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Abstract

This paper studies stable and (one-sided) strategy-proof matching rules in many-
to-one matching markets with contracts. First, the number of such rules is shown to be
at most one. Second, the doctor-optimal stable rule, whenever it exists, is shown to be
the unique candidate for a stable and strategy-proof rule. Third, a stable and strategy-
proof rule, when exists, is shown to be second-best optimal for doctor welfare, in the
sense that no individually-rational and strategy-proof rule can dominate it. This last
result is further generalized to non-wasteful and strategy-proof rules. Notably, all
those results are established without any substitutes conditions on hospitals’ choice
functions, and hence, the proofs do not rely on the “rural hospital” theorem. We also
show by example that the outcomes of a stable and strategy-proof rule do not always
coincide with those of the cumulative offer process; hence, the above results hold not
because the cumulative offer process is the only candidate for stable and strategy-
proof rules.
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1 Introduction

Since its birth by Gale and Shapley (1962), the theory of two-sided matching markets

has been centered around the deferred acceptance algorithm, which is known to satisfy a

number of desiderata. Specifically, in the classic setup, it is not only stable but also (one-

sided) strategy-proof (Dubins and Freedman, 1981; Roth, 1982), and moreover, it is the

unique such rule (Alcalde and Barberà, 1994). More recently, Hatfield and Milgrom (2005)

propose a more general model of matching with contracts and, among many other things,

verify that the deferred acceptance is stable and strategy-proof under certain conditions,

called substitutable contracts and the law of aggregated demand.1 With those conditions,

Sakai (2011) also generalizes the uniqueness result and hence, the study of stable and

strategy-proof rules is necessarily the study of the deferred acceptance. At the same time,

however, the rapid developments of the matching with contracts literature has started

to cover, in both theory and practice, the cases that violate those pre-known conditions

for the deferred acceptance to be stable and/or strategy-proof (e.g., Dimakopoulos and

Heller, 2014; Hatfield and Kojima, 2010; Kominers and Sönmez, 2013, 2014).

With those developments in mind, the purpose of this paper is to study stable and

(one-sided) strategy-proof rules as generally as possible, and to disentangle some nature

of such rules that arises purely from the two properties. Specifically, our results only

require the choice functions on the hospital side to satisfy the irrelevance of rejected contracts

(henceforth, IRC) condition, which is a very mild rationality requirement, but not any

kind of “substitutes” condition.

The first and second results (Theorems 1–2) are on the uniqueness of stable and strategy-

proof rules and extend the existing results mentioned above: Theorem 1 states that the

number of such rules is at most one in general (as long as the IRC condition is satis-

1See Definitions 1 and 4 in Appendix A for the definitions of those conditions.
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fied), although there may or may not exist one without additional restrictions. Further,

Theorem 2 establishes that the doctor-optimal stable rule is the unique candidate for a

stable and strategy-proof rule, whenever it is well-defined, although it may or may not

be strategy-proof without additional assumptions. From the technical point of view, it

is noteworthy that our proofs of Theorems 1–2 do not rely on the rural hospital theorem,

which has been playing a central role in the existing studies on stable and strategy-proof

rules.2 Instead, our proofs exploit a weaker property of stable allocations, which follows

solely from the IRC condition, and shed new light on the fundamental tension between

stability and strategy-proofness.

Our last main result, Theorem 3, is on the constrained optimality of a stable and

strategy-proof rule. Namely, we show (again, under the IRC condition) that a stable

and strategy-proof rule, if exists, is never dominated in terms of doctor welfare by any

other individually rational and strategy-proof rule. Further, we also show in an appendix

that the same holds true even if stability is weakened to non-wastefulness in the above

statement (Theorem 4). These theorems (partially) generalize similar existing results in

the school choice literature (e.g., Abdulkadiroglu et al., 2009; Kesten, 2010; Kesten and

Kurino, 2013).

The rest of this paper is organized as follows. Section 2 describes the model and in-

troduces key concepts. Section 3 provides the results. Section 4 concludes. Appendix A

introduces a number of definitions that are omitted in the main text but useful to relate

our results to the literature. Appendix B presents two variants of Theorem 3. Appendix

C contains examples.

2See the discussion after Corollary 2 for details.
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2 Preliminaries

We study the standard setting of a many-to-one matching market with contracts. Let

D and H be finite sets of doctors and hospitals, respectively. The finite set of possible

contracts is given by X ⊂ D × H × Θ for some Θ.3 For each contract x ∈ X, let d (x) and

h (x) be its projections onto D and H, i.e., x = (d (x) , h (x) , θ) for some θ ∈ Θ. In other

words, x is a bilateral contract between d (x) ∈ D and h (x) ∈ H.

A subset X′ ⊂ X of contracts is said to be an allocation if it includes at most one contract

for each doctor, i.e., if x, x′ ∈ X′ and x �= x′ imply d (x) �= d (x′). The set of all possible

allocations is denoted by X ⊂ 2X. For each allocation X′ ∈ X and doctor d ∈ D, let

x (d, X′) denote the contract that X′ assigns to d; i.e., x (d, X′) = x if x ∈ X′ and d (x) = d.

If there is no such contract in X′, doctor d is said to be assigned a null-contract and we

write x (d, X′) = ∅. Similarly, let X (h, X′) = {x ∈ X′ : h (x) = h} be the set of (non-null)

contracts that X′ assigns to hospital h ∈ H.

Each doctor d ∈ D has a strict preference relation �d over {x ∈ X : d (x) = d} ∪ {∅}.

The domain of all possible preferences for doctor d is denoted by Pd. Given his preference

relation �d, a non-null contract x is said to be acceptable to doctor d if x �d ∅.4 The set of

acceptable contracts to doctor d, as a function of �d, is given by

Ac(�d) := {x ∈ X : d (x) = d and x �d ∅}.

The profile of the doctors’ preference relations is denoted by �D = (�d)d∈D. Let PD :=

∏d∈D Pd be the domain of all possible preference profiles. Each hospital h ∈ H has

a choice function Ch : 2X → X such that for all X′ ⊂ X, (i) Ch(X′) ∈ 2X′ ∩ X and

(ii) h (x) = h for all x ∈ Ch(X′). Throughout the paper, we assume that the choice func-

3For example, Θ can be interpreted as the set of possible wage levels (Kelso and Crawford, 1982) and/or
job descriptions (Roth, 1984).

4Note that x �d ∅ implies d (x) = d since �d is defined over {x ∈ X : d (x) = d} ∪ {∅}.
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tions satisfy the following mild requirement: Hospital h’s choice function Ch(·) is said to

satisfy the irrelevance of rejected contracts (henceforth, IRC) condition if x �∈ Ch(X′ ∪ {x})
implies Ch(X′ ∪ {x}) = Ch(X′) for all X′ ⊂ X and x ∈ X.5 The profile of the hospitals’

choice functions is denoted by CH(·) = (Ch(·))h∈H.

Given �D and CH(·), we define the following concepts on X : An allocation X′ ∈ X is

said to be individually rational if (i) x(d; X′) �d ∅ for all d ∈ D, and (ii) Ch(X′) = X (h, X′)

for all h ∈ H. A pair of a hospital h ∈ H and a subset X′′ ⊂ X of contracts is said to block

an allocation X′ if (i) Ch(X′ ∪ X′′) = X′′ �= Ch(X′) and (ii) x (d, Ch(X′ ∪ X′′)) �d x (d, X′)

for all d ∈ {d (x)}x∈Ch(X′∪X′′). An allocation X′ is said to be stable if it is individually

rational and not blocked by any (h, X′′) ∈ H × 2X. An allocation X′ is said to strictly

dominate another allocation X′′ �= X′ if x (d, X′) �d x (d, X′′) for all d ∈ D.6 A stable

allocation X∗ is said to be doctor-optimal if it strictly dominates any other stable allocation.

Given CH(·) as well as (D, H, X), a matching rule is a mapping f : PD → X , which

associates each possible preference profile of doctors with an allocation. A rule f (·) is

said to be stable (resp. individually rational) if for all �D ∈ PD, its output f (�D) is sta-

ble (resp. individually rational) with respect to (CH(·),�D). Similarly, the doctor-optimal

stable rule, denoted by X∗(·) if exists, is a rule such that for all �D ∈ PD, its output

X∗(�D) is the doctor-optimal stable allocation with respect to (CH(·),�D). A rule f (·)
is said to strictly dominate another rule g(·) �= f (·) if x (d, f (�D)) �d x (d, g(�D)) for all

d ∈ D and �D ∈ PD.7 Finally, a rule f (·) is said to be strategy-proof if x (d, f (�D)) �d

x
(

d, f
(
�′

d,�D−{d}
))

for all d ∈ D, �D ∈ PD, and �′
d ∈ Pd, where �D−{d} = (�d′)d′∈D−{d}.

5Aygün and Sönmez (2012, 2013) point out the importance of this condition, which is implicitly assumed
in Hatfield and Milgrom (2005) and Hatfield and Kojima (2010). Note that this condition is satisfied if
a choice function is induced by a strict preference over subsets of contracts (as in some of the examples
below).

6Note that X′ �= X′′ and x (d, X′) �d x (d, X′′) for all d imply x (d′, X′) �d′ x (d′, X′′) for some d′.
7Again, g(·) �= f (·) implies x (d′, f (�D)) �d′ x (d′, g(�D)) for some d′ and �D if f (·) strictly dominates

g(·).
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3 Results

To start our analysis, we introduce the following weaker notion of blocking coalitions: We

say that a pair (h, X′′) ∈ H × 2X weakly blocks an allocation X′ if (i) Ch(X′ ∪ X′′) �= Ch(X′)

and (ii) x (d, Ch(X′ ∪ X′′)) �d x (d, X′) for all d ∈ {d (x)}x∈Ch(X′∪X′′). This definition is

weak in that the first part does not require Ch(X′ ∪ X′′) = X′′. Under the IRC condi-

tion, however, it is straightforward to verify that the two blocking concepts are equally

effective in the following sense.

Lemma 1. Suppose that hospital h’s choice function Ch(·) satisfies the IRC condition. For any

allocation X′ ∈ X , then, there exists X′′ ⊂ X such that (h, X′′) blocks X′ if and only if there

exists X′′′ ⊂ X such that (h, X′′′) weakly blocks X′.

Proof. The “only if” part is immediate from the definitions. To see the “if” part, suppose

that (h, X′′′) weakly blocks X′, and let X′′ := Ch(X′ ∪ X′′′). Then, the IRC condition

implies Ch(X′ ∪ X′′) = Ch(X′ ∪ X′′′) = X′′ and hence, the first requirement for (h, X′′) to

block X′ is satisfied. The second requirement is also trivially satisfied by the assumption

that (h, X′′′) weakly blocks X′. �

Lemma 1 leads to the following observation, which will be the key in the proofs of

Theorems 1–2.

Lemma 2. Suppose that every hospital h ∈ H has a choice function Ch(·) satisfying the IRC

condition, and that X′ and X′′ are two distinct stable allocations at (CH,�D). Then, there exists

a doctor d ∈ D who is assigned distinct non-null contracts by X′ and X′′, i.e., ∅ �= x (d, X′) �=
x (d, X′′) �= ∅.

Proof. The proof is by contraposition. Assume the negation of the consequent, i.e.,

[
x
(
d, X′) �= x

(
d, X′′)] =⇒ [

∅ ∈ {x
(
d, X′) , x

(
d, X′′)}] , for all d ∈ D,
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where X′ and X′′ are two (possibly identical) stable allocations at (CH(·),�D). Since X′′

is stable (and thus individually rational), this implies for all d ∈ D,

[
x
(
d, X′′) �= ∅

]
=⇒ [

x
(
d, X′′) �d ∅ = x

(
d, X′) or x

(
d, X′) = x

(
d, X′′)] ,

and hence,

[
x
(
d, X′′) �= ∅

]
=⇒ [

x
(
d, X′′) �d x

(
d, X′)] .

For an arbitrary hospital h ∈ H, then, (h, X′′) satisfies the second requirement to weakly

block X′. Since (h, X′′) cannot weakly block X′ by stability and Lemma 1, it must vi-

olate the first requirement; i.e., Ch(X′ ∪ X′′) = X (h, X′) must hold. As the symmetric

arguments also imply Ch(X′ ∪ X′′) = X (h, X′′) for all h ∈ H, it follows that X (h, X′) =

X (h, X′′) for all h ∈ H and thus X′ = X′′. �

Our first main result generalizes the existing results on the uniqueness of a stable and

strategy-proof rule by Alcalde and Barberà (1994, Theorem 3) and Sakai (2011, Theorem

1). While this theorem does not require any substitutes condition, its proof depends on

Lemma 2, which in turn necessitates the IRC condition. See Example 1 in Appendix C for

a counterexample in the absence of the IRC condition.

Theorem 1. Suppose that every hospital h ∈ H has a choice function Ch(·) satisfying the IRC

condition. Then, there exists at most one stable and strategy-proof rule; i.e., if f (·) and g(·) are

both stable and strategy-proof, f (�D) = g(�D) for all �D ∈ PD.

Proof. Towards a contradiction, suppose that there exist two distinct stable and strategy-

proof rules, f (·) and g(·). Let �∗
D ∈ PD be a preference profile such that f (�∗

D) �= g (�∗
D)
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and

[
f (�D) �= g (�D) =⇒ ∑

d∈D
|Ac(�d)| ≥ ∑

d∈D
|Ac(�∗

d)|
]

for all �D ∈ PD,

which exists by assumption. Then, by Lemma 2, there must exist a doctor d∗ such that

∅ �= x (d∗, f (�∗
D)) �= x (d∗, g(�∗

D)) �= ∅. Note that this also implies |Ac(�∗
d∗)| ≥ 2.

Now, suppose without loss of generality that x (d∗, f (�∗
D)) �∗

d∗ x (d∗, g(�∗
D)), and let

�∗∗
D :=

(
�∗∗

d∗ ,�∗
D−{d∗}

)
, where �∗∗

d∗ is a preference relation of doctor d∗ such that only

x (d∗, f (�∗
D)) is acceptable, i.e., Ac(�∗∗

d∗ ) = {x (d∗, f (�∗
D))}. Notice that

x (d∗, f (�∗∗
D )) , x (d∗, g(�∗∗

D )) ∈
{

x (d∗, f (�∗
D)) ,∅

}
,

since f (·) is assumed to be stable (and hence individually rational). Then, the strategy-

proofness of f (·) and g(·) implies

x (d∗, f (�∗∗
D )) = x (d∗, f (�∗

D)) , and

∅ = x (d∗, g(�∗∗
D )) �= x (d∗, g(�∗

D)) ,

respectively, and hence, f (�∗∗
D ) �= g(�∗∗

D ). This, however, contradicts the definition of

�∗
D, since

∣∣Ac
(�∗∗

d∗
)∣∣ = 1 < 2 ≤ ∣∣Ac(�∗

d∗)
∣∣ and �∗∗

D−{d∗} = �∗
D−{d∗}, and the proof is

complete. �

Theorem 1, together with the results by Kominers and Sönmez (2013, 2014), immedi-

ately entails the following corollary.8

Corollary 1. Suppose that every hospital h ∈ H has a choice function Ch(·) that is induced

by some slot-specific priorities. Then, the cumulative offer process induces the unique stable and

8See Definitions 5 and 6 in Appendix A for the definitions of slot-specific priorities and the cumulative
offer process.
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strategy-proof rule.

Proof. In the case of slot-specific priorities, Kominers and Sönmez (2013, 2014) show that

the rule induced by the cumulative offer process is both stable and strategy-proof. The

uniqueness follows from Theorem 1. �

Following the same line of proof, we can also show that whenever it exists, the doctor-

optimal stable rule is the unique candidate for a stable and strategy rule. Note, however,

that this unique candidate may or may not be strategy-proof without additional assump-

tions.

Theorem 2. Suppose that every hospital h ∈ H has a choice function Ch(·) satisfying the IRC

condition, and that the doctor-optimal stable allocation X∗(�D) exists for all �D ∈ PD. If f (·)
is a stable and strategy-proof rule, then, f (�D) = X∗(�D) for all �D ∈ PD.

Proof. Towards a contradiction, suppose that the doctor-optimal stable rule X∗(·) is well-

defined, and that f (·) �= X∗(·) is a stable and strategy-proof rule. Let �∗
D ∈ PD be a

preference profile such that f (�∗
D) �= X∗ (�∗

D) and

[
f (�D) �= X∗ (�D) =⇒ ∑

d∈D
|Ac(�d)| ≥ ∑

d∈D
|Ac(�∗

d)|
]

for all �D ∈ PD,

which exists by assumption. Then, by Lemma 2, there must exist a doctor d∗ such that

∅ �= x (d∗, f (�∗
D)) �= x (d∗, X∗(�∗

D)) �= ∅. Note that this also implies x (d∗, X∗(�∗
D)) �∗

d∗

x (d∗, f (�∗
D)) �∗

d∗ ∅.

Now let �∗∗
D :=

(
�∗∗

d∗ ,�∗
D−{d∗}

)
, where �∗∗

d∗ is a truncation of �∗
d∗ at x (d∗, X∗(�∗

D)),

i.e., a preference relation such that

Ac (�∗∗
d∗ ) =

{
x ∈ X : x �∗

d∗ x (d∗, X∗(�∗
D))

}
,
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and

[x �∗∗
d∗ y ⇐⇒ x �∗

d∗ y] for all x, y ∈ Ac(�∗∗
d∗ ).

Notice that X∗(�∗∗
D ) = X∗(�∗

D) by construction.9 Together with the strategy-proofness

of f (·), this further implies

x (d∗, X∗(�∗∗
D )) = x (d∗, X∗(�∗

D)) �∗
d∗ x (d∗, f (�∗

D)) �∗
d∗ x (d1, f (�∗∗

D )) ,

and hence, f (�∗∗
D ) �= X∗(�∗∗

D ). This, however, contradicts the definition of �∗
D, since

Ac
(�∗∗

d∗
) ⊂ Ac

(�∗
d∗
)− {

x (d∗, f (�∗
D))

}
and �∗∗

D−{d∗} = �∗
D−{d∗}, and the proof is com-

plete. �

Along with Theorem 5 of Hatfield and Kojima (2010), Theorem 2 leads to the following

corollary.10

Corollary 2. Suppose that every hospital h ∈ H has a choice function Ch(·) satisfying the unilat-

eral substitutes condition and the IRC condition. Then, if a stable and strategy-proof rule exists,

it is induced by the doctor-proposing deferred acceptance algorithm.11

Proof. Under the supposition, a doctor-optimal stable allocation always exists and is in-

duced by the doctor-proposing deferred acceptance algorithm (Hatfield and Kojima, 2010,

Theorem 5).12 Hence, the claim immediately follows from Theorem 2. �

9To see this, note first that any stable allocation at �∗
D, including X∗(�∗

D), is also stable at �∗∗
D . For

X∗(�∗∗
D ) �= X∗(�∗

D) to hold, therefore, X∗(�∗∗
D ) cannot be stable at �∗

D. Yet, x (d∗, X∗(�∗∗
D )) = ∅ must

hold if (h, X′) blocks X∗(�∗∗
D ) at �∗

D but not at �∗∗
D . Since x (d∗, X∗(�∗

D)) �∗∗
d∗ ∅, this means that X∗(�∗∗

D )
cannot dominate X∗(�∗

D) at �∗∗
D , which is a contradiction.

10See Definition 2 in Appendix A for the definition of unilateral substitutes.
11Under the same conditions, an independent paper by Afacan (2015) characterizes the deferred accep-

tance as the unique stable rule that cannot be manipulated by “truncations,” although it may not be fully
strategy-proof.

12See also Aygün and Sönmez (2012, Thorem 5).
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Compared to the existing uniqueness results, Theorems 1–2 above are technically

novel for two related reasons. First, our proof of Theorem 1 requires no dominance rela-

tion between f (·) and g(·). Consequently, it is applicable even when the doctor-optimal

stable allocation does not always exist. In contrast, the uniqueness results by Alcalde and

Barberà (1994, Theorem 3) and Sakai (2011, Theorem 1) are established by showing any

stable rule that is strictly dominated by the doctor-optimal stable rule cannot be strategy-

proof and hence, the existence of the doctor-optimal stable rule is critical in their proofs.

Second, our proofs do not call for the rural hospital theorem either, which states that every

agent (i.e., every doctor and every hospital) signs the same number of non-null contracts

across all stable allocations. Instead we utilize Lemma 2, which could be seen as a weaker

version of the rural hospital theorem but holds true without any restrictions on CH(·)
other than the IRC condition.13 It is this distinction that makes the proof of Theorem 2

non-trivial, although its statement might look very close to the previous results.

Given the second point in the previous paragraph, one might wonder if the doctor-

optimal stable rule can be strategy-proof even when the rural hospital theorem fails to

hold. Theorem 2 would be vacuous if there is no such case, since the doctor-optimal sta-

ble rule can be shown to be strategy-proof whenever the rural hospital theorem holds.14

Indeed, there exist such cases and hence, Theorem 2 applies to a strictly larger domain of

choice functions than the previous results.

Fact 1. The doctor-optimal stable rule can be strategy-proof even if there exists a preference profile

such that not all doctors sign the same number of non-null contracts across all stable allocations

(and hence, even if the rural hospital theorem fails to hold).

Proof. The proof is by example. Suppose that D = {d1, d2, d3}, H = {h, h′}, and X =

{xi, x′i}i∈{1,2,3}, where xi (resp. x′i) represents a contract between doctor di and hospital h

13Note that the conclusion of Lemma 2 immediately follows if the rural hospital theorem holds.
14See the proofs of Hatfield and Kojima (2010, Theorem 7) and Hatfield and Milgrom (2005, Theorem 11).
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(resp. h′). The choice functions of the hospitals, Ch(·) and Ch′(·), are induced by prefer-

ence profiles

�h : {x1} �h {x2, x3} �h {x2} �h {x3} �h ∅, and

�h′ : {x′2} �h′ {x′1} �h′ ∅,

respectively.15 Notice that the resulting choice functions satisfy the substitutes condition

(Definition 1 in Appendix A) and thus, the doctor-optimal stable allocation exists for any

�D, as summarized in Table 1.

To see the rural hospital theorem fails to hold in this market, fix a preference profile

�D such that

�d1 : x′1 �d1 x1 �d1 ∅,

�d2 : x2 �d1 x′2 �d1 ∅, and

�d3 : x3 �d3 ∅.

As shown in the colored cell in Table 1, the doctor-optimal stable allocation at such �D is

X∗ = {x′1, x2, x3}, whereas there exists another stable allocation X∗ = {x1, x′2}. Note that

doctor d3 is assigned a non-null contract at X∗ but not at X∗, and hence, the rural hospital

theorem fails.

To complete the proof, it remains to verify that the doctor-optimal stable rule, X∗(·),
is strategy-proof in this market. For doctors d1 and d2, note that x (d1, X∗(�D)) and

x (d2, X∗(�D)) are independent of �d3 . Hence, the incentives for doctors d1 and d2 to

manipulate will remain unchanged if d3 is eliminated from the market. Actually, once

d3 is omitted, the remaining market reduces to a standard one-to-one matching mar-

15That is, for each X′ ⊂ X, Ch(X′) and Ch′(X′) are the most preferred subsets of X′ ∩ X (h, X) and X′ ∩
X (h′, X) according to �h and �h′ , respectively.
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x2, x′2,∅ x′2, x2,∅ x2,∅ x′2,∅ ∅

x1, x′1,∅ {x1, x′2} {x1, x′2} {x1} {x1, x′2} {x1}
x′1, x1,∅ {x′1, x2, x3} {x1, x′2} {x′1, x2, x3} {x1, x′2} {x′1, x3}

x1,∅ {x1, x′2} {x1, x′2} {x1} {x1, x′2} {x1}
x′1,∅ {x′1, x2, x3} {x′2, x3} {x′1, x2, x3} {x′2, x3} {x′1, x3}

∅ {x2, x3} {x′2, x3} {x2, x3} {x′2, x3} {x3}

(a) Case of x3 ∈ Ac (�d3).

x2, x′2,∅ x′2, x2,∅ x2,∅ x′2,∅ ∅

x1, x′1,∅ {x1, x′2} {x1, x′2} {x1} {x1, x′2} {x1}
x′1, x1,∅ {x′1, x2} {x1, x′2} {x′1, x2} {x1, x′2} {x′1}

x1,∅ {x1, x′2} {x1, x′2} {x1} {x1, x′2} {x1}
x′1,∅ {x′1, x2} {x′2} {x′1, x2} {x′2} {x′1}

∅ {x2} {x′2} {x2} {x′2} ∅

(b) Case of x3 �∈ Ac (�d3).

Table 1: Doctor optimal stable allocations in the proof of Fact 1. The rows and columns
represent the preferences of doctor d1 and d2, respectively.16

ket without contracts and thus, d1 and d2 have no incentive to manipulate the doctor-

optimal stable rule (Dubins and Freedman, 1981; Roth, 1982). For doctor d3, observe that

x (d3, X∗(�D)) is either x3 or ∅, and that it depends on �d3 only through whether or not

x3 ∈ Ac(�d3). Therefore, d3 has no incentive to report that x3 is acceptable when it is not,

and vice versa. In sum, the doctor-optimal stable rule is strategy-proof in this market,

and the proof is complete. �

16Here we abuse notation and identify preferences with ordered lists (up to the null contract). For in-
stance, “x1, x′1,∅” represents �d1 such that x1 �d1 x′1 �d1 ∅. The same applies to all tables below.
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Another natural question that stems from Theorem 2 would be whether or not the

necessary condition for a stable and strategy-proof rule can be replaced with a weaker

notion of optimality. Specifically, one might wonder if a stable and strategy-proof rule

always chooses an allocation that is not dominated by another stable allocation. Actually,

the answer to this question is known to be negative.17

Fact 2 (Kominers and Sönmez, 2014). A stable and strategy-proof rule may choose an allocation

that is strictly dominated by another stable allocation.

Proof. In the case of slot-specific priorities, Kominers and Sönmez (2014) show that the

cumulative offer process may not choose the doctor-optimal stable allocation even when

it exists (Example 4), whereas it always induces a stable and strategy-proof rule (Theorem

4). �

Given that the outcomes of a stable and strategy-proof rule may be dominated even

among the stable allocations, it could be of policy interest whether the doctor welfare

can be Pareto-improved. Since Theorem 1 implies that such improvement is impossible

maintaining both stability and strategy-proofness, it would be natural to ask if it becomes

possible once we weaken the stability requirement. Our last main result, Theorem 3,

shows that such improvement is generally impossible. This extends the existing results

in the school choice literature that the student-optimal stable rule is second-best optimal

among strategy-proof rules (see, Abdulkadiroglu et al., 2009; Kesten, 2010; Kesten and

Kurino, 2013).18

Theorem 3. Suppose that every hospital h has a choice function Ch(·) satisfying the IRC con-

dition. Then, no individually-rational and strategy-proof rule strictly dominates a stable and

strategy-proof rule.
17In matching markets without contracts, contrastingly, Pathak and Sönmez (2013, Lemma 1) establish

that the dominance in terms of outcomes between two stable rules implies the dominance in terms of
manipulability. For an extension of this result, see also Chen et al. (2014).

18See also Anno and Kurino (2014) and Erdil (2014) for related results.
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Proof. Towards a contradiction, suppose that f (·) is individually rational and strategy-

proof, g(·) is stable and strategy-proof, and that f (·) strictly dominates g(·). Let �∗
D ∈

PD be a preference profile such that f (�∗
D) �= g (�∗

D) and

[
f (�D) �= g (�D) =⇒ ∑

d∈D
|Ac(�d)| ≥ ∑

d∈D
|Ac(�∗

d)|
]

for all �D ∈ PD,

which exists by assumption. Then, there must exist d∗ ∈ D such that

x (d∗, f (�∗
D)) �∗

d∗ x (d∗, g(�∗
D)) �∗

d∗ ∅. (∗)

To see this, suppose contrarily that for all d ∈ D, x (d, f (�∗
D)) �∗

d x (d, g(�∗
D)) implies

x (d, g(�∗
D)) = ∅. This requires f (�∗

D) � g(�∗
D) and hence, for some h ∈ H,

Ch ( f (�∗
D) ∪ g(�∗

D)) = Ch ( f (�∗
D)) = X (h, f (�∗

D))

�= X (h, g(�∗
D)) = Ch (g(�∗

D)) ,

where the second and last equalities hold by the individual rationality of f (·) and g(·), re-

spectively. Therefore, (h, f (�∗
D)) weakly blocks g(�∗

D), but by Lemma 1, this contradicts

the stability of g(·).
Now, take a new preference relation �∗∗

d∗ of d∗ such that Ac(�∗∗
d∗ ) = {x (d∗, f (�∗

D))},

and let �∗∗
D =

(
�∗∗

d∗ ,�∗
D−{d∗}

)
. Then, the strategy-proofness of f (·) and g(·) implies

x (d∗, f (�∗∗
D )) = x (d∗, f (�∗

D)) �∗
d∗ x (d∗, g(�∗

D)) �∗
d∗ x (d∗, g(�∗∗

D )) = ∅,

and thus, f (�∗∗
D ) �= g(�∗∗

D ). However, this contradicts the definition of �∗
D since∣∣Ac(�∗∗

d∗ )
∣∣ < ∣∣Ac(�∗

d∗)
∣∣ and �∗∗

D−{d∗} = �∗
D−{d∗}, and the proof is complete. �

In Appendix B, we provide two variants of this theorem. First, we show that the same
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claim holds even if stability is weaken to non-wastefulness (Theorem 4), taking Ch(X′) =

X (h, X′) as the feasibility constraint, and this result is further generalized to accommodate

tie-breaking (Corollary 3). Second, we also show that the stable and strategy-proof rule

in the above statement can be replaced with the doctor-optimal stable rule. That is, if

the doctor-optimal stable rule is not strategy-proof, two possible policy goals, to achieve

strategy-proofness and to unambiguously improve doctor welfare (by relaxing stability

requirement), are incompatible with each other.

4 Concluding Remarks

This paper studies the model of many-to-one matching with contracts, and derives a

number of properties that a stable and strategy-proof rule must generally satisfy. A no-

table feature of our approach is that we only impose a minimal structure on hospitals’

choice functions, i.e., the IRC condition, and do not rely on any algorithmic properties

of a matching rule. This generality allows us to capture the joint implications of stability

and strategy-proofness in a transparent way. Yet, a cost of our abstract approach is that it

cannot tell much about when a stable and strategy-proof rule exists and how to find such

a rule if it exists (and is not the doctor-optimal stable rule). In this regard, a closely related

but independent paper by Hatfield et al. (2015) identifies a sufficient condition and an al-

most necessary condition for the cumulative offer process to be stable and strategy-proof.

To highlight the distinction between the scope of the two studies, we provide an example

of a stable and strategy-proof rule that is not induced by the cumulative offer process (or

the deferred acceptance algorithm).19

19In the following example, the doctor-optimal stable rule does not exist. Example 2 in Appendix C
presents a market where the doctor-optimal stable rule exists, is strategy-proof, but is not induced by the
cumulative offer process.
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Fact 3. There can exist a stable and strategy-proof rule that is not induced by the cumulative offer

process.20

Proof. The proof is by example. Let D = {d1, d2, d3}, H = {h}, and X = {xi, yi}i∈{1,2,3},

where xi and yi denote two distinct contracts between di and h. The hospital’s choice

function is induced by

�h: {x1, y2, y3} �h {y1, x2, y3} �h {x1, x2, y3}
�h {y1, y2} �h {y1} �h {y2} �h {x3} �h ∅.

Given the resulting choice function Ch(·), define a stable rule f (·) as in Tables 2–3. In what

follows, we will show that this f (·) is strategy-proof but not induced by the cumulative

offer process.

First, we verify the strategy-proofness of f (·). By checking each column of Tables

2–3 we can make the following observation: Taking �d2 and �d3 as fixed, doctor d1 is

always assigned his best contracts either from {x1, y1,∅} or from {y1,∅}. In either case,

as his “choice set” is independent of �d1 , it is apparent that doctor d1 has no incentive to

misreport. Similarly, we can see, by checking the rows of Tables 2–3, that doctor d2 cannot

profitably manipulate f (·). Further, although it is more cumbersome, we can also confirm

that doctor d3 is assigned his best contract (i) from {x3, y3,∅} when Ac(�d1)∪Ac(�d2) =

{x1, x2}, (ii) from {x3,∅} when Ac(�d1) ∪ Ac(�d2) = ∅, {x1}, or {x2}, (iii) from {∅}
when Ac(�d1) ∪ Ac(�d2) = {x1, y1} or {x2, y2}, and (iv) from {y3,∅} otherwise; thus,

f (·) is also strategy-proof for doctor d3.

To show that f (·) is not induced by the cumulative offer process, suppose that �D is

20More precisely, what we illustrate below is a stable and strategy-proof rule that is not induced by any
(either single-offer or simultaneous-offer) cumulative offer process, even though we can define multiple
(order-dependent) cumulative offer processes. See also footnote 23 in Appendix A.
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x2, y2,∅ y2, x2,∅ x2,∅ y2,∅ ∅

x1, y1,∅ {x1, x2, y3} {x1, y2, y3} {y1, x2, y3} {x1, y2, y3} {y1}
y1, x1,∅ {y1, x2, y3} {y1, y2} {y1, x2, y3} {y1, y2} {y1}

x1,∅ {x1, y2, y3} {x1, y2, y3} {x3} {x1, y2, y3} {x3}
y1,∅ {y1, x2, y3} {y1, y2} {y1, x2, y3} {y1, y2} {y1}

∅ {y2} {y2} {x3} {y2} {x3}

(a) Case of x3 �d3 y3 �d3 ∅.

x2, y2,∅ y2, x2,∅ x2,∅ y2,∅ ∅

x1, y1,∅ {x1, x2, y3} {x1, y2, y3} {x1, x2, y3} {x1, y2, y3} {y1}
y1, x1,∅ {y1, x2, y3} {y1, y2} {y1, x2, y3} {y1, y2} {y1}

x1,∅ {x1, x2, y3} {x1, y2, y3} {x1, x2, y3} {x1, y2, y3} {x3}
y1,∅ {y1, x2, y3} {y1, y2} {y1, x2, y3} {y1, y2} {y1}

∅ {y2} {y2} {x3} {y2} {x3}

(b) Case of y3 �d3 x3 �d3 ∅.

x2, y2,∅ y2, x2,∅ x2,∅ y2,∅ ∅

x1, y1,∅ {x1, x2, y3} {x1, y2, y3} {x1, x2, y3} {x1, y2, y3} {y1}
y1, x1,∅ {y1, x2, y3} {y1, y2} {y1, x2, y3} {y1, y2} {y1}

x1,∅ {x1, x2, y3} {x1, y2, y3} {x1, x2, y3} {x1, y2, y3} ∅

y1,∅ {y1, x2, y3} {y1, y2} {y1, x2, y3} {y1, y2} {y1}
∅ {y2} {y2} ∅ {y2} ∅

(c) Case of y3 �d3 ∅ �d3 x3.

Table 2: Definition of f (·) in the proof of Fact 3. The rows and columns represent the
preferences of doctor d1 and d2, respectively.
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x2, y2,∅ y2, x2,∅ x2,∅ y2,∅ ∅

x1, y1,∅ {y1, y2} {y1, y2} {y1} {y1, y2} {y1}
y1, x1,∅ {y1, y2} {y1, y2} {y1} {y1, y2} {y1}

x1,∅ {y2} {y2} {x3} {y2} {x3}
y1,∅ {y1, y2} {y1, y2} {y1} {y1, y2} {y1}

∅ {y2} {y2} {x3} {y2} {x3}

(a) Case of x3 �d3 ∅ �d3 y3.

x2, y2,∅ y2, x2,∅ x2,∅ y2,∅ ∅

x1, y1,∅ {y1, y2} {y1, y2} {y1} {y1, y2} {y1}
y1, x1,∅ {y1, y2} {y1, y2} {y1} {y1, y2} {y1}

x1,∅ {y2} {y2} ∅ {y2} ∅

y1,∅ {y1, y2} {y1, y2} {y1} {y1, y2} {y1}
∅ {y2} {y2} ∅ {y2} ∅

(b) Case of Ac (�d3) = ∅.

Table 3: Definition of f (·) in in the proof of Fact 3 (continued). The rows and columns
represent the preferences of doctor d1 and d2, respectively.

given by

�d1 : x1 �d1 y1 �d1 ∅,

�d2 : x2 �d2 y2 �d2 ∅, and

�d3 : x3 �d3 y3 �d3 ∅.

With this preference profile, f (�D) = {x1, x2, y3}, as specified in the colored cell in Table
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2a. For the cumulative offer process to return this outcome, doctor d3 needs to propose

y3 and hence, x3 must be rejected beforehand. This further implies that y1 or y2 (or both)

must be offered by the end of the process. Then, however, the final pool of offers must

contain {x1, y2, y3} or {y1, x2, y3} (or both) and thus, the hospital must not pick f (�D) =

{x1, x2, y3}, which is less preferable. That is, the stable and strategy-proof rule f (·) is not

induced by the cumulative offer process in this market. �

It is also worth mentioning that all of our proofs share a common technique to derive

a contradiction starting from a “minimal” preference profile in terms of the number of

acceptable contracts. While this technique could be also useful elsewhere, it should be

noted that it necessitates the existence of a null-contract as well as the full preference

domain. Consequently, our results do not directly extend to an environment where the

null-contract does not exist or the preference domain is restricted, e.g., as in Kesten (2010)

and Kesten and Kurino (2013).
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A Additional Definitions

This section provides the definitions of several existing concepts that are referred to but

not defined in the main text. To begin, the following substitutes conditions, introduced

by Hatfield and Milgrom (2005) and Hatfield and Kojima (2010), play a central role in the

matching with contracts literature.21

21See also Afacan and Turhan (2015) for the relationships among these conditions.
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Definition 1. Hospital h’s choice function satisfies the substitutes condition if there do not

exist contacts x and subsets X′, X′′ ⊂ X of contracts such that (i) x /∈ Ch(X′ ∪ {x}) and

(ii) x ∈ Ch(X′ ∪ X′′ ∪ {x}). �

Definition 2. Hospital h’s choice function Ch(·) satisfies the unilateral substitutes condi-

tion if there do not exist contracts x, y ∈ X and a subset X′ ⊂ X of contracts such that

(i) d (x) �∈ {d (x′)}x′∈X′ , (ii) x /∈ Ch(X′ ∪ {x}), and (iii) x ∈ Ch(X′ ∪ {x, y}). �

Definition 3. Hospital h’s choice function Ch(·) satisfies the bilateral substitutes condi-

tion if there do not exist contracts x, y ∈ X and a subset X′ ⊂ X of contracts such that

(i) d (x) , d (y) �∈ {d (x′)}x′∈X′ , (ii) x /∈ Ch(X′ ∪ {x}), and (iii) x ∈ Ch(X′ ∪ {x, y}). �

Hatfield and Milgrom (2005) also introduce the following condition.

Definition 4. Hospital h’s choice function Ch(·) satisfies the law of aggregated demand if

X′ ⊂ X′′ implies |Ch(X′)| ≤ |Ch(X′′)| for all X′, X′′ ⊂ X. �

Kominers and Sönmez (2013, 2014) study the markets where the hospitals’ choice

functions are induced by slot-specific priorities. They show that such choice functions

may violate the unilateral substitutes condition, but always satisfy the bilateral substi-

tutes condition.

Definition 5. A collection (�h,s)1≤s≤qh of linear orders, called slot-specific priorities, over

{x ∈ X : h (x) = h} ∪ {∅} induces a choice function for hospital h as follows: For each

X′ ⊂ X, Ch(X′) = {x1, . . . , xqh} − {∅}, where xs is recursively defined by letting

• X′
s = X′

s−1 − {x ∈ X′
s−1 : d (x) = d (xs−1)}, where X′

0 and x0 are defined to be X′

and ∅, and,

• xs be the maximal element in X′
s ∪ {∅}, with respect to �h,s,

for each s = 1, . . . , qh. �
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Hatfield and Kojima (2010) show that the cumulative offer process, originally defined by

Hatfield and Milgrom (2005), can find a stable allocation whenever the bilateral substi-

tutes condition is satisfied, under which the deferred acceptance algorithm may fail to do

so.22 23

Definition 6. Given (CH(·),�D), the cumulative offer process proceeds as follows.

• Initial condition: Let D0 = D and P0 = ∅.

• Step t ≥ 1: Each d ∈ Dt−1 offers her best contract, xd
t , among those remaining (i.e.,

among X \ Pt−1). Let Pt = Pt−1 ∪ {xd
t }d∈Dt−1 be the pool of contracts that have been

offered up to this step. Among Pt, each hospital h holds the best combination of

contracts, Ch(Pt). Finally, let Dt be the set of doctors for whom (i) no contract is

currently held by any hospital and (ii) not all acceptable contracts have been offered

yet, i.e.,

Dt = {d ∈ D : d �∈ [Ch(Pt)]D for all h ∈ H and Ac(�d) \ Pt �= ∅}. (1)

Proceed to step t + 1 if Dt is non-empty and terminate otherwise.

• Outcome: When the process terminates at step T, its outcome is
⋃

h∈H
Ch(PT). �

22For further properties of the cumulative offer process, see also Afacan (2014).
23The following definition is equivalent to the one by Hatfield and Milgrom (2005) and is referred to

as the simultaneous-offer cumulative offer process in Hirata and Kasuya (2014). In the literature, it is also
common to define the class of single-offer processes, where only a single doctor makes an offer at each step
of the algorithm. Those definitions are not equivalent in general, although they are under certain conditions
(Hatfield and Kominers, 2014; Hatfield et al., 2015; Hirata and Kasuya, 2014; Kominers and Sönmez, 2013,
2014).
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B Additional Results

This section provides two variants of Theorem 3 in the main text. First, we show that

stability in Theorem 3 can be replaced with the following weaker requirement: An indi-

vidually rational allocation X′ is said to be non-wasteful if there is no other individually

rational allocation X′′ with X′′ � X′.24 If we take Ch(X′) = X (h, X′) as a feasibility con-

straint, this condition roughly says no hospital can accommodate any unmatched doctors

without crowding out other (already matched) doctors. It reduces to the standard defini-

tion in assignment problems, if we endow each hospital (or object) h with Ch(·) such that

Ch(X′) = X (h, X′) if and only if |X (h, X′)| ≤ qh, where qh is the “quota” of h.25 In ad-

dition, the current matching-with-contracts setup allows a richer class of constraints that

could be of practical relevance. For example, suppose that a school offers two distinct

programs, and they require some common resources at different factor intensity (e.g., one

is mathematics-teacher intensive while the other is English-teacher intensive). Then, the

total number of students that those programs can accommodate would be non-constant

and depend on its composition.

Theorem 4. Suppose that every hospital h ∈ H has a choice function Ch(·) satisfying the

IRC condition. Then, no individually-rational and strategy-proof rule strictly dominates a non-

wasteful and strategy-proof rule.

Proof. In the proof of Theorem 3, the stability of g(·) is needed only to guarantee the

existence of d∗ satisfying (∗). Hence it suffices to prove this part from non-wastefulness.

Indeed, if x (d, f (�∗
D)) �d x (d, g(�∗

D)) implies x (d, g(�∗
D)) = ∅ for all d ∈ D, it follows

that f (�∗
D) � g(�∗

D), which directly contradicts non-wastefulness. �
24It is immediate to verify that under the IRC condition, stability implies non-wastefulness as defined

above. This is not the case in general; see Example 3 in Appendix C.
25Of course, the feasibility constraint does not uniquely pin down CH(·), because it imposes no restriction

on Ch(X′) when X (h, X′) is infeasible. However, this additional degree of freedom is irrelevant for the
current purpose (see Corollary 3 below).
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Actually, this theorem can be slightly more generalized (Corollary 3), since the choice

functions are relevant for individual rationality and non-wastefulness only through

whether Ch(X′) = X (h, X′) or not. Although it is technically straightforward, this

extension allows us to incorporate weak preferences of the hospital side and consequently,

includes Theorem 1 of Abdulkadiroglu et al. (2009) as a special case (Corollary 4).

Corollary 3. Suppose that CH(·) and C′
H(·) are two profiles of choice functions satisfying the

IRC condition such that Ch(X′) = X (h, X′) ⇒ C′
h(X′) = X (h, X′) for all h ∈ H and X′ ⊂ X.

Then, no strategy-proof rule that is individually rational with respect to CH(·) strictly dominates

a strategy-proof rule that is non-wasteful with respect to C′
H(·).

Proof. The proof is exactly the same as of Theorems 3–4 and thus omitted. �

Corollary 4 (Abdulkadiroglu et al., 2009, Theorem 1). In the school choice problem with

weak priorities, any rule induced by the deferred acceptance algorithm after tie-breaking cannot

be strictly dominated by any individually-rational and strategy-proof rule.

Proof. In the school choice problem, Ch(X′) = X (h, X′) holds only when the number of

(acceptable) students is no more than the quota of h, or equivalently, only when no tie-

breaking is necessary. Therefore, the condition in Corollary 3 is satisfied across different

tie-breaking rules, and the claim follows from the fact that the outcome of the deferred

acceptance is always non-wasteful. �

Second, we can show the second-best optimality of the doctor-optimal stable rule,

given its existence, no matter whether it is strategy-proof or not.

Theorem 5. Suppose that every hospital h ∈ H has a choice function Ch(·) satisfying the IRC

condition. Then, no individually-rational and strategy-proof rule strictly dominates the doctor-

optimal stable rule (whether strategy-proof or not).
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Proof. Towards a contradiction, suppose that f (·) is individually rational and strategy-

proof, the doctor-optimal stable rule X∗(·) is well-defined, and that f (·) strictly dominates

X∗(·). Let �∗
D ∈ P be a preference profile such that f (�∗

D) �= X∗(�∗
D) and

[
f (�D) �= X∗ (�D) =⇒ ∑

d∈D
|Ac(�d)| ≥ ∑

d∈D
|Ac(�∗

d)|
]

for all �D ∈ PD,

which exists by assumption. Then, for the same reasoning as in the proof of Theorem

3, it follows from the stability of X∗(·) that there exists d∗ ∈ D with x (d∗, f (�∗
D)) �∗

d∗

x (d∗, X∗(�∗
D)) �∗

d∗ ∅.

Now, let �∗∗
D =

(
�∗∗

d∗ ,�∗
D−{d∗}

)
, where �∗∗

d∗ is a truncation of �∗
d∗ above x (d∗, X∗(�∗

D)),

i.e., a preference such that

Ac(�∗∗
d∗ ) = {x ∈ X : x �∗

d∗ x (d∗, X∗(�∗
D))} ,

and

[
x �∗∗

d∗ y ⇐⇒ x �∗∗
d∗ y

]
for all x, y ∈ Ac(�∗∗

d∗ ).

On the one hand, the strategy-proofness of f (·) implies

x (d∗, f (�∗∗
D )) = x (d∗, f (�∗

D)) �= ∅.

On the other hand, x (d∗, X∗(�∗∗
D )) = ∅ must also hold by doctor-optimality.26 These

together imply f (�∗∗
D ) �= g(�∗∗

D ), which contradicts the definition of �∗
D, and the proof is

complete. �

26If x (d∗, X∗(�∗∗
D )) �= ∅, by construction, any (h, X′′) that blocks X∗(�∗∗

D ) at �∗
D must also block

X∗(�∗∗
D ) at �∗∗

D . Thus X∗(�∗∗
D ) is stable at �∗

D, but this contradicts the doctor-optimality of X∗(�∗
D) for

x (d∗, X∗(�∗∗
D )) �d∗ x (d∗, X∗(�∗

D)).

24



C Examples

This section provides the examples that are referred to in the main body. The first example

illustrates that Lemmas 1–2 do not generally hold true without the IRC condition. As a

consequence, multiple stable and strategy-proof rules exist in this example.

Example 1. Let D = {d1, d2}, H = {h}, and X = {x1, x2}, where for each i ∈ {1, 2}, xi

is a contract between di and h. Suppose that each doctor di has a preference relation with

xi �di ∅, and that hospital h’s choice function is such that Ch({x1}) = x1, Ch({x2}) = x2,

but Ch({x1, x2}) = ∅. It is immediate to check Ch(·) violates the IRC condition. Note

also that at this (CH(·),�D), allocation {x1} is not blocked by any coalition, although

it is weakly blocked by (h, {x1, x2}).27 That is, the conclusion of Lemma 1 fails to hold.

Consequently, both {x1} and {x2} are stable at this profile, and the conclusion of Lemma

2 also fails. Lastly, define for each i ∈ {1, 2} a rule f i(·) by

f i(�′
D) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

{xi} if xi �′
di
∅,

{xj} if ∅ �′
di

xi and xj �dj ∅

∅ otherwise,

where j ∈ {1, 2} − {i}. Then it can be easily checked that both f 1(·) and f 2(·) are stable

and strategy-proof. �

The following example shows that in general, the cumulative offer process may not

lead to the doctor-optimal stable rule, even if it exists and is strategy-proof.

Example 2. Let D = {d1, d2}, H = {h}, and X = {xi, yi}i∈{1,2}, where xi and yi denote

27The second requirement of weak blocking is vacuously satisfied since Ch({x1, x2}) = ∅.
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two distinct contracts between di and h. The hospital’s choice function is induced by

�h: {x1, x2} �h {y1, x2} �h ∅.

In this market, the doctor optimal stable rule X∗(·) exists:

X∗(�D) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

{x1, x2} if x1 = max {x1, y1,∅} and x2 ∈ Ac(�d2)

{y1, x2} if y1 = max {x1, y1,∅} and x2 ∈ Ac(�d2)

∅ otherwise,

where the maximums are taken with respect to � d1. Thus, our Theorem 2 tells that X∗(·)
is the unique candidate for a stable and strategy-proof rule, and indeed, it is strategy-

proof. To see this, note that X∗(·) selects the best allocation for doctor d1 subject to the

individual rationality constraints for d2 and h. Hence, doctor d1 has no incentive to misre-

port. Doctor d2 cannot manipulate X∗(·) either, since (i) it depends on �d2 only through

whether x2 ∈ Ac(�d2) or not, and (ii) X∗(�D) � x2 only when x2 ∈ Ac(�d2).

While the doctor-optimal stable rule exists and is strategy-proof, it is not induced by

the (simultaneous-offer) cumulative offer process as defined in Definition 6.28 To see this,

let �D be such that

�d1 : y1 �d1 x1 �d1 ∅, and

�d2 : y2 �d2 x2 �d2 ∅.

With this �D, the (simultaneous-offer) cumulative offer returns {x1, x2} �= X∗(�D). �

28More precisely, what we check below is that not all cumulative offer processes are strategy-proof, since
those processes fail to be order-independent in this example and hence, the cumulative offer process is not
well-defined as a single rule (cf. footnote 23). Actually, there exists a (single-offer) cumulative offer process
that induces X∗(·).
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The last example shows that non-wastefulness as defined in Appendix B does not

necessarily follow from stability in the absence of the IRC condition.

Example 3. Let D = {d1, d2}, H = {h1, h2}, and X = {x1, x2}, where for each i ∈ {1, 2},

xi is a contract between di and hi. Suppose that each di has a preference relation such

that xi �di ∅, and each hi has a choice function Chi(·) such that Chi({x1, x2}) = xi and

Chi(X′) = ∅ for all X′ � X. Then, allocation X′ = ∅ is wasteful but stable. �
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