

)
v′y − Gy (z′

)
v1

y

∣∣∣ <
ε

2
. (3.20)

By the definition of T (x), we have T (x′) ≥ Gy (z′) v1
y. On the other hand, by Proposi-

tion 3.3, we have T (0) ≥ T (x′). Therefore,
∣∣T (0)− T

(
x′
)∣∣ ≤

∣∣∣T (0)− Gy (z′
)

v1
y

∣∣∣ .

By assumption (A2), v1
y < v′y for v1

x > 0, which means Gy (z′) v′y > Gy (z′) v1
y and thus

∣∣∣T (0)− Gy (z′
)

v1
y

∣∣∣ =
∣∣∣T (0)− Gy (z′

)
v′y
∣∣∣+

∣∣∣Gy (z′
)

v′y − Gy (z′
)

v1
y

∣∣∣ .

Two expressions imply
∣∣T (0)− T

(
x′
)∣∣ ≤

∣∣∣T (0)− Gy (z′
)

v′y
∣∣∣+

∣∣∣Gy (z′
)

v′y − Gy (z′
)

v1
y

∣∣∣ . (3.21)

Together with (3.19) and (3.20) we obtain

∀ε > 0, ∃δ > 0 s.t. ∀x < δ, |T (0)− T (x)| < ε.

This establishes the continuity of T (x) at x = 0.

Necessity It is easier to prove the contrapositive: y = T (x) is discontinuous at x = 0
if

∃σ > 0 so that ∀z0 ∈ Z (0) and ∀z ∈
(

z0 − σ, z0 + σ
)

, Gx (z) = 0.

For this purpose, define m = infz

(
T (0)− Gy (z) v0

y

)
where z and v0

y satisfy that

z /∈
(
z0 − σ, z0 + σ

)
for any z0 ∈ Z (0) and R

(
0, v0

y

)
= z. It is evident that m > 0,

otherwise z ∈ Z (0) and thus z ∈
(
z0 − σ, z0 + σ

)
. For any δ > 0, we can pick a

number x′ ∈ (0, δ). Let z′ ∈ Z (x′), then Gx (z′) > 0 for x′ > 0, which implies that
z′ /∈

(
z0 − σ, z0 + σ

)
. Let v1

y satisfy that R
(

0, v′y
)
= z′, then

∣∣∣T (0)− Gy (z′
)

v1
y

∣∣∣ ≥ m.

On the other hand, if we let
(

v′x, v′y
)

be the corresponding optimal factor inputs, we

have Gy (z′) v1
y > Gy

(
zx′

)
v′y = T (x′) since v′y < v1

y due to v′x > 0. Therefore,
∣∣T (0)− T

(
x′
)∣∣ >

∣∣∣T (0)− Gy (z′
)

v1
y

∣∣∣ ≥ m.

This implies that

∀δ > 0 and ∀x ∈ (0, δ) , ∃m > 0 so that
∣∣T (0)− T

(
x′
)∣∣ > m,

which establishes the discontinuity of T (x) at x = 0.
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3.A.4 Proof of Proposition 3.6

By the envelope theorem, on the PPF

T′ (x) =
∂L
∂x

= −p = −Gy

Gx .

The local convexity of the PPF is then characterized by

T′′ (x) = −dp
dx

.

Taking the total differentiation of first-order conditions and constraints yields

H
(
dp, dvx, dvy

)′
= (1, 0, 0)′ dx. (3.22)

H is the Hessian matrix of L

H =

⎡

⎢⎢⎢⎣

0 Gx′Rxvx + Gx Gx′Ryvx

Gx′Rxvx + Gx R2
x

(
B1 +

Rxx
R2

x
B2 + B3 + B4

)
RxRy

(
B1 +

Rxy
RxRy

B2 + B3

)

Gx′Ryvx RxRy

(
B1 +

Rxy
RxRy

B2 + B3

)
R2

y

(
B1 +

Ryy
R2

y
B2 + B3 − B4

)

⎤

⎥⎥⎥⎦

where

B1 ≡ pGx′′vx + Gy′′vy,

B2 ≡ pGx′vx + Gy′vy = −w,

B3 ≡ pGx′

Rx
+

Gy′

Ry
,

B4 ≡ pGx′

Rx
− Gy′

Ry
.

Since |H| > 0, by Cramer’s rule,
dp
dx

=
|H1|
|H| ,

where Hi is the matrix formed from H by replacing its i-th column by (1, 0, 0)′. It
follows the definition of εi and first-order conditions that

Gx′Rxvx + Gx = −
Gy′Ryvy

Gy Gx =

(
εy

Ryvy

z

)
Gx,

Gx′Ryvx =
Gx′Rxvx

Gx
GxRy

Rx
= −

(
εx

Rxvx
z

)
GxRy

Rx
.

Let λx ≡ εxRxvx/z, λy ≡ εyRyvy/z and Hij denote the entry in the i-th row and j-th
column of H. Then

H =

⎡

⎢⎢⎣

0 λyGx −λx
GxRy

Rx

λyGx H22 H23

−λx
GxRy

Rx
H23 H33

⎤

⎥⎥⎦ .
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We do matrix transformation of H while keeping |H| unchanged as follows.

|H|
(row 1× 1

Gx Ry
, col 1× 1

Gx Ry
)

=
(
GxRy

)2

∣∣∣∣∣∣∣∣

0 λy
Ry

− λx
Rx

λy
Ry

H22 H23

− λx
Rx

H23 H33

∣∣∣∣∣∣∣∣

(row 2×Ry, col 2×Ry
= (Gx)2

∣∣∣∣∣∣∣∣

0 λy − λx
Rx

λy R2
yH22 RyH23

− λx
Rx

RyH23 H33

∣∣∣∣∣∣∣∣

(row 3×Rx, col 3×Rx)
=

(
Gx

Rx

)2

∣∣∣∣∣∣∣∣

0 λy −λx

λy R2
yH22 RxRyH23

−λx RxRyH23 R2
xH33

∣∣∣∣∣∣∣∣
.

According to (3.6b), λx + λy = 1 on the PPF. Therefore,

|H|
(row 2−row 3)

=

(
Gx

Rx

)2

∣∣∣∣∣∣∣∣

0 λy −λx

1 R2
yH22 − RxRyH23 RxRyH23 − R2

xH33

−λx RxRyH23 R2
xH33

∣∣∣∣∣∣∣∣

(col 2−col 3)
=

(
Gx

Rx

)2

∣∣∣∣∣∣∣∣

0 1 −λx

1 R2
yH22 + R2

xH33 − 2RxRyH23 RxRyH23 − R2
xH33

−λx RxRyH23 − R2
xH33 R2

xH33

∣∣∣∣∣∣∣∣

For the sake of notation, let h22 ≡ RyH22 + RxH33 − 2RxRyH23, h23 ≡ RxRyH23 −
RxH33 and h33 ≡ RxH33, then

|H| =
(

Gx

Rx

)2

∣∣∣∣∣∣∣∣

0 1 −λx

1 h22 h23

−λx h23 h33

∣∣∣∣∣∣∣∣

(col 3+col 2×λx)
=

(
Gx

Rx

)2

∣∣∣∣∣∣∣∣

0 1 0
1 h22 h23 + λxh22

−λx h23 h33 + λxh23

∣∣∣∣∣∣∣∣

(row 3+row 2×λx)
=

(
Gx

Rx

)2

∣∣∣∣∣∣∣∣

0 1 0
1 h22 h23 + λxh22

0 h23 + λxh22 h33 + 2λxh23 + λ2
xh22

∣∣∣∣∣∣∣∣

= −
(

Gx

Rx

)2 (
h33 + 2λxh23 + λ2

xh22

)
.

On the other hand, recalling the steps of matrix transformation, we have

|H1| =
∣∣∣∣∣
H22 H23

H23 H33

∣∣∣∣∣ =
1

(
RxRy

)2

∣∣∣∣∣
h22 h23 + λxh22

h23 + λxh22 h33 + 2λxh23 + λ2
xh22

∣∣∣∣∣ .

Therefore,
|H1|
|H| = − h22(

GxRy
)2 − (h23 + λxh22)

2

(
RxRy

)2 |H|
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The routine calculation gives that

h22 =
(

RxRy
)2 wQ,

h23 + λxh22 =
[
λxR2

yH22 − λyR2
xH33 +

(
λy − λx

)
RxRyH23

]

=

(
RxRy

)2 w
z

[
εy

(
1 − Ryvyq2

)
− εx (1 − Rxvxq1)

]
.

Substituting into the expression of |H1| / |H| and recalling T′′ (x) = − |H1| / |H| yield
(3.7).

3.A.5 Proof of Proposition 3.8

On the PPF, we have

dz
dx

= Rx
dvx
dx

+ Ry
dvy

dx

= Rx
|H2|
|H| + Ry

|H3|
|H| .

First calculate |H2|,

|H2| =

∣∣∣∣∣∣∣∣

0 1 −λx
GxRy

Rx

λyGx 0 H23

−λx
GxRy

Rx
0 H33

∣∣∣∣∣∣∣∣

(col 1× 1
Gx Ry

)
= GxRy

∣∣∣∣∣∣∣∣

0 1 H13
λy
Ry

0 H23

− λx
Rx

0 H33

∣∣∣∣∣∣∣∣

(row 2×Ry)
= Gx

∣∣∣∣∣∣∣∣

0 1 H13

λy 0 RyH23

− λx
Rx

0 H33

∣∣∣∣∣∣∣∣

(row 3×Rx)
=

Gx

Rx

∣∣∣∣∣∣∣∣

0 1 H13

λy 0 RyH23

−λx 0 RxH33

∣∣∣∣∣∣∣∣
.

Since λx + λy = 1,

|H2| =
Gx

R2
x

∣∣∣∣∣∣∣∣

0 1 RxH13

λy 0 RxRyH23

−λx 0 R2
xH33

∣∣∣∣∣∣∣∣

(row 2−row 3)
=

Gx

R2
x

∣∣∣∣∣∣∣∣

0 1 RxH13

1 0 RxRyH23 − R2
xH33

−λx 0 R2
xH33

∣∣∣∣∣∣∣∣

(row 3+row 2×λx)
=

Gx

R2
x

∣∣∣∣∣∣∣∣

0 1 RxH13

1 0 RxRyH23 + R2
xH33

0 0 λxRxRyH23 + λyR2
xH33

∣∣∣∣∣∣∣∣
= −Gx

R2
x

(
λxRxRyH23 + λyR2

xH33

)
.
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|H3| can be calculated in a similar way,

|H3| =
Gx

Rx

∣∣∣∣∣∣∣∣

0 H12 1
λy RyH22 0
−λx RxH23 0

∣∣∣∣∣∣∣∣

(col 2×Ry)
=

Gx

RxRy

∣∣∣∣∣∣∣∣

0 RyH12 1
λy R2

yH22 0
−λx RxRyH23 0

∣∣∣∣∣∣∣∣

(row 2−row 3)
=

Gx

RxRy

∣∣∣∣∣∣∣∣

0 RyH12 1
1 R2

yH22 − RxRyH23 0
−λx RxRyH23 0

∣∣∣∣∣∣∣∣

(row 3+row 2×λx)
=

Gx

RxRy

∣∣∣∣∣∣∣∣

0 RyH12 1
1 R2

yH22 − R2
xH23 0

0 λxR2
yH22 + λyRxRyH23 0

∣∣∣∣∣∣∣∣
=

Gx

RxRy

(
λxR2

yH22 + λyRxRyH23

)
.

Therefore,

dz
dx

=
Gx

Rx |H|

[
λxR2

yH22 − λyR2
xH33 +

(
λy − λx

)
RxRyH23

]

=
GxRxR2

yw
z |H|

[
εy

(
1 − Ryvyq2

)
− εx (1 − Rxvxq1)

]
.

Substituting w = Gy/Ry for w yields the result.

3.A.6 Proof of Lemma 3.11

The convexity of 1/Gi (z) is defined by, for any z′, z′′ ∈
{

z : Gi (z) > 0
}

,

(
z′ − z′′

) d
dz

(
1

Gi (z′′)

)
≤ 1

Gi (z′)
− 1

Gi (z′′)
,

which can be rewritten into

(
z′ − z′′

)
Gi′ (z′′

)
+ Gi (z′′

) (Gi (z′′)
Gi (z′)

− 1
)
≥ 0. (3.23)

On the other hand, the pseudo-concavity of Gi (z) vi is defined by, for any
(
z′, v′i

)
,
(
z′′, v′′i

)
∈

{
(z, vi) : Gi (z) vi > 0

}
,

Gi (z′
)

v′i > Gi (z′′
)

v′′i ⇒
[(

z′, v′i
)
−

(
z′′, v′′i

)]
∇

(
Gi (z′′

)
v′′i

)
> 0,

which can be simplified into

Gi (z′
)

v′i > Gi (z′′
)

v′′i ⇒
(
z′ − z′′

)
Gi′ (z′′

)
+ Gi (z′′

) ( v′i
v′′i

− 1
)
> 0. (3.24)

Note that

Gi (z′
)

v′i > Gi (z′′
)

v′′i ⇔ Gi (z′′
) ( v′i

v′′i
− 1

)
> Gi (z′′

) (Gi (z′′)
Gi (z′)

− 1
)

. (3.25)
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Combining (3.25) and (3.23) gives (3.24). Hence Gi (z) vi is pseudo-concave.
Similarly, the strict convexity of 1/Gi (z) is defined by, provided z′ ̸= z′′,

(
z′ − z′′

) d
dz

(
1

Gi (z′′)

)
<

1
Gi (z′)

− 1
Gi (z′′)

,

which can be rewritten into

(
z′ − z′′

)
Gi′ (z′′

)
+ Gi (z′′

) (Gi (z′′)
Gi (z′)

− 1
)
> 0. (3.26)

On the other hand, the strict pseudo-concavity of Gi (z) vi is defined by, provided
(
z′, v′i

)
̸=

(
z′′, v′′i

)
,

Gi (z′
)

v′i ≥ Gi (z′′
)

v′′i ⇒
[(

z′, v′i
)
−

(
z′′, v′′i

)]
∇

(
Gi (z′′

)
v′′i

)
> 0,

which can be simplified into

Gi (z′
)

v′i ≥ Gi (z′′
)

v′′i ⇒
(
z′ − z′′

)
Gi′ (z′′

)
+ Gi (z′′

) ( v′i
v′′i

− 1
)
> 0. (3.27)

There are two cases. If z′ ̸= z′′, then (3.27) holds according to (3.26). If z′ = z′′, it
follows Gi (z′) v′i ≥ Gi (z′′) v′′i that v′i ≥ v′′i . Moreover, z′ = z′′ and

(
z′, v′i

)
̸=

(
z′′, v′′i

)

implies v′i ̸= v′′i . Hence we have v′i > v′′i , which again means that (3.27) holds. This
completes the proof.

3.A.7 Proof of Lemma 3.12

For concreteness, we prove the case of i = x. Then the case of i = y can be proved
similarly. The routine calculation gives that

[(
v′x, v′y

)
−

(
v′′x , v′′y

)]
∇

(
Gx

(
R
(

v′′x , v′′y
))

v′′x
)
= Av′′x + Gx′ (z′′

)
v′′x B,

where

z′ ≡ R
(

v′x, v′y
)

, z′′ ≡ R
(

v′′x , v′′y
)

,

A ≡
(
z′ − z′′

)
Gx′ (z′′

)
+ Gx (z′′

) ( v′x
v′′x

− 1
)

,

B ≡
(
v′x − v′′x

)
Rx

(
v′′x , v′′y

)
+

(
v′y − v′′y

)
Ry

(
v′′x , v′′y

)
−

(
z′ − z′′

)
.

Note that B ≤ 0 for R (·, ·) is convex, while Gx′ (z′′) could be either negative or non-
negative. The pseudo-concavity of Gx (z) vx means that

Gx (z′
)

v′x > Gx (z′′
)

v′′x ⇒ A > 0.

If Gx′ (z′′) is negative, then Gx′ (z′′) v′′x B ≥ 0. This simply implies that

Gx
(

R
(

v′x, v′y
))

v′x > Gx
(

R
(

v′′x , v′′y
))

v′′x ⇒ Av′′x + Gx′ (z′′
)

v′′x B > 0,
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which says that Gx (R
(
vx, vy

))
vx is pseudo-concave with respect to

(
vx, vy

)
. If Gx′ (z′′)

is non-negative, then Gx′ (z′′) v′′x B ≤ 0. The alternative definition of pseudo-concavity
requires

Gx (z′
)

v′x < Gx (z′′
)

v′′x ⇒ A < 0,

which implies

Gx
(

R
(

v′x, v′y
))

v′x < Gx
(

R
(

v′′x , v′′y
))

v′′x ⇒ Av′′x + Gx′ (z′′
)

v′′x B < 0.

This is equivalent to saying that Gx (R
(
vx, vy

))
vx is pseudo-concave.

Now consider a strictly pseudo-concave Gx (z) vx. The strict pseudo-concavity re-
quires, provided that (z′, v′x) ̸= (z′′, v′′x ),

Gx (z′
)

v′x ≥ Gx (z′′
)

v′′x ⇒ A > 0.

The properties of R (·, ·), characterized by (A1) and (A2), ensures

(
z′, v′x

)
̸=

(
z′′, v′′x

)
⇔

(
v′x, v′y

)
̸=

(
v′′x , v′′y

)
.

Hence, provided that
(

v′x, v′y
)
̸=

(
v′′x , v′′y

)
, if Gx′ (z′′) is negative, then

Gx
(

R
(

v′x, v′y
))

v′x ≥ Gx
(

R
(

v′′x , v′′y
))

v′′x ⇒ Av′′x + Gx′ (z′′
)

v′′x B > 0,

which says that Gx (R
(
vx, vy

))
vx is strictly pseudo-concave with respect to

(
vx, vy

)
.

If Gx′ (z′′) is non-negative, then we can obtain the same conclusion by using the alter-
native definition of strict pseudo-concavity.

3.A.8 Convexity and Uniqueness of Solution Set

Define
C′ (x) ≡

{(
z, vx, vy

)
: Gx (z) vx − x ≥ 0, z − R

(
vx, vy

)
≥ 0

}
. (3.28)

The constraint C (x) of problem (3.2) can be replaced by C′ (x) without changing the
solution set. This is because z − R

(
vx, vy

)
≥ 0 is binding in the optimal and vx + vy ≤

E is not. Since 1/Gx (z) is convex, by Lemma 3.11 Gx (z) vx is pseudo-concave (thus
quasi-concave) with respect to (z, vx), and thus with respect to

(
z, vx, vy

)
as well. Since

R (·, ·) is convex, z− R
(
vx, vy

)
is concave. On the other hand, since 1/Gy (z) is convex,

the objective function Gy (z) vy is pseudo-concave (thus quasi-concave) with respect to
(
z, vy

)
, and thus with respect to

(
z, vx, vy

)
as well. According to the results from quasi-

convex programming, the solution set S (x) is convex.
The maximization problem (3.2) can be rewritten into

T (x) ≡ max
(vx,vy)∈C′′(x)

Gy (R
(
vx, vy

))
vy,
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where
C′′ (x) ≡

{(
vx, vy

)
: Gx (R

(
vx, vy

))
vx − x ≥ 0

}
.

Given that 1/Gi (z) (i = x, y) and R (·, ·) are convex, and that either 1/Gx (z) or
1/Gy (z) is strictly convex, according to Lemma 3.11 and 3.12, Gi (R

(
vx, vy

))
vi (i =

x, y) is pseudo-concave and either one of them is strictly pseudo-concave. According
to the results from quasi-convex programming, there is a unique optimal

(
vx, vy

)
, de-

noted
(

v∗x, v∗y
)

. Since z = R
(
vx, vy

)
, the corresponding level of by-product is z∗ =

R
(

v∗x, v∗y
)

. Thus S (x)=
{(

z∗, v∗x, v∗y
)}

=
(
z (x) , vx (x) , vy (x)

)
. It follows the implicit-

function theorem that S (x) is continuously differentiable.

3.A.9 Proof of Proposition 3.14

Since R (·, ·) is linearly homogeneous and quasi-convex, it is convex. According to
Proposition 3.13, the solution set S (x) is convex over (0, x̃). Thus the set of good i’s
sensitivity on the PPF, denoted εi (x) ≡

{
−Gi′ (z) z/Gi (z) : z ∈ Z (x)

}
, is a connected

set given any x ∈ (0, x̃). On the other hand, the constraint set C (x) is continuous over
(0, x̃) (see Appendix 3.A.2). According to the theorem of the maximum, the solution
set S (x) is upper semi-continuous over (0, x̃), and thus so is εi (x). Therefore, the set of
the sensitivity bundles on the PPF over (0, x̃), Ψ, is also a connected set on the εx − εy

plane.
It follows from the first-order conditions (3.5) that

εxθx + εyθy = 1,

where θi ≡ Rivi/z satisfying θx + θy = 1 since R (·, ·) is linearly homogeneous. This
implies that at any point on the PPF either εx > 1 > εy, εx = εy = 1, or εx < 1 < εy

holds. Since Ψ is a connected set, if the sign of
(
εx − εy

)
changes when moving along

the PPF, then εx > 1 > εy, εx = εy = 1, and εx < 1 < εy must coexist on the PPF. This
is impossible. To see this, let z′ denote the value of z so that εx = εy = 1. Using this z′,
we can obtain the following relationship between x and y:

Gx (z′
)

z′ = R
(

x,
Gx (z′)
Gy (z′)

y
)

, (3.29)

where the linearly homogeneity of R (·, ·) is used. Let y = Y (x, z′) denote the relation-
ship (3.29). Clearly (x, Y (x, z′)) is feasible for any x ∈ (0, x̃). In the following, we shall
prove that y = Y (x, z′) is exactly the expression for the PPF, i.e. T (x) = Y (x, z′).

Assume to the contrary that there exists a feasible output bundle (x′′, y′′) lying
outward to y = Y (x, z′). Let z′′ denote the value of z corresponding with (x′′, y′′),
then we also have

Gx (z′′
)

z′′ = R
(

x′′,
Gx (z′′)
Gy (z′′)

y′′
)

. (3.30)
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According to assumption (A2), ∂Y (x, z′) /∂x < 0. Hence, we find a point lying on
y = Y (x, z′), say (x′′′, y′′′), so that

x′′′
(

Gx (z′)
Gy (z′)

y′′′
)−1

= x′′
(

Gx (z′′)
Gy (z′′)

y′′
)−1

(3.31)

Because (x′′, y′′) lies outward to y = Y (x, z′), we have x′′′ < x′′. Since (x′′′, y′′′) lies on
y = Y (x, z′),

Gx (z′
)

z′ = R
(

x′′′,
Gx (z′)
Gy (z′)

y′′′
)

.

Hence we have Gx (z′′) z′′ > Gx (z′) z′ according to the linearly homogeneity of R (·, ·).
On the other hand, according to Lemma 3.12, Gi (z) vi is pseudo-concave if 1/Gi (·)

is convex. This simply means, noting that Gi (z) z can be obtained by letting z = vi

in Gi (z) vi, that Gi (z) z is pseudo-concave as well. One of the properties of pseudo-
concavity is that Gi (z) z attains a global maximum when d

(
Gi (z) z

)
= 0, i.e. εi = 1.

Since εx = εy = 1 when z = z′, Gi (z′) z′ ≥ Gx (z′′) z′′, this leads to the contradiction.
Hence, there is no feasible output bundle lying outside of y = Y (x, z′), which means
T (x) = Y (x, z′). Furthermore, along the PPF we have z = z′ and εx = εy = 1.



Chapter 4

Trade, Capital Accumulation, and the
Environment1

4.1 Introduction

The trade-off between economic development and environmental preservation has al-
ways been a challenging issue. Now, this issue becomes even more pressing thanks to
the ongoing rapid globalization over the last few decades. On one hand, trade liber-
alization promotes the spatial separation between production and consumption, thus
aggravating environmental externality issues. On the other hand, trade encourages
economic development, which often means more pollution, wastes, and resource ex-
tractions. For example, some researchers (e.g., Austin, 2010) link the huge expansion of
soybean industries driven by soybean exports in Latin American nations to the high
deforestation rates in the region. Lathuillière et al. (2014) estimate that in the 2000s,
soybean production was associated with 65% of the deforestation in Brazil’s state of
Mato Grosso, the largest soybean producer around the Amazon basin. The direction
of impacts can also be the other way around. When the environment degrades, many
industries such as agriculture, fishery, and tourism get hurt. This has two further pos-
sible consequences: it discourages a country’s economic development, and nullifies a
country’s comparative advantages.

In this study, I develop a two-sector dynamic general equilibrium model to for-
mulate the increasingly close nexus between trade, economic development, and the
environment. In the model, economic development is represented by capital accumu-
lation, which occurs when households behaving in a Ramsey fashion invest enough.
A single final good–for consumption as well as investment–is assembled using two in-

1Early versions of this chapter were presented at Hitotsubashi University, the 9th Asia Pacific Trade
Seminars, the 72nd Annual Meeting of JSIE, 2013 Hitotsubashi-Sogang Conference on Trade, the 9th
Australasian Trade Workshop.
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termediate goods–one from agriculture and the other from manufacturing. Both inter-
mediate goods are produced with private capital; agriculture productivity is affected
by environmental quality, which could change depending on the difference between
the natural growth of the environment and the flow of pollution arising from pro-
duction. For simplicity, trade is introduced considering a small open economy (SOE).
There is no abatement and technological change.

With this setup above, the model formulates the following interaction between
trade, economic development, and the environment. First, capital accumulation (eco-
nomic development) leads to more pollution and harms the environment. Second,
environmental changes affect agriculture productivity, which in turn affects the coun-
try’s comparative advantage and capital rental (and thus capital accumulation). Third,
trade induces specialization (in a cleaner or dirtier sector) and affects the environment.
From this direct composition effect, trade could be good or bad for the environment.
Trade also raises capital rental and stimulates capital accumulation. From this indirect
scale effect, trade could be harmful for the environment. Therefore, the model cap-
tures two well-known channels through which trade affects the environment.2 More
importantly, the model captures the endogenous interaction between the two channels
by introducing the Ramsey style investment.

The model yields several impressive results. First, the quality of environment con-
verges across closed countries under laissez faire, regardless of differences in environ-
mental endowment, including the carrying capacity and recovery rate of the environ-
ment, and pollution intensities. Thus, countries with greater carrying capacity, a faster
recovery rate, or cleaner technologies have more private capital in the autarky steady
state. This environmental convergence highlights the role of capital accumulation as
a channel through which households sacrifice the environment for further economic
development.

Second, moving from autarky to trade, although short-run trade could be good or
bad for the environment, long-run trade necessarily harms the environment. This re-
sult sharply contrasts those of models without capital accumulation (e.g., Copeland
and Taylor, 1999; Brander and Taylor, 1997, 1998), where trade is good for the environ-
ment as long as it specializes in a cleaner or non-resource sector. The intuition comes
from realizing that trade has two effects on the environment in this model. On one
hand, it raises capital rental and stimulates capital accumulation in a dynamic adjust-
ment process that could take time. Thus, this scale effect of trade has little impact on
the environment in the short run. On the other hand, trade could induce changes in
the production patterns and thus in capital reallocation in a static adjustment process

2The third channel is the technical effect, which emphasizes the benefit of trade in promoting cleaner
technologies; see Grossman and Krueger (1994). The technical effect is definitely important, but it is not
the focus of this study.
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that can be done instantaneously. Thus, this composition effect of trade dominates,
leading to environmental change right after trade liberalization: the environment im-
proves (degrades) if the country specializes in a cleaner (dirtier) sector. In the long
run, however, the scale effect dominates: capital keeps on accumulating until the en-
vironment degrades to the extent that the trade premium of capital rental is cancelled
out, which is necessarily worse than the autarky steady state. In this sense, capital
accumulation provides a channel through which households can further sacrifice the
environment to exploit the benefit of trade.

Third, policy analysis shows that the social optimum can be achieved in a market-
based economy by imposing a dynamic Pigouvian pollution tax, with a lump-sum
transfer of tax revenue to households. Pollution tax works in two directions. On one
hand, it raises more proportionately the cost in the dirtier sector and thus corrects the
misallocation of private capital. On the other hand, it reduces capital rental and thus
helps resolve the excess investment problem. Furthermore, differing from laissez faire,
trade does not necessarily harm the environment in the long run under optimal policy.

Finally, although at every point in time the trade pattern (and thus the specializa-
tion pattern) depends endogenously on quality of environment (as well as the pol-
lution tax under optimal policy), in the long run it basically depends on parameters:
that is, the economy specializes in goods with a high world price.3 If the economy
specializes in agriculture, there is a unique steady state, whereas if it specializes in
manufacturing, the economy enters a growth path. This is because manufacturing
provides a constant returns to scale and thus provides the economy with a growth
engine similar to the AK model.

In the literature, extensive theoretical studies focus on a link between any two of
trade, economic development, and the environment, but, to my knowledge, very few
on a link between the three.4 Copeland and Taylor (2004) provide an exception and
survey the related literature. Their framework, however, considers economic devel-
opment as exogenous and examines its impacts by conducting comparative statics. In
this sense, their framework cannot capture the endogenous interaction between the
three elements. This study attempts to fill the gap in the literature.

An important issue related to economic development and the environment is the
environmental Kuznets curve (EKC), which suggests that environmental degradation
first rises and then falls with increasing income per capita (Stern et al., 1996). Although
empirical evidence still remains inconclusive (e.g., Dinda, 2004; Stern, 2004), theoreti-

3Here, I use the term “basically” because the situation under optimal policy is a little bit more
complicated.

4See Brock and Taylor (2005) for an insightful review of the literature on economic growth and
the environment. See also, among others, Stiglitz (1970), Baxter (1992), and Brecher et al. (2005) for
discussions of economic growth and trade based on the Heckscher-Ohlin model.
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cally the EKC can be derived from a model with disutility from environmental degra-
dation, technological changes, and policies that maximize the utility, as in Copeland
and Taylor (2004). Focusing on production rather than consumption externalities, this
study does not intend to explain the EKC, or, precisely, the right tail of the EKC.

This study adds to the extensive literature on the interaction between trade and the
environment. Theoretical work on the topic covers a wide range of contexts. Focus-
ing on production externalities, as in this study, Brander and Taylor (1997, 1998) ex-
amine the interaction between trade and open-access renewable resource extractions.
Copeland and Taylor (1999) consider the dynamic interaction between trade and pol-
lution and show how pollution motivates trade, while Benarroch and Thille (2001) ex-
tend their model to the transboundary type of pollution. Kotsogiannis and Woodland
(2013) provide a very general framework characterizing Pareto-efficient and Pareto-
improving policies. Furthermore, many studies focus on consumption externalities
(e.g., Markusen, 1975b,a; Asako, 1979; Copeland and Taylor, 1994, 1995; Ishikawa and
Kiyono, 2006). In terms of structure, our model combines Copeland and Taylor (1999)
and the Ramsey growth model, and thus formulates economic development and its
endogenous interaction with trade and the environment through changes in capital
rental.5 This extension yields a significant insight as mentioned above. That is, the
long-run environmental impact of trade can be largely underestimated by not consid-
ering capital accumulation through endogenous investment.

This study also contributes to the literature on the optimal control of pollution,
pioneered by Keeler et al. (1972). van der Ploeg and Withagen (1991) analyze the
problem in a Ramsey growth model. However, their models, like many others, are
one-sector ones that ignore trade. This study extends the prevailing one-sector model
in this literature to a two-sector model and considers trade. Furthermore, most studies
are confined to the characterization of the optimal tax with a differential equation.
However, this study moves one step forward and uses the differential equation as
well as transversality condition to solve the optimal tax in an integral form. This helps
us provide a clearer economic meaning to the optimal tax: it can be interpreted as a
dynamic version of the Pigouvian tax. Recently, van der Ploeg and Withagen (2014)
and Golosov et al. (2014) also provide the integral (summation) form of expressions
of social damage. But in their models, the environment cannot recover by itself, and
thus their expressions do not include the discount term associated with environmental
recovery.

5Another minor extension is that I allow agriculture to be polluting instead of keeping it purely
clean. This is motivated by the fact that agriculture has become one of the most leading sources of pol-
lution and wastes. For example, EPA (2009) reports that agricultural activities, such as crop production,
grazing, and animal feeding operations, are among the leading sources of water pollution in the United
States.
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4.2 The Basic Model

The model has two intermediate goods–one each from agriculture and manufacturing–
and a single final good. The intermediate goods are tradable, and produced using a
single factor of production, private capital. Pollution that arises from the production
of the intermediate goods affects the environmental quality, and thus the productivity
in agriculture, as in Copeland and Taylor (1999). The final good is assembled using the
two intermediate goods, and is either consumed or invested. Households behave in a
Ramsey fashion. Throughout the study, the final good is assumed to be the numeraire.

4.2.1 Households

The model has a large number of identical households, who own private capital (K)
and take the rental of private capital (r) as given. The representative household re-
ceives income rK and behaves in a Ramsey fashion, by choosing between consumption
(C) and investment (I) so as to maximize their discounted lifetime utility. Formally, the
representative household maximizes

´ ∞
0 ln C (t) e−ρtdt subject to

K̇ (t) = I (t)− δK (t) = rK (t)− C (t)− δK (t) , (4.1)

where δ is the depreciation rate of private capital. To save notations, in what follows I
omit the time index whenever there could be no ambiguity. The current value Hamil-
tonian can be written as H = ln C + γ (rK − C − δK), where γ is a costate variable of
K. The first-order condition yields the Euler equation6

Ċ
C

= r − δ − ρ, ∀t [0, ∞) . (4.2)

The transversality condition limt→∞ γKe−ρt = 0 is required to ensure optimization.

4.2.2 Firms

The final good is assembled using the Cobb–Douglas technology

Y = Xb
a X1−b

m , (4.3)

where Y denotes the final output, and Xa and Xm denote the agricultural and man-
ufacturing inputs, respectively. Given the intermediate prices pa and pm, the Cobb–
Douglas technology with perfect competition yields

Xa =
bpY
pa

, Xm =
(1 − b) pY

pm
, p =

pb
a p1−b

m
B

, (4.4)

6Households behave as if they do not know the impact of capital accumulation on the rental of
private capital. This is because there are a large number of households competing with each other
in investment. The competition leads to the Nash equilibrium in which households make investment
decisions only by the current level of capital rental, even though they have such knowledge.
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where B ≡ bb (1 − b)1−b and p is the price of the final good. The final good is the
numeraire, p = 1 and thus

pb
a p1−b

m = B. (4.5)

The intermediate goods are produced using private capital:

Yi = qiKi, (4.6)

where Yi and qi denote respectively intermediate sector i’s output and productivity,
and Ki is the amount of private capital employed in that sector (i = a, m). Following
Copeland and Taylor (1999), I assume that manufacturing productivity qm is exoge-
nously given and agriculture productivity qa satisfies

qa = qa (V) , qa (0) = 0, q′a (V) > 0, (4.7)

where V is the stock of environmental capital measuring the quality of environment.
Under perfect competition, firms producing the intermediate goods maximize their
profits by taking the environment as given; thus, piqi = r holds as long as sector i is
active (Ki > 0).

Private capital is freely and instantaneously mobile across sectors. Therefore, for
the intermediate goods firms, the marginal rate of transformation (MRT) is qa (V) /qm.
Since the environmental capital stock V is fixed in the short run, the MRT is also fixed,
implying a short-run Ricardian structure for the model. This can also be obtained by
substituting (4.6) into the clearing condition of private capital, so as to obtain K =

Ka + Km = Ya/qa (V) + Ym/qm, which gives the linear production possibility frontier
(of intermediate outputs) in the short run. Note that since both K and V can vary over
time, a feasible production schedule in the short run is not necessarily feasible in the
long run.

4.2.3 The Environment

The use of private capital leads to pollution:

Zi = ωiKi, (4.8)

where Zi is the flow of pollution from sector i, and ωi > 0 gives the sector-specific
pollution intensity. If ωa < ωm (ωa > ωm), manufacturing (agriculture) is dirtier in
that a unit of private capital employed causes more pollution in that sector. A positive
ωa captures the fact that some environmentally sensitive industries such as agriculture
also contribute to significant pollution and wastes. The total flow of pollution can be
shown as

Z = Za + Zm = ωaKa + ωmKm. (4.9)
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In this study, I focus on country-specific environment. Following Copeland and
Taylor (1999), the stock of environmental capital evolves according to

V̇ = g (V̄ − V)− Z, (4.10)

where g and V̄ are the environment’s recovery rate and carrying capacity, respectively,
and g (V̄ − V) can be seen as its natural growth.

4.2.4 Consumption Function and Dynamic System

The dynamics of the economy can be characterized by three equations–equation (4.1)
private capital accumulation, equation (4.2) the Euler equation, and equation (4.10) en-
vironmental capital evolution–and a transversality condition. Given the initial stocks
(K0, V0), the initial consumption, C0, can be pinned down by using the transversality
condition. Then I can derive the transition path from (K0, V0) by solving (4.1), (4.2),
and (4.10) with the initial condition (K0, V0, C0).

Although a closed form of C0 is usually not available, the logarithmic form of the
utility function in our model implies that C0 = ρK0, and consequently7

C = ρK, I = (r − ρ)K. (4.11)

This gives us the saving rate 1 − ρ/r. Households under laissez faire have a simple
rule of investment: higher the rental of private capital, the more they invest.

Substituting (4.11) into (4.1) yields

K̇
K

= r − δ − ρ. (4.12)

That is, with the simple form of consumption function, only two equations describe the
dynamics, equations (4.10) and (4.12), instead of the above three (plus the transversal-
ity condition). This significantly helps us simplify the analysis of transition dynamics.

4.3 Autarky

Before considering trade liberalization, focus on the closed economy. The analysis
proceeds in two steps. First, to close the dynamic system, I use K and V to express the

7To see this, obtain K (t) = e
´ t

0 (r(σ)−δ)dσ
(

K0 −
´ t

0 C (s) e−
´ s

0 (r(σ)−δ)dσds
)

from private capital accu-

mulation (4.1) and C (t) = C0e
´ t

0 (r(σ)−ρ−δ)dσ from the Euler equation (4.2). Here, time index t, σ, and s
appear explicitly to prevent ambiguity. Let t = s in the expression of C (t) and substitute it into K (t)
for C (s) to obtain K (t) = e

´ t
0 (r(σ)−δ)dσ

(
K0 − C0

´ t
0 e−ρsds

)
. The first-order condition ∂H/∂C = 0 gives

γ (t) = 1/C (t). Substituting these results into the transversality condition limt→∞ γ (t)K (t) e−ρt = 0
yields limt→∞

(
K0/C0 −

´ t
0 e−ρsds

)
= 0 and consequently C0 = ρK0, which can be plugged back into

the expression of K (t) to obtain K (t) = K0e
´ t

0 (r(σ)−ρ−δ)dσ. Comparing this with the expression of C (t)
gives C (t) = ρK (t).
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rental r and flow of pollution Z, respectively, in (4.10) and (4.12). I then examine the
steady state and transition dynamics.

4.3.1 The Dynamic System

In autarky, demand is met by domestic supply. The clearing condition requires Xi = Yi

(i = a, m), which along with (4.4) and (4.6) gives the allocation of private capital:

Ka = bK, Km = (1 − b)K. (4.13)

The intermediate output follows directly: Xa = qa (V) bK and Xm = qm (1 − b)K,
implying that

Y = B (qa (V))b q1−b
m K, r =

Y
K

= B (qa (V))b q1−b
m . (4.14)

From (4.8) and (4.13), the flow of pollution is

Z = (bωa + (1 − b)ωm)K ≡ ΩK. (4.15)

Therefore, in autarky, this model is equivalent to the model in which there is no inter-
mediate goods, but a single final good produced using private capital with productiv-
ity B (qa (V))b q1−b

m and pollution intensity Ω.
By substituting (4.14) into (4.12) and (4.15) into (4.10), I obtain

K̇
K

= B (qa (V))b q1−b
m − δ − ρ, (4.16)

V̇ = g (V̄ − V)− ΩK, (4.17)

which provide a complete description of the dynamics of the economy.

4.3.2 Autarky Steady State

We can easily obtain the autarky steady state by letting K̇ = 0 and V̇ = 0 in equations
(4.16) and (4.17):

KA =
g
Ω

(
V̄ − VA

)
, VA = q−1

a

⎛

⎝
(

ρ + δ

Bq1−b
m

) 1
b
⎞

⎠ , (4.18)

where the superscript A denotes the values in autarky steady state and q−1
a (·) de-

notes the inverse function of qa (·). Note that the first equation in (4.18) represents
a downward-sloping line in the (K, V) plane, and the second represents a horizontal
line. Assume that V̄ satisfies

Bqb
a (V̄) q1−b

m − δ − ρ > 0, (4.19)
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which ensures the existence of positive
(
KA, VA).8 From this, it is clear that

(
KA, VA)

is uniquely determined. From (4.11), consumption in the autarky steady state can
simply be shown as

CA = ρKA. (4.20)

The stability of
(
KA, VA) in the dynamic system (4.16) and (4.17) can be verified by

calculating the Jacobian at
(
KA, VA):

JA =

[
0 JA

12

−Ω −g

]
, (4.21)

where JA
12 ≡ Bbq′a

(
VA) (qa

(
VA))b−1 q1−b

m KA > 0. From (4.21), it follows that det JA =

ΩJA
12 > 0 and trJA = −g < 0, implying that

(
KA, VA) is locally stable.9 We can also

easily verify that
(
KA, VA, CA) is locally saddle stable in the dynamic system (4.1),

(4.2), and (4.10).

Note that qa (·) is strictly increasing, and so is the inverse function q−1
a (·). From

(4.18), this suggests that the environmental quality in autarky steady state, VA, im-
proves with δ and ρ, and worsens with qm. The intuition is as follows: a lower δ means
more durable private capital, whereas a higher qm implies higher rental of private cap-
ital. Both render investment more profitable. On the other hand, a lower ρ means
that households care more about the future, and thus tend to consume less (and invest
more) at present. All these induce more private capital in the autarky steady state,
which means a worse environment at the same time. From (4.18), δ, ρ, and qm affect
KA only through VA, and KA is negatively related to VA; thus, these parameters have
opposite effects on KA.

In contrast, VA is independent of environmental endowments (V̄ and g) and pollu-
tion intensities (ωi). This is so because households make investment decisions based
only on the rental of private capital, which is independent of V̄, g, and ωi. Thus, coun-
tries with better environmental endowments (higher V̄ or g) or cleaner technologies
(smaller ωi) have higher stock of private capital and hence consumption in the autarky
steady state but the same environmental capital (as long as other parameters are the
same). That is, households enjoy higher consumption by exploiting their environmen-
tal advantages through the channel of investment.

8If V̄ is so small that Bqb
a (V̄) q1−b

m − δ − ρ ≤ 0, the V̇ = 0 line cannot intersect with the K̇ = 0 line at
a point satisfying K > 0, and any positive stock of private capital cannot sustain. This is of no special
interest and hence excluded from the discussion.

9The stability is quite robust. Consider the more general form V̇ = E (V, Z) instead of (4.10); the
local stability holds as long as ∂E/∂V < 0 and ∂E/∂Z < 0 around the steady state.
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Figure 4.1: Autarky transition dynamics

4.3.3 Autarky Transition Dynamics

Figure 4.1 provides the phase diagram of the dynamic system (4.16) and (4.17). Start-
ing from any initial value of (K, V), the transition dynamic in autarky is clearly illus-
trated by the streamlines in the figure. The figure shows two key lines: the horizontal
K̇ = 0 line, and the downward-sloping V̇ = 0 line. Above (below) the K̇ = 0 line,
private capital K increases (decreases) over time. Above (below) the V̇ = 0 line, envi-
ronmental capital V decreases (increases) over time. The K̇ = 0 and V̇ = 0 lines divide
the state plane into four quadrants.

Suppose that the economy starts from a point in quadrant I. In quadrant I, the
stock of environmental capital K is relatively high and so the rental is high enough
to attract sufficient investment for capital accumulation. On the other hand, capital
accumulation raises the flow of pollution and in turn reduces environmental capital
V. Thus, the trajectory of (K, V) takes the lower-right direction in quadrant I. It may
cross the horizontal K̇ = 0 line or approach the steady state

(
KA, VA).10 If the former

is the case, as the figure illustrates, the trajectory must enter quadrant II.

In quadrant II, the flow of pollution is still higher than the natural growth of the

10This depends on the sign of ∆ ≡ g − 4b (ρ + δ)
(
V̄ − VA) q′a

(
VA) /qa

(
VA) and the position of the

trajectory. ∆ is the discriminant of the characteristic equation of (4.21). Around the steady state, (K, V)

converges to
(
KA, VA) along a straight line if ∆ > 0, and converges spirally if ∆ < 0.
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environment, and so V continues to fall. On the other hand, the rental now falls below
ρ + δ, and households reduce their investment to below the maintenance level δK,
resulting in a decline in K. This decline reduces the flow of pollution and consequently
the speed at which V declines. Eventually, the trajectory leaves quadrant II and enters
quadrant III.

In quadrant III, investment remains low and K continues to fall. However, the
flow of pollution is now relatively low and so V starts to increase. Thus, the rental of
private capital increases as well, and the system may enter quadrant IV or converge to
the steady state. Again, the trajectory may enter quadrant IV or approach the steady
state. The figure depicts the former case.

In quadrant IV, the rental becomes higher than ρ + δ, again leading to capital accu-
mulation. The flow of pollution is still relatively low, and V continues to increase over
time. Eventually, the system enters quadrant I once again.

The following proposition summarizes the results in autarky:

Proposition 4.1. A closed economy adopts the following characteristics:

(i) The steady state is unique, locally stable, and satisfies (4.18) and (4.20).

(ii) The environment in closed economies converges to the same quality, regardless of differ-
ence in environmental endowments (V̄ and g) and pollution intensities (ωi).

(iii) If ∆ < 0, the trajectory of (K, V) follows a clockwise spiraling path.

4.4 Small Open Economy

Trade liberalization breaks down the correlation between domestic demand and sup-
ply (of intermediate goods), and changes the way capital accumulation interacts with
the environment. In this section, I focus on a small open economy (SOE) to exam-
ine how the three elements–trade, capital accumulation, and the environment–interact
with one another.

4.4.1 Trade Pattern and the Dynamic System in SOE

Let P denote the world relative price. Now, P = pm/pa holds in an SOE, which along
with (4.5) yields

pa = BPb−1, pm = BPb. (4.22)

To find the comparative advantage, we need to compare the MRT qa (V) /qm with
the world relative price P. If the MRT is higher (lower), the small economy has a
comparative advantage in agriculture (manufacturing) and in free trade completely
specializes in that good owing to the short-run Ricardian structure.
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We can conveniently define VW as

qa
(
VW)

qm
= P, (4.23)

and so VW can be seen as a measure of the environment for the rest of the world. The
horizontal V = VW line divides the (K, V) plane into two regimes. First, the agricul-
ture regime lies above the V = VW line, where qa (V) /qm > P and the SOE completely
specializes in agriculture. Here, the rental is determined only by agriculture produc-
tivity: r = paqa (V) = BPb−1qa (V). The flow of pollution is simply Z = ωaK.

Second, the manufacturing regime lies below the V = VW line is the manufacturing
regime, where qa (V) /qm < P and the economy completely specializes in manufac-
turing. The rental and flow of pollution are, respectively, r = pmqm = BPbqm and
Z = ωmK. On the V = VW line, r = BPb−1qa

(
VW)

= BPbqm, and so employed in
whichever sector, there is no difference for private capital. To get around the indeter-
minacy in this knife-edge case, I simply assume that no trade would arise if V = VW ,
meaning that Z = ΩK if V = VW . By substituting these results into (4.10) and (4.12), I
obtain the dynamic equations governing the motion of K and V in an SOE:

K̇
K

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

BPb−1qa (V)− δ − ρ if V > VW ,

BPbqm − δ − ρ if V = VW ,

BPbqm − δ − ρ if V < VW ,

(4.24)

V̇ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

g (V̄ − V)− ωaK if V > VW ,

g (V̄ − V)− ΩK if V = VW ,

g (V̄ − V)− ωmK if V < VW .

(4.25)

4.4.2 Small Open Economies: Four Types

Equations (4.24) and (4.25) suggest the crucial role of the signs of BPbqm − δ − ρ and
ωa − ωm in determining the nature of the dynamics. Let PA ≡ pA

m/pA
a denote the rel-

ative price in autarky steady state. Now, by (4.18), PA = ((δ + ρ) /Bqm)
1/b , implying

that PA < P (PA > P) is equivalent to BPbqm > δ + ρ (BPbqm < δ + ρ). I consider four
SOE types.11

PA < P, ωa < ωm, (MM type)

PA < P, ωa > ωm, (MA type)

PA > P, ωa < ωm, (AM type)

PA > P, ωa > ωm, (AA type)

11The knife-edge events P = PA and ωa = ωm are excluded since they are not of special interest.
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Figure 4.2: Transition dynamics in an MM type SOE

The economic implications of the types are straightforward: PA < P (PA > P) implies
a pre-trade comparative advantage in manufacturing (agriculture), whereas ωa < ωm

(ωa > ωm) implies that manufacturing (agriculture) is dirtier.

4.4.3 MM Type SOE

From equation (4.24) and the definition of MM type SOE, it follows that K̇ > 0 if V ≤
VW . Moreover, qa (V) /qm > P and BPbqm − δ − ρ > 0 together yield BPb−1qa (V) >

BPbqm > δ + ρ, implying that K̇ > 0 if V > VW . Therefore, no steady state exists in an
MM type SOE.

Figure 4.2 illustrates the dynamics in an MM type SOE. Differing from autarky,
the V̇ = 0 line now has the slope −ωa/g above the V = VW line (by specializing in
agriculture) and the slope −ωm/g below the V = VW line (by specializing in manu-
facturing). Since ωa < ωm, the lower segment is steeper. Furthermore, differing from
autarky, no K̇ = 0 line exists since K̇ > 0 holds on the whole (K, V) plane.

Suppose that the SOE starts from (K0, V0), as illustrated in Figure 4.2. The envi-
ronment is initially good, with two consequences. First, the SOE has a comparative
advantage in agriculture and thus specializes in it. Second, the natural growth of the
environment is too slow to surpass the flow of pollution (reflected in the figure show-
ing (K0, V0) above the V̇ = 0 line), and thus the environment degrades over time.
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Since the trajectory of (K, V) goes in the lower-right direction, sooner or later it crosses
the V = VW line. Thus, the SOE loses its comparative advantage in agriculture and
specializes in manufacturing, where the rental remains high enough to support capi-
tal accumulation (at the growth rate of BPbqm − δ − ρ). The flow of pollution grows at
the same rate. This scale effect eventually drives the stock of environmental capital to
zero, that is, it leads to destruction of the environment.

The gray arrowed streamlines in the figure provide a general picture of trajecto-
ries from other positions. For example, from the autarky steady state

(
KA, VA), since

VA < VW , the small economy specializes in manufacturing right after trade liberal-
ization. Since manufacturing is dirtier, trade has a negative composition effect on the
environment. The trajectory of (K, V) takes the lower-right direction and eventually
hits the horizontal axis. However, since consumption grows over time, there are wel-
fare gains from trade.

4.4.4 MA Type SOE

Following steps similar to those for the MM type SOE, I can show that K̇ > 0 al-
ways holds in an MA type SOE, but with two significant differences. First, the V̇ = 0
line has a steeper segment above the V = VW line and hence the trajectory of (K, V)

experiences the sliding mode if it approaches the part of the V = VW line that lies
in-between the V̇ = 0 line. Around there, as illustrated in Figure 4.3, trajectories are
attracted into and slide right along the V = VW line, until they reach the intersection
of the V = VW line and the V̇ = 0 line. Second,

(
KA, VA) lies below the V = VW line.

Thus, if the economy starts from the autarky steady state, it specializes in the cleaner
manufacturing sector and the environment improves right after trade liberalization.

The following proposition summarizes these discussions on the MM type and MA
type SOEs:

Proposition 4.2. In free trade, an SOE with pre-trade comparative advantage in manufactur-
ing (MM type or MA type) adopts the following characteristics:

(i) The economy specializes in either sector right after trade liberalization, depending on the
initial condition, but will eventually specialize in manufacturing, and there is no steady
state.

(ii) Environmental capital increases or decreases right after trade liberalization, depending
on the initial condition, but will eventually be destroyed;

(iii) Private capital and consumption increase over time, eventually growing at the rate of
BPbqm − δ − ρ; there are welfare gains from trade.
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Figure 4.3: Transition dynamics in an MA type SOE

4.4.5 AM Type SOE

From (4.24) and the definition of AM type SOE, it follows that K̇ < 0 if V ≤ VW .
On the other hand, the assumption on V̄, equation (4.19), implies that BPb−1qa (V̄) >

ρ + δ.12 Since BPb−1qa
(
VW)

= BPbqm < ρ + δ, there exists VS ∈
(
VW , V̄

)
such that

BPb−1qa
(
VS) = ρ + δ. Let K̇ = V̇ = 0 in (4.24) and (4.25); now, solving for (K, V), I

obtain
KS =

g
ωa

(
V̄ − VS

)
, VS = q−1

a

(
ρ + δ

BPb−1

)
, (4.26)

which is clearly uniquely determined. We can also use (4.18) and (4.23) to obtain

qa

(
VS

)
=

(
qa

(
VA

))b (
qa

(
VW

))1−b
, (4.27)

which implies that VS ∈
(
VW , VA). The consumption is, using (4.11),

CS = ρKS. (4.28)

Since ωa < Ω in the AM type SOE, VS < VA implies that KS > KA and consequently
CS > CA.

12First, V̄ > VA implies that BPb−1qa (V̄) > BPb−1 (qa (V̄))b (qa
(
VA))1−b

=

BPb−1 (qa (V̄))b (PAqm
)1−b. Second, PA > P gives that BPb−1 (qa (V̄))b (PAqm

)1−b
>

BPb−1 (qa (V̄))b (Pqm)
1−b = B (qa (V̄))b q1−b

m , which is greater than ρ + δ according to (4.19). Therefore,
BPb−1qa (V̄) > ρ + δ.
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We can check the stability by calculating the Jacobian of (4.24) and (4.25) at
(
KS, VS):

JS =

[
0 JS

12

−ωa −g

]
, (4.29)

where JS
12 ≡ BPb−1q′a

(
VS) KS > 0. The local stability around

(
KS, VS) follows directly

from det JS = ωa JS
12 > 0 and trJS = −g < 0. We can also easily check the local saddle

stability of
(
KS, VS, CS).

Figure 4.4 illustrates the dynamics in an AM type SOE. Note that, depending on
parameters, a periodic orbit could exist to which the trajectory of (K, V) can converge.
Figure 4.4a corresponds to the case in which there exists a periodic orbit, and Figure
4.4b corresponds to the case of no such orbit. In both cases, the state plane is divided
into four quadrants by the horizontal K̇ = 0 line and the downward-sloping V̇ = 0
line. The trajectory of (K, V) goes toward the lower-right, lower-left, upper-left, and
upper-right directions in quadrant I, II, III, and IV, respectively. Since VS > VW , the
V = VW line lies in quadrants II and III.

Starting from a point in quadrant I, say (K0, V0) in Figure 4.4a or Figure 4.4b, the
small economy has a comparative advantage in agriculture and specializes in it since
V0 is relatively high. The rental is relatively high and therefore sustains capital accu-
mulation. On the other hand, the natural growth of the environment is too slow to
surpass the flow of pollution, and so the trajectory of (K, V) goes in the lower-right di-
rection in quadrant I. Again, depending on the distance to

(
KS, VS) and parameters, it

may converge to
(
KS, VS) or enter quadrant II by crossing the K̇ = 0 line. If the latter is

the case, as illustrated in both Figure 4.4a and Figure 4.4b, the SOE continues to special-
ize in agriculture, but by now private capital starts to decline, because environmental
deterioration cancels out the trade premium of capital rental such that it becomes too
low to attract sufficient investment to sustain capital accumulation. Thus, the trajec-
tory moves in the lower-left direction, and depending on the position, it might cross
the V = VW line or the V̇ = 0 line. If the trajectory crosses the V = VW line, as illus-
trated in both Figure 4.4a and Figure 4.4b, the economy specializes in manufacturing
and the trajectory continues to move in the lower-left direction, and eventually crosses
the V̇ = 0 line and enters quadrant III.13 Thereafter, the environment improves over
time and the trajectory crosses the V = VW line and, consequently, the K̇ = 0 line, and
enters quadrant IV. In quadrant IV, private capital as well as environmental capital in-
creases over time, and the trajectory moves in the upper-right direction until it enters
quadrant I.

If starting from the autarky steady state
(
KA, VA), the SOE has a pre-trade com-

parative advantage in agriculture and specializes in it. Because agriculture is cleaner,
13The trajectory may first hit the horizontal K axis (thus, V = 0), then go left along the axis until it

hits the V̇ = 0 line.
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(a) The case with a periodic orbit

(b) The case with no periodic orbit

Figure 4.4: Transition dynamics in an AM type SOE
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the composition effect enhances the environment right after trade liberalization. On
the other hand, trade increases the rental of private capital and stimulates capital accu-
mulation, and the trajectory of (K, V) moves in upper-right direction and eventually
enters quadrant I. Thereafter, it proceeds similar to the manner discussed in the previ-
ous paragraph.

Note that although both transition paths converge to a periodic orbit in Figure 4.4a,
this need not necessarily be the case. The result depends on parameters, and clearly
on the initial condition too. For example, if (K0, V0) is close to

(
KS, VS), local stability

ensures that the economy converges to
(
KS, VS).

The welfare effect of trade is ambiguous since consumption during the transition
dynamics in free trade need not necessarily always be higher than that in the autarky
steady state. However, since consumption increases initially when starting from the
autarky steady state, there are welfare gains in trade given that the time preference ρ is
sufficiently large. On the other hand, since the steady-state consumption in free trade
is higher than that in autarky, there are welfare gains from trade if ρ is sufficiently
small and the economy converges to the steady state.

4.4.6 AA Type SOE

An AA type SOE bears some resemblances to an AM type SOE. Furthermore, a unique,
locally saddle stable steady state exists, in which the economy specializes in agricul-
ture and satisfies (4.26) and (4.28). Moreover, the environment in trade steady state is
worse than that in autarky steady state. The main differences are the following. First,
the V̇ = 0 line has a steeper segment above the V = VW line since now agriculture
is dirtier. Second, starting from the autarky steady state, the environment degrades
when trade is opened, as illustrated in Figure 4.5.

Note that although KS < KA in Figure 4.5, this need necessarily be so. From (4.18)
and (4.26), it follows that the sign of KS − KA is determined by

Ω
(

VA − VS
)
− (1 − b) (ωa − ωm)

(
V̄ − VA

)
. (4.30)

In an AM type SOE, the first term in (4.30) is positive whereas the second term is
negative. However, in an AA type SOE, ωa > ωm and so the second term becomes
positive, rendering the sign of (4.30) indeterminate. Since VS ∈

(
VW , VA), VS is close

to VA if VW is close to VA (small pre-trade comparative advantage). Thus, the second
term in (4.30) tends to dominate, and therefore KS < KA is likely to hold. In contrast,
if ωa is close to ωm (similar pollution intensities), the first term tends to dominate, and
therefore KS > KA is likely to hold. The intuition comes from realizing two forces
working in opposite directions. The first force is the decline in the capacity of hosting
private capital by specializing in dirtier agriculture. The second force is the increase in
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Figure 4.5: Transition dynamics in an AA type SOE

investment driven by the increase in capital rental. If agriculture and manufacturing
are similarly dirty, the first force is weak. If the pre-trade comparative advantage is
small, the second force is weak.

The following proposition summarizes these discussions on the AM type and AA
type SOEs:

Proposition 4.3. In free trade, an SOE with pre-trade comparative advantage in agriculture
(AM type or AA type) adopts the following characteristics:

(i) The economy specializes in either sector right after trade liberalization, depending on the
initial condition, but will specialize in agriculture in the steady state, which is unique,
locally stable, and satisfies (4.26) and (4.28); there could be a periodic orbit in the AM
type SOE.

(ii) Environmental capital increases or decreases right after trade liberalization, depending
on the initial condition, but will degrade in the steady state (compared to the autarky
steady state);

(iii) Private capital and consumption can increase or decrease right after trade liberalization,
but will increase in the steady state in the AM type SOE (ambiguous in the AA type
SOE); the welfare gains from trade are ambiguous.
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4.5 Optimal Policy in Autarky

Our analysis so far focuses on laissez faire, which is clearly not socially optimal be-
cause of two sources of externalities. First, numerous intermediate goods firms maxi-
mize their profit by taking the stock of environmental capital as given. Second, numer-
ous households make investment decisions by taking the rental as given. The former
results in overproduction of the dirtier goods, whereas the latter leads to excessive
investment. To achieve the social optimum, government interventions are expected.
In this section, I characterize the optimal policy in autarky by considering the social
planner problem and replicating it in a market-based economy.

4.5.1 Social Planner Problem in Autarky

The social planner chooses consumption C, investment I, and private capital allocation
Ki ≥ 0 (i = a, m) to maximize

´ ∞
0 ln Ce−ρtdt, subject to private capital accumulation

K̇ = I − δK; environmental capital evolution (4.10); pollution flow (4.9); technologies
(4.3), (4.6) and (4.7); and material constraints C + I ≤ Y, Xi ≤ Yi (i = a, m) and
Ka + Km ≤ K.

Since consumption is always valuable, C + I ≤ Y and Xi ≤ Yi (i = a, m) bind
in optimum. Now, substitute C + I = Y into K̇ = I − δK to eliminate I and obtain
K̇ = Y − C − δK. The Hamiltonian can then be written as14

H = ln C + γ (Y − C − δK) + λ (g (V̄ − V)− Z)

− τγ (ωaKa + ωmKm − Z)− rγ (Ka + Km − K)− pγ
(

Y − Xb
a X1−b

m

)

− paγ (Ya − qa (V)Ka)− pd
aγ (Xa − Ya)− pmγ (Ym − qmKm)− pd

mγ (Xm − Ym) ,
(4.31)

where γ and λ are costate variables of K and V, measuring respectively the values (in
terms of utility) of the increases in private capital and environmental capital. Lagrange
multipliers τ, r, p, pa, pd

a , pm, and pd
m measure respectively the shadow prices of pollu-

tion flow, private capital service, final good, agriculture supply, agriculture demand,
manufacturing supply, and manufacturing demand. They are multiplied by γ such

14The first-order condition includes γ = 1/C (from ∂H/∂C = 0), p = 1 (from ∂H/∂Y = 0), λ =

τγ (from ∂H/∂Z = 0), pa = pd
a = bXb−1

a X1−b
m (from ∂H/∂Ya = 0 and ∂H/∂Xa = 0), pm = pd

m =

(1 − b) Xb
a X−b

m (from ∂H/∂Ym = 0 and ∂H/∂Xm = 0), paqa (V) = r + τωa (from ∂H/∂Ka = 0), pmqm =

r + τωm (from ∂H/∂Km = 0), the Kuhn–Tucker condition r ≥ 0, Ka + Km − K ≤ 0, r (Ka + Km − K) = 0,
and γ̇ = (ρ + δ − r) γ (from the Euler equation ∂H/∂K = ργ − γ̇), λ̇ = (ρ + g) λ − paγq′a (V)Ka (from
the Euler equation ∂H/∂V = ρλ − λ̇). The non-negative constraint of Ki (i = a, m) is not explicitly
considered because both the intermediate goods are essential, and thus in optimum Ki > 0 must hold
in autarky. In addition to the first-order condition, the transversality conditions limt→∞ γKe−ρt = 0 and
limt→∞ λVe−ρt = 0 are required to pin down the optimal path.
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that the shadow price of final good p = 1 and other shadow prices are measured in
terms of the final good. In doing so, the final good plays the role of the numeraire.

4.5.2 Optimal Policy: A Dynamic Pigouvian Tax on Pollution

The Euler equation for K suggests that (4.2) still holds, whereas the Euler equation for
V, using λ = τγ from the first-order condition, yields

τ̇ =

(
ρ + g − γ̇

γ

)
τ − paq′a (V)Ka. (4.32)

It follows that τ = (γ (0) /γ (t)) e(ρ+g)t
(

τ0 −
´ t

0 (γ (s) /γ (0)) paq′a (V)Kae−(ρ+g)sds
)

,
where τ0 is the initial value of τ. The time index follows γ to prevent confusion. Plug
the expression of τ into the transversality condition limt→∞ λVe−ρt = 0, again using
λ = τγ from the first-order condition, to obtain τ0 =

´ ∞
0 (γ (s) /γ (0)) paq′a (V)Kae−(ρ+g)sds,

which can be plugged back to derive

τ∗ =
1

γ (t)

ˆ ∞

t
γ (s) paq′a (V)Kae−(ρ+g)(s−t)ds. (4.33)

The economic meaning behind (4.33) is as follows. An additional unit of pollu-
tion flow at time t, according to (4.10), leads to a unit of reduction in environmental
capital, which could harm future agriculture productivities. If the environment can-
not recover by itself, the consequence of the reduction remains for the future, lead-
ing to q′a (V (s)) units of decline in agriculture productivity at time s, and, in turn,
pa (s) q′a (V (s))Ka (s) units of income loss. However, the environment can heal it-
self (by converging to the capacity level at speed g), and so a unit of pollution flow
at time t leads to pa (s) q′a (V (s))Ka (s) e−g(s−t) units of income loss at time s. Its
present value can be obtained in three steps. First, multiply it by γ (s) to convert
its unit from the final good to utility. Second, multiply the result from the first step
by e−ρ(s−t) to obtain its present value (still in utility unit). Third, divide the result
from the second step by γ (t) to get back the final good unit. The three steps yield
γ (s) pa (s) q′a (V (s))Ka (s) e−(ρ+g)(s−t)/γ (t). The social damage can be obtained by
integrating this term from time t to infinity, which would exactly give the right-hand
side of (4.33). Therefore, according to (4.33), the shadow price of pollution flow should
be measured by the social damage of an additional unit of pollution flow. Pigou’s idea
remains valid in this dynamic framework, although the Pigouvian tax now adopts a
dynamic version of (4.33).

The easiest way to replicate the social optimum in a market-based economy is to
impose a pollution tax satisfying (4.33) and redistribute the tax revenue to households
in a lump sum to clear the market.15 The following proposition summarizes these

15It follows from the first-order condition pa = (r + ωaτ) /qa (V) and pm = (r + ωmτ) /qm that
Y = paYa + pmYm = rK + τZ.
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results.

Proposition 4.4. In autarky, the social optimum can be achieved in a market-based economy
by imposing a dynamic Pigouvian tax (4.33) on pollution, with lump-sum transfers of tax
revenue to households.

4.5.3 Autarky Dynamic System under Optimal Policy

To obtain the dynamic system in autarky, I show how other variables, including the
rental, the MRT, intermediate prices, and the allocation of private capital, are deter-
mined by (τ, V) at every point in time.

As in a planned economy, perfect competition yields pa = (r + ωaτ) /qa (V) and
pm = (r + ωmτ) /qm, which when plugged into (4.5) gives

B =

(
r + ωaτ

qa (V)

)b (r + ωmτ

qm

)1−b
. (4.34)

This gives the rental as a function of (τ, V): r = r (τ, V), which satisfies

∂r (τ, V)
∂τ

< 0,
∂r (τ, V)

∂V
> 0, r (0, V) = B (qa (V))b q1−b

m . (4.35)

The MRT facing private firms is defined as

ζ ≡ qa (V) (r + ωmτ)
qm (r + ωaτ)

. (4.36)

Since r is a function of (τ, V) in autarky, so is ζ:

ζ = ζ (τ, V) =
qa (V) (r (τ, V) + ωmτ)

qm (r (τ, V) + ωaτ)
. (4.37)

From (4.35), it follows that

∂ζ (τ, V)
∂τ

! 0 if ωa " ωm,
∂ζ (τ, V)

∂V
> 0, ζ (0, V) =

qa (V)
qm

. (4.38)

That is, an increase in pollution tax more than proportionately raises the cost of the
dirtier good.

Note that ζ (τ, V) = pm/pa in autarky, which along with (4.5) gives

pa = B (ζ (τ, V))b−1 , pm = B (ζ (τ, V))b . (4.39)

From (4.39), it follows that

∂pi
∂τ

> 0 and
∂pj

∂τ
< 0 if ωi > ωj. (4.40)

That is, by choosing the final good as the numeraire, an increase in pollution tax raises
(reduces) the price of the dirtier (cleaner) good.
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The allocation of private capital follows from paXa/pmXm = b/ (1 − b), (4.6), and
(4.39):

Ka = l (τ, V)K, Km = (1 − l (τ, V))K, (4.41)

where
l (τ, V) ≡ b (r (τ, V) + ωmτ)

b (r (τ, V) + ωmτ) + (1 − b) (r (τ, V) + ωaτ)
. (4.42)

From (4.35), it follows that

∂l (τ, V)
∂τ

! 0 and
∂l (τ, V)

∂V
" 0 if ωa " ωm, l (0, V) = b (4.43)

That is, an increase in pollution tax shifts private capital from the dirtier sector to the
cleaner sector and reduces the flow of pollution (given the stock of private capital). In
contrast, an increase in environmental capital has the opposite effect. We can formu-
late this as

Z = l (τ, V)ωa + (1 − l (τ, V))ωm ≡ Ψ (τ, V)K. (4.44)

Then, (4.43) yields

∂Ψ (τ, V)
∂τ

< 0 and
∂Ψ (τ, V)

∂V
> 0 if ωa ̸= ωm, (4.45)

implying ∂Z/∂τ < 0 and ∂Z/∂V > 0.
By substituting these results into private capital accumulation (4.1), environmental

capital evolution (4.10), and the Euler equations (4.2) and (4.32), we obtain the dy-
namic system in autarky under optimal policy:16

K̇ = r (τ, V)K + τΨ (τ, V)K − C − δK, (4.46)

V̇ = g (V̄ − V)− Ψ (τ, V)K, (4.47)

Ċ
C

= r (τ, V)− δ − ρ, (4.48)

τ̇ = (g + r (τ, V)− δ) τ − B (ζ (τ, V))b−1 q′a (V) l (τ, V)K, (4.49)

4.5.4 Autarky Steady State and Phase Diagram under Optimal Pol-

icy

In the steady state, γ, pa, V, and Ka are constant. The expression of the optimal pollu-
tion tax (4.33) can be simplified as17

τ∗A =
paq′a

(
V∗A) K∗A

a
ρ + g

, (4.50)

16To obtain (4.46), the income rK in (4.1) should be replaced by rK + τZ = r (τ, V)K + τΨ (τ, V)K;
to obtain (4.49), γ = 1/C and (4.41) are used.

17Letting τ̇ = γ̇ = 0 in (4.32) gives the same result.
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Figure 4.6: Autarky environment and pollution tax under optimal policy

where the superscript ∗A denotes the autarky steady-state value in social optimum.
The dynamics and the steady state can be further analyzed by using the phase

diagram. I focus on the phase diagram on the (τ, V) plane, as illustrated in Figure
4.6, since it provides relatively rich information. The V̇ = 0 curve can be obtained by
letting V̇ = 0 in (4.47):

g (V̄ − V) = Ψ (τ, V)K. (4.51)

Given each K, from (4.45), we obtain an upward-sloping locus, above (below) which
V̇ < 0 (V̇ > 0). Furthermore, the curve shifts downward as K increases, as illustrated
in the figure (where K∗A < KA). The τ̇ = 0 curve can be obtained by letting τ̇ = 0 in
(4.49):

(g + r (τ, V)− δ) τ = B (ζ (τ, V))b−1 q′a (V) l (τ, V)K, (4.52)

Now, assuming that
q′′a (V) ≤ 0, (4.53)

and given each K, it can be shown that the τ̇ = 0 curve is U-shaped, above (below)
which τ̇ > 0 (τ̇ < 0). Moreover, the curve shifts upward as K increases.

Changing K continuously, the intersections of the V̇ = 0 curve and the τ̇ = 0 curve
constitute the V̇ = τ̇ = 0 curve. Its expression can be simply obtained by combining
(4.51) and (4.52) to eliminate K:

(g + r (τ, V)− δ) τΨ (τ, V) = B (ζ (τ, V))b−1 q′a (V) l (τ, V) g (V̄ − V) , (4.54)
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which is also U-shaped.
To pin down the steady state, draw the Ċ = 0 curve, which is upward-sloping ac-

cording to (4.35). The steady state, denoted by
(
τ∗A, V∗A), is given by the intersection

of the Ċ = 0 curve and the V̇ = τ̇ = 0 curve. The uniqueness of the steady state is
ensured by the opposite signs in the slopes of the two curves. Moreover, we can verify
that the steady state is saddle stable. Thus, we have the following proposition:

Proposition 4.5. The autarky steady state under optimal policy is unique and saddle stable,
and the optimal pollution tax satisfies (4.50).

4.5.5 Transition Dynamics under Optimal Policy: A Numerical Ex-

ample

Differing from laissez faire, there is no closed-form consumption function under the
optimal policy. To compare the transition dynamics observed under the optimal policy
and under laissez faire, I consider a simple numerical example. The appendix gives
the numerical specification, and the results are illustrated in Figure 4.7.

Figure 4.7a depicts (K, V) trajectory under the optimal policy and under laissez
faire. Note that although the figure shows that K∗A < KA, this is not necessarily the
case. Two forces work in opposite directions. On one hand, a pollution tax shifts out
some private capital from the dirtier sector, and thereby reduces, on average, the per
unit private capital emission. Thus, more private capital can be brought in without
pulling down the quality of the environment and hence the rental of private capital.
On the other hand, from (4.34), a pollution tax directly reduces the rental of private
capital, thereby discouraging investment. The final outcome will depend on which
force dominates.

Figure 4.7b illustrates the optimal pollution tax and consumption level during the
transition period. It shows that the optimal pollution tax is low at the starting point
but increases gradually. This is because initially the environment is good (V0 = V̄ = 2)
and the stock of private capital is relatively low (K0 = 0.1), implying a relatively small
pa and Ka. However, the environment degrades and private capital accumulates over
time, which, given the pollution tax, leads to an increase in both pa and Ka. Therefore,
the pollution tax is likely to increase, from (4.33). Of course, the property of qa (·)
also affects the result, but in the numerical example its effect is eliminated because
q′a (·) = 1.

The steady-state consumption under the optimal policy could be higher or lower,
depending on the parameters and functional forms. Our numerical example indicates
a lower steady-state consumption, as Figure 4.7b shows. By the definition of optimal
policy, welfare under the optimal policy is necessarily higher. To see this in the ex-
ample, note that consumption under the optimal policy is slightly higher in the early
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(a) Autarky transition dynamics: (K, V)

(b) Autarky transition dynamics: τ∗ and C

Figure 4.7: Compare autarky transition dynamics
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period of the time span, as prominently shown in the figure. Since the value of con-
sumption is exponentially discounted, this initially small difference leads to a higher
lifetime discounted utility.

4.6 Optimal Policy in Small Open Economy

Now, consider the optimal policy in an SOE. Given the world relative price P, the
social planner determines the volume of trade Mi (i = a, m), as well as those variables
in autarky.

4.6.1 Social Planner Problem and Optimal Policy in SOE

With trade, the material constraint for intermediate goods is Xi + Mi ≤ Yi (i = a, m).
A positive sign of Mi denotes exports and a negative sign denotes imports. Assume
that the balance of trade, Ma + PMm = 0, holds at every point in time. For the same
reason in autarky, C + I ≤ Y and Xi + Mi ≤ Yi bind in optimum. The Hamiltonian
can then be written as

H = ln C + γ (Y − C − δK) + λ (g (V̄ − V)− Z)

− τγ (ωaKa + ωmKm − Z)− rγ (Ka + Km − K)− pγ
(

Y − Xb
a X1−b

m

)

− paγ (Ya − qa (V)Ka)− pd
aγ (Xa − PMm − Ya)

− pmγ (Ym − qmKm)− pd
mγ (Xm + Mm − Ym) . (4.55)

The first-order condition is similar to that in autarky (see footnote 14). The basic
scheme of the optimal pollution tax in autarky remains valid in the SOE. There is a
new first-order condition in an SOE, pm/pa = P, which states that in optimum, the
relative (shadow) price is equalized to the world relative price. This simply means
that in order to achieve the social optimum in a market-based SOE, no tariff should be
imposed. Thus, we have the following lemma:

Lemma 4.6. In an SOE, the optimal policy includes a zero tariff and a tax-transfer system as
in autarky.

4.6.2 SOE Dynamic System under Optimal Policy

Another difference from autarky arises in the first-order condition from the fact that
trade introduces complete specializations. Thus, we need to explicitly consider the
non-negative constraint of Ki (i = a, m): Ka ≥ 0, ∂H/∂Ka ≤ 0, Ka∂H/∂Ka = 0, and
Km ≥ 0, ∂H/∂Km ≤ 0, Km∂H/∂Km = 0. This yields the following lemma.18

18The following briefly gives the derivation. The Kuhn–Tucker condition requires that any one of
the following four holds: (i) ∂H/∂Ka < 0 and ∂H/∂Km < 0, (ii) ∂H/∂Ka = 0 and ∂H/∂Km < 0, (iii)
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Lemma 4.7. In social optimum, the trade patterns in an SOE can be determined by its com-
parative advantage, which is revealed by comparing the MRT ζ and the world relative price
P.

To eliminate indeterminacy, I assume no trade if ζ = P. The rental of private
capital and the flow of pollution can be expressed as a piecewise function of (τ, V).
Specifically, if ζ > P, then r = BPb−1qa (V) − ωaτ and Z = ωaK. If ζ < P, then
r = BPbqm − ωmτ and Z = ωmK. If ζ = P, then r = BPbqm − ωmτ and Z = Ψ (τ, V)K.
From definition (4.36),

ζ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

BPb−1qa(V)+(ωm−ωa)τ
BPb−1qm

if ζ > P,

ζ (τ, V) if ζ = P,
BPbqa(V)

BPbqm−(ωm−ωa)τ
if ζ < P.

(4.56)

Note that if ζ = P, the MRT can be determined in the same fashion as in autarky. This
is not because there is no trade when ζ = P, but because pa = (r + ωaτ) /qa (V) and
pm = (r + ωmτ) /qm if ζ = P, which implies that (4.34) and thus (4.37) holds as in
autarky. Therefore, ζ (τ, V) = P also means that ζ = P in an SOE.

Substituting these results into (4.1) (noting that the income is rK + τZ rather than

∂H/∂Ka < 0 and ∂H/∂Km = 0, and (iv) ∂H/∂Ka = ∂H/∂Km = 0. The first gives Ka = Km = 0,
which is clearly not optimal. The second gives Km = 0, which implies that pa = (r + ωaτ) /qa (V)

and pm < (r + ωmτ) /qm, and thus ζ > pm/pa = P. The third gives Ka = 0, which implies that pa <

(r + ωaτ) /qa (V) and pm = (r + ωmτ) /qm, and thus ζ < pm/pa = P. The fourth gives ζ = pm/pa = P,
which implies that there is no difference in how to allocate private capital between sectors. Therefore, in
social optimum, the SOE should specialize in agriculture (manufacturing) if the MRT ζ is greater (less)
than the world relative price P.
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rK), (4.10), (4.2), and (4.32) yields the following dynamic system in an SOE:

K̇ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

BPb−1qa (V)K − C − δK if ζ > P,
(

BPbqm − ωmτ + Ψ (τ, V) τ
)

K − C − δK if ζ = P,

BPbqmK − C − δK if ζ < P,

(4.57)

V̇ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

g (V̄ − V)− ωaK if ζ > P,

g (V̄ − V)− Ψ (τ, V)K if ζ = P,

g (V̄ − V)− ωmK if ζ < P,

(4.58)

Ċ
C

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

BPb−1qa (V)− ωaτ − δ − ρ if ζ > P,

BPbqm − ωmτ − δ − ρ if ζ = P,

BPbqm − ωmτ − δ − ρ if ζ < P,

(4.59)

τ̇ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
g + BPb−1qa (V)− ωaτ − δ

)
τ − BPb−1q′a (V)K if ζ > P,

(
g + BPbqm − ωmτ − δ

)
τ − BPb−1q′a (V) l (τ, V)K if ζ = P,

(
g + BPbqm − ωmτ − δ

)
τ if ζ < P.

(4.60)

4.6.3 Small Open Economies under Optimal Policy: Six Types

To characterize the dynamics and the steady state under optimal policy, I categorize
SOEs into six types:

P̄ < P, ωa < ωm, (SMM type)

P̄ < P, ωa > ωm, (SMA type)

PA < P ≤ P̄, ωa < ωm, (SDM type)

PA < P ≤ P̄, ωa > ωm, (SDA type)

PA > P ωa < ωm, (AM type)

PA > P, ωa > ωm. (AA type)

Note that the categorization AM type and AA type under laissez faire remain valid
here as well. However, the MM type and MA type SOEs are further divided into the
SMM type, SMA type, SDM type, and SDA type SOEs according to whether the world
relative price P is greater than P̄ or not, where P̄ satisfies that when P = P̄, the ζ = P
curve, the V̇ = τ̇ = 0 curve, and the Ċ = 0 curve pass through the same point.19

19Formally, P̄ (together with τ and V) can be solved from the following three equations: (ρ + g) τ =

BP̄b−1q′a (V) g (V̄ − V) /ωa, ρ + δ = BP̄b−1qa (V)− ωaτ, and ρ + δ = BP̄bqm − ωmτ.
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Figure 4.8: Environment and pollution tax in an AM type SOE under optimal policy

4.6.4 AM Type and AA Type SOEs

From (4.33) and (4.59), it follows that an AM type or AA type SOE cannot remain spe-
cializing in manufacturing. However, there exists a steady state where the economy
can specialize in agriculture. Here, the optimal pollution tax is

τ∗S =
BPb−1q′a

(
V∗S) K∗S

ρ + g
, (4.61)

where the superscript ∗S denotes the SOE steady-state value in the social optimum.
K∗S, V∗S and C∗S can be solved from equations (4.57) to (4.60).

This can be seen clearly from the phase diagram on the (τ, V) plane. Figure 4.8
depicts the case of an AM type SOE. The figure for the AA type SOE is similar, except
that the ζ (τ, V) = P curve is upward-sloping. Since ζ

(
0, VW)

= P, the ζ (τ, V) =

P curve starts from
(
0, VW)

and, following (4.56), goes in the lower-right direction.
Above (below) the ζ (τ, V) = P curve is the agriculture (manufacturing) regime. Note
that r < ρ + δ at

(
0, VW)

and r > ρ + δ at
(
0, VA), and the Ċ = 0 curve (on which

r = ρ+ δ) starts from somewhere between
(
0, VW)

and
(
0, VA), and goes in the upper-

right direction.
The V̇ = τ̇ = 0 curve has three parts: N1N2 in the agriculture regime, and N3N4

and N5N6 in the manufacturing regime. N3N4 corresponds with τ = 0 in (4.60), and
N5N6 corresponds with g + BPbqm − ωmτ − δ = 0. N1N2 starts from (0, V̄) and goes
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Figure 4.9: Environment and pollution tax in an SDM type SOE under optimal policy

in the lower-right direction first. Because N1N2 lies below the V = V̄ line, it must
intersect the Ċ = 0 curve somewhere, which is the steady state, denoted as

(
τ∗S, V∗S)

in the figure. Thus, we have the following proposition:

Proposition 4.8. Under optimal policy, if the world relative price P is low (AM type or AA
type), the SOE specializes in agriculture in the steady state.

4.6.5 SDM Type and SDA Type SOEs

Note that P̄ > P∗A. To verify this, consider the special case of P = P∗A, where the
ζ = P curve passes through

(
τ∗A, V∗A), like the Ċ = 0 curve in autarky. From (4.59),

the Ċ = 0 curve in an SOE also passes through
(
τ∗A, V∗A), from where it goes in

the upper-right direction in the agriculture regime and becomes a vertical line in the
manufacturing regime. In contrast, a comparison of (4.54) with (4.58) and (4.60) shows
that the V̇ = τ̇ = 0 curve in an SOE lies above

(
τ∗A, V∗A). Thus, the Ċ = 0 curve and

the V̇ = τ̇ = 0 curve must intersect somewhere in the agriculture regime. This holds
true when P is slightly higher than P∗A, as illustrated in Figure 4.9, corresponding to
an SDM type SOE. The figure for the SDA type SOE is similar except that the slope of
the ζ = P curve is positive.

Although the SDM type and SDA type SOEs have a steady state in the agriculture
regime, they may also converge to the growth path by specializing in manufacturing
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with zero pollution tax. If this is the case, the consumption function (4.11) holds and
the transition dynamics becomes the same as under laissez faire. Whether the optimal
path converges to the steady state or to the growth path depends on the starting point
of the economy.

Moreover, if an SDM type or SDA type SOE starts from the agriculture regime
but finally specializes in manufacturing, the optimal path must pass through

(
0, VW)

,
because, from (4.33), the optimal pollution tax is positive as long as the economy still
enters the agriculture regime, otherwise it becomes zero. On the other hand, since τ

does not jump, the only way to enter the manufacturing regime from the agriculture
regime is to pass through

(
0, VW)

, as clearly shown in Figure 4.9. To summarize,

Proposition 4.9. Under the optimal policy, if the world relative price P is in-between (SDM
type or SDA type ), the SOE can specialize in agriculture or manufacturing in the long run,
depending on the initial condition. If the economy first specializes in agriculture and then
specializes in manufacturing, (τ, V) must pass through

(
0, VW)

.

4.6.6 SMM Type and SMA Type SOEs

If P is too large, the Ċ = 0 curve in the agriculture regime may start from some point
above the V̇ = τ̇ = 0 curve, and so the Ċ = 0 curve cannot intersect the V̇ = τ̇ = 0
curve. Therefore, there is no steady state in the SMM type and SMA type SOEs. Figure
4.10 illustrates an SMM type SOE. The figure for the SMA type SOE is similar, except
for the slope of the ζ = P curve. We have the following proposition:

Proposition 4.10. Under the optimal policy, if the world relative price P is high (SMM type
or SMA type), the SOE eventually remains specializing in manufacturing, where pollution tax
is zero, and private capital and consumption grow at the same rate.

It is noteworthy that unlike under laissez faire, where trade always harms the en-
vironment in the long run (compared to the autarky steady state), under the optimal
policy, trade does not necessarily harm the environment in the long run because of the
existence of pollution tax. In Figure 4.9, the environment actually becomes better after
trade liberalization (V∗S > V∗A).

4.7 Conclusion

Featuring the Ramsey style investment and agricultural production externalities, my
two-sector dynamic model helps us understand the close nexus between trade, eco-
nomic development, and the environment. I find that trade has a scale effect once cap-
ital accumulation is introduced, and that, under laissez faire, it necessarily harms the
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Figure 4.10: Environment and pollution tax in an SMM type SOE under optimal policy

environment in the long run. The implication is significant. Trade liberalization can
be catastrophic to an economy that lacks in appropriate environmental regulations, es-
pecially if environmental degradation also causes disutility. This study further shows
that the social optimum can be achieved through a pollution tax with a lump-sum
transfer of tax revenue to households. The optimal pollution tax can be thought of
as a dynamic version of the Pigouvian tax. I also find that although the specialization
pattern is endogenously determined at every point in time, the long-run specialization
pattern basically can be predicted from the parameters.

In this study, pollution is local, but the transboundary type of pollution, such as
greenhouse gases, is also crucial. Moreover, abatement behavior is another significant
aspect in reality, but I exclude it in this study for simplicity. It will be interesting to
incorporate these aspects into this framework in a future research.

4.A Appendix

4.A.1 Numerical Specification

In all cases, (K0, V0) = (0.1, 2). For the parameters, see Table 4.1.
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ρ Time preference 0.05
δ Private capital depreciation rate 0.1
b Share of agriculture good 0.4
V̄ Environmental carrying capacity 2
g Environmental recovery rate 0.07

qa (V) Agriculture productivity 0.375V
qm Manufacturing productivity 0.25
ωa Agriculture pollution intensity 0.025∗, 0.1∗∗

ωm Manufacturing pollution intensity 0.1∗, 0.05∗∗

P World relative price 2.25†, 0.75††

Notes: ∗ and ∗∗ correspond with the case of dirtier manufacturing and

the case of dirtier agriculture; † and †† denote a pre-trade comparative

advantage in manufacturing and that in agriculture.

Table 4.1: Parameter specification

Both sets of pollution intensities yield Ω ≡ bωa + (1 − b)ωm = 0.07, implying
identical autarky dynamics under laissez faire. Given the specification above, the two
world relative prices are equivalent to VW = 1.5 and VW = 0.5, respectively.



Chapter 5

A Generalized Model of Trade with
Resource-use and Pollution1

5.1 Introduction

The natural environment play many roles in economic activities, but economists usu-
ally focus on the aspect of the environment that directly relates to the issue of interest.2

In the analysis of the interaction between trade and the environment, there are two in-
fluential theoretical models. The Brander–Taylor model (Brander and Taylor, 1997,
1998) focuses on renewable resources in trade context and explains why resource ex-
porting country may lose from trade. The Copeland–Taylor model (Copeland and
Taylor, 1999) considers production externalities of pollution and shows how pollution
can provide an incentive to trade. Both models formulate a single, though different,
role of the environment: a place growing resources in the Brander–Taylor model and
a pollution sink in the Copeland–Taylor model. These simplifications do help high-
light the essence, but also come at prices. In both models, the economic usage of the
environment–the impact of economic activities on the environment–arises from only
one sector among the two.3 Thus, the Brander–Taylor model ignores, say, the impact
of industrial wastes on fishery resources, whereas the Copeland–Taylor model fails
to formulate the impact of chemical fertilizers on the soil quality, which is crucial to
farming itself.

1This chapter is joint work with Akihiko Yanase. Earlier versions of this chapter were presented
at the 4th Spring Meeting of JSIE, the 10th Asia Pacific Trade Seminars, CIREQ, Summer Workshop on
Economic Theory 2014, RICF (DBJ), IEFS Japan Annual Meeting 2014, JAAE Fall Meeting 2014.

2The major functions of the environment include supplying resources, absorbing pollutants and
wastes, creating amenity values, and functioning as life support system. See, e.g., Smulders and Gradus
(1996) and Hanley et al. (1996).

3In the Brander–Taylor model, harvesting reduces the stock of renewable resources, while manu-
facturing has no impact on resources. In the Copeland–Taylor model, pollution from manufacturing
lowers the quality of the environment, while farming is totally clean.

73
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In this study, we try to move one step forward and develop a two-sector dynamic
model that allows activities in both sectors to harm the environment. The magnitude
of a sector’s economic usage of the environment is assumed to be proportionate to
the sector’s output with a sector-specific coefficient. The capacity of the environment
is measured by a stock variable, whose dynamics is characterized by the difference
between its natural growth and the economic usage. The primary sector is vulnerable
to environmental degradation, whereas the manufacturing sector is not.

From one-dimensional to two-dimensional source of the economic usage of the
environment, our model includes the Brander–Taylor model and the Copeland–Taylor
model as special cases, and provides a unified framework for renewable resources
extraction and pollution emission. It is a small change in the structure but a significant
improvement in the explanation ability of the model. In our generalized model, the
environment can be interpreted in a broader sense: either fishery resources as in the
Brander–Taylor model, or air and water as in the Copeland–Taylor model, or a mix of
both. With our model, one can consider fishery resources without ignoring the impact
of toxic wastes from manufacturing. One can also think about agriculture while taking
into account the influence of pollution from agriculture.

Our model yields several important insights. First, we ask which sector is dirtier
in the long run in terms of per labor economic usage. The question matters because
its answer determines a country’s long-run supply curve, and in turn the response
to trade liberalization. We show that, under certain conditions, the answer depends
on the country’s intrinsic nature, namely the parameters associated with the country.
As a result, a country’s long-run supply curve is either entirely upward-sloping if the
primary sector is dirtier, or entirely downward-sloping if the manufacturing sector is
dirtier. Accordingly, countries can be categorized into two types, called respectively
in this chapter the Brander–Taylor type and the Copeland–Taylor type.4

Second, to facilitate the analysis of the two-country case, we construct the world
production pattern diagram, which is a useful tool in providing a whole picture for
how the world production patterns are distributed on the plane of the comparative
advantage index (depending on two countries’ environments) and the relative effec-
tive size (depending on their labor endowments). In the long run, the environment
can evolve and so the comparative advantage index is an endogenous variable. We
carefully characterize the long-run world production patterns for two countries of the
same type and of different types. We show that trade between two countries of differ-
ent types may harm both in the long run. This scenario is of special interest since it
captures the trade between emerging industrial nations and resource countries, which

4We ignore the third case in which both sectors are equally dirty in the long run and the long-run
supply curve is entirely flat.
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cannot be analyzed in the Brander–Taylor model nor in the Copeland–Taylor model.5

Third, since the type of a country depends on the parameter values and functional
forms. A change in parameters may change a country’s type, leading to dramatic
changes in the trade pattern. Using a simple example, we show that when the labor
endowment crosses a critical value, two ex-ante identical countries of Brander–Taylor
type become two of Copeland–Taylor type, leading to a jump in trade volume.

The rest of the chapter is organized as follows. Section 2 describes the basic model.
Section 3 analyzes the supply side, including the long-run supply curve and the pro-
duction possibility frontier (PPF). Section 4 considers the autarky case. Section 5 and
Section 6 examine small open economy and two-country trade, respectively. Section 7
provides some discussion and Section 8 concludes.

5.2 The Basic Model

There are two production sectors under perfect competition with technologies

Xp = A (S) Lp, Xm = aLm, (5.1)

where the subscript p and m denote respectively the primary sector and the manu-
facturing sector, Xi and Li (i = p, m) are the output from and the labor allocated in
the corresponding sector. The environmental stock S measures the capacity of the en-
vironment, which is interpreted as the stock of renewable resources in Brander and
Taylor (1997, 1998), and as the quality of the environment in Copeland and Taylor
(1999). The primary sector is environmentally sensitive in the sense that A′ (S) > 0.
The productivity in the manufacturing sector, a, is fixed. Labor market is perfect, thus

Lp + Lm = L. (5.2)

The environmental stock evolves according to

Ṡ = G (S)− E, (5.3)

where G (S) is the natural growth of the environment, E the economic usage of the
environment (the environmental impact of economic activities). To formulate the idea
that the maximum capacity of the environment is finite, impose an assumption on
G (S) as follows.

5Many emerging nations impose relatively low environmental standards and often adopt cheap but
dirty technologies in manufacturing industries. These emerging nations are likely to be categorized into
Copeland–Taylor type. On the other hand, some countries with abundant renewable resources have
resource industries as the pillar of the economy. These resource countries are likely to be of Brander–
Taylor type. Some developing countries still use traditional methods of subsistence agriculture such
as slash-and-burn cultivation, which cause deforestation, erosion and nutrient loss, and in turn harm
agriculture itself. These developing countries are also likely to be of Brander–Taylor type.



76 CHAPTER 5. TRADE WITH RESOURCE-USE AND POLLUTION

Assumption 5.1. There exists K > 0 such that G (K) = 0 and G′ (K) < 0.

Therefore, if there is no economic activities, namely that E = 0, the capacity of
the environment in steady state is K, which is often called the carrying capacity of the
environment. E is assumed to be positively correlated to the scale of the economy in
the following manner:

E = lpXp + lmXm, (5.4)

where non-negative parameters lp and lm reflect the cleanness of production technol-
ogy. We exclude the trivial case of lp = lm = 0. Note that our model becomes the
Brander–Taylor model if letting lp = 1, lm = 0, and becomes the Copeland–Taylor
model if letting lp = 0, lm > 0.

According to (5.4), per labor economic usage of the environment is lp A (S) in the
primary sector and lma in the manufacturing sector. Since their relative magnitude is
crucial in determining the behavior of the economy, as we can see in what follows, it
is convenient to define the type of sector as follows.

Definition 5.2 (Sector type). The dirtier (cleaner) sector has the higher (lower) per
labor economic usage of the environment.

So, the primary (manufacturing) sector is dirtier if lp A (S) > lma (lp A (S) < lma).
Note that by assuming lm = 0, the Brander–Taylor model focuses on the case of the
dirtier primary sector. In contrast, by assuming lp = 0, the Copeland–Taylor model
focuses on the case of the cleaner primary sector. Define S0 by

lp A (S0) ≡ lma,

then the primary (manufacturing) sector is dirtier if S > S0 (S < S0), as illustrated in
Figure 5.1.

To finish the setup, assume the preference can be described by the representative
household with instantaneous utility

u
(
Cp, Cm

)
= b ln Cp + (1 − b) ln Cm. (5.5)

5.3 Supply Side

5.3.1 Short-run Properties

At every point in time, using (5.1) and (5.2) gives

Xp

A (S)
+

Xm
a

= L. (5.6)
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Figure 5.1: Sector type varies with the environmental stock

Firms under perfect competition make decisions by taking the environmental stock S
as given. For firms, the marginal rate of transformation (MRT) from the primary good
to the manufacturing good is

MRT =
A (S)

a
. (5.7)

Therefore, the model behaves like a Ricardian economy in the short run. Equation
(5.6) can be seen as the expression for the short-run production possibility frontier
(PPF), which gives a straight line on the

(
Xp, Xm

)
plane through (0, aL) with the slope

-A (S) /a.
In the long run, however, the environment can change. A production schedule

feasible in the short run is not necessarily sustainable in the long run. To understand
the long-run properties of the supply side, it is convenient to define

β ≡
Lp

L
,

then the outputs can be rewritten into

Xp = A (S) βL, Xm = a (1 − β) L. (5.8)

In equilibrium, β will endogenously determined by harmonizing supply and demand.
But in this section, we treat β as exogenously given to examine the long-run properties
of the supply side.

Without loss of generality, let the primary good be the numeraire, and P denote
the price of the manufacturing good. Since labor is freely and costlessly mobile across
sectors, wages are always equalized within the country. The necessary condition for
both sectors to be active is w = A (S) = aP, or equivalently,

A (S)
a

= P. (5.9)
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Figure 5.2: Labor allocation and the environment in steady state

If (5.9) fails to hold, say, in the fashion that A (S) /a > P, the primary sector pays
higher wage and has all labor working in it.

It follows directly from (5.4) and (5.8) that

E = E (S, β) =
[
lp A (S) β + lma (1 − β)

]
L. (5.10)

Recalling that A′ (S) > 0, the economic usage of the environment E (S, β) is an in-
creasing function of S. Moreover, as a linear combination, E (S, β) must be bound
by lp A (S) L and lmaL. As illustrated in Figure 5.2, the locus of E (S, β) lies within
the shadow area between lp A (S) L and lmaL, and rotates counter-clockwise on point
(S0, lmaL) as β increases.

5.3.2 Long-run Supply Curve and Country Types

Given β, the steady state requires Ṡ = 0 in (5.3), yielding

G (S) =
[
lp A (S) β + lma (1 − β)

]
L. (5.11)

The stability requires G (S) intersects E (S, β) from above, namely that

G′ (S) < lp A′ (S) βL. (5.12)

Given β, let S (β) denote the corresponding set of the levels of S that satisfy (5.11) and
(5.12). Taking the total differential of (5.11) yields

S′ (β) =

[
lp A (S (β))− lma

]
L

G′ (S (β))− lp A′ (S (β)) βL
. (5.13)
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The denominator of the right-hand side of (5.13) is negative due to the stability condi-
tion. If the primary (manufacturing) sector is dirtier, a marginal increase in β lowers
(enhances) the steady-state level of the environmental stock. Given any parameter
values and functional forms, S (β) can be empty or multi-valued. To eliminate these
complexities, assume that

Assumption 5.3. Parameters a, lp, lm, L and functions G (·), A (·) satisfy that S (β) is a
positive and continuous function in [0, 1].

It is worth emphasizing that the constraint imposed by Assumption 5.3 is not as
restrictive as it seems. For example, if G (0) > lma and G′ (S) < 0, which is assumed
in the Copeland–Taylor model, Assumption 5.3 will holds. Alternatively, if G (S) takes
the form of logistic function and has the maximum greater than lma, which is assumed
in the Brander–Taylor model, Assumption 5.3 holds as well. In Figure 5.2, G1 (S),
G2 (S) and G3 (S) are featured by the typical shape of logistic function, and Assump-
tion 5.3 holds for all of them. Therefore, Assumption 5.3 is less restrictive than the
constraints specified in the Brander–Taylor model and the Copeland–Taylor model, as
well as those in many previous studies.

Substituting S (β) into (5.9) for S gives A (S (β)) /a = P. Take the total differentials
to obtain, using (5.8),

dP
dXm

= −A′ (S (β)) S′ (β)
a2L

. (5.14)

The following lemma follows directly:

Lemma 5.4. An expansion of the dirtier (cleaner) sector lowers (enhances) the steady-state
environmental stock. If the manufacturing sector is dirtier (cleaner), its steady-state price
increases (decreases) with its output.

Note that S (β) changes with β and the type of sector is determined the relative
magnitude of S (β) and S0. The question naturally arising is whether a change in β

can change the type of a sector. The answer is given by the following lemma.

Lemma 5.5. Given Assumption 5.3, the dirtier sector stays dirtier in all steady states.

Proof. Assume to the contrary that the sign of lp A (S (β))− lma can change. By the con-
tinuity of S (β) from Assumption 5.3, there exists β0 ∈ [0, 1] satisfying lp A (S (β0)) =

lma. This implies that G (S), as G2 (S) in Figure 5.2, passes through (S (β0) , lmaL) =

(S0, lmaL) and S (β) = S (β0) holds for all β ∈ [0, 1]. As a result, lp A (S (β))− lma = 0
for all β ∈ [0, 1], leading to a contradiction.

Therefore, which sector is dirtier in the long run is an intrinsic nature of the econ-
omy. It depends only on the parameter values and functional forms. Figure 5.2 shows
that, with others remaining the same, how different shapes of G (S) determine which
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sector is dirtier in the long run. A country endowed with G1 (S) has S (β) < S0 for
all β ∈ [0, 1]. As a result, the manufacturing sector is dirtier in all steady states. In
contrast, a country endowed with G3 (S) has S (β) > S0 for all β ∈ [0, 1], implying the
primary sector is dirtier in all steady states. As for G2 (S), it happens to pass through
(S0, lmaL), resulting S (β) = S0 for all β ∈ [0, 1]. This knife-edge case is of no interest
and thus ignored from the analysis.6 For convenience, define the type of country as
follows.

Definition 5.6 (Country Type). The country of Brander–Taylor (Copeland–Taylor) type
has a dirtier (cleaner) primary sector in all steady states.

The following proposition summarizes the discussion above.

Proposition 5.7. Given Assumption 5.3, a country either belongs to the Brander–Taylor type
or belongs to the Copeland–Taylor type. A country of Brander–Taylor type has a regular en-
tirely upward-sloping long-run supply curve, while a country of Copeland–Taylor type has an
irregular entirely downward-sloping one.

The intuition comes by realizing the key difference is whether the environmentally
sensitive sector, namely the primary sector, is dirtier or cleaner than the manufacturing
sector. If the environmentally sensitive sector is dirtier (Brander–Taylor type), more
labor in manufacturing leads to better environment in steady state and thus higher
productivity in the environmentally sensitive sector, which means higher relative price
of manufacturing good. In contrast, if the environmentally sensitive sector is cleaner
(Copeland–Taylor type), more labor in manufacturing leads to worse environment in
steady state and thus lower productivity in the environmentally sensitive sector, which
means lower relative price of manufacturing good.

The long-run supply curve consists of the two endpoints: Xm = 0 where β = 1 and
Xm = aL where β = 0. Supposing Xm = 0 in steady state, the wage in the primary
sector is A (S (1)) and the potential wage in the manufacturing sector Pa. We must
have A (S (1)) ≥ Pa for Xm = 0 to hold in steady state, implying that P ≤ A (S (0)) /a.
Similarly, if Xm = aL in steady state, then we must have A (S (1)) ≤ Pa, implying that
P ≥ A (S (0)) /a. With these in hand, now we can draw the long-run supply curves
for both types of countries, as illustrated in Figure 5.3.

6If countries are producing the same goods, they seem having the “same” environment. So, how
can the growth functions of the environment be different between countries? A possible justification
is that, even the contents of the environment, say fishery resources, are the same, the “size” of the
environment, say the area of the lake, can vary among countries. If letting the growth function take the
logistic form G (S) = gS (S̄ − S), then g can be seen as the intrinsic recovery rate of the environment,
while S̄ represents the size. Given the same g, the difference in S̄ still leads to different shapes of G (S).
This is actually the case of G1 (S), G2 (S) and G3 (S) in Figure 5.2.
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(a) Brander–Taylor type country (b) Copeland–Taylor type country

Figure 5.3: Long-run supply curve

5.3.3 Long-run PPF

The long-run PPF is important for two reasons. First, it is useful in policy analysis. In
the model, firms take the environmental stock as given and measure their opportunity
costs by the MRT (5.7). This deviates from the social marginal rate of transformation
(SMRT), which can be measured by the slope of the long-run PPF. Second, the long-
run PPF, together with the short-run PPF, facilitates the analysis of the welfare effect
of trade.

To derive the long-run PPF, substitute S (β) into the first equation in (5.8) to obtain
Xp = A (S (β)) βL. Since the second equation in (5.8) gives β = 1 − Xm/aL, the long-
run PPF can be written as

Xp = T (Xm) = A
(

S
(

1 − Xm
aL

))(
L − Xm

a

)
. (5.15)

The SMRT follows directly:

SMRT ≡ −T′ (Xm) = A′ (S (β)) S′ (β)
β

a
+

A (S (β))
a

, (5.16)

where β instead of Xm is used to simplify the expression. Note that A(S(β))
a = MRT,

which equals the price of the manufacturing good P if both goods are produced.
Therefore,

Proposition 5.8. In a country of Brander–Taylor (Copeland–Taylor) type, the MRT (from the
manufacturing good to the primary good) facing private firms is greater (less) than the SMRT
for all Xm > 0.

Proof. In a country of Brander–Taylor type, S′ (β) < 0 and according to (5.16), MRT >

SMRT for all β ∈ (0, 1]. In contrast, if the country is of Copeland–Taylor type, we have
S′ (β) > 0 and thus MRT < SMRT for all β ∈ (0, 1].



82 CHAPTER 5. TRADE WITH RESOURCE-USE AND POLLUTION

The intuition is straightforward. In a country of Brander–Taylor (Copeland–Taylor)
type, the primary (manufacturing) sector is dirtier, so, from the perspective of the
whole economy, the cost of the primary (manufacturing) good is underestimated by
private firms.

Proposition 5.8 suggests that, to correct externalities in a country of Brander–Taylor
type, a production tax can be imposed on the primary good to reduces the MRT facing
firms. If the tax rate is τ ∈ (0, 1), firms face the new MRT: MRT(τ) = (1 − τ) A (S (β)) /a.
The optimal tax rate can be easily derived by equalizing the MRT(τ) to the SMRT. Sim-
ilarly, in a country of Copeland–Taylor type, firms underestimate the cost of the man-
ufacturing good, thus a tax on the manufacturing sector helps to correct externalities.
To summarize,

Corollary 5.9. In a country of Brander–Taylor (Copeland–Taylor) type, a possible optimal
policy is the production tax on the primary (manufacturing) good that equalizes the MRT and
the SMRT.

Proposition 5.8 also implies some restrictions on the shape of the long-run PPF.
Suppose a point

(
X′

m, X′
p

)
on the long-run PPF, which corresponds to the steady-state

environmental stock S (β′). According to (5.6), the straight line starting from (0, aL)
and passing through

(
X′

m, X′
p

)
is the short-run PPF that corresponds with S = S (β′).

If the country is of Brander–Taylor (Copeland–Taylor) type, the MRT is greater (less)
than the SMRT at

(
X′

m, X′
p

)
, and the short-run PPF intersects the long-run PPF from

above (below). According to Proposition 5.8, this is true for all other points on the
long-run PPF, which requires the long-run PPF to be strictly concave (convex) around
(0, aL). Apart from (0, aL), the long-run PPF may have convex or concave part, but
it cannot be too convex (concave) since the short-run PPF connecting (0, aL) and any
point on the long-run PPF must intersect it from above (below), as illustrated in Figure
5.4a and Figure 5.4b. The following corollary summarizes these observations.

Corollary 5.10. A country of Brander–Taylor (Copeland–Taylor) type has a long-run PPF
strictly concave (convex) around (0, aL), and any straight line passing through (0, aL) must
intersect, if any, the long-run PPF from above (below).

Proof. See Appendix 5.A.1 for detailed calculation.

5.4 Autarky Equilibrium

After characterizing the supply side, now we can introduce the demand side to close
the model. In this section, we consider autarky, which servers as the benchmark for
the comparison with free trade.
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(a) Brander–Taylor type country (b) Copeland–Taylor type country

Figure 5.4: Long-run PPF

In autarky, all demands are fulfilled by domestic supplies: Ci = Xi (i = p, m). The
preference (5.5) ensures both goods produced. As a result, the manufacturing price
is P = A (S) /a, and the wage is w = A (S), and thus the income is A (S) L. The
maximization of utility requires that the share of income spent on the primary good is
b, which gives

Cp = bA (S) L, Cm = (1 − b) aL.

Therefore, in autarky the demand for the manufacturing good is a vertical line on
the (Xm, P) plane as shown in Figure 5.3. It follows from (5.1) that Lp = bL and
Lm = (1 − b) L. That is, in autarky

β = b.

Therefore, the autarky steady-state environmental stock, denoted SA, and the autarky
steady-state price of the manufacturing good, denoted PA, can be written into

SA = S (b) , PA =
A (S (b))

a
,

which are unique and stable according to Assumption 5.3. These results are the same
as Proposition 1 in Brander and Taylor (1997) and in Copeland and Taylor (1999).

5.5 Small Open Economy

Consider free trade in a small open economy. Let PW denote the world price of the
manufacturing good. In the short run, the environment S is given, so production pat-
terns can be obtained by comparing MRT = A (S) /a with PW . If A (S) /a > PW



84 CHAPTER 5. TRADE WITH RESOURCE-USE AND POLLUTION

(A (S) /a < PW), the economy has a comparative advantage in the primary (manufac-
turing) good, thus completely specializing in it.

In the long run, however, the environmental stock may change, thus affecting the
MRT and consequently production patterns. The long-run supply curve, as illustrated
in Figure 5.3, is very useful to show the long-run response of an economy to free trade.

Let us first see what happens in a small open economy of Brander–Taylor type.
There are three situations. First, if PW ∈ (A (S (1)) /a, A (S (0)) /a), as shown in Fig-
ure 5.3a, the economy cannot completely specialize in either good in steady state, be-
cause the economy eventually loses the comparative advantage due to environmental
changes. Trade patterns in steady state can be revealed by comparing PW and PA:
exporting the primary (manufacturing) good if PW < PA (PW > PA) and no trade
if PW = PA. Second, if the world price is low enough such that PW ≤ A (S (1)) /a,
in steady state the economy will completely specialize in the primary good. Finally,
if the world price is high enough such that PW ≥ A (S (0)) /a, in steady state the
economy will completely specialize in the manufacturing good. As long as the econ-
omy produces the manufacturing good, the wage is w = PW a at every point in time,
implying the same consumption of the manufacturing good as in autarky: Cm =

(1 − b)wL/PW = (1 − b) aL. However, if the small economy only produces the pri-
mary good, the wage is w = A (S) at every point in time. In steady state, w = A (S (1))
and Cm = (1 − b)wL/PW > (1 − b) aL since PW ≤ A (S (1)) /a. These results are the
analogue to Proposition 7 in Brander and Taylor (1997).

The long-run welfare effect of free trade can be intuitively analyzed by comparing
budget lines and by using its relation with the short-run PPF and the long-run PPF.
In Figure 5.5, BA is the budget line in autarky (also the short-run PPF for S = S (b)),
while B2 is the budget line in trade steady state given the world price PW2 (also the
corresponding short-run PPF). Note that the budget line can be represented by the
short-run PPF only when the manufacturing good is produced. If PW < A (S (1)) /a,
only the primary good will be produced in steady state and the budget line is a line
starting from point (A (S (1)) L, 0) with the slope PW , as the budget line B1 given in
Figure 5.5. When the world price is PW2, the budget line B2 is higher than BA, so the
steady-state utility is higher in free trade than in autarky.

The total welfare effect of trade can be decomposed into two components: the TOT
effect (gains from terms of trade improvement) and the green effect (gains from pro-
ductivity changes in the primary sector). The TOT effect is a static effect, and is always
positive. In contrast, the green effect is a dynamic effect, which comes from environ-
mental changes, and can be negative. This happens if PW < PA, in which the economy
uses more labor than in autarky to produce the primary good and export it. Since the
primary good is dirtier in an small open economy of Brander–Taylor type, this leads to
environmental degradation and consequently a decline in the productivity in the pri-
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Figure 5.5: Welfare effect in Brander–Taylor type SOE

mary sector, which means a negative green effect. As a result, the steady-state utility
in free trade can be lower or higher than in autarky, depending on which effect dom-
inates. Note that there is a threshold level of the world price, denoted P′, such that
the budget line is tangent to the indifference curve in autarky if PW = P′, as shown in
Figure 5.5. If PW < P′, the TOT effect dominates and so the long-run welfare effect of
trade is positive. These arguments can be summarized as follows.

Proposition 5.11. A small open economy of Brander–Taylor type
(i) remains diversified in the long run if PW ∈ (A (S (1)) /a, A (S (0)) /a), otherwise

specializes,
(ii) exports the cleaner manufacturing good in the long run if PW > PA, and gains from

trade,
(iii) exports the dirtier primary good in the long run if PW < PA, and loses from trade if

the terms of trade (TOT) effect is small (P′ < PW < PA), and gains if the TOT effect is large
(PW < P′), where P′ satisfies P′ < A (S (1)) /a.

Now we move on to a small economy of Copeland–Taylor type, which has quit
different long-run responses to free trade. If Pw ∈ (A (S (0)) /a, A (S (1)) /a), there
are three steady states as shown in Figure 5.3b. The two specialized steady states
are stable, while the middle diversified one is unstable. In the long run, the small
economy completely specializes in either good. In contrast, if PW < A (S (0)) /a or
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Figure 5.6: Welfare effect in Copeland–Taylor type SOE

PW > A (S (1)) /a, there is only one steady state, the economy must specialize in
the primary good or the manufacturing good respectively. This result is similar with
Proposition 2 in Copeland and Taylor (1999).

If there is no other force, the long-run production pattern in free trade is the same as
the production pattern right after trade liberalization. For instance, suppose an econ-
omy in autarky steady state before trade liberalization and PW < PA, as illustrated in
Figure 5.3b. When opened to trade, the economy will specialize in the primary good.
Since the primary good is cleaner, the environment improves gradually, which rein-
forces the comparative advantage in the primary good. This self-reinforcing process
ensures that the trade pattern right after trade remains unchanged in the long run.

The long-run welfare effect in the small economy of Copeland–Taylor type is rela-
tively simple. If the economy specializes in the cleaner primary good, the green effect
is positive. Together with the positive TOT effect, the new budget line, as shown by B1

in Figure 5.6, will be higher than that in autarky, as shown by BA in the figure. If the
economy specializes in the dirtier manufacturing good, there is no green effect since
the manufacturing productivity is fixed. But there are still gains due to the TOT effect.
As a result, the budget line, as given by the line B2 in Figure 5.6, is also higher than
that in autarky. In both cases, a small open economy of Copeland–Taylor type enjoys
the long-run gains from trade. The following proposition summarizes these results.

Proposition 5.12. A small open economy of Copeland–Taylor type specializes in the good that
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has lower relative price than the world when opened to trade, and gains in the long run.

5.6 Two-country World

In this section, we consider free trade between two countries, Home and Foreign. The
analysis proceeds mainly in two steps. First, we focus on the short run and construct
the world production pattern diagram to show how production patterns in the short run
are related to environmental stocks and labor endowments in both countries. Second,
we characterize the long-run behaviors with the aid of the diagram.

5.6.1 Short-run World Production Patterns

Let Foreign variables denoted with an asterisk ∗, and Foreign related functions de-
noted with the subscript f . Home related functions are denoted with h. For simplicity,
assume the identical preference in two countries. In the short run, S and S∗ are given,
so trade patterns can be readily revealed by comparing the MRTs in two countries,
namely Ah (S) /a in Home and A f (S∗) /a∗ in Foreign. It is convenient to define the
comparative advantage index by

v ≡
A f (S∗) a
Ah (S) a∗

. (5.17)

If v < 1 (v > 1), Home (Foreign) has a comparative advantage in the primary good,
thus exporting it in free trade.

World production patterns in the short run also depend on the country size (L
and L∗), the manufacturing productivity (a and a∗) and the preference (b). It is also
convenient to define the relative effective size by

z ≡ aL
a∗L∗ . (5.18)

If z < 1 (z > 1), Home (Foreign) is smaller in terms of the manufacturing production
capability.

Let us consider first the situation of v < 1, in which Home exports the primary
good and Foreign exports the manufacturing good. The short-run Ricardian structure
of the model ensures that at least one country completely specializes. So, there are
three possible world production patterns.

Pattern (p,d): Home specializes in the primary good, while Foreign produces both
goods.

Pattern (p,m): Home specializes in the primary good, while Foreign specializes in the
manufacturing good.
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Pattern (d,m): Home produces both goods, while Foreign specializes in the manufac-
turing good.

In what follows, we shall check which pattern arises under what condition.
In production pattern (p,d), we have Xp = Ah (S) L, X∗

p = A f (S∗) β∗L∗ and X∗
m =

a∗ (1 − β∗) L∗. Since Foreign produces both goods, the world manufacturing price
depends only on Foreign condition:

PW =
A f (S∗)

a∗
. (5.19)

Since both countries produce the primary good, which is the numeraire, the wage in
Home is w = Ah (S), while the wage in Foreign is w∗ = A f (S∗). Since two countries
have the same preference and the manufacturing good is only supplied by Foreign,
we have (1 − b) (wL + w∗L∗) = PW X∗

m, which gives, using (5.19),

β∗ = b − (1 − b)
z
v

. (5.20)

Since Foreign produces both, we must have β∗ > 0, this requires

z <
b

1 − b
v (5.21)

In production pattern (p,m), we have Xp = Ah (S) L and X∗
m = a∗L∗. Home wage

is w = Ah (S) while Foreign wage is w∗ = PW a∗. Because both countries completely
specialize, PW is determined such that the world supply equals the world demand.
This requires b (wL + w∗L∗) = Xp, which gives

PW =
(1 − b) Ah (S) L

ba∗L∗ . (5.22)

Notting that PW ∈
[
A f (S∗) /a∗, Ah (S) /a

]
must hold for two countries to completely

specialize, it follows from (5.22) that

b
1 − b

v ≤ z ≤ b
1 − b

. (5.23)

In production pattern (d,m), we have Xp = Ah (S) βL, Xm = a(1 − β)L and X∗
m =

a∗L∗. Since Home produces both goods, the world manufacturing price depends only
on Home condition:

PW =
Ah (S)

a
. (5.24)

Home wage is w = Ah (S), while Foreign wage becomes w∗ = PW a∗ = Ah (S) a∗/a.
Since the primary good is only supplied by Home, we have b (wL + w∗L∗) = Xp,
which gives

β = b
(

1 +
1
z

)
. (5.25)
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Since Home produces both, we must have 1 − β > 0, which requires

z >
b

1 − b
. (5.26)

Let us consider now the situation of v > 1, in which Home has a comparative
advantage in the manufacturing good and exports it in free trade. The possible world
production patterns include:

Pattern (d,p): Home produces both goods, while Foreign specializes in the primary
good.

Pattern (m,p): Home specializes in the manufacturing good, while Foreign specializes
in the primary good.

Pattern (m,d): Home specializes in the manufacturing good, while Foreign produces
both goods.

The conditions for these patterns to arise can be similarly obtained. Specifically, pro-
duction pattern (d,p) requires

z >
1 − b

b
v. (5.27)

Given (z, v), the labor allocation in Home is

β = b − (1 − b)
v
z

. (5.28)

Production pattern (m,p) requires

1 − b
b

≤ z ≤ 1 − b
b

v. (5.29)

The condition for pattern (m,d) is

z <
1 − b

b
. (5.30)

Given (z, v), the labor allocation in Foreign is

β∗ = b (1 + z) . (5.31)

Finally, consider the situation of v = 1, denoted by (d,d). In this situation, wages
are w = Ah (S) and w∗ = A f (S∗). The world equilibrium is achieved as long as

b
(

Ah (S) L + A f (S∗) L∗) = Ah (S) βL + A f (S∗) β∗L∗,

which gives
βz + β∗ = b (z + 1) . (5.32)

Note that β can vary from 1 to b − (1 − b) /z, implying an indeterminacy in pattern
(d,d).
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(a) b > 1/2 (b) b < 1/2

Figure 5.7: World production pattern diagram

5.6.2 World Production Pattern Diagram

Given (z, v), conditions (5.21), (5.23), (5.26), (5.27), (5.29), and (5.30) help identify what
production pattern arises. With these results in hand, we can go further by construct-
ing a diagram to show how world production patterns are distributed on the (z, v)
plane, as shown in Figure 5.7.

The construction of world production pattern diagram is just a visualization of
the conditions for each pattern on the (z, v) plane. Specifically, (5.21) is the condition
for pattern (1,D) to arise, which requires that (z, v) lies above the ray with the slope
(1 − b) /b. Together with v < 1 (and of course z > 0), we obtain a triangle area labeled
(p,d) in Figure 5.7. Given (z, v) in this area, pattern (p,d) arises. As for pattern (p,m),
(5.23) requires (z, v) lying below the ray with the slope (1 − b) /b and on the left of the
vertical line z = b/ (1 − b). This, together with v < 1, gives the area labelled (p,m) in
the figure. As for pattern (d,m), it follows from (5.26) that (z, v) must be on the right
of the vertical line z = b/ (1 − b) and below the horizontal line v = 1, as illustrated by
the corresponding area in the figure.

The distribution of patterns (m,d), (m,p) and (d,p) can be similarly obtained. Note
that world production patterns are affected by the preference parameter b. For exam-
ple, if b < 1/2 and two countries are similar in the effective size (b/ (1 − b) < z <

(1 − b) /b), neither country can specializes in the primary good since the world de-
mand is too small. This difference caused by the preference b can be clearly seen by
comparing Figure 5.7a and Figure 5.7b.
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With the aid of the world production pattern diagram, we can easily pin down
the short-run world production pattern given z and v. The reader may have noticed
that the diagram is nothing more than an exposition of the conventional two-country
Ricardian trade model. But it does provide a new and intuitive way to show how
different world production patterns are related with each other. The diagram is also
very useful for comparative statics exercises. For example, an increase in Home’s labor
endowment (L) causes an increase in z, thus the new world production pattern can
be simply obtained by moving right from the original point. An increase in Home’s
manufacturing productivity (a) has two effects. It raises Home’s effective size aL and
consequently z, implying a horizontal movement to the right. At the same time, an
increase in a reduces Home’s MRT A (S) /a and thus increases v, implying a vertical
movement to the upper. The total effect is a upper-right movement in the diagram.

5.6.3 Labor Allocation and Comparative Advantage Index

In the long run, the comparative advantage index v is endogenously determined be-
cause Home environment S and Foreign environment S∗ can evolve over time. Using
(5.3) and (5.10), we have

Ṡ = Gh (S)−
[
lp Ah (S) β + lma (1 − β)

]
L, (5.33)

Ṡ∗ = Gf (S∗)−
[
l∗p A f (S∗) β∗ + l∗ma∗ (1 − β∗)

]
L∗. (5.34)

To close the dynamic system, we need to express β and β∗ in terms of S and S∗, which
is our focus in this section.

Given the relative effective size z, in the world production pattern diagram, the
candidates of the long-run world production patterns lie on a vertical line. Moving
along the vertical line, v changes and thus, according to (5.20), (5.25), (5.28), (5.31) and
(5.32), β and β∗also changes. But the way β and β∗ change varies with b and z. For
example, if b > 1/2 and (1 − b) /b ≤ z ≤ b/ (1 − b), we obtain a vertical line Z1 as
shown in Figure 5.7a. Moving along Z1 from the bottom, the world production pattern
changes from (p,m) to (p,d) and further to (d,d), (d,p) and (m,p). In contrast, if b < 1/2
and b/ (1 − b) ≤ z ≤ (1 − b) /b, we have a vertical line Z2 as shown in Figure 5.7b.
Moving along Z2 from the bottom, the world production pattern changes from (d,m)
to (d,d) and to (m,d). Table 5.1 summarizes all six cases categorized by the ranges of b
and z, each of which corresponds with a particular way the world production pattern
changes with v.

However, we do not have to discuss all the six cases. First, we can ignore the two
cases related to small Foreign. This is because there are only two countries. Once we
derive the results for small Home, the results for small Foreign can be immediately
obtained by switching “Home” and “Foreign” in the results. Second, we can ignore
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b > 1/2 b < 1/2
Similar sizes (p,m), (p,d), (d,d), (d,p), (m,p) (d,m), (d,d), (m,d)
Small Home (p,m), (p,d), (d,d), (m,d) (p,m), (p,d), (d,d), (m,d)

Small Foreign (d,m), (d,d), (d,p), (m,p) (d,m), (d,d), (d,p), (m,p)

Table 5.1: Possible world production patterns

the case of small Home with b < 1/2. This is because the same changing pattern
appears to be same in the two cases related to small Home. It is enough to discuss one
instead of both cases.

Therefore, it is sufficient to analyze the following three cases, corresponding with
the three shadowed in Table 5.1. For each case, we can write β and β∗ as piecewise
functions of v, denoted by βh (v) and β f (v).

Case 1. High demand for the primary good and similar effective sizes: b > 1/2,
(1 − b) /b ≤ z ≤ b/ (1 − b).

Case 2. Low demand for the primary good and similar effective sizes: b < 1/2,
b/ (1 − b) ≤ z ≤ (1 − b) /b.

Case 3. High demand for the primary good and small Home: b > 1/2, z < (1 − b) /b.

High demand for primary good and similar effective sizes: Case 1 Note that Case
1 corresponds with Z1 in Figure 5.7a. As v increases, the world production pattern
shifts from (p,m) to (p,d) and further to (d,d), (d,p) and (m,p). Home labor allocation
β is

βh (v) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if v ≤ 1−b
b z,

1 if 1−b
b z < v < 1,

[
b − 1−b

z , 1
]

s.t. (5.32) if v = 1,

b − (1 − b) v
z if 1 < v < b

1−b z,

0 if v ≥ b
1−b z.

(5.35)

Foreign labor allocation β∗ is

β f (v) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for v ≤ 1−b
b z,

b − (1 − b) z
v for 1−b

b z < v < 1,

[b − (1 − b) z, 1] s.t. (5.32) for v = 1,

1 for 1 < v < b
1−b z,

1 for v ≥ b
1−b z.

(5.36)
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Figure 5.8: Labor allocations in Case 1

The functions (5.35) and (5.36) are nothing but a summary of previous results includ-
ing (5.20) and (5.28). Figure 5.8 illustrates the shapes of βh (v) and β f (v). Note that
both are continuous functions of v except at v = 1, where both countries are diversi-
fied, and βh (1) and β f (1) satisfy (5.32). When crossing v = 1, βh (v) drops from 1 to
b − (1 − b) /z and β f (v) jumps from b − (1 − b) z to 1 as illustrated.

Low demand for primary good and similar effective sizes: Case 2 Note that Case
2 corresponds with Z2 in Figure 5.7b. As v increases, the world production pattern
changes from (d,m) to (d,d) and to (m,d). It follows from (5.25) and (5.31) that

βh (v) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

b
(

1 + 1
z

)
if v < 1,

[
0, b

(
1 + 1

z

)]
s.t. (5.32) if v = 1,

0 if v > 1,

(5.37)

and

β f (v) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if v < 1,

[0, b (1 + z)] s.t. (5.32) if v = 1,

b (1 + z) if v > 1.

(5.38)

Figure 5.9 illustrates the shapes of βh (v) and β f (v) in Case 2. They are constant over
[0, 1) and (1, ∞). As in Case 1, both countries are diversified at v = 1, and βh (1) and
β f (1) satisfy (5.32). When crossing v = 1, βh (v) drops while β f (v) jumps.

High demand for primary good and small Home: Case 3 Note that Case 3 corre-
sponds with Z3 in Figure 5.7a. As v increases, the world production pattern changes
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Figure 5.9: Labor allocations in Case 2

Figure 5.10: Labor allocations in Case 3

from (p,m) to (p,d) and further to (d,d) and (m,d). Specifically, we have

βh (v) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 if v ≤ 1−b
b z,

1 if 1−b
b z < v < 1,

[0, 1] s.t. (5.32) if v = 1,

0 if v > 1,

(5.39)

and

β f (v) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 if v ≤ 1−b
b z

b − (1 − b) z
v if 1−b

b z < v < 1,

[b − (1 − b) z, b (1 + z)] s.t. (5.32) if v = 1,

b (1 + z) if v > 1.

(5.40)

Their shapes are illustrated in Figure 5.10.
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5.6.4 Characterize Long-run Production Patterns: Preparation

Using the definition of v, and substituting βh (v) and β f (v) into the dynamic equations
(5.33) and (5.34) for β and β∗, we can obtain

Ṡ = Gh (S)−
[

lp Ah (S) βh

(A f (S∗) a
Ah (S) a∗

)
+ lma

(
1 − βh

(A f (S∗) a
Ah (S) a∗

))]
L, (5.41)

Ṡ∗ = Gf (S∗)−
[

l∗p A f (S∗) β f

(A f (S∗) a
Ah (S) a∗

)
+ l∗ma∗

(
1 − β f

(A f (S∗) a
Ah (S) a∗

))]
L∗. (5.42)

Together with the expressions of βh (·) and β f (·), (5.41) and (5.42) provide a complete
description of the dynamics of S and S∗.

Letting Ṡ = Ṡ∗ = 0 in (5.41) and (5.42), we can obtain two equations for the steady-
state environmental stocks S̃ and S̃∗:

S̃ = Sh

(
βh

(
A f

(
S̃∗) a

Ah
(
S̃
)

a∗

))
, S̃∗ = Sf

(
βh

(
A f

(
S̃∗) a

Ah
(
S̃
)

a∗

))
, (5.43)

where Sh (β) is the solution for S given β and Ṡ = 0 in (5.33), and S f (·) is the Foreign
counterpart.

Provided specific parameter values and functional forms, S̃ and S̃∗ can be solved
out from (5.43). We can also conduct some qualitative analysis. For this purpose, note
that (5.43) implies

A f
(
S̃∗) a

Ah
(
S̃
)

a∗
=

A f

(
Sf

(
βh

(
A f (S̃∗)a
Ah(S̃)a∗

)))
a

Ah

(
Sh

(
βh

(
A f (S̃∗)a
Ah(S̃)a∗

)))
a∗

. (5.44)

Let ṽ = A f
(
S̃∗) a/

(
Ah

(
S̃
)

a∗
)

and define

g (v) ≡
A f

(
Sf

(
β f (v)

))
a

Ah (Sh (βh (v))) a∗
. (5.45)

Then (5.44) can be rewritten into
ṽ = g (ṽ) . (5.46)

Therefore, a necessary condition for being in steady state is that the comparative ad-
vantage index satisfies equation (5.46). Furthermore, Appendix 5.A.2 shows that the
steady state is stable if g′ (ṽ) < 1. To summarize,

Proposition 5.13. Let ṽ denote the value of v in a stable steady state, then

g (ṽ) = ṽ, (5.47)

g′ (ṽ) < 1. (5.48)

Having these features, we can examine the properties of the steady state by focus-
ing on the shapes of g (v). Let us first look at Case 1.
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(a) Both countries Brander–Taylor type (b) Both countries Copeland–Taylor type

(c) H: Brander–Taylor type, F: Copeland–Taylor type(d) H: Copeland–Taylor type, F: Brander–Taylor
type

Figure 5.11: Shapes of g (v) in Case 1

Shapes of g (v) in Case 1 As analyzed in details in Appendix 5.A.3, g (v) is constant
on the interval [0, (1 − b) z/b] and [bz/ (1 − b) , ∞), since βh (v) and β f (v) are constant
on the interval. For v in-between, labor allocation β or β∗ changes with v, and so does
Sh (β) or Sf (β∗). The shape of g (v) can be obtained by using the fact that S′

h (β) is neg-
ative (positive) if Home is of Brander–Taylor (Copeland–Taylor) type. The same ap-
plies to Foreign. Therefore, if both countries are of Brander–Taylor type, g (v) is strictly
decreasing on ((1 − b) z/b, 1) and drops at v = 1. If both countries are Copeland–
Taylor type, g (v) jumps at v = 1 and is strictly increasing on (1, bz/ (1 − b)). If Home
is of Brander–Taylor type and Foreign is of Copeland–Taylor type, g (v) strictly in-
creases with v on ((1 − b) z/b, 1) and decreases with v on (1, bz/ (1 − b)). The oppo-
site holds if Home is of Copeland–Taylor type and Foreign is of Brander–Taylor type.
For a world with two countries of different types, whether g (v) drops or jumps at
v = 1 is ambiguous, depending on specific parameter values and functional forms.
Figure 5.11 provides the possible shapes of g (v).

Shapes of g (v) in Case 2 As shown previously, βh (v) and β f (v) are simpler in Case
2, thus yielding simpler properties of g (v), compared to Case 1. Following the similar
steps as in Case 1, It is easy to shown that g (v) is constant over [0, 1) and (1, ∞), and
jumps (drops) at v = 1 if both countries are of Brander–Taylor (Copeland–Taylor) type.
If two countries are of different types, it is ambiguous whether g (v) jumps or drops at
v = 1. Figure 5.12 provides the possible shapes of g (v) in Case 2.

Shapes of g (v) in Case 3 It is easy to see that g (v) in Case 3 has the same feature
with Case 1 if v < 1 and the same feature with Case 2 if v > 1. That is, g (v) remains
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(a) Both countries Brander–Taylor type (b) Both countries Copeland–Taylor type

(c) H: Brander–Taylor type, F: Copeland–Taylor type(d) H: Copeland–Taylor type, F: Brander–Taylor
type

Figure 5.12: Shapes of g (v) in Case 2

constant on [0, (1 − b) z/b] and (1, ∞). If both countries are of Brander–Taylor type,
g (v) is strictly decreasing on ((1 − b) z/b, 1) and drops at v = 1. In contrast, if both
countries are of Copeland–Taylor type, g (v) is strictly increasing on ((1 − b) z/b, 1)
and jumps at v = 1. If two countries are of different types, the behavior at v = 1 is also
ambiguous. Figure 5.13 gives the possible shapes of g (v) in Case 3.

5.6.5 Long-run Production Patterns and Welfare Effects

Since the steady state is the fixed point of g (v), with the shapes of g (v) in hand, we
can easily pin down the steady state by looking for its intersection with the 45 degree
ray. For example, in Figure 5.11a, the intersection point B determines a steady-state
value of v, denoted ṽ in the figure. Because ṽ locates in the range of pattern (p,m),
indicating that the world production pattern in steady state.

Although the model is general, we can still derive some interesting insights. We
begin with two countries of Brander–Taylor type.

Proposition 5.14. If two countries of Brander–Taylor type are in free trade, then
(i) there exists a unique ṽ in steady state;
(ii) neither country can specialize in the manufacturing good in steady state if

A f
(
Sf (0)

)
a

Ah (Sh (0)) a∗
= 1; (5.49)

(iii) neither country can specialize in the primary good in steady state if

A f
(
S f (1)

)
a

Ah (Sh (1)) a∗
= 1, (5.50)

and the country exporting the primary good loses from trade in the long run.
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(a) Both countries Brander–Taylor type (b) Both countries Copeland–Taylor type

(c) H: Brander–Taylor type, F: Copeland–Taylor type(d) H: Copeland–Taylor type, F: Brander–Taylor
type

Figure 5.13: Shapes of g (v) in Case 3

Proof. (i) In all three cases, g (v) decreases with v and drops at v = 1. Clearly, g (v) in-
tersects the 45 degree ray once and only once. This gives the existence and uniqueness.
The stability follows directly from Proposition 5.13.

(ii) Suppose to the contrary that Home specializes in the manufacturing good. Then
Foreign must produce some primary good, implying that β∗ > 0. On the other hand,
it follows from (5.49) that

Ah (Sh (0))
a

=
A f

(
Sf (0)

)

a∗
>

A f
(
Sf (β∗)

)

a∗

holds in steady state. This says that Home has a comparative advantage in the primary
good, implying that Home will not specialize in the manufacturing good in steady
state. The similar argument applies to Foreign, too.

(iii) Suppose to the contrary that Home specializes in the primary good. Then
Foreign must produce some manufacturing good, implying that β∗ < 1. On the other
hand, it follows from (5.50) that

Ah (Sh (1))
a

=
A f

(
Sf (1)

)

a∗
<

A f
(
Sf (β∗)

)

a∗

holds in steady state. This says that Home has a comparative advantage in the manu-
facturing good, implying that Home will not specialize in the primary good in steady
state. Supposing that Home exports the primary good, it must produce both goods
since it cannot specialize in the primary good. As a result, the world price of the
manufacturing good depends only on Home condition, which will be higher than
Ah (Sh (1)) /a in steady state. It follows directly from Proposition 5.11 (iii) that Home
loses from trade in the long run. The similar arguments apply to Foreign, too.
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Note that (5.50) is implicitly assumed in Brander and Taylor (1998), which leads to
their Proposition 4 (i). The long-run welfare effect in two countries of Brander–Taylor
type is similar to that in the case of small open economy. In contrast, if two countries
are of Copeland–Taylor type, something that does not arise in the case of small open
economy happens.

Proposition 5.15. If two countries of Copeland–Taylor type are in free trade, then
(i) there are odd number of ṽ, among which (n + 1) /2 are stable while the remaining are

unstable;
(ii) one country must specialize and gains from trade in the long run;
(iii) the other country may specialize or not; it loses from trade in the long run if remaining

diversified and exports the manufacturing good, otherwise gains.

Proof. (i) In all three cases, g (v) approaches a positive value as v → 0 and approaches
another larger value as v → ∞. Clearly, g (v) must intersect the 45 degree ray odd
number of times. At the first intersection point, we must have g′ (v) < 1, thus the first
one is stable according to Proposition 5.13. At the second intersection point, if any, we
must have g′ (v) > 1, imply that the second one is unstable. At the third intersection
point, if any, we must have g′ (v) < 1, and so on.

(ii) This is equivalent to prove the steady state in which both countries are diversi-
fied, if any, is unstable. In this situation, v = 1 is a fixed point of g (v). Because both
countries are of Copeland–Taylor type, g (v) jumps at v = 1, implying g′ (1) = ∞. Ac-
cording to Proposition 5.13, the steady state is unstable. The gains from trade follows
directly from Proposition 5.12.

(iii) If Foreign exports the manufacturing good in steady state and remains diver-
sified, then according to (ii), Home must specializes in the primary good. Compared
to autarky, Foreign environmental stock degrades, leading to declines in the produc-
tivity in the primary sector. This produces a negative green effect in Foreign since
it produces the primary good in steady state. For the same reason, the world price
of manufacturing good decreases, causing a negative TOT effect. Therefore, the total
welfare effect of trade must be negative in the long run.

As illustrated in Figure 5.11b, the 45 degree ray intersects g (v) three times. At B1

and B3, corresponding to pattern (p,m) and pattern (d,p), g (v) cross the 45 degree ray
from above, implying that B1 and B3 are stable. At point B2, corresponding to pattern
(d,d), g (v) cross the 45 degree ray from below, implying that the diversified steady
state is unstable.

Unlike the case of small open economy, in a two-country world, a country of
Copeland–Taylor type may remain diversified in steady state due to the limitation of
the world market size. It is this difference brings about the possibility that a country
of Copeland–Taylor type loses from trade.
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So far, at most one country may lose from trade in the long run. However, the
following proposition shows that this is not always the case if two countries are of
different types.

Proposition 5.16. If two countries are of different types and the country of Copeland–Taylor
type exports the manufacturing good and remains diversified, both countries may lose from
trade in the long run.

Proof. Without loss of generality, let Home be of Brander–Taylor type and Foreign be
of Copeland–Taylor type. Foreign exports the manufacturing good, so Home exports
the primary good. That is, both countries exports their own dirtier goods. Since For-
eign stays diversified, it loses from trade according to Proposition 5.15 (iii). If the
world price of manufacturing good not low enough, Home also loses according to
Proposition 5.11 (iii).

An direct corollary of Proposition 5.16 is that, if two countries of different types
remain diversified in free trade, both countries lose from trade in the long run. A
question naturally arises: under what condition two countries of different types stay
diversified in trade steady state? An example is provided as follows. If the country of
Brander–Taylor type is relatively small and

A f
(
Sf (1)

)
a

Ah (Sh (0)) a∗
=

A f
(
Sf (0)

)
a

Ah (Sh (1)) a∗
= 1 (5.51)

holds, then two countries of different types remain diversified in free trade. To see this,
assume without loss of generality that Home is of Brander–Taylor type and relatively
small, then we can use the results derived from Case 3. By (5.51), g (v) = 1 on the inter-
val [0, (1 − b) z/b], g (v) > 1 on ((1 − b) z/b, 1), and g (v) < A f

(
S f (1)

)
a/ (Ah (Sh (0)) a∗) =

1 on (1, ∞). This implies that ṽ = 1, namely in steady state two countries stay diversi-
fied.

5.7 Discussion

5.7.1 Parameter-induced Regime Change

As shown previously, the type of country is crucial in determining trade patterns.
This can be seen more clearly by considering two ex-ante identical countries. If both
countries are of Brander–Taylor type, there is no trade between them. In contrast, if
both are of Copeland–Taylor type, the two countries will trade with each other and at
least one country completely specializes.

Remember that the type of country is determined by parameters (lp, lm, a, L) and
functions (A (S), G (S)). Therefore, technological progress or population growth may
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Figure 5.14: Trade volume and labor endowment

change the type of a country, causing dramatic change in trade patterns. To see this
parameter-induced regime change as simply as possible, we use the following specific
functions

A (S) = S, G (S) = K − S. (5.52)

Especially, we focus on a change in labor endowment and let lp = lm = a = 1. Hence,

X1 = SβL,

X2 = (1 − β) L,

E = X1 + X2.

Note that the primary sector is cleaner than the manufacturing sector if S < 1 and
dirtier if S > 1. Given β, the steady-state environmental stock S (β) can be solved
from G (S) = E, namely K − S = SβL + (1 − β) L, which gives

S (β) =
K − (1 − β) L

1 + βL
.

It follows that
S′ (β) =

L (L + 1 − K)
(1 + βL)2 .

Therefore, the type of the country depends on the size of L. If L < K − 1, we have
S′ (β) < 0 and the country is of Brander–Taylor type. If L > K − 1, S′ (β) > 0 and the
country is of Copeland–Taylor type.

Consider now two identical countries with labor endowment L. Suppose the initial
labor endowment is L0 < K − 1. So, there is no trade between two identical Brander–
Taylor countries. Suppose that labor in both countries increases gradually at the same
speed. As long as L < K − 1, there is still no trade. But when L cross K − 1, trade
volume suddenly jumps, as illustrated in Figure 5.14. This is because the type of two
countries changes from the Brander–Taylor type to the Copeland–Taylor type.

5.7.2 Long-run Effect of Policy on Production Patterns

Function g (·) also provides a tool to see the long-run effect of a tax on world produc-
tion patterns. This is because the effect of tax can be represented by a shift of g (·).
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To see this, suppose that Foreign imposes a production tax τ ∈ (0, 1) on the primary
good, then the new MRT∗ (τ) = (1 − τ) A f (S∗) /a∗. The comparative advantage in-
dex becomes

v = (1 − τ)
A f (S∗) a

Aha∗
.

Given this new expression, all results derived in Section 5.6.3 hold, implying that we
have the same world production pattern diagram. As long as tax revenues are trans-
ferred back to households, we also have the same expressions of βh (v) and β f (v). On
the other hand, the expression of g (·) becomes

g (v) ≡ (1 − τ)
A f

(
Sf

(
β f (v)

))
a

Ah (Sh (βh (v))) a∗
.

Compared to the original expression (5.45), the locus of g (·) shifts up. Therefore, say,
if we are in Case 1 and both countries are of Copeland–Taylor type as illustrated in
Figure 5.11b, a tax on the primary sector will raise the steady-state values of v, which
is intuitive. Moreover, among two stable steady-state patterns (p,m) and (d,p), pattern
(p,m) may change to (p,d), or vanish. Pattern (d,p) may change to (m,p). If the tax rate
is high enough, the only world production pattern left would be pattern (m,p).

5.8 Conclusion

By allowing environment impacts from both sectors, this study synthesizes two strands
of literature in trade and environmental economics: one related to renewable resources
extraction and the other to pollution emission. We carefully examine the supply side,
autarky, small open economy and two-country world. One of the interesting implica-
tions obtained from the model is that both countries trading with each other may lose
from trade by exporting their own dirty goods. Focusing on the interaction between
environmental change and trade, we do not consider policies in this study. Moreover,
labor endowment and manufacturing productivity are exogenous. These extensions
are interesting topics and can be discussed by using our model.
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5.A Appendix

5.A.1 Calculation of T′′ (Xm)

Using (5.16) and β = 1 − Xm/aL we have

T′′ (Xm) =
d

dXm

(
dT (Xm)

dXm

)
=

d
β

[
−A′ (S (β)) S′ (β)

β

a
− A (S (β))

a

]
dβ

dXm

=
1

a2L
d
β

[
A′ (S (β)) S′ (β) β + A (S (β))

]

=
1

a2L

{
A′′ (S (β)) S′2 (β) β + A′ (S (β)) S′′ (β) β + 2A′ (S (β)) S′ (β)

}

≡ 1
a2L

∆.

To be concise, henceforth use, say, A′ instead of A′ (S (β)). It follows from (5.13) that

S′′ (β) =
lp A′S′LB2 − B1L

[
G′′S′ − lp A′′S′βL − lp A′L

]

B2
2

=
lp A′ B1L

B2
LB2 − B1L

[
G′′ B1L

B2
− lp A′′ B1L

B2
βL − lp A′L

]

B2
2

=
lp A′B1L2 − B1L2

[
G′′ B1

B2
− lp A′′ B1

B2
βL − lp A′

]

B2
2

=
B1L2

B2
2

[
lp A′ − G′′ B1

B2
+ lp A′′ B1

B2
βL + lp A′

]

=
B1L2

B2
2

[
2lp A′ − G′′ B1

B2
+ lp A′′ B1

B2
βL

]

=
B1L2

B2
2

{
2lp A′ +

B1
B2

[
lp A′′βL − G′′]

}
,

where B1 ≡ lp A − lma, B2 ≡ G′ − lp A′βL. Thus we have

A′S′′β =
B1L
B2

2
A′βL

{
2lp A′ +

B1
B2

[
lp A′′βL − G′′]

}
.

Similarly, we can obtain

A′′S′2β =
B1L
B2

2
B1A′′βL,

and

2A′S′ =
B1L
B2

2
2B2A′.
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Using these results we can calculate

∆ =
B1L
B2

2

{
A′βL

{
2lp A′ +

B1
B2

[
lp A′′βL − G′′]

}
+ B1A′′βL + 2B2A′

}

=
B1L
B2

2

{
B1
B2

βL
[
lp A′′A′βL − G′′A′ + B2A′′]+ 2G′A′

}

=
B1L
B2

2

{
B1
B2

βL
[
−G′′A′ + G′A′′]+ 2G′A′

}

=
B1L
B2

2
A′2

[
2

G′

A′ −
B1
B2

βL
d

dS

(
G′

A′

)]
.

Therefore,

T′′ (Xm) =
1

a2L
∆ =

B1A′2

a2B2
2

[
2

G′

A′ −
B1
B2

βL
d

dS

(
G′

A′

)]
.

Suppose that Xm → aL, then we have β → 0 and thus

lim
Xm→aL

T′′ (Xm) =
2B1A′G′

a2B2
2

.

The stability condition requires G′ < 0 to hold as β → 0, which means that T′′ (Xm)

has the opposite sign to B1 as Xm → aL, which is negative (positive) in a country of
Brander–Taylor (Copeland–Taylor) type.

5.A.2 Stability Condition

The Jacobian of (5.41) and (5.42) is

J =

[
∂Ṡ
∂S

∂Ṡ
∂S∗

∂Ṡ∗
∂S

∂Ṡ∗
∂S∗

]

=

⎡

⎣G′
h − lp A′

hβhL −
(
lp Ah − lma

)
Lβ′

h
∂v
∂S −

(
lp Ah − lma

)
Lβ′

h
∂v

∂S∗

−
(

l∗p A f − l∗ma
)

L∗β′
f

∂v
∂S G′

f − l∗p A′
f β f L∗ −

(
l∗p A f − l∗ma

)
L∗β′

f
∂v

∂S∗

⎤

⎦ .

Note that ∂v/∂S < 0 and ∂v/∂S∗ > 0. The sufficient condition for local stability
around

(
S̃, S̃∗) is

J1 ≡ G′
h − lp A′

hβhL −
(
lp Ah − lma

)
Lβ′

h
∂v
∂S

< 0,

J2 ≡ |J| > 0.
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Note that

|J|
(
G′

h − lp A′
hβhL

) (
G′

f − l∗p A′
f β f L∗

) =

∣∣∣∣∣∣∣

1 − (lp Ah−lma)L
G′

h−lp A′
hβhL β′

h
∂v
∂S − (lp Ah−lma)L

G′
h−lp A′

hβhL β′
h

∂v
∂S∗

− (l∗p A f −l∗ma)L
G′

f −l∗p A′
f β f L∗ β′

f
∂v
∂S 1 − (l∗p A f −l∗ma)L∗

G′
f −l∗p A′

f β f L∗ β′
f

∂v
∂S∗

∣∣∣∣∣∣∣

=

∣∣∣∣∣
1 − S′

hβ′
h

∂v
∂S −S′

hβ′
h

∂v
∂S∗

−S′
f β′

f
∂v
∂S 1 − S′

f β′
f

∂v
∂S∗

∣∣∣∣∣

= 1 − S′
hβ′

h
∂v
∂S

− S′
f β′

f
∂v

∂S∗

= 1 + S′
hβ′

hv
A′

h
Ah

− S′
f β′

f v
A′

f

A f
,

where (5.13) is used. By (5.12), we have G′
h − lp A′

hβhL < 0 and G′
f − l∗p A′

f β f L∗ < 0.
Hence, |J| > 0 is equivalent to

S′
f β′

f v
A′

f

A f
− S′

hβ′
hv

A′
h

Ah
< 1.

On the other hand, it follows from the expression of g (v) that

g′ (v) =
A′

f S′
f β′

f a
Aha∗

−
A f aA′

hS′
hβ′

h
A2

ha∗

= S′
f β′

f v
A′

f

A f
− S′

hβ′
hv

A′
h

Ah
.

Therefore, |J| > 0 is further equivalent to g′ (v) < 1.

5.A.3 Properties of g (v) in Case 1

For pattern (p,m), we have labor allocation (β, β∗) = (1, 0). Using the definition of
g (v), we have

g (v) =
A f

(
Sf (0)

)
a

Ah (Sh (1)) a∗
if v ≤ 1 − b

b
z,

which is a constant. For pattern (p,d), we can obtain, using β = 1 and (5.20),

g (v) =
A f

(
Sf

(
b − (1 − b) z

v
))

a
Ah (Sh (1)) a∗

if
1 − b

b
z < v < 1.

Therefore, if Foreign is of Brander–Taylor type, we have S′
f (·) < 0 and thus g (v) is a

strictly decreasing function on ((1 − b) z/b, 1). If Foreign is of Copeland–Taylor type,
we have S′

f (·) > 0 and thus g (v) is a strictly increasing function. Moreover, noting
that g (v) → A f

(
Sf (0)

)
a/ (Ah (Sh (1)) a∗) as v → (1 − b) z/b, g (v) is a continuous

function on [0, 1).
Similarly, for pattern (d,p), we can obtain, using (5.28),

g (v) =
A f

(
Sf (1)

)
a

Ah
(
Sh

(
b − (1 − b) v

z
))

a∗
if 1 < v <

b
1 − b

z,
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which is a strictly decreasing function if Home is of Brander–Taylor type (S′
h (·) < 0),

and a strictly increasing function if Home is of Copeland–Taylor type.
For pattern (m,p), we have

g (v) =
A f

(
Sf (1)

)
a

Ah (Sh (0)) a∗
if v ≥ b

1 − b
z,

which is also a constant. Note that g (v) → A f
(
Sf (1)

)
a/ (Ah (Sh (0)) a∗) as v →

bz/ (1 − b), g (v) is a continuous function on (1, ∞).
Finally, note that

lim
v→1−

g (v) =
A f

(
S f (b − (1 − b) z)

)
a

Ah (Sh (1)) a∗
,

lim
v→1+

g (v) =
A f

(
Sf (1)

)
a

Ah

(
Sh

(
b − 1−b

z

))
a∗

.

If both countries are of Brander–Taylor type, we have A f
(
Sf (b − (1 − b) z)

)
> A f

(
Sf (1)

)

and Ah (Sh (1)) < Ah (Sh (b − (1 − b) /z)). Hence, limv→1− g (v) > limv→1+ g (v),
which means g (v) jumps down at v = 1. In contrast, if both countries are of Copeland–
Taylor type, we have limv→1− g (v) > limv→1+ g (v), implying that g (v) jumps up at
v = 1.

However, if two countries are of different types, say, Brander–Taylor type Home
and Copeland–Taylor type Foreign, we have Ah (Sh (1)) < Ah (Sh (b − (1 − b) /z))
and A f

(
Sf (b − (1 − b) z)

)
< A f

(
Sf (1)

)
. Hence, unless specific parameter ranges

and functional forms are given, it is ambiguous about which is larger among limv→1− g (v)
or limv→1+ g (v).



Chapter 6

Conclusion

6.1 Externalities and Economic Activities

Economic activities can be categorized into production process, utilizing process, and
allocation process according to their purposes. In the production process, inputs are
transformed into outputs under certain technologies. In the utilizing process, the util-
ity value of outputs is exploited through consumption, investment, or trade. In the
allocation process, inputs and outputs are allocated among economic agents by the
social planner, or through exchange in the market with or without government inter-
ventions.

Externalities can be better understood through its relationship with the three basic
processes. As illustrated in Figure 6.1, externalities can affect the production process.
For example, toxic industrial wastes can severely harm the interest of farmers near the
polluting spot. Externalities can also cause disutility. The health consequences of air
and water pollution are significant examples.

Externalities can arise from any process among the three. In the production pro-
cess, both inputs and outputs may lead to externalities. An example of input-generated
externalities is the congestion phenomena like traffic jams. Deforestation caused by
timber harvests is a good example of output-generated externalities. In the utilizing
process, either consumption, investment, or trade can bring about externalities. A
good example of consumption-generated externalities is automobile emissions. As
for investment, there are two channels through which externalities can arise. On one
hand, capital formation itself often comes at the expense of land and other resources.
On the other hand, investment increases the amount of factors of production. As
for trade, it separates consumption from production and often stimulates investment,
which can aggravate externalities. Moreover, the allocation process can aggravate or
relieve externalities by affecting the allocation of inputs and outputs, as well as the
choice of technology.
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Figure 6.1: Externalities and economic activities

My focus in the dissertation is production externalities that affect the production
activities. I consider the case that production externalities arise from the production
process, and the case that production externalities arise from investment and trade in
the utilizing process.

6.2 Contribution

Having the big picture above, the contribution of the dissertation can be summarized
as follows. In a static framework, Chapter 2 and Chapter 3 focus on the production
possibility frontier (PPF) and examine the impacts of externalities on the production
process. In doing this, both chapters assume a social planner in the allocation process
and ignore the utilizing process. Then, Chapter 2 examines whether the social planner
uses all factors in the presence of production externalities in a general multi-factor
multi-goods model for both input-generated and output-generated cases. The analysis
shows that the two kinds of production externalities are very different in the sense that
using all factors may be inefficient if externalities are input-generated but is efficient if
externalities are output-generated.

Based on this result, Chapter 3 examines the properties of the PPF under strong
input-generated production externalities in a single-factor two-goods model. Here
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“strong” denotes the situation that using all factor is inefficient. I focus on this seem-
ingly special case for two reasons. First, it is an important phenomenon in reality. For
example, a worker has 24 hours but it is clearly inefficient to work for 24 hours without
rest. The public intermediate goods can be also seen as a special case of strong input-
generated production externalities. Second, the PPF tends to be “irregular” (convex)
in this case. Especially when there is only a single factor, the PPF is convex if the gen-
eration function of by-product is quasi-concave. This provides an explanation for how
comparative advantages arise among ex-ante identical agents.

Rather than focusing on the impacts on the production process in a static frame-
work, Chapter 4 and Chapter 5 turn to the context of trade and the environment in a
dynamic framework. The environment is measured by a stock variable, whose change
depends on the difference between the natural growth and the flow of environmental
impacts. For simplicity, both chapters deal with the single-factor two-goods case and
assume that externalities affect only one sector among the two. Then, Chapter 4 starts
off to highlight the role of investment in the interaction between trade and the envi-
ronment. The analysis shows that trade stimulates investment and necessarily harms
the environment in the long run under laissez faire. The policy analysis shows that
although there are two misallocations–too much factor in dirty sector and too much
investment, the social optimum can be achieved by using just one instrument: the pol-
lution tax. Chapter 4 explains why the optimal pollution tax can be interpreted as a
dynamic version of the Pigouvian tax.

In contrast, Chapter 5 emphasizes the importance of modeling the multi-dimensional
functions of the environment. By allowing environmental impacts from both sectors,
the model can formulate both the impact of toxic wastes from manufacturing and the
damage from fish harvests on fishery resources. This small step in the model struc-
ture opens up a new agenda. For example, the model indicates the possibility that
both countries export their own dirty goods and lose from trade in the long run. This
sharply contrasts previous studies. In addition, Chapter 5 carefully investigates the
behaviors of the model, such as the production patterns in a two-country world.

6.3 Future Research

Because of my focus in the dissertation, I consider only local externalities that do not
cross the borders. So, the results cannot apply to, say, greenhouse gases. It is a promis-
ing work to extend the models to transboundary externalities.

I assume perfect competition in Chapter 4 and Chapter 5. But other market struc-
tures such as monopolistic competition and oligopolistic competition are also impor-
tant. It is interesting to see the implications of different market structures.
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The policy is not discussed in Chapter 5, which is another promising direction. The
policy analysis can proceed in three steps. First, given the policy in a country, consider
the optimal policy response of the other country. Second, consider both countries
behaving like the second country in the first step and see what is the outcome of the
Nash equilibrium. Third, consider how to improve from the Nash equilibrium since it
is usually not optimal owing to externalities.

The abatement activities and the choice of technologies are two important topics
and ignored in the dissertation. Moreover, the disutility of externalities and consumption-
generated externalities are also significant in reality but missing here. It is worth in-
troducing these elements into the models in Chapter 4 and Chapter 5.
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