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Abstract

This paper develops a nonparametric identification analysis in regression discontinuity

(RD) designs where each observable may contain measurement error. Our analysis allows

the measurement error to be nonclassical in the sense that it can be arbitrarily dependent

of the unobservables as long as the joint distribution satisfies a few smoothness conditions.

We provide formal identification conditions under which the standard RD estimand based

on the observables identifies a local weighted average treatment effect parameter. We also

show that our identifying conditions imply a testable implication of the continuous density

of the observable assignment variable.
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1 Introduction

Regression discontinuity (RD) designs are quasi-experimental designs to evaluate the impact

of possibly endogenous binary policy variables. RD designs allow econometricians to nonpara-

metrically identify a local average treatment effect (LATE) based on policy rules that generate

discontinuous conditional treatment probabilities (Hahn et al., 2001). Thanks to their useful-

ness, RD designs have been extensively utilized in the microeconometric literature. See, for

example, Imbens and Lemieux (2008) and Lee and Lemieux (2010) for excellent reviews on

theoretical and empirical contributions in the RD literature.

Empirical applications based on RD designs are often forced to utilize data that may contain

measurement error. This is particularly common when econometricians use survey data to

conduct their analyses (Bound et al., 2001); there are at least two reasons why RD applications

often require survey data. First, econometricians may not be able to use data gathered by

policy makers due to data unavailability. Second, survey data tends to contain more abundant

variables such as demographical characteristics than policy maker’s data does. There are several

empirical studies based on RD designs with survey data, such as Card and Shore-Sheppard

(2004), Ludwig and Miller (2007), Card et al. (2008), Battistin et al. (2009), Schanzenbach

(2009), and Hullegie and Klein (2010). Some of them pay attention to the possibility of the

presence of measurement error in their observables, and of these, several theoretical studies

develop identification, estimation, and inference procedures for RD designs with measurement

error (see the section “Related literature” below).

The present paper contributes to the literature by providing a nonparametric identification

analysis in general RD designs with measurement error. Our analysis is developed for the

general fuzzy RD design, including the sharp RD design as a special case. The novelty of the

present paper is to allow situations in which any observables can contain measurement error.

Our analysis permits each of the observed outcome, treatment, and assignment variable to

contain measurement error. Furthermore, we allow the measurement error to be nonclassical

in the sense that the measurement error can be arbitrarily dependent of all the unobservables

except for a few smoothness conditions. We do not assume any independence conditions on the

joint distribution of the measurement error and unobservables. Since independence conditions

can be restrictive in several empirical situations, it is a prominent case in the literature that

our analysis works without them.
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This paper aims to show the parameter that is identified by the standard RD estimand

based on the possibly mismeasured variables under plausible conditions instead of independence

conditions. To this end, we introduce two key identifying conditions. The first is the continuity

of the joint distribution of measurement error and unobservables. The continuity is considerably

weaker than independence conditions and could be unrestrictive in many empirical situations.

The second is also an essential condition under which measurement error on the assignment

variable for the compliers has the positive probability mass at zero. It requires that there are

compliers whose assignment values are observed without measurement error near the cutoff

point. The validity of the assumption depends on the accuracy of the data. This assumption

guarantees that the conditional treated probability is discontinuous even when the assignment

variable contains measurement error.

We show that the standard RD estimand based on the possibly mismeasured observables

identifies a local weighted average treatment effect (LWATE) parameter under a set of identifica-

tion assumptions. While the weight depends on the conditional probability that the assignment

variable for the complier is correctly reported, it does not depend on the distribution of the mea-

surement error for the outcome and treatment. This observation emphasizes that an accurate

record of the assignment variable is especially important in RD applications.

We prove that the LWATE is not identical to the standard RD LATE parameter in general.

Accordingly, econometricians should pay careful attention to interpreting RD estimates when

their observables may contain measurement error. However, we also discuss that the LWATE

gives econometricians meaningful information on the standard RD LATE parameter. In par-

ticular, the LWATE is equal to the standard RD LATE if the individual treatment effect and

the potential treatment status are jointly independent of measurement error on the assignment

variable. Further, the LWATE is equal to the standard RD LATE if the treatment effect is

homogeneous across economic units at the cutoff. Otherwise, in some situations, the LWATE

may tell us the sign of the standard RD LATE.

We also show that the continuity of the density of the observed assignement variable is

a testable implication for the identification, in the spirit of Lee (2008) and McCrary (2008),

even in the presence of measurement error. This suggests the empirical importance of testing

the continuous density of the observable assignment variable even when the assignment variable

contains measurement error. In other words, we justify the enforcement of McCrary’s continuous

density test in general RD designs with measurement error.
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Related literature: The current paper most closely relates to the theoretical contribution

of Battistin et al. (2009), who consider the partially fuzzy RD design (Battistin and Rettore,

2008) in which the assignment variable contains measurement error with the positive probability

mass at zero. They assume that conditional on the “true” assignment variable, the indicator

for the presence of the measurement error and the mismeasured assignment variable are jointly

independent of the outcome and the treatment status. Under the independence assumption, the

average treatment effect on the treated at the cutoff is shown to be identified by the standard

RD estimand. We emphasize that the present paper and the theoretical analysis of Battistin

et al. (2009) are different in at least five aspects. First and foremost, the analysis in the present

paper does not need any independence conditions. It does not restrict the measurement error for

the assignment variable to be independent of the unobservables. Second, we allow the presence

of measurement error for any observable variables not just for the assignment variable. Battistin

et al. (2009) do not allow the presence of measurement error for the treatment and outcome,

while they advert to the possibility of measurement error for the treatment status. Third, we

consider the general fuzzy RD design, which includes the partially fuzzy RD design in Battistin

et al. (2009) as a special case. Fourth, we provide a set of formal conditions under which we

derive an exact form of the parameter that is identified by the standard RD estimand with

nonclassical measurement error. Battistin et al. (2009) do not develop such a consideration.

Fifth, we provide the testable implication led by our identification conditions unlike Battistin

et al. (2009).

The present paper also closely relates to Card et al. (2015) who develop analyses in the

sharp and fuzzy regression kink (RK) designs. Their fuzzy RK design allows the presence of

measurement error for the assignment and policy variables. In RK designs, the policy variable

is a continuous random variable with the kinked conditional mean at a cutoff point. They show

that the fuzzy RK estimand identifies a weighted average of the policy effect even when the

measurement error is nonclassical. The key identifying conditions in their paper as well as the

present study are the presence of individuals who correctly report their assignment values and

a smooth density condition. Our analysis is thus related to the analysis in Card et al. (2015)

in terms of techniques. However, we stress that the situations considered in both papers are

different. The policy variable in the RD design is binary with the discontinuous conditional

mean, although the policy variable in the RK design is continuous with the kinked conditional

mean. As a result, the fuzzy RK estimand is different from the standard RD estimand. In
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addition, Card et al. (2015) do not consider the situation in which the outcome may contain

measurement error. The statements of the main theorems as well as the settings, estimands,

identification conditions, and identifying parameters in both papers are different.

Several other papers contribute to identification and estimation of RD designs with measure-

ment error, although the settings in these are not the same as ours. Hullegie and Klein (2010),

Yu (2012), Davezies and Le Barbanchon (2014), and Yanagi (2014) consider RD designs where

the assignment variable may contain continuous measurement error. They point out that the

continuous measurement error invalidates the RD research design. Specifically, they find that

given the observed assignment variable, the conditional treated probability becomes continuous

due to the continuous measurement error even when given the true assignment variable, the

conditional treated probability is discontinuous at the cutoff. Further, their papers propose

methodologies to overcome such problems due to the continuous measurement error. We stress

that the situations in the present paper and the abovementioned papers are distinct because

the measurement error in the latter is continuously distributed without any probability mass.

Furthermore, to our knowledge, no existing study develops an analysis for RD designs in which

measurement error can be arbitrarily dependent of the unobservables.

There are other studies that consider particular types of measurement error in RD designs.

Dong (2015c) develops an analysis where the observed assignment variable contains rounding

error. She proposes a parametric approach to identify the LATE parameter with the rounding

error. We note that the analysis in the present paper does not allow rounding error, because

the rounding error for a continuous assignment variable would not have any probability mass.

Elsewhere, Pei (2011) proposes a parameteric analysis for RD designs where the assignment

variable and its measurement error are discretely distributed. Our analysis is also different

from his analysis, since ours requires that the assignment variable and the measurement error

are continuously distributed with a probability mass.

Organization of the paper: Section 2 introduces the general RD design with measurement

error. Section 3 develops our identification analysis. Section 4 discusses the testable implication

led by our identification conditions. Section 5 concludes. Appendix contains the proofs of all

the theorems and technical lemmas.

Notation: For a real function g(·), g(a+) := limx↓a g(x) and g(a−) := limx↑a g(x) are the

right and left limits, respectively, at a ∈ R. We denote the Lebesgue measure as λ(·), the
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indicator function as 1(·), and the Cartesian product of sets SA and SB as SAB. For a generic

random vector Z and an event E, we write the conditional cumulative distribution function

and conditional density (with respect to the Lebesgue measure) of Z given E as FZ|E(·) and

fZ|E(·), respectively. For ease of exposition, we omit the interval of the integration unless there

is confusion.

2 Setting

This section introduces the setting considered in this paper. We first explain the general RD

design and summarize the identification analyses developed in the literature. We then introduce

measurement error for each observable variable.

2.1 Regression discontinuity design

The outcome Y is a random variable. The treatment T ∈ {0, 1} is binary: T = 1 if the individual

is treated and T = 0 otherwise. The assignment variable X is a continuous covariate, which

can affect both Y and T . The random variables are defined on a probability space (Ω,F , P ).

In RD designs, T is (perfectly or partly) determined by X with a jump in the conditional

treatment probability. For example, T = 1(X ≥ x0) in a sharp RD design where x0 ∈ R is a

known constant cutoff. More generally, in the fuzzy RD designs, T is partly determined by X

and E(T |X = x+0 ) ̸= E(T |X = x−0 ). Since the sharp design is a special case of the fuzzy design,

this paper concentrates on the fuzzy design only. Without loss of generality, we normalize

x0 = 0. Let S0 be a neighbourhood around the cutoff 0.

We are interested in the causal effect of T on Y . To be specific, we introduce the potential

outcome notations. Y0 is the potential outcome when the individual is untreated (T = 0), and

Y1 is the potential outcome when the individual is treated (T = 1). For notational simplicity,

let α := Y0 and β := Y1 − Y0. The causal effect for the individual is β. The treatment effect is

allowed to be heterogeneous and can depend on the assignment value. Thus, we can write that

Y = TY1 + (1− T )Y0 = α+ βT .

We then introduce the notion of potential treatment status as in Dong (2015a,b). Let T (x)

be the random variable that represents the potential treatment status when the assignment

value for the invididual equals x. Moreover, for individuals with X ≥ 0, let T1 := T (X) and

T0 := T (0−) when the limit exists almost surely. Similarly, for individuals with X < 0, let
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T0 := T (X) and T1 := T (0+) when the limit exists almost surely. In this manner, the potential

treatment status (T0, T1) for any individuals can be well-defined. Note that (T0, T1) is a random

vector with the support {0, 1}2 = {0, 1}×{0, 1}. It can vary across individuals and can depend

on the assignment value. In this notation, we can write T = T0 + 1(X ≥ 0)(T1 − T0).

For ease of exposition, we define random vectors Ỹ := (Y0, Y1) and T̃ := (T0, T1). We denote

(Y0, Y1) = (y0, y1) and (T0, T1) = (t0, t1) as Ỹ = ỹ and T̃ = t̃, respectively.

We define the following events for four types of individuals in the probability space as in

Angrist et al. (1996) and Dong (2015a):

A := {ω ∈ Ω : T1(ω) = T0(ω) = 1},

C := {ω ∈ Ω : T1(ω) = 1, T0(ω) = 0},

D := {ω ∈ Ω : T1(ω) = 0, T0(ω) = 1},

N := {ω ∈ Ω : T1(ω) = T0(ω) = 0}.

Here, A is the set of the always takers, C is that of the compliers, D is that of the defiers,

and N is that of the never takers. The always takers are treated irrespective of whether their

assignment is above or below the cutoff. The compliers are treated if and only if their assignment

is above the cutoff. The defiers are treated if and only if their assignment is below the cutoff.

The never takers deny the treatment irrespective of their assinment values.

The standard RD estimand is the following ratio of the discontinuity at the cutoff:

τ :=
E(Y |X = 0+)− E(Y |X = 0−)

E(T |X = 0+)− E(T |X = 0−)
.

It is known in the literature that, τ identifies a local average treatment effect (LATE) under a

set of identification assumptions. Specifically, Hahn et al. (2001) and Dong (2015a) show that

τ = E(β|C,X = 0). (1)

The right-hand side is the standard LATE parameter in RD designs, which is the average

treatment effect for the compliers at the cutoff. The LATE is thus identified if (Y, T,X) is

observed without measurement error.

Hahn et al. (2001) show that the LATE is identified under three notable assumptions,

summarized as follows:
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(HTV1): E(Yt|X = ·) is continuous at 0 for t ∈ {0, 1}.

(HTV2): P (T1 < T0|X = x) = P (D|X = x) = 0 for any x ∈ S0.

(HTV3): (β, T̃ ) is jointly independent of X conditional on X = x for any x ∈ S0.

The first assumption restricts the continuity of the conditional means. Intuitively, it requires

that the other factors affecting the outcome except for the treatment are balanced near the

cutoff. It also implies that any individual cannot perfectly manipulate his/her assignment value

(Lee, 2008; McCrary, 2008). The second assumption requires that the defiers do not exist. It is a

popular assumption to identify LATE parameters (Angrist et al., 1996) in the microeconometric

literature. The third asssumption requires that the policy effect and the potential treatment

status are independent of the assignment variable near the cutoff. It implies that the LATE

parameter does not vary near the cutoff, that is, E(β|C,X = x) is constant for x ∈ S0.

Recently, Dong (2015a) points out that the independece assumption (HTV3) can be restric-

tive in several econometric applications. Instead of the independence assumption, she provides

more plausible identification assumptions implied by the smoothness of the conditional density.

Specifically, she introduces the following continuity:

(D1): fX|Ỹ=ỹ,T̃=t̃(·) is continuous at 0 for any (ỹ, t̃) and fX(·) is strictly positive on S0.

(D1) implies that any individual cannot perfectly manipulate his/her assignment value. It

also restricts that any discontinuous changes affecting the potential outcomes do not exist at

the cutoff except for the discontinuous treatment probability. Dong (2015a) shows that this

condition implies the following continuity:

(D2): P (T̃ = t̃|X = ·) is continuous at 0 for any t̃ ∈ {0, 1}2.

(D3): E(Yt|T̃ = t̃, X = ·) is continuous at 0 for any t ∈ {0, 1} and t̃ ∈ {0, 1}2.

(D2) means the conditional probabilities of the individual types are continuous at the cutoff.

(D3) implies that the conditional means of the potential outcomes are also continuous at the

cutoff. Intuitively, like (HTV1), these imply that ceteris paribus conditions are balanced near

the cutoff. Dong (2015a) then proves that (D2) and (D3) with (HTV2) lead to identification

result (1) without independence conditions.

As in Dong (2015a), the present paper develops an analysis based on such plausible smooth-

ness conditions instead of independence conditions.
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2.2 Measurement error

The present paper focuses on RD designs in which each observable possibly contains measure-

ment error. We consider the situation where the true outcome, treatment, and assignment

variable (Y, T,X) may not be observed due to the presence of measurement error.

We introduce measurement error for (Y, T,X) in the following manner.

Y ∗ = Y + UY ,

T ∗ = T + UT ,

X∗ = X + UX ,

where UY is the measurement error for Y , UT for T , and UX for X. We note that UT is

dependent of T unless UT = 0 almost surely because the support of UT given T = 1 is {−1, 0}

and that given T = 0 is {0, 1}.

Econometricians cannot observe (Y, T,X), but they observe (Y ∗, T ∗, X∗) that may contain

measurement error. The distribution of the observables (Y ∗, T ∗, X∗) is determined by the

distribution of the unobservables (Ỹ , T̃ ,X, UY , UT , UX).

The representation for measurement is general enough, unless we restrict the relationship

between (Ỹ , T̃ ,X, UY , UT , UX). Our analysis allows the measurement error to be nonclassical

in the sense that the measurement error can be arbitrarily dependent of the unobservables as

long as the distribution satisfies a few smoothness conditions. We need only a certain extent

of continuity of the distribution of (Ỹ , T̃ , X, UY , UT , UX). We expound specific conditions to

establish our identification in the following section.

Importantly, our setting may allow the situation where policy makers may not observe the

true variables (Y, T,X) as well as econometricians do. For example, policy makers may observe

not the true X but the mismeasured X∗ when some individuals may make the false report on

their assignment values by accident or by partly (not perfectly) manipulating their reporting.

Then, policy makers may decide to treat the individuals based on their misreported assignment

values and observe the outcome after the treatment. In this situation, the policy makers may

observe only (Y ∗, T ∗, X∗) as well as the econometricians do. Worse, in such situations, the

measurement error for X may be dependent of the individual treatment effect. For example,

this would happen when an individual who cannot receive the treatment based on his/her

true assignment value tends to make a false report if he/she makes a high estimate of his/her
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treatment effect. Our analysis could be informative even in such situations.

We focus on showing the parameter that econometricians identify based on observables

(Y ∗, T ∗, X∗) in the general RD design. Specifically, our interest is to prove the parameter that

is identified by the following standard RD estimand based on the observables:

τ∗ :=
E(Y ∗|X∗ = 0+)− E(Y ∗|X∗ = 0−)

E(T ∗|X∗ = 0+)− E(T ∗|X∗ = 0−)
.

τ∗ is identified by data even when the observables contain measurement error. We note that

τ∗ can be estimated with a random sample {(Y ∗
i , T

∗
i , X

∗
i )}ni=1 based on standard estimation

techniques such as local polynomial regressions developed in the RD literature (see, e.g., Imbens

and Kalyanaraman, 2012; Calonico et al., 2014; Arai and Ichimura, 2015a,b).

3 Identification with measurement error

This section develops an identification analysis under the setting of the previous section. Our

identification analysis is composed of three steps. First, we show that the continuity of con-

ditional probabilities of individual types and that of conditional means of potential outcomes

such as (D2) and (D3) are established even in the presence of measurement error. Second, we

prove that the conditional probability of the observable treatment is discontinuous at the cutoff

under a set of assumptions. Finally, we show that these results naturally lead to the statement

that τ∗ identifies a LATE parameter.

3.1 Continuity of conditional probabilities and conditional means

This subsection shows that conditional probabilities and conditional means such as those in

(D2) and (D3) are continuous with respect to the assignment variable even when the observable

variables may contain measurement error. To this end, we introduce two key assumptions on

the measurement error for X and on a joint density. We also require a regularity condition. Let

SV XỸ := SV × SX × SY0 × SY1 ⊂ R4 be an arbitrary large compact set.

Assumption 1 (X’s error). UX is represented by

UX = G · V,

where G ∈ {0, 1} is a binary random variable indicating the presence of measurement error with
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P (G = 0|C,X = 0) > 0 and V is continuously distributed error. P (G = 0|T̃ = t̃, V = ·, X =

·, Ỹ = ·) is continuous on SV XỸ for any t̃ ∈ {0, 1}2.

Assumption 2 (smooth density). The conditional density fV XỸ |T̃=t̃(·, ·, ·) is continuous on

SV XỸ for any t̃ ∈ {0, 1}2 and fX(·) is strictly positive on S0.

Assumption 3 (regularity). The support of (V,X, Ỹ ) is a subset of SV XỸ .

Assumption 1 restricts the distribution of the measurement error for X. It requires that

the measurement error is continuously distributed except at zero. The measurement error must

have the positive probability mass at zero, which is essential for our identification analysis. This

modeling for the measurement error is essentially identical to the contaminated sampling model

considered in Battistin et al. (2009). It also assumes the continuity of the conditional probability

of no measurement error. We stress that Assumption 1 does not require independence between

the measurement error and true unobservable variables, which may be undesirable in empirical

applications.

Whether Assumption 1 is valid for the survey data at hand would depend on the accuracy

of the data. The measurement error can have positive probability mass if there are compliers

who correctly report their assignment values. Otherwise, the measurement error would be con-

tinuously distributed without the probability mass. In such situations, we need other strategies

to identify a local average treatment effect such as in Hullegie and Klein (2010), Yu (2012),

Davezies and Le Barbanchon (2014), or Yanagi (2014).

Assumption 2 requires that the conditional density of (V,X, Ỹ ) is smooth and that the

density of X is strictly positive near the cutoff point. It is similar to the smooth density

assumption (D1). Therefore, intuitively, Assumption 2 implies that no economic units can

perfectly manipulate their true assignment variable and continuous error. However, we note

that Assumption 2 conditions stronger smoothness than (D1) does. This is because we study the

effect of the measurement error. We stress that although Assumption 2 implicitly requires that

Ỹ is continuously distributed, we can allow Ỹ to be a discrete random vector. The same results

in this paper can be established under a different smoothness condition in such a situation1.

Assumption 3 is a regularity condition to use the dominated convergence theorem. Strictly

speaking, it is stronger than necessary, and hence, it can be substituted with weaker conditions.

However, we require Assumption 3 for its perspicuity. We note that the support of X∗, SX∗ , is

1If Ỹ is discretely distributed with a finite support SỸ , then it suffices that P (G = 0|T̃ = t̃, V = ·,X = ·, Ỹ = ỹ)
and fV X|T̃=t̃,Ỹ =ỹ(·, ·) is continuous for any t̃ ∈ {0, 1}2 and ỹ ∈ SỸ in Assumptions 1 and 2.
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also a subset of a compact set under the assumption. For this reason, we consider that SX∗ is

a subset of SX without loss of generality.

The continuity of conditional probabilities and conditional means such as (D2) and (D3) is

established under the assumptions.

Lemma 1. Suppose that Assumptions 1–3 hold. Then, (i) P (T̃ = t̃|G = 0, X∗ = ·) = P (T̃ =

t̃|G = 0, X = ·) is continuous at 0 for any t̃ ∈ {0, 1}2 and (ii) E(Yt|G = 0, T̃ = t̃, X∗ = ·) =

E(Yt|G = 0, T̃ = t̃, X = ·) is continuous at 0 for any t ∈ {0, 1} and t̃ ∈ {0, 1}2.

Lemma 1 shows that, conditional on G = 0, the conditional probabilities of individual types

and the conditional means of potential outcomes are continuous with respect to the observable

assignment variable. We note that the smoothness of the conditional probabilities given G = 0

is satisfactory for our identification analysis, as shown in the later subsections. Therefore,

according to the identification result in Dong (2015a), we conjecture that a LATE parameter

is identified by the observable variables if E(T ∗|X∗) is discontinuous at the cutoff even in the

presence of measurement error. The discontinuity is proved in the following subsection.

3.2 Discontinuity of the conditional treated probability

We show that the conditional probability of the observed treatment is discontinuous at the cutoff

even in the presence of measurement error. We need the following assumptions to guarantee

the discontinuity of the conditional treated probability.

Assumption 4 (T ’s error). P (UT = uT |G = g, V = ·, X = ·) is continuous on SV X for any

uT = −1, 1 and g = 0, 1.

Assumption 5 (RD). E(T |X = 0+) > E(T |X = 0−).

Assumption 6 (monotonicity). P (T1 < T0|X = x) = P (D|X = x) = 0 for any x ∈ S0.

Assumption 4 assumes that the conditional probabilities of the measurement error for T

are continuous with respect to V and X. In particular, the conditional probabilities need to

be continuous in X near the cutoff. Assumption 4 allows UT to be arbitrarily dependent of

the unobservables as long as the smoothness is satisfied. However, we need to note that this

assumption may not be satisfied in the sharp RD design. For example, when T = 1(X ≥ 0),

it must be satisfied that P (UT = 1|G = g, V = v,X = x) = 0 for any x ≥ 0. Therefore,
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the probability can be discontinuous at the cutoff if it is strictly positive just below the cutoff.

However, we stress that Assumption 4 may be satisfied even in the sharp design.

Assumptions 5 and 6 are standard identifying conditions in RD designs. Assumption 5

requires that the conditional probability of the true treatment is discontinuous at the cutoff,

that is, it guarantees the presence of compliers. We note that the direction of the inequality is

normalized. Assumption 6 is the same as (HTV2), which restricts that there are no defiers.

It is established that the conditional treated probability is discontinuous at the cutoff.

Lemma 2. Under Assumptions 1–6, E(T ∗|X∗ = ·) is discontinuous at the cutoff. Specifically,

it holds that

E(T ∗|X∗ = 0+)−E(T ∗|X∗ = 0−)

=(E(T |G = 0, X = 0+)− E(T |G = 0, X = 0−))P (G = 0|X∗ = 0)

=P (C|G = 0, X = 0)P (G = 0|X∗ = 0) > 0.

Lemma 2 shows that the conditional probability of the observable treatment is discontinuous

at the cutoff even when measurement error exists. It implies that the research design can be

a valid RD design regardless of the presence of measurement error. However, the jump size of

E(T ∗|X∗) is not identical to that of E(T |X) in general. For example, if T is independent of

G conditional on X, the former is less than the latter, owing to the effect of G. In particular,

even if the true design is sharp RD, E(T ∗|X∗) may not have sharp discontinuity.

The intuition behind the proof of Lemma 2 can be understood by the following observation.

The law of iteratred expectations implies that

E(T ∗|X∗ = x∗) =E(T |X∗ = x∗) + E(UT |X∗ = x∗)

=E(T |G = 0, X = x∗)P (G = 0|X∗ = x∗)

+E(T |G ̸= 0, X∗ = x∗)P (G ̸= 0|X∗ = x∗) + E(UT |X∗ = x∗).

In this expansion, P (G = 0|X∗ = ·), P (G ̸= 0|X∗ = ·), and E(UT |X∗ = ·) are continuous

at the cutoff under the introduced assumptions. The key to show Lemma 2 is to prove that

E(T |G = 0, X = ·) is discontinuous at the cutoff under Assumption 5, while E(T |G ̸= 0, X∗ = ·)

is continuous even when Assumption 5 is satisfied. Intuitively, since the continuous error V

smooths the conditional mean of T given G ̸= 0, the conditional mean becomes continuous even
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when the true treated probability is discontinuous at the cutoff. Similar findings are pointed

out by Yu (2012), Davezies and Le Barbanchon (2014), and Yanagi (2014).

Our conjecture is that Lemmas 1 and 2 may imply that the RD estimand based on the

observables identifies a LATE parameter. The following subsection establishes this conjecture.

3.3 Identifying a local weighted average treatment effect

We present the main theorem showing that τ∗ identifies a local weighted average treatment

effect (LWATE) parameter. To this end, we introduce a condition for the measurement error of

Y .

Assumption 7 (Y ’s error). E(UY |G = g, V = ·, X = ·) is continuous on SV X for any g = 0, 1.

Assumption 7 restricts the smoothness of the conditional mean of the measurement error for

Y . In particular, it requires that the conditional mean is continuous in X near the cutoff. It is

similar to Assumption 4 for the measurement error on T . Assumption 7 allows the measurement

error to be dependent of the true variables as long as the smoothness holds. We note that UY

does not require the probability mass at zero unlike UX , but we allow such a possibility.

We provide the main theorem for our identification.

Theorem 1. Suppose that Assumptions 1–7 are satisfied. Then τ∗ identifies a local weighted

average treatment effect:

τ∗ =
E(Y |G = 0, X = 0+)− E(Y |G = 0, X = 0−)

E(T |G = 0, X = 0+)− E(T |G = 0, X = 0−)

= E(β|C,G = 0, X = 0)

=

∫
b · ψ(b)dFβ|C,X=0(b),

where ψ(·) is a weight function defined as

ψ(b) :=
P (G = 0|C,X = 0, β = b)

P (G = 0|C,X = 0)

=
P (G = 0|C,X = 0, β = b)∫

P (G = 0|C,X = 0, β = b′)dFβ|C,X=0(b′)
.

Theorem 1 shows that τ∗ identifies the average treatment effect for the compliers at the

cutoff conditional on G = 0. It also shows that the parameter is equal to the weighted average

of the treatment effect for the compliers at the cutoff. In this sense, the standard RD estimand
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based on the possibly mismeasured observables identifies a local weighted average treatment

effect. Remarkably, if X does not contain measurement error, then τ∗ is equal to the standard

RD LATE irrespective of the presence of the measurement error for Y and T . Accordingly,

Theorem 1 implies that an accurate record of X is particularly important in RD applications.

The weight function ψ(·) depends on the conditional probabilities of no measurement er-

ror for the assignment variable. The weight function is not constant if the treatment effect β

is dependent of the measurement error for X. Therefore, the LWATE is not identical to the

standard RD LATE parameter in general. This result points out that econometricians should

be careful in interpreting estimates in RD designs in which the assignment variable may con-

tain nonclassical measurement error. However, the estimates continue to manifest an averaged

treatment effect for a subpopulation.

The LWATE is equal to the standard RD LATE parameter if β and T̃ are independent of

G conditional on X = 0. This result is consistent with the identifiation analysis developed in

Battistin et al. (2009). This situation would be achieved when the assignment value for the

individual is correctly reported regardless of his/her treatment effect and potential treatment

status. In particular, the LWATE is identical to the standard RD LATE and the average

treatment effect at the cutoff if the treatment effect is homogeneous across economic units at

the cutoff, that is, if β is constant at the cutoff.

Although the LWATE is not identical to the standard RD LATE, the LWATE may tell us

the sign of the standard RD LATE or that of the average treatment effect. For example, the

sign of the LWATE is equal to that of the standard RD LATE if β for the compliers is positive

(or negative) almost surely conditional on X = 0. More generally, we could examine the sign

of the standard RD LATE under some conditions on β and ψ(·). Therefore, identifying the

LWATE can provide econometricians considerably meaningful policy implications if economic

theory can give information on β and/or ψ(·).

Theorem 1 also implies the intuition that the LWATE can be close to the standard RD LATE

if the dependence between the measurement error UX and the individual treatment effect β is

weak. If the dependence between UX and β is considerably weak, then ψ(b) would be relatively

insensitive to the value of b. Therefore, the LWATE estimate could be close to the standard

RD LATE estimate in such cases.
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4 Testable implication

This section discusses the testable implication led by the identification conditions introduced in

the previous section.

The validity of RD designs is often examined by testing whether economic units can perfectly

manipulate their assignment values (see, e.g., Lee and Lemieux, 2010). To investigate the

presence of such manipulation, in the spirit of Lee (2008) and McCrary (2008), the analyses

based on RD designs often examine the continuity of the density of the assignment variable.

The following theorem shows that testing the continuity of the observed assignment variable

is meaningful even when the assignement variable contains nonclassical measurement error.

Theorem 2. Under Assumptions 1, 2, and 3, fX∗(·) is continuous on SX∗.

Theorem 2 shows that the density of the observable assignment variable is continuous on

the support under the identification conditions. In particular, the density must be continuous

at the cutoff point. This implies that the discontinuous density of the assignment variable

indicates the invalidity of some identification conditions. Accordingly, McCrary’s continuous

density test is justified even in the presence of measurement error for the assignment variable.

Thus, econometricians should examine the continuity of the density of the observable assignment

variable even when the assignment variable may contain measurement error. As usual, the test

can be conducted with methdologies developed by McCrary (2008) and Otsu et al. (2013).

5 Conclusion

This paper develops an identification analysis in RD designs in which each observable can

contain measurement error. Our analysis allows nonclassical measurement error in the sense

that the measurement error can be arbitrarily dependent of the unobservables as long as the

joint distribution satisfies a few plausible smoothness conditions.

We provide a set of identification conditions under which the standard RD estimand based

on the possibly mismeasured observables identifies a local weighted average treatment effect

(LWATE). The weight depends on the conditional probability that the assignment variable

for the complier is correctly reported. The key identifying conditions are a smooth density

condition and the positive probability that the assignment variable for the complier can be

observed without measurement error near the cutoff point. We discuss situations under which
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the LWATE provides meaningful information on the standard RD local average treatment effect

(LATE) parameter.

We also show that the continuous density of the possibly mismeasured assignment variable

is a testable implication for our identification. This justifies McCrary’s continuous density test

even when the assignment variable contains nonclassical measurement error.

Several extentions of the analysis in this paper would be interesting. First, identification

of distributional treatment effects such as quantile treatment effects (Frandsen et al., 2012)

may be possible in RD designs with nonclassical measurement error. Second, identification of

a treatment effect derivative parameter (Dong and Lewbel, 2014) may be acheived even in our

setting with stronger smoothness conditions. Third, we may be able to establish identification

of a LATE parameter in RD designs with measurement error where the conditional treated

probability is not discontinuous but kinked (Dong, 2015b).

A Appendix

This appendix presents the proofs of the lemmas and the theorems stated in the main body of

the paper and the technical lemmas.

A.1 Proofs of the lemmas and the theorems

A.1.1 Proof of Lemma 1

We first show statement (i). Consider any t̃ ∈ {0, 1}2. Bayes’ theorem leads to

P (T̃ = t̃|G = 0, X∗ = x∗) = P (T̃ = t̃|G = 0, X = x∗)

=
P (G = 0|T̃ = t̃, X = x∗)P (T̃ = t̃|X = x∗)

P (G = 0|X = x∗)
.

Because P (G = 0|T̃ = t̃, X = ·) and P (G = 0|X = ·) are continuous at 0 by Lemma A4 and

P (T̃ = t̃|X = ·) is continuous at 0 by Lemma A3, statement (i) holds.

We next show statement (ii). For any t ∈ {0, 1} and t̃ ∈ {0, 1}2, we have

E(Yt|G = 0, T̃ = t̃, X∗ = x∗)

=E(Yt|G = 0, T̃ = t̃, X = x∗)

=

∫
ytdFYt|G=0,T̃=t̃,X=x∗(yt)
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=

∫
yt
P (G = 0|T̃ = t̃, X = x∗, Yt = yt)P (T̃ = t̃|X = x∗, Yt = yt)fX|Yt=yt(x

∗)

P (G = 0|T̃ = t̃, X = x∗)P (T̃ = t̃|X = x∗)fX(x∗)
dFYt(yt),

where the last equality follows from Bayes’ theorem. We note that P (G = 0|T̃ = t̃, X = ·, Yt = ·)

and P (G = 0|T̃ = t̃, X = ·) are continuous by Lemma A4, P (T̃ = t̃|X = ·, Yt = ·) and

P (T̃ = t̃|X = ·) are continuous by Lemma A3, and fX|Yt=·(·) and fX(·) are continuous by

Lemma A2. We thus have the desired result by Lemma A1.

2

A.1.2 Proof of Lemma 2

It holds that

E(T ∗|X∗ = x∗) = E(T |X∗ = x∗) + E(UT |X∗ = x∗).

E(UT |X∗ = ·) is continuous at 0 by Lemma A7. The first equailty of the statement is thus

established if we show that

E(T |X∗ = 0+)− E(T |X∗ = 0−)

=
(
E(T |G = 0, X = 0+)− E(T |G = 0, X = 0−)

)
P (G = 0|X∗ = 0).

(2)

The law of iterated expectations implies that

E(T |X∗ = x∗)

=E(T |G = 0, X∗ = x∗)P (G = 0|X∗ = x∗) + E(T |G ̸= 0, X∗ = x∗)P (G ̸= 0|X∗ = x∗)

=E(T |G = 0, X = x∗)P (G = 0|X∗ = x∗) + E(T |G ̸= 0, X∗ = x∗)P (G ̸= 0|X∗ = x∗).

The continuity of P (G = 0|X∗ = ·) and P (G ̸= 0|X∗ = ·) = 1−P (G = 0|X∗ = ·) at 0 is shown

by Lemma A6. The continuity of E(T |G ̸= 0, X∗ = ·) at 0 is shown by Lemma A9. Therefore,

(2) holds.

Next, we show the second equality of the statement. To this end, it suffices to show that

E(T |G = 0, X = 0+)− E(T |G = 0, X = 0−) = P (C|G = 0, X = 0). (3)
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For any arbitrary small δ > 0, we have

E(T |G = 0, X = δ) =P (T = 1|G = 0, X = δ)

=P (T1 = 1|G = 0, X = δ)

=P (T0 = 0, T1 = 1|G = 0, X = δ) + P (T0 = 1, T1 = 1|G = 0, X = δ)

=P (C|G = 0, X = δ) + P (A|G = 0, X = δ),

and

E(T |G = 0, X = −δ) =P (T = 1|G = 0, X = −δ)

=P (T0 = 1|G = 0, X = −δ)

=P (T0 = 1, T1 = 0|G = 0, X = −δ) + P (T0 = 1, T1 = 1|G = 0, X = −δ)

=P (D|G = 0, X = −δ) + P (A|G = 0, X = −δ)

=P (A|G = 0, X = −δ),

where the last equality follows from Assumption 6. Therefore, we have proven (3) by the

continuity of P (A|G = 0, X = ·) and P (C|G = 0, X = ·) at 0 which is implied by Lemma 1.

We show the inequality in the statement. Bayes’ theorem leads to

P (C|G = 0, X = 0) =
P (G = 0|C,X = 0)P (C|X = 0)

P (G = 0|X = 0)

=
P (G = 0|C,X = 0)(E(T |X = 0+)−E(T |X = 0−))

P (G = 0|X = 0)
,

because the law of iterated expectations, Lemma A3, and Assumption 6 mean that

E(T |X = 0+)− E(T |X = 0−) =P (T1 = 1|X = 0+)− P (T0 = 1|X = 0−)

=P (C|X = 0+) + P (A|X = 0+)− (P (D|X = 0−) + P (A|X = 0−))

=P (C|X = 0).

We thus have P (C|G = 0, X = 0) > 0 under Assumptions 1 and 5. We also note that

P (G = 0|X∗ = 0) = P (G = 0|X = 0)
fX(0)

fX∗(0)
> 0,
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by Assumptions 1 and 2. Therefore, we have the desired result.

2

A.1.3 Proof of Theorem 1

We first note that the law of iterated expectations leads to

E(Y ∗|X∗ = x∗)

=E(Y |X∗ = x∗) + E(UY |X∗ = x∗)

=E(Y |G = 0, X = x∗)P (G = 0|X∗ = x∗) + E(Y |G ̸= 0, X∗ = x∗)P (G ̸= 0|X∗ = x∗)

+ E(UY |X∗ = x∗).

The continuity of P (G = 0|X∗ = ·), P (G ̸= 0|X∗ = ·), E(Y |G ̸= 0, X∗ = ·), and E(UY |X∗ = ·)

at 0 is shown by Lemmas A6, A8, and A10. We thus have

E(Y ∗|X∗ = 0+)− E(Y ∗|X∗ = 0−)

=(E(Y |G = 0, X = 0+)− E(Y |G = 0, X = 0−))P (G = 0|X∗ = 0).

Therefore, it holds that

τ∗ =
E(Y |G = 0, X = 0+)−E(Y |G = 0, X = 0−)

E(T |G = 0, X = 0+)−E(T |G = 0, X = 0−)

=
E(Y |G = 0, X = 0+)− E(Y |G = 0, X = 0−)

P (C|G = 0, X = 0)
,

(4)

by Lemma 2. The first line shows the first equality in the statement.

To indicate the second equality of the statement, we show that the numerator in the last

line of (4) equals to E(Y1 − Y0|C,G = 0, X = 0)P (C|G = 0, X = 0). Remember that α := Y0,

β := Y1 − Y0, and Y = α+ βT . For any arbitrarily small δ > 0, we have

E(Y |G = 0, X = δ)

=E(α+ βT |G = 0, X = δ)

=E(α+ βT1|G = 0, X = δ)

=E(α|G = 0, T0 = 0, T1 = 0, X = δ)P (T0 = 0, T1 = 0|G = 0, X = δ)

+ E(α|G = 0, T0 = 1, T1 = 0, X = δ)P (T0 = 1, T1 = 0|G = 0, X = δ)
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+ E(α+ β|G = 0, T0 = 0, T1 = 1, X = δ)P (T0 = 0, T1 = 1|G = 0, X = δ)

+ E(α+ β|G = 0, T0 = 1, T1 = 1, X = δ)P (T0 = 1, T1 = 1|G = 0, X = δ)

=E(α|N,G = 0, X = δ)P (N |G = 0, X = δ) + E(α|D,G = 0, X = δ)P (D|G = 0, X = δ)

+ E(α+ β|C,G = 0, X = δ)P (C|G = 0, X = δ) + E(α+ β|A,G = 0, X = δ)P (A|G = 0, X = δ)

=E(α|N,G = 0, X = δ)P (N |G = 0, X = δ)

+ E(α+ β|C,G = 0, X = δ)P (C|G = 0, X = δ) + E(α+ β|A,G = 0, X = δ)P (A|G = 0, X = δ),

where the third equality follows from the law of iterated expectations and the last equality

follows from Assumption 6. By the same procedure, it holds that

E(Y |G = 0, X = −δ)

=E(α|N,G = 0, X = −δ)P (N |G = 0, X = −δ)

+ E(α|C,G = 0, X = −δ)P (C|G = 0, X = −δ) + E(α+ β|A,G = 0, X = −δ)P (A|G = 0, X = −δ).

Therefore, Lemma 1 leads to

E(Y |G = 0, X = 0+)− E(Y |G = 0, X = 0−) = E(β|C,G = 0, X = 0)P (C|G = 0, X = 0).

Now, we show the third equality of the statement. We have

E(β|C,G = 0, X = 0) =

∫
b dFβ|C,G=0,X=0(b)

=

∫
b · P (G = 0|C,X = 0, β = b)

P (G = 0|C,X = 0)
dFβ|C,X=0(b)

=

∫
b · ψ(b)dFβ|C,X=0(b),

where the second equality follows from Bayes’ theorem. We thus have the desired result.

2

A.1.4 Proof of Theorem 2

The statement follows immediately from Lemma A5.

2
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A.2 Technical lemmas

We first provide a technical lemma to show the continuity of functions, which is repeatedly used

in the proofs of the following lemmas.

Lemma A1. Let ϕ(·, ·) : S1 ×S2 → R be a function where S1 ⊂ Rk1 and S2 ⊂ Rk2 are compact

sets with positive integers k1 and k2. Suppose that ϕ(·, ·) is continuous on S1 × S2. Further,

suppose that α(·) is a measure satisfying 0 < α(S3) < ∞ with a set S3 ⊂ S2. It holds that

m(·) :=
∫
S3
ϕ(·, u)dα(u) is continuous on S1.

Proof. For any d1, d2 ∈ S1, the modulus inequality leads to

|m(d1)−m(d2)| =
∣∣∣∣∫

S3

ϕ(d1, u)dα(u)−
∫
S3

ϕ(d2, u)dα(u)

∣∣∣∣
≤

∫
S3

|ϕ(d1, u)− ϕ(d2, u)|dα(u).
(5)

Because ϕ(·, ·) is continuous on the compact set S1 × S2, ϕ(·, ·) is uniformly continuous on

S1 × S2. It thus holds that, for any ε > 0, there exists some δ > 0 such that ∥d1 − d2∥ < δ

means |ϕ(d1, u)− ϕ(d2, u)| < ε/α(S3) for every u ∈ S3 (note that δ and ε do not depend on u).

This fact and (5) imply that, for any ε > 0, there is some δ > 0 such that ∥d1− d2∥ < δ implies

|m(d1)−m(d2)| < ε.

Suppose that W1 is a sub-vector of (V,X, Y0, Y1) and that W2 is the vector of the remaining

elements of (V,X, Y0, Y1) excluded from W1. For example, if W1 = (V,X), then W2 = (Y0, Y1)

and we write (V,X) = (v, x) and (Y0, Y1) = (y0, y1) as W1 = w1 and W2 = w2, respectively, and

we denote SV X and SY0Y1 as SW1 and SW2 , respectively. The supports SW1 and SW2 are compact

sets under Assumption 3. We note that we allow the situation in which W1 = (V,X, Y0, Y1) and

W2 is empty. In this case, the integration with respect to W2 developed below can be omitted.

Lemma A2. Suppose that Assumptions 2 and 3 are satisfied. Then, (i) fW1|T̃=t̃(·) and fW1(·)

are continuous on SW1 for any t̃ ∈ {0, 1}2 and (ii) fW1|T̃=t̃,W2=·(·) and fW1|W2=·(·) are contin-

uous on SW1W2 for any t̃ ∈ {0, 1}2.

Proof. Consider any t̃ ∈ {0, 1}2. For statement (i), we note that

fW1|T̃=t̃(w1) =

∫
fW1W2|T̃=t̃(w1, w2)dλ(w2).
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Thus, fW1|T̃=t̃(·) is continuous by Lemma A1 under Assumptions 2 and 3. We then note that

fW1(w1) =
∑

t̃∈{0,1}2
fW1|T̃=t̃(w1)P (T̃ = t̃).

Thus, the continuity of fW1(·) also holds by the continuity of fW1|T̃=t̃(·).

For statement (ii), we note that

fW1|T̃=t̃,W2=w2
(w1) =

fV XỸ |T̃=t̃(v, x, ỹ)

fW2|T̃=t̃(w2)
,

fW1|W2=w2
(w1) =

fV XỸ (v, x, ỹ)

fW2(w2)
.

Therefore, statement (ii) is established by statement (i).

Lemma A3. Under Assumptions 2 and 3, P (T̃ = t̃|W1 = ·) is continuous on SW1 for any

t̃ ∈ {0, 1}2.

Proof. Consider any t̃ ∈ {0, 1}2. Bayes’ theorem leads to

P (T̃ = t̃|W1 = w1) =
fW1|T̃=t̃(w1)P (T̃ = t̃)

fW1(w1)
.

Therefore, the statement holds by Lemma A2.

Lemma A4. Suppose that Assumptions 1, 2, and 3 hold. Then, (i) P (G = 0|T̃ = t̃,W1 = ·) is

continuous on SW1 for any t̃ ∈ {0, 1}2 and (ii) P (G = 0|W1 = ·) is continuous on SW1.

Proof. We first prove statement (i). Consider any t̃ ∈ {0, 1}2. We note that

P (G = 0|T̃ = t̃,W1 = w1) =

∫
P (G = 0|T̃ = t̃,W1 = w1,W2 = w2)fW2|T̃=t̃,W1=w1

(w2)dλ(w2).

Therefore, the statement holds by Lemmas A1 and A2 under Assumptions 1 and 3.

Statement (ii) follows immediately from statement (i) and Lemma A3 because

P (G = 0|W1 = w1) =
∑

t̃∈{0,1}2
P (G = 0|T̃ = t̃,W1 = w1)P (T̃ = t̃|W1 = w1).

Suppose that Q1 is a sub-vector of (V, Y0, Y1) at least including V and that Q2 is the vector
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of the elements of (V, Y0, Y1) excluded from Q1. For example, if Q1 = V , then Q2 = (Y0, Y1)

and we write V = v and (Y0, Y1) = (y0, y1) as Q1 = q1 and Q2 = q2, respectively, and we denote

SV and SY0Y1 as SQ1 and SQ2 , respectively. The supports SQ1 and SQ2 are compact sets under

Assumption 3. Note that we allow the situation in which Q1 = (V, Y0, Y1) and Q2 is empty. In

such a situation, the integration with respect to Q2 developed below can be omitted.

Lemma A5. Suppose that Assumptions 1, 2, and 3 hold. Then, (i) fX∗|Q1=·(·) is continuous

on SQ1X and (ii) fX∗(·) is continuous on SX .

Proof. We first prove statement (i). It holds that

fX∗|Q1=q1(x
∗)

=fX∗|G=0,Q1=q1(x
∗)P (G = 0|Q1 = q1) + fX∗|G ̸=0,Q1=q1(x

∗)P (G ̸= 0|Q1 = q1)

=fX|G=0,Q1=q1(x
∗)P (G = 0|Q1 = q1) + fX|G̸=0,Q1=q1(x

∗ − v)P (G ̸= 0|Q1 = q1)

=P (G = 0|X = x∗, Q1 = q1)
fX|Q1=q1(x

∗)

P (G = 0|Q1 = q1)
P (G = 0|Q1 = q1)

+ P (G ̸= 0|X = x∗ − v,Q1 = q1)
fX|Q1=q1(x

∗ − v)

P (G ̸= 0|Q1 = q1)
P (G ̸= 0|Q1 = q1)

=P (G = 0|X = x∗, Q1 = q1)fX|Q1=q1(x
∗) + P (G ̸= 0|X = x∗ − v,Q1 = q1)fX|Q1=q1(x

∗ − v),

where the third equality follows from Bayes’ theorem. Therefore, we have statement (i) by

Lemmas A2 and A4.

For statement (ii), we have

fX∗(x∗) =

∫
fX∗|Q1=q1(x

∗)dFQ1(q1),

and the continuity of fX∗(·) holds by statement (i) and Lemma A1 under Assumption 3.

Lemma A6. Suppose that Assumptions 1, 2, and 3 hold. Then, (i) P (G = 0|Q1 = ·, X∗ = ·)

is continuous on SQ1X and (ii) P (G = 0|X∗ = ·) is continuous on SX .

Proof. For statement (i), Bayes’ theorem leads to

P (G = 0|Q1 = q1, X
∗ = x∗) = P (G = 0|Q1 = q1, X = x∗)

fX|Q1=q1(x
∗)

fX∗|Q1=q1(x
∗)
.

Thus, the statement holds because P (G = 0|Q1 = ·, X = ·) is continuous by Lemma A4,

fX|Q1=·(·) is continuous by Lemma A2, and fX∗|Q1=·(·) is continuous by Lemma A5.
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For statement (ii), we note that

P (G = 0|X∗ = x∗) =

∫
P (G = 0|Q1 = q1, X

∗ = x∗)dFQ1|X∗=x∗(q1)

=

∫
P (G = 0|Q1 = q1, X

∗ = x∗)
fX∗|Q1=q1(x

∗)

fX∗(x∗)
dFQ1(q1),

where the second equality follows from Bayes’ theorem. The statement holds by statement (i)

and Lemmas A1 and A5 under Assumption 3.

Lemma A7. Under Assumptions 1, 2, 3, and 4, E(UT |X∗ = ·) is continuous on SX .

Proof. We first note that

E(UT |X∗ = x∗) = P (UT = 1|X∗ = x∗)− P (UT = −1|X∗ = x∗).

We thus focus on showing the continuity of P (UT = uT |X∗ = ·) for uT ∈ {−1, 1}.

For any uT ∈ {−1, 1}, we have

P (UT = uT |X∗ = x∗) =P (UT = uT |G = 0, X = x∗)P (G = 0|X∗ = x∗)

+ P (UT = uT |G ̸= 0, X∗ = x∗)P (G ̸= 0|X∗ = x∗).

Because P (G = 0|X∗ = ·) and P (G ̸= 0|X∗ = ·) are continuous by Lemma A6, we shall show

the continuity of P (UT = uT |G = 0, X = ·) and P (UT = uT |G ̸= 0, X∗ = ·) below.

We have

P (UT = uT |G = 0, X = x∗)

=

∫
P (UT = uT |G = 0, V = v,X = x∗)dFV |G=0,X=x∗(v)

=

∫
P (UT = uT |G = 0, V = v,X = x∗)

P (G = 0|V = v,X = x∗)fX|V=v(x
∗)

P (G = 0|X = x∗)fX(x∗)
dFV (v).

Because P (G = 0|V = ·, X = ·) and P (G = 0|X = ·) are continuous by Lemma A4 and

fX|V=·(·) and fX(·) are continuous by Lemma A2, P (UT = uT |G = 0, X = ·) is continuous by

Lemma A1 under Assumptions 3 and 4. By the same procedure, we have

P (UT = uT |G ̸= 0, X∗ = x∗)

=

∫
P (UT = uT |G ̸= 0, V = v,X = x∗ − v)

P (G = 0|V = v,X∗ = x∗)fX∗|V=v(x
∗)

P (G = 0|X∗ = x∗)fX∗(x∗)
dFV (v).
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Thus, P (UT = uT |G ̸= 0, X∗ = ·) is continuous by Lemmas A1, A5, and A6 under Assumptions

3 and 4.

Therefore, we have shown the desired result.

Lemma A8. Under Assumptions 1, 2, 3, and 7, E(UY |X∗ = ·) is continuous on SX .

Proof. The law of iterated expectations leads to

E(UY |X∗ = x∗) =E(UY |G = 0, X = x∗)P (G = 0|X∗ = x∗)

+ E(UY |G ̸= 0, X∗ = x∗)P (G ̸= 0|X∗ = x∗).

Because P (G = 0|X∗ = ·) and P (G ̸= 0|X∗ = ·) are continuous by Lemma A6, we focus on

proving the continuity of E(UY |G = 0, X = ·) and E(UY |G ̸= 0, X∗ = ·).

The law of iterated expectations and Bayes’ theorem imply

E(UY |G = 0, X = x∗) =

∫
E(UY |G = 0, V = v,X = x∗)dFV |G=0,X=x∗(v)

=

∫
E(UY |G = 0, V = v,X = x∗)

P (G = 0|V = v,X = x∗)fX|V=v(x
∗)

P (G = 0|X = x∗)fX(x∗)
dFV (v).

We thus have the continuity of E(UY |G = 0, X = ·) by Lemmas A1, A2, and A4 under

Assumptions 3 and 7. Similarly, we have

E(UY |G ̸= 0, X∗ = x∗)

=

∫
E(UY |G ̸= 0, V = v,X∗ = x∗)dFV |G ̸=0,X∗=x∗(v)

=

∫
E(UY |G ̸= 0, V = v,X = x∗ − v)

P (G ̸= 0|V = v,X∗ = x∗)fX∗|V=v(x
∗)

P (G ̸= 0|X∗ = x∗)fX∗(x∗)
dFV (v).

Thus, E(UY |G ̸= 0, X∗ = ·) is continuous by Lemmas A1, A5, and A6 under Assumptions 3

and 7.

Therefore, we have proven the statement.

Lemma A9. Under Assumptions 1, 2, and 3, E(T |G ̸= 0, X∗ = ·) is continuous on SX .

Proof. Suppose that vl and vu are the lower and upper bounds of SV , respectively. The law of
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iterated expectations and Bayes’ theorem lead to

E(T |G ̸= 0, X∗ = x∗)

=

∫
E(T |G ̸= 0, V = v,X∗ = x∗)dFV |G ̸=0,X∗=x∗(v)

=

∫
E(T |G ̸= 0, V = v,X = x∗ − v)dFV |G ̸=0,X∗=x∗(v)

=

∫ x∗

vl

E(T |G ̸= 0, V = v,X = x∗ − v)dFV |G ̸=0,X∗=x∗(v)

+

∫ vu

x∗
E(T |G ̸= 0, V = v,X = x∗ − v)dFV |G ̸=0,X∗=x∗(v)

=

∫ x∗

vl

P (T1 = 1|G ̸= 0, V = v,X = x∗ − v)
P (G ̸= 0|V = v,X∗ = x∗)fX∗|V=v(x

∗)

P (G ̸= 0|X∗ = x∗)fX∗(x∗)
dFV (v)

+

∫ vu

x∗
P (T0 = 1|G ̸= 0, V = v,X = x∗ − v)

P (G ̸= 0|V = v,X∗ = x∗)fX∗|V=v(x
∗)

P (G ̸= 0|X∗ = x∗)fX∗(x∗)
dFV (v),

where the fourth equality follows from the definition of (T0, T1). We note that for any d ∈ {0, 1}

P (Td = 1|G ̸= 0, V = v,X = x∗ − v)

=P (Td = 1|V = v,X = x∗ − v)
P (G ̸= 0|Td = 1, V = v,X = x∗ − v)

P (G ̸= 0|V = v,X = x∗ − v)
,

by Bayes’ theorem. Therefore, the statement holds by Lemmas A1, A3, A4, A5, and A6 under

Assumption 3.

Lemma A10. Under Assumptions 1, 2, and 3, E(Y |G ̸= 0, X∗ = ·) is continuous on SX .

Proof. By the same procedure in the proof of Lemma A9, we have

E(Y |G ̸= 0, X∗ = x∗)

=

∫ x∗

vl

E(Y |G ̸= 0, V = v,X = x∗ − v)
P (G ̸= 0|V = v,X∗ = x∗)fX∗|V=v(x

∗)

P (G ̸= 0|X∗ = x∗)fX∗(x∗)
dFV (v)

+

∫ vu

x∗
P (Y |G ̸= 0, V = v,X = x∗ − v)

P (G ̸= 0|V = v,X∗ = x∗)fX∗|V=v(x
∗)

P (G ̸= 0|X∗ = x∗)fX∗(x∗)
dFV (v).

All the above terms except E(Y |G ̸= 0, V = v,X = x∗ − v) are continuous by Lemmas A3, A4,

A5, and A6. Thus, if we show the continuity of E(Y |G ̸= 0, V = v,X = x∗ − v) for v ∈ [vl, x
∗)

and v ∈ (x∗, vu], we have the desired result by Lemma A1 under Assumption 3.

We expand E(Y |G ̸= 0, V = v,X = x∗−v). For v ∈ [vl, x
∗), the law of iterated expectations
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leads to

E(Y |G ̸= 0, V = v,X = x∗ − v)

=
∑

t̃∈{0,1}2
E(Y |G ̸= 0, T̃ = t̃, V = v,X = x∗ − v)P (T̃ = t̃|G ̸= 0, V = v,X = x∗ − v)

=E(Y0|N,G ̸= 0, V = v,X = x∗ − v)P (N |G ̸= 0, V = v,X = x∗ − v)

+E(Y1|A,G ̸= 0, V = v,X = x∗ − v)P (A|G ̸= 0, V = v,X = x∗ − v)

+E(Y1|C,G ̸= 0, V = v,X = x∗ − v)P (C|G ̸= 0, V = v,X = x∗ − v)

+E(Y0|D,G ̸= 0, V = v,X = x∗ − v)P (D|G ̸= 0, V = v,X = x∗ − v).

For each (t, R) ∈ {(0, N), (1, A), (1, C), (0, D)}, we have

E(Yt|R,G ̸= 0, V = v,X = x∗ − v)

=

∫
ytdFYt|R,G ̸=0,V=v,X=x∗−v(yt)

=

∫
yt
P (G ̸= 0|R, V = v,X = x∗ − v, Yt = yt)P (R|V = v,X = x∗ − v, Yt = yt)

P (G ̸= 0|R, V = v,X = x∗ − v)P (R|V = v,X = x∗ − v)
dFYt(yt),

which is continuous in (x∗, v) by Lemmas A1, A3, and A4 under Assumption 3. In addition,

Bayes’ theorem leads to

P (R|G ̸= 0, V = v,X = x∗ − v)

=
P (G ̸= 0|R, V = v,X = x∗ − v)P (R|V = v,X = x∗ − v)

P (G ̸= 0|V = v,X = x∗ − v)
,

which is continuous in (x∗, v) by Lemmas A3 and A4. Thus, E(Y |G ̸= 0, V = v,X = x∗ − v) is

continuous in (v, x∗) for v ∈ [vl, x
∗). Similarly, we can show that E(Y |G ̸= 0, V = v,X = x∗−v)

is continuous in (x∗, v) for v ∈ (x∗, vu].

Therefore, we have shown the desired result.
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