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Chapter 1

Introduction

1.1 Motivation for this study

It is well known that market prices of financial options reflect common assessment of

the probability distribution of the underlying asset on the expiration day, adjusted for

the investors’ tolerance for bearing risk. Recent studies suggest that there is a differ-

ence between the probability distribution of the underlying asset implied by financial

option prices and that realized in the underlying asset market. For practitioners such as

risk managers in the investment banks or speculators in the hedge funds industry, it is

very important to understand why this difference between the risk neutral and physical

probability distributions arise from the theoretical point of view. What are the theoret-

ical determinants of this difference? What role does investor behavior play in explaning

dynamic movements in this difference?

In this study, we investigate risk premiums in higher-order moments, such as variance

and skewness, of financial asset returns and some recent topics related to those risk

premiums. In the area of financial economics, the risk premiums in higher-order moments

have recently received broad attention due to a rich body of implications for financial

asset pricing mechanism and asset return predictability, and a lot of efforts have been put

into examining the existence and the characteristics of those risk premiums. The purpose

of this study is to provide the way of a deeper understanding on the risk premiums in

higher-order moments examined by recent academic studies through both theoretical and

empirical approaches.

The concern with risk premiums in higher-order moments has been growing for the

last several years in terms of the practical point of view as well as the academic view-

points. In particular, there has been a growing interest in the information of the difference
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1.1. MOTIVATION FOR THIS STUDY

between option-implied and realized distributions, which is usually recognized as a risk

premium required by the representative agent, in terms of the financial risk manage-

ment or the asset pricing implications. This study especially focuses on the variance

and skewness risk premiums in financial asset returns and investigates their existence in

financial markets and their implications for financial asset pricing mechanism in detail.

The variance risk premium is defined as the difference between option-implied and real-

ized variance and the skewness risk premium is also defined as the same with the variance

risk premium, that is, the difference between option-implied and realized skewness.

Recent investigations on the risk premiums in higher-order moments of financial as-

set returns have focused on three major aspects, that is, empirical and theoretical as-

pects on the existence of those risk premiums and an aspect on the asset return pre-

dictability. Bakshi and Kapadia[2003], Low and Zhang[2005], Carr and Wu[2009], and

Broadie, Chernov, and Johannes[2009] examine the existence of the volatility risk premi-

ums based on empirical manners and they show that the risk premiums in higher-order

moments of financial asset returns significantly exist in actual financial market. Bansal

and Yaron[2004], Eraker[2008], Branger and Völkert[2010], Drechsler and Yaron[2011],

and Bollerslev, Sizova, and Tauchen[2012] provide general equilibrium models that are

consistent with the existence of the risk premiums in higher-order moments of financial

asset returns and they suggest theoretical approaches to prove the existence of those risk

premiums. Bali and Hovakimian[2009], Goyal and Saretto[2009], Bollerslev, Tauchen,

and Zhou[2010], and Drechsler and Yaron[2011] investigate the asset return predictabil-

ity of the risk premiums in higher-order moments of financial asset returns empirically

and they find that those risk premiums have superior predictive power for future asset

returns.

In this study, we aim to advance these previous studies with theoretical and empir-

ical manners in order to shed light on the nature of the risk premiums in higher-order

moments of financial asset returns. Specifically, we provide three major topics on those

risk premiums.

First, in Chapter 2, we develop the model which is consistent with the existence of the

skewness risk premium. The variance risk premium is recognized as the compensation for

the risk induced by stochastic volatility in financial asset price processes. It is well known

that this risk premium is essentially related to delta-hedged option returns (e.g., Bakshi

and Kapadia[2003]). And moreover, in recent years, there remains an ever-increasing

interest and challenge to develop an entirely self-contained equilibrium-based explanation

for the nonzero variance risk premium and its predictability for stock index returns (e.g.,

Bollerslev, Tauchen, and Zhou[2009]). Thus, recent studies have mainly focused on the

9



1.1. MOTIVATION FOR THIS STUDY

variance risk premium as one of the risk premiums in higher-order moments. However, as

far as we know, there have been few reports about the risk premium which compensates

for uncertainty of the third moment, that is, the skewness, of asset returns in financial

markets. Therefore, first of all, we begin to demonstrate that the skewness risk premium

exists in equilibrium and captures attitudes toward economic uncertainty as well as

the variance risk premium. Among recent studies on self-contained equilibrium-based

models for the nonzero variance risk premium referred above, almost all the studies model

the asset price process as conditional normal, so that the one-step-ahead conditional

distribution of the market return is also normal and, as a result, the skewness of that

distribution is zero. Therefore, the models proposed by these recent studies can not

explain the negative risk-neutral skewness, which is found by the previous studies such

as Aı̈t-Sahalia and Lo[1998] and Aı̈t-Sahalia, Wang, and Yared[2001]. Extending the

models proposed in the previous studies by introducing a stochastic jump intensity into

the consumption growth rate process, we will provide a representation of the skewness

risk premium based on a general equilibrium model and prove that this skewness risk

premium should be non-zero in equilibrium.

Second, in Chapter 3, we investigate the reason why the variance risk premium exists

in financial markets theoretically and empirically in more detail under a partial equilib-

rium setting. We consider a theoretical relationship between the net demand of end-users

for financial options and the variance risk premiums in a stochastic volatility environ-

ment with the demand-based pricing kernel, which is the pricing kernel related to the

amount of the net demand of end-users for financial options in equilibrium, and provide

an explicit explanation of the existence of the variance risk premium in terms of the net

option demand of end-users. To the best of our knowledge, this approach is the first

to provide some implications in the well-known empirical evidence, that is, the negative

variance risk premium, in terms of the end-user net demand for financial options.

Third and finally, in Chapter 4, the effect of parameter estimation risk on the results of

empirical studies for the existence and the sign of the variance risk premium is examined.

Theoretical financial models often assume that the economic agent who makes an optimal

financial decision knows the true parameters of the model. However, the true parameters

are rarely if ever known to the decision maker. In reality, model parameters have to be

estimated based on historical information and, hence, the model’s usefulness depends

partly on how good the estimates are. This gives rise to estimation risk in virtually all

financial valuation models. Bakshi and Kapadia[2003] and Low and Zhang[2005] find

a theoretical relationship between delta-hedged option returns in financial options and

the variance risk premium. They study delta-hedged option returns in a stock index

10



1.2. ABSTRACT AND FOCUS FOR EACH CHAPTER

option market and currency option markets, respectively, and relying on a theoretical

relationship, they provide evidence that the variance risk premiums are not zero and

negative because of non-zero expected delta-hedged option returns with hedging-based

empirical tests on the variance risk premium. We show that the effect of parameter

estimation risk on option prices quoted in actual financial option markets is significant,

and therefore, suggest that the standard hedging-based empirical tests on the existence of

the variance risk premiums, which is explored and examined by, for example, Bakshi and

Kapadia[2003] and Low and Zhang[2005], may be unreliable because of that significant

effect of parameter estimation risk on option prices.

These analyses in this study lead to the conclusion that the uncertainty of the variance

and skewness of financial asset returns are consistently priced in equilibrium and we also

find that these prices of the risks have broad implications for financial asset pricing

mechanism, which is one of the most important problems to be solved in the financial

economics.

1.2 Abstract and focus for each chapter

Let us provide the abstract and focus for each chapter in this study in the following.

Chapter 2

In this chapter, we study risk premiums in higher-order moments of financial asset re-

turns in a general equilibrium setting. To the best of our knowledge, the first attempt to

demonstrate the existence of the volatility risk premium based on a general equilibrium

market model is made by Eraker[2008]. Eraker[2008] develop an equilibrium explana-

tion for the volatility risk premium based on the long-run risks (LRR) model 1 which

emphasizes the role of long-run risks, that is, low-frequency movements in consumption

growth rates and volatility, in accounting for a wide range of asset pricing puzzles. The

LRR model features an Epstein and Zin[1989] utility function with an investor preference

for early resolution of uncertainty and contains (i) a persistent expected consumption

growth component and (ii) long-run variation in consumption volatility. On the basis of

the LRR model, Eraker[2008] studies the volatility risk premium through the framework

of a general equilibrium model.

The recent studies on the risk premiums in higher-order moments focus mainly on the

risk premium of the second moment, that is, the volatility or the variance. Conversely,

1The long-run risks model is pioneered by Bansal and Yaron[2004], which is a stylized self-contained
general equilibrium model incorporating the effects of time-varying economic uncertainty.
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1.2. ABSTRACT AND FOCUS FOR EACH CHAPTER

as far as we know, there are few reports about the risk premium which compensates for

uncertainty of the third moment, that is, the skewness, of asset returns. In this chapter,

we demonstrate that the skewness risk premium, defined by the difference between two

expected values of the skewness under the risk-neutral and physical probability measures,

respectively, also captures attitudes toward economic uncertainty as well as the variance

risk premium.

Extending the long-run risks (LRR) model proposed by Bansal and Yaron[2004] by

introducing a stochastic jump intensity for jumps in the LRR factor and the variance

of consumption growth rate, we provide an explicit representation for the skewness risk

premium, as well as the volatility risk premium, in equilibrium. On the basis of the rep-

resentation for the skewness risk premium, we propose a possible reason for the empirical

fact of time-varying and negative risk-neutral skewness. Moreover, we also provide an

equity risk premium representation of a linear factor pricing model with the variance and

skewness risk premiums. The empirical results prove that the skewness risk premium,

as well as the variance risk premium, has superior predictive power for future aggregate

stock market index returns. Compared with the variance risk premium, the results show

that the skewness risk premium plays an independent and essential role for predicting

the market index returns.

Chapter 3

In this chapter, we study financial option prices in terms of demand pressure effects

based on the preferences of the representative market-maker and the representative end-

user under a partial equilibrium setting. We assume that there are two types of agents

in the option market: market-makers and end-users. Market-makers play a key role in

providing liquidity to end-users by taking the other side of end-user net demand. We

examine a demand-based option market model in which market-makers hedge their op-

tion positions based on the delta-neutral hedging strategy with futures or forwards in

order to control the risks induced by taking the other side of end-user net demand. If we

can assume a dynamically complete financial market that can be governed by standard

market models such as the Black-Scholes-Merton model[1973], the no-arbitrage theory

determines derivative prices uniquely and independently of investor demand for options

because market-makers can hedge their option positions perfectly through continuous

time trading with the underlying assets and cash. However, the assumption of a dy-

namically complete market would not apply to the actual financial market. Under the

assumption of market incompleteness induced by additional risk factors such as stochas-

tic volatility and/or jumps, market-makers cannot hedge their option positions perfectly

12



1.2. ABSTRACT AND FOCUS FOR EACH CHAPTER

and are exposed to the risk of significant losses in the processes of making markets and

managing their options portfolios.

Assuming an incomplete market governed by a stochastic volatility factor in un-

derlying asset price processes, we demonstrate that the demand pressure for an option

contract directly impacts traded option prices due to the covariance of the unhedgeable

parts of a demanded option and the other traded options. Whereas Gârleanu et al.[2009]

also provide a result which is similar to the fact stated above, but they assume that

the aggregate option demand of end-users is provided exogeneously and independent of

the preferences of market-makers and end-users. In contrast, as mentioned by Green

and Figlewski[1999], we assume that the preference of market-makers to the background

risks induced by the net demand of end-users affects option prices directly and study

the supply-demand balance for option contracts by considering the preferences of both

market-makers and end-users. Considering each of optimization problems for the rep-

resentative market-maker and the representative end-user independently, we derive the

equilibrium demand pressures for traded option contracts and provide an explicit repre-

sentation for the pricing kernel in equilibrium as a function of the equilibrium demand

pressures. Moreover, we provide some interesting implications in the existence of the

variance risk premium and the shape of the implied risk aversion function with the pric-

ing kernel derived above.

Chapter 4

In developing risk management strategies for financial option portfolios in incomplete

markets, it is necessary to specify the risk factors in the markets and select an option

pricing model which is consistent with those specified risks. In particular, for the practi-

tioners it is essential to consider the matters mentioned above for their risk management

processes. For this reason, in this chapter, we study the features on empirical option

prices and delta-hedged option returns in a stochastic volatility environment. A rich body

of studies on empirical option prices and delta-hedged option returns in financial option

markets has developed in recent years with some stylized empirical analyses. In par-

ticular, Bakshi and Kapadia[2003] and Low and Zhang[2005] study delta-hedged option

returns in a stock index option market and currency option markets, respectively, and

they provide evidence of the existence of the negative stochastic variance risk premiums

based on non-zero expected delta-hedged option returns.

While we also explore an empirical study on the existence of the variance risk pre-

miums in this chapter, our study is different from that explored by Bakshi and Kapa-

dia[2003] in that we explicitly consider the effect of parameter estimation risk on financial

13



1.2. ABSTRACT AND FOCUS FOR EACH CHAPTER

option prices. Theoretical models often assume that the economic agent who makes an

optimal financial decision knows the true parameters of the model. But the true param-

eters are rarely if ever known to the decision maker. In reality, model parameters have to

be estimated based on historical information and, hence, the model’s usefulness depends

partly on how good the estimates are. This gives rise to estimation risk in virtually all

option valuation models.

Considering the effect of parameter estimation risk on financial option prices, we

provide a novel representation of delta-hedged option returns in a stochastic volatility

environment. The representation of delta-hedged option returns provided in this chapter

consists of two terms; volatility risk premium and parameter estimation risk. Based on

the representation for delta-hedged option returns, we explore an empirical simulation.

Examining the delta-hedged option returns of the USD-JPY currency options with a

historical simulation from October 2003 to June 2010, we find that the delta-hedged

option returns for OTM put options are strongly affected by parameter estimation risk

as well as the volatility risk premium, especially in the post-Lehman shock period. In

particular, we find that approximately 13 ％ of the value of the OTM currency option

premium is generated by the existence of parameter estimation risk in the post-Lehman

crisis period, and this effect induced by parameter estimation risk on option prices is

more significant than the effect of the volatility risk premium. One of the most important

implications of this chapter is that the sign and the level of the expected delta-hedged

option returns do not necessarily explain the existence of volatility risk premiums.

Chapter 5

Conclusion.
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Chapter 2

The Skewness Risk Premium in

Equilibrium and Stock Return

Predictability

2.1 Introduction

The concern with the information content in option-implied distributions has been grow-

ing for the last several years. In particular, there has been a growing interest in the

information of the difference between option-implied and realized distributions, which is

usually recognized as a risk premium required by the representative agent, in terms of the

financial risk management and asset pricing implications. In this chapter we investigate

the risk premiums in higher order moments, especially in the skewness, of financial asset

returns under a general equilibrium setting. In this study, each of the risk premiums in

higher order moments of financial asset returns is defined by the difference between two

expected values of the moment under the risk-neutral and physical probability measures,

respectively.

In recent years, there remains an ever-increasing interest and challenge to develop an

entirely self-contained equilibrium-based explanation for the nonzero volatility (or vari-

ance) risk premium 1 and its predictability for stock index returns. To the best of our

knowledge, the first attempt to demonstrate the existence of the volatility risk premium

based on a general equilibrium market model is made by Eraker[2008]. Eraker[2008]

develop an equilibrium explanation for the volatility risk premium based on the long-run

1The volatility (variance) risk premium is defined by the difference between two expected values of
the volatility (variance) under the risk-neutral and physical probability measures, respectively.
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2.1. INTRODUCTION

risks (LRR) model 2 which emphasizes the role of long-run risks, that is, low-frequency

movements in consumption growth rates and volatility, in accounting for a wide range

of asset pricing puzzles. The LRR model features an Epstein and Zin[1989] utility func-

tion with an investor preference for early resolution of uncertainty and contains (i) a

persistent expected consumption growth component and (ii) long-run variation in con-

sumption volatility. On the basis of the LRR model, Eraker[2008] studies the volatility

risk premium through the framework of a general equilibrium model.

In addition to the development of an entirely self-contained equilibrium-based expla-

nation for the risk premiums in higher order moments, several academic studies related

to those risk premiums are provided in recent years. For example, motivated by fruit-

ful implications from the LRR model pioneered by Bansal and Yaron[2004], Bollerslev,

Tauchen, and Zhou[2009] investigate the stock return predictability of the variance risk

premium in terms of a general equilibrium setting based on the LRR model framework.

They show that the difference between implied and realized variation, or the variance

risk premium, is able to explain a nontrivial fraction of the time-series variation in post-

1990 aggregate stock market returns, with high (low) premia predicting high (low) future

returns. The magnitude of the predictability is particularly strong at the intermediate

quarterly return horizon, where it dominates that afforded by other popular predictor

variables, such as the P/E ratio, the default spread, and the consumption-wealth ratio.

Drechsler and Yaron[2011] also show the predictability of the variance risk premium

for stock index returns based on an extended LRR model with jumps in uncertainty and

the long-run component of cash-flows. They demonstrate that a risk aversion greater

than one and a preference for early resolution of uncertainty correctly signs the variance

risk premium and the coefficient from a predictive regression of returns on the variance

risk premium.

All of the studies cited above focus only on the variance risk premium required by a

representative investor due to the stochastic nature of asset return variance. Conversely,

as far as we know, there are few reports about the risk premium which compensates for

uncertainty of the third moment, that is, the skewness, of asset returns. In this chapter,

we demonstrate that the skewness risk premium, defined by the difference between two

expected values of the skewness under the risk-neutral and physical probability measures,

respectively, also captures attitudes toward economic uncertainty as well as the variance

risk premium. Among recent studies on self-contained equilibrium-based models for the

nonzero variance risk premium referred above, all of the studies except for Drechsler and

2The long-run risks model is pioneered by Bansal and Yaron[2004], which is a stylized self-contained
general equilibrium model incorporating the effects of time-varying economic uncertainty.
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Yaron[2011] model the processes of both the variance of consumption growth rate and the

LRR factor as conditional normal, so that the one-step-ahead conditional distribution

of the market return is also normal and, as a result, the skewness of that distribution

is zero. Therefore, the models proposed by those studies can not explain the negative

risk-neutral skewness, which is found by the previous studies such as those by Aı̈t-Sahalia

and Lo[1998] and Aı̈t-Sahalia, Wang, and Yared[2001]. They document several empirical

features of the state price density for the S＆ P500 index option market over time,

including the term structures of mean returns, volatility, skewness, and kurtosis, that are

implied by option-implied distributions. In particular, They show that the nonparametric

state price densities are negatively skewed, have fatter tails and the amount of skewness

and kurtosis both increase with maturity.

We show that jump components in the LRR factor and/or the variance of consump-

tion growth rate can explain the nonzero (or negative) skewness of the one-step-ahead

asset return distribution. To the best of our knowledge, Drechsler and Yaron[2011] is the

first paper that indicates an important role for transient non-Gaussian shocks (jumps)

to fundamentals such as the LRR-factor and the variance of consumption growth rate

for understanding how perceptions of economic uncertainty and cash-flow risk manifest

themselves in asset prices. However, the assumption of an affine structure on the jump

intensity process λt, that is, λt = l0 + l1σ
2
t where l0, l1 > 0 and σ2

t is the variance of

consumption growth rate, in Drechsler and Yaron[2011] can not explain an empirical

fact on a simultaneous relation between monthly stock returns and monthly changes of

the option-implied skewness:

rm,t+1 = 0.006 − 0.019 ×4ISkewt+1,

(2.46) (−3.46)

rm,t+1 = 0.006 − 0.007 ×4V IXt+1 − 0.016 ×4ISkewt+1,

(3.33) (−16.00) (−3.94)

(2.1)

where rm,t+1 is the monthly return of the S＆ P500 Total Return Index from time t to

t + 1, 4V IXt+1 is the monthly change of implied volatility calculated with the CBOE’s

VIX from time t to t + 1, and 4ISkewt+1 is the monthly change of implied skewness

calculated with the CBOE’s Skew Index from time t to t+ 1. These results are obtained

based on the monthly data from Jan-1990 to Aug-2012. Under the assumption on the

jump intensity process in Drechsler and Yaron[2011], however, we can confirm that the

regression parameters to 4ISkewt+1 in the above regression models should be positive.

In this chapter, we propose an extension of the LRR models developed by Bansal and

Yaron[2004] and Drechsler and Yaron[2011]. Our model contains a rich set of transient
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dynamics and can quantitatively account for the time variation and asset return pre-

dictability of the skewness premium as well as the variance risk premium. In particular,

we introduce a stochastic jump intensity for transient jumps to fundamentals such as the

LRR factor and the variance of consumption growth rate, and show that this additional

introduction of a stochastic jump intensity enables our model to capture the various

empirical aspects of the stock index returns and its option implied moments including

the result of (2.1). Christoffersen et al.[2012] find very strong support for time-varying

jump intensities for S＆ P500 index returns, and they show that, compared to the risk

premium on dynamic volatility, the risk premium on the dynamic jump intensity has a

much larger impact on option prices. We find that the existence of the negative skewness

and the skewness risk premium have a close relationship with the existence of the jumps

and the jump risk premium, respectively.

This chapter also shows that the skewness of asset return distribution and the skew-

ness risk premium, which compensates for the stochastic nature of the skewness, are

both time-varying due to the stochastic nature of the jump intensity for transient jumps

in both the LRR factor and the variance of consumption growth rate. Providing an

equity risk premium representation of a linear factor pricing model with time-varying

variance and skewness risk premiums, we find that those risk premiums can explain a

nontrivial fraction of the time series variation in the aggregate stock market returns and

show an empirical evidence in which the skewness risk premium, as well as the variance

risk premium, has superior predictive power for future aggregate stock market index

returns. Compared with the variance risk premium, the results show that the skewness

risk premium plays an independent and essential role for predicting the market index

returns.

The remainder of this chapter is organized as follows. Section 2 outlines the basic

theoretical model with jumps in consumption growth rate and its volatility, shows how

equilibrium is derived for our model economy, and highlights its key features. In partic-

ular, we provide an equity risk premium representation of a linear factor pricing model

with time-varying variance and skewness risk premiums. Section 3 provides the implica-

tions from a calibrated version of the theoretical equity risk premium representation of a

linear factor pricing model derived in Section 2 to help guide and interpret our subsequent

empirical reduced form predictability regressions. Section 4 describes the data used for

examining the equity risk premium representation empirically and discusses the results

from the predictive regressions on the stock returns to the variance and the skewness

risk premiums with historical data. Section 5 provides concluding remarks.
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2.2 Model Framework

2.2.1 Model Setup and Assumptions

The underlying environment is a discrete time endowment economy. The representative

agent’s preferences on the consumption stream are of the Epstein and Zin[1989] form,

allowing for the separation of risk aversion and the intertemporal elasticity of substitution

(IES). Thus, the agent maximizes his lifetime utility, which is defined recursively as

Vt =
[
(1 − δ)C

1−γ
θ

t + δ
(
Et[V

1−γ
t+1 ]

) 1
θ
] θ

1−γ
, (2.2)

where Ct is consumption at time t, 0 < δ < 1 reflects the agent’s time preference, γ is the

coefficient of risk aversion, θ = 1−γ

1− 1
ψ

, and ψ is the intertemporal elasticity of substitution

(IES). This preference structure collapses to a standard CRRA utility representation if

γ = 1
ψ
, that is, θ = 1, and in this case, only innovations to consumption are priced. In

the following, based on the result provided by Bansal and Yaron[2004] we assume that

both γ and ψ are larger than one. It then holds that γ > 1
ψ
, which implies θ < 0.

With this choice, the investor has a preference for early resolution of uncertainty. Then,

not only consumption risk is priced, but state variables carry risk premia, too. The

parameter restrictions also ensure that the signs of the risk premia are in line with

economic intuition, and that a worsening of economic conditions leads to a decrease in

asset prices.

Utility maximization is subject to the budget constraint:

Wt+1 = (Wt − Ct)Rc,t+1,

where Wt is the wealth of the agent and Rc,t is the return on all invested wealth. As shown

in Epstein and Zin[1989], for any asset j, the first-order condition yields the following

Euler condition:

Et

[
exp(mt+1 + rj,t+1)

]
= 1, (2.3)

where rj,t+1 is the log of the gross return on asset j and mt+1 is the log of the intertemporal

marginal rate of substitution (IMRS), which is given by mt+1 = θ log δ − θ
ψ
4 ct+1 + (θ−

1)rc,t+1. Here, rc,t+1 is log Rc,t+1 and 4ct+1 is the change in log Ct, that is, log
(

Ct+1

Ct

)
.

We model consumption and dividend growth rates, gt+1 ≡ log(Ct+1

Ct
) and gd,t+1 ≡

log(Dt+1

Dt
) where Dt is dividend at time t, respectively, as containing a small persistent
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predictable component xt, which determines the conditional expectation of consumption

growth,

xt+1 = ρxxt + ϕeσtet+1 + Jx,t+1,

gt+1 = µg + xt + ϕησtηt+1,

gd,t+1 = µd + ρdxt + ϕζσtζt+1,

(2.4)

where ϕe, ϕη, ϕζ , ρx, ρd > 0, µg, µd ∈ R, et, ηt, and ζt are mutually independent i.i.d.N(0, 1)

processes, and Jx,t+1 is a compound-Poisson process represented by Jx,t+1 ≡
∑Nx

t+1

j=1 εj
x

where Nx
t+1 is the Poisson counting process for that jump component whose the intensity

process is λx,t+1 ≡ lxλt+1, lx > 0, and εj
x ∼ i.i.d. N(0, δ2

x), δx > 0, is the size of the jump

that occurs upon the Nx
t+1.

Furthermore, we also model the dynamics of the volatility as follows:

σ2
t+1 = µσ + ρσσ

2
t +

√
qtwt+1 + Jσ2,t+1,

qt+1 = µq + ρqqt + ϕξ
√

qtξt+1,
(2.5)

where the parameters satisfy µσ > 0, µq > 0, |ρσ| < 1, |ρq| < 1, ϕξ > 0, and wt and ξt are

mutually independent i.i.d.N(0, 1) processes and are independent of each of et, ηt, and ξt.

Jσ2,t+1 is a compound-Poisson process, which is represented by Jσ2,t+1 ≡
∑Nσ2

t+1

j=1 εj
σ2 where

Nσ2

t+1 is the Poisson counting process for that jump component whose the intensity process

is λσ2,t+1 ≡ lσ2λt+1, lσ2 > 0, and εj
σ2 ∼ i.i.d. N(0, δ2

σ2), δσ2 > 0, is the size of the jump

that occurs upon the Nσ2

t+1. We assume that Nx
t+1 and Nσ2

t+1 are mutually independent

and εj
x and εj

σ2 are too. The stochastic variance process σ2
t represents time-varying

economic uncertainty in consumption growth with the variance-of-variance process qt in

effect inducing an additional source of temporal variation in that same process. We also

model the variance-of-variance process qt in the same fashion as Bollerslev et al.[2009].

Importantly, we introduce the jump intensity dynamics in the economy which is

represented by the following discrete-time stochastic process,

λt+1 = µλ + ρλλt + ϕu
√

qt(ρξt+1 +
√

1 − ρ2ut+1), (2.6)

where µλ > 0, |ρλ| < 1, |ρ| ≤ 1, and ut is an i.i.d.N(0, 1) process, which is independent

of each of et, ηt, ζt, wt, and ξt.

One of the notable features of our model setup is this introduction for the jump

intensity process (2.6). Christoffersen et al.[2012] also find very strong support for time-

varying jump intensities for S＆P500 index returns, and they show that, compared to the

risk premium on dynamic volatility, the risk premium on the dynamic jump intensity has
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a much larger impact on option prices. In the previous studies, Drechsler and Yaron[2011]

is the first paper that introduces transient jumps to fundamentals such as the LRR-factor

xt and the variance of consumption growth rate σ2
t . However, it assumes that the jump

intensity process λt is represented by an affine structure of λt = l0 + l1σ
2
t where l0, l1 > 0.

As mentioned in the introduction of this chapter, such assumption for the jump intensity

process can not explain the empirical fact of regression (2.1). We extend the LRR models

of Bansal and Yaron[2004] and Drechsler and Yaron[2011] so as to introduce a stochastic

jump intensity of (2.6) into the economy. As shown in the following, this introduction

enables our model to have a consistency with the empirical fact shown in (2.1) and plays

a key role in describing the characteristics of asset return distributions.

2.2.2 The Model Solution in Equilibrium

We distinguish between the unobservable return on a claim to aggregate consumption,

Rc,t+1, and the observable return on the market portfolio, Rm,t+1: the latter is the

return on the aggregate dividend claim. Solving our model numerically, we demonstrate

the mechanisms working in our model via approximate analytical solutions in the same

fashion as the previous studies such as those by Bansal and Yaron[2004], Bollerslev et

al.[2009], Drechsler and Yaron[2011], etc. To derive these solutions for our model, we

use the standard approximation utilized in Campbell and Shiller[1988],

rc,t+1 = κ0 + κ1vt+1 − vt + gt+1, (2.7)

where lowercase letters refer to logs, so that rc,t+1 = log(Rc,t+1) is the continuous return,

vt = log(Pt

Ct
) is the log price-consumption ratio of the asset that pays the consumption

endowment, {Ct+i}∞i=1, and κ0 and κ1 are approximating constants that both depend

only on the average level of v 3. Analogously, rm,t+l and vm,t+1 correspond to the market

return and its log price-dividend ratio and the similar approximation presented below

can also be derived:

rm,t+1 = κ0,m + κ1,mvm,t+1 − vm,t + gd,t+1. (2.8)

The standard solution method for finding the equilibrium in a model like the one

defined above then consists in conjecturing solutions for vt and vm,t as an affine function

of the state variables, xt, σ2
t , qt, and λt,

vt = A0 + Axxt + Aσσ
2
t + Aqqt + Aλλt, (2.9)

3Note that κ1 = exp(v̄)
1+exp(v̄) and this value is approximately 0.997 (cf) Bansal and Yaron[2004]), which

is also consistent with magnitudes used in Campbell and Shiller[1988].
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vm,t = A0,m + Ax,mxt + Aσ,mσ2
t + Aq,mqt + Aλ,mλt, (2.10)

respectively, solving for the coefficients A0, Ax, Aσ, Aq, and Aλ in vt and for the coeffi-

cients A0,m, Ax,m, Aσ,m, Aq,m, and Aλ,m in vm,t.

Substituting (2.9) for (2.7), we have a temporal representation for rc,t+1 with the

state variables, xt, σ2
t , qt, and λt, and furthermore, substituting this rc,t+1 for the Euler

equation (2.3), we can derive an identity with those state variables. Solving the identity

in the same manner as Bansal and Yaron[2004], Bollerslev et al.[2009], Drechsler and

Yaron[2011], etc., we can derive the equilibrium solutions for the four parameters as

follows:

Ax =
γ − 1

θ(κ1ρx − 1)
,

Aσ = −1

2

(1 − γ)2ϕ2
η + θ2κ2

1A
2
xϕ

2
e

θ(κ1ρσ − 1)
,

Aλ =
2 − exp(1

2
θ2κ2

1A
2
xδ

2
x) − exp(1

2
θ2κ2

1A
2
σδ

2
σ)

θ(κ1ρλ − 1)
,

Aq is a solution of the quadratic equation presented below:

θAq(κ1ρq − 1) +
θ2κ2

1

2

[
A2

σ + A2
qϕ

2
ξ + 2AqAλϕξϕuρ + A2

λϕ
2
u

]
= 0.

(2.11)

Considering the expressions of (2.11), the following proposition can be proven easily:

Proposition 1 If γ > 1 and ψ > 1, then, Ax > 0, Aσ < 0, Aq < 0, and Aλ < 0.

The above proposition suggests that if the IES and risk aversion are higher than 1, a rise

in each of the state variables of σ2
t , qt, and λt lowers the price-consumption ratio.

Having solved for rc,t+1 with the four parameters derived above, we can substitute it

(and 4ct+1 = gt+1) into mt+1 to obtain an expression for the conditional innovation to

the log pricing kernel at time t + 1:

mt+1 − Et[mt+1]

= θ log δ − θ

ψ
4 ct+1 + (θ − 1)rc,t+1 − Et

[
θ log δ − θ

ψ
4 ct+1 + (θ − 1)rc,t+1

]
=

(
− θ

ψ
+ θ − 1

)
ϕησtηt+1 + (θ − 1)κ1Axϕeσtet+1 + (θ − 1)κ1Aσ

√
qtwt+1

+ (θ − 1)κ1(Aqϕξ + Aλϕuρ)
√

qtξt+1 + (θ − 1)κ1Aλϕu

√
1 − ρ2

√
qtut+1

+ (θ − 1)κ1Ax(Jx,t+1 − Et[Jx,t+1]) + (θ − 1)κ1Aσ(Jσ2,t+1 − Et[Jσ2,t+1])

= −Λt(Gtzt+1 + Jt+1 − Et[Jt+1]),

(2.12)
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where

Λ ≡
(
γ (1 − θ)κ1Ax (1 − θ)κ1Aσ (1 − θ)κ1Aq (1 − θ)κ1Aλ 0

)t

,

Gt ≡



ϕησt 0 0 0 0 0

0 ϕeσt 0 0 0 0

0 0
√

qt 0 0 0

0 0 0 ϕξ
√

qt 0 0

0 0 0 ρϕu
√

qt ϕu

√
1 − ρ2

√
qt 0

0 0 0 0 0 ϕζσt


,

zt+1 ≡
(
ηt+1 et+1 wt+1 ξt+1 ut+1 ζt+1

)t

,

Jt+1 ≡
(
0 Jx,t+1 Jσ2,t+1 0 0 0

)t

,

Et[Jt+1] ≡
(
0 Et[Jx,t+1] Et[Jσ2,t+1] 0 0 0

)t

.

(2.13)

Λ can be interpreted as the price of risk for Gaussian shocks and also the sensitivity of

the IMRS to the jump shocks. From the expression of Λ, one can see that the prices of

risks are determined by the A coefficients, that is, Ax, Aσ, Aq, and Aλ. The expression of

Λ also shows that the signs of the risk prices depend on the signs of the A coefficients and

(1− θ). In particular, when γ = 1
ψ
, θ = 1, and we are in the case of constant relative risk

aversion (CRRA) preferences, it is clear that only the transient shock to consumption

zc,t+1 ≡ ηt+1 is priced, and prices do not separately reflect the risk of shocks to xt (long-

run risk), σ2
t (volatility-related risk), qt (variance-of-variance-related risk), and λt (jump

intensity-related risk).

In the discussion and calibrations explored below, we especially focus on the case in

which the agent’s risk aversion γ and the IES ψ are both greater than 1, which implies

that Ax > 0, Aσ < 0, Aq < 0, and Aλ < 0 by the proposition provided above. Thus,

positive shocks to long-run growth decrease the IMRS, while positive shocks to the levels

of the other state variables, σ2
t , qt, and λt, increase the IMRS. Note that in this case,

since (1− θ) > 0, each of the A coefficients has the same sign as the corresponding price

of risk.

To study the risk premiums in higher-order moments of the market returns, we first

need to solve for the market return. A share in the market is modeled as a claim to

a dividend with growth process given by gd,t. To solve for the price of a market share,

we proceed along the same lines as for the consumption claim and solve for vm,t+1, the

log price-dividend ratio of the market, by using the the conjecture (2.10), Campbell and
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Shiller[1988]-approximation (2.8), and the Euler equation (2.3) 4 .

With the equilibrium solutions for the parameters of Ax,m, Aσ,m, Aq,m, and Aλ,m in

(2.10), we can obtain an expression for rm,t+1 in terms of the state variables and its

innovations by substituting the expression for vm,t(+1) into (2.8):

rm,t+1 = κ0,m + κ1,mA0,m + κ1,mAσ,mµd + κ1,mAq,mµg + κ1,mAλ,mµλ − A0,m + µd

+ (κ1,mAx,mρx − Ax,m + ρd)xt

+ (κ1,mAσ,mρσ − Aσ,m)σt
2

+ (κ1,mAq,mρq − Aq,m)qt

+ (κ1,mAλ,mρλ − Aλ,m)λt

+ κ1,mAx,mϕeσtet+1 + κ1,mAσ,m
√

qtwt+1

+ κ1,m(Aq,mϕξ + Aλ,mϕuρ)
√

qtξt+1

+ κ1,mAλ,mϕu

√
1 − ρ2

√
qtut+1 + ϕζσtζt+1

+ κ1,mAx,mJx,t+1 + κ1,mAσ,mJσ2,t+1

= r0+(Bt
rF − At

m)Yt + Bt
rGtzt+1 + Bt

rJt+1, (2.14)

where

r0 ≡ κ0,m + (κ1,m − 1)A0,m + (κ1,mAσ,m + 1)µd + κ1,mAq,mµg + κ1,mAλ,mµλ,

Br ≡ κ1,mAm + ed ,

Am ≡



0

Ax,m

Aσ,m

Aq,m

Aλ,m

0


, ed ≡



0

0

0

0

0

1


, F ≡



0 1 0 0 0 0

0 ρx 0 0 0 0

0 0 ρσ 0 0 0

0 0 0 ρq 0 0

0 0 0 0 ρλ 0

0 ρd 0 0 0 0


, Yt ≡



gt

xt

σt
2

qt

λt

gd,t


.

(2.15)

2.2.3 Risk Premiums in Higher-Order Moments in Equilibrium

Before proceeding to investigating the risk premiums in higher-order moments in equi-

librium, we need to provide some further explanation on the jump dynamics and the

features of the pricing kernel introduced above.
4Because the datails of the four parameters, Ax,m, Aσm , Aq,m, and Aλ,m, are insignificant and do

not affect the discussion explored in the following at all, for simplicity, we express the parameters, Ax,m,
Aσm , Aq,m, and Aλ,m, as they are and do not show explicit representations of those parameters in this
study.

24



2.2. MODEL FRAMEWORK

To handle the jumps, we introduce some notation. ψk(uk) = E[exp(ukεk)] (k is x

or σ2) denotes the moment-generating function (mgf) of the jump size εk. The mgf for

the jump component of k, E[exp(ukJk,t+1)], then equals exp(Ψt,k(uk)), where Ψt,k(uk) =

λk,t(ψk(uk) − 1). Ψt,k is called the cumulant-generating function (cgf) of Jk,t+1 and is

a very helpful tool for calculating asset pricing moments. The reason is that its n-th

derivative evaluated at 0 equals the n-th central moment of Jk,t+1.

Regarding the features of the pricing kernel, we can show what described below in line

with Drechsler and Yaron[2011]. Let us set the Radon-Nikodym derivative dQ
dP = Mt+1

Et[Mt+1]
,

where P is the physical probability measure and Q is the risk-neutral probability measure

in our economy. From (2.12), we have Mt+1

Et[Mt+1]
∝ exp(−Λt(Gtzt+1 + Jt+1)). Since zt+1

and Jt+1 are independent, we can treat their measure transformations between P and Q
separately. As a consequence, Drechsler and Yaron[2011] show that

zt+1
Q∼ N(−G

′

tΛ, I), (2.16)

where I is the identity matrix in R6×6. That is to say that, under Q, zt+1 is still a vector

of independent normals with unit variances, but with a shift in the mean.

For the case of Jt+1, we could also proceed by transforming the probability density

function directly. As guided in Drechsler and Yaron[2011], Proposition (9.6) in Cont and

Tankov[2004] shows that under Q, the Jt+1,k are still compound Poisson processes, but

with cgf given by

ΨQ
t,k(uk) = λk,tψk(−Λk)

(ψk(uk − Λk)

ψk(−Λk)
− 1

)
, (2.17)

where k = x or k = σ2 and Λx denotes the price of risk for the LRR-factor xt, that is,

(1−θ)κ1Ax, and Λσ2 denotes the price of risk for the variance of consumption growth rate,

that is, (1− θ)κ1Aσ. (see (2.13)) In the following discussion, we use the facts mentioned

above to calculate the higher-order moments of the market return and to investigate the

risk premiums in the moments.

The Variance Risk Premium in Equilibrium

According to Bollerslev et al.[2009] and Drechsler and Yaron[2011], the variance risk

premium in equilibrium, vpt, is defined by

vpt ≡ EQ
t [VarQ

t+1(rm,t+2)] − EP
t [VarP

t+1(rm,t+2)], (2.18)

where VarP
t+1 (VarQ

t+1) is the variance operator under the physical (risk-neutral) proba-

bility measure at time t + 1. From (2.14), the conditional variance of the market return

25



2.2. MODEL FRAMEWORK

rm,t+2 at time t + 1 under P can be obtained as follows:

VarP
t+1(rm,t+2) = Bt

rGt+1G
t
t+1Br +

∑
i

B2
r (i)VarP

t+1(Ji,t+2)

= Bt
rGt+1G

t
t+1Br + B2

r
t
Ψ

(2)
t+1(0),

(2.19)

where

Br = κ1,mAm + ed (∵ (2.15))

≡
(
Br(1) Br(2) Br(3) Br(4) Br(5) Br(6)

)t

∈ R6,

B2
r ≡

(
B2

r (1) B2
r (2) B2

r (3) B2
r (4) B2

r (5) B2
r (6)

)t

∈ R6,

Ψ
(2)
t+1(0) ≡

(
0 Ψ

(2)
t+1,x(0) Ψ

(2)

t+1,σ2(0) 0 0 0
)t

∈ R6,

and Ψ
(2)
t+1,x(0) and Ψ

(2)

t+1,σ2(0) are respectively the second derivative of the cgf (cumulant-

generating function) for Jx,t+1 and Jσ2,t+1 evaluated at 0, that is,

Ψ
(2)
t+1,x(0) ≡ ∂2

∂u2
Ψt+1,x(u) |u=0=

∂2

∂u2
λx,t+1(ψx(u) − 1) |u=0,

Ψ
(2)
t+1,σ(0) ≡ ∂2

∂u2
Ψt+1,σ2(u) |u=0=

∂2

∂u2
λσ2,t+1(ψσ2(u) − 1) |u=0 .

Thus the expression of (2.19) is rearranged to the following representation,

VarP
t+1(rm,t+2) = Bt

rGt+1G
t
t+1Br + B2

r
t
Ψ

(2)
t+1(0)

= Bt
r(Hσ2σ2

t+1 + Hqqt+1)Br + B2
r

t
diag

(
ψ(2)(0)

)
Πt+1,

(2.20)

where

Hσ2 ≡



ϕ2
η 0 0 0 0 0

0 ϕ2
e 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 ϕ2
ζ


, Hq ≡



0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 ϕ2
ξ ρϕξϕu 0

0 0 0 ρϕξϕu ϕ2
u 0

0 0 0 0 0 0


,

diag
(
ψ(2)(0)

)
≡



0 0 0 0 0 0

0 ψ
(2)
x (0) 0 0 0 0

0 0 ψ
(2)

σ2 (0) 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


, Πt+1 ≡



0

λx,t+1

λσ2,t+1

0

0

0


.
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Under the risk-neutral probability measure Q, the conditional variance of the market

return rm,t+2 at time t+1 also can be obtained in the same manner demonstrated above.

As a consequence, we can show the following proposition based on the definition of the

variance risk premium (2.18).

Proposition 2 (The Variance Risk Premium in Equilibrium) In equilibrium, the

variance risk premium at time t, vpt, is linear to the variance-of-variance, qt, and the

jump intensity, λt, and the representation of it is provided as follows:

vpt = βvp,c + βvp,qqt + βvp,λλt, (2.21)

where

βvp,c ≡
[
lxB

2
r (2)(ψ(2)

x (−Λx) − ψ(2)
x (0)) + lσ2B2

r (3)(ψ
(2)

σ2 (−Λσ2) − ψ
(2)

σ2 (0))
]
µλ,

βvp,q ≡ −Bt
r

[
Λσ2Hσ2 + ϕξ(ϕξΛq + ρϕuΛλ)Hq

]
Br

− ϕu(ρϕξΛq + ϕuΛλ)(lxB
2
r (2)ψ(2)

x (−Λx) + lσ2B2
r (3)ψ

(2)

σ2 (−Λσ2)),

βvp,λ ≡ Bt
rHσ2Brψ

(1)

σ2 (−Λσ2)

+
[
lxB

2
r (2)(ψ(2)

x (−Λx) − ψ(2)
x (0)) + lσ2B2

r (3)(ψ
(2)

σ2 (−Λσ2) − ψ
(2)

σ2 (0))
]
ρλ.

Proof See the Appendix.

A number of interesting implications arise from the expression (2.21). In particular,

any temporal variation in the endogenously generated variance risk premium is solely

due to the variance-of-variance qt and the jump intensity λt. Moreover, provided that

θ < 0, Λx > 0, and Λσ2 < 0, as would be implied by γ > 1 and ψ > 1, the factor

loading to the jump intensity, that is, βvp,λ, is guaranteed to be positive, but that to

the variance-of-variance, that is, βvp,q, can be both positive and negative in general.

However, if the correlation between the dynamics of the variance-of-variance and that of

the jump intensity, that is , ρ, is positive, then βvp,q is also guaranteed to be positive due

to the facts that Λq < 0 and Λλ < 0.

The Skewness Risk Premium in Equilibrium

On the basis of the same manner used to derive the expression (2.20) in the previous

subsection, we can also derive the representations for the skewness of the market return

under P and Q, respectively, as follows:

SkewP
t (rm,t+1) = B3

r
t
diag(ψ(3)(0))Πt,

SkewQ
t (rm,t+1) = B3

r
t
diag(ψ(3)(−Λ))Πt,

(2.22)
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where

B3
r ≡



B3
r (1)

B3
r (2)

B3
r (3)

B3
r (4)

B3
r (5)

B3
r (6)


, diag

(
ψ(3)(0)

)
≡



0 0 0 0 0 0

0 ψ
(3)
x (0) 0 0 0 0

0 0 ψ
(3)

σ2 (0) 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


,

diag
(
ψ(3)(−Λ)

)
≡



0 0 0 0 0 0

0 ψ
(3)
x (−Λx) 0 0 0 0

0 0 ψ
(3)

σ2 (−Λσ2) 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


.

In this study, we define the skewness risk premium in equilibrium at time t, skpt, as

the following expression, which is the same manner with the case of the variance risk

premium (2.18):

skpt ≡ EQ
t [SkewQ

t+1(rm,t+2)] − EP
t [SkewP

t+1(rm,t+2)]. (2.23)

Substituting (2.22) into (2.23), the explicit representation for the skewness risk premium

can be obtained as follows:

skpt ≡ B3
r

t
diag(ψ(3)(−Λ))EQ

t [Πt+1] − B3
r

t
diag(ψ(3)(0))EP

t [Πt+1]. (2.24)

We also find a number of interesting implications from the expressions of (2.22) and

(2.24). First, in the case that there is no jump to fundamentals in the economy, that is,

in the case of Πt ≡ 0 (∈ R6), it is clear that the conditional skewness of the market return

should be zero due to (2.22). Thus, the existence of the nonzero skewness of the market

return crucially depend on the existence of the jumps to fundamentals in the economy.

Second, any temporal variation in endogenously generated skewness and skewness risk

premium are solely due to the temporal variation in the jump intensity process λt. For

example, if the jump intensity is constant, then it is clear that the skewness (under P
and Q) and skewness risk premium should be constant by (2.22) and (2.24). Third, since

we have the fact of Aσ < 0 by the proposition 1, then in the case that the jump to the

variance of consumption growth rate exists, that is, in the case that λσ2,t > 0, we can

show easily by (2.22) that the risk-neutral skewness at time t, SkewQ
t (rm,t+1) , should
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be negative. Finally, we can also find via (2.24) that in the case that either λx,t > 0

or λσ2,t > 0 is satisfied, the skewness risk premium at time t, skpt, in equilibrium also

should be negative due to the facts of Ax > 0 and Aσ < 0.

On the basis of the definition of (2.23), let us provide the proposition for the repre-

sentation of the skewness risk premium in equilibrium.

Proposition 3 (The Skewness Risk Premium in Equilibrium) In equilibrium, the

skewness risk premium at time t, skpt, is linear to the variance-of-variance, qt, and the

jump intensity, λt, and the representation of it is provided as follows:

skpt = βsp,c + βsp,qqt + βsp,λλt,

where

βsp,c ≡
[
lxB

3
r (2)ψx

(3)(−Λx) + lσ2B3
r (3)ψσ2

(3)(−Λσ2)
]
µλ,

βsp,q ≡
[
lxB

3
r (2)ψx

(3)(−Λx) + lσ2B3
r (3)ψσ2

(3)(−Λσ2)
]
ϕu(−ρϕξΛq − ϕuΛλ),

βsp,λ ≡
[
lxB

3
r (2)ψx

(3)(−Λx) + lσ2B3
r (3)ψσ2

(3)(−Λσ2)
]
ρλ.

(2.25)

Proof Considering (2.6), (2.16), and the definition of the moment-generating function,

it is trivial to derive the above expression. ¤

From the above proposion, we find that any temporal variation in endogenously

generated skewness risk premium is also solely due to the variance-of-variance qt and the

jump intensity λt as well as the volatility risk premium. Moreover, provided that Λx > 0

and Λσ2 < 0, the factor loading to the jump intensity, that is, βsp,λ, is guaranteed to be

negative, but that to the variance-of-variance, that is, βsp,q, can be both positive and

negative in general. However, if the correlation between the dynamics of the variance-

of-variance and that of the jump intensity, that is , ρ, is positive, then βsp,q is also

guaranteed to be negative due to the facts that Λq < 0 and Λλ < 0.

Before we turn to the next discussion, it will be useful to mention about some features

of the higher-order moments of the market return and the risk premiums in them.

First, as mentioned in the introduction in this chapter, the usual assumption of an

affine structure on the jump intensity process λt, that is, λt = l0+l1σ
2
t where l0, l1 > 0 and

σ2
t is the variance of consumption growth rate, in the previous studies such as Drechsler

and Yaron[2011] can not explain an empirical fact on a simultaneous relation between

monthly stock returns and monthly changes of the option-implied skewness shown by

(2.1). It is because, under such assumption, we can show analytically that the regression

parameters to 4ISkewt+1 in (2.1) should be positive. However, based on our model
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provided above, the correlation between the one-step-ahead market return, rm,t+1, and

the one-step-ahead change of risk-neutral skewness, 4SkewQ
t+1 ≡ SkewQ

t+1 − SkewQ
t , at

time t can be derived with (2.14) and (2.22) as follows:

Corr
(
rm,t+1,4SkewQ

t+1

)
= Kϕuκ1,m(ρAq,m + ϕuAλ,m)qt,

where K ≡ lxB
3
r (2)ψx

(3)(−Λx) + lσ2B3
r (3)ψσ2

(3)(−Λσ2).

From the above expression, we can show that, when ρ < −ϕu
Aλ,m

Aq,m
, the correlation

between rm,t+1 and 4SkewQ
t+1 ≡ SkewQ

t+1 − SkewQ
t should be negative because, in the

case of γ > 1 and ψ > 1, it is proven that K is negative . This observation is consistent

with the empirical fact of (2.1) shown in the introduction of this chapter. Thus, we

would like to emphasize that there is considerable validity in our model setting with

the stochastic jump intensity compared with the previous studies such as Drechsler and

Yaron[2011], etc.

Second, although both the variance risk premium and the skewness risk premium are

linear to the variance-of-variance qt and the jump intensity λt, we can show that they

are mutually independent because of the fact that det ≡ βvp,qβsp,λ−βvp,λβsp,q is not zero,

which will be proven in Section 3 with a model calibration result.

2.2.4 An Equity Risk Premium Representation

In this subsection, let us show an equity risk premium representation with the variance

and skewness risk premiums in equilibrium. In the beginning, we start with an expression

for the equity risk premium provided by Drechsler and Yaron[2011] as follows:

log Et(Rm,t+1) − rf,t = Bt
rGtG

t
tΛ + Πt

t(ψ(Br) − 1 − ψ(Br − Λ) + ψ(−Λ)),

where

ψ(Br) ≡



0

ψx(Br(2))

ψσ2(Br(3))

0

0

0


, ψ(Br − Λ) ≡



0

ψx(Br(2) − Λx)

ψσ2(Br(3) − Λσ2)

0

0

0


, ψ(−Λ) ≡



0

ψx(−Λx)

ψσ2(−Λσ2)

0

0

0


,

As mentioned in Drechsler and Yaron[2011], the first term, Bt
rGtG

t
tΛ, represents the con-

tributions of the Gaussian shocks to the equity risk premium. In particular, according
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to the expression of GtG
t
t = Hσ2σ2

t + Hqqt (see (2.20)), this term aggregates both the

risk-return tradeoff relationship and a true premium for variance risk. The next terms,

Πt
t(ψ(Br) − 1 − ψ(Br − Λ) + ψ(−Λ)), represents the contributions from the jump pro-

cesses. The derivation of this expression is presented in the Appendix in Drechsler and

Yaron[2011].

The rf,t is the risk-free rate at time t in the economy and the explicit expression of

this rf,t is provided in the Appendix.

With the expression of GtG
t
t = Hσ2σ2

t +Hqqt and Πt ≡
(
0 λx,t λσ2,t 0 0 0

)t

, the

following representation can be obtained via the expression for the equity risk premium

shown above:

log Et(Rm,t+1) − rf,t = βer,σσ
2
t + βer,qqt + βer,λλt,

where βer,σ ≡ Bt
rHσΛ,

βer,q ≡ Bt
rHqΛ,

βer,λ ≡ lx

[
ψx(Br(2)) − 1 − ψx(Br(2) − Λx) + ψx(−Λx)

]
+ lσ

[
ψσ2(Br(3)) − 1 − ψσ(Br(3) − Λσ2) + ψσ(−Λσ2)

]
.

(2.26)

As shown in (2.26), the equity risk premium is driven by the state variables of σ2
t , qt,

and λt and have a time-varying nature essentially because each of those variables has

the stochastic nature. In particular, in the case of γ > 1 and ψ > 1, it is proven that

βer,σ > 0, βer,q > 0, and βer,λ > 0 because of the facts that Λx > 0, Λσ2 < 0, Λq < 0,

and Λλ < 0, which are provided in Proposition 1, so that if each of the state variables

increases, then the equity risk premium also increases, and vice versa.

The conditional variance of the equity return at time t, σ2
t , is also expressed by

σ2
t = VarP

t (rm,t+1) = Bt
rGtG

t
tBr + B2

r
t
diag

(
ψ(2)(0)

)
Πt

= Bt
rHσ2Brσ

2
t + Bt

rHqBrqt + (lxB
2
r (2)ψ(2)

x (0) + lσ2B2
r (3)ψ

(2)

σ2 (0))λt

≡ βvar,σσ
2
t + βvar,qqt + βvar,λλt,

so that with (2.21), (2.25), (2.26), and the above expression for the conditional variance

of the equity return we can derive an explicit equity risk premium representation of

a linear factor pricing model with the variance and skewness risk premiums and the

conditional variance of the equity return.
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Proposition 4 (An Explicit Representation for the Equity Risk Premium)

log Et(Rm,t+1) − rf,t = πc + πvarVarP
t (rm,t+1) + πvpvpt + πspskpt, (2.27)

where

πc ≡
(
− βer,σβvar,q

βvar,σ

+ βer,q

)−βsp,λβvp,c + βvp,λβsp,c

det

+
(
− βer,σβvar,λ

βvar,σ

+ βer,λ

)βsp,qβvp,c − βvp,qβsp,c

det
,

πvar ≡ βer,σ

βvar,σ

,

πvp ≡
(
− βer,σβvar,q

βvar,σ

+ βer,q

)βsp,λ

det
−

(
− βer,σβvar,λ

βvar,σ

+ βer,λ

)βsp,q

det
,

πsp ≡ −
(
− βer,σβvar,q

βvar,σ

+ βer,q

)βvp,λ

det
+

(
− βer,σβvar,λ

βvar,σ

+ βer,λ

)βvp,q

det
,

det ≡ βvp,qβsp,λ − βvp,λβsp,q.

This representation of (2.27) suggests that the skewness risk premium, as well as the

variance risk premium and the conditional variance of the market return, constitutes the

dominant source of the variation in the equity risk premium. In the following section,

we can show that det in (2.27) is not zero under the suitable parameter condition, so

that the skewness risk premium has an essential source of the variation in the equity risk

premium, which is different from that of the variance risk premium (see Fig.2.1).

tq

tλ

2

tσ
tftmt rR ,1, ][log −

tvp
tskp

Fig. 2.1: The Risk Premiums in Higher-Order Moments and the Equity Risk Premium
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Some recent studies such as those by Bali and Hovakimian[2009], Yan[2009], Chang

et al.[2012], Driessen et al.[2012], and Rehman and Vilkov[2012] focus on a significant

relationship between skewness or jump risks and expected stock returns, and they provide

empirical evidence for a significantly positive link between the expected stock returns

and the jump or skewness risks. To the best of our knowledge, this result of (2.27), which

suggests an explicit relationship between the skewness risk premium and the expected

equity excess return, is the first to provide a theoretical implication in their empirical

evidence in terms of the LRR model approach pioneered by Bansal and Yaron[2004].

2.3 Model Implications

Before proceeding to an empirical analysis based on the representation of (2.27), we show

the implications from a calibrated version of the theoretical model (2.27) to help guide

and interpret our subsequent empirical reduced form predictability regressions.

Table 2.1: The Set of Model Parameters

Parameter Source (Calibrated) Values

(1) Preference

ψ BST 2.5

(2) Consumption Growth

ϕη BY 1.0

(3) Long Run Risk

ρx BY 0.979

ϕe BY 0.044

(4) Variance

ρσ BTZ 0.978

(5) Variance-of-Variance

ρq BTZ 0.8

ϕξ BTZ 0.001

(6) Campbell-Shiller

κ1 BTZ 0.9

(7) Jump Intensity

ρλ CM 0.9

ϕu - 0.01

δx, δσ2 - 0.01

µλ - 1.0

lx, lσ2 - 1.0

This table reports the parameter values used in the calibration of the factor loadings in the theoretical model (2.27).

CM, BY, BTZ, and BST in this table denote values taken directly from Chan and Maheu[2002], Bansal and Yaron[2004],

Bollerslev et al.[2009], and Bollerslev et al.[2012], respectively.
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Table 2.1 reports the parameter values used in the calibration of the factor loadings in

the theoretical model (2.27). CM, BY, BTZ, and BST in this table denote values taken

directly from Chan and Maheu[2002], Bansal and Yaron[2004], Bollerslev et al.[2009],

and Bollerslev et al.[2012], respectively. Those previous studies refer to the unit time

interval in the calibrated equilibrium models as a month, and we also refer to the unit

time as the same. On the basis of the parameters exhibited in Table 2.1, we calibrate

the factor loadings for the variance risk premium, which appear in the representation of

(2.21), and for the skewness risk premium, which appear in the representation of (2.25),

in equilibrium.
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Fig. 2.3: The Factor Loading βvp,λ

The figures from Fig.2.2 to Fig.2.5 show the factor loadings, βvp,q, βvp,λ, βsp,q, and

βsp,λ, corresponding to the parameters of the risk aversion parameters γ and the correla-

tion ρ between the volatility of volatility qt and the jump intensity λt. As is shown in the

previous section, βvp,λ, which is the factor loading to the jump intensity λt in the vari-

ance risk premium representation (2.21), is essentially positive, and under the parameter

values exhibited in Table 2.1, βvp,q, which is the factor loading to the variance-of-variance

qt in (2.21), also seems to be positive. These results indicate that when the variance-

of-variance and (or) the jump intensity rise(s), the level of the variance risk premium

also increases. In contrast, βsp,λ, which is the factor loading to the jump intensity in

the skewness risk premium representation (2.25), is essentially negative and this result is

consistent with the discussion explored in the previous section. However, interestingly,

βsp,q, which is the factor loading to the variance-of-variance in (2.25), can be both posi-

tive and negative corresponding to the parameters of γ and ρ. These results on the βsp,λ
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Fig. 2.5: The Factor Loading βsp,λ

and the βsp,q indicate that although an increase in the jump intensity reduces the level

of the skewness risk premium essentially, but an increase in the variance-of-variance will

raise or reduce the level of the skewness risk premium corresponding to the values of γ

and ρ.
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Fig. 2.6: The Factor Loading to V arP
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Fig. 2.7: The Factor Loading to vpt:πvp

The figures from Fig.2.6 to Fig.2.8 show the factor loadings to the variance of the

market return, the variance risk premium, and the skewness risk premium in the equity

risk premium representation (2.27). It is interesting that both of the πV ar and πvp are

essentially positive and these results are irrelevant to the values of γ and ρ. Moreover,

these results are consistent with the previous studies such as those by Bollerslev et
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Fig. 2.8: The Factor Loading to skpt:πskp

al.[2009] and Drechsler and Yaron[2012]. An important point to emphasize is that the

factor loading of πskp, which is the loading to the skewness risk premium in (2.27),

can be positive corresponding to the risk aversion parameter γ. In particular, when

the γ is over 4, it is clear from Fig.2.8 that the πskp is strictly positive. This result

indicates that a decrease in the skewness risk premium, which is the case that the risk-

neutral skewness is going to be much smaller than the skewness under the physical

measure, reduces the equity risk premium when γ is over 4. This implication is interesting

as it shows the essential contribution of the skewness risk premium to the equity risk

premium explicitly implying the sign of the πskp corresponding to the values of γ and ρ.

As mentioned above, some recent studies such as those by Bali and Hovakimian[2009],

Yan[2011], Chang et al.[2012], Driessen et al.[2012], and Rehman and Vilkov[2012] focus

on a significant relationship between skewness or jump risks and expected stock returns,

and they provide empirical evidence for a significantly positive link between the expected

stock returns and the jump or skewness risks. In particular, Bali and Hovakimian[2009]

and Yan[2011] provide evidence for a significantly positive link between expected returns

and the call-put options’ implied volatility spread that can be considered as a proxy for

jump risk. Moreover, using data on individual stock options, Rehman and Vilkov[2012]

show that the currently observed option-implied ex ante skewness is positively related

to future stock returns. There has been no study that tried to provide the theoretical

equilibrium model which is consistent with the empirical results cited above. To the best

of our knowledge, this is the first paper that demonstrates what mentioned above with a

stylized model that accounts for a close relationship between the skewness risk premium
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and the equity risk premium.

2.4 Empirical Measurements

The theoretical model outlined in the previous section suggests that the variance and

skewness risk premiums, as well as the variance of the market return, may serve as useful

predictor variables for the future market returns. To examine this suggestion empirically,

we plan for running some statistical tests based on simple linear regressions of the S

＆P500 excess returns on different sets of lagged predictor variables including the variance

and skewness risk premiums. We always rely on monthly and quarterly observations and

focus our discussion on the estimated slope coefficients and their statistical significance

as determined by the t-statistics. We also report the forecasts’ accuracy of the regressions

as measured by the corresponding adjusted R2s.

Before showing the results of the predictive regressions of the S＆P500 excess returns,

let us note some key points on the measurements for the variance and skewness risk

premiums and describe the data used in our analysis explored in the following subsection.

2.4.1 Measurements for the Higher-Order Moments

Our method for measuring the risk premiums in higher-order moments is similar to

that in Bollerslev et al.[2009] and Drechsler and Yaron[2011]. As mentioned above, we

formally define the variance risk premium as the difference between the risk-neutral and

physical expectations of the variance of the market return and also define the skewness

risk premium in the same manner. We focus on the one-month- and three-month-forward

predictability of those risk premiums and use the squared VIX and the SKEW index from

the Chicago Board of Options Exchange (CBOE) as our measures for the risk-neutral

expected variance and skewness, respectively. The VIX is calculated by the CBOE using

the model-free approach to measure 30-day expected volatility of the S＆ P500 return.

The components of the VIX are near- and next-term put and call options, usually in the

first and second SPX (S＆P500 index) contract months. The model-free approach used

to calculate the VIX is provided by, for example, Demeterfi et al.[1999]. The SKEW

index from the CBOE is also calculated from the S＆ P 500 option prices based on the

method similar to that used to calculate the VIX, which is obtained by a portfolio of S

＆P 500 index options that mimics an exposure to the skewness payoff of one-step-ahead

cumulative return distribution of the index. The Skew index is also calculated by the
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model-free approach provided, for example, Bakshi et al.[2003]. 5

For the measures of the expected variance and skewness under the physical mea-

sure, we use the current variance and skewness of the S＆ P500 index return, which

are respectively defined as the historical 22 days actual variance estimated based on

daily return data of the index and the historical 12 months actual skewness estimated

based on monthly return data of the index. To match the definition of those histori-

cal moments of the index return distribution with the risk-neutral expected moments

mentioned above, we use the annualized current variance, while the current skewness,

which is estimated based on historical 12 months monthly return data, is used as it is.

Bollerslev et al.[2009] suggest that, for highly persistent variance dynamics, or ρσ ≈ 1,

the objective expected future variance will obviously be close to the value of the current

variance so that the same qualitative implications hold true for the variance difference

obtained by replacing EP
t [V arP

t+1(rm,t+2)] in Equation (2.18) with the current variance. In

a similar point of view, the same will be said for the objective expected future skewness.

Moreover, compared to the variance and skewness risk premiums defined by (2.18) and

(2.23), respectively, the usage of the historical return moments in order to substitute for

the objective expected future moments has the advantage that those risk premiums are

directly observable at time t. This is obviously important from a forecasting perspective.

It is for these reasons mentioned above that we use the current variance and skewness

of the index return to measure the expected variance and skewness under the physical

measure.

2.4.2 Data Description

Our data series for the VIX, SKEW index, and expected variance and skewness under P
covers the period from January 1990 to August 2012. The main limitation on the length

of our sample comes from the VIX and SKEW index, since the time series published by

the CBOE begins in January 1990. As mentioned in the previous subsection, we rely

on the monthly and quarterly data for the squared VIX and SKEW index for quanti-

fying EQ
t [V arQ

t+1(rm,t+2)] in (2.18) and EQ
t [SkewQ

t+1(rm,t+2)] in (2.23), respectively, and

purposely rely on the readily available squared VIX as our measure for the risk-neutral

expected variance and the value of 1
10

(100−SKEW index) as our measure for the risk-

neutral expected skewness. The expected variance EP
t [V arP

t+1(rm,t+2)] and the expected

skewness EP
t [SkewP

t+1(rm,t+2)] at time t are respectively calculated based on the historical

5According to the description of the CBOE’s SKEW index, we have the proxy for the risk-neutral
expected skewness, EQ

t [SkewQ
t+1(rm,t+2)], as 1

10 (100 − SKEW index).
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index returns as described in the previous subsection.
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Fig. 2.9: The VIX and The Current Volatility

This figure shows the time-series data of the VIX and the current volatility (the square root
of the current variance defined in the main paper). The current volatility is the historical 22 days
actual volatility estimated based on daily return data of the S＆ P500 index.
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Fig. 2.10: The Risk-Neutral Skewness and The Current Skewness

This figure shows the time-series data of the risk-neutral expected skewness extracted from the
SKEW index and the current skewness. The current skewness is the historical 12 months actual
skewness estimated based on monthly return data of the S＆ P500 index.

To illustrate the data, Fig.2.9 and Fig.2.10 plot the monthly time-series of the risk-
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neutral expected volatility (VIX), the current volatility (historical 22 days annualized

actual volatility), the risk-neutral expected skewness, and the current skewness (historical

12 months actual skewness). Consistent with the theoretical model developed in the

previous section and the earlier empirical evidence, the spread between the risk-neutral

expected variance (the squared VIX) and the current variance is almost always positive

and the spread between the risk-neutral expected skewness and the current skewness

is almost always negative. Moreover, it is clear that these spreads have a time-varying

nature. It is interesting that, although the value of the VIX reaches an outstanding peak

at the period of the Rehman crisis in 2008, the risk-neutral skewness seems to be more

negative at the period of the European financial crisis in 2011 than at the period of the

Rehman crisis.

In addition to the variance and skewness risk premiums, we also consider a set of

other more traditional predictor variables for the predictive regressions examined in the

following subsection. Specifically, we obtain monthly P/E ratios and dividend yields for

the S＆ P 500 directly from Standard＆ Poor’s. Data on the three-month T-bill, the

high-yield spread (hys) (between Moody’s BAA and AAA corporate bond spreads), and

the term spread (ts) (between the ten-year T-bond and the three-month T-bill yields) are

taken from the Thomson Reuters Data Stream. The CAY, which represents the aggregate

consumption-wealth ratio, defined in Lettau and Ludvigson[2001] is downloaded from

Lettau and Ludvigson’s Web site.

Basic summary statistics for the monthly excess returns of the S＆ P500 index and

predictor variables are exhibited in Table 2.2. The sample period extends from January

1990 to August 2012. All variables are reported in monthly-based percentage form

whenever appropriate. The rm,t − rf,t denotes the logarithmic return on the S＆ P 500

index in excess of the three-month T-bill rate. V IX2 denotes the squared VIX index.

ISKew refers to the risk-neutral expected skewness extracted from the CBOE SKEW

index by the formula of ISkew = 1
10

(100 − Skew index). CVar and CSkew refer to the

current variance, which is the annualized actual variance based on historical 22 days daily

return data, and the current skewness, which is the actual skewness based on historical 12

months monthly return data, respectively. vp and skp respectively refer to the variance

and skewness risk premiums, that is, vp ≡ V IX2 − CV ar and skp ≡ ISkew − CSkew.

The predictor variables include the log price-earning ratio ln(pe), the log dividend yield

ln(dy), the high yield spread (hys) defined as the difference between Moody’s BAA and

AAA bond yield indices, and the term spread (ts) defined as the difference between the

ten-year and three-month Treasury yields.
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Table 2.2: Summary statistics for the monthly returns and predictor variables
rm,t − rf,t V IX2 ISkew CVar CSkew vp skp ln(pe) ln(dy) hys ts

(A) Summary Statistics

(1) Mean 0.3 ％ 6.0 ％ -1.6 5.0 ％ -0.2 1.0 ％ -1.4 3.1 0.7 1.0 ％ 1.9 ％
(2) Std. Dev. 4.4 ％ 2.3 ％ 0.5 3.1 ％ 0.7 1.5 ％ 0.8 0.4 0.3 0.4 ％ 1.2 ％
(3) Skewness -0.6 1.6 -0.4 2.7 -0.2 -2.2 0.2 2.3 0.1 3.2 -0.2

(4) Kurtosis 1.1 3.9 -0.2 10.7 0.7 9.9 0.0 7.1 -0.6 12.9 -1.1

(5) AR(1) 0.07 0.85 0.56 0.75 0.91 0.22 0.74 0.95 0.99 0.96 0.97

(B) Correlation Matrix

rm,t − rf,t 1

V IX2 0.02 1

ISkew 0.06 -0.00 1

CVar -0.11 0.87 0.03 1

CSkew -0.10 -0.06 0.19 -0.03 1

vp 0.25 -0.25 -0.07 -0.69 -0.03 1

skp 0.13 0.05 0.48 0.04 -0.77 -0.01 1

ln(pe) 0.01 0.25 0.00 0.15 0.00 0.08 0.00 1

ln(dy) 0.08 -0.14 0.11 -0.10 0.09 -0.02 -0.01 -0.35 1

hys -0.05 0.64 -0.04 0.67 0.07 -0.38 -0.09 0.16 0.21 1

ts -0.02 0.06 0.08 0.05 0.33 -0.02 -0.24 0.28 0.38 0.26 1

The sample period extends from January 1990 to August 2012. All variables are reported in monthly-based percentage

form whenever appropriate. The rm,t − rf,t denotes the logarithmic return on the S ＆ P 500 in excess of the three-month

T-bill rate. V IX2 denotes the squared VIX index. ISKew refers to the risk-neutral expected skewness extracted from the

CBOE SKEW index by the formula of ISkew = 1
10

(100 − Skew index). CVar and CSkew refer to the current variance,

which is the annualized actual variance based on historical 22 days daily return data, and the current skewness, which is

the actual skewness based on historical 12 months monthly return data, respectively. vp and skp respectively refer to the

variance and skewness risk premiums, that is, vp ≡ V IX2 − CV ar and skp ≡ ISkew − CSkew. The predictor variables

include the log price-earning ratio ln(pe), the log dividend yield ln(dy), the high yield spread (hys) defined as the difference

between Moody’s BAA and AAA bond yield indices, and the term spread (ts) defined as the difference between the ten-year

and three-month Treasury yields.

The mean excess return on the S＆P 500 index over the sample equals 0.3％monthly.

The sample means for the V IX2 and the current (historical 22 days) annualized variance

are 6.0％ and 5.0％, respectively, and the sample means for the risk-neutral expected

skewness and the current (historical 12 months) skewness are -1.6 and -0.2, respectively.

The numbers for the traditional forecasting variables are all directly in line with those

reported in previous studies. In particular, all of the variables are highly persistent with

first-order autocorrelations ranging from 0.95 to 0.99.

2.4.3 Main Empirical Findings

Table 2.3 provides the results of return predictability regressions with the variance and

skewness risk premiums. All of our forecasts are based on simple linear regressions of

the S＆ P500 excess returns on different sets of lagged predictor variables. There are
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two sets of columns with regression estimates. The first set of columns shows OLS esti-

mates by monthly return regressions, that is, one-month-ahead forecasts, and the second

set shows OLS estimates by non-overlapped quarterly return regressions, that is, one-

quarter-ahead forecasts. These regressions are examined in the period from January 1990

to August 2012 and, in particular, each of the monthly return regressions is examined

by 270-month samples and each of the quarterly return regressions is examined by 88-

quarter samples. Each of the sets of columns consists of five regression results. The first

two regressions are one-factor regression models using the variance risk premium (vp-

model) or the skewness risk premium (skp-model) as a univariate regressor, while the

third regression is two-factor regression model using both the variance and skewness risk

premiums (vp+skp-model). The fourth regression model, which is denoted by 3-factor-

model, represents the theoretical linear model of (2.27) derived in the previous section.

Finally, we also provide the stepwise-selection model (Stepwise-model) of which the uni-

verse of independent variables consists of the risk premiums in higher-order moments,

changes of those risk premiums, and one of the traditional predictor variables, that is,

the log price-earning ratio ln(pe). The variables such as 4V IX2 and 4ISkew exhibited

in this table are monthly or quarterly changes of the V IX2 and ISkew, respectively.

From the monthly return regression results in this table, we can find that the slope

coefficients of the vp- and skp-model are both significant at 5％ level and, in particular,

the slope coefficient of the vp-model is significant at 1％ level. Moreover, the slope

coefficients of the vp+skp-model are also significant at the same level as mentioned

above and this model can account for about 7.2％ of the monthly return variation.

The 3-factor-model represents the theoretical implication of (2.27) and this model has a

superior predictive power in the adjusted R2 than the vp+skp-model due to the additional

variable of the current variance (CVar). Although the stepwise-model is not equivalent

to the theoretical implication of (2.27), that is, the 3-factor-model, all of the independent

variables of CVar, vp, and skp in (2.27) are significant at 5％ or 1％ level. These results

indicate that the theoretical model of (2.27) and, in particular, the variance and skewness

risk premiums have superior predictive power for future aggregate stock market index

returns and this indication is consistent with the theory provided in the previous section

in this chapter.

The quarterly regressions reported in this table further underscore the significance

of the monthly return regressions and, in contrast to the monthly return regressions, all

of the t-statistics for the skewness risk premium are insignificant at conventional levels.

However, interestingly, we can find that the stepwise-model is perfectly equivalent to the

theoretical implication of (2.27), that is, the 3-factor-model, and this model can account
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for about 14.7％ of the quarterly return variation. Although the slope coefficient to

the skewness risk premium is not significant as mentioned above, the coefficients to the

variance risk premium and the current variance are both significant at 5％ level and, in

particular, at 1％ level for the variance risk premium.

Table 2.3: The Monthly and Quarterly Return Regressions
(A) Monthly Return Regression Models (B) Quarterly Return Regression Models

vp skp vp+skp 3-

factor

Stepwise vp skp vp+skp 3-

facor

Stepwise

Constant -0.004 0.013 0.006 -0.004 -0.015 -0.007 0.027 0.016 -0.042 -0.042

(t-stat) -1.18 2.43** 1.18 -0.42 -1.57 -0.68 1.48 0.91 -1.44 -1.44

V IX2

ISkew

CVar 0.158 0.312 0.909 0.909

1.37 2.54** 2.43** 2.43**

CSkew

4 V IX2 -0.883

-3.35***

4 ISkew

4 CVar 0.369

2.11**

4 CSkew

vp 0.699 0.704 0.921 1.416 1.529 1.646 2.845 2.845

4.19*** 4.25*** 4.02*** 4.85*** 2.95*** 3.17*** 4.03*** 4.03***

skp 0.007 0.007 0.007 0.008 0.013 0.019 0.018 0.018

2.11** 2.22** 2.16** 2.42** 1.11 1.60 1.56 1.56

4 vp

4 skp

ln(pe)

Adj.R2 5.8 ％ 1.3 ％ 7.2 ％ 7.5 ％ 10.6 ％ 8.1 ％ 0.3 ％ 9.8 ％ 14.7％ 14.7％

The sample period extends from January 1990 to August 2012. V IX2 denotes the squared VIX index. ISKew refers to

the risk-neutral expected skewness extracted from the CBOE SKEW index by the formula of ISkew = 1
10

(100−Skew index).

CVar and CSkew refer to the current variance, which is the annualized actual variance based on historical 22 days daily

return data, and the current skewness, which is the actual skewness based on historical 12 months monthly return data,

respectively. vp and skp respectively refer to the variance and skewness risk premiums, that is, vp ≡ V IX2 − CV ar and

skp ≡ ISkew − CSkew. The variables such as 4V IX2 and 4ISkew exhibited in this table are monthly or quarterly

changes of the V IX2 and the ISkew, respectively. The predictor variables include the log price-earning ratio ln(pe).

Let us show the other results to emphasize the superiority of the skewness risk pre-

mium, as well as the variance risk premium, as a predictor variable for the equity excess
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return. Table 2.4 reports monthly- and quarterly-based predictive regression results for

the S＆P500 index excess return with each of the traditional predictor variables exhib-

ited in this table, that is, the price-earning ratio (pe), dividend yield (dy), high-yield

spread (hys), and term spread (ts) defined in the previous subsection and the changes

of those variables. As shown in this table, we can find that, in the case of the monthly

return regressions, none of the predictor variables are superior in the adjusted R2 to the

variance and skewness risk premiums (see Table 2.3). In the case of the quarterly return

regressions in this table, it seems that only 4ln(pe) and 4hys have superior adjusted R2

in comparison with the skewness risk premium, but, none of the variables are superior

in the adjusted R2 to the variance risk premium. (see Table 2.3)

Table 2.4: The Univariate Regressions with Traditional Predictor Variables

(A) Monthly Return Regressions

ln(pe) 4 ln(pe) ln(dy) 4 ln(dy) hys 4 hys ts 4 ts

Slope Coeff. 0.001 -0.002 0.011 -0.090 -0.516 -1.822 -0.084 -0.513

p-Value (％) 86.7 93.1 22.4 15.1 40.0 38.4 71.2 56.6

Adj.R2 (％) -0.4 -0.4 0.2 0.4 -0.1 -0.1 -0.3 -0.3

(B) Quarterly Return Regressions

ln(pe) 4 ln(pe) ln(dy) 4 ln(dy) hys 4 hys ts 4 ts

Slope Coeff. 0.008 0.059 0.038 -0.093 -1.118 -7.402 -0.132 -1.661

p-Value (％) 73.8 10.6 20.6 41.3 58.8 2.5** 86.4 31.6

Adj.R2 (％) -1.0 1.9 0.7 -0.4 -0.8 4.6 -1.1 0.0

The sample period extends from January 1990 to August 2012. We obtain monthly P/E ratios (pe) and dividend

yields (dy) for the S ＆ P 500 directly from Standard ＆ Poor’s. Data on the three-month T-bill, the high-yield spread

(hys) (between Moody’s BAA and AAA corporate bond spreads), and the term spread (ts) (between the ten-year T-bond

and the three-month T-bill yields) are taken from the Thomson Reuters Data Stream.

Table 2.6 reports monthly- and quarterly-based predictive regression results for the S

＆ P500 index excess return with the CAY, the aggregate-consumption wealth ratio de-

fined in Lettau and Ludvigson[2001]. The CAY is quarterly-based data and downloaded

from Lettau and Ludvigson’s web site. The downloaded data covers January 1990 to

January 2012. Table 2.5 shows summary statistics for the CAY as well as the variance

and skewness risk premiums under the period from January 1990 to January 2012. For

the monthly return regressions, we define a monthly CAY series from the most recent

quarterly observation.

As shown in Table 2.6, we can find that the CAY does not seem to be superior

predictor variable in comparison with the variance and skewness risk premiums. This

result is similar to the results in Table 2.4 and also suggests that the skewness risk
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premium, as well as the variance risk premium, has superior predictive power for future

aggregate stock market index returns.

Table 2.5: Summary statistics for the CAY

rm,t − rf,t cay vp skp

(A) Summary Statistics

(1) Mean 0.29 ％ 0.21 ％ 0.94 ％ -132.51 ％
(2) Std. Dev. 4.38 ％ 2.38 ％ 1.55 ％ 75.83 ％
(3) Skewness -0.59 -0.11 -2.27 0.18

(4) Kurtosis 1.12 -1.40 10.02 0.08

(5) AR(1) 0.08 0.98 0.23 0.75

(B) Correlation Matrix

rm,t − rf,t 1

cay 0.09 1

vp 0.24 0.17 1

skp 0.14 0.26 0.01 1

The sample period extends from January 1990 to January 2012. The CAY is the aggregate-consumption wealth ratio

defined in Lettau and Ludvigson[2001], which is quarterly-based data and downloaded from Lettau and Ludvigson’s web

site.

Table 2.6: The Univariate Regressions with the CAY

(A) Monthly Return Regressions

cay vp skp

Slope Coeff. 0.157 0.683 0.008

p-Value (％) 17.2 0.0*** 2.3**

Adj.R2 (％) 0.3 5.5 1.6

(B) Quarterly Return Regressions

cay vp skp

Slope Coeff. 0.418 1.618 0.016

p-Value (％) 27.4 0.2*** 21.5

Adj.R2 (％) 0.2 9.3 0.7

The sample period extends from January 1990 to January 2012. The CAY is the aggregate-consumption wealth ratio

defined in Lettau and Ludvigson[2001], which is quarterly-based data and downloaded from Lettau and Ludvigson’s web

site. For the monthly return regressions, we define a monthly CAY series from the most recent quarterly observation.

2.5 Concluding Remarks

In this chapter, we investigate the skewness risk premium in the financial market under

a general equilibrium setting. Extending the long-run risks (LRR) model proposed by
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Bansal and Yaron[2004] by introducing a stochastic jump intensity for jumps in the LRR

factor and the variance of consumption growth rate, we provide an explicit representation

for the skewness risk premium, as well as the volatility risk premium, in equilibrium.

On the basis of the representation for the skewness risk premium, we propose a

possible reason for the empirical fact of time-varying and negative risk-neutral skewness.

Moreover, we also provide an equity risk premium representation of a linear factor pricing

model with the variance and skewness risk premiums. The empirical results prove that

the skewness risk premium, as well as the variance risk premium, has superior predictive

power for future aggregate stock market index returns. Compared with the variance risk

premium, the results show that the skewness risk premium plays an independent and

essential role for predicting the market index returns.

Some recent studies such as those by Bali and Hovakimian[2009], Yan[2011], Chang

et al.[2013], Driessen et al.[2012], and Rehman and Vilkov[2012] focus on a significant

relationship between skewness or jump risks and expected stock returns and they provide

empirical evidence for a significantly positive link between the expected stock returns and

the jump or skewness risks. To the best of our knowledge, this study is the first to provide

a theoretical implication in their empirical evidence in terms of the LRR model approach

pioneered by Bansal and Yaron[2004]. It remains some challenges for future research on

providing more explicit theoretical explanation for the results presented by the recent

studies cited above with the theoretical implication shown in this chapter. And moreover,

it also needs a detailed analysis on the reasons why the skewness and variance risks are

priced differently and, in particular, independently of each other. Further insight into

this aspect is left to further work.

Appendix 2.A Proof of Proposition 2

From the definition of the variance risk premium (2.18) and the expressions of the con-

ditional variance of the market return rm,t+2 at time t + 1 under each of the probability

measures, we can derive the following expression,

vpt = −Bt
r

[
Λσ2Hσ2 + ϕξ(ϕξΛq + ρϕuΛλ)Hq

]
Brqt

+ Bt
rHσ2Br

[
EQ

t [JQ
σ2,t+1] − EP

t [J
P
σ2,t+1]

]
+ B2

r
t
[
diag(ψ(2)(−Λ))EQ

t [Πt+1] − diag(ψ(2)(0))EP
t [Πt+1]

]
,

(2.28)
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where Λq ≡ (1 − θ)κ1Aq, Λλ ≡ (1 − θ)κ1Aλ (See (2.13)), and

diag
(
ψ(2)(−Λ)

)
≡



0 0 0 0 0 0

0 ψ
(2)
x (−Λx) 0 0 0 0

0 0 ψ
(2)

σ2 (−Λσ2) 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


,

EQ
t [Πt+1] ≡

(
0 EQ

t [λx,t+1] EQ
t [λσ2,t+1] 0 0 0

)t

,

EP
t [Πt+1] ≡

(
0 EP

t [λx,t+1] EP
t [λσ2,t+1] 0 0 0

)t

,

Substituting the following facts,

EQ
t [JQ

σ2,t+1] = λσ2,tψ
(1)

σ2 (−Λσ2),

EP
t [J

P
σ2,t+1] = λσ2,tψ

(1)

σ2 (0),

into (2.28) and considering (2.6) and (2.16), we can obtain the representation (2.21). ¤

Appendix 2.B The Risk-Free Rate

The explicit expression of the risk-free rate can be obtained by substituting rf,t into rj,t+1

in (2.3). We finally provide the following proposition on the risk-free rate rf,t.

Proposition 5 (The Risk-Free Rate) The risk free rate is expressed as follows with

the state variables of σ2
t , qt, and λt.

rf,t = βrf,c + βrf,xxt + βrf,σσ
2
t + βrf,qqt + βrf,λλt,

where

βrf,c ≡ −θ log δ + γµg − (θ − 1)(κ0 − A0) − (θ − 1)κ1(A0 + Aσµσ + Aqµq + Aλµλ),

βrf,x ≡ γ − (θ − 1)Ax(κ1ρx − 1),

βrf,σ ≡ (1 − θ)Aσ(κ1ρσ − 1) − 1

2

[
γ2ϕ2

η + (θ − 1)2κ2
1A

2
xϕ

2
e

]
,

βrf,q ≡ (1 − θ)Aq(κ1ρq − 1) − 1

2
(θ − 1)2κ2

1

[
A2

σ + A2
qϕ

2
ξ + 2AqAλϕξϕuρ + A2

λϕ
2
u

]
,

βrf,λ ≡ (1 − θ)Aλ(κ1ρλ − 1)

− lx

[
exp(

1

2
(θ − 1)2κ2

1A
2
x) − 1

]
− lσ

[
exp(

1

2
(θ − 1)2κ2

1A
2
σ) − 1

]
.
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Chapter 3

An Approach to the Option Market

Model Based on End-user Net

Demand

3.1 Introduction

We study financial option prices and their related topics in terms of option demand

pressure. The starting point of our analysis is that options are traded because they are

useful and therefore cannot be redundant for all investors. In the actual financial option

market, we can classify market participants into two types of agents: market-makers and

end-users. Market-makers play a key role in providing liquidity to end-users by taking

the other side of end-user net demand. 1 The positions of market-makers are controlled

by risk management strategies such as option writing and holding, cash flow matching,

or delta-neutral hedging with futures or forwards according to their trading constraints

and market conditions (Green and Figlewski[1999]).

In this study, we consider a demand-based option market model in which market-

makers employ the delta-neutral hedging strategy with futures or forwards in order to

control the risks induced by taking the other side of end-user net demand. Green and

Figlewski[1999] prove that simply writing and holding options as if they are ordinary

risky assets entails a very large exposure to risk. They note that cash flow matching is

not a strategy that can generally be followed by market-makers because the nature of the

1Some investment strategies such as portfolio insurance and speculative trading will induce the end-
user net demand for financial options (e.g., Bollen and Whaley[2004]). Gârleanu et al.[2009] provide the
descriptive statistics on the end-user net demand for the S&P500 index options.
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derivatives business is that the public wants to be long options, so that the market-maker

community must be short on balance. Therefore, market-makers as a group must hold

exposed and unmatched option positions. In light of these facts, the authors emphasize

that delta-neutral hedging based on a valuation model is the only viable trading and risk

management strategy for most market-makers.

If we can assume a dynamically complete financial market that can be governed by

standard market models such as the Black-Scholes-Merton model, the no-arbitrage theory

uniquely determines derivative prices that are independent of end-users net demand

for options because market-makers can hedge their option positions perfectly through

continuous time trading with underlying assets and cash. However, there is a rich body of

studies that provides empirical evidence of jumps and stochastic volatilities in underlying

asset processes, so the assumption of a dynamically complete market would not apply

to the actual financial market. Under an incomplete market governed by additional

risk factors such as stochastic volatilities and jumps, market-makers cannot hedge their

option positions perfectly and are exposed to the risk of significant losses in the process

of making markets and managing their options portfolios.

In light of these facts, we investigate how options are priced through optimized trading

strategies for market-makers and end-users assuming a market in which market-makers

cannot hedge their option positions perfectly due to risk factors such as stochastic volatil-

ities and/or jumps. We provide a pricing kernel representation in equilibrium between

supply and demand for options as an explicit function of end-users net demand for op-

tions and investigate the characteristics of equilibrium option prices that are consistent

with that pricing kernel.

In recent years, there has been a renewal of interest in demand-pressure effects

on financial option prices. On the basis of empirical analyses, several recent studies

have shown that option demand has a significant impact on option prices. Green and

Figlewski[1999] note that option market-makers cannot perfectly hedge their inventories

of options and are consequently motivated to increase (decrease) their volatility forecasts

by some suitable amount in pricing options in order to compensate for bearing various

types of risks and to provide an expected profit above the risk-free rate. Bollen and

Whaley[2004] demonstrate that changes in implied volatility are correlated with signed

option volume. They show that changes in option demand lead to changes in option

prices, while leaving open the question of whether the level of option demand impacts

the overall level (i.e., expensiveness) of option prices or the overall shape of implied-

volatility curves. Han[2007] provides evidence that investor sentiment helps explain both

the shape of the S&P500’s option volatility smile and the risk-neutral skewness of the
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index return extracted from index option prices. The author indicates that one channel

for investor sentiment to affect option prices is through a demand-pressure effect and

notes that the relative demand pressure of options helps explain time-series variations in

index risk-neutral skewness. Kang and Park[2008] and Shiu, et al.[2010] also empirically

investigate the effects of net-buying pressure for options on option prices and the shape

of the implied volatility curve, and find significant effects of demand pressure on option

prices.

Although the studies cited above relate option prices to demand-pressure effects in

terms of various empirical aspects, Gârleanu et al.[2009] complement these studies by

providing a theoretical model that can explicitly consider the demand-pressure effects

on option prices and testing the precise quantitative implications of their model. They

provide a novel representation of the pricing kernel with end-users net demand for options

under the dynamic optimality of option market-makers. However, they unfortunately

assume that the inelastic option demand of end-users is given exogeneously and that the

option demand is independent of the preferences of both market-makers and end-users.

In contrast, in this chapter, we consider a model in which the preference of market-makers

for the background risks induced by the net demand of end-users affects option prices

and, as a result, affects the net demand of end-users directly in an incomplete market.

This aspect of our model is also empirically pointed out by Green and Figlewski[1999].

Considering the preferences of both market-makers and end-users explicitly, we examine

the equilibrium between supply and demand for options that is implicit in our model and

derive a pricing kernel representation with their preferences and end-users net demand

in equilibrium. End-users net demand is induced endogeneously in our model, and this

aspect differentiates our study from that of Gârleanu et al.[2009]. We investigate the

effects of end-users net demand on option prices with the pricing kernel derived from our

model setup and demonstrate that the demand pressure for financial options induced by

end-users critically affects equilibrium option prices according to the preferences of both

the representative market-maker and end-user.

Moreover, consistent with the pricing kernel in equilibrium between supply and de-

mand for options, we provide some important implications for the problems on the

features of financial option prices quoted in actual markets. First, we investigate the

theoretical relationship between the net demand of end-users for financial options and

the variance risk premium in a stochastic volatility environment with the demand-based

pricing kernel derived from our model setup. The variance risk premium is the com-

pensation for the risk induced by stochastic volatility in financial asset price processes,

and it is well known that this risk premium is essentially related to delta-hedged option
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returns (e.g., Bakshi and Kapadia[2003]). We derive the variance risk premium with the

covariance between variance changes and changes in the pricing kernel and show that

this variance risk premium can be represented explicitly with end-users net demand for

options. We find that if end-users net demand for options in the market is zero, the vari-

ance risk premium is also zero because, in this case, option market-makers are not faced

with unhedgeable risks that are induced by stochastic volatility environments. However,

we also find that the variance risk premium is not zero but a positive or negative value

under the condition in which end-users net demand for options differs from zero and that

the sign of the variance risk premium is determined by the sign of end-users net demand.

In particular, under suitable conditions, the negative variance risk premium, which is

shown empirically by, for example, Bakshi and Kapadia[2003], Low and Zhang[2005],

and Carr and Wu[2009], can be explained by a positive demand pressure for options of

convex payoffs. Moreover, consistent with our model setup, it is also found that a positive

demand pressure for convex payoff options can be induced in equilibrium between supply

and demand for options under such suitable conditions. To the best of our knowledge,

this study is the first to provide a theoretical implication of the effect of end-users net

demand for options on the variance risk premium in equilibrium.

The second implication is related to the pricing kernel puzzle or, equivalently, the

implied risk aversion smile found by, for example, Aı̈t-Sahalia and Lo[2000], Jackw-

erth[2000], Rosenberg and Engle[2002], and Ziegler[2007]. In a representative agent

economy, the equilibrium pricing kernel based on the standard consumption-based frame-

work should be monotone and decreasing in the aggregate price of equity. However, the

recent studies cited above have presented puzzling evidence to the contrary: the pricing

kernel (or the implied risk aversion function), when plotted against the market return, is

not monotonically decreasing but instead exhibits an upward-sloping and/or negative re-

gion. Ziegler[2007] explores different potential explanations for these unexpected results

within the standard consumption-based framework, but none of the potential explana-

tions is able to account for these unexpected results. The author notes that, to explain

the unexpected results, it seems necessary to go beyond the standard consumption-based

framework and analyze the impact of factors such as market incompleteness and/or mar-

ket frictions. In this study, we prove that the net demand of end-users plays a key role in

explaining these unexpected results and present a numerical simulation result in which

the implied risk aversion function in equilibrium between supply and demand for options

has an upward-sloping region due to the net demand of end-users for options.

This article is organized as follows. Section 3.2 presents an option market model

assumed in this analysis. The model reveals that both the representative option market-
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maker and the representative option end-user play key roles in determining option prices

in equilibrium and that the prices are directly affected by the preferences of these market

participants. Section 3.3 explores associated implications for the features of option mar-

ket prices, especially on the variance risk premium and the implied risk aversion smile,

with the equilibrium pricing kernel which is a function of the net demand of end-users.

Section 3.4 concludes.

3.2 The Model

3.2.1 Assumptions of a Financial Option Market

We start with a filtered probability space (Ω,F , P; {Ft}t≥0). Time is indexed by t ∈ [0, T ].

We consider a two-dimensional asset price process that allows return volatility to be

stochastic under the physical probability measure P:

dSt

St

= µtdt + σt

√
1 − ρ2

t dB1
t + σtρtdB2

t ,

dσt = θtdt + ηtdB2
t ,

(3.1)

where µt, θt, ηt and ρt are {Ft}t≥0-adapted stochastic processes, which allow the above

equations to have a strong solution, and these processes are independent of St. (B1
t , B

2
t )

denotes a standard 2-dimensional Brownian motion on the probability space (Ω,F , P),

and we give the information set Ft as a sigma-algebra σ{B1
s , B

2
s |s ≤ t} ∨ N , where

N is the null set. We assume that there is a risk-free asset in the financial market

and the annualized risk-free rate is r ∈ R1
+. In this chapter, we make an important

assumption in line with Gârleanu et al.[2009] that there are two representative agents

in the financial option market: a market-maker and an end-user. The market-maker is

recognized as a liquidity provider for financial options, and this role is mainly performed

by dealers in financial institutions. The end-user represents option market participants

such as speculators and portfolio insurers. The market-maker quotes option prices that

are optimized in accordance with the end-user net demand for options, and the end-user

plays with the prices as a price taker to hold an optimal option position in his investment

portfolio. We will describe their optimization problems in detail in the following section.

In this chapter, we also assume that the option market-maker employs the delta-neutral

hedging strategy with underlying assets for controlling the risks caused by the positions

of the other side of the end-user net demand for options. For simplicity, we do not

account for any transaction costs and liquidity constraints in the delta-neutral hedging

strategy and suppose that the market-maker can continuously trade underlying assets.
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It is well known that the absence of arbitrage opportunities is essentially equivalent

to the existence of a probability Q, equivalent to the physical probability measure P,

under which the discounted prices process is a Ft-adapted martingale; such a probability

will be called an equivalent martingale measure. Any equivalent martingale measure Q
is characterized by a continuous version of its density process with respect to P, which

can be written from the integral form of martingale representation:

Mt(ν·, λ·) ≡
dQ
dP

|Ft≡ exp
(
−

∫ t

0

νudB1
u −

∫ t

0

λudB2
u −

1

2

∫ t

0

ν2
udu − 1

2

∫ t

0

λ2
udu

)
, (3.2)

where (νt, λt) is adapted to Ft and satisfies the integrability conditions
∫ T

0
ν2

udu < ∞ and∫ T

0
λ2

udu < ∞ a.s.. Each process of νt and λt is interpreted as the price of risk relative

respectively to the two sources of uncertainty B1
t and B2

t . In particular, if Λt ≡ MtBt

denotes the discount factor process where Bt ≡ exp
(
− rt

)
, then the price of volatility

risk λt is given by λt ≡ −Covt(
dΛt

Λt
, dσt) (see, e.g., Cochrane[2001]). It can be seen that a

positive correlation between the discount factor process Λt and the volatility process σt

implies a negative λt. Q is also denoted by Q(ν·, λ·) when we need to specify the price

of risk implied by Q.

Assuming the model of a financial market given above, an explicit representation of

delta-neutral hedged option returns for the market-maker can be derived as follows.

Ct ≡ F (t, St, σt) denotes the time-t theoretical price of an European-type call option
2 , which is consistent with (3.1) and the market preference, written on St, struck at K,

and expiring at time T for a C1,2,2-function F (t, S, σ). Under the equivalent martingale

measure Q (which is also consistent with (3.1) and the market preference), the Ct defined

above can be expressed as the following manner:

Ct ≡ F (t, St, σt) = e−r(T−t)EQ[max(ST − K, 0) | Ft]. (3.3)

On the basis of the approach explored by Bakshi and Kapadia[2003], let us derive the

expression of a theoretical delta-hedged option return for Ct = F (t, St, σt) under the

above assumptions.

When 0 ≤ τ ≤ T − t, we can derive a following equation via Ito’s lemma:

Ct+τ = Ct +

∫ t+τ

t

∂F

∂S
(u, Su, σu)dSu

+

∫ t+τ

t

∂F

∂σ
(u, Su, σu)dσu +

∫ t+τ

t

DF (u, Su, σu)du,

(3.4)

2In this section, we focus on an European call option, but the discussion and results we provide here
can apply more generally to other options such as puts and straddle options.
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where

DF (t, St, σt) =
∂F

∂t
(t, St, σt) +

1

2
σ2

t S
2
t

∂2F

∂S2
(t, St, σt)

+
1

2
η2

t

∂2F

∂σ2
(t, St, σt) + ρtηtσtSt

∂2F

∂S∂σ
(t, St, σt).

(3.5)

On the other hand, standard assumptions also show that the call option price Ct is a

solution to the Black-Scholes valuation equation,

1

2
σ2

t S
2
t

∂2F

∂S2
(t, St, σt) +

1

2
η2

t

∂2F

∂σ2
(t, St, σt) + ρηtσtSt

∂2F

∂S∂σ
(t, St, σt) + rSt

∂F

∂S
(t, St, σt)

+ (θt − λt)
∂F

∂σ
(t, St, σt) +

∂F

∂t
(t, St, σt) − rCt = 0.

(3.6)

Thanks to (3.6),

∂F

∂t
(t, St, σt) = −1

2
σ2

t S
2
t

∂2F

∂S2
(t, St, σt) −

1

2
η2

u

∂2F

∂σ2
(t, St, σt) − ρηtσtSt

∂2F

∂S∂σ
(t, St, σt)

− rSt
∂F

∂S
(t, St, σt) − (θt − λt)

∂F

∂σ
(t, St, σt) + rCt.

(3.7)

Substituting (3.7) into (3.5), we have

Ct+τ = Ct +

∫ t+τ

t

∂F

∂S
(u, Su, σu)dSu +

∫ t+τ

t

(
rCu − rSu

∂F

∂S
(u, Su, σu)

)
du

+

∫ t+τ

t

λu
∂F

∂σ
(u, Su, σu)du +

∫ t+τ

t

ηu
∂F

∂σ
(u, Su, σu)dB2

u.

(3.8)

If we define the delta-hedged gain and loss (hereinafter, DHGL) Πt,t+τ for Ct in the

period of [t, t + τ ] by

Πt,t+τ ≡ Ct+τ − Ct −
∫ t+τ

t

∂F

∂S
(u, Su, σu)dSu −

∫ t+τ

t

(
rCu − rSu

∂F

∂S
(u, Su, σu)

)
du,

then, from (3.8) it follows

Πt,t+τ =

∫ t+τ

t

λu
∂F

∂σ
(u, Su, σu)du +

∫ t+τ

t

ηu
∂F

∂σ
(u, Su, σu)dB2

u. (3.9)

Thus, taking expectation to (3.9) under the physical measure P, the expected delta-

hedged option return for Ct = F (t, St, σt) can be derived as follows:

E
[
Πt,t+τ | Ft

]
=

∫ t+τ

t

E
[
λu

∂F

∂σ
(u, Su, σu)

]
du. (3.10)

54



3.2. THE MODEL

The implication of equation (3.10) is that if the volatility risk is not priced (i.e., λu = 0),

then on average, the delta-hedged option return should be zero. In contrast, if the

volatility risk is priced (i.e., λu 6= 0), then on average, the delta-hedged option return

must not be zero. Because the Vega of the call option, ∂F
∂σ

(u, Su, σu), is not zero, the sign

of the volatility risk premium λu determines whether the average delta-hedged option

return is positive or negative.

It is clear that the problem of the determination of a λu in actual financial market

governed by stochastic volatility is equivalent to the problem of the determination of

fair option prices in that market. In this chapter, we suppose that option prices in

equilibrium are determined through the determination of λu, which is also affected by

the net demand of end-users for options.

To consider optimization problems of portfolio construction for the market-maker and

the end-user, let us introduce wealth processes and utility functions for these representa-

tive agents. Let WO
t and WE

t denote Ft-adapted wealth processes for the market-maker

and the end-user, respectively, and the utility function of the market-maker at time T ,

UO(·) : R → R, is denoted by UO(WO
T ) ≡ −A exp(−WO

T /A), which is an exponential

utility function. A > 0 is a risk tolerance parameter for the market-maker. This as-

sumption of the utility function for the market-maker is similar to the assumption in

Gârleanu, et al.[2009]. In contrast, the utility function of the end-user at time T is de-

noted by UE(WE
T ) ∈ C2(R) and we do not assume any specific types for the end-user’s

utility function in the following discussion in which we develop a theoretical background.

Based on the assumptions stated above, we examine one-period optimization prob-

lems for the market-maker and the end-user. The end-user constructs an optimized

portfolio that consists of cash, a single stock of which the price process is represented by

(3.1), and options. The end-user holds the optimized portfolio to the maturity time of T .

We assume that there are N tradable options in the market and each of payoff functions

of N options is denoted by gi(ST ) : R → R, i = 1, · · · , N , respectively. Each optimal

amount of N options for the end-user at time t = 0 is denoted by δ∗i ∈ R, i = 1, · · · , N .

3.2.2 Assumptions for Option Prices

Suppose that prices of traded N options are functions of the vector δ ≡ (δ1, δ2, · · · , δN)t ∈
RN , where each of δi, i = 1, · · · , N , is the net demand of end-users for the i-th op-

tion contract, and these functions are denoted by pi(·) ∈ C2(RN), i = 1, · · · , N , re-

spectively. If the vector of the net demand of end-users for each option contract,

δ ≡ (δ1, δ2, · · · , δN)t ∈ RN , is given explicitly, by considering (3.9), (3.10), and the
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proposition presented in Appendix A it is intuitively clear that the delta-hedged option

return at time T of the i-th option contract written by the market-maker in order to

match the net demand of end-users for that option is described by the following expres-

sion,

Πi
T (δ) ≡ pi(δ) − pi

0 + εi
T , (3.11)

where εi
T is a FT -adapted random variable whose the expected value is zero, that is,

E[εi
T ] = 0, and p0

i is the price of the i-th option contract whose the expected value of its

delta-hedged return is zero. Considering (3.10), we find that this p0
i can be expressed as

follows:

p0
i = e−rT EQ(ν·,0)

[
gi(ST )

]
= e−rT E

[
MT (ν·, 0)gi(ST )

]
, (3.12)

which is the price under zero volatility risk premium in the stochastic volatility environ-

ment of (3.1).

Let us introduce two Borel probability measures on R1, PST (B) and QST (ν·, λ·)(B),

B ∈ B(R1), as PST (B) ≡ (P ◦S−1
T )(B) and QST (ν·, λ·)(B) ≡ (Q(ν·, λ·) ◦S−1

T )(B), respec-

tively. Introducing a Radon-Nikodym derivative process as MST
T (ν·, λ·)(x) ≡ dQST (ν·,λ·)

dPST
(x),

x ∈ R1, we can also derive the following expression,

p0
i = e−rT EQ(ν·,0)

[
gi(ST )

]
= e−rT EQST (ν·,0)

[
gi(x)

]
= e−rT EPST

[
MST

T (ν·, 0)(x)gi(x)
]

= e−rT E
[
MST

T (ν·, 0)(ST )gi(ST )
]
.

(3.13)

An intuitive interpretation of the assumption (3.11) is that the market-maker requires

the expected excess profit of pi(δ)−pi
0 as a risk premium for unhedgeable risks in delta-

neutral hedging that are essentially induced by the net demand of end-users, which is

also pointed out in Green and Figlewski[1999].

3.3 Optimality and Equilibrium

3.3.1 Optimization for the Market-maker and the End-user

On the basis of the assumptions stated above, let us describe the optimization problems

for the market-maker and the end-user. The wealth equation of the end-user is given as

follows:

WE
t (δ1, · · · , δN ; St) =

(
WE

0 − S0 −
N∑

i=1

δipi(δ)
)
ert + St +

N∑
i=1

δi
e−r(T−t)

Mt

E
[
gi(ST )MT | Ft

]
.
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In particular, at time T ,

WE
T (δ1, · · · , δN ; ST ) =

(
WE

0 − S0 −
N∑

i=1

δipi(δ)
)
erT + ST +

N∑
i=1

δigi(ST ), (3.14)

where WE
0 ∈ R denotes the initial endowment of the end-user. The wealth equation of

the market-maker is given as follows:

WO
t (δ1, · · · , δN ; St) = WO

0 ert +
N∑

i=1

δi
e−r(T−t)

Mt

E
[
Πi

T (δ)MT | Ft

]
.

In particular, at time T ,

WO
T (δ1, · · · , δN ; ST ) = WO

0 erT +
N∑

i=1

δiΠ
i
T (δ) = WO

0 erT +
N∑

i=1

δi(pi(δ) − pi
0 + εi

T ),

(3.15)

where WO
0 ∈ R denotes the initial endowment of the market-maker. Under an equilibrium

between supply and demand for options (defined below), the end-user and the market-

maker make their own decision independently for trading and constructing their own

optimal options positions according to their objective functions and the equilibrium

option prices.

For clarity, let us describe a definition of equilibrium between supply and demand for

options contracts.

Definition 1 We call a pair of (δ∗, p∗) ∈ RN ×RN equilibrium if and only if the optimal

options positions for the market-maker and the end-user, which are denoted by δO∗ ≡
{δO∗

i }N
i=1 ∈ RN and δE∗ ≡ {δE∗

i }N
i=1 ∈ RN , respectively, are mutually symmetrical, that is

to say that δO∗ + δE∗ = 0 under an option price vector p∗ ≡ {p∗i }N
i=1 ∈ RN . We also call

this option price vector p∗ ≡ {p∗i }N
i=1 ∈ RN the equilibrium price and δ∗ ≡ δE∗(= −δO∗)

the equilibrium demand pressure.

Let us describe each of optimization problems for the market-maker and the end-user

as follows. First, an optimization problem for the market-maker’s options position under

a prespecified option price vector p ≡ {pi}N
i=1 ∈ RN at time 0 is described with the wealth

process defined by (3.15) as follows:

sup
δi,i=1,··· ,N

E
[
UO(WO

T (δ1, · · · , δN ; ST ))
]

= sup
δi,i=1,··· ,N

E
[
UO(WO

0 erT +
N∑

i=1

δiΠ
i
T (δ))

]
.

(3.16)
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For simplicity, we assume WO
0 = 0 in the following discussion. Considering the first-

order condition for (3.16), the following proposition can be derived with assumptions of

UO(WO
T ) ≡ −A exp(−WO

T /A), A > 0, and (3.11).

Proposition 6 Under a prespecified option price vector p ≡ {pi}N
i=1 ∈ RN , the optimal

option position vector δ = {δ1, δ2, · · · , δN}t ∈ RN induced by the optimization problem

(3.16) for the market-maker satisfies the following relationship:

pi = pi
0 −

E
[
exp

(
−

∑N
j=1

δj

A
εj
T

)
εi
T

]
E

[
exp

(
−

∑N
j=1

δj

A
εj
T

)] , i = 1, 2, · · · , N. (3.17)

In contrast, when the net option demand of end-users is explicitly given as δ = {δ1, δ2, · · · , δN}t ∈
RN , the option prices quoted by the market-maker should be expressed by (3.17) so

as to satisfy the optimal condition described by (3.16). In this case, (3.17) is also

recognized as an inverse supply function. The end-user solve an own optimization

problem under the price condition of (3.17) induced by the net demand of their own,

δ = {δ1, δ2, · · · , δN}t ∈ RN , for options contracts.

Obtaining the condition of (3.17) in the above proposition, we can also show the next

proposition.

Proposition 7 If we define a probability measure Pδ on (Ω,F) which is absolutely con-

tinuous and equivalent to P as

dPδ

dP
≡

exp
(
−

∑N
j=1

δj

A
εj
T

)
E

[
exp

(
−

∑N
j=1

δj

A
εj
T

)] ,

then,

pi(δ) = pi
0 − EPδ

[
εi
T

]
,

∂pi(δ)

∂δk

=
1

A
CovPδ

(
εi
T , εk

T

)
, i = 1, 2, · · · , N. (3.18)

In particular,

pi(0) = pi
0,

∂pi(δ)

∂δi

=
1

A
VarPδ

(
εi
T

)
> 0, i = 1, 2, · · · , N.

Proof See the Appendix. ¤

(3.18) indicates some important points on the equilibrium prices of options in terms

of the net demand of end-users:
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1. When the end-user net demand for options is given by δ ∈ RN , the representation

of the i-th option premium, pi(δ), consists of two terms: an option premium p0
i ,

which is the expected replication cost of the delta-neutral replication strategy, and

a risk premium term −EPδ
[
εi
T

]
for unhedgeable risks of the market-maker’s hedging

strategy, which are induced by the net demand of end-users.

2. p0
i = pi(0), that is, when the net demand of end-users is zero (i.e. δ = 0 ∈ RN),

the equilibrium price pi(0) for the i-th option contract is equal to the p0
i , which is

the expected replication cost of the delta-neutral replication strategy.

3. The net demand of end-users increases (decreases) the price of any other option

by an amount proportional to the covariance of the unhedgeable parts of the two

options under the probability measure Pδ. In particular, the net demand of end-

users in one option increases its price by an amount proportional to the variance

of the unhedgeable part of the option under Pδ.

In contrast to the Black-Scholes-Merton framework, if options cannot be hedged perfectly

and if intermediaries who take the other side of end-users’ option demand are risk averse,

then we can recognize by the proposition provided above that the net demand of end-

users for options will essentially impact option prices.

The points cited above have parallel implication for the equilibrium prices of options

in terms of the net demand of end-users when compared with Gârleanu et al.[2009], and

these points are not novel. In fact, Gârleanu et al.[2009] show that demand pressure

in one option contract increases its price by an amount proportional to the variance of

the unhedgeable part of the option based on a model of competitive risk-averse inter-

mediaries who cannot perfectly hedge their option positions. However, in the following

discussion, we also consider an optimization problem for the end-user’s portfolio that

consists of options and an underlying asset with the result of (3.18) and, as a result,

we derive the net demand of end-users for options and their prices in equilibrium be-

tween supply and demand. This aspect differentiates our study from that of Gârleanu

et al.[2009] because Gârleanu et al.[2009] assume inelastic end-user demand, that is, the

end-user’s exogenous aggregate demand for options, in the optimization problem for the

option market-maker. By endogeneously considering equilibrium between supply and de-

mand for options, some interesting implications for evidence recognized as option pricing

anomalies can be derived via the pricing kernel in equilibrium.

Let us proceed to describe the details of an optimization problem for the end-user.

The end-user optimizes positions for options, δ = {δ1, δ2, · · · , δN}t ∈ RN , to maximize
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his own expected utility according to the set of prices quoted by the market-maker, which

is also affected by the net demand of end-users:

sup
δ1,··· ,δN

E[UE(WE
T (δ1, · · · , δN ; ST ))] =

sup
δ1,··· ,δN

E
[
UE

((
WE

0 − S0 −
N∑

i=1

δipi(δ)
)
erT + ST +

N∑
i=1

δigi(ST )
)]

s.t. pi(δ) = pi
0 − EPδ

[
εi
T

]
, i = 1, 2, · · · , N,

(3.19)

where UE(·) ∈ C2(R) : R → R denotes the end-user’s utility function which has a

property of strictly increasing, that is, (UE)′ > 0. We can derive an equilibrium solution

of the net demand of end-users, δ∗ = (δ∗1, δ
∗
2, · · · , δ∗N)t ∈ RN , by solving the optimization

problem of (3.19). The following lemma can be proven easily by the first-order condition

for (3.19).

Lemma 1 δ∗ = (δ∗1, δ
∗
2, · · · , δ∗N)t ∈ RN satisfies the following equation:

∂

∂δi

( N∑
j=1

δjpj(δ)
)∣∣∣

δ=δ∗
= E

[ UE
′
(WE

T (δ∗1, · · · , δ∗N ; ST ))

erT E[UE
′
(WE

T (δ∗1, · · · , δ∗N ; ST ))]
gi(ST )

]
where pi(δ

∗) = pi
0 − EP δ∗

[
εi
T

]
, i = 1, 2, · · · , N,

(3.20)

and, by applying (3.18) to (3.20), we can derive the following expression:

pi
0 − EP δ∗

[
εi
T

]
− CovP δ∗

(
εi
T ,−

N∑
j=1

δj
∗

A
εj
T

)
= E

[ UE
′
(WE

T (δ∗1, · · · , δ∗N ; ST ))

erT E[UE
′
(WE

T (δ∗1, · · · , δ∗N ; ST ))]
gi(ST )

]
,

where i = 1, 2, · · · , N.

(3.21)

For an intuitive interpretation, let us show an example of an equilibrium solution of

(3.21) based on a Monte Carlo simulation under simple assumptions. In this example,

we assume the stochastic volatility model proposed by Heston[1993] for an underlying

asset price process:

dSt

St

= σt

√
1 − ρ2dB1

t + σtρdB2
t ,

dσt
2 = κ(γ − σt

2)dt + ησtdB2
t .

(3.22)

where κ, γ, and η are positive constants. This assumption is correspondent to the

assumption of (3.1) in the case that µt ≡ 0, θt ≡ −κσt, and ηt ≡ η. For simplicity,
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suppose that T ≡ 1 and divide the time interval of [0, T ](≡ [0, 1]) into 250 small intervals,

that is, t0 = 0, t1 = 1
250

, t2 = 2
250

, · · · , t250 = 250
250

= 1, in order to run 10,000 times sample-

path simulations for St based on the Euler approximation. The model parameters of

(3.22) assumed in this simulation are κ = 2.52, γ = 0.01, η = 0.23 and ρ = −0.3. 3

Moreover, we simulate hedging errors, εi
T , of each delta-neutral hedged option position

with 10, 000 simulated paths for St based on the Black-Scholes formula. In this example,

we also assume N = 3, S0 = 1, and consider three types of European options whose

strike prices are K1 = 1.0, K2 = 0.9, and K3 = 1.1, respectively. In particular, options

of both i = 1 and i = 2 are put options and the option of i = 3 is a call option.

Each price p0
i is calculated with the closed formula for option valuation proposed by

Heston[1993], setting the volatility risk premium parameter as zero and based on the

parameter condition defined above.

Table 3.1 shows each price p0
i and the distributions of delta-neutral hedging errors for

options of i = 1, i = 2, and i = 3. (see Fig.3.5 in the Appendix for details on the distri-

butions of these delta-neutral hedging errors) This table indicates that the distributions

of delta-neutral hedging errors are fat-tailed and negatively skewed distributions in all

cases of i = 1, i = 2, and i = 3.

Table 3.1: Summary Statistics of Hedging Error Distributions

(a) Strategy (b) p0
i (c) E[ST ] (d) E[εi

T ] (e) σ[εi
T ] (f) Skewness (g) Kurtosis

(1) ATM Put 3.78909 1.00396 -0.01877 1.27998 -1.46150 4.11050

(2) OTM Put 0.86253 1.00396 -0.00092 0.93800 -2.92277 15.94547

(3) OTM Call 0.74167 1.00396 -0.00375 0.91430 -1.26386 6.40482

(1) In this example, we set T = 1, S0 = 1, κ = 2.52, γ = 0.01, η = 0.23, and ρ = −0.3. Each of
prices, p0

i s, are calculated based on the closed formula for option valuation proposed by Heston[1993]
setting the volatility risk premium parameter as zero.

(2) The strike prices of K1, K2, and K3 are respectively defined as 1.0, 0.9, and 1.1
(3) This Monte Carlo simulation is based on trials of 10,000 times.

We will now examine the explicit solution of (3.21) in detail based on the hedging

errors of εi
T , i = 1, 2, 3, generated by the Monte Carlo simulation explained above. In

this example, the utility function of the representative end-user, UE(WE
T ) ∈ C2(R), is

temporally assumed as a power utility function, which is represented as follows:

UE(WE
T (δ∗; ST )) ≡ WE

T (δ∗; ST )1−γ

1 − γ
, γ 6= 1.

3These parameters are estimated with the USD-JPY exchange rate data in the period from October
2003 to June 2010. The estimation methodology is based on Aı̈t-Sahalia and Kimmel[2007].

61



3.3. OPTIMALITY AND EQUILIBRIUM

0.0050.0250.0450.0650.0850.1050.1250.145
10

20
30

40
50

60

0.000
1.000
2.000
3.000
4.000
5.000
6.000

7.000
8.000

9.000

10.000

11.000

12.000

13.000

14.000

15.000

δ*

A

γ

0.
00

5

0.
02

0.
03

5

0.
05

0.
06

5

0.
08

0.
09

5

0.
11

0.
12

5

0.
14

10
22

34
46

580.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

8.00%

9.00%

10.00%

Eq
ui

lib
riu

m
 P

ric
e

A

γ

Fig. 3.1: The end-user net demand δ∗2 and the option price p2(δ
∗
2) in equilibrium

(1) This result shows the solutions in the case that the end-user is permitted only to hold a
position in the out-of-the-money put of K2 = 0.9 and δ∗ = (δ2) ∈ R1.

(2) The left side of above figures shows the end-user net demand, δ∗2 , and the right side shows
the equilibrium price of the option contract, p2(δ∗2).

In the beginning, we will examine the optimal position of δ∗ under the condition that

the end-user is permitted to hold a position only in an option of i = 2, in which the end-

user holds a position only in the out-of-the-money put of K2 = 0.9 and δ∗ = (δ2) ∈ R1.

Fig.3.1 shows the results on the end-user net demand δ∗2 and the option price in equilib-

rium p2(δ
∗
2) according to the market-maker’s preference parameter (risk tolerance param-

eter) A ∈ R and the end-user’s preference parameter (risk aversion parameter) γ 6= 1. A

ranges from 0.005 to 0.15 and γ ranges from 10 to 60, which is consistent with the results

shown in the previous studies such as those by Mehra and Prescott[1985], Cochrane and

Hansen[1992], and Aı̈t-Sahalia and Lo[2000]. This figure indicates that when the risk

tolerance parameters of the market-maker (A) and the end-user ( 1
γ
) increase, the net

demand for the option of i = 2 in equilibrium will also increase and the option price will

decrease simultaneously. In contrast, when the risk tolerance parameters decrease simul-

taneously, this figure also indicates that the net demand for that option in equilibrium

will decrease and the equilibrium price of that option will increase dramatically.

Similarly, the optimal position and the equilibrium price under the condition that the

end-user is permitted to hold a position only in an option of i = 3, in which the end-user

holds a position only in the out-of-the-money call of K3 = 1.1 and δ∗ = (δ3) ∈ R1, are

shown in Fig.3.2 according to the market-maker’s preference parameter (risk tolerance

parameter) A ∈ R and the end-user’s preference parameter (risk aversion parameter)
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γ 6= 1. The indication of this figure is the same as that of Fig.3.1, which is that when

the risk tolerance parameters of the market-maker (A) and the end-user ( 1
γ
) increase,

the net demand for the option of i = 3 in equilibrium will also increase, and vice versa.
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Fig. 3.2: The end-user net demand δ∗3 and the option price p3(δ
∗
3) in equilibrium

(1) This result shows the solutions in the case that the end-user is permitted only to hold a
position in an out-of-the-money call of K3 = 1.1 and δ∗ = (δ3) ∈ R1.

(2) The left side of above figures shows the end-user net demand, δ∗3 , and the right side shows
the equilibrium price of the option contract, p3(δ∗3).

For the case that the end-user can hold positions in the options of both i = 1 and

i = 3, Fig.3.6 in the Appendix shows the end-user net demand and the prices of those

of options in equilibrium.

3.3.2 The Pricing Kernel in Equilibrium

On the basis of the discussion explored above, let us derive the equilibrium option price

with a pricing kernel determined by the end-user net demand for options.

If an optimal solution of the end-user’s optimization problem (3.19), δ∗ = (δ∗1, δ
∗
2, · · · , δ∗N)t ∈

RN , exists, then the following proposition can be derived.
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Proposition 8 Each option price in equilibrium is given by

pi(δ
∗) = E

[ 1

erT

( −EP δ∗
[
εi
T

]
−EP δ∗

[
εi
T

]
+ CovP δ∗

(
εi
T ,

∑N
j=1

δj
∗

A
εj
T

) UE
′
(WE

T (δ∗; ST ))

E[UE
′
(WE

T (δ∗; ST ))]

+
CovP δ∗

(
εi
T ,

∑N
j=1

δj
∗

A
εj
T

)
−EP δ∗

[
εi
T

]
+ CovP δ∗

(
εi
T ,

∑N
j=1

δj
∗

A
εj
T

)MST
T (ν·, 0)(ST )

)
gi(ST )

]
,

(3.23)

and the pricing kernel (projected to the i-th hedging error εi
T ) 4 Zδ∗

T is represented by

Zδ∗

T =
1

erT

( −EP δ∗
[
εi
T

]
−EP δ∗

[
εi
T

]
+ CovP δ∗

(
εi
T ,

∑N
j=1

δj
∗

A
εj
T

) UE
′
(WE

T (δ∗; ST ))

E[UE
′
(WE

T (δ∗; ST ))]

+
CovP δ∗

(
εi
T ,

∑N
j=1

δj
∗

A
εj
T

)
−EP δ∗

[
εi
T

]
+ CovP δ∗

(
εi
T ,

∑N
j=1

δj
∗

A
εj
T

)MST
T (ν·, 0)(ST )

)
.

(3.24)

Moreover, if the following condition

∂

∂A
log

(
− EP δ∗

[
εi
T

])
= ∃1c(δ

∗, A) ∈ R1, ∀i = 1, 2, · · · , N, (3.25)

is given for a constant c(δ∗, A), which depends on the end-user net demand δ∗ and the

risk tolerance parameter of the market-maker A but independent of i, then,

−EP δ∗
[
εi
T

]
−EP δ∗

[
εi
T

]
+ CovP δ∗

(
εi
T ,

∑N
j=1

δj
∗

A
εj
T

) =
1

1 − Ac(δ∗, A)
∈ R1,

CovP δ∗
(
εi
T ,

∑N
j=1

δj
∗

A
εj
T

)
−EP δ∗

[
εi
T

]
+ CovP δ∗

(
εi
T ,

∑N
j=1

δj
∗

A
εj
T

) =
−Ac(δ∗, A)

1 − Ac(δ∗, A)
∈ R1,

(3.26)

4For the projected pricing kernel, see Cochrane[2001] and Rosenberg and Engle[2002].
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where i = 1, 2, · · · , N 5, and the following representation can be derived for all i:

pi(δ
∗) = E

[ 1

erT

( 1

1 − Ac(δ∗, A)

UE
′
(WE

T (δ∗; ST ))

E[UE
′
(WE

T (δ∗; ST ))]
+

−Ac(δ∗, A)

1 − Ac(δ∗, A)
MST

T (ν·, 0)(ST )
)
gi(ST )

]
,

Zδ∗

T =
1

erT

( 1

1 − Ac(δ∗, A)

UE
′
(WE

T (δ∗; ST ))

E[UE
′
(WE

T (δ∗; ST ))]
+

−Ac(δ∗, A)

1 − Ac(δ∗, A)
MST

T (ν·, 0)(ST )
)
.

Proof See the Appendix. ¤

If N = 1, then (3.23) and (3.24) are respectively described as

pi(δ
∗) = E

[ 1

erT

( −EP δ∗
[ε1

T ]

−EP δ∗ [ε1
T ] + δ1

∗

A
VarP δ∗

(ε1
T )2

UE
′
(WE

T (δ∗1; ST ))

E[UE
′
(WE

T (δ∗1; ST ))]

+
δ1

∗

A
VarP δ∗

(ε1
T )2

−EP δ∗ [ε1
T ] + δ1

∗

A
VarP δ∗

(ε1
T )2

MT (ν·, 0)
)
gi(ST )

]
and

Zδ∗

T =
1

erT

( −EP δ∗
[ε1

T ]

−EP δ∗ [ε1
T ] + δ1

∗

A
VarP δ∗

(ε1
T )2

UE
′
(WE

T (δ∗1; ST ))

E[UE
′
(WE

T (δ∗1; ST ))]

+
δ1

∗

A
VarP δ∗

(ε1
T )2

−EP δ∗ [ε1
T ] + δ1

∗

A
VarP δ∗

(ε1
T )2

MT (ν·, 0)
)
.

Fig.3.3 shows the parameter c∗1,

c∗1 ≡
−EP δ∗

[ε1
T ]

−EP δ∗ [ε1
T ] + δ1

∗

A
VarP δ∗

(ε1
T )2

, (3.27)

which appears in the above expressions. The left-side figure illustrates the case that the

end-user holds a position only in the OTM put option whose strike price is K = 0.9, and

the right-side figure illustrates the case that the end-user holds a position only in the

OTM call option whose strike price is K = 1.1. These results shown in this figure are

calculated based on the Monte Carlo simulation results obtained in the previous section.

5If −EP δ∗
[
εi
T

]
> 0 and CovP δ∗

(
εi
T ,

∑N
j=1

δj
∗

A εj
T

)
> 0, then, c(δ∗, A) ≡ ∂

∂A log
(
− EP δ∗

[
εi
T

])
< 0

and we can obtain the following relationship,

0 <
1

1 − Ac(δ∗, A)
,

−Ac(δ∗, A)
1 − Ac(δ∗, A)

< 1
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Fig. 3.3: The parameter c∗1 in equilibrium

(1) The left-side figure is for the case that the end-user holds a position only in the OTM put
option whose strike price is K = 0.9 and the right-side figure is for the case that the end-user holds
a position only in the OTM call option whose strike price is K = 1.1. These parameters shown in
this result are calculated based on the simulation results obtained in the previous section.

It can be observed in Fig.3.3 that c∗1s have strictly positive values under suitable

conditions of preference parameters for the market-maker and the end-user. If c∗1 is

equal to zero, it is apparent from the expression provided above that the pricing kernel

in equilibrium Zδ∗
T will be 1

erT MT (ν·, 0), which is the pricing kernel when the net demand

of end-users for options is zero (see Proposition 2). In contrast, the results in Fig.3.3

indicate that the utility function of the end-user and the net demand of end-users for

options essentially affect the pricing kernel in equilibrium and, as a result, option prices

via the pricing kernel Zδ∗
T represented by the above expression.

When N > 1, the condition of (3.25) is not necessarily acceptable, so that the pricing

kernel represented by (3.24) is essentially dependent on each i. Although this marginal

pricing kernel is not necessarily the joint pricing kernel that is not dependent on i, by

the following idea, we can deduce the joint pricing kernel that prices all of the options

traded in the market consistently. Breeden and Litzenberger[1978] provide a risk-neutral

probability density function with option prices quoted in actual option market: when

C(t, T ; K) denotes the price of an option written on St, struck at K, and expiring at

time T , they show that the risk-neutral probability density function f ∗ can be expressed

as follows:

f ∗(ST ) = er(T−t)∂
2C(t, T ; K)

∂K2
|K=ST

. (3.28)
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In equilibrium assumed in this chapter, each option price C(t, T ; K) appearing in the

above representation is substituted by (3.23), and based on the representation of (3.28),

we can deduce the joint pricing kernel that is not dependent on i and the prices of all

options traded in the market consistently with the end-user net demand for options.

According to the proposition provided above, the (marginal) pricing kernel Zδ∗
T in

equilibrium is a weighted sum of UE
′
(WE

T (δ∗; ST ))/E[UE
′
(WE

T (δ∗; ST ))] and MT (ν·, 0)

and weights on those of terms are respectively given by 1
1−Ac(δ∗,A)

and −Ac(δ∗,A)
1−Ac(δ∗,A)

(under

the condition of (3.25)). In particular, that pricing kernel is affected by the end-user’s

utility function UE, the risk tolerance parameter for the option market-maker A, each

option hedging error εi
T , i = 1, 2, · · · , N , and the end-user net demand for options δ∗ =

(δ∗1, δ
∗
2, · · · , δ∗N)t ∈ RN in equilibrium. This Zδ∗

T induces several interesting implications

for empirical evidence provided by the recent studies on the features of financial option

markets. For simplicity, we limit the case to N = 1 and let us demonstrate these

implications in the following subsections.

The Net Demand and the Variance Risk Premium

Let us examine a relationship between the net demand of end-users for options and the

variance risk premium induced by the stochastic volatility environment assumed in the

previous section. In this subsection, we temporarily assume that θt ≡ −kσt and ηt ≡ v

(k, v ∈ R++) for the parameters in (3.1), that is, the stochastic volatility model proposed

by Heston[1993], and for mathematical tractability, we also assume that the drift term

in (3.1) can be replaced with µt = r + φσt, ∃φ ∈ R.

The variance risk premium is the premium that is associated with the compensation

for the time-variation in the conditional return variance. When investing in a security,

an investor faces at least two sources of uncertainty, namely, the uncertainty about the

return as captured by the return variance and the uncertainty about the return variance

itself. It is important to understand how investors deal with the uncertainty in the

return variance to effectively manage risk and allocate assets, to accurately price and

hedge derivative securities, and to understand the behavior of financial asset prices in

general. Under the assumptions of (3.1) and (3.2), the variance risk premium is given

by −Covt

(
dMt

Mt
, dσ2

t

)
/dt (see Cochrane[2001]). Recent studies, such as those by Bakshi

and Kapadia[2003], Low and Zhang[2005] and Carr and Wu[2009], report the negative

variance risk premium in the stock and currency option markets. In this subsection, we

derive an explicit representation of the variance risk premium with the pricing kernel

(3.24) in equilibrium provided in the previous subsection and demonstrate empirical
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evidence of the variance risk premium reported by recent studies, that is, the existence

and the negativity of the variance risk premium.

Let M δ∗
T denotes M δ∗

T ≡ erT Zδ∗
T (Zδ∗

T is given by (3.24)). The Radon-Nikodym deriva-

tive process for M δ∗
T is descrived as follows:

M δ∗

t = E
[
M δ∗

T | Ft

]
= E

[
erT Zδ∗

T | Ft

]
= E

[(
c∗1

UE
′
(WE

T (δ∗; ST ))

E[UE
′
(WE

T (δ∗; ST ))]
+ (1 − c∗1)MT (ν·, 0)

)
| Ft

]
=

c∗1

E[UE
′
(WE

T (δ∗; ST ))]
E

[
UE

′
(WE

T (δ∗; ST )) | Ft

]
+ (1 − c∗1)E

[
MT (ν·, 0) | Ft

]
.

(3.29)

In particular, we can derive

dUE
′
(WE

t (δ∗; St))

=
∂

∂t
UE

′
(WE

t (δ∗; St))dt +
∂

∂St

UE
′
(WE

t (δ∗; St))dSt +
1

2

∂2

∂St
2UE

′
(WE

t (δ∗; St))(dSt)
2

=
( ∂

∂t
UE

′
(WE

t (δ∗; St)) +
∂

∂St

UE
′
(WE

t (δ∗; St))µtSt +
1

2

∂2

∂St
2UE

′
(WE

t (δ∗; St))σ
2
t St

2
)
dt

+
( ∂

∂St

UE
′
(WE

t (δ∗; St))
)
σtSt

(√
1 − ρ2dB1

t + ρdB2
t

)
.

Thus,

UE
′
(WE

T (δ∗; ST )) = WE
0 +∫ T

0

( ∂

∂t
UE

′
(WE

t (δ∗; St)) +
∂

∂St

UE
′
(WE

t (δ∗; St))µtSt +
1

2

∂2

∂St
2UE

′
(WE

t (δ∗; St))σ
2
t St

2
)
dt

+

∫ T

0

( ∂

∂St

UE
′
(WE

t (δ∗; St))
)
σtSt

(√
1 − ρ2dB1

t + ρdB2
t

)
.

When 0 ≤ u ≤ T , we obtain the following expression

E
[
UE

′
(WE

T (δ∗; ST )) | Fu

]
= WE

0 +∫ u

0

( ∂

∂t
UE

′
(WE

t (δ∗; St)) +
∂

∂St

UE
′
(WE

t (δ∗; St))µtSt +
1

2

∂2

∂St
2UE

′
(WE

t (δ∗; St))σ
2
t St

2
)
dt

+

∫ T

u

E
[( ∂

∂t
UE

′
(WE

t (δ∗; St)) +
∂

∂St

UE
′
(WE

t (δ∗; St))µtSt

+
1

2

∂2

∂St
2UE

′
(WE

t (δ∗; St))σ
2
t St

2
)
| Fu

]
dt

+

∫ u

0

( ∂

∂St

UE
′
(WE

t (δ∗; St))
)
σtSt

(√
1 − ρ2dB1

t + ρdB2
t

)
.
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Considering the fact of E
[
MT (ν·, 0) | Fu

]
= Mu(ν·, 0), 0 ≤ u ≤ T , we can show that the

Radon-Nikodym derivative process M δ∗
u , 0 ≤ u ≤ T , is

M δ∗

u =
c∗1

E[UE
′
(WE

T (δ∗; ST ))]
×{

WE
0 +

∫ u

0

( ∂

∂t
UE

′
(WE

t (δ∗; St)) +
∂

∂St

UE
′
(WE

t (δ∗; St))µtSt

+
1

2

∂2

∂St
2UE

′
(WE

t (δ∗; St))σ
2
t St

2
)
dt

+

∫ T

u

E
[( ∂

∂t
UE

′
(WE

t (δ∗; St)) +
∂

∂St

UE
′
(WE

t (δ∗; St))µtSt

+
1

2

∂2

∂St
2UE

′
(WE

t (δ∗; St))σ
2
t St

2
)
| Fu

]
dt

+

∫ u

0

( ∂

∂St

UE
′
(WE

t (δ∗; St))
)
σtSt

(√
1 − ρ2dB1

t + ρdB2
t

)}
+ (1 − c∗1)Mu(ν·, 0)

and its stochastic differential is

dM δ∗

u =
c∗1

E[UE
′
(WE

T (δ∗; ST ))]

{( ∂

∂Su

UE
′
(WE

u (δ∗; Su))
)
σuSu

(√
1 − ρ2dB1

u + ρdB2
u

)}
+ (1 − c∗1)dMu(ν·, 0).

From (3.2),

Mu(ν·, 0) = exp
(
−

∫ u

0

νtdB1
t −

1

2

∫ u

0

ν2
t dt

)
= exp

(
−

∫ u

0

φ√
1 − ρ2

dB1
t −

1

2

∫ u

0

( φ√
1 − ρ2

)2

dt
)

= exp
(
− φ√

1 − ρ2
B1

u −
1

2

( φ2u

1 − ρ2

))
,

so its stochastic differential is described as

dMu(ν·, 0) = − φ√
1 − ρ2

Mu(ν·, 0)dB1
u. (3.30)

On the other hand, the following expressions can be derived by solving (3.1):

σu
2 = e−2kuσ0

2 +
v2

2k

(
1 − e−2ku

)
+ 2v

∫ u

0

e2k(t−u)σtdB2
t

and

dσu
2 = (v2 − 2kσu

2)du + 2vσudB2
u. (3.31)
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According to (3.30) and (3.31), it is clear that two Fu-adapted processes, Mu(ν·, 0)

and σu
2, are mutually independent because (B1

t , B
2
t ) is a standard 2-dimensional Brow-

nian motion. Thus, Mu(ν·, 0) does not price the stochastic variance σu
2. So if we

define a Fu-adapted process ξ∗u as a variance risk premium in equilibrium, that is,

ξ∗u ≡ −Covu

(
dMδ∗

u

Mδ∗
u

, dσ2
u

)
/du, then we can derive the following representation for ξ∗u:

ξ∗u ≡ −
Covu

(dM δ∗
u

M δ∗
u

, dσ2
u

)
du

=
−2c∗1vρ

E[UE
′
(WE

T (δ∗; ST ))]
Covu

(Su

∂

∂Su

UE
′
(WE

u (δ∗; Su))

M δ∗
u

σudB2
u, σudB2

u

)
/du

=
−2c∗1vρ

E[UE
′
(WE

T (δ∗; ST ))]

Su

∂

∂Su

UE
′
(WE

u (δ∗; Su))

M δ∗
u

σu
2

=
−2c∗1vρ

E[UE
′
(WE

T (δ∗; ST ))]

SuU
E

′′
(WE

u (δ∗; Su))
∂

∂Su

WE
u (δ∗; Su)

M δ∗
u

σu
2.

Let us summarize the result obtained above:

Proposition 9 If we assume that θt ≡ −kσt and ηt ≡ v (k, v ∈ R++) for the parameters

in (3.1), that is, the stochastic volatility model proposed by Heston[1993], and that the

drift term in (3.1) is given by µt = r + φσt, ∃φ ∈ R, then the variance risk premium ξ∗u
in equilibrium is explicitly expressed by the following formula:

ξ∗u = ψu(δ
∗, A, UE, v, ρ, Su) × σu

2 , (3.32)

where

ψu(δ
∗, A, UE, v, ρ, Su)

≡ −2c∗1vρ

E[UE
′
(WE

T (δ∗; ST ))]

SuU
E

′′
(WE

u (δ∗; Su))
(
1 + δ∗

d

dSu

e−r(T−u)

Mu

E
[
g1(ST )MT | Fu

])
M δ∗

u

.

The above proposition provides some interesting implications for empirical evidence

of the existence and the negativity of the variance risk premium shown in the recent

studies.
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In the case that the net demand of end-users for options is zero, that is , δ∗1 = 0,

we have the result of p1(0) = p0
1 from Proposition 2. That is, when the end-user

net demand for options δ∗ is zero, the variance risk premium in equilibrium ξ∗u ≡
−Covu

(
dM0

u

M0
u

, dσ2
u

)
/du also should be zero because of the definition of p0

i . However,

when the end-user net demand for options δ∗ is not zero, the sign of the variance risk

premium ξu is perfectly coincident with the sign of ρ, which is the correlation between

volatility changes and changes in the asset price, under the conditions of c∗1 > 0, UE
′
> 0,

UE
′′

< 0, and 1 + δ∗ dg
dST

(ST ) > 0. In fact, as we have shown in Fig.3.1, Fig.3.2, and

Fig.3.3, the conditions of c∗1 > 0 and 1 + δ∗ dg
dST

(ST ) > 0 are valid in equilibrium if γ (the

risk aversion parameter for the end-user) ranges from approximately 10 to 13, so that

our model predicts that the variance risk premium ξ∗u in equilibrium will have the same

sign with ρ under the above condition for γ. In fact, recent studies provide evidence

that ρ is generally negative in, for example, stock index markets, so the negativity of

the variance risk premium reported by empirical studies such as those by Bakshi and

Kapadia[2003], Low and Zhang[2005], and Carr and Wu[2009] might be caused by the

negativity of ρ. However, on the other hand, Carr and Wu[2009] also indicate that the

negativity of the variance risk premium can not be explained only by the sign of ρ and/or

other systematic risk factors such as Fama-French’s three factors. On the basis of the

discussion explored above, we may say that there is a possibility that (positive) end-user

net demand for options of convex payoffs in equilibrium, which is also shown empirically

by Gârleanu et al.[2009] with a unique dataset for the S&P500 index options 6 , plays a

key role in determining the existence and the sign of the variance risk premium.

The Net Demand and the Risk Aversion Smile

The second implication of (3.24) is relevant to topics on the pricing kernel puzzle or the

implied risk aversion smile demonstrated by Aı̈t-Sahalia and Lo[2000], Jackwerth[2000],

Rosenberg and Engle[2002], and Ziegler[2007].

In an economy with complete markets and risk-averse investors having common and

correct expectations (i.e. all subjective expectations coincide with the objective probabil-

ity measure), the pricing kernel should be a decreasing function of aggregate resources,

which are usually proxied by the returns of the market portfolio. However, empirical

studies such as those by Aı̈t-Sahalia and Lo[2000], Jackwerth[2000], and Rosenberg and

6They use a unique dataset to identify aggregate daily positions of dealers and end-users. They are
the first to document that end-users have a net long position in S&P500 index options with large net
positions in out-of-the-money (OTM) puts. Since options are in zero net supply, this implies that dealers
are short index options.
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Engle[2002] show that the marginal utility of investors is increasing over an important

range of wealth levels and is not decreasing in wealth, as economic theory would sug-

gest. Ziegler[2007] explores different potential explanations for the implied risk aversion

smile, but for plausible parameter values, none of the potential explanations considered

in the article is able to account for the implied risk aversion smile within the stan-

dard consumption-based framework. The pricing kernel puzzle (the implied risk aversion

smile) is the observation that the pricing kernel (the implied risk aversion) might be

increasing in some range of the market returns, and we seek to understand this puzzle

in terms of the end-user net demand for options with the pricing kernel represented by

(3.24).

From (3.24) and ARA∗(ST ) = d
dST

(
−log Zδ∗

T (ST )
)

(see Jackwerth[2000] and Ziegler[2007]),

the following proposition is derived:

Proposition 10 Under the notation of δ∗ ≡ δ∗1 and a(δ∗) ≡ E[UE
′
(WE

T (δ∗; ST ))], the

implied absolute risk aversion ARA∗(ST ) of the representative investor in equilibrium is

expressed as follows: 7

ARA∗(ST ) = − c∗1U
E

′′
(WE

T (δ∗; ST ))

c∗1U
E

′
(WE

T (δ∗; ST )) + a(δ∗)(1 − c∗1)M
ST
T (ν·, 0)(ST )

(
1 + δ∗

dg1

dST

(ST )
)

−
a(δ∗)(1 − c∗1)

d

dST

MST
T (ν·, 0)(ST )

c∗1U
E

′
(WE

T (δ∗; ST )) + a(δ∗)(1 − c∗1)M
ST
T (ν·, 0)(ST )

.

(3.33)

A noteworthy point of (3.33) is that the shape of the implied absolute risk aversion in

the equilibrium is directly affected by the end-user net demand for options.

For intuitive interpretation and simplicity, let us assume that the price of risk ν· is

zero. In this case, it is clear that MST
T (0, 0) ≡ 1, thus Zδ∗

T and ARA∗(ST ) derived above

are respectively represented as follows:

Zδ∗

T (ST ) =
1

erT

(
c∗1

UE
′
(WE

T (δ∗; ST ))

E[UE
′
(WE

T (δ∗; ST ))]
+ (1 − c∗1)

)
,

ARA∗(ST ) = − c∗1U
E

′′
(WE

T (δ∗; ST ))

c∗1U
E

′
(WE

T (δ∗; ST )) + a(δ∗)(1 − c∗1)

(
1 + δ∗

dg1

dST

(ST )
)
.

(3.34)

Because 1 + δ∗ dg1

dST
(ST ) = ∂

∂ST
WE

T (δ∗; ST ), from (3.34) it is clear that the shape of the

pricing kernel Zδ∗
T (ST ) and the implied absolute risk aversion ARA∗(ST ) are both affected

7When ν· > 0, then MST

T (ν·, 0)(ST ) is a decreasing function of ST .
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by the shape of WE
T (δ∗; ST ) essentially in equilibrium. In particular, in the case that the

utility function of the end-user satisfies the condition of (UE)′ > 0 and (UE)′′ < 0, we

can verify that both the pricing kernel Zδ∗
T (ST ) and the implied absolute risk aversion

ARA∗(ST ) in equilibrium are increasing over the range of ST on which the terminal

wealth function of the end-user WE
T (δ∗; ST ) is decreasing.

Fig.3.4 shows the shape of the terminal wealth function of the end-user based on the

simulation result in the case that the end-user is permitted to hold a position only in

the OTM call option whose strike price is K = 1.1, which is examined in the previous

section. The end-user net demands in equilibrium δ∗s shown in this figure are those

obtained in the case of A = 0.15 (δ∗ varies according to the value of γ). This result

clearly shows that there is a range of ST on which the terminal wealth function of the

end-user WE
T (δ∗; ST ) is decreasing. This range is essentially induced by the negative net

demand of the end-user for the option, which is determined by the preference parameters

of the market-maker (A) and the end-user (γ) in equilibrium.
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Fig. 3.4: The shape of terminal wealth for the end-user : WE
T (δ∗; ST )

This figure is for the case that the end-user holds a position only in the OTM call
option whose strike price is K = 1.1.

The similar results on the shape of the wealth function of the representative investor

are provided by the several recent studies. In particular, Driessen and Maenhout[2007]

empirically study the economic benefits of giving investors access to index options in the

standard portfolio problem by using data on the S&P500 index options, and they show

that the standard expected-utility investors and common studied behavioral investors
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never have a positive demand for straddles and OTM puts given observed prices. They

provide evidence empirically that CRRA investors find it always optimal to short OTM

puts and ATM straddles and the terminal wealth functions of these investors are partly

decreasing functions to the terminal asset price ST . Thus, according to our results derived

in this section, it is also inferred from these recent studies that the pricing kernel puzzle

and the implied risk aversion smile found by Aı̈t-Sahalia and Lo[2000], Jackwerth[2000],

Rosenberg and Engle[2002], and Ziegler[2007] are essentially induced by the end-user net

(negative) demand for options in equilibrium.

3.4 Concluding Remarks

In this chapter, we study financial option prices and their related topics in terms of

demand-pressure effects of options contracts. With a self-contained model of equilibrium

between the supply and demand for options, each of the portfolio optimization problems

for the market-maker and end-user of options contracts is examined. Deriving equilibrium

demand pressures for options, we provide an explicit representation of the pricing kernel

in equilibrium between the supply and demand for options, which is a function of those

of equilibrium demand pressures.

On the basis of the demand-based pricing kernel in equilibrium derived from our

model setup, we provide some important implications for empirical evidence which have

been provided in recent studies related to option pricing anomalies. In particular, under

suitable conditions, we find that the negative variance risk premium, which is shown

empirically by, for example, Bakshi and Kapadia[2003], Low and Zhang[2005], and Carr

and Wu[2009], can be explained by a positive demand pressure for options of convex

payoffs. Moreover, we also demonstrate the pricing kernel puzzle or the implied risk

aversion smile in terms of demand-pressure effects of options. We find that these option

pricing anomalies can also be explained by a non-zero demand pressure for options.

To the best of our knowledge, this study is the first to provide some implications

for the well-known empirical evidence, that is, the negative variance risk premium and

the pricing kernel puzzle, in terms of the end-user net demand for financial options.

Compared with already existing studies, this study allows to shed light on the role of

the end-user net demand for financial options to the features of option market prices.

However, it remains some challenges for future research on the field discussed in this

chapter. First, it is an important problem open for consideration to investigate some

implications of the end-user net demand for options under the setting of more realistic

utility functions of the market-maker and the end-user. Second, the liquidity of the
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financial futures is also important because it affects the performance of the delta-neutral

hedging strategy employed by the option market-maker. Since the liquidity of the futures

is essentially related to transaction costs for the delta-neutral hedging strategy, there is a

possibility that it affects the quotation for option prices from the market-maker, and as

a result, the net demand of end-users and the prices of financial options in equilibrium.

Appendix 3.A Expected Delta-Hedged Gain and Loss

Proposition 11 If Ct[λ·] denotes the time-t call option price which is consistent with

the underlying asset price process (3.1) and the equivalent martingale measure Q(ν·, λ·),

then the following inequation can be derived:

Ct[0] − Ct[λ·] ≤ (≥)

∫ T

t

EP
[
λu

∂Cu[λ·]

∂σ̃u

]
du ≤ (≥)

(
1 + r(T − t)

)(
Ct[0] − Ct[λ·]

)
,

for λu ≥ (≤)0. If we are able to assume r ≈ 0, then this inequation can be further

simplified to the approximation presented below:

Ct[0] − Ct[λ·] ≈
∫ T

t

EP
[
λu

∂Cu[λ·]

∂σ̃u

]
du. (3.35)

Proof (1) First, let us assume λu ≥ 0. We have the following inequations on the option

premium,

Cu[λ·] − Cu[0] ≤ 0 (∀u ∈ [t, T ])

and

∂

∂u
EP

[
Cu[λ·] − Cu[0]

]
= EP

[ ∂

∂u

(
Cu[λ·] − Cu[0]

)]
≥ 0.

Thus,

Ct[0] − Ct[λ·] =

∫ T

t

EP
[
λu

∂Cu[λ·]

∂σ̃u

]
du + r

∫ T

t

EP
[
Cu[λ·] − Cu[0]

]
du

≥
∫ T

t

EP
[
λu

∂Cu[λ·]

∂σ̃u

]
du + r(T − t)

(
Ct[λ·] − Ct[0]

)
.

∴
(
1 + r(T − t)

)(
Ct[0] − Ct[λ·]

)
≥

∫ T

t

EP
[
λu

∂Cu[λ·]

∂σ̃u

]
du.

We also have a inequation of EP
[
Cu[λ·]−Cu[0]

]
≤ 0, so the following inequation can be

obtained,

Ct[0] − Ct[λ·] ≤
∫ T

t

EP
[
λu

∂Cu[λ·]

∂σ̃u

]
du.
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Thus we can derive the following inequation with two inequations derived above,

Ct[0] − Ct[λ·] ≤
∫ T

t

EP
[
λu

∂Cu[λ·]

∂σ̃u

]
du ≤

(
1 + r(T − t)

)(
Ct[0] − Ct[λ·]

)
.

(2) In the case of λu < 0, we have the following inequations,

Cu[λ·] − Cu[0] ≥ 0 (∀u ∈ [t, T ])

and

∂

∂u
EP

[
Cu[λ·] − Cu[0]

]
= EP

[ ∂

∂u

(
Cu[λ·] − Cu[0]

)]
≤ 0.

Thus we can derive the inequation asserted in this Proposition with the similar approach

to the discussion of (1). ¤

Appendix 3.B Proof of Proposition 7

Proof

∂pi(δ)

∂δk

=
∂

∂δk

(
pi

0 − EPδ
[
εi
T

])
=

1

A

E
[
exp

(
−

∑N
j=1

δj

A
εj
T

)
εi
T εk

T

]
E

[
exp

(
−

∑N
j=1

δj

A
εj
T

)]
(
E

[
exp

(
−

∑N
j=1

δj

A
εj
T

)])2

−
E

[
exp

(
−

∑N
j=1

δj

A
εj
T

)
εi
T

]
E

[
exp

(
−

∑N
j=1

δj

A
εj
T

)
εk
T

]
(
E

[
exp

(
−

∑N
j=1

δj

A
εj
T

)])2

=
1

A

(
EPδ

[
εi
T εk

T

]
− EPδ

[
εi
T

]
EPδ

[
εk
T

])
=

1

A
CovPδ

(
εi
T , εk

T

)
, i = 1, 2, · · · , N.

The rest of the assertions are trivial.

¤
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3.C. PROOF OF PROPOSITION 8

Appendix 3.C Proof of Proposition 8

Proof (3.23) can be directly derived by (3.13) and (3.21). (3.26) can be also obtained

easily by the following fact:

∂

∂A
{−EP δ∗

[
εi
T

]
} = − 1

A2

E
[( ∑N

j=1 δjε
j
T

)
exp

(
−

∑N
j=1

δj

A
εj
T

)
εi
T

]
E

[
exp

(
−

∑N
j=1

δj

A
εj
T

)]
(
E

[
exp

(
−

∑N
j=1

δj

A
εj
T

)])2

+
1

A2

E
[
exp

(
−

∑N
j=1

δj

A
εj
T

)
εi
T

]
E

[( ∑N
j=1 δjε

j
T

)
exp

(
−

∑N
j=1

δj

A
εj
T

)]
(
E

[
exp

(
−

∑N
j=1

δj

A
εj
T

)])2

= − 1

A
CovP δ∗

(
εi
T ,

N∑
j=1

δj
∗

A
εj
T

)
.

¤

77



3.D. MONTE CARLO SIMULATION RESULTS

Appendix 3.D Monte Carlo Simulation Results

(1-1) I = 1 ( ATM Put ; K/S = 1 , T=1 , S_0=1 , σ_0=0.1 ) , 10,000 Trials (1-2) Hedging Error Distribution ; ε_T^1 , 10,000Trials
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(2-1) I = 2 ( OTM Put ; K/S = 0.9 , T=1 , S_0=1 , σ_0=0.1 ) , 10,000 Trials (2-2) Hedging Error Distribution ; ε_T^2 , 10,000Trials
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(3-1) I = 3 ( OTM Call ; K/S = 1.1 , T=1 , S_0=1 , σ_0=0.1 ) , 10,000 Trials (3-2) Hedging Error Distribution ; ε_T^3 , 10,000Trials
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Fig. 3.5: The Distributions of Delta-Neutral Hedging Errors εi
T , i = 1, 2, 3

These figures show the distributions of delta-neutral hedging errors εi
T , i = 1, 2, 3, examined by Monte Carlo

simulations of 10,000 trials. The top, middle, and bottom figure are respectively correspondent to i = 1, i = 2, and

i = 3. In particular, the left-side figures show delta-neutral hedging simulation results for i = 1, i = 2, and i = 3,

respectively, in which the horizontal axis means cumulative rate of returns of the underlying asset at maturity and

the vertical line means the profit and loss level of the option contract or the delta-neutral hedging performance. The

right-side figures show the distributions of the delta-neutral hedging errors εi
T in which the horizontal axis means the

level of each delta-neutral hedging error at maturity and the vertical line means the frequency of the delta-neutral

hedging errors. These simulation results are obtained under the parameter conditions of T = 1, S0 = 1, κ = 2.52,

γ = 0.01, η = 0.23, and ρ = −0.3, and the options of i = 1, i = 2, and i = 3 are respectively correspondent to

an ATM put of K1 = 1.0, an OTM put of K2 = 0.9, and an OTM call of K3 = 1.1. The each initial price p0
i is

calculated by the closed formula for option valuation proposed by Heston[1993] setting the volatility risk premium

parameter as zero.
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Fig. 3.6: The End-User Net Demand δ∗i and the Option Prices pi(δ
∗) in Equilibrium

These figures show the end-user net demand δ∗i , the option prices pi(δ
∗), and the parameter ci

1 which appears

in the representation of (4.19) in equilibrium in the case that the end-user can hold positions in the options of both

i = 1 (the ATM put of K1 = 1.0) and i = 3 (the OTM call of K3 = 1.1). In particular, the left-side figures are the

results for the option of i = 1 and the right-side figures are the results for the option of i = 3. The top, middle, and

bottom figures are respectively exhibit the δ∗i , pi(δ
∗), and ci

1 for i = 1 and i = 3.79



Chapter 4

Understanding Delta-hedged Option

Returns in Stochastic Volatility

Environments

4.1 Introduction

In developing risk management strategies for financial option portfolios in incomplete

markets, it is necessary to specify the risk factors in the markets and select an option

pricing model which is consistent with those of specified risks. In particular, for the

practitioners it is essential to consider the matters mentioned above for their risk man-

agement processes. In particular, in incomplete markets, option portfolios can not be

hedged perfectly due to the unhedgeable risks such as stochastic volatility and jump and

are exposed to the risk of significant losses especially in the financial crisis period.

On the basis of these aspects mentioned above, a rich body of studies on empirical

option prices and delta-hedged option returns in financial option markets has developed

in recent years with some stylized empirical analyses. Coval and Shumway[2001] ex-

amine expected option returns in the context of mainstream asset pricing theory and

their results strongly suggest that something besides market risk is important in pric-

ing the risk associated with option contracts. They imply that systematic stochastic

volatility may be an important factor in pricing assets. Bakshi and Kapadia[2003] and

Low and Zhang[2005] study delta-hedged option returns in a stock index option mar-

ket and currency option markets, respectively, and they provide evidence that expected

delta-hedged option returns are not zero because of negative stochastic volatility risk

premiums. Goyal and Saretto[2009] study a cross-section of stock option returns by
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4.1. INTRODUCTION

sorting stocks on the difference between historical realized volatility and at-the-money

implied volatility. They find that a zero-cost trading strategy that is long (short) in a

position with a large positive (negative) difference between these two volatility measures

produces an economically and statistically significant return due to some unknown risk

factors or mispricing. Broadie, Chernov, and Johannes[2009] conclude that option port-

folio returns can be well explained if we consider jump risk premiums or model parameter

estimation risk. They assume that investors account for uncertainty in the spot volatility

and parameters when pricing options.

Although these studies identify and investigate the sources of financial option prices

in terms of some systematic risk factors or mispricing separately, they do not demonstrate

any relative contribution to option prices between systematic risk factors and mispricing

based on a unified approach.

Jones[2006] presents the most recent research that provides a unified approach to

demonstrate the relative contribution of the sources of stock index option prices based

on a non-linear factor analysis. He examines the historical performances of equity index

option portfolios in the period from January 1986 to September 2000 and shows that

priced risk factors such as stochastic volatility and jump contribute to their extraordinary

average returns but are insufficient to explain their magnitudes, particularly for short-

term out-of-the-money puts. Although this may be the only study that provides a unified

approach to demonstrate the relative contribution of the sources of financial option prices

based on a stylized model, the author does not reveal any sources besides the priced risk

factors such as stochastic volatility and jump that contribute to the option portfolios’

extraordinary average returns. The author also does not show the time dependency of

the relative contribution between the systematic risk factors and other potential sources

such as mispricing to financial option prices especially during the period of the recent

financial crisis because his empirical analysis is based on the period from January 1986

to September 2000.

In this chapter, we present the relative contribution analysis between the effect of a

systematic risk factor and the effect of parameter estimation risk of an option valuation

model on financial option prices based on a historical simulation in the pre- and post

Lehman crisis period. Theoretical models often assume that the economic agent who

makes an optimal financial decision knows the true parameters of the model. But the true

parameters are rarely if ever known to the decision maker. In reality, model parameters

have to be estimated based on historical information and, hence, the model’s usefulness

depends partly on how good the estimates are. This gives rise to estimation risk in

virtually all option valuation models.
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We assume that financial option prices are determined by option market participants

basaed on an option valuation model which is consistent with the historical information

and the market participants’ preferences. The option market participants try to estimate

the (unknown) true model parameters ”with some error” based on historical information,

and they price financial options being consistent with that estimated model. Under

this assumption, we provide a novel representation of delta-hedged option returns in

a stochastic volatility environment. The representation of delta-hedged option returns

provided in this chapter consists of two terms; volatility risk premium and parameter

estimation risk. In an empirical analysis, we examine delta-hedged option returns of the

USD-JPY currency options based on a historical simulation from October 2003 to June

2010. We find that the delta-hedged option returns for OTM put options are strongly

affected by parameter estimation risk as well as the volatility risk premium, especially

in the post-Lehman shock period.

To the best of our knowledge, this is the first empirical research on the relative

contribution analysis of the effects of systematic risk factors and parameter estimation

risk on delta-hedged option returns in a stochastic volatility environment. Of course,

there are some prior studies on the effect of parameter estimation risk on pricing financial

options (Boyle and Ananthanarayanan[1977], Green and Figlewski[1999], Bunnin, Guo,

and Ren[2002], Cont[2006], Broadie, Chernov, and Johannes[2009], etc.) , but there is

no empirical evidence that shows the relative contribution between the risk premiums

and parameter estimation risk to delta-hedged option returns or the time dependency

of that contribution. In our empirical study, approximately 13％ of the value of the

OTM currency option premium is generated by the existence of parameter estimation

risk in the post-Lehman crisis period, and this effect on option prices is more significant

than the effect of the volatility risk premium. One of the most important implications of

our study is that the sign and the level of the expected delta-hedged option returns do

not necessarily explain the existence of volatility risk premiums. An important point to

emphasize is that there may be additional important factors such as parameter estimation

risk that make an impact on delta-hedged option returns, rendering standard hedging-

based tests on volatility risk premiums explored and examined by, for example, Bakshi

and Kapadia[2003] and Low and Zhang[2005], unreliable.

This chapter is organized as follows: Section 2 describes the model structure and pro-

vides an explicit representation of delta-hedged option returns. An estimation methodol-

ogy for the time-varying volatility risk premium in the USD-JPY currency option market

is also explored in this section. Section 3 describes the basic methodology used in our

empirical analysis, and Section 4 illustrates the nature of the delta-hedged option returns
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and presents empirical findings on the relative contributions of the effects of the volatility

risk premium and parameter estimation risk on delta-hedged option returns. Section 5

summarizes the main results of this chapter.

4.2 The Model and the Methodology

4.2.1 An explicit representation for delta-hedged option re-

turns

We start with a filtered probability space (Ω,F , P; {Ft}t≥0), t ∈ [0, T ] and consider a two

dimensional exchange rate process that allows return volatility to be stochastic under

the physical probability measure P:

dSt

St

= µtdt + σt

√
1 − ρ2dW 1

t + σtρdW 2
t ,

dσt = θtdt + ηtdW 2
t ,

(4.1)

where µt ≡ µ(t, St, σt), θt ≡ θ(t, St, σt), and ηt ≡ η(t, St, σt) are {Ft}t≥0-adapted stochas-

tic processes with deterministic functions µ, θ, and η, respectively, which allow the above

equations to have a strong solution. (W 1
t ,W 2

t ) denote a standard 2-dimensional Brow-

nian motion on the probability space (Ω,F , P) and we give the information set Ft as a

sigma-algebra of σ{W 1
s ,W 2

s |s ≤ t}∨N , where N is the null set. The ρ is a constant which

is in [−1, 1] ⊂ R1. Moreover, in the following, rd ∈ R and rf ∈ R denote the domestic

and the foreign risk-free interest rate, respectively. In this chapter, we assume that the

parameters and state variables σt are unobserved and cannot be perfectly estimated from

historical information.

We limit the model of an exchange rate process to a stochastic volatility model and do

not consider other factors such as the jump. Although this model is rather restrictive, but

in Andersen, Bollerslev, Diebold and Labys[2000], based on ten years of high-frequency

returns for the Deutschemark - U.S. Dollar and Japanese Yen - U.S. Dollar exchange

rates, they provide indirect support for the assertion of a jumpless diffusion with a fact

that the presence of jumps is likely to result in a violation of the empirical normality of

the standardized returns.

It is well known that the absence of arbitrage opportunities is essentially equivalent

to the existence of a probability measure Q, equivalent to the physical probability mea-

sure P, under which the discounted prices process is an Ft-adapted martingale; such

a probability will be called equivalent martingale measure. Any equivalent martingale
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measure Q is characterized by a continuous version of its density process with respect to

P which can be written from the integral form of martingale representation:

Mt ≡
dQ
dP

|Ft≡ exp
(
−

∫ t

0

νudW 1
u −

∫ t

0

λudW 2
u − 1

2

∫ t

0

ν2
udu − 1

2

∫ t

0

λ2
udu

)
,

where (νt, λt) is adapted to Ft and satisfies the integrability conditions
∫ T

0
ν2

udu < ∞ and∫ T

0
λ2

udu < ∞ a.s.. These two processes of νt and λt satisfy the following market price of

risk equation, σtρλt + σt

√
1 − ρ2νt = rf − rd + µt, and, in particular, are determined so

that the discounted price process e−(rd−rf )tSt can be a martingale under this equivalent

martingale measure Q 1. Two processes of νt and λt are interpreted as the price of risk

premia relative respectively to the two sources of uncertainty W 1
t and W 2

t . In particular,

if Λt ≡ MtBt denotes the discount factor process where Bt ≡ exp
(
− rdt

)
, then the price

of volatility risk λt is defined as λt ≡ −Covt(
dΛt

Λt
, dσt) (See, e.g., Cochrane[2001]) and

a positive correlation between the discount factor process Λt and the volatility process

σt implies a negative λt. To understand clearly, for example, if we could assume the

stochastic volatility model proposed by Heston[1993] for (4.1), that is to say that θt ≡
−κσt and ηt ≡ v where κ and v are constants, and the representative agent with a power

utility function in the financial market, then we can derive the following equation 2:

Covt

(dΛt

Λt

, dσt

)
= −γρvσt,

where γ ∈ R is the risk aversion parameter for the representative agent. This relation

suggests that the market price of volatility risk λt is proportional to ρ, and if the corre-

lation between volatility changes and changes in the exchange rate is negative, then the

market price of volatility risk is also negative. Hereinafter we also describe Q by Q[λt]

to emphasize that Q is depend on the process of λt.

CM
t ≡ G(t, St, σt) denotes the time-t market price of an European-type call option 3

on the underlying exchange rate St. This CM
t is struck at K, expiring at time T , and

represented by a C1,2,2-function G(t, St, σt) : R3 → R1. In the following, we consider

delta-hedged option returns of CM
t ≡ G(t, St, σt) for the representative option market

participant under model parameter estimation risk.

In the actual market, the option market participants could not necessarily price op-

tions based on the true equation (4.1) because they essentially could not know the true

1See §9.3 in Shreve[2004] for details.
2Details will be described in section 4.1.
3In this section, we focus on an European call option, but the discussion and results provided in this

section can apply more generally to other options such as put options and straddle options.
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parameters of (4.1) due to limited information or sampling errors, which are also pointed

out by the previous studies such as those by Boyle and Ananthanarayanan[1977], Green

and Figlewski[1999], and Broadie, Chernov, and Johannes[2009]. That is to say that

the option market participants might believe the another set of parameters that are not

necessarily true and price options based on those of misestimated parameters while they

try to estimate the true dynamics (4.1) based on historical market information. So we

assume that the option market participants estimate the another set of model parame-

ters µ̃t ≡ µ̃(t, St, σt), θ̃t ≡ θ̃(t, St, σt), η̃t ≡ η̃(t, St, σt) and ρ̃ ∈ [−1, 1] for the drift of the

exchange rate price process, the drift of the volatility process, the diffusion coefficient

of the volatility process, and the correlation between volatility changes and changes in

the exchange rate, respectively. The parameters of µ̃t, θ̃t, η̃t, and ρ̃ may not be equal

to the parameters of µt, θt, ηt, and ρ in (4.1), respectively, because of estimation errors

caused by limited information. Under such condition, it is natural to assume that the

option market participants price options based on the following alternative model for an

exchange rate process S̃t
4 :

dS̃t

S̃t

= µ̃tdt + σ̃t

√
1 − ρ̃2dW 1

t + σ̃tρ̃dW 2
t ,

dσ̃t = θ̃tdt + η̃tdW 2
t .

(4.2)

The market price of the option at time t, CM
t ≡ G(t, St, σt), determined by the

representative option market participant which is consistent with the model (4.2) satisfies

the following pricing equation:

1

2
σ2

t S
2
t

∂2G

∂S2
(t, St, σt) +

1

2
η̃2

u

∂2G

∂σ2
(t, St, σt)

+ ρ̃η̃tσtSt
∂2G

∂S∂σ
(t, St, σt) + (rd − rf )St

∂G

∂S
(t, St, σt)

+ (θ̃t − λt)
∂G

∂σ
(t, St, σt) +

∂G

∂t
(t, St, σt) − rdG(t, St, σt) = 0.

(4.3)

Due to such parameter estimation risk on the exchange rate dynamics introduced above,

the representative option market participant try to hedge according to the misspecified

function G, and this aspect leads to the following discussion.

4We assume that the SDE (4.2) has a strong solution for S̃t under the parameters of µ̃t, θ̃t, η̃t, and
ρ̃.
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When 0 ≤ τ ≤ T − t, we can derive a following equation via Ito’s lemma:

CM
t+τ = CM

t +

∫ t+τ

t

∂G

∂S
(u, Su, σu)dSu

+

∫ t+τ

t

∂G

∂σ
(u, Su, σu)dσu +

∫ t+τ

t

DG(u, Su, σu)du,

(4.4)

where

DG(t, St, σt) =
∂G

∂t
(t, St, σt) +

1

2
σ2

t S
2
t

∂2G

∂S2
(t, St, σt)

+
1

2
η2

t

∂2G

∂σ2
(t, St, σt) + ρηtσtSt

∂2G

∂S∂σ
(t, St, σt).

If we define the delta-hedged gain and loss (hereinafter, DHGL) ΠG
t,t+τ for CM

t in the

period of [t, t + τ ] by

ΠG
t,t+τ ≡ CM

t+τ − CM
t −

∫ t+τ

t

∂G

∂S
(u, Su, σu)dSu

−
∫ t+τ

t

(
rdG(u, Su, σu) − (rd − rf )Su

∂G

∂S
(u, Su, σu)

)
du,

then, from (4.4) it follows

ΠG
t,t+τ =

∫ t+τ

t

∂G

∂σ
(u, Su, σu)dσu +

∫ t+τ

t

DG(u, Su, σu)du

−
∫ t+τ

t

(
rdG(u, Su, σu) − (rd − rf )Su

∂G

∂S
(u, Su, σu)

)
du

=

∫ t+τ

t

LG(u, Su, σu)du +

∫ t+τ

t

ηu
∂G

∂σ
(u, Su, σu)dW 2

u ,

(4.5)

where

LG(u, Su, σu) = θu
∂G

∂σ
(u, Su, σu)

+ DG(u, Su, σu) −
[
rdG(u, Su, σu) − (rd − rf )Su

∂G

∂S
(u, Su, σu)

]
.

(4.6)

Thanks to (4.3),

∂G

∂t
(t, St, σt) +

1

2
σ2

t S
2
t

∂2G

∂S2
(t, St, σt) − rdG(t, St, σt) + (rd − rf )St

∂G

∂S
(t, St, σt)

= −(θ̃t − λt)
∂G

∂σ
(t, St, σt) −

1

2
η̃2

u

∂2G

∂σ2
(t, St, σt) − ρ̃tη̃tσtSt

∂2G

∂S∂σ
(t, St, σt).

(4.7)
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Substituting (4.7) into (4.5), we have

ΠG
t,t+τ =

∫ t+τ

t

[1

2
(η2

u − η̃2
u)

∂2G

∂σ2
(u, Su, σu)

+ (ρuηu − ρ̃uη̃u)σuSu
∂2G

∂S∂σ
(u, Su, σu) + (θu − θ̃u)

∂G

∂σ
(u, Su, σu)

]
du

+

∫ t+τ

t

λu
∂G

∂σ
(u, Su, σu)du +

∫ t+τ

t

ηu
∂G

∂σ
(u, Su, σu)dW 2

u .

(4.8)

Thus, taking expectation to (4.8) under the physical measure P, the expected DHGL for

the representative option market participant can be derived in the following equation:

EP[ΠG
t,t+τ

]
=

∫ t+τ

t

EP
[1

2
(η2

u − η̃2
u)

∂2G

∂σ2
(u, Su, σu)

+ (ρuηu − ρ̃uη̃u)σuSu
∂2G

∂S∂σ
(u, Su, σu) + (θu − θ̃u)

∂G

∂σ
(u, Su, σu)

]
du

+

∫ t+τ

t

EP
[
λu

∂G

∂σ
(u, Su, σu)

]
du.

Thus, we have the following proposition:

Proposition 12 If the representative option market participant tries to hedge based on

the misspecified function G, then the expectation of the delta-hedged gain and loss from

time t to t + τ , ΠG
t,t+τ , for the market participant, that is, EP[ΠG

t,t+τ ], is represented by

the following formula:

EP[ΠG
t,t+τ

]
=

∫ t+τ

t

EP
[1

2
(η2

u − η̃2
u)

∂2G

∂σ2
(u, Su, σu)

+ (ρηu − ρ̃η̃u)σuSu
∂2G

∂S∂σ
(u, Su, σu) + (θu − θ̃u)

∂G

∂σ
(u, Su, σu)

]
du

+

∫ t+τ

t

EP
[
λu

∂G

∂σ
(u, Su, σu)

]
du.

(4.9)

An interpretation for the expected DHGL (4.9) is given as follows. If the price

process of an underlying exchange rate assumed by the representative option market

maker coincide with the true price process, that is to say, θt = θ̃t, ηt = η̃t and ρ = ρ̃, then

the first term in the right side of (4.9) equals zero and, as a result, the representation of

the expected DHGL under the physical measure P will be

EP[ΠG
t,t+τ

]
=

∫ t+τ

t

EP[λu
∂G

∂σ
(u, Su, σu)

]
du.

Thus, the expected DHGL will be perfectly determined only by the level of the volatility

risk premium λt. In addition to the above assumption, if we also assume a linear form
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of λu ≡ λσu（λ ∈ R1）for the volatility risk premium as well as the stochastic volatility

model proposed by Heston[1993], the sign of the expected DHGL will coincide with the

sign of the volatility risk premium parameter λ because σu > 0 and ∂Cu

∂σ̃u
> 0. However,

if the parameters for the representative option market maker, θ̃t, η̃t and ρ̃t, are not equal

with the true parameters, that is, θt, ηt, and ρt, the sign and the magnitude of the

expected DHGL will be affected by the parameter estimation risk term represented by

the first term in the right side of (4.9), as well as the volatility risk premium term.

Let us provide a proposition related to the second term in the right side of (4.9) for

the purpose of obtaining a more testable representation of the expected DHGL.

Proposition 13 If CM
t [λu] denotes the time-t call option price which is consistent with

the underlying exchange rate process (4.2) and the equivalent martingale measure Q[λu],

then the following inequation can be derived:

CM
t [0] − CM

t [λu] ≤ (≥)

∫ T

t

EP
[
λu

∂CM
u [λu]

∂σu

]
du ≤ (≥)

(
1 + rd(T − t)

)(
CM

t [0] − CM
t [λu]

)
,

where λu ≥ (≤)0. Moreover, if we are able to assume rd ≈ 0, then this inequation can

be further simplified to the approximation presented below:

CM
t [0] − CM

t [λu] ≈
∫ T

t

EP
[
λu

∂CM
u [λu]

∂σu

]
du. (4.10)

Proof See the Appendix. ¤

Under the zero interest rate financial policy in Japan after the year of 2000, we are

allowed to consider rd to be approximately zero. So we can assume that (4.10) will be

well-suited for the exchange rates whose base currency is the Japanese Yen.

Substituting the approximation of (4.10) for (4.9), we find that an explicit representa-

tion of the expected DHGL for the representative option market maker can be described

as follows:

EP[ΠG
t,t+τ

]
≈

∫ t+τ

t

EP
[1

2
(η2

u − η̃2
u)

∂2G

∂σ2
(u, Su, σu)

+ (ρηu − ρ̃η̃u)σuSu
∂2G

∂S∂σ
(u, Su, σu) + (θu − θ̃u)

∂G

∂σ
(u, Su, σu)

]
du

+ CM
t [0] − CM

t [λu].

(4.11)

In the following section, we will simulate the DHGLs with historical market data and

estimate the left side of (4.11) empirically. If we can valuate the second term in the

right side of (4.11) in each period, then we will be able to provide a contribution analysis
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between the effect of parameter uncertainty and the effect of the volatility risk premium

on the expected DHGL based on (4.11) empirically. As mentioned above, we assume

that the representative option market participant determines option market prices being

consistent with (4.2) by estimating the set of parameters in (4.2), that is to say, θ̃t, η̃t,

and ρ̃, based on historical market price data. Thus, under the assumption stated above,

obtaining the set of parameters in (4.2) with historical market price data and calibrating

the volatility risk premium implied in option market prices in each period, we will be

able to provide a contribution analysis on the expected DHGL explicitly. Let us describe

an explicit way of providing the contribution analysis in the following subsection.

An estimation strategy for θ̃t, η̃t, and ρ̃ with historical price data will be provided in

the next section. In the next subsection, we provide a calibration methodology for the

volatility risk premium parameter implied in option market prices in each period with

estimated parameters of θ̃t, η̃t, and ρ̃.

For simplicity, hereinafter we assume θt ≡ −kσt, ηt ≡ v, θ̃t ≡ −k̃σt, and η̃t ≡ ṽ (k,

v, k̃, and ṽ are constants), that is to say, the stochastic volatility model proposed by

Heston[1993] and investigate the expected DHGL represented by (4.11) in detail under

such assumptions. Heston[1993] assumes linear form of λt[σ] ≡ λσt for the volatility risk

premium and we are also assume that form in line with Heston[1993].

4.2.2 Estimation Strategy for the Volatility Risk Premium

As mentioned above, we assume that the representative option market participant prices

options based on the model under the assumptions of θ̃t ≡ −k̃σt and η̃t ≡ ṽ in (4.2), or

dS̃t

S̃t

= µ̃tdt + σ̃t

√
1 − ρ̃2dW 1

t + σ̃tρ̃dW 2
t ,

dσ̃t = −k̃σ̃tdt + ṽdW 2
t .

(4.12)

If we also assume the formula of the volatility risk premium as λt ≡ λσ̃t (λ ∈ R), that

is to say, a linear form on the volatility, (4.12) will be rewrited under the risk neutral

measure Q[λσ̃t] as follows:

dS̃t

S̃t

= (rd − rf )dt + σ̃t

√
1 − ρ̃2dW̃ 1

t + σ̃tρ̃dW̃ 2
t ,

dσ̃t = −(k̃ + λ)σ̃tdt + ṽdW̃ 2
t ,

(4.13)
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where W̃t ≡
(
W̃ 1

t , W̃ 2
t

)t

is two-dimensional Brownian motion under Q[λσ̃t] whose each

component is represented as follows:

W̃ 1
t ≡ W 1

t +

∫ t

0

νudu and W̃ 2
t ≡ W 2

t + λ

∫ t

0

σ̃udu.

Under (4.13), we can derive the expectation of instantaneous variance at time t under

Q ≡ Q[λσ̃t],

EQ
t [σ̃2

u] = σ̃2
t exp(−2(k̃ + λ)(u − t)) +

ṽ2

2(k̃ + λ)

(
1 − exp(−2(k̃ + λ)(u − t))

)
, t ≤ u.

Thus the expectation of realized variance RVt,T in the period of [t, T ] under Q will be

EQ
t [RVt,T ] = EQ

t [
1

T − t

∫ T

t

σ̃2
udu] =

1

T − t

∫ T

t

EQ
t [σ̃2

u]du

=
ṽ2

2(k̃ + λ)
+

exp(−2(k̃ + λ)T ) − exp(−2(k̃ + λ)t)

2(k̃ + λ)(T − t)

( ṽ2

2(k̃ + λ)
− σ̃2

t

)
.

(4.14)

On the other hand, Carr and Wu[2009] provide the formula for the risk neutral expected

value of return variance which can be well approximated with the value of a particular

portfolio of options 5.

Proposition 14 (Carr and Wu(2009)) Under no arbitrage, the time-t risk-neutral

expected value of the return quadratic variation of an asset over horizon [t, T ] can be

approximated by the continuum of European out-of-the-money option prices across all

strikes K > 0 and at the same maturity date T

EQ
t [RVt,T ] =

2

T − t

∫ ∞

0

Θt(K,T )

Bt(T )K2
dK, (4.15)

5Carr and Wu[2009] assume that the futures price Ft solves the following stochastic differential
equation,

dFt = Ft−σt−dWt +
∫

(−∞,∞)\0
Ft−

(
ex − 1

)[
µ(dx, dt) − νt(x)dxdt

]
(see Carr and Wu[2009] for details on a notation). The equation represented above models the futures
price change as the summation of the increments of two orthogonal martingales: a purely continuous
martingale and a purely discontinuous (jump) martingale. This decomposition is generic for any con-
tinuous time martingales. So, in general, Proposition 2 should be stated including the effect of jump
component. But, in this chapter, we only assume a continuous martingale in order to represent an
underlying exchange rate process, so we leave the term induced by the jump component out of (4.15)
in Proposition 2.
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where Bt(T ) denotes the time-t price of a bond paying one dollar at T, Θt(K,T ) denotes

the time-t value of an out-of-the-money option with strike price K > 0 and maturity

T ≥ t (a call option when K > Ft and a put option when K ≤ Ft).

Proof See proof of Proposition1 in Carr and Wu[2009]. ¤

Using the set of parameters in (4.2) and option prices Θt(K,T ) quoted in an option

market, we can estimate λ explicitly based on the following equation

2

T − t

∫ ∞

0

Θt(K,T )

Bt(T )K2
dK =

ṽ2

2(k̃ + λ)

+
exp(−2(k̃ + λ)T ) − exp(−2(k̃ + λ)t)

2(k̃ + λ)(T − t)

( ṽ2

2(k̃ + λ)
− σ̃2

t

)
,

(4.16)

which can be derived with (4.14) and (4.15). Thus, using the λ estimated with the

equation (4.16), we can calculate CM
t [0] − CM

t [λu], the second term in the right hand

side of (4.11), at each time t using the closed formula for the European-type call option

proposed by Heston[1993]:

CM
t [λσ̃t] = StP1 + e−rτKP2,

where

Pj =
1

2
+

1

π

∫ ∞

0

Re

[
e−

√
−1φln(K)Fj√
−1φ

]
dφ,

Fj = eC+Dσ̃2
t +

√
−1φln(St),

C = (rd − rf )τφ
√
−1 +

1

4

[
(βj − 2ρ̃ṽφ

√
−1 + h)τ − 2ln

(1 − gehτ

1 − g

)]
,

D =
βj − 2ρ̃ṽφ

√
−1 + h

4ṽ2

( 1 − ehτ

1 − gehτ

)
,

g =
βj − 2ρ̃ṽφ

√
−1 + h

βj − 2ρ̃ṽφ
√
−1 − h

,

h =

√
(2ρ̃ṽφ

√
−1 − βj)2 − 4ṽ2(2ujφ

√
−1 − φ2), (j = 1, 2)

and

τ = T − t, u1 =
1

2
, u2 = −1

2
, β1 = 2k̃ + λ − 2ρ̃ṽ, β2 = 2k̃ + λ.

(4.17)

Needless to say, we can also derive the closed formula for the European-type put option

by using (4.17) and the put-call parity relation and will use these closed formulas for

pricing currency options in the following empirical simulations.
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4.2.3 An Analytical Process for a Contribution Analysis

In this subsection, let us summarize an analytical process for a contribution analysis on

the expected DHGL of the currency option, which is explored in the next section.

In this chapter, as mentioned in the previous section, the expected DHGL of the

currency option consists of the volatility risk premium and parameter estimation risk,

and the brief analytical process for a contribution analysis on the expected DHGL is as

follows:

Step 1 Each of the DHGLs for an option portfolio is simulated based on historical data

of an exchange rate at each time point.

Step 2 The volatility risk premium parameter is estimated on the basis of the approach

demonstrated in the previous subsection and the effect of the volatility risk premium,

CM
t [0] − CM

t [λu] in (4.11), on the DHGL is calculated with estimated volatility risk pre-

mium parameter and the option pricing formula proposed by Heston[1993] at each time

when the delta-neutral hedging strategy for an option portfolio is started.

Step 3 The effect of parameter estimation risk on the DHGL for an option portfolio

is calculated by subtracting the calculation result of CM
t [0] − CM

t [λu] in Step 2 from the

result of the DHGL simulated in Step 1.

Step 4 Then, we average each of the time-series results of DHGLs, the effects of the

volatility risk premium on the DHGL, and the effects of parameter estimation risk on

the DHGL, and decompose the expected DHGL into two effects from the volatility risk

premium and parameter estimation risk.

In the next section, we provide more detailed explanation on the data and methodology

for an empirical implementation.

4.3 Data and Methodology for an Empirical Imple-

mentation

4.3.1 Description of the OTC Currency Option Market and

Data

In our empirical study, we examine the expected DHGL and its contribution analysis with

the USD-JPY spot exchange rate and the USD-JPY currency options with maturities
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of one month traded on the OTC market. The OTC currency option market has some

special features and conventions. First, option prices in the OTC market are quoted in

terms of deltas and implied volatilities instead of strikes and money prices, as in the

organized option exchanges. At the time of settling a given deal, the implied volatility

quotes are translated to money prices using the Garman-Kohlhagen formula, which is

the equivalent of the Black-Scholes formula for currency options. This arrangement is

convenient for option dealers in that they do not have to change their quotes every time

the spot exchange rate moves. However, it is important to note that this does not mean

that option dealers necessarily believe that the Black-Scholes assumptions are valid.

They use the formula only as a one-to-one nonlinear mapping between the volatility

delta space (where the quotes are made) and the strike premium space (in which the

final specification of the deal is expressed for the settlement). Second, most transactions

in the market involve option combinations. The popular combinations are straddles,

risk reversals, and strangles. Among these, the most liquid combination is the standard

delta-neutral straddle contract, which is a combination of a call and a put with the same

strike. The strike price is set, together with the quoted implied volatility space, such

that the delta of the straddle computed on the basis of the Garman-Kohlhagen formula

is zero.

Because the standard straddle is by design delta neutral on the deal date, its price

is not sensitive to the market price of the underlying foreign currency. However, it

is sensitive to changes in volatility. Because of its sensitivity to volatility risk, delta-

neutral straddles are widely used by participants in the OTC market to hedge and trade

volatility risk. If the volatility risk is priced in the OTC market, then delta-neutral

straddles are the best instruments through which to observe the risk premium. For this

reason, Coval and Shumway[2001] use delta-neutral straddles in their empirical study of

expected returns on equity index options and find that a volatility risk premium is priced

in the equity index option market.

We use the WM/Reuter closing spot rate for the USD-JPY spot exchange rate data,

the LIBOR 1M interest rates for the domestic (Japan) and the foreign (United States

of America) interest rates, and quoted implied volatility data from Bloomberg. The

implied volatility data is from the European type put and call OTC currency options

with maturities of one month and strike prices of 5 delta, 10 delta, 15 delta, 25 delta,

35 delta and ATM, respectively. All the data are daily-based data. In the following

empirical simulation, we price the options using bid prices quoted in the actual market

at each time point in order to take account of transactions costs when simulating the

profit and loss generated by a delta-neutral hedging strategy with a short position of
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each of the European options. Our data sample starts in October 2003 (because of data

availability of the implied volatility in the USD-JPY currency option market) and ends

in June 2010.

Fig.4.3, Fig.4.4 and Fig.4.5 show the time series data for the USD-JPY WM/Reuter

closing spot rate, the ATM implied volatility of the USD-JPY European option, and

the mid-bid price spread of the ATM implied volatility which indicates the level of

transactions costs for selling strategies of the European ATM options at each time point,

respectively. Table 4.7 provides descriptive statistics for the implied volatilities in the

period from October 2003 to June 2010. In this table we can find the feature of ”volatility

skew”, which indicates that the implied volatilities for OTM puts are higher than those

for OTM calls during the period under consideration.

4.3.2 Parameter Estimation

for the Heston[1993] Stochastic Volatility Model

In this chapter, we estimate a set of parameters for the Heston[1993] stochastic volatil-

ity model expressed in equation (4.12) with the maximum likelihood method proposed

by Aı̈t-Sahalia[2001] and Aı̈t-Sahalia and Kimmel[2007]. Aı̈t-Sahalia and Kimmel[2007]

provide an approximation formula for the likelihood function using the Hermite series

expansion of the transition probability density of the Heston[1993] stochastic volatility

model and propose a methodology for estimating the parameters of multivariate diffusion

processes via the maximum likelihood method with discrete-sampled price data. They

derive a closed form likelihood function used explicitly to estimate the parameters of a

two-dimensional diffusion process consisting of an underlying asset price and its instan-

taneous volatility or the option price associated with it. In this study, we use a historical

20-day realized volatility as a proxy for the instantaneous volatility and estimate the

model parameters based on the maximum likelihood method proposed by Aı̈t-Sahalia

and Kimmel[2007]. We update the model parameters daily using the historical daily

data of 1,750 days with a rolling estimation procedure.

4.3.3 Estimation of the Volatility Risk Premium

To estimate the volatility risk premium parameter λ with equation (4.16), we need to

calculate the integral term in that equation by a discretization of that integral. As

mentioned in the previous subsection, we have only a grid of 11 implied volatility points

in terms of the strike price, so that we first interpolate the implied volatilities at different
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moneyness levels with the polynomial approximation methodology proposed by Brunner

and Hafner[2003] to obtain a fine curve of implied volatilities 6. Then we calculate the

value of the integral in (4.16) by applying the numerical integral technique. In this

simulation Bt(T ) in (4.16) is exp(−rd(T − t)), which is a zero coupon bond price whose

maturity date is T .

4.3.4 Estimation of the Expected DHGL

We study an empirical analysis based on a historical simulation to estimate the magni-

tude of the expected DHGL for the delta-hedged option strategy with a short position

of the one-month ATM-forward straddle 7 or the one-month OTM delta-25 put. In par-

ticular, beginning on our simulation on the date of October 31, 2003, we compute the

DHGLs for those of strategies at the end date after one month and repeat the same

computations on the following day after October 31, 2003. The final simulation starts

on May 31, 2010 and ends at June 30, 2010. We finally collect the DHGL results for

1,717 samples for each delta-hedged option strategy through those iterated simulations.

We employ the Garman-Kohlhagen model, as an extension of the Black-Scholes model

to currency options, to compute the delta of the short option positions for tractability,

even though the delta computed from the Garman-Kohlhagen model may differ from

the delta computed from the stochastic volatility model assumed in this study. If we

use C to denote the European call option price on an exchange rate, P as the European

put option price, S0 as the spot rate level on that exchange rate, rf as the foreign risk

free rate, rd as the domestic risk free rate, σ as the volatility, T as the maturity, and

N(·) as the cumulative standard normal distribution function, Garman-Kohlhagen[1983]

provides the closed formula for the prices of European currency options as follows:

C = S0e
−rf T N(d1) − Ke−rdT N(d2), P = Ke−rdT N(−d2) − S0e

−rf T N(−d1),

where

d1 =
ln(S0

K
) + (rd − rf + σ2

2
)

σ
√

T
, d2 =

ln(S0

K
) + (rd − rf − σ2

2
)

σ
√

T
= d1 − σ

√
T . (4.18)

6Brunner and hafner[2003] approximate the implied volatility σT
t (K), whose the strike price is K

and the maturity date is T , as a polynomial as follows; σT
t (K) = β0 + β1M + β2M

2 + Dβ3M
3, where

D ≡ 0(ifM ≤ 0),≡ 1(ifM > 0) and M ≡ log
(

K
F T

t

)
/
√

T − t, under the definition that FT
t is a forward

rate whose the maturity date is T at each time t.
7The ATM-forward straddle contract is a combination of a call and a put option with the same strike

price of ATM forward rate and the same maturity to the underlying forward contract.
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If the prices of European currency options are represented as described above, the delta

values of call and put options are computed with the following respective formulas

4call = e−rf T N(d1), 4put = e−rf T
(
N(d1) − 1

)
.

Bakshi and Kapadia[2003] and Low and Zhang[2005] provide a simulation exercise that

shows using the Black-Scholes delta-hedge ratio instead of the stochastic volatility coun-

terpart has a negligible effect on the DHGL results, and they insist that the empirical

analysis results regarding the existence and the sign of the volatility risk premium would

not be affected by the decision regardless of which model is used to compute the delta.

So we use the Garman-Kohlhagen model to compute the delta in line with the studies

of Bakshi and Kapadia[2003] and Low and Zhang[2005]. In our delta-neutral hedge sim-

ulations, the volatility σ in the equation (4.18) is estimated using historical daily return

data of 20 days.

We rebalance the delta-hedged option portfolio daily and measure the DHGL ΠG
t,T in

the period from the contract date t to the maturity date T using the following formula:

ΠG
t,T = CM

t − CM
T −

N−1∑
n=0

∆tn(Stn − Stn+1) +
N−1∑
n=0

(rdC
M
t − (rd − rf )∆tnStn)

T − t

N
,

where t0 = t, t1, t2, · · · , tN = T are time steps during the period [t, T ] and 4tn is the delta

value of the option portfolio at time tn. In this study, we do not take transactions costs

in the delta-neutral hedge operations with spot contracts into consideration because the

effects of those transactions costs to the DHGL results are actually negligible due to the

high liquidity and the low level of such costs in the USD-JPY exchange rate market. 8

4.4 An Empirical Analysis

4.4.1 Estimation Results for the Model Parameters

Fig.4.6, Fig.4.7 and Fig.4.8 in Appendix show the time series results of estimated param-

eters, κ̃, ṽ, and ρ̃, respectively, in (4.12), which represents the Heston[1993] stochastic

volatility model. These parameters are estimated with the maximum likelihood method-

ology proposed by Aı̈t-Sahalia and Kimmel[2007]. In particular, Fig.4.8 shows the time

series of estimated ρ̃, which is the correlation between volatility changes and changes in

8As we mentioned before, we take account of transactions costs only in selling the option contracts
in our empirical study.
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the exchange rate, and we find that the level of ρ̃ is almost negative during the period

under consideration.

Fig.4.1 shows the time series of the volatility risk premium parameter λ estimated

with (4.16). The λ is also almost negative during the period under consideration and the

result of negative market volatility risk premium is consistent with evidence provided by

Low and Zhang[2005]. However, this time series of the λ does not have a time consistency

and it moves to negative values significantly after the Sub-prime crisis in 2007 followed

by the largest negative period during the Lehman-crisis between September 2008 and

October 2008.
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Fig. 4.1: The time series of the volatility risk premium parameter λ

This figure shows a time series result of the λ estimated at each time point based on the equation (4.16) from October

31, 2003 to May 31, 2010. The model parameters in the equation (4.12) are estimated by the maximum liklihood method

proposed by Aı̈t-Sahalia and Kimmel[2007], and we update the model parameters daily based on historical 1,750 days

daily data with a rolling estimation procedure. We calculate the integral term in the equation (4.16) by a discretizaion

and the numerical integral technique. We interpolate implied volatilities at different moneyness levels with a polynomial

approximation methodology proposed by Brunner and hafner[2003] to obtain a fine curve of implied volatilities.

We also show the statistical significance on the level of the volatility risk premium

parameter λ exhibited in Fig.4.1. Table 4.1 summarizes the statistics for the λ. The top

row of Table 4.1 shows the statistics on the λ for overall period from October 31, 2003

to May 31, 2010, and the middle and the bottom rows show the same statistics for the

first half period between October 31, 2003 and December 29, 2006 and the following half

period between January 2, 2007 and May 31, 2010, respectively. The second column of

Table 4.1 shows the number of observations in each period. In the third column, we show
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4.4. AN EMPIRICAL ANALYSIS

the percentage of the λ values that are negative. In the period from January 2, 2007 to

May 31, 2010, we can find that almost all the λ have negative values. The percentage

of negative values is 94.2 ％ in that period. The unconditional means and the standard

deviations of the λ are listed in the fourth and the fifth columns of Table 4.1, respectively.

The sample mean of the λ is negative for each period, while the high standard devi-

ations of the estimated λ make the means appear to not be significantly different from

zero. However, it is misleading to use the unconditional standard deviation to test the

mean because serial correlation in the time series of λ can cause the standard deviation

to be a biased measure of the actual random error. The next three columns in Table

4.1 show that the first three autocorrelation coefficients are quite large and decay slowly.

This result indicates that the time series may follow an autoregressive process. We also

show the partial autocorrelation coefficients in Table 4.1. The first-order partial autocor-

relation coefficient is large in all cases, while the second- and third-order autocorrelation

coefficients become much smaller. The pattern for both autocorrelation coefficients and

partial autocorrelation coefficients suggests the fitting of an autoregressive process of

order three (AR(3)) to the time series of the λ. The AR(3) process for the volatility risk

premium parameter is examined by the following model

λt = α + β1λt−1 + β2λt−2 + β3λt−3 + εt,

where λt is the time-t volatility risk premium parameter and εt is a white noise process.

Its unconditional mean is given by the following formula

E[λt] =
α

1 − β1 − β2 − β3

,

which implies that the null hypothesis of a zero unconditional mean is equivalent to the

null hypothesis that the intercept of the AR(3) process is equal to zero.

Table 4.1: Summary statistics on the volatility risk premium parameter λ

Period

No.

of

obs.

％ of

λ <

0

Spl.

Mean

Spl.

Std.

Dev.

(1) Auto Corr. (2) Partial Auto Corr. (3) AR3 Int.

Lag1 Lag2 Lag3 Lag1 Lag2 Lag3 α pV al

Total 1,717 75.3 ％ -0.686 0.831 0.989 0.983 0.976 0.989 0.171 0.037 -0.006 0.046

(A) 826 55.0 ％ -0.068 0.324 0.957 0.925 0.897 0.957 0.099 0.053 -0.001 0.362

(B) 891 94.2 ％ -1.260 0.742 0.979 0.965 0.951 0.979 0.169 0.033 -0.025 0.004

The sample period is from October 31, 2003 to May 31, 2010. Period (A) in this table is the first half period from

October 31, 2003 to December 29, 2006 and Period (B) is the following half period from January 2, 2007 to May 31, 2010.

The second column of this table shows the number of observations in each time series. In the third column, we present the

percentage of the λ which has a negative value. The unconditional means and standard deviations of the λ are respectively

exhibited in the fourth and the fifth columns in this table.
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We estimate the parameters of the AR(3) process introduced above and show esti-

mated intercept and its p-value for the t-statistic in the last two columns of Table 4.1.

The intercept is significantly negative at the 5％ level in overall period under consid-

eration and significantly negative at the 1％ level during the second half period from

January 2, 2007 to May 31, 2010, whereas it is insignificant, although negative, during

the first half period from October 31, 2003 to December 29, 2006. These results, that

is to say that the volatility risk premium parameter λ is negative, are consistent with

Low and Zhang[2005] which provides an evidence of the negative volatility risk premium

in currency option markets, but are also clearly show that the volatility risk premium

parameter λ in the USD-JPY currency option market does not have a time consistency

but essentially has a stochastic nature. This feature of time-varying volatility risk pre-

mium parameter (or time-varying volatility risk premium) in currency option markets

is not demonstrated by Low and Zhang[2005] and we should notice that the existence

of volatility risk premium in the USD-JPY currency option market is not necessarily

significant at any time.

In equilibrium, we can obtain an explicit relation between the risk aversion parameter

for the representative agent and the volatility risk premium parameter. According to

Heston[1993],

−λσ̃t = Covt

(dΛt

Λt

, dσ̃t

)
/dt, (4.19)

where Λt is the stochastic discount factor process in the dynamic equilibrium setting. In

the case that the utility function of the representative agent assumes the following power

utility form,

Ut = exp(−δt)
S1−γ

t

1 − γ
,

where δ is the subjective discount factor and γ is the risk aversion parameter, we can

obtain a representation of Λt = exp(−δt)S−γ
t easily. Thus, by (4.12) and Ito’s lemma,

the following equation can be derived:

Covt

(dΛt

Λt

, dσ̃t

)
/dt = −γρ̃ṽσ̃t. (4.20)

Equations of (4.19) and (4.20) lead to an explicit relation between the volatility risk

premium parameter λ and the risk aversion parameter γ, that is to say, γ = λ/(ρ̃ṽ).

This equation enables us to provide an empirical analysis for the time series of γ in

equilibrium. Fig.4.2 shows the estimation result on the time series of γ. This figure
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shows that it moves to significantly positive values after the sub-prime crisis in 2007

followed by the longest positive period during the Lehman crisis from September 2008

to October 2008. Then, it moves down slowly but seems to rise again during the period

of the European financial crisis from April 2010 to May 2010.
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Fig. 4.2: Risk aversion parameter γ

The power utility is assumed to the utility function for the representative agent, and this figure shows the time series

of the risk aversion parameter estimated by the relation of γ = λ/(ρ̃ṽ) during the period from October 2003 to May 2010.

The model parameters in the equation (4.12) are estimated by the maximum liklihood method proposed by Aı̈t-Sahalia

and Kimmel[2007] and we update the model parameters daily based on historical 1,750 days daily data with a rolling

estimation procedure. The value of λ used in this result is from the result exhibited in Fig.4.1.

4.4.2 A Contribution Analysis on the Expected DHGL

To demonstrate a contribution analysis on the expected DHGL represented by (4.11), we

first calculate CM
t [0]−CM

t [λ], which is the second term on the right side of the equation

(4.11), using the set of estimated parameters (k̃, ṽ, ρ̃) and the volatility risk premium

parameter λ shown in Fig.4.1. Combining this calculation result for CM
t [0]−CM

t [λ] with

the DHGL estimated with simulated delta-hedged option returns on the basis of (4.11),

the effect of parameter estimation risk, the first term on the right side of the equation

(4.11), can be estimated.

Table 4.2 reports the contribution of the volatility risk premium (”RP” in Table4.2),

which is represented by the second term on the right side of the equation (4.11), and

the contribution of parameter estimation risk (”PER” in Table4.2), which is represented
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by the first term on the right side of the equation (4.11), to the expected DHGL es-

timated by our historical simulation. To standardize the influence of the difference of

the exchange rate level at each time point, we calculate the return defined by ΠG
t,t+τ/St

for each simulation and recognize this return as a proxy for the DHGL at each time

point. To investigate the effects of the strike price on the results of the contribution

analysis for the expected DHGL, historical simulations of short positions of the OTM

delta-25 1M puts as well as the ATM 1M straddles are examined. We segment the results

into ten levels in terms of the level of volatility risk premium parameter λ at each time

point to ensure the time dependencies of this attribution analysis. In this table, ”No.

of Obs.” means the number of samples and ”Mean of λ” shows the average of the λ in

each interval. ”RP” shows the contribution induced by the volatility risk premium to

the total expected DHGL and ”PER” shows the contribution induced by parameter es-

timation risk to the total expected DHGL. These attribution results shown in this table

are monthly-based basis point returns.

Table 4.2: Contribution Analysis for the Expected Delta-hedged Gain Loss

(1)

Interval

of λs

(2)

No. of

Obs.

(3)

Mean

of λ

(4) Expected DHGL: (5) Expected DHGL:

ATM Straddle Short OTM delta-25 Put Short

(4-1)

RP

(4-2)

PER

(4-3)

Total

(5-1)

RP

(5-2)

PER

(5-3)

Total

Overall 1,717 -0.69 9.7 -3.8 5.9 3.6 2.2 5.8

λ ∈ (−4,−3.5] 4 -3.76 89.3 73.2 162.4 32.8 53.1 86.0

λ ∈ (−3.5,−3] 18 -3.15 66.6 37.7 104.3 24.3 63.4 87.6

λ ∈ (−3,−2.5] 25 -2.78 59.2 62.9 122.1 21.8 57.1 78.9

λ ∈ (−2.5,−2] 62 -2.22 34.5 12.7 47.2 12.7 19.5 32.2

λ ∈ (−2,−1.5] 186 -1.73 25.5 8.2 33.7 9.5 -0.6 8.9

λ ∈ (−1.5,−1] 304 -1.27 15.2 4.9 20.1 5.7 -3.3 2.4

λ ∈ (−1,−0.5] 233 -0.75 7.8 -3.1 4.7 2.9 0.9 3.7

λ ∈ (−0.5, 0] 461 -0.03 0.6 -26.2 -25.6 0.2 1.6 1.9

λ ∈ (0, +0.5] 388 0.17 -1.3 -5.4 -6.7 -0.4 3.6 3.2

λ ∈ (+0.5, +1] 36 0.62 -4.2 -9.9 -14.1 -1.5 -0.5 -2.0

Starting on our simulation at the date of October 31, 2003, we compute the DHGL of each strategy at the end date

after one month and repeat the same computations on the following day after October 31, 2003. The final simulation starts

at May 31, 2010 and ends at June 30, 2010. We finally collect the DHGL results of 1,717 samples for each delta-hedged

option strategy through those iterated simulations. We employ the Garman-Kohlhagen model, as an extension of the

Black-Scholes model to currency options, to compute the delta of the short option positions for tractability. In this table,

”No. of Obs.” means the number of samples in each interval for the λ, and ”Mean of λ” shows the average of the λ in each

interval. ”RP” shows the contribution induced by the volatility risk premium to the total expected DHGL and ”PER”

shows the contribution induced by parameter estimation risk to the total expected DHGL. These attribution results shown

in this table are monthly-based basis point returns.

In this table, it is clear that the total level of expected DHGL increases in proportion

as the volatility risk premium parameter λ decreases for both the delta-hedged ATM
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straddle short strategy and the delta-hedged OTM delta-25 put short strategy, and both

effects of volatility risk premium and parameter estimation risk on the total expected

DHGL make a significant impact on that variation. This result also indicates that, in

the case of λ ≤ −2.5, the total expected DHGL is more than 100bp per month for the

delta-hedged ATM straddle short strategy and approximately 80bp per month for the

delta-hedged OTM delta-25 put short strategy. In particular, the effect of parameter

estimation risk on the total expected DHGL seems to be more significant than the effect

of volatility risk premium for the OTM delta-25 put strategy. One of the most important

implications of this result is that the sign and the level of the expected delta-hedged

option returns do not generally explain the existence of the volatility risk premiums.

There are additional important factors that make an impact on delta-hedged option

returns such as parameter estimation risk, rendering standard hedging-based tests on

volatility risk premiums explored by, for example, Bakshi and Kapadia[2003] and Low

and Zhang[2005], unreliable. We also find a large negative expected DHGL when the λ

is in the interval between -0.5 and 0 for the case of ATM straddle short strategy. This

result is entirely generated by the effect of parameter estimation risk and is especially

affected by several jumps in the USD-JPY exchange rate market during the period of

the European financial crisis from April 2010 to May 2010.

Table 4.3: Summary Statistics of the DHGL for the ATM Straddle Short

Strategy

Period
No. of

Obs.

％ of

Pos.

Sample

Mean

(1) Auto Corr. (2) Partial Auto Corr. (3) AR3 Int.

Lag1 Lag2 Lag3 Lag1 Lag2 Lag3 α pV al

Panel 1 : DHGLs (RP+PER)

Total 1,717 55.3 ％ 5.9 0.875 0.779 0.698 0.875 0.059 0.023 0.7 0.222

(A) 826 47.5 ％ -8.3 0.861 0.775 0.704 0.861 0.133 0.044 -1.0 0.862

(B) 891 62.6 ％ 19.1 0.874 0.772 0.686 0.874 0.036 0.017 2.4 0.072

Panel 2 : The effects of volatility risk premium (RP)

Total 1,717 75.3 ％ 9.7 0.986 0.979 0.971 0.986 0.211 0.046 0.1 0.055

(A) 826 55.0 ％ 0.8 0.951 0.920 0.894 0.951 0.154 0.082 0.0 0.268

(B) 891 94.2 ％ 17.9 0.979 0.966 0.954 0.979 0.202 0.042 0.3 0.021

Panel 3 : The effects of parameter estimation risk (PER)

Total 1,717 50.2 ％ -3.8 0.863 0.761 0.675 0.863 0.062 0.020 -0.4 0.678

(A) 826 47.0 ％ -9.1 0.862 0.779 0.709 0.862 0.137 0.045 -1.1 0.876

(B) 891 53.2 ％ 1.2 0.863 0.754 0.662 0.863 0.039 0.015 0.3 0.432

The sample period of these simulation results is from October 31, 2003 to June 30, 2010. Period (A) in this table is

the first term from October 31, 2003 to December 29, 2006 and Period (B) is the following term from January 2, 2007 to

June 30, 2010. The second column of this table lists the number of observations in each time series. In the third column,

we report the percentage of the DHGL which has a positive value. The unconditional means of the DHGL are listed in the

fourth column. The sample means and intercepts (α) shown in this table are monthly-based basis point returns.
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To understand the statistical significance of the expected DHGL shown in Table 4.2,

we employ the same methodology as that used for the analysis in Table 4.1. Table 4.3

and Table 4.4 show the statistical significance of the total expected DHGL, the effect

of volatility risk premium on the total expected DHGL, and the effect of parameter

estimation risk on the total expected DHGL. In particular, Table 4.3 shows the result

for ATM straddle short strategy and Table 4.4 shows the result for OTM delta-25 put

short strategy. Period (A) in these tables is the first term from October 31, 2003 to

December 29, 2006 and Period (B) is the following term from January 2, 2007 to June

30, 2010. The second column lists the number of observations in each time series. In the

third column, we report the percentage of the DHGL which has a positive value. The

unconditional means of the DHGL are listed in the fourth column. The sample means

and intercepts (α) shown in these tables are monthly-based basis point returns.

Table 4.4: Summary Statistics of the DHGL for the OTM Put Short Strategy

Period
No. of

Obs.

％ of

Pos.

Sample

Mean

(1) Auto Corr. (2) Partial Auto Corr. (3) AR3 Int.

Lag1 Lag2 Lag3 Lag1 Lag2 Lag3 α pV al

Panel 1 : DHGLs (RP+PER)

Total 1,717 65.8 ％ 5.8 0.904 0.825 0.757 0.904 0.042 0.024 0.5 0.101

(A) 826 63.3 ％ 4.2 0.862 0.776 0.707 0.862 0.127 0.053 0.5 0.112

(B) 891 68.0 ％ 7.3 0.911 0.833 0.765 0.911 0.019 0.019 0.7 0.179

Panel 2 : The effects of volatility risk premium (RP)

Total 1,717 75.3 ％ 3.6 0.984 0.976 0.969 0.984 0.235 0.084 0.0 0.052

(A) 826 55.0 ％ 0.3 0.915 0.874 0.847 0.915 0.221 0.143 0.0 0.254

(B) 891 94.2 ％ 6.6 0.976 0.964 0.952 0.976 0.219 0.070 0.1 0.020

Panel 3 : The effects of parameter estimation risk (PER)

Total 1,717 63.2 ％ 2.2 0.900 0.818 0.746 0.900 0.039 0.022 0.0 0.294

(A) 826 63.2 ％ 3.9 0.863 0.778 0.709 0.863 0.126 0.054 0.0 0.128

(B) 891 63.2 ％ 0.7 0.906 0.824 0.752 0.906 0.016 0.017 0.1 0.447

The sample period of these simulation results is from October 31, 2003 to June 30, 2010. Period (A) in this table is

the first term from October 31, 2003 to December 29, 2006 and Period (B) is the following term from January 2, 2007 to

June 30, 2010. The second column of this table lists the number of observations in each time series. In the third column,

we report the percentage of the DHGL which has a positive value. The unconditional means of the DHGL are listed in the

fourth column. The sample means and intercepts (α) shown in this table are monthly-based basis point returns.

In Table 4.3, we find that the p-value for the intercept of the AR3-process for the total

expected DHGL is 0.222 during the entire period, so that the statistical significance of

the total expected DHGL does not seem to be high. However, if we focus on Period (B),

the p-value on the intercept of the AR3-process decreases to 0.072 and it is significantly

different from zero at the 10％ level. This result seems to be induced by the statistical

significance of the volatility risk premium during Period (B) (see the middle panel in
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Table 4.3). In contrast, the statistical significance of the effect of parameter estimation

risk on the total expected DHGL does not seem to be high during either period, while

parameter estimation risk might affect the level of the total expected DHGL.

Table 4.4 shows the same result as Table 4.3 for the delta-hedged OTM delta-25 put

short strategy. In this case, the effect of parameter estimation risk on the total expected

DHGL seems to be high relative to the case of the delta-hedged ATM straddle short

strategy (see the bottom panel in Table 4.4). This result suggests that the effect of

parameter estimation risk on the total expected DHGL for the OTM delta-25 put short

strategy is more significant when compared with the ATM straddle short strategy.

Finally, to investigate the magnitude of the effect of parameter estimation risk on the

total expected DHGL in the pre- and post-financial crisis periods, we report a subperiod

contribution analysis for the total expected DHGL in Table 4.5 and Table 4.6 using

the same simulation results exhibited in Table 4.2. We divide the overall period into

two periods of pre- and post-Lehman shock: the former period is from October 2003 to

September 2008 and the latter period is from October 2008 to June 2010. In Table 4.5,

”VRP Para.” denotes the volatility risk premium parameter in each period. For each of

the ATM straddle and the OTM delta-25 put short strategies, ”Pre.” shows the option

premium for each corresponding strategy, and ”RP” and ”PER” show the contributions

of the volatility risk premium and parameter estimation risk on the total expected DHGL,

respectively. ”Tot.” shows the total expected DHGL. Each value introduced above is

shown in terms of the average (”Ave.”) in each period and also in terms of the relative

percentage to the corresponding option premium (”Rel.”). The average value of the

option premium and each contribution to the total expected DHGL shown in these

tables are monthly-based basis point returns.

As mentioned above, we obtain our daily delta-hedged option returns by selling a

corresponding option and maintaining a delta-neutral portfolio using the spot contract

of the USD-JPY exchange rate until the option matures. In calculating the delta-hedged

return of the one-month option sold on a given trading day, say day 0, we use the

information for days 1 to 22, assuming that there are 22 trading days before the option

maturity date. Then, for the delta-hedged return of the one-month option sold on day

1, we use the information of day 2, day 3, up to day 23. Consequently, the delta-hedged

returns of day 0 and day 1 options use information from an overlapping period between

days 2 and 22. To address the concern that our evidence on a contribution analysis

for delta hedged option returns is driven by the common information in the overlapping

periods, we also construct a time-series of non-overlapping delta hedged option returns

for each option strategy. Specifically, for each option strategy, we construct a monthly
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series of delta-hedged returns on the one-month options sold at the first trading day of

each month in our sample period. Because the delta-hedged returns of the beginning-of-

month option only depend on the information of the trading days in the same month,

they are non-overlapping. Table 4.6 reports the result for the non-overlapping returns of

each of the two delta-hedged option strategies.

Table 4.5: Relative Contribution Comparison of the Expected DHGL be-

tween Pre- and Post Lehman Crisis : Based on a time-series of overlapping

results

VRP

Para.

(A) ATM Straddle (B) OTM delta-25 Put

(A1) Pre. (A2) RP (A3) PER (A4) Tot. (B1) Pre. (B2) RP (B3) PER (B4) Tot.

Panel 1 : Overall Period [From October 2003 to June 2010]

(1) Ave. -1.37 256.6 9.7 -3.8 5.9 51.0 3.6 2.2 5.8

(2) Rel. - 100.0 ％ 3.8 ％ -1.5 ％ 2.3 ％ 100.0 ％ 7.0 ％ 4.4 ％ 11.4 ％
Panel 2 : Pre-Lehman Crisis [From October 2003 to September 2008]

(1) Ave. -0.89 217.9 5.1 -13.2 -8.1 42.8 1.9 -1.0 0.9

(2) Rel. - 100.0 ％ 2.4 ％ -6.1 ％ -3.7 ％ 100.0 ％ 4.4 ％ -2.3 ％ 2.0 ％
Panel 3 : Post-Lehman Crisis [From October 2008 to June 2010]

(1) Ave. -2.80 370.9 23.1 24.2 47.3 75.3 8.7 11.8 20.5

(2) Rel. - 100.0 ％ 6.2 ％ 6.5 ％ 12.7 ％ 100.0 ％ 11.5 ％ 15.6 ％ 27.2 ％

Starting on our simulation at the date of October 31, 2003, we compute the DHGL of each strategy at the end date

after one month, and repeat the same computations on the following day after October 31, 2003. The final simulation starts

at May 31, 2010 and ends at June 30, 2010. We finally collect the DHGL results of 1,717 samples through those iterated

simulations. We employ the Garman-Kohlhagen model, as an extension of the Black-Scholes model to currency options,

to compute the delta of the short option positions for tractability. In this table, ”VRP Para.” denotes the volatility risk

premium parameter in each period. ”Pre.” shows the option premium for each corresponding strategy. ”RP” and ”PER”

show the contribution of the volatility risk premium and parameter estimation risk to the total expected DHGL, respectively.

”Tot.” shows the total expected DHGL. Each value introduced above is shown in terms of the average (”Ave.”) in each period

and also shown in terms of the relative percentage to corresponding option premium (”Rel.”). The average value of option

premium and each contribution to the total expected DHGL shown in this table are monthly-based basis point returns.

We find several important pieces of evidence on the delta-hedged option returns in

Table 4.5 and 4.6. First, in the case of the ATM straddle short strategy, the effect of

parameter estimation risk on the total expected DHGL does not seem to be high in the

overall period from October 2003 to June 2010 because the relative value of the effect

of parameter estimation risk to the corresponding option premium is less than 2％ in

terms of the absolute value. It is clear that the total expected DHGL in that period is

well explained by the effect of the volatility risk premium. However, we should notice

that the effect of parameter estimation risk becomes more significant in the post-Lehman

shock period, that is to say, from October 2008 to June 2010, because the relative value

of that effect to the corresponding option premium is more than 6％ and the relative
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contribution of that effect to the total expected DHGL is much larger than that of the

effect of the volatility risk premium.

Second, in the case of the OTM delta-25 put short strategy, the effect of parameter

estimation risk on the total expected DHGL is more significant in the overall period

from October 2003 to June 2010, which differs from the result for the case of the ATM

straddle short strategy. In Table 4.6, we find that the effect of parameter estimation risk

is much larger than the effect of the volatility risk premium in the overall period, and

in the post-Lehman shock period, that is, from October 2008 to June 2010, the effect of

parameter uncertainty on the total expected DHGL in terms of the relative value to the

corresponding option premium becomes 13％ or more.

Table 4.6: Relative Contribution Comparison of the Expected DHGL be-

tween Pre- and Post Lehman Crisis : Based on a time-series of non-

overlapping results

VRP

Para.

(A) ATM Straddle (B) OTM delta-25 Put

(A1) Pre. (A2) RP (A3) PER (A4) Tot. (B1) Pre. (B2) RP (B3) PER (B4) Tot.

Panel 1 : Overall Period [From October 2003 to June 2010]

(1) Ave. -1.41 258.7 9.6 0.0 9.6 51.8 3.6 3.7 7.3

(2) Rel. - 100.0 ％ 3.7 ％ 0.0 ％ 3.7 ％ 100.0 ％ 7.0 ％ 7.2 ％ 14.1 ％
Panel 2 : Pre-Lehman Crisis [From October 2003 to September 2008]

(1) Ave. -0.92 218.3 5.1 -12.1 -7.0 43.2 1.9 1.5 3.4

(2) Rel. - 100.0 ％ 2.3 ％ -5.6 ％ -3.2 ％ 100.0 ％ 4.3 ％ 3.5 ％ 7.8 ％
Panel 3 : Post-Lehman Crisis [From October 2008 to June 2010]

(1) Ave. -2.76 372.3 22.3 34.1 56.4 75.8 8.5 9.9 18.4

(2) Rel. - 100.0 ％ 6.0 ％ 9.2 ％ 15.2 ％ 100.0 ％ 11.2 ％ 13.0 ％ 24.3 ％

Starting on our simulation at the date of October 31, 2003, we compute the DHGL of each strategy at the end date

after one month, and repeat the same computations on the following day after October 31, 2003. The final simulation starts

at May 31, 2010 and ends at June 30, 2010. We finally collect the DHGL results of 1,717 samples through those iterated

simulations. We employ the Garman-Kohlhagen model, as an extension of the Black-Scholes model to currency options,

to compute the delta of the short option positions for tractability. In this table, ”VRP Para.” denotes the volatility risk

premium parameter in each period. ”Pre.” shows the option premium for each corresponding strategy. ”RP” and ”PER”

show the contribution of the volatility risk premium and parameter estimation risk to the total expected DHGL, respectively.

”Tot.” shows the total expected DHGL. Each value introduced above is shown in terms of the average (”Ave.”) in each period

and also shown in terms of the relative percentage to corresponding option premium (”Rel.”). The average value of option

premium and each contribution to the total expected DHGL shown in this table are monthly-based basis point returns.

From these empirical results, we can recognize that parameter estimation risk makes

an significant impact on option premiums, especially in the post-financial crisis period,

as well as the volatility risk premium, and the effect of parameter estimation risk seems

to cause much higher option premiums. Needless to say, we find that the sign and the

level of the expected delta-hedged option returns do not generally explain the existence

106



4.5. CONCLUDING REMARKS

of volatility risk premiums. Moreover, it needs to be emphasized that there are ad-

ditional important factors such as parameter estimation risk that make an impact on

delta-hedged option returns, rendering standard hedging-based tests on volatility risk

premiums explored by previous studies unreliable.

4.5 Concluding Remarks

In this chapter, we provide a novel representation of delta-hedged option returns in a

stochastic volatility environment. The representation of delta-hedged option returns

provided in this chapter consists of two terms: volatility risk premium and parameter

estimation risk. In an empirical analysis, we examine delta-hedged option returns based

on the result of a historical simulation with the USD-JPY currency option market data

from October 2003 to June 2010. We find that the delta-hedged option returns for OTM

put options are strongly affected by parameter estimation risk as well as the volatility

risk premium, especially in the post-Lehman shock period.

This study is the first to provide empirical evidence on the effect of parameter estima-

tion risk on dellta-hedged option returns. However, the analysis examined in this chapter

constitutes a first step toward a more detailed investigation of the empirical character-

istics of delta-hedged option returns. A next step might be a detailed analysis on the

impact of jump risk on delta-hedged option returns. A further direction of this study

will be to provide a contribution analysis of delta-hedged option returns with the effect

of parameter estimation risk, as well as the effects of volatility and jump risk premiums.

Appendix 4.A Proof of Proposition 13

The following equation can be derived by applying Ito’s lemma to the market price

CM
t = G(t, St, σt),

CM
t+τ = CM

t +

∫ t+τ

t

∂G

∂S
(u, Su, σu)dSu

+

∫ t+τ

t

∂G

∂σ
(u, Su, σu)dσu +

∫ t+τ

t

DG(u, Su, σu)du,

(4.21)

where

DG(t, St, σt) =
∂G

∂t
(t, St, σt) +

1

2
σ2

t S
2
t

∂2G

∂S2
(t, St, σt)

+
1

2
η̃2

t

∂2G

∂σ2
(t, St, σt) + ρ̃tη̃tσtSt

∂2G

∂S∂σ
(t, St, σt),
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and CM
t = G(t, St, σt) is also solves the equation (4.7). Under the two equations of (4.7)

and (4.21), we can derive the following equation with the market price CM
t ,

CM
t+τ = CM

t +

∫ t+τ

t

∂CM
u

∂Su

dSu +

∫ t+τ

t

(
rdC

M
u − (rd − rf )Su

∂CM
u

∂Su

)
du

+

∫ t+τ

t

λu
∂CM

u

∂σu

du +

∫ t+τ

t

η̃u
∂CM

u

∂σu

dW 2
u .

(4.22)

If CM
t [λu] denotes the time-t call option price which is consistent with the underlying

exchange rate process (4.2) and the equivalent martingale measure Q[λu], the following

equation can be derived because of the fact that CM
T [λu] = CM

T [0] at the maturity date.

CM
t [λu] +

∫ t+τ

t

∂CM
u [λu]

∂Su

dSu +

∫ t+τ

t

(
rdC

M
u [λu] − (rd − rf )Su

∂CM
u [λu]

∂Su

)
du

+

∫ t+τ

t

λu
∂CM

u [λu]

∂σu

du +

∫ t+τ

t

η̃u
∂CM

u [λu]

∂σu

dW 2
u

= CM
t [0] +

∫ t+τ

t

∂CM
u [0]

∂Su

dSu +

∫ t+τ

t

(
rdC

M
u [0] − (rd − rf )Su

∂CM
u [0]

∂Su

)
du

+

∫ t+τ

t

η̃u
∂CM

u [0]

∂σu

dW 2
u .

Rearranging the above equation and taking expectation to the rearranged equation, we

can obtain the following expression.

CM
t [0] − CM

t [λu] =

∫ T

t

EP
[
λu

∂CM
u [λu]

∂σu

]
du + rd

∫ T

t

EP
[
CM

u [λu] − CM
u [0]

]
du. (4.23)

First, let us assume λu ≥ 0. We have the following inequations on the option pre-

mium,

CM
u [λu] − CM

u [0] ≤ 0 (∀u ∈ [t, T ])

and

∂

∂u
EP

[
CM

u [λu] − CM
u [0]

]
= EP

[ ∂

∂u

(
CM

u [λu] − CM
u [0]

)]
≥ 0.

Thus,

CM
t [0] − CM

t [λu] =

∫ T

t

EP
[
λu

∂CM
u [λu]

∂σu

]
du + rd

∫ T

t

EP
[
CM

u [λu] − CM
u [0]

]
du

≥
∫ T

t

EP
[
λu

∂CM
u [λu]

∂σu

]
du + rd(T − t)

(
CM

t [λu] − CM
t [0]

)
,

∴
(
1 + rd(T − t)

)(
CM

t [0] − CM
t [λu]

)
≥

∫ T

t

EP
[
λu

∂CM
u [λu]

∂σu

]
du.
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We also have an inequation of EP
[
CM

u [λu]−CM
u [0]

]
≤ 0, so the following inequation can

be obtained,

CM
t [0] − CM

t [λu] ≤
∫ T

t

EP
[
λu

∂CM
u [λu]

∂σu

]
du.

Thus we can derive the following inequation with two inequations derived above,

CM
t [0] − CM

t [λu] ≤
∫ T

t

EP
[
λu

∂CM
u [λu]

∂σu

]
du ≤

(
1 + rd(T − t)

)(
CM

t [0] − CM
t [λu]

)
.

In the case of λu < 0, we have the following inequations,

CM
u [λu] − CM

u [0] ≥ 0 (∀u ∈ [t, T ])

and

∂

∂u
EP

[
CM

u [λu] − CM
u [0]

]
= EP

[ ∂

∂u

(
CM

u [λu] − CM
u [0]

)]
≤ 0.

Thus we can derive the inequation asserted in this Proposition with the similar approach

to the discussion explored above. ¤

Appendix 4.B Time Series Data

Table 4.7: Summary Statistics for Implied Volatilities

Statistics D5Put D10Put D15Put D25Put D35Put ATM D35Call D25Call D15Call D10Call D5Call

Mean 16.2 15.2 14.6 13.4 12.7 12.0 11.5 11.1 11.0 11.2 11.3

St. Dev. 7.7 6.7 6.4 5.5 5.1 4.6 4.3 3.9 3.9 3.9 4.0

Min 7.4 6.4 6.9 6.5 6.0 5.8 5.5 4.6 4.8 3.9 5.7

1’st q. 10.5 10.2 9.8 9.3 9.1 8.8 8.5 8.4 8.3 8.5 8.4

Median 15.0 14.1 13.5 12.4 11.8 11.3 10.9 10.7 10.5 10.6 10.7

3’rd q. 19.0 17.7 16.9 15.6 14.7 14.0 13.5 13.3 13.3 13.3 13.5

Max 59.7 54.0 53.7 48.3 46.0 43.0 40.4 38.1 37.0 36.1 35.9

Skew 1.9 1.8 1.9 1.8 1.9 1.8 1.7 1.7 1.5 1.5 1.4

Kurt 5.1 4.5 5.4 5.7 6.2 6.3 6.2 6.4 5.3 4.8 4.3

The implied volatility data is from the European type put and call OTC currency options with maturities of one

month and strike prices of 5 delta, 10 delta, 15 delta, 25 delta, 35 delta and ATM. The statistics listed in this table are

estimated in the period from October 2003 to June 2010.
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Fig. 4.3: USD-JPY WM/Reuter Closing Spot Rate

This figure shows the time-series data in the period from October 31, 2003 to June 30, 2010.
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Fig. 4.4: USD-JPY 1M ATM Implied Volatility（Mid Price）
This figure shows the time-series data in the period from October 31, 2003 to June 30, 2010.

110



4.C. ESTIMATION RESULTS OF THE HESTON MODEL

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

1.20%

1.40%

1.60%

1.80%

2.00%

31
-O
ct
-0
3

29
-F
eb
-0
4

30
-J
un
-0
4

31
-O
ct
-0
4

28
-F
eb
-0
5

30
-J
un
-0
5

31
-O
ct
-0
5

28
-F
eb
-0
6

30
-J
un
-0
6

31
-O
ct
-0
6

28
-F
eb
-0
7

30
-J
un
-0
7

31
-O
ct
-0
7

29
-F
eb
-0
8

30
-J
un
-0
8

31
-O
ct
-0
8

28
-F
eb
-0
9

30
-J
un
-0
9

31
-O
ct
-0
9

28
-F
eb
-1
0

30
-J
un
-1
0

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

1.20%

1.40%

1.60%

1.80%

2.00%

Fig. 4.5: USD-JPY 1M ATM Mid-Bid Spread

This figure shows the time-series data in the period from October 31, 2003 to June 30, 2010.

Appendix 4.C Estimation Results of the Heston Model
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Fig. 4.6: The time-series of the estimated parameter：k̃

This figure shows estimation results of κ̃ at each time point in the period from October 31, 2003

to June 30, 2010. These parameters are estimated with the maximum liklihood method proposed by

Aı̈t-Sahalia and Kimmel[2007] and we update the parameters daily based on historical 1,750 days

daily data with a rolling estimation procedure.
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4.C. ESTIMATION RESULTS OF THE HESTON MODEL
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Fig. 4.7: The time-series of the estimated parameter：ṽ

This figure shows estimation results of ṽ at each time point in the period from October 31, 2003

to June 30, 2010. These parameters are estimated with the maximum liklihood method proposed by

Aı̈t-Sahalia and Kimmel[2007] and we update the parameters daily based on historical 1,750 days

daily data with a rolling estimation procedure.
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Fig. 4.8: The time-series of the estimated parameter：ρ̃

This figure shows estimation results of ρ̃ at each time point in the period from October 31, 2003

to June 30, 2010. These parameters are estimated with the maximum liklihood method proposed by

Aı̈t-Sahalia and Kimmel[2007] and we update the parameters daily based on historical 1,750 days

daily data with a rolling estimation procedure.
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Chapter 5

Concluding Remarks

In this study, we investigate and identify risk premiums in higher order moments of

financial asset returns under various economic settings.

In chapter 2, we investigate the skewness risk premium in the financial market under

a general equilibrium setting. Extending the long-run risks (LRR) model proposed by

Bansal and Yaron[2004] by introducing a stochastic jump intensity for jumps in the LRR

factor and the variance of consumption growth rate, we provide an explicit representa-

tion for the skewness risk premium, as well as the volatility risk premium, in equilibrium.

On the basis of the representation for the skewness risk premium, we propose a possible

reason for the empirical fact of time-varying and negative risk-neutral skewness. More-

over, we also provide an equity risk premium representation of a linear factor pricing

model with the variance and skewness risk premiums. The empirical results prove that

the skewness risk premium, as well as the variance risk premium, has superior predictive

power for future aggregate stock market index returns. Compared with the variance risk

premium, the results show that the skewness risk premium plays an independent and

essential role for predicting the market index returns.

In chapter 3, we study financial option prices in terms of demand pressure effects

based on the preferences of the representative market-maker and the representative end-

user. Assuming an incomplete market governed by a stochastic volatility factor in un-

derlying asset price processes, we demonstrate that the demand pressure for an option

contract directly impacts traded option prices due to the covariance of the unhedgeable

parts of a demanded option and the other traded options. Moreover, considering each

of optimization problems for the representative market-maker and the representative

end-user independently, we derive the equilibrium demand pressures for traded option

contracts and provide an explicit representation for the pricing kernel in equilibrium as
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a function of those of the equilibrium demand pressures. Finally, we provide some impli-

cations in the existence of the variance risk premium and the shape of the implied risk

aversion function with the pricing kernel derived above.

Moreover, in chapter 4, we provide a novel representation of delta-hedged option re-

turns in a stochastic volatility environment. The representation of delta-hedged option

returns provided in this chapter consists of two terms: volatility risk premium and pa-

rameter estimation risk. In an empirical analysis, we examine the delta-hedged option

returns based on a historical simulation of a currency option market from October 2003

to June 2010. We find that the delta-hedged option returns for OTM put options are

strongly affected by parameter estimation risk as well as the volatility risk premium,

especially in the post-Lehman shock period.

In conclusion, it is found from these results that the uncertainty of the higher order

moments of financial asset returns, such as the variance and skewness, are consistently

priced in equilibrium and we can provide the way of a deeper understanding on the

existence of the risk premiums in the higher order moments examined by recent academic

studies through both theoretical and empirical approaches.

Owing to their outstanding empirical properties, the risk premiums in higher order

moments of financial asset returns have been focused in many fields in the financial

economics, such as the estimation of the preference of the representative agent, the esti-

mation of the market sentiment, and the application to investment strategies in financial

markets. In particular, Bollerslev, Gibson, and Zhou[2011] propose a method for es-

timating the representative investor’s risk aversion with an intimate link between the

stochastic volatility risk premium and the coefficient of risk aversion for the represen-

tative investor within the standard intertemporal asset pricing framework. Han[2008]

examines whether investor sentiment about the stock market affects prices of the S＆P

500 options. The author suggests that one channel for investor sentiment to affect option

prices is through the demand pressure effect, which is investigated in Chapter 3 in this

study in terms of a relationship with the variance risk premium. Kostakis, Panigirt-

zoglou, and Skiadopoulos[2011] address the empirical implementation of the static asset

allocation problem by developing a forward-looking approach that uses information from

market option prices. They find that the use of risk-adjusted implied distributions times

the market and makes the investor better off compared with the case where she uses

historical returns’ distributions to calculate her optimal strategy. The results provided

in their study can be also related directly to evidence of the information content of the

risk premiums in higher order moments. For a deeper understanding on risk premiums

in higher order moments of financial asset returns, further insight into these aspects, in
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particular, the relationship between the results in this study and these findings in the

previous studies, is left for future work.
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