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Abstract

Instead of exploring the uncertainty about the existence of a unit root in the long-span

U.S. real GDP series as in previous studies, e.g., Rudebusch (1993), in this study we

investigate the uncertainty about the state (permanence vs. transitoriness) of the output shock

period by period by using the “innovation regime-switching” (IRS) model. In this model the

effect of a shock may be permanent or transitory in different time periods. By applying the

IRS model to the 1870-2008 annual U.S. real GDP data, we find that the output shocks in the

periods of the 1893 depression, the 1907 financial panic, the two World Wars and the Great

Depression are likely to have had a large but transitory effect, whereas the output shocks in the

remaining periods are likely to have had a permanent effect. This result suggests that the long-

span real GDP is neither a unit-root series nor a trend-stationary series.
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I. Introduction

Since the seminal work of Nelson and Plosser (1982), much effort has been devoted to

exploring whether the U.S. real GDP series can be characterized as a difference-stationary
(hereafter DS) or a trend-stationary (hereafter TS) process. In spite of numerous studies, the

debate about the difference-stationarity versus trend-stationarity of the U.S. GDP remains open.

For example, when exploring long-span U.S. real GDP data, Diebold and Senhadji (1996)

found that conventional Dickey Fuller unit-root tests produce results favoring trend-stationarity,

which casts doubt on the consensus opinion of the existence of unit root in post-war real GDP.

Murray and Nelson (2000, 2002), on the other hand, have argued that the evidence against the

unit root in the long-span real GDP series is mainly caused by the period of turmoil

experienced from 1929 to 1946 due to the Great Depression and World War II. Once the

heterogeneity in the data is taken into account, the long-span real GDP data may still contain a

unit root. In contrast with Murray and Nelson (2002), Papell and Prodan (2004) provided

evidence against unit roots in long-span real GDP by conducting Lamsdaine and Papell (1997)

tests. Their result suggests that the real GDP can be viewed as a TS process with trend breaks

occurring from 1929-1946.

The studies mentioned above bring relevant research full circle on the issue of the

uncertainty about the existence of a unit root in U.S. real GDP. In the models of the pro

difference-stationarity camp, e.g., Murray and Nelson (2002) and Kilian and Ohanian (2002),

permanent shock is presented in each period while transitory shocks, usually with large short-

term effects, occur only occasionally. In contrast, in the models of the pro trend-stationarity

camp, e.g., Diebold and Senhadji (1996) and Papell and Prodan (2004), almost all shocks to

output are transitory while permanent breaks (shocks) occur infrequently. Table 1 summarizes

these empirical results in the literature.

In this study, we argue that what is important about output fluctuations is the nature of

shock (permanence vs. transitoriness) in each period rather than the presence of an exact unit

root. We avoid the usual dichotomy between difference-stationarity and trend-stationarity and

consider the uncertainty of the state (permanence vs. transitoriness) of output shock period by

period. There are a few reasons for doing so. First, from an econometric point of view,

although a DS or TS view of output process simplifies the model structure, such views might

greatly limit the dynamic patterns that can fully characterize the real output series. Essentially,
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DS process Using regimeswitching models

DS process

Rudebusch (1993), Diebold and
Senhadji (1996)

Considering heterogeneity in the data

TS process Using long-span data

DS process Conducting unit-root tests

Kilian and Ohanian (2002)

Murray and Nelson (2000, 2002)

Papell and Prodan (2004,2007)

Suggestions Notes

Ben-David and Papell (1995)

TS (with offsetting trend breaks) Using Lumsdaine and Papellʼs (1997)
tests

Papers

TS with breaks Using Zivot and Andrewsʼ (1992)
tests

TABLE 1. DYNAMIC BEHAVIOR OF U.S. REAL GDP

Nelson and Plosser (1982)



there is no a priori reason that one type of output shock (permanent or transitory) should

always prevail or dominate in a very long time span.
1

In addition, output shocks in periods of

tranquility are highly likely to be fundamentally different in nature from those periods of

turmoil. Second, on the theoretical side, as Sims (1988), Durlauf (1989), Christiano and

Eichenbaum (1990) and many others have demonstrated, the existence of an exact unit root in

the real output per se may not help in identifying the true economic structure. Instead, as has

been convincingly argued by Christiano and Eichenbaum (1990), it is the relative importance of

permanent and transitory shocks and economic agentsʼ perception of these shocks that

determine the dynamic properties of economic models. Accordingly, a model which specially

accounts for the uncertainty of permanent and transitory shocks should have potential to shed

light on the relative importance of these shocks and, as a result, the underlying structure of

economic models. Third, from the point of view of output forecasting, the knowledge of the

nature of recent output shocks is much more important than the knowledge of whether the

output process contains a unit root. For example, in an event where real output has declined

mainly due to transitory factors, e.g., monetary shocks, the output is expected to bounce back to

its long-term mean or time trend. In contrast, in an event where output has declined mainly

due to permanent factors, no such rebound of output is expected. That is, the different states of
recent output shocks should have very different implications as to how the future output may

change. Accordingly, the knowledge of the state of recent output shocks provides important

information about the future output path.

To account for the uncertain effect of each shock, this study considers a more flexible

model: the “innovation regime-switching” (henceforth IRS) model recently proposed by Kuan et

al. (2005), and demonstrates how such a modeling strategy can be applied to analyzing the

persistence of output fluctuation period by period. The IRS model is an unobserved-

component model which treats a time series process as consisting of a unit root with a drift

component and a TS component; whether a particular component is activated depends on an

unobservable state variable whose law of motion is governed by certain probability laws. Thus,

the effects of shocks in an IRS process are not fixed at all times but may be permanent or

transitory in different time periods. If the components are state independent, the model is

reduced to a conventional DS or TS model.

The IRS modeling approach has several merits worth mentioning. First, the IRS model

accommodates both trend-reverting and trend-disturbing behaviors, and hence bridges the gap

between TS and unit-root nonstationary models. As a result, the model provides us with a

more flexible framework to explore the persistent nature of U.S. GDP. Second, to

accommodate the heterogeneity in the data, the IRS model allows for potential asymmetry in

volatility across different regimes by permitting switching variances in the random shocks.

Third and more importantly, based on the data, the IRS model estimates whether or not the

permanent or transitory state of shock activated is governed by the probability law, and the

probabilities of the respective states in each period. Due to this particular feature of the model,

no a priori assumption regarding the importance of permanent vis-à-vis transitory shocks in the

GDP process is required. In other words, the model just lets the data speak for themselves. As

a result, the estimation results of the IRS model can provide evidence on the relative

importance of permanent and transitory shocks during the sample period. Consequently, the
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model can serve as a benchmark to evaluate the plausibility of various GDP models with

differing assumptions regarding the state of the shocks, and this can help to shed light on the

debate regarding the nature of real GDP fluctuations.

Our empirical study uses U.S. real GDP from 1870 to 2008. The study suggests that the

proposed IRS modeling approach is able to reveal important features of output data. In

particular, the estimation results show strong evidence that permanent and transitory output

innovations prevail in different sub-sample periods. This suggests that over the very long time

period analyzed, U.S. real GDP is neither a DS series nor a TS series (including pure TS or

trend-break model a la Papell and Prodan, 2004) as indicated in previous studies. Our results

reveal that the output shocks in the periods of the 1893 depression, the 1907 financial panic,

the World War I, the Great Depression and the World War II are more likely to have had a

transitory effect. The results indicating that the output shocks in the Great Depression and the

two World Wars had large transitory effects are compatible with the theorizing of Friedman and

Schwartz (1963), Lucas and Rapping (1969) and Barro (1981). Our results also show that

output shocks for the post World War II period are more likely to have had a permanent effect,
and this is consistent with the consensus opinion of the existence of a unit root in the post-war

GDP.

To evaluate the performance of models with differing assumptions regarding the state of

output innovations, we follow Rudebusch (1993) and conduct a Monte Carlo study of the

rejection rates of several unit-root tests̶ namely, the efficient augmented Dickey-Fuller test of

Elliott et al. (1996) and the sequential breakpoint selection tests of Lamsdaine and Papell

(1997). In our simulation, we generate data from the best-fitting IRS model and other best-

fitting benchmark models, including a pure unit-root ARIMA model, the regime-switching

model of Murray and Nelson (2002), a TS ARMA model, and the trend-break model proposed

by Papell and Prodan (2004). Our simulations show that the unit-root tests, while producing

evidence unfavorable to the existence of a unit root, are not able to discriminate between

TS/trend-break models and the empirical IRS model. In addition, the sample estimates of the

unit-root test statistics often have values close to the center section of the finite-sample

distribution of the statistics generated from the empirical IRS model. This, together with our

estimation results, indicates that the proposed IRS model may serve as the best model of U.S.

real GDP among many alternatives. Finally, in our Monte Carlo experiment of the sequential

breakpoint selection tests of Lamsdaine and Papell (1997), we find that the tests tend to

spuriously identify permanent trend breaks in periods where the data have actually been

generated by transitory innovations according to the empirical IRS model, especially during the

period from 1929-1946. This raises strong doubt about Papell and Prodanʼs (2004) contention

that permanent trend breaks exist in the U.S. real GDP during the period of 1929-1946.

The outline of this paper is as follows. In section II, we describe and explore the long-

span U.S. real GDP data employed in study. In particular, we conduct two unit-root tests for

the data: the efficient augmented Dickey-Fuller test from Elliott et al. (1996) and the sequential

breakpoint selection tests proposed by Lamsdaine and Papell (1997). In section III, we apply

the IRS model to the long-span real GDP data and discuss the estimation results. In section IV,

we employ the Rudebuschʼs (1993) bootstrap procedure to explore the finite distribution

properties of the unit-root test statistics of the IRS model as well as some benchmark DS and

TS models. This procedure is also used to evaluate the plausibility of the real GDP data being

generated from the processes. The concluding remarks are given in section V.
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II. Unit-Root Testing Results

We now examine the state of shocks on annual U.S. real GDP from 1870 to 2008 which is

extracted from Angus Maddisonʼs homepage: www.ggdc.net/maddison/. This is the long-span

real GDP data widely discussed and employed in recent studies, e.g., Murray and Nelson (2000,

2002) and Papell and Prodan (2004). We first conduct unit-root tests on the log of the GDP

series, yt . Instead of using the standard augmented Dickey-Fuller (ADF) test, we apply the

efficient ADF-GLS  test of Elliott et al. (1996) which is based on the following auxiliary

regression:

(1−B)y
t=α0+α1t+ψ0y


t1+∑

m

i1

ψi(1−B)y
ti+εt, (1)

where B is the lag operator and y
t is given by y

t=yt−β

' zt with zt=(1,t)' and with β


the OLS

estimate of β obtained from regressing

(y 1, y 2, ..., y T)=(y1, (1−aB)y2, ..., (1−aB)yT)

on

(z1, z2, ..., zT)=(z1, (1−aB)z2, ..., (1−aB)zT)

at a=1−13.5T. We reject the null hypothesis of a unit root if ψ0 in (1) is significantly large.

Because conventional unit-root tests tend to misinterpret a trend-break series as DS series,

we also employ tests that take into account the possibility of structural breaks in the trend.

Here, we follow Papell and Prodan (2004) and adopt the procedure set up by Lumsdaine and

Papell (1997) to test the unit-root null against a TS alternative with two breaks:

(1−B)yt=α0+α1t+δ1DU1,t+δ2DU2,t+ψ0yt1+∑
m

i1

ψi(1−B)yti+εt, (2)

where DUi,t=1 tTbi for i=1,2, 1 ⋅ is the indicator function and Tbi is the time at which the

change in the trend function occurs. We reject the null hypothesis of a unit root in favor of TS

with breaks if ψ0 in (2) is significantly different from zero. The model (2) is estimated

sequentially for each break date Tbi=m+i,...,T−i where i=1,2, Tb1≠Tb2, and Tb1≠Tb2+1 .

We select breaks for which the maximum evidence against the unit-root null.

To choose the number of augmented lags m, the Schwarz information criterion (SIC) and

the modified information criterion of Ng and Perron (2001) are used for the DF-GLS  test. In

addition, the “general-to-specific” recursive t statistic procedure of Ng and Perron (1995) is

conducted to select the lag length for the Lumsdaine-Papell test. For all tests considered, the

maximum value of m is set to 12. The asymptotic critical values for the ADF-GLS  test

statistic are provided by Elliott et al. (1996). The finite-sample critical values for the

Lumsdaine-Papell test statistic are calculated based on the Monte Carlo method with 5, 000

replications. Details of these bootstrap critical values are omitted to save space but can be

found in Lumsdaine and Papell (1997).

The testing results are summarized in Table 2. From the table it can be seen that, for all

the tests considered, the null hypothesis of the existence of a unit root in the real GDP process
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is rejected. For example, the ADF-GLS  test rejects the unit-root null at the 1% level, while

the Lumsdaine-Papell test also rejects the unit-root null in favor of broken trend-stationarity at

the 1% level. These results are consistent with the findings of Diebold and Senhadji (1996) in

that, with longer span data, one tends to obtain evidence in favor of trend stationarity in the

real GDP. The latter results are also compatible with the conclusions of Ben-David and Papell

(1995) and Papell and Prodan (2004) in that the real GDP series may exhibit significant trend

breaks during the early part of the last century.
2

The overall test results here appear to suggest

that, almost all shocks to real GDP are transitory while permanent breaks (shocks) occur very

infrequently.

III. The IRS Model

Although the testing results in the previous section suggest the rejection of the null

hypothesis of a unit root, it should be noted that the rejection of a unit root does not necessarily

imply that the GDP series must be stationary. The dynamic properties of real GDP may be

more complex than those of a unit root model or a TS model. Moreover, Sims (1988), Durlauf

(1989), Christiano and Eichenbaum (1990) and many others point out that what is important for

the dynamics of output is not the presence of an exact unit root per se. Rather, it is the

persistence of each shock and the relative importance of temporary and permanent shocks. It is

thus rather premature to draw any conclusion about the state of shocks based only on these

tests. These notions underpin the models that allow for the fractional difference parameter, e.g.,

Diebold and Rudebusch (1989), and stochastic unit roots, e.g., Granger and Swanson (1997).

Such notions also motivate the “current depth of recession” model proposed by Beaudry and

Koop (1993), which differentiates the persistent nature of the real GDP shocks in expansions

and recessions.

1. The Proposed Model

Instead of adopting a simplified dichotomy between DS and TS specifications, we consider

a more flexible model, a variant of the IRS model of Kuan et al. (2005), to examine the output

dynamics. We assume that the log of U.S. real GDP consists of two components̶ namely,

yt=y1,t+y0,t:
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Depression as well as that of the World War II.

2 1929 1939

−0.1498 −3.8265** 1 ̶ ̶

ψ0 Test Statistic Lag (m)

Lumsdaine-Papell

Break 1

Note: Critical values for ADF-GLS  are − 3.544 (1%), − 3.000 (5%) and − 2.710 (10%); those for

Lumsdaine-Papell are −6.69 (1%), −6.13 (5%) and −5.89 (10%). Test statistics with two asterisks are significant

at 1% level.

Break 2Test

−0.3813 −7.2032**

TABLE 2. UNIT-ROOT TESTS FOR U.S. REAL GDP FROM 1870 TO 2008

ADF-GLS



(1−B)y1,t=α0+stv t,

Ψ (B)y0,t=Φ(B)(1−st)vt,
(3)

where Ψ (B)=1−ψ1B−⋯−ψmB
m and Φ(B)=1−φ1B−⋯−φnB

n are finite-order polynomials

of the lag operator such that they have no common factors and their roots are all outside the

unit circle. st=0,1 denotes an unobserved first-order Markov chain with the transition matrix

P=
P(st=0st1=0) P(st=1st1=0)

P(st=0st1=1) P(st=1st1=1) =
p00 p01

p10 p11,
and υt=α1+εt is a non-zero mean innovation. The term εt is a white noise with mean zero

and variance depending on st, i.e., σ
2
st. This model is referred to hereafter as an IRS(1; m, n)

model, signifying that one component (y1,t) has a random walk structure and the other (y0,t) has

a stationary ARMA(m, n) structure. Compared with the IRS model originally considered by

Kuan et al. (2005), the model (3) accommodates potential asymmetry in volatility across

different regimes by permitting switching variances in the random shocks. Such a specification

is capable of describing the heterogeneity in long-span U.S. real GDP.

A novel feature in model (3) is that only one component is activated in a given time

period, depending on the realization of st . When st=1, the first component y1,t is excited by

the random shock, while y0,t keeps evolving according to ARMA dynamics without the new

shock. As long as st=1, the corresponding random shock has a permanent effect on future ytj

(j>0) and generates unit-root type dynamics. When st=0, the random shock activates y0,t

while leaving y1,t intact. The random shock thus has a transitory effect on future ytj and

induces stationary ARMA dynamics. This model specification allows the effect of a random

shock to alternate from time to time and thus is able to capture both nonstationary and

stationary behaviors. It is worth noting that in a special case where st=1 (st=0) with

probability one for all t, the model (3) is simply reduced to a conventional DS random walk

model or a TS ARMA model, as discussed in the previous section.

The proposed model is also able to capture potential trend-breaks in the data. To see this,

note that the model (3) can be expressed as

yt=α0t+∑
t

i1

siv i+ψ(B)
1
(1−st)vt, (4)

with y0=0 and vi=0 for i≤0, where the last component of (4) is a weakly stationary process

generated by transitory innovations and gives rise to short-run fluctuations. If st=1 at

t=Tb1+1 and st=0 otherwise, then (4) becomes

yt=α0t+vt DU1,t+ωt,

where ωt is a weakly stationary process. As such, yt is a TS process with one endogenous

break, in the sense that the break is due to the presence of permanent shocks vt. In this case,

the expected magnitude of the trend break is E(vt)=α1. Similarly, the proposed model is able

to approximate a TS process with two breaks if st=1 at t=Tb1+1 and at t=Tb2+1, and st=0

otherwise.

Model (3) can be written as a special case of a general dynamic model with state-
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dependent coefficients; see Kuan et al. (2005) for more details. Once the model is written in

the state-space form with switching coefficients, the estimation algorithm (also the algorithms

for calculating the filtering and smoothing probabilities) developed in Kim (1994) can be

applied. In this study, we follow Kuan et al. (2005) by writing (3) in a Markov-switching

state-space form, as proposed by Kim (1994), and compute the approximate quasi-maximum

likelihood estimates (QMLE):

θ=(ψ1,...,ψm,φ1,...,φn,α0,σ
2
0 ,σ

2
1 ,p00,p11)' .

By applying Kimʼs (1994) estimation algorithm, we obtain the filtering probabilities

P(st=0Yt; θ), the smoothing probabilities P(st=0YT; θ) and quasi-log-likelihood function as

byproducts, where Yt=y1,...,yt is the collection of all the observed variables up to time t. We

shall use these probabilities to examine the effect of output shock in each period.

2. Estimation Results

To assess the empirical relevance of the proposed IRS model, we estimate (3) based on the

annual data of U.S. real GDP from 1870 through 2008, with a total of 139 observations. We

estimate an array of IRS(1; m, n) models for the U.S. real GDP with m and n no greater than 4.

The parameter θ is estimated using the algorithm described in Kim (1994) and Kuan et al.

(2005). This algorithm is initialized by a broad range of random initial values. The covariance

matrix of θ is −H(θ＾)
1
, the Hessian matrix of the log-likelihood function evaluated at the

QMLE θ＾. Among all the models considered, the IRS(1; 2, 0) model is selected based on the

SIC. The estimation results are summarized in Table 3. As the table shows, all parameter

estimates (except α0) are statistically significant at the 5% level.

To confirm the adequacy of the model, we conduct some diagnostic checks on the

estimated model, including the Ljung-Box (1978) Q test and the LM test of Engle (1982) on

the ARCH effect. As shown in Table 3, the resulting statistics for the residuals are

Q(12)=15.123, Q(24)=31.782, ARCH(2)= 1.788 and ARCH(4) = 4.290. These statistics are
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0.0204 −0.063

Estimate

α1

Standard Error t-statistic

Q(12)=15.123

Log-Likelihood=−218.910

p11

ψ2

ψ1

ARCH(2)=1.788

σ0

Note: t-statistics with anasterisk are significant at 5% level. The term Q(·) is the Q statistic in Ljung-Box (1978) and

ARCH(·) denotes the LM statistic in Engel (1982).

σ1 0.0091 3.505*

0.1516 0.0523 2.898*

−0.3348 0.0593 −5.645*

0.8222 0.0924 8.984*

0.0276 0.0133

Parameter

2.075*

−0.0013

ARCH(4)=4.290

Q(24)=31.782

0.16420.6300

SIC=−398.519

p00
0.9473 0.0231

0.0319

TABLE 3. QUASI-MAXIMUM LIKELIHOOD ESTIMATES OF THE PROPOSED MODEL

α0



all insignificant even at a 10 percent level under the χ2 (12), χ2 (24), χ2 (2) and χ2 (4)

distributions, respectively. Hence, it appears that there is no serial correlation and conditional

heteroskedasticity in the residuals. Following Engel and Hamilton (1990), we also test whether

the state variables are independent over time, i.e., p00+p11=1. The resulting Wald statistic is

13.270, rejecting the null at a 1 percent level under the χ2 (1) distribution. This result is

consistent with the Markovian specification.

We now turn to some interesting results from our IRS model estimation. In Figure 1 we

plot the estimated filtering and smoothing probabilities of st=0 (i.e., transitory shock), where

the shaded areas denote the periods of World War I (1914-1918), the Great Depression (1929-

1933) and World War II (1941-1946), respectively. We find that during the sample period

there are 19 years (about 14 percent of the sample) where the estimated smoothing probability

P(st=0YT;θ) is greater than 0.5. This result reveals that permanent innovations are more likely

to prevail in about 86 percent of the sample period while transitory innovations dominate in the

remaining period. The finding that both permanent and transitory shocks occur frequently is

quite different from the assertions of the traditional TS model, the trend-break model and the

unit-root model as discussed in Diebold and Senhadju (1996), Papell and Prodan (2004) and

Murray and Nelson (2000, 2002). In contrast, our findings accord well with Newbold et al.

(2001), in that neither simple TS nor DS specifications are found to adequately characterize

U.S. long-span real GDP data. In addition, our estimation results show that, with σ^0 about 4

times of σ^1 (as Table 3 shows), the U.S. real GDP tends to be much more volatile in the

periods where transitory shocks are present.

Figure 1 also reveals distinctly different dynamic patterns of real GDP for the pre- and

post-1947 periods. For the post-1947 period (with 60 years), the smoothing probabilities of

transitory shocks are all less than 0.5, indicating that permanent shocks are the dominant

driving force behind the GDP fluctuations and that unit-root nonstationarity is the prevailing

dynamic pattern. The results are consistent with the consensus findings of Campbell and
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st=0 FOR U.S. ANNUAL REAL GDP FROM 1870 TO 2008
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Mankiw (1987), Murray and Nelson (2000) and Newbold et al. (2001), among many others. In

contrast, Figure 1 also shows that transitory shocks occur frequently during the pre-1947 period.

For example, the estimated filtering and smoothing probabilities of st=0 are greater than 0.5

for the periods of the 1893 financial panic, the 1907 banking crisis, the Great Depression and

the two World Wars. This, together with the estimation results of σ0 and σ1, suggests that the

aforementioned events had large but transitory effects on output. This result is similar to the

finding of Murray and Nelson (2000, 2002) which suggests that the Great Depression and

World War II are two major episodes in which output shocks had large effects. A major

difference is that, in the empirical IRS(1; 2, 0) model, output innovations in the periods of the

1893 depression, the 1907 financial panic, the Great Depression and the two World Wars are

more likely to have had a transitory effect. The model of Murray and Nelson (2002), on the

other hand, postulates a priori that the permanent shocks are presented in each of the sample

periods, even in the period of the pre-1947 turmoil. As shown in the following simulation

experiments, such a difference may influence the rejection frequencies of unit-root tests

dramatically.

IV. Simulation Results

We now proceed to evaluate the likelihood of various benchmark models in generating the

U.S. output data by employing Rudebuschʼs (1993) bootstrap procedure. We first consider the

empirical IRS(1; 2, 0) model as well as models representing the two opposing approaches of

aggregate output modeling: TS vs. DS models. In the TS camp, we explore the pure TS

ARMA(m, n) model and the TS model with two breaks, as in Papell and Prodan (2004). In the

DS camp, we study the pure ARIMA(m, 1, n) model and the model of Murray and Nelson

(2002):

yt=y 1,t+s ty 0,t,

y 1,t=α0+y 1,t1+vt,

y 0,t=ψ1y 0,t1+ψ2y 0,t2+ut,

(5)

where s t=0,1 denotes an unobserved state variable whose law of motion is governed by a

first-order Markov chain with the transition matrix P, and the error terms vt and ut are Gaussian

white noises with cov(vt,ut)=0 for all t . We estimate an array of TS ARMA (m, n) and

ARIMA (m, 1, n) models with m and n no greater than 8 and choose an appropriate

specification based on the SIC.

Before presenting the empirical results of these benchmark models, it would be of interest

to discuss the differences between the IRS model and the regime switching model of Murray

and Nelson (2002). By comparing the specifications in (5) and (3), it is apparent that the

Murray and Nelsonʼs (2002) model actually shares a similar setup with the IRS model used in

this study. In particular, both models assume that the real output process is driven by two

types of shock: permanent and transitory shocks. However, importantly, the two models differ

in their treatment of permanent shock in the real output process, yt. In the IRS model, the state

of the output shock at each sample point is either permanent or transitory and there is no

assurance that the permanent shock should always occur. In contrast, the Murray and Nelsonʼs
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(2002) model imposes, a priori, that the permanent shock is certain at each sample point; that

is, the real output follows a unit-root process. The setup of Murray and Nelson (2002) may not

always be appropriate, however. For example, Beaudry and Koop (1993) and Bradley and

Jansen (1997) show that positive shocks to U.S. GDP are more persistent than negative shocks;

see also Kuan et al. (2005). Thus, by allowing the innovation to excite only one component,

the proposed model allows for distinct (unit-root and stationary) dynamics in different periods.

We now turn to discuss the empirical results of these models. The estimation results of

these benchmark models are summarized in Table 4. As the table shows, the best fitting

benchmark models are: the TS ARMA (2, 0) model, the trend-break model in (2) with

Tb1=1929, Tb2=1939 and m=2, the ARIMA(2, 1, 1) model and the model (5) with transition

probabilities p00=0.9887 and p11=0.9740. Note that the parameter estimates of model (5) are

similar to those reached in Papell and Prodan (2004). It is also of interest to know that, based

on the estimated temporary component y 0,t in model (5), the output shocks during the 1929-

1945 period have much greater volatility than those during the rest of the sample period,

confirming Murray and Nelsonʼs (2000, 2002) argument for the heterogeneity in the output

data.
3

In the subsequent simulations a la Rudebusch (1993), the data are generated from these

best-fitting benchmark models and the empirical IRS(1; 2, 0) model.

In our bootstrap experiments, we simulate data according to the estimation results reported

in Tables 3 and 4. Moreover, we generate the state variables of the IRS model by setting st=0

for the periods where the smoothing probability for the state of transitory shock to occur is

greater than 0.5 and st=1 for the rest of the sample period. For the Murray and Nelsonʼs

model of equation (5), we set st=1 for the 1929-1945 period and st=0 for the rest. Based on

100,000 replications of bootstrap simulations with a sample size of 139, we obtain the finite-

sample distributions of the ADF-GLS  and the Lumsdaine-Papell test statistics for the various

best-fitting models. To make exposition easier, we label the finite-sample distributions of the
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3 The estimated temporary component of model (5) is available from the authors upon request.

Std. Estimate Std.

α1

Murray-Nelson

−

ARIMA(2, 1, 1)

−1.217

TS ARMA(2, 0)

0.9887

p11

Trend-Break

Note: The term Std. denotes the standard error. Estimates with an asterisk are significant at 5% level.

p00

0.0129* 0.001

0.0335* 0.001 0.0322* 0.001 2.1798* 0.497 4.4586* 0.614

Estimate Std. Estimate
Parameter

Std. Estimate

−−

0.9740 0.772 − − − − − −

− − − − 0.0060* 0.001

−0.0010.0199*σv

−−−−−−0.0010.0624*σu

TABLE 4. PARAMETER ESTIMATES OF BENCHMARK MODELS FOR U.S. REAL GDP

−−

ϕ1

0.0230.0441*0.0310.0494*0.0100.0496*−−σε

−−−−

α0

−

0.16080.083−0.3391*0.082−0.3365*0.020−0.3963*ψ2

−−−−0.013−0.9974*−−

−−−−−ψ0

0.0760.3167*0.0821.1532*0.0821.1557*0.0191.2227*ψ1

0.081

−−−δ1

0.0190.0839*−−−−−−δ2

0.062−0.3813*−

0.022−0.1205*−−−



IRS(1; 2, 0) model, the TS ARMA(2, 0) model, the TS model with two breaks, the ARIMA(2,

1, 1) model, and the model of Murray and Nelson (2002) as f IRS(τ^), fTS(τ^), fTB(τ^), fDS(τ^) and

fMN(τ^), respectively, where τ^=τ^1,τ^2 is the ADF-GLS  test statistic in (1) or the Lumsdaine-

Papell test statistic in (2).

2. Finite-Sample Distributions of the ADF-GLS Statistic

In Figure 2, the finite-sample distributions fTS(τ^1), fDS(τ^1), and fMN(τ^1) of the ADF-GLS 

statistic are plotted, where τ^1,sample=−3.8265 denotes the actual sample value of ADF-GLS test

statistic obtained in Section 2. In this figure the shaded area under fDS(τ^1) and to the left of

τ^1,sample represents the probability of obtaining a value of the ADF-GLS  test equal to or smaller

than −3.8265, conditional on the best fitting ARIMA(2, 1, 1) model. This p-value, denoted as

P(τ^1≤τ^1,samplefDS( τ^1)),

is equal to 4.29%. Therefore, given the sample test statistic, the ARIMA model is rejected at

the five percent level. The other hatched area in the figure is the one under fTS(τ^1) and to the

right of τ^1,sample. The area represents the probability of obtaining a value of the t test equal to or

greater than −3.8265, conditional on the best-fitting TS ARMA(2, 0) model. This p -value,

denoted as

P(τ^1≥τ^1,samplefTS( τ^1)),

is equal to 36.95%. Thus, it is highly unlikely to obtain τ^1,sample when the true data generating

process is ARIMA(2, 1, 1) but it is very likely when the data generating process is TS ARMA

(2, 0). The result here confirms previous findings that when U.S. real output data of longer

span are employed, the test results often point toward the rejection of a unit-root while in favor

of a deterministic trend, e.g., Ben-David and Papell (1995), Cheung and Chinn (1997), and

Diebold and Senhadji (1996). Nevertheless, the p-value corresponding to the area under fMN(τ^1)
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FIGURE 2. FINITE-SAMPLE DISTRIBUTIONS OF THE ADF-GLS STATISTIC FOR THE TS

ARMA, THE MURRAY-NELSON AND THE ARIMA MODELS
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and to the left of τ^1,sample, i.e.,

P(τ^1≤τ^1,samplefMN( τ^1)),

is 18.08%, indicating that the unit-root hypothesis cannot be rejected at the five percent level.

This result confirms the finding of Murray and Nelson (2002) which suggests that the unit-root

hypothesis is incorrectly rejected too often when the underlying model is a unit root process

augmented with a transitory component to account for the heterogeneity in the historical GDP

series.

In order to evaluate the empirical IRS(1; 2, 0) model, its finite-sample distribution of the

ADF-GLS  statistic, f IRS(τ^1), is plotted in Figure 3 along with those of the ARIMA(2, 1, 1),

ARMA(2, 0) and Murray and Nelsonʼs (2002) model. In this figure, the dashed lines denote

the corresponding distributions fTS(τ^1), fDS(τ^1), and fMN(τ^1) while the solid line represents the

distribution for the proposed IRS model. As the figure shows, the τ^1,sample is located close to the

center part of f IRS(τ^1). More precisely, the p-value,

P(τ^1≤τ^1,samplef IRS(τ^1)),

is 61.96%. This result indicates that, among the models considered in Figure 3, it is most

likely to obtain a sample estimate of τ^1,sample of −3.8265 when the true data generating process

of U.S. GDP is the assumed IRS(1; 2, 0) model. Moreover, it is of interest to compare the

simulation results of Murray and Nelsonʼs model and the IRS model. Murray and Nelsonʼs

(2002) model is essentially a DS model, and hence the permanent shocks prevail in each period

of the sample. In contrast, the proposed IRS model is neither a DS nor a TS process but a

mixture of the two, which hence allows its random innovations to have permanent and

transitory effects in different periods. Although both of the models can capture the

heterogeneity in the data, the p-value of Murray and Nelsonʼs model is much lower than that of

the IRS model (18.08% vs. 61.96%). The huge difference in the p-values may be attributable

to the two modelsʼ different treatment of permanent shocks: the permanent shock appears in
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FIGURE 3. FINITE-SAMPLE DISTRIBUTIONS OF THE ADF-GLS STATISTIC FOR THE IRS

MODEL (SOLID LINE) AND OTHER MODELS (DASHED LINES)
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each point of the sample period with certainty in the former (i.e., the Murray and Nelsonʼs

model) but not in the latter (i.e., IRS model). Consequently, our result suggests that the

rejection rates of the unit-root tests are quite sensitive to treatment of the big events (such as

financial crisis, the Great Depression and World Wars) as permanent or transitory innovations.

3. Finite-Sample Distributions of the Lumsdaine-Papell Statistic

In Figure 4 we plot the finite-sample distributions of the Lumsdaine-Papell test statistic:

f IRS(τ^2), fTB(τ^2) and fMN(τ^2), where τ^2,sample=−7.2032 denotes the actual sample value obtained in

Section 2.
4

As the figure shows, the shaded area under fMN(τ^2) and to the left of τ^2,sample is quite

small, corresponding to a p-value of

P(τ^2≤τ^2,samplefMN(τ^2))=4.53%.

In contrast, the hatched area under fTB(τ^2) and to the right of τ^2,sample is rather sizable,

corresponding to a p-value of

P(τ^2≥τ^2,samplefTB(τ^2))=32.97%.

These findings suggest that it is unlikely to reach τ^2,sample when the true data generating process

is assumed to be Murray and Nelsonʼs model while it is very likely to reach τ^2,sample when the

data generating process is assumed to be the TS model with two trend breaks. The finding here

confirms that result of Papell and Prodan (2004, 2007), i.e., the Lumsdaine-Papell test often

points toward the rejection of a unit root when in favor of a trend break process and the long-

span U.S. real output data are employed. However, it is worth noticing that in Figure 4, the
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4 Since the finite-sample distributions of the Lumsdaine-Papell test statistic for the ARIMA(2, 1, 1) and ARMA(2, 0)

are more extreme than Murray and Nelsonʼs (2002) model and the TS model with two breaks, respectively, to keep the

figure simple we choose not to plot them.

FIGURE 4. FINITE-SAMPLE DISTRIBUTIONS OF THE LUMSDAINE-PAPELL STATISTIC FOR

THE TREND-BREAK, THE MURRAY-NELSON AND THE IRS MODELS
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area under f IRS(τ^2) and to the left of τ^2,sample is also sizable, which corresponds to a p−value of

P(τ^2≥τ^2,samplef IRS(τ^2))=27.32%.

This indicates that the Lumsdaine-Papell test is not able to discriminate between the trend-

break models and the IRS model, even though it provides evidence against Murray and

Nelsonʼs DS model.
5
This result suggests that the Lumsdaine-Papell test results should be

interpreted with caution. When the Lumsdaine-Papell test indicates the rejection of the unit-

root null of Murray and Nelsonʼs DS processes, as found in Papell and Prodan (2004), the

result should not automatically be taken as evidence supporting the TS model with offsetting
trend breaks. This is because a process very different from the TS model with breaks, such as

the one described by this studyʼs IRS model, might just as well be the true underlying output

process.

We also find in our simulations that the Lumsdaine-Papell test tends to identify break

points incorrectly when the data are actually generated from the assumed IRS model. In our

IRS simulations, the output shocks during the periods of the Great Depression and the two

World Wars are assumed to be transitory. However, when the Lumsdaine-Papell test is

conducted, permanent trend breaks are spuriously identified during these periods. Figure 5

shows the results of permanent break points identified by the Lumsdaine-Papell test when the

data are generated from the assumed IRS model with the shaded areas denoting the periods of

transitory shocks. In this figure, it can be seen that more than 60% of breakpoints (64.45% for

Tb1 and 61.36% for Tb2) are located in the shaded areas, indicating that the problem of spurious

identification of the trend breaks points is rather serious.

To check for the robustness of our results, we have redone our simulations using the unit-

root test of Zivot and Andrews (1992) in the case of a single break. We also conduct

Rudebuschʼs (1993) bootstrap procedure using the unit-root test of Papell and Prodan (2004)
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5 As discussed before, such a difference could be attributed to the uncertainty of the state of output shock in the IRS
model.

FIGURE 5. FREQUENCIES OF THE ESTIMATED BREAK POINTS IDENTIFIED BY THE

LUMSDAINE-PAPELL TEST:DU1,t (Left) and DU2,t (Right)
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with restricted structural change (i.e., two offsetting structural changes). We find no qualitative

differences between these results and those discussed above. In other words, these two tests are

still unable to distinguish between the trend-break models and the empirical IRS model. These

tests also tend to identify break points incorrectly when the data are generated from the IRS

model.

In sum, our simulation results of unit-root test statistics raise doubt about the

appropriateness of modeling U.S. real GDP as a pure DS process or a modified DS process, as

in Murray and Nelson (2002). However, the evidence against the DS modeling of the U.S.

GDP cannot be automatically assumed to support the TS modeling of the series. This is

because, based on the unit-root tests examined, little can be said about the relative likelihood of

the specific TS/trend-breaks and IRS models of the U.S. GDP considered above. Moreover,

our simulations indicate that the Lumsdaine-Papell tests tend to spuriously identify transitory

shocks as permanent trend breaks. This casts doubt on Papell and Prodanʼs (2004) contention

that the U.S. real GDP follows a TS process with permanent breaks occurring during the 1929-

1946 period.

V. Conclusion

Instead of exploring the uncertainty about the existence of a unit root in the long-span U.S.

real GDP series as has been done in previous studies, in this study, we investigate the

uncertainty about the state of output shock period by period by using the IRS model in which

the effect of a shock may be permanent or transitory in different time periods. By applying the

IRS model to 1876-2008 U.S. real GDP data, we find that the output shocks in the periods of

the 1893 depression, the 1907 financial panic, the two World Wars and the Great Depression

are likely to have had a large but transitory effect, whereas the output shocks in the remaining
periods are likely to have had a permanent effect. More specifically, for the whole sample

period there are nineteen years (around fourteen percent of the sample) where the real GDP

shocks are identified as transitory. Our results reveal the importance of both permanent and

transitory shocks as the source of U.S. GDP fluctuations and suggest that the long-span real

GDP is neither a unit-root series nor a TS series. This finding is in sharp contrast with the

assertions of traditional TS, broken TS and DS models.

Our simulations also show that the unit-root tests, while producing evidence unfavorable to

the existence of a unit root, are not able to discriminate between TS/trend-break models and the

assumed IRS model. In addition, the sample estimates of the unit-root test statistics often have

values close to the center section of the finite-sample distribution of the statistics generated

from the assumed IRS model. This, together with our estimation results, indicates that the

importance to output fluctuations may not lie on the presence of an exact unit root, but on the

uncertainty about the state of output shocks and the identification of the nature of the state.

Finally, in our Monte Carlo experiment investigating the sequential breakpoint selection tests of

Lamsdaine and Papell (1997), we find that the tests tend to spuriously identify permanent trend

breaks in periods where the data have actually been generated by transitory shocks according to

the assumed IRS model, especially in the period from 1929-1946. This raises strong doubt

about Papell and Prodanʼs (2004) argument that the U.S. real GDP follows a TS process with

permanent breaks occurring during the 1929-1946 period.
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