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Abstract

This paper provides a sufficient condition for the existence and uniqueness of a

Bayesian Nash equilibrium by regarding it as a solution of a variational inequality.

The payoff gradient of a game is defined as a vector whose component is a partial

derivative of each player’s payoff function with respect to the player’s own action. If

the Jacobian matrix of the payoff gradient is negative definite for each state, then a

Bayesian Nash equilibrium is unique. This result unifies and generalizes the unique-

ness of an equilibrium in a complete information game by Rosen (Econometrica 33:

520, 1965) and that in a team by Radner (Ann. Math. Stat. 33: 857, 1962). In a

Bayesian game played on a network, the Jacobian matrix of the payoff gradient coin-

cides with the weighted adjacency matrix of the underlying graph.
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1 Introduction

The seminal paper by Radner (1962) is one of the earliest studies on the uniqueness of

an equilibrium in Bayesian games. Radner (1962) studies a team, an identical interest

Bayesian game with a common payoff function,1 and shows that if a common payoff func-

tion is strictly concave in an action profile, then a Bayesian Nash equilibrium is a unique

maximizer of the payoff function. As a special case, Radner (1962) considers a linear-

quadratic Gaussian (LQG) team, whose payoff functions are quadratic and private signals

are normally distributed, and obtains the unique equilibrium in a closed form, which is

linear in private signals.

Radner’s results have been widely used to study Bayesian potential games (Monderer

and Shapley, 1996; van Heumen et al., 1996). A Bayesian potential game has the same

best-response correspondence as that of a team,2 and the common payoff function of the

team is referred to as a potential function. Because of the best-response correspondence,

if a potential function is strictly concave, then a Bayesian Nash equilibrium is a unique

maximizer of the potential function (Ui, 2009). Basar and Ho (1974) was the first to

use Radner’s results to study LQG games that are not teams, followed by many studies on

information sharing in oligopoly (Clark, 1983; Vives, 1984; Gal-Or, 1985) and social value

of information (Morris and Shin, 2002; Angeletos and Pavan, 2007; Ui and Yoshizawa,

2015), among others. LQG games in these studies are Bayesian potential games.

Nonetheless, we cannot rely totally on Radner’s results because LQG games do not

necessarily have potential functions. A payoff function in an LQG game consists of bi-

lateral interaction terms determined by two players’ actions. Such a game has a potential

function if and only if every pair of players has their interaction term in common, i.e., bilat-

eral interaction is symmetric (Ui, 2000).3 This implies that we need a new theory to study

an LQG game with asymmetric interaction. For example, Calvó-Armengol et al. (2015)

consider such an LQG game to analyze communication in network games and show the

existence and uniqueness of a linear Bayesian Nash equilibrium. However, it has been an

open question whether the linear equilibrium is a unique equilibrium.

1The theory of teams precedes Harsanyi (1967–1968).
2Ui (2009) studies a game satisfying this condition and calls it a best-response Bayesian potential game.
3A game with bilateral symmetric interaction is referred to as a BSI game.
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This paper studies a broader class of Bayesian games, including LQG games with

asymmetric interaction, and provides sufficient conditions for the existence and uniqueness

of a Bayesian Nash equilibrium. To this end, we formulate a Bayesian Nash equilibrium

as a solution of a variational inequality in an infinite-dimensional space (Kinderlehrer and

Stampacchia, 1980), which is one representation of the first-order condition for an equilib-

rium. This representation not only gives us an elementary proof for the uniqueness but also

allows us to use the existence theorem for solutions of variational inequalities (Browder,

1965; Hartman and Stampacchia, 1966). It is well known that a Nash equilibrium of a

complete information game is a solution of a variational inequality in a finite-dimensional

space (Lions and Stampacchia, 1967; Bensoussan, 1974). Thus, it is hardly surprising

that a Bayesian Nash equilibrium is a solution of a variational inequality in an infinite-

dimensional space. To the best of the author’s knowledge, however, the resulting impli-

cations are not necessarily well-documented. This paper fills this gap in the literature and

shed new light on the variational inequality approach to game theory.

In the main results, we construct a vector whose component is a partial derivative of

each player’s payoff function with respect to the player’s own action. This vector is referred

to as the payoff gradient of the game. The payoff gradient is said to be strictly monotone

if its Jacobian matrix is negative definite for each state.4 It is said to be strongly monotone

if it is strictly monotone and the maximum eigenvalue of the Jacobian matrix has a strictly

negative supremum over the actions and the states. We show that if the payoff gradient is

strictly monotone, then there exists at most one equilibrium, and if the payoff gradient is

strongly monotone or if it is strictly monotone and the payoff functions are quadratic, then

there exists a unique equilibrium. In particular, an LQG game with asymmetric interaction

has a unique equilibrium if the payoff gradient is strictly monotone.

Our condition is an extension of the sufficient condition for the uniqueness of a Nash

equilibrium by Rosen (1965), who shows that a Nash equilibrium is unique if the payoff

gradient of a complete information game is strictly monotone. As shown by Ui (2008),

the unique Nash equilibrium is also a unique correlated equilibrium. We can show the

uniqueness of a correlated equilibrium as a special case of our results because a Bayesian

4To be more precise, negative definiteness of the Jacobian matrix is a sufficient condition for strict mono-

tonicity of the payoff gradient.
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game is reduced to a complete information game with a correlation device when payoff

functions are independent of the state.

Our results generalize Radner’s results and the applications to Bayesian potential games

in the following sense. A Bayesian game is a Bayesian potential game if and only if the

Jacobian matrix of the payoff gradient is symmetric (Monderer and Shapley, 1996), in

which case the Jacobian matrix coincides with the Hessian matrix of a potential function.

Thus, a potential function is strictly concave if and only if the Jacobian matrix is negative

definite; that is, the payoff gradient is strictly monotone. Using this observation, we can

restate Radner’s results as follows: a Bayesian Nash equilibrium is unique if the Jacobian

matrix is both symmetric and negative definite. We find that the symmetry condition is not

necessary.

As an application, we consider games played on networks (Ballester et al., 2006;

Bramoullé et al., 2014), or network games for short.5 A Bayesian game with quadratic

payoff functions is mathematically equivalent to a Bayesian network game, where the Ja-

cobian matrix of the payoff gradient equals the negative of a weighted adjacency matrix

of the underlying graph. Thus, a Bayesian network game has a unique equilibrium if the

weighted adjacency matrix is positive definite. This result gives a sufficient condition for

the linear equilibrium in Calvó-Armengol et al. (2015) to be a unique equilibrium. More-

over, we can also use this result to study Bayesian network games with random adjacency

matrices, whereas most previous studies on Bayesian network games assume a constant

adjacency matrix with a special structure (Blume et al., 2015; de Martì and Zenou, 2015;

Calvó-Armengol et al., 2015).

The organization of the paper is as follows. Preliminary definitions and results are

summarized in Section 2. Section 3 discusses the concept of strictly monotone payoff

gradients. Section 4 reports the main results. Section 5 is devoted to an application to

Bayesian games played on networks.

5See Jackson and Zenou (2015) for a survey.
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2 Preliminaries

We consider a Bayesian game with a set of players N = {1, . . . ,n}. Player i ∈ N has a set

of actions Xi ⊆ R, which is a closed interval. We write X =
∏

i∈N Xi and X−i =
∏

j!i X j .

Player i’s payoff function is a measurable function ui : X × Ω → R, where (Ω,F ,P) is a

probability space. Player i’s information is given by a measurable mapping ηi : Ω → Yi,

where (Yi,Yi) is a measurable space. Player i’s strategy is a measurable mapping σi :

Yi → Xi with E[σi (ηi)2] < ∞. We regard two strategies σ1
i ,σ

2
i as the same strategy if

σ1
i (ηi (ω)) = σ2

i (ηi (ω)) for a.e. ω ∈ Ω. Let Σi denote player i’s set of strategies. We write

Σ =
∏

i∈N Σi and Σ−i =
∏

j!i Σ j . We assume that E[ui (σ,ω)] exists for all σ ∈ Σ.

We fix N , X , and (Ω,F ,P) throughout this paper and simply denote a Bayesian game

by (u,η), where u = (ui)i∈N and η = (ηi)i∈N . We use the following definitions and

notations.

• A Bayesian game (u,η) is a team if ui = uj for each i, j ∈ N (Marshak, 1955;

Radner, 1962; Marshak and Radner, 1972).

• A Bayesian game (u,η) is a Bayesian potential game if there exists a potential func-

tion v : X × Ω → R such that ui ((xi, x−i),ω) − ui ((x′i, x−i),ω) = v((xi, x−i),ω) −
v((x′i, x−i),ω) for each xi, x′i ∈ Xi, x−i ∈ X−i, ω ∈ Ω, and i ∈ N (Monderer and

Shapley, 1996; van Heumen et al., 1996). The best-response correspondence of a

Bayesian potential game coincides with that of a team. A Bayesian game is called a

best-response Bayesian potential game if its best-response correspondence coincides

with that of a team (Ui, 2009).

• A Bayesian game (u,η) is smooth if ui ((·, x−i),ω) : Xi → R is continuously dif-

ferentiable for each x−i ∈ X−i, ω ∈ Ω, and i ∈ N and E[(∂ui (σ,ω)/∂xi)2] < ∞
for each σ ∈ Σ and i ∈ N . We write ∇u(x,ω) ≡ (∂ui (x,ω)/∂xi)i∈N and call it the

payoff gradient of u. A smooth Bayesian game (u,η) is a Bayesian potential game

with a potential function v if and only if the payoff gradient of u coincides with the

gradient of v.

• A Bayesian game (u,η) is concave if ui ((·, x−i),ω) : Xi → R is concave for each

x−i ∈ X−i, ω ∈ Ω, and i ∈ N .
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A strategy profile σ ∈ Σ is a Bayesian Nash equilibrium if, for a.e. ω ∈ Ω,

E
[
ui

(
σ(η),ω

) | ηi
] ≥ E

[
ui

(
(xi,σ−i (η−i)),ω

) | ηi
]

(1)

for each xi ∈ Xi and i ∈ N , where σ(η) = (σi (ηi))i∈N , σ−i (η−i) = (σ j (η j )) j!i, and

E
[ · | ηi

]
is a conditional expectation operator given ηi (ω). We use the following repre-

sentation of the first-order condition.

Lemma 1. Let (u,η) be a smooth concave Bayesian game. Then, σ ∈ Σ is a Bayesian

Nash equilibrium if and only if, for a.e. ω ∈ Ω,

E
[ ∂
∂xi

ui (σ(η),ω)(xi − σi (ηi)) """ ηi
]
≤ 0 for each xi ∈ Xi and i ∈ N . (2)

Proof. See Appendix A. !

If σ ∈ Σ is a Bayesian Nash equilibrium, then, for a.e. ω ∈ Ω,

E
[ ∂
∂xi

ui (σ(η),ω)(σ′i (ηi) − σi (ηi)) """ ηi
]
≤ 0 for each σ′i ∈ Σi and i ∈ N

by Lemma 1. By taking the expectation with respect to ηi, we have

E
[ ∂
∂xi

ui (σ(η),ω)(σ′i (ηi) − σi (ηi))
]
≤ 0 for each σ′i ∈ Σi and i ∈ N .

By adding up the above over i ∈ N , we obtain

E
[
∇u(σ(η),ω)-(σ′(η) − σ(η))

]
≤ 0 for each σ′ ∈ Σ, (3)

where we regard ∇u, σ(η), and σ′(η) as column vectors and x- denotes the transpose of

a vector or a matrix x. The next lemma shows that this condition is not only sufficient but

also necessary for a Bayesian Nash equilibrium.

Lemma 2. Let (u,η) be a smooth concave Bayesian game. Then, σ ∈ Σ is a Bayesian

Nash equilibrium if and only if (3) holds.

Proof. See Appendix A. !

For example, consider a Bayesian game with quadratic payoff functions:

ui (x,ω) = −qii (ω)x2
i − 2

∑

j!i

qi j (ω)xi x j + 2θi (ω)xi + hi (x−i,ω), (4)
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where qi j : Ω → R with qii (ω) > 0, θi : Ω → R, and hi : X−i × Ω → R for i, j ∈ N . We

write Q(ω) = [qi j (ω)]n×n and θ = (θ1, . . . ,θ)-. Then, (3) is reduced to

E
[
(Q(ω)σ(η) − θ)-(σ′(η) − σ(η))

]
≥ 0 for each σ′ ∈ Σ. (5)

Now suppose that Q(ω) is positive definite for each ω ∈ Ω.6 Then, (5) implies the unique-

ness of an equilibrium. In fact, if σ1,σ2 ∈ Σ are equilibria,

E
[
(Q(ω)σ1(η) − θ)-(σ2(η) − σ1(η))

]
≥ 0,

E
[
(Q(ω)σ2(η) − θ)-(σ1(η) − σ2(η))

]
≥ 0,

which implies that

E
[
(σ2(η) − σ1(η))-Q(ω)(σ2(η) − σ1(η))

]
≤ 0.

Because Q(ω) is positive definite for each ω ∈ Ω, it follows that σ1(η) = σ2(η) almost

everywhere.

In the subsequent sections, we consider smooth concave Bayesian games and discuss

not only the uniqueness but also the existence of Bayesian Nash equilibria on the basis of

(3), which is shown to be a variational inequality.

3 Strict monotonicity

Let S ⊆ Rn be a convex set. A mapping F : S → Rn is strictly monotone if (F (x) −
F (y))-(x − y) > 0 for each x, y ∈ S with x ! y. It is strongly monotone if there exists

c > 0 such that (F (x) − F (y))-(x − y) > c(x − y)-(x − y) for each x, y ∈ S with x ! y.

The following sufficient conditions are well-known.7

Lemma 3. Suppose that a mapping F : S → Rn is continuously differentiable. If the

Jacobian matrix JF (x) is positive definite for each x ∈ S, then F is strictly monotone.

There exists c > 0 such that x-JF (x)x > cx-x for each x ∈ S if and only if F is strongly

monotone.

6We say that a square matrix M is positive definite if M + M- is positive definite. Note that x-M x =

x-(M + M-)x/2.
7See Facchinei and Pang (2003), for example.
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With some abuse of language, we say that the payoff gradient is strictly monotone if

the mapping x .→ −∇u(x,ω) is strictly monotone for each ω ∈ Ω, i.e.,

(∇u(x,ω) − ∇u(x′,ω))-(x − x′) < 0 for each x, x′ ∈ X with x ! x′.

We also say that the payoff gradient is strongly monotone if the mapping x .→ −∇u(x,ω)

is strongly monotone for each ω ∈ Ω with respect to the same constant c > 0, i.e.,

(∇u(x,ω) − ∇u(x′,ω))-(x − x′) < −c(x − x′)-(x − x′) for each x, x′ ∈ X with x ! x′.

For example, consider a Bayesian game with quadratic payoff functions (4). Because

(∇u(x,ω) − ∇u(x′,ω))-(x − x′) = −2(x − x′)-Q(ω)(x − x′),

the payoff gradient is strictly monotone if and only if Q(ω) is positive definite for each

ω ∈ Ω, and it is strongly monotone if and only if the minimum eigenvalue of Q(ω) has a

strictly positive infimum over ω ∈ Ω.

For the general case, we have the following sufficient conditions by Lemma 3.

Lemma 4. Suppose that ∇u(·,ω) : X → Rn is continuously differentiable for each ω ∈ Ω.

If the Jacobian matrix

F∇u(x,ω) =

$%%%%%%%
&

∂2u1(x,ω)
∂x1∂x1

. . .
∂2u1(x,ω)
∂x1∂xn

...
. . .

...

∂2un(x,ω)
∂xn∂x1

. . .
∂2un(x,ω)
∂xn∂xn

'(((((((
)

is negative definite for each x ∈ X andω ∈ Ω, then the payoff gradient is strictly monotone.

There exists c > 0 such that x-F∇u(x,ω)x < −cx-x for each x ∈ X and ω ∈ Ω if and only

if the payoff gradient is strongly monotone.

In a complete information game (i.e. u is independent ω), strict monotonicity implies

not only the uniqueness of a Nash equilibrium (Rosen, 1965) but also the uniqueness of

a correlated equilibrium (Ui, 2008). In the next section, we show that strict monotonicity

implies the uniqueness of a Bayesian Nash equilibrium and strong monotonicity implies

the existence as well.

Before closing this section, we discuss two basic implications of strict monotonicity.

If F∇u(x,ω) is negative definite and thus the payoff gradient is strictly monotone, (u,η) is
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concave because each diagonal element ∂2ui/∂x2
i is negative. This is true even if F∇u(x,ω)

does not exist (see Ui, 2008).

Lemma 5. Let (u,η) be a smooth Bayesian game. If the payoff gradient is strictly mono-

tone, then ui ((·, x−i),ω) : Xi → R is strictly concave for each x−i ∈ X−i , ω ∈ Ω, and

i ∈ N.

If (u,η) is a smooth Bayesian potential game with a potential function v, F∇u(x,ω)

equals the Hessian matrix of v, so strictly monotonicity of the payoff gradient is equivalent

to strict concavity of v. This is true even if F∇u(x,ω) does not exist (see Ui, 2008).

Lemma 6. Let (u,η) be a smooth Bayesian potential game with a potential function v.

The payoff gradient is strictly monotone if and only if v(·,ω) : X → R is strictly concave

for each ω ∈ Ω.

4 Results

First, we show that strict monotonicity is sufficient for the the uniqueness of a Bayesian

Nash equilibrium.

Proposition 1. Let (u,η) be a smooth Bayesian game. Suppose that the payoff gradient is

strictly monotone. Then, (u,η) has at most one Bayesian Nash equilibrium.

Proof. The proof for the uniqueness is the same as the discussion in the end of Section 2.

For completeness, we give a proof. Let σ1,σ2 ∈ Σ be Bayesian Nash equilibria. Then, σ1

and σ2 are solutions of (3) by Lemmas 2 and 5, which implies that

E
[
∇u(σ1(η),ω)-(σ2(η) − σ1(η))

]
≤ 0 and E

[
∇u(σ2(η),ω)-(σ1(η) − σ2(η))

]
≤ 0,

and thus

E
[
(∇u(σ2(η),ω) − ∇u(σ1(η),ω))-(σ2(η) − σ1(η))

]
≥ 0. (6)

Strict monotonicity implies that

(∇u(σ2(η),ω) − ∇u(σ1(η),ω))-(σ2(η) − σ1(η))


< 0 if σ(η) ! σ′(η),

= 0 if σ(η) = σ′(η).
(7)

Therefore, we must have σ(η) = σ′(η) almost everywhere. !
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Using Proposition 1, we provide sufficient conditions for the existence and uniqueness

of a Bayesian Nash equilibrium. In particular, strong monotonicity is a sufficient condition.

Proposition 2. Let (u,η) be a smooth Bayesian game. Suppose that the payoff gradient is

strictly monotone. If X is bounded, or there exists σ0 ∈ Σ such that

lim
σ∈Σ,E[σ-σ]→∞

E
[
∇u(σ(η),ω)-(σ(η) − σ0(η))

]
√

E[σ(η)-σ(η)]
= −∞, (8)

then a unique Bayesian Nash equilibrium exists. If the payoff gradient is strongly mono-

tone, then (8) is true.

To give a proof, we regard a Bayesian Nash equilibrium as a solution of a variational in-

equality in an infinite-dimensional space (see Stampacchia, 1970; Kinderlehrer and Stam-

pacchia, 1980). As shown by Lions and Stampacchia (1967) and Bensoussan (1974), a

Nash equilibrium of a complete information game is a solution of a variational inequality

in a finite-dimensional space (see Harker and Pang, 1990; Facchinei and Pang, 2003). In

the following proof, we use the fact that a Bayesian Nash equilibrium is a solution of a

variational inequality in a Hilbert space.

Let H be a Hilbert space with an inner product 〈·, ·〉 : H × H → R. Fix a non-empty

subset C ⊆ H and let T : C → H be a mapping. A variational inequality is a problem to

seek α ∈ C satisfying

〈Tα,α′ − α〉 ≥ 0 for each α′ ∈ C. (9)

The following result is due to Browder (1965) and Hartman and Stampacchia (1966).8

Proposition 3 (Browder-Hartman-Stampacchia). Assume the following conditions.

1. C is a nonempty closed convex subset of H.

2. 〈Tα − T β,α − β〉 ≥ 0 for all α, β ∈ C.

3. The mapping t .→ 〈T ((1− t)α+ t β),γ〉 from [0,1] to R is continuous for all α, β ∈ C

and γ ∈ H.

4. C is bounded, or there exists α0 ∈ C such that

lim
‖α‖→∞

〈Tα,α − α0〉
‖α‖ = +∞.

8They consider a reflexive Banach space.
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Then, there exists α ∈ C satisfying (9).

We are ready to prove Proposition 2.

Proof of Proposition 2. Proposition 1 implies the uniqueness. To prove the existence, we

show that the first-order condition (3) is a special case of the Browder-Hartman-Stampacchia

variational inequalities. Let H be a Hilbert space consisting of (an equivalence class

of) a random variable α : Ω → Rn with 〈α, β〉 ≡ E[α(ω)- β(ω)] for α, β ∈ H . Let

C = Σ ⊆ H , which is a nonempty closed convex subset of H . Let T : C → H be such that

Tσ = −∇u(σ(η),ω) ∈ H for each σ ∈ Σ, which satisfies the conditions in Proposition 3.

Because (9) coincides with (3), there exists σ ∈ Σ satisfying (3) by Proposition 3, which

is a Bayesian Nash equilibrium by Lemmas 2 and 5.

If the payoff gradient is strongly monotone, there exists c > 0 such that

∇u(σ,ω)-(σ − σ0) ≤ ∇u(σ0,ω)-(σ − σ0) − c(σ − σ0)-(σ − σ0)

= −cσ-σ + ∇u(σ0,ω)-σ + (c(2σ − σ0) − ∇u(σ0,ω))-σ0

for each σ,σ0 ∈ Σ and ω ∈ Ω. Thus,

E
[
∇u(σ,ω)-(σ − σ0)

]
√

E[σ-σ]

= −c
√

E[σ-σ] +
E
[
∇u(σ0,ω)-σ + (c(2σ − σ0) − ∇u(σ0,ω))-σ0

]
√

E[σ-σ]
.

Because the second term in the above is bounded, we have (8). !

In the case of quadratic payoff functions, we need neither (8) nor strong monotonicity.

Strict monotonicity suffices, as the next proposition shows. In the proof, we consider

another Hilbert space.

Proposition 4. Let (u,η) be a Bayesian game with quadratic payoff functions (4). Suppose

that Q(ω) is positive definite for each ω ∈ Ω. Then, a unique Bayesian Nash equilibrium

exists.

Proof. Proposition 1 implies the uniqueness. To prove the existence, we show that (5) is

another special case of the Browder-Hartman-Stampacchia variational inequalities. Let H

be a Hilbert space consisting of (an equivalence class of) a random variable α : Ω → Rn

11



with 〈α, β〉 ≡ E[α(ω)-Q(ω)- β(ω)] for α, β ∈ H . Let C = Σ ⊆ H , which is a nonempty

closed convex subset of H . Let T : C → H be such that Tσ = σ − Q−1θ ∈ H for each

σ ∈ Σ. Note that Q is invertible because Q is positive definite.9 Then, (9) is written as

〈Tσ,σ′ − σ〉 = 〈σ −Q−1θ,σ′ − σ〉 = E
[
(Q(ω)σ(η) − θ)-(σ′(η) − σ(η))

]
≥ 0 (10)

for each σ′ ∈ Σ, which is (5). Thus, a Bayesian Nash equilibrium is a solution of a

variational inequality (10). Because

lim
‖σ‖→∞

〈Tσ,σ − σ0〉
‖σ‖ = lim

‖σ‖→∞
〈σ −Q−1θ,σ − σ0〉

‖σ‖

≥ lim
‖σ‖→∞

(
‖σ‖ − ‖σ0‖ − ‖Q−1θ‖ + 〈Q

−1θ,σ0〉
‖σ‖

)
= ∞,

a Bayesian Nash equilibrium exists by Proposition 3. !

Applying Propositions 4 to linear quadratic Gaussian (LQG) games, where Q is con-

stant and an information structure is Gaussian, we obtain the following existence and

uniqueness result.

Proposition 5. Let (u,η) be a Bayesian game with quadratic payoff functions (4). Assume

the following conditions.

1. Q is positive definite and independent of ω.

2. Xi = R and Yi = Rmi for each i ∈ N, where mi ≥ 1 is an integer.

3. η1(ω), . . . ,ηn(ω) and θ1(ω), . . . ,θn(ω) are jointly normally distributed with

cov[ηi,η j] = Ci j , cov[ηi,θi] = Gi,

where Cii is positive definite for each i ∈ N.

Then, there exists a unique Bayesian Nash equilibrium obtained as follows:

σi (ηi) = b-i (ηi − E[ηi]) + ci, (11)

where bi and ci are determined by the system of linear equations
∑

j∈N

qi jCi j bj = Gi for i ∈ N, (12)

∑

j∈N

qi jcj = E[θi] for i ∈ N. (13)

9Otherwise, there exists x ! 0 such that Qx = 0, which implies x-Qx = 0, a contradiction.
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Proof. Proposition 4 implies the existence and uniqueness. Thus, it is enough to show that

the unique Bayesian Nash equilibrium is of the above form. See Appendix B. !

In all the above results, we assume that the payoff gradient is strict monotone. However,

even without strict monotonicity, we can obtain similar results if the best-response corre-

spondence coincides with that of another game whose payoff gradient is strictly monotone.

For example, for two games (u,η) and (u′,η), if there exist wi > 0 and hi : X−i × Ω → R
such that u′i (x,ω) = wiui (x,ω) + hi (x−i,ω) for each x ∈ X , ω ∈ Ω, and i ∈ N , then

the best-response correspondences coincide. Thus, if the payoff gradient of u is strictly

monotone, (u′,η) has at most one Bayesian Nash equilibrium, and if the payoff gradient

of u is strongly monotone, (u′,η) has a unique Bayesian Nash equilibrium.10

The above discussion leads us to the following weaker concept of strict or strong mono-

tonicity. For w ≡ (wi)i∈N ∈ Rn
++, we call w ◦ ∇u ≡ (wi∂ui/∂xi)i∈N the w-weighted payoff

gradient of u. We say that the w-weighted payoff gradient is strictly monotone if the map-

ping x .→ −w ◦ ∇u(x,ω) is strictly monotone for each ω ∈ Ω. We also say that the

w-weighted payoff gradient is strongly monotone if the mapping x .→ −w ◦ ∇u(x,ω) is

strongly monotone for each ω ∈ Ω with respect to the same constant c > 0. Then, strict

or strong monotonicity of the payoff gradient in Propositions 1 and 2 can be replaced with

strict or strong monotonicity of the w-weighted payoff gradient without any change in the

conclusions. The corresponding concept for complete information games is discussed by

Rosen (1965). For much weaker concepts, which also work, see Ui (2008).

Remark 1. Radner (1962) and Krainak et al. (1982) consider teams and obtain a special

case of Proposition 1. Radner (1962) considers teams with quadratic payoff functions as

well as LQG teams and obtains special cases of Propositions 4 and 5. Ui (2009) considers

best-response Bayesian potential games and obtains special cases of Propositions 1, 4, and

5 using the results of Radner (1962) and Krainak et al. (1982).

Remark 2. If u is independent of ω ∈ Ω, (u,η) is a complete information game with a

correlation device η, and a Bayesian Nash equilibrium is a correlated equilibrium. Thus,

Proposition 1 implies that if the payoff gradient is strictly monotone, a unique Nash equi-

librium is a unique correlated equilibrium, which is the result obtained by Ui (2008).

10For more general conditions for best-response equivalence, see Morris and Ui (2004) and Ui (2009).
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5 An application to network games

Consider a Bayesian game with quadratic payoff functions (4). For each ω ∈ Ω, the matrix

Q(ω) defines a directed graph with a set of nodes N and a set of directed edges E(ω) =

{(i, j) : qi j (ω) ! 0, i, j ∈ N }. Thus, we can regard this game as a Bayesian game played

on a random network, or a Bayesian network game for short, where Q(ω) is a weighted

adjacency matrix of the underlying graph. Proposition 4 states that a Bayesian network

game has a unique equilibrium if the weighted adjacency matrix is positive definite for

each ω ∈ Ω.

The network game of Ballester et al. (2006)

Ballester et al. (2006) consider a network game with complete information such that Ai =

[0,∞), θ1 = · · · = θn = α, and Q = βI + γU − λG, where α, β,γ,λ > 0 are constant,

I is the identity matrix, U is the matrix of ones, and G = [gi j] is a symmetric matrix

with gi j ∈ [0,1] and gii = 0. Ballester et al. (2006) show that this game has a unique

Nash equilibrium if the maximum eigenvalue of G is less than β/λ, which implies that

βI + γU − λG is positive definite (but not vice versa).

Now consider a Bayesian network game, where α, β,γ,λ > 0 are random variables and

G is a random asymmetric matrix with gi j ∈ [0,1] and gii = 0. By Proposition 4, this game

has a unique Bayesian Nash equilibrium if βI +γU − λG is positive definite for each state.

de Martì and Zenou (2015) consider a special case of this Bayesian network game, where

β,λ > 0, γ = 0, and gi j ∈ {0,1} are constant, and show that it has a unique Bayesian Nash

equilibrium if the maximum eigenvalue of G is less than β/λ.

The network game of Bramoullé et al. (2014)

Bramoullé et al. (2014) consider a network game with complete information such that

Ai = [0,∞), θi = x̄i, Q = I + δG, where x̄i,δ > 0 are constant, I is the identity matrix,

and G = [gi j] is a symmetric matrix with gi j ∈ {0,1} and gii = 0. Bramoullé et al. (2014)

show that this game has a unique Nash equilibrium if the absolute value of the minimum

eigenvalue of G is less than 1/δ, which occurs if and only if I + δG is positive definite.

Now consider a Bayesian network game, where x̄i,δ > 0 are random variables and G
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is a random asymmetric matrix with gi j ∈ [0,1] and gii = 0. By Proposition 4, this game

has a unique Bayesian Nash equilibrium if the absolute value of the minimum eigenvalue

of G is less than 1/δ for each state.

The network game of Blume et al. (2015)

Blume et al. (2015) consider a Bayesian network game such that Ai = R, θi, . . . ,θn are

random variables, and Q = (1+φ)I−φW is a constant matrix, where φ > 0, I is the identity

matrix, and W = [wi j] is a nonnegative matrix such that wi j ∈ [0,1],
∑

j∈N wi j ∈ {0,1}, and

wii = 0. Blume et al. (2015) show that this game has a unique Bayesian Nash equilibrium.

Now consider another Bayesian network game, where φ > 0 is a random variable and

W is a random matrix. We do not require the above condition on W , but assume that

(1 + φ)I − φW is positive definite for each state. Then, this game has a unique Bayesian

Nash equilibrium by Proposition 4.

The network game of Calvó-Armengol et al. (2015)

Calvó-Armengol et al. (2015) use an LQG framework to study communication in network

games. After exchanging information, players play an LQG game with a payoff function

ui (x,ω) = −dii (xi − θi)2 −
∑

j!i

di j (xi − x j )2, (14)

where θi is normally distributed and di j ≥ 0 for each i, j ∈ N . Calvó-Armengol et al.

(2015) obtain a unique linear equilibrium, but it has been an open question whether the

linear equilibrium is a unique equilibrium.

By dividing (14) by Di =
∑

j∈N di j , we obtain (4) with Q = I −W , where W = [wi j] is

a nonnegative matrix with

wi j =


di j/Di if j ! i,

0 if j = i.

Thus, if I −W is positive definite, then the linear equilibrium is a unique equilibrium by

Proposition 5.11
11The operator norm of W corresponding to the∞-norm for vectors (i.e. maxi∈N

∑
j ∈N |wi j |) is less than

one, so I −W is invertible as shown by Calvó-Armengol et al. (2015). The matrix I −W is positive definite

if and only if the operator norm of W corresponding to the 2-norm for vectors is less than one.
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Appendix

A Proof of Lemmas 1 and 2

Proof of Lemma 1. Because ui ((·, x−i),ω) : Xi → R is concave,

∂

∂xi
E

[
ui ((xi,σ−i),ω) | ηi

]
= E[

∂

∂xi
ui ((xi,σ−i),ω) | ηi]

by the Lebesgue monotone convergence theorem (see p.863 of Radner (1962)).

For x′i ∈ Xi, let f (t) = E[ui ((σi + t(x′i − σi),σ−i),ω) | ηi]. If (1) is true, f (t) achieves

its maximum at t = 0. Thus, it must be true that

f ′(0) =
∂

∂xi
E[ui ((xi,σ−i),ω) | ηi]

"""""xi=σi (x′i − σi (yi))

= E[
∂

∂xi
ui (σ,ω) | ηi](x′i − σi)

= E[
∂

∂xi
ui (σ,ω) (x′i − σi) | ηi] ≤ 0.

Thus, (2) is true.

Conversely, suppose that (2) is true. Note that f (t) is concave in t because ui ((·, x−i),ω) :

Xi → R is concave. Thus, f (t) ≤ f (0) + t f ′(0) for each t and

E[ui ((x′i,σ−i),ω) | ηi] = f (1)

≤ f (0) + f ′(0)

=E[ui (σ,ω) | ηi] + E[
∂

∂xi
ui (σ,ω)(x′i − σi) | ηi]

≤E[ui (σ,ω) | ηi]

by (2). Thus, (1) is true. !

Proof of Lemma 2. We have already shown that if σ is a Bayesian Nash equilibrium then

(3) is true. We show that if σ is not a Bayesian Nash equilibrium then (3) is not true.

Suppose that σ ∈ Σ is not a Bayesian Nash equilibrium. Then, by Lemma 1, there exist

j ∈ N , σ′j ∈ Σ j , and E ⊆ Ω with P(E) > 0 such that E[∂uj (σ,ω)/∂x j · (σ′j −σ j ) | η j] > 0

for each ω ∈ E. Let σ′′ ∈ Σ be such that

σ′′i (ηi (ω)) =


σ′i (ηi (ω)) if i = j and ω ∈ E,

σi (ηi (ω)) otherwise.
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Then,

E[∇u(σ,ω)-(σ′ − σ)] =
∑

i∈N

E[∂ui (σ,ω) /∂xi · (σ′′i − σi)] > 0,

so (3) is not true. !

B Proof of Proposition 5

We use the following lemma (see p.870 of Radner (1962)).

Lemma A. Suppose that C is a K ×K symmetric positive semi-definite matrix, partitioned

symmetrically into blocks Ci j , such that Cii is positive definite for every i, and that Q is an

n × n symmetric positive definite matrix with elements qi j . Then, the matrix H composed

of blocks qi jCi j is positive definite.

Proof of Proposition 5. Proposition 4 guarantees the existence and uniqueness of a Bayesian

Nash equilibrium. We show that it is given by (11), (12), and (13).

Because Ai = R for each i ∈ N , the first-order condition for an equilibrium is

∑

j∈N

qi j E[σ j | ηi = yi] = E[θi | ηi = yi] (B1)

for each yi ∈ Yi and i ∈ N . If an equilibrium is of the form (11), (B1) is calculated as

∑

j

qi j (b-j CjiC−1
ii (yi − E[ηi]) + cj ) = E[θi] + G-i C−1

ii (yi − E[ηi])

for each yi ∈ Yi and i ∈ N . Thus, bi and ci are determined by

∑

j

qi j b-j CjiC−1
ii = G-i C−1

ii and
∑

j

qi j cj = E[θi] for i ∈ N,

which is reduced to (12) and (13).

To complete the proof, it is enough to show that the system of linear equations (12)

and (13) has a unique solution. Since Q is positive definite, Q is invertible, by which

the solvability of (13) follows. Let C be the covariance matrix of η, which satisfies the

condition imposed on C in Lemma A. Let R be the matrix composed of blocks qi jCi j and let

H be the matrix composed of blocks (qi j + qji)Ci j . Since C is symmetric, H = R+ R-. By

Lemma A, H is positive definite. Therefore, R is also positive definite and thus invertible,

by which the solvability of (12) follows. !
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