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Abstract 

This thesis addresses the issues concerning the sources, or mechanisms, of agglomeration 

economies. It is well known that economic activities are spatially concentrated or clustered in 

certain areas and such agglomerated areas generate relatively higher economic growth than less 

agglomerated areas do. The sources of agglomeration economies, mainly the three factors 

proposed by Alfred Marshall, have been investigated and formalized by many subsequent 

scholars: input sharing, knowledge spillovers, and labor pooling. In this thesis, each of these 

sources of agglomeration economies is examined empirically. The structure and contents of the 

chapters are described below. 

 

Chapter 1  

Previous Studies on the Sources of Agglomeration Economies and Overview of the Thesis 

Chapter 1 summarizes the related literature and provides an overview of the following 

chapters of the thesis. First, the motivations of this thesis are pointed out through literature 

surveys. Several pieces of empirical evidence regarding the geographic agglomeration of 

economic activities are discussed and then several main empirical and theoretical works related 

to the topic of agglomeration economies are also explained. Second, Marshall’s (1920) three 

sources of agglomeration economies (cited by many previous studies) are introduced: input 

sharing, knowledge spillovers, and labor pooling. Finally, the structure of this thesis is 

summarized. The contents and aims of the following chapters are briefly introduced.  

 

Chapter 2  

Transportation Costs and Regional Productivity Difference in Japan: An Empirical Study of 

the New Economic Geography Theory 

In Chapter 2, the effects of transportation costs on an agglomeration economy and the 

dynamics of industrial location are examined empirically. Combining a spatial demand function 

derived in the theoretical new economic geography (NEG) literature with a production function, 

a revenue production function is proposed, which captures the effects of transportation costs on 

a firm’s revenue. The suggested revenue production function makes it possible to relate the 

geographic agglomeration economy with the transportation costs, which has not been done in 
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previous empirical studies. It performs an empirical examination of the model with regional 

panel data of the manufacturing sector in Japan. A city level panel data constructed mainly from 

the Census of Manufacturers for the 1996−2006 is used for empirical analysis. The revenue 

function including parameters for the transportation costs of each industry is estimated. The 

results support the existence of positive transportation costs, and show the estimated 

transportation costs for the manufacturing sector are higher than those for the primary sector 

and lower than those for the service sector. 

 

Chapter 3  

Plant Productivity Dynamics and Private and Public R&D Spillovers: Technological, 

Geographic and Relational Proximity 

Chapter 3 investigates the knowledge spillovers and examines the effects of R&D 

spillovers on total factor productivity (TFP) with a large panel of Japanese manufacturing plants 

matched with R&D survey data (1987–2007). This chapter simultaneously examines the role of 

public (university and research institutions) and private (firm) R&D spillovers, and the different 

effects due to technological, geographic, and relational (buyer-supplier) proximity. Estimating 

dynamic long difference models and allowing for a gradual convergence in TFP and geographic 

decay in spillover effects, the results show that technologically proximate private R&D stocks 

positively affect TFP growth, which decay with distance and become negligible at around 500 

kilometers. In addition to knowledge spillovers from technologically proximate R&D stocks, 

‘relational’ spillovers from buyer and supplier R&D stocks exert positive effects on TFP growth 

that are similar in magnitude. The elasticity of TFP is highest for public R&D (corrected for 

industrial relevance), in particular for plants operated by R&D-conducting firms. This chapter 

does not find evidence of geographic decay in the impact of public and relational spillovers. 

Over time, declining R&D spillovers appear to be responsible for a substantial part of the 

decline in the rate of TFP growth. The exit of proximate plants operated by R&D-intensive 

firms plays a notable role in this process and is an important phenomenon in major industrial 

agglomerations such as Tokyo, Osaka, and Kanagawa. 

 

Chapter 4  

Effects of Regional Human Capital on Business Entry: a Comparison of Independent 

Startups and New Subsidiaries in Different Industries 

Chapter 4 and Chapter 5 examine the effects of labor pooling. Chapter 4 aims to investigate 
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the regional determinants of entry with special attention to the effects of regional human capital, 

using prefecture-level data from Japan. On the basis of some recent studies in the field, this 

chapter investigates the effects of several regional factors on business entry, distinguishing 

between independent startups and new subsidiaries of existing firms on the one hand and 

comparing different sectors on the other. Using pooled regional data at the prefecture level for 

the period between 1996 and 2006, it is simultaneously estimated the impact of various regional 

factors, including human capital, on the number of independent startups and new subsidiaries 

for each industry sector. Estimation results demonstrate considerable differences between 

independent startups and subsidiaries as well as among different industry sectors with regard to 

the impact of regional human capital on business entry. Considering the possible implications, 

the results suggest that the regional policy to activate business startups should focus more on the 

differences between encouraging local entrepreneurship and attracting new subsidiaries, and 

recognize that these differences may vary even within the service sector, depending on what 

type of human capital is required. 

 

Chapter 5  

R&D, Innovation, and Business Performance of Japanese Startups: A Comparison with 

Established Firms 

Despite the importance of innovation activities in business startups, few studies have 

comprehensively compared these undertakings to equivalent ones in established firms. 

Therefore, Chapter 5 compares the determinants of R&D intensity, innovation, and firm 

performance in start-ups and established firms with a three-stage model, using comparable 

datasets in Japan. Data on start-ups is obtained from an original questionnaire survey series for 

Japanese start-ups that were carried out annually from 2008 to 2011 and comprises 894 firms 

less than 2 years of age at time of the initial survey in 2008. Comparable data of established 

firms were obtained from the Japanese National Innovation Survey 2009 conducted in 2009 by 

the National Institute of Science and Technology Policy (NISTEP), as official statistics carried 

out according to the Oslo Manual and the Community Innovation Survey 2010 in the EU and 

comprise more than 1000 firms. The empirical results suggest that 1) the local labor pooling of 

research-relevant workforces (professional and technical occupations) positively relates to the 

R&D intensity of the firms located in the neighborhood, 2) the effects of public financial 

support on R&D intensity are generally positive but smaller for startups, 3) the effects of 

research cooperation with business partners or universities on innovation are generally positive 
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but larger for startups, and 4) the effects of product and process innovation on labor productivity 

(level and growth) are positive both for startups and established firms.  



 

5 
 

Contents 

Chapter 1   Previous Studies on the Sources of Agglomeration Economies and Overview of 

the Thesis ...................................................................................................................................... 8 

1. Introduction ........................................................................................................................ 8 

2. Agglomeration Economies ................................................................................................ 8 

3. Sources of Agglomeration Economies ............................................................................. 10 

3.1. Input Sharing ............................................................................................................ 11 

3.2. Knowledge Spillovers .............................................................................................. 12 

3.3. Labor Pooling ........................................................................................................... 13 

4. Structure of the Thesis ..................................................................................................... 14 

Chapter 2 Transportation Costs and Regional Productivity Difference in Japan: An 

Empirical Study of the New Economic Geography Theory ........................................................ 15 

1. Introduction ...................................................................................................................... 15 

2. Theoretical Model ............................................................................................................ 16 

2.1. Production Function ................................................................................................. 16 

2.2. Demand Function ..................................................................................................... 17 

2.3. Transportation Costs and Regional Pricing .............................................................. 19 

2.4. Revenue Function..................................................................................................... 20 

2.5. Special Cases ............................................................................................................ 22 

3. Data .................................................................................................................................. 24 

3.1. Data Sources............................................................................................................. 24 

3.2. Data Description....................................................................................................... 24 

3.3. Further Assumptions for Data Restrictions .............................................................. 25 

3.4. Homogeneity of Firms ............................................................................................. 25 

3.5. Non-manufacturing Industries ................................................................................. 26 

4. Estimation Method ........................................................................................................... 26 

4.1. Revenue Function Estimation .................................................................................. 26 

4.2. Econometric Issues ................................................................................................... 27 

5. Results.............................................................................................................................. 30 

5.1. Results of Revenue Function Estimation ................................................................. 30 



Contents 

6 
 

5.2. Decomposition of Total Factor Productivity ............................................................ 32 

6. Conclusion ....................................................................................................................... 33 

Chapter 3 Plant Productivity Dynamics and Private and Public R&D Spillovers: 

Technological, Geographic and Relational Proximity................................................................. 40 

1. Introduction ...................................................................................................................... 40 

2. Model Setup and Data...................................................................................................... 42 

2.1. Data Sources and Sample ......................................................................................... 44 

2.2. Variables and Measurement ..................................................................................... 47 

2.3. R&D Stocks by Industry and Location .................................................................... 48 

2.4. Plant R&D Stocks .................................................................................................... 49 

2.5. Private R&D stocks (spillover pools)....................................................................... 50 

2.6. Public R&D Stocks .................................................................................................. 53 

2.7. Control Variables ...................................................................................................... 54 

2.8. Specification ............................................................................................................. 55 

3. Empirical Results ............................................................................................................. 57 

3.1. Sensitivity Analysis .................................................................................................. 60 

3.2. Decomposition Analysis ........................................................................................... 61 

4. Conclusions ...................................................................................................................... 65 

Chapter 4 Effects of Regional Human Capital on Business Entry: a Comparison of 

Independent Start-ups and New Subsidiaries in Different Industries.......................................... 72 

1. Introduction ...................................................................................................................... 72 

2. Literature Review ............................................................................................................ 74 

3. Hypotheses ....................................................................................................................... 76 

4. Empirical Model and Data ............................................................................................... 79 

4.1. Regional Entry in Japan ........................................................................................... 80 

4.2. Independent Variables .............................................................................................. 83 

5. Estimation Results ........................................................................................................... 86 

5.1. Manufacturing and Service Industries...................................................................... 90 

5.2. High- and Low-Tech Service Industries ................................................................... 92 

6. Conclusion ....................................................................................................................... 96 

Chapter 5 R&D, Innovation, and Business Performance of Japanese Start-ups: A 

Comparison with Established Firms ........................................................................................... 99 

1. Introduction ...................................................................................................................... 99 



 

7 
 

2. Data ................................................................................................................................ 100 

3. Model ............................................................................................................................. 102 

3.1. First stage: R&D intensity model ........................................................................... 106 

3.2. Second Stage: Innovation Model ........................................................................... 107 

3.3. Third Stage: Performance Model ........................................................................... 108 

4. Results............................................................................................................................ 109 

4.1. First stage: R&D intensity model ........................................................................... 109 

4.2. Second Stage: Innovation Model ........................................................................... 112 

4.3. Third Stage: Performance Model ........................................................................... 112 

4.4. Robustness checks .................................................................................................. 124 

5. Conclusion ..................................................................................................................... 124 

Chapter 6 Conclusion .......................................................................................................... 130 

Bibliography .............................................................................................................................. 134 



Chapter 1  

8 
 

Chapter 1  Previous Studies on the Sources of Agglomeration 
Economies and Overview of the Thesis 

1. Introduction 

This thesis addresses the issues concerning the sources or mechanisms of agglomeration 

economies. This chapter summarizes the related literature on agglomeration economies and 

their sources and then provides an overview of the remaining chapters. First, in Section 2, 

definitions of agglomeration economies are discussed and several main empirical and 

theoretical works related to the topic of agglomeration economies are introduced. 

Second, in Section 3, Marshall’s (1920) three sources of agglomeration economies (cited 

by many previous studies) are explained: input sharing, knowledge spillovers, and labor pooling. 

Since each subsequent chapter empirically examines one of the three sources of agglomeration 

economies, Section 3 provides readers of this thesis a guideline about where to map each 

chapter in the whole framework and literature on sources of agglomeration economies. 

Finally, in Section 4, the structure of this thesis is described. The contents and aims of the 

following chapters are briefly introduced. 

2. Agglomeration Economies  

It is well known that economic activities are spatially concentrated or clustered in certain 

areas and such agglomerated areas achieve relatively higher economic growth than less 

agglomerated areas do. Ellison and Glaeser (1997) developed a test using a simple discrete 

index to measure whether observed levels of geographic concentration would be greater than 

would be expected to arise randomly; they empirically found that almost all industries were 

somewhat localized in the US manufacturing sector. Similarly, a geographic pattern of 

localization of industries was also found in Japan by Mori et al. (2005). Duranton and Overman 

(2005) developed new distance-based tests of localization to avoid problems relating to the scale 

and borders of geographical units, which were encountered by Ellison and Glaeser (1997), and 

found that almost half of four-digit industries1 were localized, most of them at scales below 50 

                                                      
1 Duranton and Overman (2005) consider 234 industries out of 239 that have more than 10 establishments and 
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km in the UK manufacturing sector. In this regard, Nakajima et al. (2012) found similar results 

for Japan. 

A large body of empirical literature confirmed a positive correlation of economic 

agglomeration with regional productivity growth, innovation, wage rate, and entrepreneurship. 

Many studies in the fields of regional and urban economics found significantly positive effects 

of regional economic density on regional productivity (e.g., Ciccone and Hall 1996; Ciccone 

2002; Tveteras and Battese 2006; Brülhart and Mathys 2008; Combes, Duranton, Gobillon and 

Roux 2008). Feldman and Audretsch (1996) found a positive relationship between product 

innovation and regional agglomeration. David B. Audretsch and his colleagues developed the 

knowledge spillover theory of entrepreneurship; their empirical analyses confirmed that 

agglomeration of knowledge stock accumulated by incumbent firms in a region would enhance 

the level of entrepreneurial activity in that area (Audretsch and Keilbach 2007; Acs et al. 2009; 

Acs and Audretsch 2010).  

Theoretical research on the explanation of agglomeration goes back to at least 1826, when 

Thünen suggested comprehensive lists of centrifugal and centripetal forces of industrial 

agglomeration. Thünen’s (1826) arguments were more formalized as the central place theory by 

Losch (1940) and Christaller (1933). Marshall (1920) described the mechanisms where an 

increase in production volume would cause an elaborate subdivision of labor through work 

specialization and would improve production efficiency. Then he divided the economies arising 

from such an increase in production scale into two classes: internal- and external-scale 

economies. The former involved the scale economies within a single establishment or firm. The 

latter (called agglomeration economies by later scholars) could often be secured by the 

concentration of many small businesses of a similar character in particular localities or as 

commonly said, the localization of industry. Quigley (1988, p. 127) identified four periods of 

intense study on cities:  

The first of these periods, [which] occurred in the decade after World War I, included the 

first systematic empirical analysis of the forces affecting the location of firms and households 

within cities (e.g., Haig 1926) […]. The second of these periods, [which] began in the 

mid-1960s, formalized many of the insights about location incentives within urban areas [that] 

had been uncovered a half century before, mixed them with the logic of Thünen’s (1826) ancient 

theories and applied them to the household sector (Alonso 1964; Kain 1962), [in which] the 

                                                                                                                                                           
conclude that 122 industries among those are statistically significantly localized at some distance. 
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widely observed pattern of decline in housing prices and a steeper decline in land prices [at a 

certain] distance [from] the urban center [arose] from a residential equilibrium in which higher 

income households live[d] farther from downtown and commute[d] longer distances, but 

[occupied] more housing in less dense accommodations[…]. The third concentrated period [… 

began from …] the late 1950s when the Regional Plan Association and a group of economists at 

Harvard combined [to conduct] a three-year study of the New York Metropolitan Region [… 

with] a hallmark […] concept of ‘‘external economies of scale” (Vernon 1962). We are in the 

midst of the fourth of these, […] ushered in by reconsideration in the 1980s of the nature of 

economic growth […]. The first two sets of developments emphasized the intra-metropolitan 

location patterns of households and firms. The latter two have emphasized the overall patterns 

of growth of cities and metropolitan regions. 

Krugman (1991) pioneered the new economic geography (NEG), a novel theory to explain 

the formation of a large variety of economic agglomeration (or concentration) in geographical 

space. The NEG theory incorporates agglomeration advantages and location choice in a formal, 

general equilibrium framework through the interaction between scale economies and 

transportation costs. A growing body of literature in the field of empirical NEG provides 

evidence supporting the theory (Hansen 2005; Breinlisch 2006; Head and Mayer 2006; Pons 

2007). 

Regarding the types of economic agglomeration, the distinction between localization (or 

specialization) and urbanization (or diversification) has been intensively discussed in the 

literature. There have been debates on the effects of localization and urbanization on 

productivity (Nakamura 1985; Henderson 2003). Feldman and Audretsch (1996) compared the 

impacts of specialization and diversification on product innovation introduced by local firms 

and concluded that the effect of diversification dominated that of specialization. Bosma et al. 

(2008) also found that the localization economy would work for the location of independent 

start-up firms and the urbanization economy for the location of new subsidiaries.2 

3. Sources of Agglomeration Economies 

What is the mechanism through which cities grow? Alfred Marshall (1920) conducted the 

                                                      
2Another explanation for the positive relationship between agglomeration and productivity is the sorting 

or selection mechanism through market competition (Arimoto et al. 2014). 
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first comprehensive analysis of the sources of external economies arising from agglomeration. 

As the sources of agglomeration economies, mainly the three factors were proposed by Marshall 

(1920) and had been investigated and formalized by many scholars: input sharing (Goldstein 

and Gronberg 1984; Krugman 1993; Helsley and Strange 2002), knowledge spillovers (Glaeser 

1999), and labor pooling (Helsley and Strange 1990). Quigley (1988) provided further literature 

review of theoretical works. 

Rosenthal and Strange (2001) empirically examined these three factors simultaneously by 

regressing the localization index of industries—developed by Ellison and Glaeser (1997) on 

industry characteristics that are proxies for Marshall’s theories of localization economies-

—based on the US data. Their results supported all these three hypotheses. Ellison et al. (2010) 

also obtained similar findings, using co-agglomeration indices developed by Ellison and Glaeser 

(1997) and Duranton and Overman (2005), based on the US and UK data.  

3.1. Input Sharing 

The first factor—shared inputs in production and consumption—encompasses the 

“economies of localized industry” described by Marshall (1920, Book IV, Chapter X, para. 8):  

[T]he economic use of expensive machinery can sometimes be attained in a very high 

degree in a district in which there is a large aggregate production of the same kind, even though 

no individual capital employed in the trade be very large. For subsidiary industries devoting 

themselves each to one small branch of the process of production, and working it for a great 

many of their neighbors, are able to keep in constant use machinery of the most highly 

specialized character, and to make it pay its expenses, though its original cost may have been 

high, and its rate of depreciation very rapid. 

Economies from the shared inputs arise from scale economies in the production process 

and transportation costs of input factors. Co-agglomeration of suppliers and customers attains 

efficiency of production and reduces the transportation costs for the goods traded. This means 

that agglomeration of demand also accelerates the scale economy for supplier industries. 

Krugman (1993) established the NEG theory, which is a general equilibrium model of industry 

location, using a monopolistic competition framework developed by Dixit and Stiglitz (1977). It 

assumes the economies of scale and transportation costs, as well as shows that the forward and 

backward linkages produce an agglomeration of the production of manufactured goods. Ellison 

and Glaeser (1997) found that industries appeared to co-agglomerate both with important 



Chapter 1  

12 
 

upstream suppliers and downstream customers. Helsley and Strange (2002) specified a model 

where input sharing would encourage innovation by reducing the cost of realizing ideas. They 

showed that a dense network of input suppliers would facilitate innovation by making it less 

costly to bring new ideas to fruition. 

Chapter 2 involves this issue. In the chapter a “tractable” model from the NEG theory is 

derived, in which the transportation cost and production function are incorporated. Then the 

proposed model is applied to a region-industry level panel data mainly from the Census of 

Manufacturers in Japan, and the spatial effects of transportation costs on plant-level (revenue) 

productivity are estimated. 

3.2. Knowledge Spillovers 

The second factor of the agglomeration economies involves localization of spillovers of 

knowledge or ideas. Technological knowledge is the most important yet invisible factor for 

production efficiency; it is also known that nobody can appropriate the knowledge perfectly. 

Marshall (1920, Book IV, Chapter X, para. 7) wrote: 

[G]reat are the advantages which people following the same skilled trade get from near 

neighborhood to one another. The mysteries of the trade become no mysteries; but are as it were 

in the air, and children learn many of them unconsciously. Good work is rightly appreciated; 

inventions and improvements in machinery, in processes and the general organization of the 

business have their merits promptly discussed: if one man starts a new idea, it is taken up by 

others and combined with suggestions of their own; and thus it becomes the source of further 

new ideas. 

Jaffe et al. (1993) showed evidence for the localization of knowledge spillovers, using 

patent citations as a direct proxy for the knowledge spillovers. It is well established in the 

literature that the effects of research and development (R&D) spillovers on productivity are 

enhanced by technological and geographic proximity (Adams and Jaffe 1996; Orlando 2004; 

Mairesse and Mulkay 2008; Aldieri and Cincera 2009; Griffith et al. 2009; Lychagin et al. 2010; 

Bloom et al. 2013). Moreover, a different research stream focusing on the role of knowledge 

spillovers, from public research conducted at universities and research institutes, suggests the 

importance of such spillovers, with an explicit role of proximity (e.g., Jaffe 1989; Adams 1990; 

Anselin et al. 1997; Furman et al. 2005). 

Despite the increasing number of large-scale, firm-level studies on R&D spillovers, 
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existing studies have several limitations in scope and methodology (Jaffe et al., 1993; Adams 

and Jaffe, 1996; Aldieri and Cincera, 2009; Lychagin et al., 2010; Bloom et al., 2013; Orlando, 

2004; Griffith et al., 2009; Mairesse and Mulkay, 2008). First, they typically rely on data of 

listed firms, aggregating over various locations and technologies in which they are active. 

Second, they focus on inter-firm, private spillovers, while neglecting the role of public research. 

Third, R&D spillovers at the firm level are in most cases modeled as a function of proximity 

among technology portfolios of the firms, while the role of spillovers through supplier and 

customer linkages receives only limited attention. Chapter 3 deals with these issues. 

3.3. Labor Pooling 

A third possible reason why a metropolitan area may provide greater economic efficiency 

arises from the reduction in transaction costs. This factor includes the possibility of better 

matching between worker skills and job requirements (Quigley 1998). Marshall (1920, Book IV, 

Chapter X, para. 9) wrote: 

[A] localized industry gains a great advantage from the fact that it offers a constant market 

for skill. Employers are apt to resort to any place where they are likely to find a good choice of 

workers with the special skill which they require; while men seeking employment naturally go to 

places where there are many employers who need such skill as theirs and where therefore it is 

likely to find a good market. 

Helsley and Strange (1990) developed a model with heterogeneous workers and firms and 

derived an agglomeration economy in the labor market from a matching process between them. 

Helsley and Strange (2002) argued that specialized labor agglomeration would attract 

entrepreneurs. Numerous studies focused on the effects of the qualitative and quantitative 

composition of regional labor force on regional start-up ratio. Some studies demonstrated that 

the ratio of white-collar to blue-collar workers (Keeble and Walker 1994; Fotopoulos and 

Spence 1999) and the proportions of college graduates (Guesnier 1994; Armington and Acs 

2002; Acs and Armington 2004) and the workforce in professional and managerial occupations 

(Guesnier 1994; Hart and Gudgin 1994) would have positive effects on the start-up ratio. 

Why and how does such regional human capital positively affect the start-up of new 

businesses? Acs and Armington (2004, 2006) indicated three reasons. First, the agglomeration 

of a highly educated and skilled labor force generates entrepreneurs with fresh ideas for creating 

new businesses (Glaeser et al. 1992). Second, it also promotes local knowledge spillovers, by 
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which new start-ups are initiated and sustained (Reynolds et al. 1995). Third, it facilitates the 

search for and employment of skilled labor by founders of new firms (Rauch 1993). 

Chapters 4 and 5 empirically examine this issue. In Chapter 4, the impacts of regional 

human capital on the start-up ratio are examined, using Japanese data at the prefecture level, 

focusing on the differences between independent start-ups and new subsidiaries of existing 

firms and across diverse industries and sectors. In Chapter 5, the impacts of accessibility to 

local research personnel on R&D expenditure, innovation, and productivity of the firms are 

examined, focusing on the differences between younger and older firms. 

4. Structure of the Thesis 

This thesis empirically examines each source of agglomeration economies in the following 

chapters. In Chapter 2, the roles of transportation costs are empirically investigated. Then the 

effects of knowledge spillovers on productivity are examined in Chapter 3. The impacts of labor 

pooling on the level of entrepreneurship are analyzed in Chapter 4, while those on R&D and 

innovation are examined in Chapter 5. Chapter 6 concludes the thesis.  

This thesis includes materials from four papers that the author co-authored. Chapter 3 is 

based on Belderbos et al. (2013) and Ikeuchi et al. (2013), both co-authored with Rene 

Belderbos, Kyoji Fukao, YoungGak Kim, and HyeogUg Kwon. Chapters 4 and 5 are based on 

Ikeuchi and Okamuro (2011) and Ikeuchi and Okamuro (2013), respectively, both co-authored 

with Hiroyuki Okamuro. 
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Chapter 2  Transportation Costs and Regional Productivity 
Difference in Japan: An Empirical Study of the New 
Economic Geography Theory 

1. Introduction 

This chapter analyzes spatial effects of industrial geographic locations on regional 

productivity. According to the theoretical literature on the new economic geography (NEG), 

scale economies and transportation costs create an agglomeration economy (e.g., Krugman 

1980; Fujita et al. 1999; Fujita and Thisse 2002). The NEG theories have implied that firms 

located in different places face different demand functions. Klette and Griliches (1996) 

suggested the inconsistency of scale estimators obtained from production function regressions 

when firms operated in an incomplete competitive market and prices differed among them. 

Levinsohn and Melitz (2002) discussed the biases in productivity estimation in the case of a 

product-differentiated market (industry). 

Economic efficiency and optimality of industrial locations have been analyzed theoretically 

(e.g., Baldwin, Forslid, Martin, Ottaviano and Robert-Nicoud 2003).3 There are also many 

empirical studies about locational effects on regional productivity or growth. However, few 

empirical studies on the topic estimate the regional productivity model that is directly derived 

from the NEG theoretical models.4 For this reason, the estimation results in previous studies 

have not been directly linked to the theoretical models; thus, they have been unable to evaluate 

the efficiency and optimality of actual industrial locations. 

Unfortunately, the NEG theoretical models are too complicated to estimate in a 

straightforward manner and their nonlinearity causes other computational issues that should be 

solved. This chapter challenges these issues. A “tractable” model is derived from the NEG 

theory. The proposed empirical framework that is directly derived from the NEG theory makes 

                                                      
3 Baldwin et al. (2003) used simplified versions of the models of Krugman (1980) and Fujita et al. (1999). 

4 Mion (2004) and Hanson (2005) estimated the wage equation of the NEG theory. Additionally, Crozet (2004) and 

Pons, Paluzie, Silvestre and Tirado (2007) estimated the labor migration model, which was derived from the NEG 

theory. Davis and Weinstein (2008) analyzed home market effects on production location in NEG models. See 

Brakman, Garretsen, Gorter, Horst and Schramm (2009) and Redding (2010) for further literature review. 
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it possible to evaluate the efficiency and optimality of actual industrial locations, using 

estimation results. The proposed framework is then applied to a region-industry level panel data 

from the Census of Manufacturers in Japan, and the spatial effects of transportation costs on 

plant-level productivity are estimated.5 

This chapter is organized as follows. Section 2 sets out a theoretical model from the 

literature. Section 3 discusses the typical data restriction for a researcher and the modification of 

the proposed model. Section 4 presents the empirical methodology and Section 5 reports the 

estimation results. Section 6 concludes the chapter. 

2. Theoretical Model 

2.1. Production Function 

There are assumed to be 𝑛𝐼 industries and 𝑛𝑅 regions. 𝐼 denotes a set of industries by 

𝐼 ≡ {1, 2, … ,𝑛𝐼}, a set of regions by 𝑅 ≡ {1, 2, … ,𝑛𝑅}, and a set of 𝑛𝐽𝑟𝑟 firms within region 𝑟 

and industry 𝑖 by 𝐽𝑟𝑟 ≡ �1, 2, … ,𝑛𝐽𝑟𝑟�. The production function of firm 𝑗 ∈ 𝐽𝑟𝑟 is defined by:  

𝑞𝑗 = Ω𝑗ℓ𝑗
𝛼𝐿
𝑟
𝑘𝑗
𝛼𝐾
𝑟
∏ 𝑚𝑟′𝑗

 𝛼𝑟′
𝑟

𝑟′∈𝐼    ∀𝑗 ∈ 𝐽𝑟𝑟,∀𝑟 ∈ 𝑅,∀𝑖 ∈ 𝐼 ,   (2-1) 

where 𝑞𝑗  represents the quantity produced by firm 𝑗 , Ω𝑗  is the knowledge (total factor 

productivity [TFP]) of firm 𝑗 , ℓ𝑗  and 𝑘𝑗  are firm 𝑗 ’s labor input and capital stock, 

respectively, and 𝑚𝑟′𝑗 is an aggregate of the varieties of individual intermediate inputs of 

firm 𝑗 in industry 𝑖′ ∈ 𝐼, defined by a CES (constant elasticity of substitution) function of the 

form: 

                                                      
5 As another aspect of industrial location, knowledge agglomeration might create an agglomeration economy through 

mutual learning of firms located in close proximity, an effect also referred to as “knowledge spillovers.” Thus, 

industrial geographic locations affect regional productivity through these two paths—transportation costs and 

knowledge spillovers—and these two effects determine the optimal industrial locations and geographic resource 

allocation. Knowledge spillover effects are investigated mainly in the literature on industrial organization (e.g., 

Monjon and Waelbroeck 2003; Fosfuri and Ronde 2004; Alvarez and Molero 2005; Ornaghi 2006; Henderson 2007). 

The effects of regional economic density on regional productivity are estimated as “agglomeration effects” in the 

literature on regional and urban economics (e.g., Ciccone and Hall 1996; Ciccone 2002; Tveteras and Battese 2006; 

Brulhart and Mathys 2008; Combes, Duranton, Gobillon and Roux 2008). 
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𝑚𝑟′𝑗 ≡ �∑ ∑ 𝑥𝑗′𝑗

𝜎𝑟′−1

𝜎𝑟′
𝑗′∈𝐽𝑟′𝑟′  𝑟′∈𝑅 �

𝜎𝑟′
𝜎𝑟′−1

,     (2-2) 

where 𝑥𝑗′𝑗 represents firm 𝑗’s intermediate inputs of each available variety produced by firm 

𝑗′ ∈ 𝐽𝑟′𝑟′  (which is located in region 𝑟′ and belongs to industry 𝑖′), 𝜎𝑟′ > 1 represents the 

elasticity of substitution between any two intermediate varieties of industry 𝑖′,6 e.g., 𝑥𝑗′𝑗 and 

𝑥𝑗′′𝑗 , where 𝑗′, 𝑗′′ ∈ 𝐽𝑟′ ; 𝛼𝐿𝑟 , 𝛼𝐾𝑟 , and 𝛼ℎ𝑟  in (2-1) and 𝜎𝑟′  in (2-2) are the production 

technology parameters to be estimated. 

2.2. Demand Function 

In this subsection, assumptions for consumers’ preference are set and the free on board 

(f.o.b.) price of firm 𝑗, 𝑝𝑗, is related to its location. The firm’s sales revenue can also be related 

to its location, independently of its production technology and its input level of production 

factors. 

Consumers’ demand  

Following Fujita et al. (1999), consumers’ utility function is assumed to be that of the 

Dixit-Stiglitz model of monopolistic competition (Dixit and Stiglitz 1977): 

𝑈𝑟 = ∏ 𝑍𝑟𝑟
𝜇𝑟

𝑟∈𝐼 ,∀𝑟 ∈ 𝑅 ,      (2-3) 

where 𝑈𝑟  represents the utility of consumers living in region 𝑟 , 𝑍𝑟𝑟  represents the 

consumption aggregate of commodity 𝑖, which is defined by: 

𝑍𝑟𝑟 = �∑ ∑ 𝑧𝑟𝑗′
𝜎𝑟−1
𝜎𝑟

𝑗′∈𝐽𝑟′𝑟𝑟′∈𝑅 �

𝜎𝑟
𝜎𝑟−1

,∀𝑖 ∈ 𝐼  ,    (2-4) 

where 𝑧𝑟𝑗′  is the consumption volume of variety 𝑗′ in region 𝑟, and σ𝑟 is the elasticity of 

substitution between any two varieties of commodity 𝑖. Denoting total income of consumers in 

                                                      
6 In this chapter, we assume the elasticity of substitution between any two goods in the same industry to 

be constant because we cannot use firm-level micro data in the following empirical analysis. However, 

this does not imply that all firms or consumers in the same industry may purchase from all regions. 

Because of substantial transportation costs of the goods, they are assumed to purchase goods mostly 

from closely located producers. 
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region 𝑟 by 𝑌𝑟 and the price of variety 𝑗′ in region 𝑟 by 𝑝𝑗′𝑟, the consumers in region 𝑟 

maximize utility (2-3), subject to the budget constraint: 

� � � 𝑝𝑗′𝑟𝑧𝑟𝑗′
𝑗′∈𝐽𝑟′𝑟𝑟′∈𝑅𝑟∈𝐼

≤ 𝑌𝑟 . 

As the solution of such a utility maximization problem, the consumer demand function in 

region 𝑟′ for the variety 𝑗 ∈ 𝐽𝑟𝑟 (in industry 𝑖 ∈ 𝐼, which is produced in region 𝑟) is therefore 

derived: 

𝑧𝑟′𝑗 = �
𝑝𝑗𝑟′

𝐺𝑟𝑟′
�
−𝜎𝑟

�
𝜇𝑟′𝑌𝑟′
𝐺𝑟𝑟′

�,      (2-5) 

where  

𝐺𝑟𝑟′ ≡ �∑ ∑ 𝑝𝑗′′𝑟′′
−(𝜎𝑟−1)

𝑗′′∈𝐽𝑟′′𝑟𝑟′′∈𝑅 �
− 1
𝜎𝑟−1      (2-6) 

is the price index of commodity 𝑖 ∈ 𝐼 in region 𝑟, corresponding to the definition of quantity 

indexes (2-2) and (2-4). 

Intermediate demand  

In the same way, in solving the profit maximization problem of firm 𝑗′ ∈ 𝐽𝑟′𝑟′ , which is 

located in region 𝑟′ and belongs to industry 𝑖′, the intermediate demand of firm 𝑗′ for a 

variety produced by firm 𝑗 ∈ 𝐽𝑟𝑟, which is located in region 𝑟 and belongs to industry 𝑖, can 

be derived: 

𝑥𝑗𝑗′ = �
𝑝𝑗𝑟′

𝐺𝑟𝑟′
�
−𝜎𝑟

�
𝛽𝑟
𝑟′𝑀𝑗′

𝐺𝑟𝑟′
� for 𝑗 ∈ 𝐽𝑟𝑟 and 𝑗′ ∈ 𝐽𝑟′𝑟′ ,   (2-7) 

where 𝑀𝑗′  represents the total expenditure of firm 𝑗′ on its intermediate inputs, and 𝛽𝑟𝑟
′
 is 

the share of expenditure of industry 𝑖′ on intermediate inputs from industry 𝑖, which is 

assumed constant for the firms within the same industry. 

Total demand 

Taking the summation of consumer demand function (2-5) in region 𝑟′  and the 

intermediate demand function (2-7) of all firms in region 𝑟′, the total demand for the product of 

an individual firm 𝑗 ∈ 𝐽𝑟𝑟 located in region 𝑟 and producing a variety of industry 𝑖 is:  

𝑞𝑗𝑟′ = �𝑧𝑟′𝑗 + ∑ ∑ 𝑥𝑗𝑗′𝑗′∈𝐽𝑟′𝑟′𝑟′∈𝐼 � = �
𝑝𝑗𝑟′

𝐺𝑟𝑟′
�
−𝜎𝑟

�
𝐸𝑟′𝑟
𝐺𝑟𝑟′

�,   (2-8) 
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where 𝐸𝑟′𝑟 is the total expenditure in region 𝑟′ on the products of industry 𝑖, which is defined 

by: 

𝐸𝑟′𝑟 ≡ 𝜇𝑟𝑌𝑟′ + ∑ ∑ 𝛽𝑟𝑟
′
𝑀𝑗′𝑗′∈𝐽𝑟′𝑟′𝑟′∈𝐼 .     (2-9) 

Thus, equation (2-8) indicates that the level of demand for an individual firm 𝑗 in region 

𝑟′ depends on the relative price of the firm (relative to the industry level price index) 𝑝𝑗𝑟′/𝐺𝑟𝑟′  

and the industry-level, total demand in a real term in region 𝐸𝑟′𝑟/𝐺𝑟𝑟′. 

2.3. Transportation Costs and Regional Pricing 

According to the theoretical NEG models, a scale economy and transportation costs 

determine industrial geographic locations (Fujita et al. 1999). The scale economy generates a 

centripetal force for the industrial locations; the transportation costs generate both the 

centripetal and dispersion forces in case of the existence of some immobile factors. Therefore, 

to examine the optimal industrial locations, it is necessary to measure levels of the 

transportation cost of each commodity. In this subsection, a transportation cost function of firms 

are defined and incorporated to the demand function defined in equation (2-8). 

Transportation cost to deliver the products of firm 𝑗 ∈ 𝐽𝑟𝑟, which produces a variety of 

industry 𝑖 from region 𝑟 to region 𝑟′, is assumed to be: 

𝑇𝐶𝑗𝑟′ = 𝑝𝑗𝑟′𝑞𝑗𝑟′ �
𝑇�𝑑𝑟𝑟′�−1
𝑇�𝑑𝑟𝑟′�

�,      (2-10) 

where 𝑝𝑗𝑟′  represents the cost, insurance and freight (c.i.f.) price or delivered price of the 

product of firm 𝑗 in region 𝑟′, and 𝑞𝑗𝑟′  represents the quantity of the product of firm 𝑗, 

which is transported from production region 𝑟 to consuming region 𝑟′. The function 𝑇(𝑑𝑟𝑟′) 

represents the transportation technology firm 𝑗, and 𝑑𝑟𝑟′ > 0 is the (geographic) distance 

between region 𝑟 and region 𝑟′. The transportation technology 𝑇(𝑑) of (2-10) is assumed to 

satisfy the following conditions: 

 𝑇(𝑑) > 0 for any 𝑑 > 0, 

 𝜕𝑇(𝑑)
𝜕𝑑

> 0 for any 𝑑 > 0, and 

 𝑇(𝑑) = 1 if 𝑑 = 0, 

 If 𝑑 → ∞ then 𝑇(𝑑) → 0. 

In this chapter, the distance weight function for transportation technology is specified as: 

𝑇(𝑑𝑟𝑟′) = 𝑒𝜏𝑟𝑑𝑟𝑟′ .       (2-11) 

Suppose firm 𝑗 determines the c.i.f. price 𝑝𝑗𝑟′  to maximize the profit: 



Chapter 2  

20 
 

𝜋𝑗 = ��𝑝𝑗𝑟′𝑞𝑗𝑟′ − 𝑇𝐶𝑗𝑟′� − 𝐶(𝑞𝑗)
𝑟′∈𝑅

, 

where 𝐶(𝑞𝑗) is the production cost of firm 𝑗 as a function of the firm’s total products, 

𝑞𝑗 = ∑ 𝑞𝑗𝑟′𝑟′∈𝑅 . As the solution of this profit maximization problem under the monopolistic 

competition assumption, the c.i.f. price of firm 𝑗 ∈ 𝐽𝑟𝑟 for each region 𝑟′ is given by: 

𝑝𝑗𝑟′ = 𝑝𝑗𝑒𝜏𝑟𝑑𝑟𝑟′ ,       (2-12) 

where 𝑝𝑗 represents the mill or f.o.b. price (𝑝𝑗 ≡ 𝑝𝑗𝑟, where 𝑟 is the index of the location of 

firm 𝑗). This implies that the c.i.f. price 𝑝𝑗𝑟′  for each region 𝑟′ is proportional to the f.o.b. 

price of firm 𝑗, 𝑝𝑗.7  

Substituting 𝑝𝑗𝑟′  in the total demand function for firm 𝑗 in each region (2-8) by (2-12), 

demand of region 𝑟′ for firm 𝑗 is rewritten as: 

𝑞𝑗𝑟′ = 𝑝𝑗
−𝜎𝑟𝐸𝑟′𝑟𝐺𝑟𝑟′

𝜎𝑟−1𝑒−𝜎𝑟𝜏𝑟𝑑𝑟𝑟′  for 𝑗 ∈ 𝐽𝑟𝑟 , 

so the total demand for firm 𝑗 ∈ 𝐽𝑟𝑟 is: 

𝑞𝑗 ≡ ∑ 𝑞𝑗𝑟′𝑟′∈𝑅 = 𝑝𝑗
−𝜎𝑟�∑ 𝐸𝑟′𝑟𝐺𝑟𝑟′

𝜎𝑟−1𝑒−𝜎𝑟𝜏𝑟𝑑𝑟𝑟′𝑟′∈𝑅 � .   (2-13) 

Therefore, the inverse demand function is obtained as:  

𝑝𝑗 = 𝑞𝑗
− 1
𝜎𝑟�∑ 𝐸𝑟′𝑟𝐺𝑟𝑟′

𝜎𝑟−1𝑒−𝜎𝑟𝜏𝑟𝑑𝑟𝑟′𝑟′∈𝑅 �
1
𝜎𝑟,     (2-14) 

which determines the f.o.b. price of products of firm 𝑗 in region 𝑟 in industry 𝑖. 

2.4. Revenue Function 

It is assumed that the share of expenditure to the intermediate inputs from industry 𝑖′ to total 

expenditure to intermediate inputs is determined so that the firm maximizes its profit. Then the 

following expression should be hold: 

𝐺𝑟′𝑟𝑚𝑟′𝑗
∑ 𝐺𝑟′′𝑟𝑚𝑟′′𝑗𝑟′′∈𝐼

=
𝛼𝑟′
𝑟

∑ 𝛼𝑟′′
𝑟

𝑟′′∈𝐼
.      (2-15) 

Using equation (2-15), the aggregate index of the quantity of intermediate inputs from all 

industries in the production function (2-1) can be substituted by the following equation: 

∏ 𝑚𝑟′𝑗
𝛼𝑟′
𝑟

𝑟′∈𝐼 = �
𝑀𝑗
𝛼𝑀
𝑟

∏ 𝐺
𝑟′𝑟

𝛼𝑟′
𝑟

𝑟′∈𝐼

� 𝜂𝑟,      (2-16) 

                                                      
7 Moreover, the price-setting rule determined by equation (2-12) implies that assumption (2-10) is equivalent to the 

assumption of an “iceberg” form of transportation costs. 
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where 𝑀𝑗 is firm 𝑗's expenditure for intermediate input goods, defined as 𝑀𝑗 ≡ ∑ 𝐺𝑟′𝑟𝑚𝑟′𝑗𝑟′∈𝐼 , 

𝛼𝑀𝑟 = ∑ 𝛼𝑟′
𝑟

𝑟′∈𝐼 , and 𝜂𝑟 in equation (2-16) is the industry-specific constant term, defined as 

𝜂𝑟 ≡ �𝛼𝑀𝑟 �
−𝛼𝑀

𝑟
∏ �𝛼𝑟′

𝑟 �
𝛼𝑟′
𝑟

𝑟′∈𝐼 . 

Combining the inverse demand function (2-14) and equation (2-16) with the production 

function (2-1) yields a revenue function: 

𝑉𝑗 = 𝜙𝑟𝑟

1
𝜎𝑟 �Ω𝑗ℓ𝑗

𝛼𝐿
𝑟
𝑘𝑗
𝛼𝐾
𝑟
𝑀𝑗
𝛼𝑀
𝑟
∏ 𝐺𝑟′𝑟

−𝛼𝑟′
𝑟

𝑟′∈𝐼 𝜂𝑟�

𝜎𝑟−1
𝜎𝑟

,    (2-17) 

where 𝑉𝑗 ≡ 𝑝𝑗𝑞𝑗  represents the nominal revenue of firm 𝑗 , and 𝜙𝑟𝑟  denotes the 

agglomeration of the demand for industry 𝑖 in region r, which is appeared in demand function 

(2-13), defined as: 

𝜙𝑟𝑟 ≡ ∑ 𝐸𝑟′𝑟𝐺𝑟𝑟′
𝜎𝑟−1𝑒−𝜎𝑟𝜏𝑟𝑑𝑟𝑟′𝑟′∈𝑅  ,     (2-18) 

Ω𝑗 is the knowledge (or TFP) of firm 𝑗, and ℓ𝑗 and 𝑘𝑗 are the amounts of labor inputs and 

capital stock, respectively.  

Substituting equation (2-12) for 𝑝𝑗𝑟′ in equation (2-6), the price index of industry 𝑖 in 

region 𝑟, 𝐺𝑟𝑟 can be rewritten as: 

𝐺𝑟𝑟 = �∑ ∑ �𝑝𝑗𝑒𝜏𝑟𝑑𝑟𝑟′�
−(𝜎𝑟−1)

𝑗∈𝐽𝑟′𝑟𝑟′∈𝑅 �
− 1
𝜎𝑟−1.    (2-19) 

Although 𝐺𝑟𝑟 is defined by equation (2-19), this data is rarely obtained. Therefore, multiplying 

𝑝𝑗 to the both sides of the demand function (2-13) and rearranging the equation, the f.o.b. price 

of firm 𝑗, 𝑝𝑗 can be rewritten as: 

𝑝𝑗 = �𝜙𝑟𝑟
𝑉𝑗
�

1
𝜎𝑟−1 

 for 𝑗 ∈ 𝐽𝑟𝑟.8      (2-20) 

By inserting equation (2-20) into (2-19), the price index of commodity 𝑖 in region r can be 

rewritten as:  

𝐺𝑟𝑟 = �∑ 𝑉𝑟′𝑟𝑟′∈𝑅 𝜙𝑟′𝑟
−1𝑒−(𝜎𝑟−1)𝜏𝑟𝑑𝑟𝑟′�

− 1
𝜎𝑟−1     (2-21) 

where 𝑉𝑟′𝑟 = ∑ 𝑉𝑗𝑗∈𝐽𝑟′𝑟  is the total revenue of all firms located in region 𝑟′ and producing 

each variety of industry 𝑖. Equation (2-21) suggests that the regional price index, 𝐺𝑟𝑟, for a 

                                                      
8 Using equation (2-18), the demand function (2-13) can be rewritten as 𝑞𝑗 = 𝑝𝑗

−𝜎𝑟𝜙𝑟𝑟. Multiplying both sides of this 

equation by 𝑝𝑗, 𝑝𝑗𝑞𝑗 = 𝑝𝑗
−(𝜎𝑟−1)𝜙𝑟𝑟. Replacing 𝑝𝑗𝑞𝑗  by 𝑉𝑗  and rearranging the equation to solve for 𝑝𝑗, equation 

(2-20) can be obtained. 
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commodity 𝑖 is higher in a region 𝑟, where there is a larger supply of the commodity 𝑉𝑟𝑟 and 

less demand for the commodity 𝜙𝑟𝑟 in the region itself, 𝑟, or its neighboring regions, 𝑟′ with 

small 𝑑𝑟𝑟′ . This indicates that the lack of geographic competition in a region leads to a higher 

price in the region.  

Given equation (2-18) and (2-21), expenditures and revenues for each region and industry, 

𝐸𝑟𝑟 and 𝑉𝑟𝑟, respectively, and the total factor productivity of each firm, Ω𝑗, each of firms 

determines the level of labor and capital inputs, ℓ𝑗 and 𝑘𝑗, respectively, and the expenditure 

for intermediate inputs, 𝑀𝑗, so that it maximize the profit defined by revenue function (2-17) 

minus total cost, which is determined by quantities and prices of factor inputs. In this study, 

equilibrium in the labor market and capital market are both given.9  

2.5. Special Cases 

To determine the characteristics of the derived revenue function (2-17), it should be a good 

examination to review several extreme, special cases as follows. In several cases, it is not able 

to identify 𝜏𝑟 in revenue function (2-17). 

Case 1  

First, assuming there is no transportation cost, 𝜏𝑟 = 0, for all ∈ 𝐼, then the demand and 

supply condition (price index) is constant across regions: 

𝜙𝑟𝑟 = � 𝐸𝑟′𝑟�̅�𝑟
𝜎𝑟−1

𝑟′∈𝑅

,∀𝑟 ∈ 𝑅 

and 

�̅�𝑟 = 𝐺𝑟𝑟 = �� ��𝑝𝑗�
−(𝜎𝑟−1)

𝑗∈𝐽𝑟𝑟𝑟′∈𝑅

�

− 1
𝜎𝑟−1

,∀𝑟 ∈ 𝑅 . 

Thus, revenue function becomes: 

𝑉𝑗 = Ω�𝑗ℓ𝑗
𝛼�𝐿
𝑟
𝑘𝑗
𝛼�𝐾
𝑟
𝑀𝑗
𝛼�𝑀
𝑟
�̃�𝑟 ,  

where �̃�𝑟 = 𝜙�𝑟

1
𝜎𝑟 �𝐴𝑟 ∏ �̅�𝑟′

−𝛼𝑟′
𝑟

𝑟′∈𝐼 �

𝜎𝑟−1
𝜎𝑟

, Ω�𝑗 = Ω𝑗
𝜎𝑟−1
𝜎𝑟 

, 𝛼�𝐿𝑟 = 𝛼𝐿𝑟
𝜎𝑟−1
𝜎𝑟 

, 𝛼�𝐾𝑟 = 𝛼𝐾𝑟
𝜎𝑟−1
𝜎𝑟 

, and 

                                                      
9 General equilibrium analysis of the model is conducted in Fujita et al. (1999). 
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𝛼�𝑀𝑟 = 𝛼𝑀𝑟
𝜎𝑟−1
𝜎𝑟 

. In this case, the revenue function is almost the same as the production function 

(2-1). Thus, it is difficult to identify the parameter for elasticity of substitution by using the 

production function estimation under the condition of extremely low transportation costs. 

Case 2  

In the next case, the products are perfectly homogeneous and the price elasticity of demand 

is infinite, 𝜎𝑟 = ∞ for all 𝑖 ∈ 𝐼, then 𝐺𝑟𝑟 = 1 and 𝜙𝑟𝑟 = 𝐸𝑟𝑟 for all 𝑟 ∈ 𝑅. Thus,  

𝑉𝑗 = Ω𝑗ℓ𝑗
𝛼𝐿
𝑟
𝑘𝑗
𝛼𝐾
𝑟
𝑥𝑗
𝛼𝑀
𝑟
𝐴𝑟.     

Moreover, in Case 2, similar to Case 1, revenue function is exactly the same as production 

function (2-1). Thus, the transportation cost parameter cannot be identified from the production 

function estimation if the products are perfectly homogeneous and the price elasticity of demand 

𝜎𝑟 = ∞. Because the revenue function in Case 2 has the same form of that function in Case 1, 

unless other information is not available, it is also not possible to distinguish Case 2 from Case 

1. In other words, in both these cases, firm revenues do not depend on demand or supply 

agglomeration. Thus, in the empirical analysis, these cases are treated as a null model. 

Case 3  

The opposite assumption to Case 1 is infinite transportation cost, 𝜏𝑟 = ∞ for all 𝑖 ∈ 𝐼. 

Then 𝜙𝑟𝑟 = 𝐸𝑟𝑟𝐺𝑟𝑟
𝜎𝑟−1 and 𝐺𝑟𝑟

−(𝜎𝑟−1) = ∑ 𝑝𝑗
−(𝜎𝑟−1)

𝑗∈𝐽𝑟𝑟  for all 𝑟 ∈ 𝑅. Thus:  

𝑉𝑗 = �
𝐸𝑟𝑟𝐺𝑟𝑟

𝜎𝑟−1

∏ 𝐺𝑟′𝑟
𝛼𝑟′
𝑟 (𝜎𝑟−1)

𝑟′∈𝐼

�

1
𝜎𝑟

�Ω𝑗ℓ𝑗
𝛼𝐿
𝑟
𝑘𝑗
𝛼𝐾
𝑟
𝑥𝑗
𝛼𝑀
𝑟
𝐴𝑟�

𝜎𝑟−1
𝜎𝑟 . 

In this case, although regional expenditure and price index, 𝐸𝑟𝑟 and 𝐺𝑟𝑟, only affect the 

revenues of firms within the region itself, 𝜎's and 𝛼's are recovered by an estimation of the 

equation. 
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3. Data 

3.1. Data Sources 

The data used in empirical analyses is obtained from some statistics in Japan for the 1996–

2006 period. First, information on the production inputs and outputs of the firms in the 

manufacturing industries at the regional level was collected from the Census of Manufacturers, 

which is conducted by the Ministry of Economy, Trade and Industry in Japan. This data contains 

information on all plants located in Japan, with at least four employees. Data at the two-digit 

Japanese Standard Industrial Classification (JSIC) level by city (shi, ku, cho, and son levels in 

Japanese) are available. The two-digit JSIC includes 22 industries. The number of cities in 

Japan almost reached 2,000 in the latest year of the observation period.10 

Second, for the estimates of the input coefficients of each industry, the Input-Output Tables 

for Japan prepared by the Ministry of Internal Affairs and Communications are used. Because 

these tables are produced every five years, the input coefficients in the intermediate years are 

interpolated. 

Third, for the regional distribution of the workers in non-manufacturing industries, the 

Establishment and Enterprise Census is used, which is conducted by the Ministry of Internal 

Affairs and Communications in Japan. This census is updated every three or five years and 

contains information on all establishments (excluding self-employment in the primary sector; 

agriculture, forestry, and fishery). The shares of the number of workers employed in each 

industry in the region in the intermediate years are also interpolated. 

Fourth, for the regional distribution of the population, the Population Census is used, 

which is conducted by the Ministry of Internal Affairs and Communications in Japan. This 

census is updated every five years and contains the information on population of each region. 

The data in the intermediate years are also interpolated. 

3.2. Data Description 

A panel of Japanese regional panel data from the Census of Manufacturers, Establishment 

                                                      
10From the mid-1990s, the Japanese administrative division of the regions had been restructured and hundreds of 

regions were merged with each other during the 1996–2006 period. To ensure consistency, I used the latest (and the 

largest-meshed) classification for the whole period. 
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and Enterprise Census, Population Census and Input-Output Tables is constructed. This dataset 

was composed of 1,928 Japanese regions, 22 manufacturing industries (two digits), and 15 

non-manufacturing sectors (one digit), spanning the 1996–2006 period. Summary statistics are 

provided in tables in the appendix. 

3.3. Further Assumptions for Data Restrictions 

This chapter has several data restrictions (which may be common among other 

researchers): 

1. Individual, firm-level (micro-level) data could not be obtained, only an aggregate 

(region-industry level) data. 

2. Regional input and output data could be obtained only for manufacturing industries, 

not for nonmanufacturing industries. 

3.4. Homogeneity of Firms 

The following assumptions are needed in order to estimate the models discussed in the 

previous section from an aggregated, region-industry level dataset (instead of firm-level micro 

data): 

 Production technologies of the firms are the same in each industry: 

𝛼𝐿
𝑗 = 𝛼𝐿𝑟 ,𝛼𝐾

𝑗 = 𝛼𝐾𝑟 ,𝛼ℎ
𝑗 = 𝛼ℎ𝑟 ,∀ℎ ∈ 𝐼,∀𝑗 ∈ 𝐽𝑟𝑟, 𝑟 ∈ 𝑅.   (2-22) 

 The production input quantity for each factor is the same across the firms located in 

the same region and belonging to the same industry: 

ℓ𝑗 = ℓ𝑗′ ,𝑘𝑗 = 𝑘𝑗′ ,𝑚𝑟𝑗 = 𝑚𝑟′𝑗′ ,∀𝑖 ∈ 𝐼,∀𝑗, 𝑗′ ∈ 𝐽𝑟𝑟.   (2-23) 

 Unobserved efficiency is the same across the firms located in the same region and 

belonging to the same industry: 

Ω𝑗 = Ω𝑟𝑟 ,∀𝑗 ∈ 𝐽𝑟𝑟 .       (2-24) 

Then the region-industry level aggregation of the model (2-1) is: 

𝑞𝑟𝑟 = 𝑄𝑟𝑟
𝑁𝑟𝑟

= Ω𝑟𝑟ℓ𝑟𝑟
𝛼𝐿
𝑟
𝑘𝑟𝑟
𝛼𝐾
𝑟
∏ 𝑚𝑟′𝑟𝑟

𝛼𝑟′
𝑟

𝑟′∈𝐼 ,∀𝑗 ∈ 𝐽𝑟𝑟,    (2-25) 

where 𝑞𝑟𝑟, ℓ𝑟𝑟, 𝑘𝑟𝑟, and 𝑚𝑟𝑟 represent the quantities of the total output and production inputs 

of the firms in industry 𝑖 in region 𝑟. From equations (2-17) and (2-25), the region-industry, 

aggregated revenue function is obtained: 
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𝑉𝑟𝑟 = 𝐴𝑟

𝜎𝑟−1
𝜎𝑟 𝜙𝑟𝑟

1
𝜎𝑟 ∏ 𝐺𝑟′𝑟

−𝛼𝑟′
𝑟 𝜎𝑟−1

𝜎𝑟
𝑟′∈𝐼 �Ω𝑟𝑟ℓ𝑟𝑟

𝛼𝐿
𝑟
𝑘𝑟𝑟
𝛼𝐾
𝑟
𝑀𝑟𝑟
𝛼𝑀
𝑟
�
𝜎𝑟−1
𝜎𝑟 .   (2-26) 

3.5. Non-manufacturing Industries 

Typically, detailed data of production inputs and outputs for the non-manufacturing sector 

cannot be obtained at the regional level. Even if estimating the production function of 

non-manufacturing firms is ignored, in order to estimate the regional revenue function for the 

manufacturing sector, regional demand potential 𝜙 and regional factor price index 𝐺 for the 

manufacturing industries, as well as the regional revenue and expenditure for intermediate 

inputs of the non-manufacturing sector are needed. 

Assume that national level revenue 𝑉𝑟  and total intermediate expenditure 𝑀𝑟  of 

nonmanufacturing industry 𝑖  are observable and that their regional level amounts are 

proportionate to the number of workers employed in the industry in the region. Specifically, the 

revenue of the firms in industry 𝑖 in region 𝑟 is approximated by: 

𝑉𝑟𝑟 = 𝑉𝑟
𝐿𝑟𝑟

∑ 𝐿𝑟′𝑟𝑟′∈𝑅
,∀𝑖 ∈ 𝐼𝑆      (2-27) 

and the expenditure for intermediate inputs of the firms in industry 𝑖 in region 𝑟 by  

𝑀𝑟𝑟 = 𝑀𝑟
𝐿𝑟𝑟

∑ 𝐿𝑟′𝑟𝑟′∈𝑅
,∀𝑖 ∈ 𝐼𝑆,      (2-28) 

where 𝐼𝑆 is the set of non-manufacturing industries. In most cases, researchers can observe the 

number of workers at the detailed regional level, even for non-manufacturing industries. 

4. Estimation Method 

4.1. Revenue Function Estimation 

Taking natural logarithms of both sides of equation (2-26) and adding a time dimension 𝑡, 

the following equation is obtained for all regions 𝑟 ∈ 𝑅 and all manufacturing industries 𝑖 ∈ 𝐼:  

ln𝑉𝑟𝑟 = 𝛼�0𝑟 + 𝛼�𝐿𝑟 ln ℓ𝑟𝑟
(𝑡) + 𝛼�𝐾𝑟 ln𝑘𝑟𝑟

(𝑡) + 𝛼�𝑀𝑟 ln𝑀𝑟𝑟
(𝑡) + ln𝜙𝑟𝑟

(𝑡)

𝜎𝑟
− 𝛼�𝑀𝑟  ∑ �̂�𝑟′

𝑟 ln𝐺𝑟′𝑟
(𝑡)

𝑟′∈𝐼 + 𝛼𝑟𝑟 +

𝛼𝑟
(𝑡) + 𝜔𝑟𝑟

(𝑡)         (2-29) 

for 𝑡 = 1, 2, … ,𝑇, where 𝛼�0𝑟 = 𝜎𝑟−1
𝜎𝑟

ln𝐴𝑟, 𝛼�𝐿𝑟 = 𝜎𝑟−1
𝜎𝑟

𝛼𝐿𝑟 , 𝛼�𝐾𝑟 = 𝜎𝑟−1
𝜎𝑟

𝛼𝐾𝑟 , 𝛼�𝑀𝑟 = 𝜎𝑟−1
𝜎𝑟

𝛼𝑀𝑟 , 𝜔𝑟𝑟
(𝑡) =
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𝜎𝑟−1
𝜎𝑟

lnΩ𝑟
(𝑡). 𝜙𝑟𝑟  is the agglomeration of demand for the firms in region 𝑟 in industry 𝑖, 

defined by equation (2-18): 

𝜙𝑟𝑟
(𝑡) ≡ ∑ 𝑒−𝜎𝑟𝜏𝑟𝑑𝑟𝑟′𝐸𝑟′𝑟

(𝑡) �𝐺𝑟′𝑟
(𝑡)�

𝜎𝑟−1
𝑟′∈𝑅  ,     (2-30) 

where 𝐸𝑟𝑟
(𝑡) is the expenditure for commodity 𝑖 in region 𝑟, defined by equation (2-9): 

𝐸𝑟𝑟
(𝑡) = 𝜇𝑟𝑌𝑟 + ∑ 𝛽𝑟𝑟

′
𝑀𝑟𝑟′

(𝑡)
𝑟′∈𝐼 .      (2-31) 

𝐺𝑟′𝑟
(𝑡) is the price index of commodity 𝑖′ in region 𝑟, defined by equation (2-21): 

𝐺𝑟′𝑟
(𝑡) = �∑ 𝑒−�𝜎𝑟′−1�𝜏𝑟′𝑑𝑟𝑟′

𝑉
𝑟′𝑟′
(𝑡)

𝜙
𝑟′𝑟′
(𝑡)𝑟′∈𝑅 �

− 1
𝜎𝑟′−1

.     (2-32) 

Since 𝐸𝑟′𝑟
(𝑡) correlates with 𝑉𝑟′𝑟

(𝑡), 𝜙𝑟𝑟
(𝑡) can be a function of 𝑉𝑟′𝑟

(𝑡) for all 𝑟′. 𝐺𝑟𝑟 is also 

determined by 𝑉𝑟′𝑟′
(𝑡)  for all 𝑟′ and 𝑖′. This means that the left hand side of equation (2-29), the 

revenue of industry 𝑖 in region 𝑟 , 𝑉𝑟𝑟
(𝑡) , is related with that in any other regions, 𝑉𝑟′𝑟

(𝑡) . 

Therefore, the proposed model is a special case of the spatial auto regressive (SAR) models.11  

𝛼𝑟𝑟 is a region-industry specific effect which is estimated by including region-industry 

dummies. It may capture the effects of distance from network hubs such as ports, airports, 

highway interchanges, and train stations. 𝛼𝑟
(𝑡) is an industry-year specific effect which is 

estimated by including industry-year dummies. It may include the influence from the 

international market through export and import. 

4.2. Econometric Issues  

Consistency of the estimator for the parameters relies on assumptions about the conditional 

mean of the unobserved efficiency term, 𝜔𝑟𝑟
(𝑡) . According to Wooldridge (2002), in the 

nonlinear regression, if:  

E �𝜔𝑟𝑟
(𝑡)� 𝜕 ln𝑉𝑟𝑟

(𝑡)

𝜕𝛉
, ln 𝐿𝑟𝑟

(𝑡) , ln𝐾𝑟𝑟
(𝑡) , ln𝑀𝑟𝑟

(𝑡)� = 0,    (2-33) 

                                                      
11 Indeed, the right hand side of equation (2-29) also includes the variable in the left hand side, 𝑉𝑟𝑟

(𝑡). 

Thus, this is a simultaneous equation of the revenue in all regions and industries. However, we could 

not control for this simultaneity because of the computational burden. Therefore, estimation results 

should be biased to some extent. This is one of the important technical challenges remained for the 

future research. 
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where  𝛉 = (𝜏1 𝜏2  … 𝜏𝐼  𝜎1 𝜎2 … 𝜎𝐼)′ , then the nonlinear least squares (NLS) estimator is 

consistent, where the NLS estimator minimizes the objective function: 

𝑂𝑁𝐿𝑆(𝛉,𝛂) = ∑ ∑ ∑ �ln𝑉𝑟𝑟
(𝑡) − ℎ𝑟𝑟

(𝑡)(𝛉)− 𝐗𝑟𝑟
(𝑡)𝛂𝑟�

2
𝑡𝑟𝑟 ,   (2-34) 

where 𝛂𝑟 = �𝛼�𝐿𝑟  𝛼�𝐾𝑟  𝛼�𝑀𝑟 �
′ , ℎ𝑟𝑟

(𝑡)(𝛉) = ln𝜙𝑟𝑟
(𝑡)(𝜏𝑟,𝜎𝑟)
𝜎𝑟

− 𝛼�𝑀𝑟 ∑ �̂�𝑟′
𝑟 ln𝐺𝑟′𝑟

(𝑡) (𝜏𝑟,𝜎𝑟)𝑟′∈𝐼 , and 𝐗𝑟𝑟
(𝑡) =

�ln𝐿𝑟𝑟
(𝑡)  ln𝐾𝑟𝑟

(𝑡)  ln𝑀𝑟𝑟
(𝑡)�. 

As suggested in the large body of the econometric literature on production function 

estimation, the condition in which equation (2-33) holds true cannot be met in practice. To 

obtain consistent estimators when the condition of equation (2-33) is violated, the term of 

unobserved efficiency of the firms in region r in industry i in year t is decomposed into three 

components, as follows: 

𝜔𝑟𝑟
(𝑡) = 𝜇𝑟

(𝑡) + 𝜔�𝑟𝑟 + 𝑢𝑟𝑟
(𝑡),      (2-35) 

where 𝜇𝑟
(𝑡)  is the industry-year-specific efficiency shock, 𝜔�𝑟𝑟  is the persistent efficiency 

difference across regions in each industry, and 𝑢𝑟𝑟
(𝑡)  is a time-dependent, region-specific 

efficiency shock for each industry. 

By including industry-year dummies as explanatory variables, the first component is 

controlled out. Next, if:  

E �𝜔�𝑟𝑟�
𝜕 ln𝑉𝑟𝑟

(𝑡)

𝜕𝛉
,𝐗𝑟𝑟

(𝑡)� ≠ 0,      (2-36) 

then the NLS estimator is no longer consistent. To conduct consistent estimation, the fixed 

effects (FE) or the first difference (FD) estimator should at least be used in this case. The FE 

estimator minimizes the objective function: 

𝑂𝐹𝐸(𝛉,𝛂) = ∑ ∑ ∑ �ln �̈�𝑟𝑟
(𝑡) − ℎ̈𝑟𝑟

(𝑡)(𝛉)− �̈�𝑟𝑟
(𝑡)𝛂𝑟�

2
𝑡𝑟𝑟 ,   (2-37) 

where the variable with “ ̈ ” is demeaned, e.g., �̈�𝑟𝑟
(𝑡) = 𝐲𝑟𝑟

(𝑡) − 𝑦𝑟𝑟����.  

The FD estimator minimizes the least squares of the error term, using the FD of the original 

dataset: 

𝑂𝐹𝐹(𝛉,𝛂) = ∑ ∑ ∑ �𝛥 ln𝑉𝑟𝑟
(𝑡) − 𝛥ℎ𝑟𝑟

(𝑡)(𝛉)− 𝛥𝐗𝑟𝑟
(𝑡)𝛂𝑟�

2
𝑡𝑟𝑟 .   (2-38) 

If: 

E �𝑢𝑟𝑟
(𝑡)� 𝜕 ln 𝑉𝑟𝑟

(𝑡)

𝜕𝛉
,𝐗𝑟𝑟

(𝑡)� ≠ 0,      (2-39) 
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then the FE and FD estimators are no longer consistent, as well as the NLS estimator. In 

addition to equation (2-36), in order to conduct consistent estimation under the condition of 

(2-39), an instrumental variable estimator via the GMM (general method of moments) 

estimation technique should be used. The GMM estimator minimizes the objective function: 

𝑂𝐺𝑀𝑀(𝛉,𝛂) = (∑ ∑ 𝐞𝑟𝑟′ 𝐖𝑟𝑟𝑟𝑟 )𝐀(∑ ∑ 𝐞𝑟𝑟′ 𝐖𝑟𝑟𝑟𝑟 )′,    (2-40) 

where 𝐞𝑟𝑟  is a (𝑇 × 1) vector of residuals for region 𝑟 in industry 𝑖, 𝐖𝑟𝑟  is a (𝑇 × 𝑃) 

matrix of instrumental variables for region 𝑟 in industry 𝑖, and 𝐀 is a (𝑃 × 𝑃) positive 

definite matrix called weighting matrix. For the specification of residual vector 𝐞, an effective 

choice of instruments 𝐖, and an efficient estimation of weighting matrix 𝐀, the difference 

GMM (DGMM) developed by Arellano and Bond (1991) and the system GMM (SGMM) 

developed by Blundell and Bond (1998) are used. In summary, the DIF-GMM method uses the 

FD residuals 𝛥𝑢𝑟𝑟
(𝑡) for the element of 𝐞𝑟𝑟 and lagged instrumental variables in level 𝐗𝑟𝑟

(𝑡−𝑠), 

𝐗𝑟𝑟
(𝑡−𝑠−1), ..., 𝐗𝑟𝑟

(1) for 𝐖𝑟𝑟
(𝑡). Additionally, the SYS-GMM method adds the residuals in level 

𝑢𝑟𝑟
(𝑡) to 𝐞𝑟𝑟 and the lagged difference of instrumental variables 𝛥𝐗𝑟𝑟

(𝑡−𝑠) to 𝐖𝑟𝑟
(𝑡). Estimation 

Procedure  

The parameters of the model can be calculated by the following estimation procedure. 

Since both equations (2-30) and (2-32) are nonlinear functions and are dependent on the 

unknown variable the agglomeration of demand, 𝜙, and the price index, 𝐺, each other, the 

Gauss-Newton method is employed and a fixed-point iteration is nested. 

1. Initialize the parameters for transportation cost and elasticity of substitution, 𝛕� and 𝛔�, 

respectively. 

2. Loop the following steps until objective function 𝑂(𝛕�,𝛔�,𝛂�) is minimized. 

A) Initialize 𝜙�𝑟𝑟
(𝑡) for each 𝑟, 𝑖, and 𝑡. Then loop the following steps until 𝜙�𝑟𝑟

(𝑡) 

and 𝐺�𝑟𝑟
(𝑡) do not change for all 𝑟, 𝑖, and 𝑡. 

(a) Given 𝜙�𝑟𝑟
(𝑡) for all 𝑟 and 𝑖, calculate 𝐺�𝑟𝑟

(𝑡) for each 𝑟, 𝑖, and 𝑡, using 

equation (2-33). 

(b) Given 𝐺�𝑟𝑟
(𝑡)  for all 𝑟  and 𝑖 , update 𝜙�𝑟𝑟

(𝑡)  for each 𝑟 , 𝑖 , and 𝑡 , using 

equation (2-31). 

B) Using 𝛟� ,  𝐆�,  and 𝛔� , estimate the parameters of the linear part of revenue 

function (2-30), i.e., 𝛼�𝐿𝑟  𝛼�𝐾𝑟  𝛼�𝑀𝑟 , ∀𝑖 ∈ 𝐼𝑀, to minimize the augmented objective 

function 𝑂�𝛂�|𝛟� ,𝐆�,𝛔��.  

C) Calculate the value of objective function 𝑂� = 𝑂(𝛕�,𝛔�,𝛂�). 

D) Calculate the derivatives of the objective function:  
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�̂� = �∂𝑂(𝛕�,𝛔�,𝛂�)
𝜕𝛕′

 ∂𝑂(𝛕�,𝛔�,𝛂�)
𝜕𝛔′

 ∂𝑂�𝛉
�,𝛂��

𝜕𝛂′
�.     (2-41) 

E) Update parameters 𝛕� and 𝛔�, using objective value 𝑂� and the Jacobian �̂�. 

5. Results 

5.1. Results of Revenue Function Estimation 

Table 2.1 reports the estimation results of the revenue function, specifically the estimated 

values of the parameters in the nonlinear part of the model, 𝜏 and 𝜎. Although the elasticity of 

outputs with respect to the factors of labor, capital, and intermediate inputs (𝛼𝐿𝑟 , 𝛼𝐾𝑟  and 𝛼𝑀𝑟 ) 

are jointly estimated for each two-digit industry, their estimation results do not appear in the 

table to avoid excessive complexity. The first column presents the results of the NLS estimation, 

the second column shows the results of the FE model, and the third column provides the system 

GMM (SGMM) results. The transportation cost parameters are significantly positive for the 

manufacturing sector in all methods. Although the transportation cost parameters for the 

primary and service sectors12 are negative in the NLS and FE models, respectively, in the 

SGMM estimation results, the parameter for the service sector becomes significantly positive13 

and its magnitude is higher than that for the manufacturing sector. Figure 2.1 illustrates the 

estimated transportation cost function for each sector. 

The elasticity of substitution 𝜎 is also estimated for each sector. In the SGMM results, the 

value ranges from 16 for manufacturing to 58 for the service sector, indicating a higher degree 

of differentiation of the products in the manufacturing sector than in the primary and service 

sectors. However, the results of the GMM distance statistic test indicate that a null hypothesis, 

H0: 𝜏 = 0 or 𝜎 = ∞, cannot be rejected for all industries, while it is rejected in the NLS and 

FE models.  

 

                                                      
12 The primary sector includes agriculture, forestry, fisheries, and mining industry. Service sector 

includes all remaining industries not included in the primary and the manufacturing sector. 
13 We assume that the transportation costs on services imply the commuting and communication cost of 

sales persons and customers. 
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Table 2.1. Estimation results of the revenue function 

 

Notes: Robust standard errors for NLS and FE and ordinary standard errors for SGMM are enclosed in brackets. ***, 

**, and * are significant at p < 0.01, p < 0.05, and p < 0.1, respectively. In the SGMM estimation, 6 years and more 

lagged lnL, lnK, and lnM are used as “GMM-type” instruments and derivatives with respect to τ, and σ are treated as 

standard instruments without any lags. Sargan test statistic for SGMM is 2006.691 (p = 0.996) and the p-value of the 

Arellano-Bond test for AR(4) is 0.0292. 

 

Figure 2.1 Estimated transportation function 
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5.2. Decomposition of Total Factor Productivity 

The logarithm of the total factor productivity (TFP) for each region 𝑟 and industry 𝑖 is 

defined as: 

ln𝑇𝑇𝑃𝑟𝑟 = ln𝑉𝑟𝑟 −
𝜎�𝑟−1
𝜎�𝑟

�𝛼�𝐿𝑟 ln ℓ𝑟𝑟 − 𝛼�𝐾𝑟 ln 𝑘𝑟𝑟 − 𝛼�𝐾𝑟 ln𝑚𝑟𝑟�.   (2-42) 

From equation (2-29), these TFPs can be decomposed into the demand potential and supply 

potential: 

ln𝑇𝑇𝑃𝑟𝑟 = 1
𝜎�𝑟

ln𝜙�𝑟𝑟 + 𝜎�𝑟−1
𝜎�𝑟

𝛼�𝑀𝑟 ln𝜓�𝑟𝑟 +𝜔𝑟𝑟,    (2-43) 

where 𝜙�𝑟𝑟 = ∑ 𝑒−𝜎�𝑟𝜏�𝑟𝑑𝑟𝑟′
𝐸𝑟𝑟′
𝐺�𝑟𝑟′

𝑟′∈𝑅  and 𝐺�𝑟𝑟 = ∑ 𝑒−�𝜎�𝑟′−1�𝜏�𝑟′𝑑𝑟𝑟′
𝑉𝑟′𝑟′
𝜙�𝑟′𝑟′

𝑟′∈𝑅  for ∀𝑟 ∈ 𝑅,∀𝑖 ∈ 𝐼 

and 𝜓�𝑟𝑟 = ∏ �𝐺�𝑟′𝑟�
−𝛽�𝑟′

𝑟

𝑟′∈𝐼  for ∀𝑟 ∈ 𝑅,∀𝑖 ∈ 𝐼. 

The first term in equation (2-43) indicates a demand potential for industry 𝑖 in region 𝑟, 

and the second term in equation (2-43) reveals a supply potential for intermediate inputs of 

industry 𝑖 in region 𝑟. Table 2.2 shows the difference in TFP between the region with a 

demand and supply potential above the 90 (or 50) percentile and the region with those below the 

10 (or 50) percentile. The results indicate significant differences between those regions. The 

TFP in a region with the top 10% demand potential is 7.2% higher than that in a region with the 

bottom 10% demand potential on average. The TFP in a region with the top 10% supply 

potential is 7.0% higher than that in a region with the bottom 10% supply potential on average. 

Table 2.2 Demand and supply agglomeration and TFP differences 

 
Notes: Standard errors are enclosed in brackets. *** is significant at p < 0.01, p < 0.05, and p < 0.1, respectively. The 

demand potential is ln𝜙𝑟𝑟 and the supply potential is ln𝜓�𝑟𝑟. The SGMM results are used for the calculations. 
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From equation (2-43), the variance of TFP in the natural logarithm across regions for each 

industry can be decomposed into six terms as follows: 

∑
∑ �ln𝑇𝐹𝑃𝑟𝑟−ln𝑇𝐹𝑃𝚤�����������

2
𝑟∈𝑅𝑟

𝑁𝑅𝑟
𝑟∈𝐼 = ∑

∑ � 1
𝜎�𝑟
�ln𝜙

�𝑟𝑟
𝜎�𝑟

−ln𝜙
�𝚤��������

𝜎�𝑟
��

2

𝑟∈𝑅𝑟

𝑁𝑅𝑟
𝑟∈𝐼 + ∑

∑ �
𝜎�𝑟−1
𝜎�𝑟

𝛼�𝑀
𝑟 �ln𝜓�𝑟𝑟−ln𝜓�𝚤���������

2

𝑟∈𝑅𝑟

𝑁𝑅𝑟
𝑟∈𝐼 +

∑
∑ (𝜔𝑟𝑟−𝜔𝚤����)2𝑟∈𝑅𝑟

𝑁𝑅𝑟
𝑟∈𝐼 + 2∑

∑ 1
𝜎�𝑟
�ln𝜙

�𝑟𝑟
𝜎�𝑟

−ln𝜙
�𝚤��������

𝜎�𝑟
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�𝑟−1
𝜎�𝑟

𝛼�𝑀
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𝑁𝑅𝑟
𝑟∈𝐼 +
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∑ 1

𝜎�𝑟
�ln𝜙

�𝑟𝑟
𝜎�𝑟

−ln𝜙
�𝚤��������

𝜎�𝑟
�(𝜔𝑟𝑟−𝜔𝚤����)𝑟∈𝑅𝑟

𝑁𝑅𝑟
𝑟∈𝐼 + 2∑

∑ 𝜎�𝑟−1
𝜎�𝑟

𝛼�𝑀
𝑟 �ln𝜓�𝑟𝑟−ln𝜓�𝚤��������(𝜔𝑟𝑟−𝜔𝚤����)𝑟∈𝑅𝑟

𝑁𝑅𝑟
𝑟∈𝐼 ,  (2-44) 

where 𝑁𝑅𝑟 is the number of regions in which one or more establishments in industry 𝑖 exist. 

The first three terms in equation (2-44) denote the contribution of the variance of demand 

potential, supply potential and other factors, respectively, in the variance of TFP while the last 

three terms denotes the contribution of the covariance among these three terms. Table 2.3 shows 

the results of variance decomposition using equation (2-44). Demand and supply potential 

explain almost 1% while the other factors do almost 99% of the variance of TFP across regions. 

These results show that the other factors unrelated to the transportation costs on the products, 

such as technological knowledge or agglomeration of knowledge, might play important roles in 

the regional dispersion of TFP. 

Table 2.3 Relative importance of demand and supply potential 

  lnTFP 
Demand 

potential 

Supply 

potential 

Other 

factors 

Demand 

potential 

* Supply 

potential  

Demand 

potential 

* Other 

factors 

Supply 

potential 

* Other 

factors 

Variance 0.04968 0.00036 0.00013 0.04915 0.00041 -0.00024 -0.00013 

 (%) 100.0 0.7 0.3 98.9 0.8 -0.5 -0.3 

Notes: The demand potential is ln𝜙𝑟𝑟 and the supply potential is ln𝜓�𝑟𝑟. The SGMM results are used for the 

calculations. Calculations are based on deviations from industry-year mean for each variable. 

6. Conclusion 

In this chapter, the effects of transportation costs on agglomeration economy were 

examined empirically. Combining a spatial demand function derived from the theoretical NEG 
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literature (e.g., Krugman 1980; Fujita et al. 1999) with a production function, this chapter 

proposed a revenue function, which would capture the effects of transportation costs on a firm’s 

revenue. Since transportation costs generate these spatial effects on a firm’s own products and 

its intermediate goods, the proposed revenue function makes it possible to relate the geographic 

agglomeration economy to the transportation costs, something not done in previous empirical 

studies. 

This chapter empirically examined the model with the regional panel data of the 

manufacturing sector in Japan. The estimation results of the revenue function show significant, 

robust, and positive transportation costs for the manufacturing products. Additionally, consistent 

GMM estimation results provide evidence of positive transportation costs, not only for the 

outputs of the manufacturing sector but also for those of the primary and service sectors. These 

findings indicate that the efficiency of the manufacturing firms depends on their access to the 

markets and the intermediate inputs supply. Because the proposed model can simulate the value 

added given a set of geographic distribution of the firms, the empirical results can be used to 

evaluate the optimality of the actual industrial location and the effects of some policy 

intervention on the optimality. 

However, several issues remain for future research. First, to investigate effective regional 

and location policies, empirical analyses of the dynamics of the location of firms and labor 

supply are additionally needed. From the results presented in this chapter, only comparative 

statics can be performed. From the dynamic perspective, other important aspects, such as 

relocation cost, entry cost, or time lags, should be taken into account. They can be analyzed 

only in dynamic models of the location choice. Second, this chapter ignores the export and 

import activities and roles of trade hubs, for example, harbors, airports, or train stations. Since 

the distance from such trade hubs should affect the transportation costs, as well as the efficiency 

of firms, it should be necessary to control for such effects. Third, this chapter excludes the 

spillover effects of knowledge or of R&D investments on productivity. Knowledge spillover 

effects may be correlated with the demand and supply access, which are examined in this 

chapter. Thus, it should be necessary to control for the effects of knowledge agglomeration.  
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Appendix 

Appendix 2.1 Industries (2 digit Japan Standard Industry Classification) 

Manufacturing 

sector 

F09 Food 
F10 Beverages, Tobacco and Feed 
F11 Textile Mill Products 
F12 Apparel and Other Finished Products Made From Fabrics and Similar Materials 
F13 Lumber and Wood Products, Except Furniture 
F14 Furniture and Fixtures 
F15 Pulp, Paper and Paper Products 
F16 Printing and Allied Industries 
F17 Chemical and Allied Products 
F18 Petroleum and Coal Products 
F19 Plastic Products, Except Otherwise Classified 
F20 Rubber Products 
F21 Leather Tanning, Leather Products and Fur Skins 
F22 Ceramic, Stone and Clay Products 
F23 Iron and Steel 
F24 Non-Ferrous Metals and Products 
F25 Fabricated Metal Products 
F26 General Machinery 
F27 Electrical Machinery, Equipment and Supplies 
F30 Transportation Equipment 
F31 Precision Instruments and Machinery 
F32 Miscellaneous Manufacturing Industries 

Primary sector A Agriculture 
B Forestry 
C Fisheries 
D Mining 

Service sector E Construction 
G Electricity, Gas, Heat Supply and Water 
H Information and Communications 
I Transport 
J Wholesale and Retail Trade 
K Finance and Insurance 
L Real Estate 
M Eating and Drinking Places, Accommodations 
N Medical, Health Care and Welfare 
O Education, Learning Support 
Q Services, N.E.C. 
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Appendix 2.2 Total number of establishments (1 thousand) 
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Appendix 2.3 Number of regions with one or more establishments 

 
 



Chapter 2  

38 
 

Appendix 2.4 Basic statistics for the manufacturing industries (city-level) 

Industry N 
lnV   lnL   lnK   lnM 

Mean S.D. Min. Max.   Mean S.D. Min. Max.   Mean S.D. Min. Max.   Mean S.D. Min. Max. 
F09 Food 8,551 -0.799 1.006 -4.341 2.915  3.303 0.667 1.651 6.062  -2.328 1.385 -7.772 1.548  -1.424 1.086 -5.590 1.988 
F10 Beverages, Tobacco and Feed 3,932 -0.451 1.647 -4.669 4.222  2.956 0.738 1.386 5.490  -2.621 1.806 -5.542 3.179  -1.416 1.720 -6.220 2.587 
F11 Textile Mill Products 3,269 -1.634 1.119 -4.881 1.711  2.764 0.714 0.956 5.507  -3.642 1.858 -8.740 2.081  -2.460 1.310 -7.114 1.370 
F12 Apparel 7,281 -2.249 0.785 -4.651 1.429  2.707 0.561 1.335 5.729  -4.557 1.623 -9.028 0.472  -3.183 1.072 -7.677 0.540 
F13 Lumber and Wood Products 5,981 -1.741 0.896 -4.395 3.067  2.472 0.536 1.386 5.710  -4.053 1.560 -7.100 1.191  -2.373 1.029 -6.444 2.721 
F14 Furniture and Fixtures 6,345 -2.041 0.965 -4.359 1.989  2.354 0.628 0.875 6.644  -4.151 1.246 -7.217 1.550  -2.809 1.071 -6.635 1.806 
F15 Pulp, Paper and Paper Products 5,429 -0.807 1.188 -4.227 3.268  3.089 0.691 1.466 6.056  -2.416 1.736 -5.467 3.302  -1.445 1.297 -6.167 2.619 
F16 Printing and Allied Industries 7,564 -1.518 0.967 -4.492 2.546  2.777 0.564 1.386 5.492  -3.371 1.627 -6.896 1.865  -2.446 1.096 -6.571 1.881 
F17 Chemical and Allied Products 4,261 0.616 1.274 -5.046 4.653  3.870 0.821 1.386 7.376  -0.851 1.741 -5.054 3.261  -0.178 1.316 -8.230 3.721 
F18 Petroleum and Coal Products 911 0.149 1.897 -3.036 6.295  2.822 0.993 1.540 6.047  -2.200 1.871 -4.241 4.661  -0.366 1.959 -4.413 6.099 
F19 Plastic Products 6,657 -0.937 0.988 -4.315 2.789  3.081 0.632 0.916 5.674  -3.114 2.569 -10.260 2.026  -1.630 1.092 -5.901 2.323 
F20 Rubber Products 2,686 -1.059 1.334 -3.979 3.380  3.182 0.949 1.466 6.218  -3.963 2.284 -6.741 2.023  -1.878 1.407 -6.041 2.408 
F21 Leather Products 1,503 -2.060 0.963 -4.867 1.610  2.445 0.527 1.386 5.165  -4.810 1.747 -8.517 -0.212  -2.835 1.274 -7.706 0.651 
F22 Ceramic, Stone and Clay Products 7,456 -0.892 0.833 -4.481 2.646  2.933 0.593 1.281 6.731  -2.568 1.851 -8.405 1.884  -1.665 0.879 -5.828 1.670 
F23 Iron and Steel 3,643 0.002 1.313 -3.752 4.725  3.387 0.888 1.466 6.825  -1.401 1.694 -4.294 4.354  -0.572 1.433 -5.648 4.135 
F24 Non-Ferrous Metals and Products 2,976 -0.358 1.549 -4.862 4.249  3.322 0.974 1.386 7.113  -2.338 1.878 -5.391 2.705  -0.987 1.754 -6.510 4.138 
F25 Fabricated Metal Products 8,062 -1.294 0.827 -4.177 2.899  2.779 0.520 1.335 5.685  -2.700 1.086 -6.757 0.940  -2.044 0.951 -5.982 1.683 
F26 General Machinery 7,647 -0.673 1.021 -3.835 3.682  3.195 0.669 1.253 6.343  -2.224 1.322 -5.876 2.093  -1.403 1.182 -6.027 3.657 
F27 Electrical Machinery 7,173 -0.063 1.352 -4.423 4.326  3.830 0.863 0.619 7.435  -1.986 1.990 -7.145 3.359  -0.707 1.495 -7.277 4.034 
F30 Transportation Equipment 5,574 -0.281 1.530 -5.180 5.348  3.540 0.996 1.386 7.751  -2.580 2.661 -7.799 3.172  -0.949 1.745 -8.092 5.015 
F31 Precision Instruments and Machinery 3,628 -0.967 1.198 -4.373 4.063  3.172 0.824 1.466 6.890  -3.482 1.959 -8.354 1.790  -1.829 1.366 -6.645 3.571 
F32 Miscellaneous Manufacturing Industries 5,970 -1.813 1.177 -5.282 4.332  2.531 0.681 -0.440 6.450  -4.254 1.636 -8.262 1.607  -2.678 1.339 -6.567 4.309 
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Appendix 2.5 Basic statistics for the all industries (prefecture-level, 1 billion yen) 

Industry n 
E   V 

Mean S.D. Min. Max.   Mean S.D. Min. Max. 
F09 Food Products 517 871.6 915.5 185.9 4997.9  4.7 4.1 0.9 24.9 
F10 Beverages, Tobacco and Feed 517 388.7 409.7 83.4 2286.2  13.0 9.0 2.5 40.4 
F11 Textile Mill Products 517 65.1 60.6 9.0 425.2  1.0 0.6 0.1 3.7 
F12 Apparel 517 256.2 293.2 42.6 2047.9  1.1 0.9 0.2 7.2 
F13 Lumber and Wood Products 517 115.6 103.2 22.2 646.1  1.5 1.5 0.3 14.0 
F14 Furniture and Fixtures 517 81.0 90.9 17.0 631.7  0.8 0.6 0.2 3.0 
F15 Pulp, Paper and Paper Products 517 215.0 262.6 40.9 1665.5  4.8 3.2 0.8 14.5 
F16 Printing and Allied Industries 517 235.3 347.4 22.9 2467.0  1.6 1.2 0.3 6.5 
F17 Chemical and Allied Products 517 689.4 736.6 106.8 4394.5  15.2 11.2 0.3 42.3 
F18 Petroleum and Coal Products 517 425.4 497.2 64.3 3390.0  30.9 35.2 2.6 197.3 
F19 Plastic Products 517 259.1 275.9 37.8 1422.6  4.0 2.1 1.0 14.2 
F20 Rubber Products 517 77.1 89.6 10.9 420.5  3.0 2.2 0.0 10.3 
F21 Leather Products 517 43.7 51.8 8.2 340.3  0.5 0.3 0.0 2.0 
F22 Ceramic, Stone and Clay Products 517 227.2 210.2 42.5 1273.2  3.5 2.6 0.9 15.3 
F23 Iron and Steel 517 462.0 563.6 36.0 3483.6  12.1 10.3 1.3 53.4 
F24 Non-Ferrous Metals and Products 517 189.6 205.6 14.4 973.1  6.9 6.4 0.1 41.3 
F25 Fabricated Metal Products 517 332.3 314.5 66.9 1783.4  1.8 1.0 0.5 4.8 
F26 General Machinery 517 226.7 260.4 26.6 1278.5  4.3 2.3 0.4 12.3 
F27 Electrical Machinery 517 760.0 794.2 96.1 4244.5  12.3 5.8 1.1 30.8 
F30 Transportation Equipment 517 707.5 1033.5 58.1 7389.5  12.8 10.2 0.6 59.0 
F31 Precision Instruments and Machinery 517 65.0 70.9 11.2 397.8  2.5 1.9 0.1 8.5 
F32 Miscellaneous Manufacturing Industries 517 169.0 190.2 28.0 1100.7  1.0 0.6 0.1 2.8 
A Agriculture 517 344.6 296.4 79.4 1472.3  7.7 5.5 1.9 42.4 
B Forestry 517 29.1 23.1 3.4 199.7  3.4 4.0 0.2 28.7 
C Fisheries 517 65.9 60.0 15.0 339.1  1.9 1.8 0.1 13.0 
D Mining 517 289.3 369.2 31.3 2890.7  2.0 1.7 0.3 15.5 
E Construction 517 176.7 242.4 26.4 1629.5  1.2 1.2 0.4 10.2 
G Electricity, Gas, Heat Supply and Water 517 474.1 534.7 88.7 3168.4  32.1 30.9 6.3 152.6 
H Information and Communications 517 544.8 855.4 58.0 7731.3  1.4 1.8 0.1 14.3 
I Transport 517 235.6 260.5 50.2 1484.9  3.0 2.1 0.9 12.5 
J Wholesale and Retail Trade 517 23.8 29.1 2.5 203.2  0.4 0.3 0.1 1.9 
K Finance and Insurance 517 777.9 977.8 146.5 6561.8  2.6 1.8 0.8 9.9 
L Real Estate 517 1290.3 1463.9 270.9 8673.8  3.2 2.8 0.5 13.8 
M Restaurants 517 406.6 449.3 81.6 2423.4  0.2 0.2 0.1 1.0 
N Medical, Health Care and Welfare 517 231.6 255.4 43.1 1576.7  1.6 1.0 0.4 7.3 
O Education, Learning Support 517 145.3 164.4 30.3 1009.4  0.5 0.4 0.1 2.1 
Q Services, N.E.C. 517 2021.9 2458.4 371.3 15921.0  0.6 0.5 0.2 3.2 

 



Chapter 3  

40 
 

Chapter 3  Plant Productivity Dynamics and Private and 
Public R&D Spillovers: Technological, Geographic and 
Relational Proximity14 

1. Introduction 

It is well established in the literature that the productivity effects of R&D spillovers are 

enhanced by technological proximity and geographic proximity (Jaffe et al., 1993; Adams and 

Jaffe, 1996; Aldieri and Cincera, 2009; Lychagin et al., 2010; Bloom et al., 2013; Orlando, 

2004; Griffith et al., 2009; Mairesse and Mulkay, 2008). Despite the increasing number of 

large-scale firm-level studies on R&D spillovers, 15  existing studies have a number of 

limitations in scope and methodology. First, they typically relied on data on publicly listed firms, 

aggregating over the various locations and technologies in which firms are active.16 Second, the 

focus has been on inter-firm private spillovers while abstracting from the role of public research. 

A different research stream focusing on the role of knowledge spillovers from public research 

conducted at universities and research institutes has however suggested the importance of such 

spillovers, with an explicit role of proximity (e.g. Jaffe, 1989; Adams, 1990; Anselin et al., 

1997; Furman et al., 2005). Third, R&D spillovers at the firm level have in most cases been 

modelled as knowledge spillovers as a function of proximity between technology portfolios of 

the firm, while the role of spillovers through supplier and customer linkages has only received 

limited attention.17 A separate literature on the role of spillovers in the context of foreign direct 

                                                      
14 This chapter is based on Ikeuchi et al. (2013) and Belderbos et al. (2013), both co-authored with Rene Belderbos, 

Kyoji Fukao, YoungGak Kim, and HyeogUg Kwon. It is the result of the joint research project of the National 

Institute of Science and Technology Policy (NISTEP), the Research Institute for Economy, Trade and Industry 

(RIETI), and Hitotsubashi University, under the “Science for Science, Technology and Innovation Policy” program of 

the Ministry of Education, Culture, Sports, Science and Technology in Japan. 

15 Early work examined R&D spillovers at the industry level (e.g. Mohnen and Lepine, 1991; Audretsch and 

Feldman, 1996; Goto and Suzuki, 1989). 

16 Adams and Jaffe (1996) do analyse plant level productivity but focuses on the effects of internal R&D. The 

analysis of Griffith et al. (2009) for UK plants focuses on proximity effects but does not incorporate the role of R&D. 

17 An exception is Crespi et al. (2007), who examine data from UK Community Innovation Surveys for direct (self 
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investments has strongly suggested that 'vertical' spillovers through buyer-supplier relationships 

often is the key channel through with spillovers occur (e.g. Haskel et al., 2007; Görg and Strobl, 

2001; Javorcik, 2004; Kugler, 2006). While knowledge and technology transfer in these 

relationships is often purposeful and embedded in intermediates, their value tends not to be fully 

reflected in the price of such intermediates, leading to ‘pecuniary spillovers (Hall et al., 2012; 

Crespi et al, 2007). Compared with ‘horizontal’ spillovers in technological proximity within 

narrowly defined industries, the absence of market rivalry provides greater incentives for 

productivity and growth enhancing knowledge exchange and spillovers (e.g. Bloom et al., 2013). 

Since suppliers and clients may be active in a variety of industries, these 'relational' spillovers 

are yet a different dimension of heterogeneity in spillover pools.  

This chapter addresses these limitations in prior works. The analyses contribute an analysis 

of the various sources of R&D spillovers, which until now have not been considered 

simultaneously, and examine these relationships at the plant level. The chapter analyzes the 

effects of technologically, geographically, and relationally proximate private R&D stocks, as 

well as of technologically and geographically proximate public R&D stocks on TFP in an 

unbalanced panel of close to 20000 Japanese manufacturing plants, 1987-2007. The plant level 

data from the Census of Manufacturers are matched with information on R&D expenditures 

from the comprehensive Survey of R&D Activities in Japan covering virtually all R&D 

spending firms (and public research institutions). The R&D survey data, which are decomposed 

by field or industry of application, allow us to construct relevant R&D stocks weighted by 

technological proximity (e.g. Bloom et al., 2013), while the information on plant locations 

allows us to explore the role of geographic distance between firms and between firms and public 

research institutions in much more detail than in previous studies. Relationally proximate R&D 

stocks are calculated using input-output tables. Public R&D stocks are differentiated by science 

field, which can be mapped into technologies and industries reflecting their varying relevance 

for firms. This chapter estimates long (five year) difference models of plant TFP growth to 

reduce the influence of measurement errors and cyclical effects (e.g. Haskel et al., 2007; 

Branstetter, 2000). Also, gradual convergence in TFP is allowed for by estimating dynamic TFP 

growth models (e.g. Klette, 1996; Klette and Johanson, 1998; Lokshin et al., 2008), and 

distance effects are identified by estimating exponential decay parameters (e.g. Lychagin et al., 

                                                                                                                                                           
assessed) evidence of incoming knowledge flows at the firm level. They find, among others, that supplier information 

positively affects TFP growth, but do not examine geographic or technological proximity. 
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2010; Duranton and Overman, 2005)). The simultaneous inclusion of multiple sources of 

spillovers, the detail on location and field of R&D, the long panel, and the uniquely large set of 

plants should allow more precise estimates of spillover effects and an assessment of their 

relative importance over time. This study contributes to the very limited literature on R&D and 

spillovers at the plant level.  

This research is also motivated by the observation that Japan's total factor productivity 

growth has been declining since the mid-1980s (e.g. Fukao and Kwon, 2011), while at the same 

time R&D expenditures as a percentage of GDP have been steadily increasing to reach 3.8% in 

2008, from 2.5% in 1980s. The discrepancy between the trends in R&D expenditures and TFP 

suggests that the aggregate returns to R&D have been falling. One possible explanation for this 

phenomenon may be a decline in R&D spillovers due to the exit (and potential relocation 

abroad) of sophisticated manufacturing plants of R&D intensive firms and the accompanied 

changing patterns of R&D agglomeration, which may have reduced the size and effectiveness of 

the relevant pool of R&D spillovers across firms. Prior studies suggest that exit rates of 

relatively productive plants operated by multi-plant (multinational) firms have been typically 

higher than the exit rates of single establishments (e.g. Fukao and Kwon, 2006; Kneller et al. 

2012). 

The remainder of the chapter is organized as follows. The next section describes the model, 

the particularities of the data and the empirical strategy followed. Section 3 presents the 

empirical results and section 4 concludes and discusses avenues for future research. 

2. Model Setup and Data 

This chapter conducts a plant-level panel analysis of total factor productivity, in which 

plant-level TFP will be related to firms’ own R&D stock, private R&D stocks (the private 

spillover pool), public R&D stocks, and a set of plant-, firm- and industry-level controls. It is 

assumed that firm level R&D stocks are available to all the firms’ plants and that R&D spillover 

occur between plants due to the R&D stock the plants have access to. This allows us to 

investigate the geographic dimension of R&D spillover in detail, taking into account the 

population of R&D conducting firms and the spatial and industry configuration of their plants.  

This chapter adopts the standard knowledge stock augmented production function 

framework (e.g. Hall et al, 2012). The production function is defined at the plant-level generally 

as: 
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𝑄𝑟𝑡 = 𝑓(𝐿𝑟𝑡 ,𝐾𝑟𝑡 ,𝑀𝑟𝑡)𝑔(𝑅𝑟𝑡−1,𝑆𝑟𝑡−1,𝑃𝑟𝑡−1, X𝑟𝑡)𝑈𝑟𝑡                   (3-1) 

where: 𝑄𝑟𝑡 : Gross output of the plant; 𝐿𝑟𝑡 ,𝐾𝑟𝑡 ,𝑀𝑟𝑡 : Inputs of plant 𝑖  in year 𝑡 ; 𝑅𝑟𝑡−1 : 

Firm-level R&D stock; 𝑆𝑟𝑡−1: Private R&D stock; 𝑃𝑟𝑡−1: Public R&D stock; X𝑟𝑡: a vector of 

other observable factors (control variables) affecting plant productivity; 𝑈𝑟𝑡: plant-year specific 

unobserved efficiency. Total factor productivity (TFP) is defined as: 

𝑇𝑇𝑃𝑟𝑡 ≡
𝑄𝑟𝑡

𝑓(𝐿𝑟𝑡,𝐾𝑟𝑡,𝑀𝑟𝑡) = 𝑔(𝑅𝑟𝑡−1, 𝑆𝑟𝑡−1,𝑃𝑟𝑡−1, X𝑟𝑡)𝑈𝑟𝑡    (3-2) 

R&D stocks are assumed to influence production with a one-year lag to reflect that the 

application of new knowledge and insights due to R&D takes time. If we adopt a log-linear 

specification for 𝑔(𝑅𝑟𝑡−1,𝑆𝑟𝑡−1,𝑃𝑟𝑡−1) and allow 𝑈𝑟𝑡 = 𝑒𝜂𝑟+𝑢𝑟𝑡, where 𝜂𝑟 is a plant specific 

fixed effect and 𝑢𝑟𝑡 is a plant-year specific efficiency shock, we obtain: 

ln𝑇𝑇𝑃𝑟𝑡 = 𝛼𝑅 ln𝑅𝑟𝑡−1 + 𝛼𝑆 ln 𝑆𝑟𝑡−1 + 𝛼𝑃 ln𝑃𝑟𝑡−1 + γ′X𝑟𝑡 + 𝜂𝑟 + 𝑢𝑟𝑡  (3-3) 

and if we take a difference of the equation between two periods: 

∆ln𝑇𝑇𝑃𝑟𝑡 = 𝛼𝑅∆ ln𝑅𝑟𝑡−1 + 𝛼𝑆∆ ln 𝑆𝑟𝑡−1 + 𝛼𝑃 ln∆𝑃𝑟𝑡−1 + γ′∆X𝑟𝑡 + ∆𝑢𝑟𝑡 (3-4) 

where the plant-specific efficiency parameter drops out. It is assumed that the change in 

plant-specific efficiency levels (∆𝑢𝑟𝑡) is a function of past productivity relative to the industry 

mean, in order to allow for a gradual convergence in efficiency levels between firms (e.g. 

Lokshin et al., 2008). Klette (1996) and Griffith et al. (2009) have shown that the empirically 

observed persistent productivity differences between plants or firms require a model 

specification that allows for gradual convergence.18 Specifically, this chapter models: 

⊿𝑢𝑟𝑡 = 𝑢𝑟𝑡 − 𝑢𝑟𝑡−1 = 𝜌ln𝑇𝑇𝑃𝑟𝑡∗ + 𝑒𝑟𝑡     (3-5) 

where ln𝑇𝑇𝑃𝑟𝑡∗ is the level of TFP of plant 𝑖 relative to the industry mean in the previous 

period. 𝜌 is expected to fall within the interval [-1,0]. If 𝜌 is zero there is no gradual 

convergence between leading firms and lagging firms; if 𝜌  is –1 complete convergence 

materializes in one period. We assume that the error term 𝑒𝑟𝑡 can be decomposed into four 

components, year-specific effects 𝜆𝑡 , industry-year specific technological opportunity or 

efficiency shocks 𝜇𝑠𝑡(with s denoting industry), regional shocks 𝜌𝑟 and measurement error 𝜀𝑟𝑡: 

𝑒𝑟𝑡 = 𝜇𝑠𝑡 + 𝜆𝑡 + 𝜌𝑟 + 𝜀𝑟𝑡       (3-6) 

                                                      
18 Kneller et al. (2012) show that productivity catch up is an important phenomenon among Japanese manufacturing 

plants as well 
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2.1. Data Sources and Sample 

Plant level data from the Japanese Census of Manufacturers with information is matched 

on R&D expenditures from the yearly (comprehensive) Survey of R&D Activities in Japan, 

1987-2007. The census has a comprehensive coverage of manufacturing plants with more than 4 

employees. From 2001 onwards, information on plant level fixed capital investment has not 

been surveyed for plants with less than 30 employees, with the exception of the benchmark 

surveys organized every 5 years. The number of plants for which panel data on TFP can be 

calculated is roughly 40,000 yearly.  

The Survey of R&D activities in Japan (hereafter R&D survey) is a comprehensive and 

mandatory survey of R&D performing firms and public research institutes and universities in 

Japan. It contains information on R&D expenditures, differentiated by field, for roughly 9,000 

firms yearly and has a response rate greater than 90 percent. Large firms (with more than 1 

billion Yen of capital) are always included in the survey; smaller firms are included in higher 

sampling rates if they are identified as R&D conducting firms in the previous survey. The 

information on R&D by field (30 fields are distinguished) is easily mapped into industries, and 

allows us to distinguish R&D expenditures relevant to 20 manufacturing industries. The 

response rate by research institutes and universities is close to 100 percent. 

Each plant in the Census of Manufacturers is matched to a firm in the R&D survey for each 

year by using the information on firm name, address of headquarter, and stated capital. The 

matching between the surveys, however, is posed a number of challenges. Firm names are only 

recorded in the R&D survey from 2001 onwards and parent firm names are only provided on 

the plant records in the census from 1994 onwards. Firm identifiers in the R&D survey are not 

compatible between the years before and after 2001 because the identifiers for all firms were 

revised in 2001; only the R&D survey in 2001 includes both the old and new versions of firm 

identifiers. Because of the absence of common firm identifiers in the surveys, matching had to 

be done semi-manually (by firm name, address and capitalization). From 2001 onwards, more 

than 97.5 percent of reported R&D expenditures could be matched to firms and plants included 

in the census (Figure 3.1). The situation is more complicated for the years 1983-2000, for which 

R&D could be only matched to plants 1) that could be linked to the parent firm in 1994 or one 

of the later years, and 2) that belong to firms identified in the R&D survey of 2001. This caused 

the coverage rate to decline from 98 percent in 2001 to 92.5 percent in 2000, declining 

progressively further to 73 percent in 1983.  
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Figure 3.1 R&D expenditures and matching rate with census of manufacturers 

 
 

The matching issues cause several problems. First, there is a difficulty ascertaining whether 

a plant belongs to a parent firm conducting R&D or not. Here all unmatched firms are excluded 

from the sample to avoid measurement error in R&D stocks at the firm level. Second, for some 

firms R&D series are incomplete. R&D stocks are calculated on the basis of the information 

available only if there was sufficient information to derive an R&D growth rate for a specific 

period. Firms that are included in the R&D survey multiple times reporting absence of R&D 

activities are included in the sample with zero R&D stock. Third, we require reliable estimates 

of private R&D spillover pools. Here estimates that are as accurate as possible can be obtained 

by 1) using the weights provided in the R&D survey to correct for non-response and arrive at an 

estimate of total R&D expenditures in Japan; 2) allocating the R&D (stocks) to locations and 

fields/industries for R&D conducting firms that could not be matched to the manufacturing 

census (and hence for which no geographic information on plants is available) on the basis of 

the location of the firm, rather than on the basis of the location of plants. The second correction 

may be a reasonable approximation as most of the unmatched firms are smaller enterprises for 

which the plant and administrative unit are collocated.  

Using the above matching rules, an unbalanced panel of over 19000 plants is obtained, 
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observed for a maximum of 20 years and a minimum of 5 years, during 1987-2007.19 The five 

year minimum observation period is due to the fact that (five-year) long difference models will 

be estimated. About 57 percent of the plant observations, plants are owned by parent firms for 

which the absence of formal R&D could be confirmed. Zero R&D cases are not compatible 

with the specification in natural logarithms in (4) but provide important variation in the sample. 

The chapter deals with this in two ways: 1) a dummy for continuous engagement in, or absence 

of, R&D is included; 2) the value of one is added to the R&D stock before taking the logarithm, 

such that the continuous absence of R&D as zero growth is treated.  

Table 3.1 Sample characteristics 

  # of obs.   
# of (unique) 

plants in 
sample 

# of 
(unique) 
plants in 

Japan (%) 

# of 
(unique) 
parent 
firms 

Avg. # of 
plants per 

firm 

Avg. parent 
R&D stock 
per plant 
(billion 

yen) 

% of plants 
with 

positive 
parent 
R&D Industries (R&D fields) # (%)   # (%) 

Food products 5,048  (10.8)  1,961  (10.1) (12.7) 1,032  1.9  7.3  42.8  

Textile mill products 1,741  (3.7)  641  (3.3) (10.5) 432  1.5  7.3  37.4  

Pulp and paper products 1,838  (3.9)  660  (3.4) (3.2) 365  1.8  2.6  32.6  

Printing 1,270  (2.7)  489  (2.5) (5.6) 332  1.5  4.1  15.7  

Chemical fertilizers and industrial chemicals 2,049  (4.4)  786  (4.1) (0.8) 519  1.5  17.6  61.0  

Drugs and medicine 1,154  (2.5)  490  (2.5) (0.5) 398  1.2  22.2  47.6  

Miscellaneous chemicals 2,135  (4.6)  913  (4.7) (1.1) 655  1.4  11.9  53.3  

Petroleum and coal products 511  (1.1)  225  (1.2) (0.3) 113  2.0  7.6  58.5  

Rubber products 1,072  (2.3)  426  (2.2) (1.4) 295  1.4  13.4  37.2  

Ceramic, stone and clay products 2,969  (6.3)  1,187  (6.1) (5.5) 669  1.8  5.7  41.4  

Iron and steel 1,744  (3.7)  642  (3.3) (2.6) 425  1.5  16.6  37.7  

Non-ferrous metals and products 1,331  (2.8)  513  (2.6) (1.7) 371  1.4  11.2  39.5  

Fabricated metal products 4,196  (8.9)  1,818  (9.4) (14.0) 1,271  1.4  3.8  31.3  

General-purpose machinery 6,925  (14.8)  2,951  (15.2) (14.1) 2,284  1.3  15.8  33.1  

Home electronics 444  (0.9)  225  (1.2) (1.9) 185  1.2  83.1  32.9  

Electrical machinery 3,455  (7.4)  1,508  (7.8) (6.8) 1,101  1.4  26.3  36.6  

Info. .and com. electronics 3,585  (7.6)  1,714  (8.8) (7.7) 1,247  1.4  56.9  31.5  

Motor vehicles, parts and accessories 3,285  (7.0)  1,304  (6.7) (5.1) 756  1.7  58.4  43.1  

Other transportation equipment 724  (1.5)  289  (1.5) (1.7) 235  1.2  36.5  39.5  

Precision instruments and machinery 1,447  (3.1)  647  (3.3) (2.7) 503  1.3  6.0  28.3  

           Total 46,923  (100.0)   19,389  (100.0) (100.0) 13,188  1.5  19.4  38.2  

Table 3.1 shows the distribution of plants over industries and compares this with the 

distribution of the population of Japanese manufacturing plants over industries. Plants in 

                                                      
19 We take out the plant from the sample of year t if its parent firm is acquired by other firm in year t but 

that plant remains in the sample of other years. 
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technology intensive industries such as drugs and medicine and chemicals are overrepresented 

in the sample, but the difference with the distribution of all plants over industries is not 

generally pronounced. The 19389 unique plants are operated by 13188 firms, implying that on 

average there are 1.5 plant observations per firm in the sample. Parent firm R&D stocks are 

highest in the home electronics and information and telecommunication sectors, and lowest in 

pulp and paper and printing.  

It is necessary to note that creating a sample of plants for which parent firms’ R&D stocks 

can be calculated leads to various sample selection issues, with a natural oversampling of R&D 

conducting firms (although the majority of plants in the sample have no access to internal R&D), 

larger plants (post-2001), surviving plants (1987-1994), and surviving firms (1987-2001). 

Several sensitivity analyses will be conducted to examine potential selection bias.  

2.2. Variables and Measurement 

This chapter utilizes plant level TFP data from the Japan Industrial Productivity Database 

(JIP) 2010 (Fukao et al., 2008). TFP is measured using the index number method, following 

Good et al (1997):  

ln𝑇𝑇𝑃𝑓𝑠𝑟𝑡 = �ln𝑄𝑓𝑠𝑟𝑡 − ln𝑄�����𝑠𝑡� − ∑ 1
2
�𝑠𝑓𝑠𝑟𝑡𝑋 + �̅�𝑠𝑡𝑋 ��ln𝑋𝑓𝑠𝑟𝑡 − ln𝑋�����𝑠𝑡�𝑋=𝐿,𝐶,𝑀

+∑ �ln𝑄�����𝑗 − ln𝑄�����𝑗−1�𝑡
𝑗=1 − ∑ ∑ 1

2
��̅�𝑓𝑠𝑟𝑗𝑋 + �̅�𝑠𝑗−1𝑋 ��ln𝑋�����𝑠 − ln𝑋�����𝑠−1�𝑋=𝐿,𝐶,𝑀

𝑡
𝑗=1

  

(3-7) 

where Qfsi,t is the gross output of plant i of firm f in industry s in year t, sX
,fsi,t is the cost share of 

input X, and Xfsi,t is the amount inputs of the plant. Three inputs, labor (L), capital (C), and 

intermediate input (M), are taken into account. Variables with upper bars denote the arithmetic 

mean of each variable over all plants in that industry s in year t. The JIP database provides index 

linked TFP estimates distinguishing 58 industries. The TFP indices express the plants’ TFP as 

an index of the TFP level of a hypothetical representative plant in the industry (with an index of 

1). One of the main advantages of the index number method is that it allows for heterogeneity in 

the production technology of individual firms, while other methods controlling for the 

endogeneity of inputs (e.g. Olley and Pakes, 1996; Levinsohn and Petrin, 2003) assume an 

identical production technology among firms within an industry (Van Biesebroeck, 2007; Aw et 

al., 2001).  

Drawing on the JIP database, the five-year growth rate in TFP is calculated for the matched 

sample. The observations with the largest (top 1 percent) and lowest (bottom 1 percent) TFP 
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growth are dropped to avoid a potentially strong influence of outliers. Figure 3.2 shows the 

5-year moving average of the gross output weighted average TFP growth rate for the sample. 

The figure confirms that the rate of TFP growth has been decreasing over time, while there is a 

modest recovery in growth rates after 1999. The pattern of TFP growth in the sample closely 

follows the pattern of TFP growth in the population of Japanese plants.  

Figure 3.2 Trends in TFP growth: sample plants and population of Japanese plants 

 
 

2.3. R&D Stocks by Industry and Location 

R&D stocks measured at the parent firm level can be separated by industry/field of 

application to arrive at R&D stocks of the firm per industry. This chapter utilizes a question in 

the R&D survey asking firms to allocate R&D expenditures by field, which easily maps into 20 

industries. R&D stock of firm 𝑓 in industry/field s is defined by: 

𝐾𝑓𝑠𝑡 = 𝐼𝑓𝑠𝑡 + (1 − 𝛿𝑠)𝐾𝑓𝑠𝑡−1      (3-8) 

where 𝐼𝑓𝑠𝑡 is R&D investment of firm 𝑓 for activities in industry 𝑠 in year 𝑡 and 𝛿 is a 

depreciation rate of the R&D stock. Industry-specific depreciation rates are used to reflect 

differences in the speed of obsolescence and technology life cycles. Industry specific 

depreciation rates are based on Japanese official surveys of “life-span” of technology conducted 
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in 1986 and 2009 among R&D conducting firms20 and vary between 8 (food industry) and 25 

percent (precision instruments). To calculate initial R&D stocks (Hall and Oriani, 2006), 

industry-specific growth rates are similarly used, which are calculated from the R&D survey as 

average R&D growth rates per field in the 1980s. R&D investments are deflated using a deflator 

for private R&D from the JIP database, calculated from the price indices of the input factors for 

R&D expenditures for each industry; the deflator for public R&D is obtained from the White 

Paper on Science and Technology.  

Firms can obtain technological knowledge not only from its own R&D investment but also 

from the other firm through mergers and acquisitions (M&A). However, since we do not use the 

information on M&A, we could not account the technological knowledge obtained through 

M&A into our R&D stock estimation. This implies that R&D stock of the firm disappeared 

through M&A is not included in R&D stock of any surviving firms. 

Matching the field of firms’ R&D with the industry of the firms’ plants, R&D stocks across 

industries and space can be calculated, where it is assumed that the R&D stock in a 

field/industry is available to each same-industry plant of the firm. R&D stocks are mapped in 

geographic space by using the information on the location of the plant, where more than 1800 

cities, wards, towns, and villages are distinguished.  

2.4. Plant R&D Stocks 

Plant R&D stocks are calculated as the R&D stock of the parent, and we assume that all 

parent R&D provides relevant productivity improving inputs to the plants. This implies that the 

firm R&D may generate common knowledge for all plants within the firm. Given that R&D at 

the firm level is often organized to benefit from scope economies (e.g. Henderson and Cockburn, 

1996; Argyres and Silverman, 2004) and involves active knowledge transfer to business units 

and plants, this may be a suitable assumption.21  

                                                      
20 See “White paper on Science and Technology” (1986, Science and Technology Agency) and “Survey on Research 

Activities of Private Corporations” (2009, National Institute of Science and Technology Policy). 

21 A technological proximity weighted parent R&D stock is also calculated, applying the weighting scheme for 

industries/fields outside the industry of the plant based on the technological proximity matrix used for R&D 

spillovers, but obtained weaker effects. As the co-occurrence of different technologies in the R&D portfolios of firms 

is often taken as an indicator of the potential for scope economies (Bloom et al. 2013; Breschi et al. 2003) this is 
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2.5. Private R&D stocks (spillover pools) 

Private R&D stocks (spillover pools) are derived from the calculated parent firms’ R&D 

stocks, while it is allowed for geographic decay in the effectiveness of spillovers. 

Technologically proximate R&D stocks are calculated based on the technological proximity 

between the R&D field/industry of the plant and the industry of other plants. The 

technologically relevant private R&D stock (spillover pool) is defined as the sum total of other 

firms’ R&D assigned to their (nearest) plants in an industry, weighted by the technological 

relatedness between the industry of the plants and the industry of the focal plant: 

𝑆𝑟𝑓𝑠𝑡𝑡𝑡𝑡ℎ = ∑ ∑ 𝐾𝑓′𝑠′𝑡𝑇𝑠𝑠′𝑒
𝜏𝑑𝑟𝑓′𝑠′𝑡𝑠′𝑓′≠𝑓      (3-10) 

where: 𝑑𝑟𝑓′𝑠′𝑡: Minimum geographic distance between plant 𝑖 and the plant of firm 𝑓′ in the 

field 𝑠′ in year 𝑡; 𝑇𝑠𝑠′: the technological proximity weight; 𝑒𝜏𝑑𝑟𝑓′𝑠′𝑡: Weight for geographic 

proximity of plant 𝑖 to R&D stock firm 𝑓′ for field 𝑠′; 𝜏: a decay parameter, with 𝜏 < 0. 

If firms operate multiple plants, the R&D stock is only counted once using the plant with 

the minimum distance to the focal plant, which avoids double counting of R&D. 22 This chapter 

models an exponential decay function in the effectiveness of spillovers with parameter 𝜏  to be 

estimated, in line with recent studies (e.g. Lychagin et al. 2010). Distance d is the distance 

between a pair of locations and is measured as the geo-distance between the center of cities, 

wards, towns, and villages. In order to correct for differences in the geographic areas covered by 

the regions, distance is the radius of the region if plants are located in the same region. 

The technological relatedness measure is derived from patent data and based on Leten et al. 

(2007). The relatedness between technologies will be reflected in the intensity with which 

technologies in a field build on prior art in a different field. Patent citation data are available at 

the 4-digit IPC level. The IPC codes can subsequently be mapped onto industries using the 

industry-technology concordance table developed by Schmoch et al. (2003) in which each 

technology field is uniquely linked to its corresponding NACE two-digit industry. Appendix A 

                                                                                                                                                           
perhaps not surprising.  

22 One may argue that having multiple plants in the vicinity increases the likelihood of knowledge spillovers. 

However, assuming that each plant of a firm shares the same knowledge of this firm, at least it is consistent to assume 

that the largest spillover from the firm comes from the nearest plant of this firm, although in this way we may 

overestimate the inter-firm spillover for that from multi-plant firms. Seeking the most appropriate specification of 

knowledge spillover between multi-plants firms is one of the future research agenda. 
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shows the resulting technological relatedness coefficients (weights) between industries used in 

the analyses, with weights for the own industry normalized at 1. 

Relationally proximate R&D stocks are measured by the R&D stocks of supplier and 

customer industries, identifying the importance of supplier and customer transactions from 

Input-Output tables (yearly between 1987 and 2007) for 52 JIP industries. The calculation of 

R&D stocks follows (10) but with 𝑇𝑠𝑠′  substituted by supplier industry proximity weights 

𝑆𝑈𝑃𝑠𝑠′  and customer industry proximity weights 𝐶𝑈𝑆𝑠𝑠′ , with:  

𝑆𝑈𝑃𝑠𝑠′𝑡  =
𝑄∗𝑠′𝑠𝑡
∑ 𝑄∗𝑗𝑠𝑡𝑗

       (3-12) 

𝐶𝑈𝑆𝑠𝑠′𝑡 =
𝑄𝑠𝑠′𝑡

𝐸𝑋𝑠𝑡+𝑄𝑠𝑡
         (3-13) 

where 𝑄∗𝑠′𝑠𝑡 denotes domestic sales of industry 𝑠′ to industry 𝑠 and 𝐸𝑋𝑠𝑡 denotes exports 

of industry 𝑠. In equation (3-12), 𝑄∗𝑠′𝑠𝑡 is the estimated output of industry 𝑠′ sold to industry 

s. Since domestic sales in the input-output tables include domestic sales of imported goods, 

𝑄∗𝑠′𝑠𝑡 is estimated by applying the following correction to the domestic sales data: 𝑄∗𝑠′𝑠𝑡 =

𝑄𝑠′𝑠𝑡 ∗ (∑ 𝑄𝑠′𝑠𝑡𝑠 )/(∑ 𝑄𝑠′𝑠𝑡𝑠 + 𝐼𝑠′𝑡), with 𝐼𝑠𝑡 imports of industry s. Hence it is assumed that 

the imported goods of the industry are sold to other industries in proportion to total sales to 

these industries. It is necessary to note that industries s include services and other industries’ 

sales to industry s’, such that the sum of input shares for industry s’ does not add up to 1. 

Weights for customer R&D stocks for industry s are the shares of sales by industry s to industry 

𝑠′ in total sales, with the latter including sales to non-manufacturing industries and exports. 

Yearly input-output tables provided by the JIP database are used, such that weights are varying 

by year. Appendix B and C show the average the input and output share weights for the 

industries in the analysis for the year 1990. Using these weights, then we define relevant R&D 

spillover pools from suppliers and customers, respectively, as follows: 

𝑆𝑟𝑓𝑠𝑡𝑆𝑆𝑃 = ∑ ∑ 𝐾𝑓′𝑠′𝑡𝑆𝑈𝑃𝑠𝑠′𝑡𝑒
𝜏𝑑𝑟𝑓′𝑠′𝑡𝑠′𝑓′≠𝑓      (3-10b) 

𝑆𝑟𝑓𝑠𝑡𝐶𝑆𝑆 = ∑ ∑ 𝐾𝑓′𝑠′𝑡𝐶𝑈𝑆𝑠𝑠′𝑡𝑒
𝜏𝑑𝑟𝑓′𝑠′𝑡𝑠′𝑓′≠𝑓      (3-10c) 

where 𝐾𝑓′𝑠′𝑡 is the R&D stock of firm 𝑓′ for activities in industry 𝑠′ at the beginning of 

year 𝑡. 

Figure 3.3 illustrates our assumption on the effects of private R&D spillovers on TFP 

through the above three types of proximities: Technological proximity, supplier industry 

proximity and customer industry proximity. We assume that the R&D stock of a firm for 

activities of an industry affects TFP of the other firms’ plant through three paths and define three 
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spillover variables corresponding to each path. Since different weighting schemes are used to 

define each spillover variable, these effects can be empirically identified if these weighting 

schemes are sufficiently different each other. 

 

Figure 3.3: Effects of Private R&D spillover on TFP 

 

 

We include the parent plant’s R&D, private R&D weighted by geographic distance and 

technological proximity, and private R&D weighted by geographic distance, supplier industry’s 

share and customer industry’s share as the explanatory variables of the TFP growth equation 

(3-2). Thus, we assume that the R&D investment of a firm affects not only the TFP of its own 

plants but also spills over and affects TFP of the other firms’ plants which is proximate with 

respect to geographic, technological and/or relational dimensions. By estimating the parameters, 

we can evaluate the relative importance of these three proximity dimensions for R&D spillover 

effects. 
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2.6. Public R&D Stocks 

Public R&D spillover pools derived from the R&D surveys have few measurement issues, 

as response rates are virtually 100 percent. This chapter differentiates public R&D by location 

based on the region (city, ward, town, village) of the research institute or university, and by 

industry/R&D field utilizing information on science fields with varying relevance for specific 

industries. The R&D stock of public research institution ℎ in science field 𝑚 is defined as: 

𝐴ℎ𝑚𝑡 = 𝐸ℎ𝑚𝑡 + (1 − 𝛿𝐴)𝐴ℎ𝑚𝑡−1     (3-14) 

where 𝐸ℎ𝑚𝑡 is research expenditure of public research institution ℎ in science field 𝑚 in 

year 𝑡 and 𝛿𝐴 is a depreciation rate of public R&D stock, which is set at 15 percent per year. 

Although the surveys do not include research expenditures by science field, they do contain 

information on the number of researchers by science field for each institution for each year. The 

public R&D expenditure 𝐸ℎ𝑚𝑡 is estimated by multiplying total R&D expenditures with the 

share of the number of scientists in the field in the total number of scientists for each institution 

and year.  

Second, a ‘relevant’ public R&D stock per industry/R&D field is estimated by using 

weights derived from a concordance matrix between science fields and industries. The weights 

are based on a study by Van Looy et al. (2004) examining citation frequencies on patent 

documents classified in different technology fields to Web of Science publications in each of the 

science fields. The concordance attaches to each scientific discipline probabilities that it is of 

relevance to each technology field (4-digit IPC fields). Applying this concordance to the public 

R&D expenditures per science field, the concordance matrix between IPC classes and industries 

due to Schmoch et al. (2003) is subsequently applied to arrive at public R&D stocks per industry. 

Appendix D shows the compound weights used to relate R&D stocks per science field to 

industries. 

Using the above procedure, the technologically and geographically proximate public R&D 

stock is defined as:  

𝑃𝑟𝑡𝑠 = ∑ ∑ 𝐴ℎ𝑚𝑡𝑇�𝑠𝑚𝑒𝜃𝑑
�𝑟ℎ𝑚ℎ       (3-15) 

where: 𝐴ℎ𝑚𝑡: R&D stock of public institutes in location ℎ for academic field 𝑚 in 

year 𝑡; 𝑇�𝑠𝑚: The compound proximity weights between industry/R&D field 𝑠 and 

science field 𝑚; �̃�𝑟ℎ: geographic distance between plant 𝑖 and location ℎ; 𝜃: the 
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geographic decay parameter, 𝜃 < 0. 

 Figure 3.4 shows the 5-year moving average growth rates in the levels of public and 

private R&D stocks. Although growth rate of private R&D stock is higher than that of public 

R&D stock in all years between 1986 and 2006, this gap between them have been decreasing 

overtime. It indicates that private firms actively invest in R&D especially in1980’s in 

comparison to university and public research institute. The recession in the early 1990’s makes 

firms to reduce R&D investment and the growth rate of private R&D stock rapidly decreased, 

while the growth rate of public R&D stock gradually increased in that period. The growth in 

both public and private R&D shows a declining trend, as the increase in overall R&D 

investments (Figure 3.1) has slowed over time and had just exceeded deprecation rates in the 

most recent years.23  

Figure 3.4 Growth rate in R&D stocks (5 year moving average) 

 

2.7. Control Variables 

 The vector of time varying plant-specific characteristics X𝑟𝑡  includes plant size 

                                                      
23 This declining trend in private R&D stock in 1990’s is consistent with the results in Development Bank of Japan 

(2005), “Investigation of the Seasonality and Profitability of R&D,” Research Report No. 81. 
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(number of employees) and a dummy variable indicating whether the plant is active in multiple 

industries (at the 4 digit level).24 In addition, it is controlled for parent firm size (number of 

employees) and the number of plants of the parent firm. On the one hand, increases in the 

number of a firm’s plants may correlate with unmeasured firm-specific advantages. On the other 

hand a larger numbers of plants drawing on the same R&D pool may lead to reduced effective 

knowledge transfer (Adams and Jaffe, 1996). A set of year dummies 𝜆𝑡 and region (prefecture) 

dummies 𝜌𝑟 is included. 𝜇𝑠𝑡 is modeled as a set of industry dummies 𝜇𝑠 in addition to the 

average TFP growth rate for all plants in the industry, ln 𝑡𝑓𝑝� 𝑠𝑡  , which controls for 

industry-specific technological opportunity and demand shocks over time affecting TFP growth.  

2.8. Specification 

Equation (3-4) is estimated in its long difference form. Taking the first-order difference 

from the previous year, we control out the plant-specific fixed effects. Moreover, the long 

difference models, while sacrificing degrees of freedom, is a conservative estimation method to 

reduce the influence of measurement error and cyclical effects (e.g. Haskel et al, 2007; 

Branstetter, 2000). To strike a balance between degrees of freedom and reduction in 

measurement error, 5-year differences are taken starting from 1987, which leaves a maximum of 

exactly 4 non-overlapping long differenced observations (for plants observed over the entire 

period): 1987-1992, 1993-1997, 1998-2002 and 2003-2007. To facilitate interpretation of the 

descriptive statistics, the long difference is divided by 5 to arrive at annual average growth rates 

of TFP and R&D stocks during the 5-year periods. Since the geographic decay specification 

introduces nonlinearity in the TFP equation, equation (4) is estimated with nonlinear least 

squares. The distance decay parameters are estimated using a Taylor approximation.25 Error 

                                                      
24 Note that age effects are of no interest in differenced models, since the difference in age would be identical for all 

plants. 

25 Without approximation we would need to sum up over all R&D conducting firm-pairs and industries for each 

plant to arrive at an update of the distance parameter 𝜏, which is computationally infeasible. Therefore the distance 

function is approximated by taking a H-order Taylor’s expansion: 𝑒𝜏𝑑𝑟𝑓′𝑠′𝑡 ≅ ∑ 𝑒𝜏𝑑�𝐻
𝑛=0 (𝜏)𝑛

�𝑑𝑟𝑓′𝑠′𝑡−𝑑��
𝑛

𝑛!
, such that the 

expression for the plant level technologically proximate R&D stock becomes:  
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terms are cluster-robust at the plant level.  

Table 3.2 shows descriptive statistics of the variables and Table 3.3 contains the correlation 

matrix. The correlations between the (growth in) relationally proximate R&D stocks (buyers 

and suppliers) and the technologically proximate R&D stock are rather high at 0.66-0.78. This is 

mainly stemming from the correlation in same-industry R&D stocks, while correlations between 

stocks in other industries range between -0.04 and 0.12. Hence, the different measures of 

proximity do suggest rather different weightings for R&D stocks and the resulting spillovers 

potential. 

 

Table 3.2 Descriptive statistics 

  Mean SD Min Median Max 

TFP 0.007 0.079 -1.409 0.006 1.025 

PARENT R&D 0.023 0.055 -0.563 0.000 1.604 

Tech-proximate PRIVATE R&D 0.040 0.038 -0.155 0.035 0.421 

Supplier PRIVATE R&D  0.043 0.043 -0.168 0.036 0.237 

Customer PRIVATE R&D  0.040 0.041 -0.751 0.033 0.420 

PUBLIC R&D 0.030 0.008 0.002 0.030 0.072 

Number of other plants of the parent firm  0.004 0.058 -1.099 0.000 1.099 

Number of firm employees  -0.003 0.095 -2.290 -0.002 3.306 

Number of plant employees) -0.005 0.082 -2.297 -0.004 1.285 

Multi-products (4 digit) plant dummy -0.001 0.093 -1.000 0.000 1.000 

Parent R&D stock > 0 (dummy) 0.435 0.485 0.000 0.000 1.000 

Industry average TFP growth rate  0.006 0.019 -0.124 0.003 0.184 

Prior TFP level relative to industry average 0.054 0.269 -1.529 0.036 1.383 

Note: all variables are expressed as average 5-year differences, except for prior TFP 

 

 

                                                                                                                                                           

𝑆𝑟𝑓𝑠𝑡𝑡𝑡𝑡ℎ =≅ ��𝑒𝜏𝑑�(𝜏)𝑛 � ��𝐾𝑓′𝑠′𝑡𝑇𝑠𝑠′
�𝑑𝑟𝑓′𝑠′𝑡 − �̅��𝑛

𝑛!
�

𝑠′𝑓′≠𝑓

�
𝐻

𝑛=0

 

The summation over f’ and s’ no longer depends on the distance decay parameter 𝜏, and summation over H suffices. 

H is set conservatively at 50 and �̅� is set at 1500 km (the midpoint of the smallest and largest possible distance). 
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Table 3.3 Correlation coefficients 

    [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] 

[1] TFP 1.000                         

[2] PARENT R&D 0.020 1.000 
           

[3] Tech-proximate PRIVATE R&D 0.071 0.086 1.000 
          

[4] Supplier PRIVATE R&D  0.076 0.103 0.612 1.000 
         

[5] Customer PRIVATE R&D  0.091 0.108 0.656 0.746 1.000 
        

[6] PUBLIC R&D 0.026 -0.021 0.065 0.213 0.100 1.000 
       

[7] Number of other plants of the parent firm  0.012 0.041 0.059 0.082 0.075 0.021 1.000 
      

[8] Number of firm employees  0.018 0.046 0.061 0.086 0.082 -0.057 0.297 1.000 
     

[9] Number of plant employees) 0.014 0.030 0.051 0.073 0.072 -0.070 -0.012 0.562 1.000 
    

[10] Multi-products (4 digit) plant dummy -0.004 0.004 -0.001 0.001 0.005 0.000 -0.013 0.001 0.025 1.000 
   

[11] Parent R&D stock > 0 (dummy) -0.017 0.451 -0.101 -0.099 -0.095 -0.077 -0.038 -0.059 -0.039 0.001 1.000 
  

[12] Industry average TFP growth rate  0.212 0.074 0.345 0.380 0.432 0.006 0.011 0.052 0.057 0.001 -0.045 1.000 
 

[13] Prior TFP level relative to industry average -0.271 0.064 0.049 0.038 0.021 -0.004 0.000 -0.005 0.009 -0.010 0.128 -0.018 1.000 

Note: all variables are expressed as 5-year differences, except for prior TFP 

3. Empirical Results 

Table 3.4 reports the estimation results. Model 1 only includes the technologically 

proximate R&D stock and the parent firm R&D stock. The coefficient on parent R&D suggests 

an elasticity of TFP with respect to R&D of 0.033 percent, which is within, but at the lower end, 

of the range estimated in Adams and Jaffe (1996) for plant level R&D effects.26 The elasticity 

of the private R&D stock is higher – a common finding in R&D spillover studies- at 0.058, 

while spillover effects decay in distance, as the significant distance parameter suggests. The 

estimates on the past TFP level suggest that plants that are 1 percent more productive than the 

average TFP level in the industry have a 0.08 percent point smaller TFP growth rate, indicating 

that there is a modest gradual convergence in productivity. TFP growth of the plants is strongly 

influenced by opportunities and shocks captured by the average TFP growth in the industry, 

with an estimated elasticity of 0.89. Of the plant and firm control variables, only (growth in) the 

                                                      
26 It should be noted that their specification was cross sectional, and one may expect smaller effects in a differenced 

model. 
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number of plants operated by the parent firm has a marginally significant positive effect on TFP. 

In model 2 the dummy variable indicating continuous positive R&D is added. Both the 

dummy variable indicating positive R&D and the R&D stock are significant. The dummy 

variable suggests that R&D performing firms generate on average 0.5 percent points higher TFP 

growth (independent of variation in their R&D stocks). At the same time, the coefficient of the 

parent R&D stock declines to about 0.01. Model 3 adds the technologically proximate public 

R&D stock. The coefficient on public R&D, at 0.077 is larger than the coefficient on 

technologically proximate private R&D, demonstrating the importance of knowledge spillovers 

from public R&D. The estimates however do not suggest a significant geographic decay effect 

of public R&D spillovers. The addition of public R&D in model 3 does not materially affect the 

estimated coefficient on private R&D, which may indicate little overlap in the type of 

knowledge from technologically proximate private and public R&D. 

In model 4 the relationally proximate R&D stocks of customers and suppliers are added. 

The relationally proximate R&D stock due to supplier linkages has a significant effect on TFP 

growth with elasticity of 0.031. The significant elasticity of customer R&D stocks is slightly 

smaller at 0.026. Meanwhile, the coefficient on the technologically proximate R&D stock 

reduces with the inclusion of the supplier and customer R&D stock variables, and at 0.035 is 

similar in magnitude as the elasticity of the supplier R&D stock. The estimated distance decay 

for private R&D spillovers becomes smaller overall, suggesting weaker proximity influences for 

relationally proximate R&D. Model 5 confirms this pattern: when we allow separate decay 

parameters for the three private R&D stocks, the decay parameter for technologically proximate 

R&D increases in strength whereas the model does not identify a distance decay effects for 

R&D spillovers from buyers and suppliers. For technologically proximate R&D spillovers, the 

decay function on the basis of model 5 is depicted in Figure 3.5. Spillover effects decline and 

become negligible at about 500 kilometers. This pattern is similar to the estimates reported in 

Lychagin et al. (2010) for US listed manufacturing firms based on inventor locations.  

Model 6 presents the results of an alternative model with one parameter estimated for the 

(un-weighted) sum of the three types of private R&D. The estimated coefficient for this 

combined private R&D stock is close to 0.08 and larger than the estimated coefficient for 

technologically proximate R&D in models 1-3. This underscores that failure to take into 

account relational proximity may lead to an underestimation of R&D spillover effects. The 

estimate of the distance parameter for the combined private R&D stock is close to the parameter 

estimated in model 4.  
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Table 3.4 Long Difference Analysis of Plant-level TFP (1987-2007) 
  [1] [2] [3] [4] [5] [6] [7] 
Distance parameters:        
Tech-proximate PRIVATE R&D  -0.0040 -0.0038 -0.0040  -0.0057  -0.0058 

 [0.0012]*** [0.0011]*** [0.0012]***  [0.0027]**  [0.0027]** 
all PRIVATE R&D     -0.0018  -0.0017  

    [0.0008]**  [0.0010]*  
Supplier PRIVATE R&D      0.0000  0.0000 

     [0.0027]  [0.0027] 
Customer PRIVATE R&D      0.0000  0.0000 

     [0.0037]  [0.0037] 
PUBLIC R&D    0.0000 0.0000 0.0000 0.0000  

   [0.0024] [0.0025] [0.0024] [0.0025]  
PUBLIC R&D (parent R&D>0)       0.0000 

       [0.0020] 
PUBLIC R&D (parent R&D=0)       -0.0060 

       [0.0059] 
R&D parameters:        
Parent R&D  0.0331 0.0097 0.0097 0.0096 0.0096 0.0096 0.0096 

 [0.0036]*** [0.0043]** [0.0043]** [0.0043]** [0.0043]** [0.0043]** [0.0043]** 
Parent R&D stock > 0 (dummy)  0.0050 0.0050 0.0050 0.0050 0.0050 0.0034 

  [0.0004]*** [0.0004]*** [0.0004]*** [0.0004]*** [0.0004]*** [0.0012]*** 
Tech-proximate PRIVATE R&D  0.0583 0.0600 0.0582 0.0392 0.0346  0.0347 

 [0.0167]*** [0.0168]*** [0.0167]*** [0.0194]** [0.0167]**  [0.0167]** 
Supplier PRIVATE R&D     0.0311 0.0360  0.0364 

    [0.0141]** [0.0140]**  [0.0140]*** 
Customer PRIVATE R&D     0.0260 0.0260  0.0259 

    [0.0131]** [0.0131]**  [0.0130]** 
all PRIVATE R&D       0.0775  

      [0.0180]***  
PUBLIC R&D    0.0766 0.0766 0.0832 0.0746  

   [0.0364]** [0.0373]** [0.0378]** [0.0363]**  
PUBLIC R&D (parent R&D>0)       0.1211 

       [0.0416]*** 
PUBLIC R&D (parent R&D=0)       0.0678 

       [0.0356]* 
Other parameters:        
Plant's relative prior TFP  -0.0792 -0.0802 -0.0802 -0.0803 -0.0803 -0.0802 -0.0803 

 [0.0007]*** [0.0007]*** [0.0007]*** [0.0007]*** [0.0007]*** [0.0007]*** [0.0007]*** 
Industry average TFP growth 0.8917 0.8919 0.8971 0.8962 0.8966 0.8977 0.8970 

 [0.0193]*** [0.0193]*** [0.0197]*** [0.0197]*** [0.0198]*** [0.0196]*** [0.0196]*** 
Number of other plants  0.0077 0.0087 0.0087 0.0087 0.0087 0.0087 0.0086 

 [0.0053] [0.0053]* [0.0053] [0.0053] [0.0053] [0.0053] [0.0053] 
Number of firm employees -0.0008 0.0011 0.0012 0.0010 0.0010 0.0011 0.0010 

 [0.0047] [0.0047] [0.0047] [0.0047] [0.0047] [0.0047] [0.0047] 
Number of plant employees -0.0040 -0.0032 -0.0031 -0.0033 -0.0033 -0.0032 -0.0032 

 [0.0051] [0.0051] [0.0051] [0.0051] [0.0051] [0.0051] [0.0051] 
Multi-products (4digit) plant 

 
-0.0033 -0.0033 -0.0034 -0.0033 -0.0033 -0.0033 -0.0033 

 [0.0029] [0.0029] [0.0029] [0.0029] [0.0029] [0.0029] [0.0029] 
Constant -0.0040 -0.0035 -0.0057 -0.0092 -0.0086 -0.0072 -0.0084 

 [0.0073] [0.0073] [0.0073] [0.0074] [0.0074] [0.0073] [0.0073] 
Industry dummies (JIP industry 

 
Yes Yes Yes Yes Yes Yes Yes 

Year dummies Yes Yes Yes Yes Yes Yes Yes 
Prefecture dummies Yes Yes Yes Yes Yes Yes Yes 
# observations 46,923 46,923 46,923 46,923 46,923 46,923 46,923 
R-squared 0.1685 0.1696 0.1696 0.1697 0.1697 0.1696 0.1698 
F statistic 9486.43*** 9555.59*** 9556.97*** 9563.57*** 9566.77*** 9556.55*** 9568.20*** 

* p < 0.1, ** p < 0.05, *** p < 0.01. 
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 Prior studies have suggested that firms need to invest in internal R&D in order to benefit 

from academic research (e.g. Cassiman and Veugelers, 2006; Anselin et al., 1997; Belderbos et 

al., 2009), as firms need the absorptive capacity to screen, understand, and utilize the fruits of 

relevant scientific research (Cohen and Levinthal, 1990). In model 7, the effect of public R&D 

is separated into an effect for firms without formal R&D expenditures and an effect for firms 

with positive R&D. The results confirm that the presence of internal R&D increases the 

magnitude of public R&D spillovers: the elasticity increases to 0.12, while the coefficient for 

firms without internal R&D is only marginally significant (at 0.068). The difference between 

the two coefficients is statistically significant. 

 

Figure 3.5 Decay in the effect of technologically proximate R&D spillovers as a function of 

distance 

 

3.1. Sensitivity Analysis 

In this subsection, the role of distance for public spillovers and the assumption that 

(private) R&D spillovers as a function of distance play out at the plant level are further explored. 

In an alternative specification, distance between the firms’ R&D laboratories and between R&D 

laboratories and the location of public R&D institutions are examined. In particular for public 
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spillovers, linkages may occur at the laboratory level and not necessarily at the plant level, 

while the R&D laboratories may not necessarily be located close to the firms’ plants. It is 

derived as the location of R&D laboratories from published directories of R&D establishments 

in Japan. For R&D performing firms lacking laboratory location information, R&D is assigned 

to the location of headquarters – the safest option for these -mostly smaller- firms (e.g. Adams 

and Jaffe, 1996; Orlando, 2004). Results, however, did not show geographic decay effects in 

this specification either. 

A number of additional sensitivity analyses are conducted, estimating model 6 on different 

samples. First, productivity models for the entire population of Japanese manufacturing plants 

(plants with TFP information; more than 230000 observations) are estimated to examine the 

robustness of the estimates. Here the unmatched plants are treated as zero R&D plants while 

including a separate dummy variable indicating that the plants lack R&D information. Second 

the model without smaller plants (leaving about 36000 observations) and on a balanced sample 

(limited to about 16000 observations) is estimated, to explore the implications of potential 

sample selection bias. All these models produced broadly similar results, with some exceptions. 

The distance effect for technologically proximate R&D proved difficult to identify in some of 

the models, while in two specifications only two of the individual effects of supplier, customer, 

and technologically proximate R&D were simultaneously estimated as significant. The chapter 

aims to further explore the robustness of the empirical model in future work. 

3.2. Decomposition Analysis 

Given the time dimension in the data and the changes over time in R&D investments and 

agglomeration, long term TFP growth effects can be decomposed into several factors: firms’ 

internal R&D effects, private R&D spillover effects, and public R&D spillover effects. The 

results of the decomposition analysis based on model 7 are presented in Figure 3.6-Figure 3.9. 

The decomposition analysis is conducted for a balanced sample of close to 4200 plants. 

Keeping the sample of spillover receiving plants stable ensures that the decomposition is not 

influenced by period-on-period changes in the sample but highlights effects of the changing 

‘supply’ of spillovers. The decomposition uses plants’ gross output as weights. Figure 3.6 shows 

that declining R&D spillovers, in particular private R&D spillovers, play an important role in 

the decline in TFP growth over the years. The contribution of private R&D spillovers to TFP 

growth for the plants in the balanced sample reduced from 0.896 percent points in 1987-1992 to 
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0.182 percent points in 2002-2007. The contribution of public R&D spillovers also declined, but 

less so in relative and absolute terms. This is related to the more modest decline in the growth in 

public R&D and a changing composition of public R&D expenditures in the direction of life 

sciences with greater relevance for the private sector. The role of internal R&D remained 

relatively stable, although this is to an important extent due to the fact that R&D active firms 

record generally higher TFP growth than firms that are not engaged in R&D. 

Figure 3.6 TFP Growth Composition: Intra-firm R&D vs. Private and Public Spillovers 

 

Note: based on a balanced sample, 1987-2007 

 

Further decomposition of the changing role of private R&D spillovers can be into the three 

types of spillovers: spillovers due to technological proximity, buyer effects, and supplier effects. 

Figure 3.7 shows that the technological proximity based spillovers and customer spillovers have 

declined most, while the decline in supplier spillovers has been more modest. These divergent 

effects arise because the share of procurement from (R&D intensive) local manufacturing 

industries has not decreased that much over time, while an increasing role of exports has 

reduced relational proximity to Japanese customer industries.  
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Figure 3.7 TFP Growth Composition: Effects of types of Private R&D spillovers 

 
Note: based on a balanced sample, 1987-2007 

 

Figure 3.8 decomposes private spillovers into effects due to the exit of R&D active plants, 

the entry of such plants, and the changing R&D stocks of surviving plants. The exit of R&D 

active plants reduces the R&D stock available to other plants and has a negative effect on TPF 

growth. However, if the parent firm operates multiple plants, the exit of one of its plants implies 

that another plant of the firm takes its place as ‘minimum distance’ plant providing R&D 

spillovers, such that there is a compensating ‘plant substitution effect’. In such cases, net 

spillovers decline only to the extent that the exit increases average distance between plants. 

Similarly, if a firm opens up a new plant, this may increase the R&D stock available to plants in 

its proximity, but at the same time it displaces the R&D stock of the firm’s plant that was 

previously located at minimum distance to these receiving plants. Hence, in case of entry there 

is a partially compensating negative substitution effect. This decomposition exercise shows that 

while the largest part of the decline in spillovers is due to a slowing down of R&D stock growth 

in surviving plants, increasing exit effects and reduced entry effects over time also play an 

important role. Figure 3.9 shows that most of the exits have taken place in the major industrial 

agglomerations in Japan around Tokyo and Kanagawa, Osaka, and Aichi (home of a large 

automobile cluster) during 1997-2007. 
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Figure 3.8 TFP Growth Composition: Effects of R&D Active Firms’ Plant Entry and Exit 

 
Note: based on a balanced sample, 1987-2007 

 

Figure 3.9 TFP Growth Composition: Effects Plant Entry and Exit by Prefecture 

a. 1987-1997 

 

Note: based on a balanced sample, 1987-1997 
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b. 1997-2007 

 

Note: based on a balanced sample, 1997-2007 

 

4. Conclusions 

This chapter examined the effects of R&D spillovers as the main type of knowledge 

spillovers on total factor productivity in a large panel of Japanese manufacturing plants matched 

with R&D survey data. It simultaneously analyses the role of public (universities and research 

institutes) and private R&D spillovers, while examining effects due to ‘relational’ 
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the estimates suggest that most spillover effects disappear beyond 500 kilometers. We also 

observe positive effects of public R&D spillovers, with the effects substantially larger for plants 

with access to internal R&D. It is not found the evidence that public R&D spillover effects are 

attenuated by distance. In addition to knowledge spillovers from technologically proximate 

plants, it is found the evidence that ‘relational proximity’ due to buyer and supplier linkages 

generates additional ‘pecuniary’ R&D spillovers of similar magnitude as the knowledge 

spillovers due to technological proximity. This chapter could not identify the role of geographic 

distance in these buyer and supplier spillovers.  
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This chapter concludes that public as well as private R&D spillovers matter for TFP growth, 

while relational proximity as well as technological proximity needs to be taken into account to 

arrive at representative estimates of the social effects of private R&D. Decomposition analysis 

shows that the contribution of private R&D spillovers to TFP growth has declined since the late 

1990s. This is due to a declining growth in R&D stocks while another important factor is the 

exit of proximate plants operated by R&D intensive firms. A mildly declining contribution of 

public R&D spillovers is primarily due to a reduction in the growth of R&D by public research 

organization since the late 1990s. If we explore effects at the regional level, we observe that 

strong adverse exit effects occurred in particular in Japan’s major industrial agglomerations 

such as Tokyo and Osaka.  

These results help to explain the twin stylized facts of Japanese productivity growth: the 

exit of relatively productive plants and the declining TFP growth or surviving plants (Fukao and 

Kwon, 2006; Kneller et al., 2012). They suggest that these two trends may be causally related. 

The exit of plants by R&D intensive firms reduces the available R&D spillovers and hampers 

TFP growth of the surviving plants. 

In future work, the research project aims to get a better understanding of the (absence of) 

distance effects in R&D spillovers. One reason for the lack of estimated distance effects for 

public R&D may be that public R&D spillovers occur most often through active collaboration 

across larger distances (Okamuro and Nishimura, 2013; Gittelman, 2007). We can explore these 

explanations by incorporating information available on research relationships between firms and 

universities. Additionally, previous studies show that the research collaboration between firms 

and universities have been increased from 1990’s. This may accelerate knowledge transfer from 

university to private firm overtime. By using information on research relationships between 

firms and universities, we can also precisely test this hypothesis. Second, it aims to investigate 

the role of proximity effects in buyer-supplier relationships in more detail by utilizing data on 

the most important buyers and suppliers of individual Japanese firms. Third, it is planned to 

match the data with the Basic Surveys on Business Activities in Japan, which contain 

information on corporate relationships and foreign activities. Matching with the Basic Surveys 

allows bringing in controls on overseas R&D conducted/outsourced by the firms and the 

potentially resulting international transfers and knowledge spillovers (e.g. Branstetter, 2001; 

Griffith et al., 2008). It also allows analysis of potentially greater R&D spillovers for firms 

operating within business groups (Suzuki, 1993; Branstetter, 2000). Collectively, the remaining 

challenges for exploration of R&D spillover effects present a rich research agenda. 
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Appendix A. Technological proximity between industries 

Spillovers sources (cited) 

Focal industries (citing) 
[04] [05] [06] [07] [08] [09] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] 

[04] Food products 1.00 .003 .006 .000 .125 .359 .041 .001 .000 .004 .001 .001 .001 .094 .021 .001 .003 .002 .000 .026 .026 

[05] Textile mill products .007 1.00 .045 .024 .631 .065 .104 .001 .002 .172 .007 .006 .023 .243 .026 .013 .033 .019 .005 .148 .114 

[06] Pulp and paper products .022 .073 1.00 .126 .415 .049 .089 .002 .000 .100 .003 .003 .043 .301 .009 .008 .190 .004 .001 .123 .083 

[07] Printing .000 .011 .042 1.00 .270 .021 .095 .000 .000 .028 .008 .011 .020 .085 .003 .003 .181 .002 .000 .087 .017 

[08] Chemical fertilizers and industrial chemicals .009 .020 .008 .015 1.00 .147 .050 .012 .004 .039 .007 .007 .005 .070 .005 .010 .032 .006 .001 .041 .027 

[09] Drugs and medicine .026 .002 .001 .001 .147 1.00 .013 .000 .000 .002 .000 .000 .000 .010 .001 .000 .005 .000 .000 .076 .001 

[10] Miscellaneous chemicals .031 .032 .012 .035 .488 .128 1.00 .020 .000 .038 .008 .007 .010 .093 .010 .006 .057 .014 .003 .055 .036 

[11] Petroleum and coal products .004 .004 .002 .001 .763 .031 .143 1.00 .000 .008 .006 .005 .014 .209 .003 .036 .074 .030 .004 .130 .014 

[12] Rubber products .000 .008 .001 .001 .400 .002 .006 .000 1.00 .008 .014 .011 .004 .030 .001 .005 .028 .064 .002 .050 .116 

[13] Ceramic, stone and clay products .003 .064 .026 .021 .439 .015 .047 .001 .001 1.00 .030 .027 .073 .225 .020 .022 .108 .032 .008 .112 .197 

[14] Iron and steel .001 .006 .002 .013 .248 .011 .028 .004 .007 .120 1.00 .580 .069 .410 .030 .059 .152 .036 .008 .065 .048 

[15] Non-ferrous metals and products .001 .009 .003 .030 .392 .020 .042 .004 .010 .187 1.00 1.00 .108 .486 .034 .111 .233 .052 .009 .097 .075 

[16] Fabricated metal products .001 .009 .012 .015 .066 .006 .016 .004 .000 .104 .025 .024 1.00 .259 .027 .050 .082 .081 .025 .070 .102 

[17] General-purpose machinery .010 .012 .008 .007 .114 .019 .018 .005 .001 .040 .019 .013 .033 1.00 .018 .020 .059 .078 .014 .082 .058 

[18] Household appliances .022 .015 .003 .004 .091 .012 .022 .001 .000 .039 .014 .010 .039 .188 1.00 .057 .121 .056 .004 .079 .106 

[19] Electrical machinery .000 .003 .001 .001 .080 .003 .004 .003 .000 .019 .013 .015 .026 .084 .022 1.00 .244 .082 .009 .127 .031 

[20] Info.andcom. electronics .000 .001 .003 .008 .024 .003 .005 .001 .000 .008 .003 .003 .005 .027 .005 .026 1.00 .010 .001 .068 .009 

[21] Motor vehicles, parts and accessories .000 .003 .001 .001 .028 .001 .008 .002 .003 .017 .004 .004 .029 .183 .012 .046 .055 1.00 .022 .076 .041 

[22] Other transportation equipment .000 .004 .001 .001 .032 .002 .012 .003 .000 .031 .006 .005 .064 .260 .008 .043 .041 .197 1.00 .060 .064 

[23] Precision instruments and machinery .003 .009 .004 .007 .070 .129 .011 .003 .001 .019 .003 .003 .009 .078 .007 .030 .151 .030 .003 1.00 .035 

[24] Miscellaneous manufacturing .011 .019 .009 .007 .180 .007 .024 .001 .008 .106 .007 .006 .042 .184 .034 .023 .076 .048 .009 .117 1.00 

Source: calculations based on Leten et al. (2008) 
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Appendix B. Applied weights for relationally proximate (Supplier) R&D stocks 

Spillover sources (supplier) 

Focal industries (buyer) 
[04] [05] [06] [07] [08] [09] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] Total 

[04] Food products .120 .001 .015 .007 .006 .000 .002 .004 .000 .005 .000 .001 .018 .000 .000 .000 .000 .000 .000 .000 .181 

[05] Textile mill products .003 .223 .009 .008 .034 .000 .009 .006 .003 .000 .000 .000 .002 .000 .000 .000 .001 .000 .000 .000 .298 

[06] Pulp and paper products .003 .006 .275 .014 .018 .000 .012 .012 .001 .001 .000 .000 .001 .000 .000 .000 .001 .000 .000 .000 .344 

[07] Printing .002 .001 .111 .081 .001 .000 .029 .002 .001 .000 .000 .002 .000 .000 .000 .000 .002 .000 .000 .000 .233 

[08] Chemical fertilizers and industrial chemicals .003 .001 .005 .002 .339 .000 .007 .084 .001 .003 .000 .003 .005 .000 .000 .000 .001 .000 .000 .000 .454 

[09] Drugs and medicine .012 .002 .033 .008 .071 .048 .013 .003 .002 .013 .000 .001 .013 .001 .000 .000 .002 .000 .000 .000 .222 

[10] Miscellaneous chemicals .005 .001 .034 .012 .177 .001 .083 .005 .001 .006 .000 .004 .016 .001 .000 .000 .001 .000 .000 .000 .346 

[11] Petroleum and coal products .001 .001 .000 .000 .002 .000 .003 .050 .000 .001 .000 .000 .002 .000 .000 .000 .000 .000 .000 .000 .060 

[12] Rubber products .001 .017 .008 .002 .185 .000 .007 .005 .041 .001 .003 .001 .025 .000 .000 .000 .001 .000 .000 .000 .296 

[13] Ceramic, stone and clay products .002 .003 .017 .003 .016 .000 .007 .022 .002 .090 .010 .003 .009 .003 .000 .000 .001 .000 .000 .000 .187 

[14] Iron and steel .001 .001 .001 .001 .005 .000 .001 .029 .001 .007 .453 .006 .001 .001 .000 .000 .000 .000 .000 .000 .508 

[15] Non-ferrous metals and products .001 .002 .004 .002 .013 .000 .003 .007 .000 .007 .002 .245 .002 .001 .000 .000 .001 .000 .000 .000 .289 

[16] Fabricated metal products .002 .002 .004 .004 .002 .000 .008 .005 .002 .004 .192 .046 .062 .002 .000 .001 .004 .000 .000 .000 .342 

[17] General-purpose machinery .001 .001 .003 .004 .001 .000 .005 .002 .011 .005 .073 .014 .034 .189 .000 .020 .022 .000 .000 .004 .391 

[18] Home electronics .002 .003 .012 .014 .012 .000 .004 .002 .006 .003 .023 .022 .027 .021 .099 .033 .132 .000 .000 .002 .417 

[19] Electrical machinery .002 .002 .011 .004 .007 .000 .005 .003 .006 .009 .039 .052 .025 .016 .000 .123 .028 .000 .000 .001 .334 

[20] Information and communication electronics .003 .003 .012 .009 .008 .000 .005 .003 .004 .015 .004 .018 .016 .005 .001 .034 .256 .000 .000 .000 .396 

[21] Motor vehicles, parts and accessories .001 .002 .003 .002 .002 .000 .007 .002 .015 .006 .030 .012 .007 .009 .005 .031 .005 .445 .000 .000 .583 

[22] Other transportation equipment .001 .003 .002 .004 .002 .000 .013 .003 .014 .006 .092 .013 .028 .036 .003 .020 .008 .030 .189 .001 .470 

[23] Precision instruments and machinery .001 .002 .010 .005 .004 .000 .003 .003 .005 .018 .011 .017 .016 .011 .000 .014 .066 .000 .000 .095 .284 

Source: JIP database. Data are for 1990. 
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Appendix C. Applied weights for relationally proximate Buyer R&D stocks 

Spillover sources (buyer) 

   

[04] [05] [06] [07] [08] [09] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] Total 

[04] Food products .120 .001 .001 .000 .001 .002 .001 .000 .000 .000 .000 .000 .001 .001 .000 .000 .001 .001 .000 .000 .132 

[05] Textile mill products .006 .223 .005 .001 .001 .001 .001 .001 .005 .003 .001 .001 .002 .004 .002 .003 .007 .006 .001 .001 .275 

[06] Pulp and paper products .067 .011 .275 .088 .007 .022 .026 .001 .003 .017 .002 .003 .006 .010 .009 .014 .029 .011 .001 .005 .607 

[07] Printing .039 .012 .018 .081 .003 .007 .011 .001 .001 .004 .002 .002 .008 .017 .014 .005 .027 .010 .003 .003 .269 

[08] Chemical fertilizers and industrial chemicals .020 .030 .014 .001 .339 .034 .100 .002 .049 .012 .008 .006 .003 .003 .006 .007 .015 .005 .001 .001 .655 

[09] Drugs and medicine .002 .000 .000 .000 .000 .048 .002 .000 .000 .000 .000 .000 .000 .001 .000 .000 .001 .000 .000 .000 .056 

[10] Miscellaneous chemicals .009 .013 .015 .030 .013 .011 .083 .006 .003 .009 .004 .002 .016 .020 .004 .007 .018 .038 .010 .002 .313 

[11] Petroleum and coal products .011 .004 .008 .001 .073 .001 .002 .050 .001 .015 .041 .003 .005 .005 .001 .003 .004 .004 .001 .001 .236 

[12] Rubber products .002 .008 .002 .002 .003 .003 .001 .000 .041 .004 .008 .000 .009 .098 .013 .021 .029 .179 .023 .006 .453 

[13] Ceramic, stone and clay products .023 .001 .001 .000 .004 .009 .005 .001 .000 .090 .016 .004 .006 .017 .003 .011 .043 .027 .004 .008 .273 

[14] Iron and steel .000 .000 .000 .000 .000 .000 .000 .000 .001 .004 .453 .001 .139 .107 .008 .022 .005 .059 .025 .002 .827 

[15] Non-ferrous metals and products .005 .000 .000 .002 .006 .001 .004 .000 .001 .004 .018 .245 .107 .069 .026 .096 .067 .078 .011 .012 .751 

[16] Fabricated metal products .051 .002 .001 .000 .004 .006 .008 .002 .006 .006 .001 .001 .062 .070 .014 .020 .025 .019 .011 .005 .312 

[17] General-purpose machinery .000 .000 .000 .000 .000 .000 .000 .000 .000 .001 .000 .000 .001 .189 .005 .006 .004 .012 .007 .002 .227 

[18] Home electronics .001 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .001 .001 .099 .000 .002 .026 .002 .000 .134 

[19] Electrical machinery .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .002 .053 .021 .123 .067 .102 .009 .005 .381 

[20] Information and communication electronics .001 .000 .000 .001 .000 .000 .000 .000 .000 .000 .000 .000 .002 .023 .039 .012 .256 .007 .002 .008 .352 

[21] Motor vehicles, parts and accessories .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .445 .004 .000 .449 

[22] Other transportation equipment .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .189 .000 .189 

[23] Precision instruments and machinery .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .029 .004 .004 .002 .004 .002 .095 .140 

Source: JIP database. Data are for 1990. 
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Appendix D: Applied weights in the science field - industry concordance 
Spillover sources (cited science fields) 
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[04] Food products 1.5 0.5 0.1 0.2 0.0 0.1 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

[05] Textile mill products 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

[06] Pulp and paper products 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 

[07] Printing 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

[08] Chemical fertilizers and industrial chemicals 1.8 3.9 1.2 0.4 0.7 4.5 3.2 0.3 0.1 0.2 0.1 0.5 1.3 0.0 0.0 0.0 0.0 0.0 0.0 

[09] Drugs and medicine 3.4 15.6 5.8 2.3 2.1 7.0 3.2 0.3 0.1 0.2 0.3 0.4 0.3 0.0 0.1 0.2 0.0 0.0 0.0 

[10] Miscellaneous chemicals 0.2 0.1 0.0 0.0 0.0 0.2 0.5 0.1 0.0 0.0 0.1 0.1 0.2 0.0 0.0 0.0 0.0 0.0 0.0 

[11] Petroleum and coal products 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

[12] Rubber products 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.0 0.0 0.1 0.1 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 

[13] Ceramic, stone and clay products 0.1 0.1 0.0 0.0 0.0 0.3 0.4 0.2 0.0 0.1 0.1 0.1 1.0 0.0 0.0 0.0 0.0 0.0 0.0 

[14] Iron and steel 0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.2 0.0 0.1 0.2 0.1 0.9 0.0 0.0 0.0 0.0 0.0 0.0 

[15] Non-ferrous metals and products 0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.2 0.0 0.1 0.2 0.1 0.9 0.0 0.0 0.0 0.0 0.0 0.0 

[16] Fabricated metal products 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.2 0.0 0.0 0.0 0.0 0.0 0.0 

[17] General-purpose machinery 1.5 1.4 0.4 0.2 0.1 1.1 1.8 0.5 0.1 0.5 0.4 0.5 1.7 0.0 0.0 0.0 0.0 0.0 0.0 

[18] Home electronics 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 

[19] Electrical machinery 0.0 0.0 0.0 0.0 0.0 0.3 0.1 0.6 0.0 0.3 1.0 0.4 0.7 0.0 0.1 0.0 0.0 0.0 0.0 

[20] Information and communication electronics 0.1 0.4 0.2 0.1 0.1 0.9 0.4 2.5 0.2 1.2 12.5 0.8 2.0 0.3 2.2 0.1 0.3 0.0 0.0 

[21] Motor vehicles, parts and accessories 0.0 0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.1 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

[22] Other transportation equipment 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

[23] Precision instruments and machinery 0.7 3.7 2.4 0.9 1.7 2.9 1.2 1.5 0.3 0.6 1.9 0.7 0.7 0.0 0.1 0.1 0.0 0.0 0.0 

[24] Miscellaneous manufacturing 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

[25] Electricity and gas 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Source: Calculations based on Van Looy et al. (2004) and Schmoch et al. (2004) 
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Chapter 4  Effects of Regional Human Capital on Business 
Entry: a Comparison of Independent Start-ups and New 
Subsidiaries in Different Industries27 

1. Introduction 

The start-up of new businesses increases innovation and competition and creates local 

employment. Therefore, start-up activities have been encouraged and supported by various 

programs in many countries. However, even in Japan, where the start-up ratio28 has been lower 

than the closure ratio29 since the late 1980s, considerable efforts aimed at increasing the entry 

of start-ups have hitherto not met with much success (Okamuro and Kobayashi, 2006). 

Business start-ups are important for both national and regional economies. In order to 

comprehensively consider the impact of business start-ups on the regional economy, it is 

appropriate to distinguish between new business entries of independent start-ups and 

subsidiaries of existing firms. The former type depends basically on the decision of the people 

living or working in the region regarding setting up independent businesses, which means the 

regional structure of human capital is expected to play a significant role. The latter type is based 

on decisions by the top management of existing firms, which could be located outside the region, 

regarding where to locate new subsidiaries. In this case, the regional level of demand and cost 

may be more important than the regional human capital. Bosma et al. (2008) investigate 

differences in the regional determinants of independent start-ups and new subsidiaries, focusing 

on agglomeration effects and comparing manufacturing and service sectors. 

The effects of regional human capital on entry may differ considerably across sectors and 

industries. Industries differ in their sensitivity to regional supply and demand (market) 

                                                      
27 This chapter is based on Ikeuchi and Okamuro (2011), co-authored with Hiroyuki Okamuro. Also, this study was 

supported from the Japan Society for the Promotion of Science (JSPS) under Grant-in-Aid for Scientific Research (A) 

(No. 20243018) for this study. 

28 The start-up ratio research to the number of new businesses in a given time. as a proportion of the total business 

stock. 

29 The closure ratio refers to the number of closing businesses in a given time period as a proportion of the total 

business stock 
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conditions as well as in the required levels and types of human capital. However, few studies 

have examined inter-industry differences of entry, apart from some studies comparing the 

manufacturing and service sectors. Okamuro (2008) compares the regional determinants of 

start-ups in high-tech versus low-tech industries in the manufacturing sector, finding that the 

agglomeration of specialized human capital and knowledge is important. In addition, Acs and 

Armington (2006) examine the differences in the regional determinants of entry among various 

sectors (manufacturing, retail trade, local market, distribution and business services), focusing 

on educational requirements and market segments. 

However, in their analysis of the regional determinants of entry, these studies do not 

differentiate between independent start-ups and new subsidiaries of existing firms. Within the 

same sector, regional factors may differ between the types of start-ups. As mentioned earlier, 

this chapter may assume that the decisions on independent start-ups are mainly based on 

regional human capital, while the location of new subsidiaries is determined by considerations 

of demand and cost factors. Moreover, regional factors of start-ups may vary across sectors and 

industries, depending on whether we focus on independent start-ups or new subsidiaries. For 

example, the location choice of new subsidiaries would not necessarily depend on local demand 

conditions in manufacturing industries with wide, possibly foreign, markets, while it would be 

influenced by the human capital in the region in the case of knowledge-intensive services. 

The aim of this chapter is, therefore, to investigate the impact of regional human capital on 

the start-up ratio using Japanese data at the prefecture level, differentiating between independent 

start-ups and new subsidiaries of existing firms. Moreover, it will be compared the effects of 

regional human capital on entry across different industries and sectors. Since these issues have 

not been explicitly explored by existing studies, this chapter makes a major contribution to the 

literature by analyzing them. One policy implication that could be derived from this study is that 

regional policies to activate business start-ups should recognize the differences between 

encouraging local entrepreneurship and attracting new subsidiaries. In addition, these 

differences may vary even within the service sector according to technological intensity. 

The remainder of this chapter is organized as follows. Section 2 reviews the previous 

literature on regional variations of the start-up ratio. On the basis of the literature review, 

Section 3 provides hypotheses for the empirical analysis. In Section 4, a research framework is 

presented to capture the determinants of regional differences in the entry of independent 

start-ups and new subsidiaries. Section 5 provides the estimation results and discusses them. 

Finally, Section 6 provides concluding remarks. 
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2. Literature Review 

Determinants of regional entry have been investigated since the 1990s in several countries 

using various kinds of regional variables, including demand factors, cost factors, business 

agglomeration, labor force structure, industry structure and some other factors (see, for example, 

Okamuro and Kobayashi, 2005, for a detailed survey of the relevant literature).  

Several studies demonstrate that the start-up ratio is higher in regions with a higher level 

and growth of regional demand measured by the size and growth of population or income (e.g., 

Audretsch and Fritsch, 1994a; Davidsson et al., 1994; Reynolds et al., 1995; Acs and Armington, 

2004). It is also empirically established that the start-up ratio is negatively correlated with the 

level of factor costs, especially with wage level (Gerlach and Wagner, 1994; Santarelli and 

Piergiovanni, 1995; Audretsch and Vivarelli, 1996). Moreover, several studies indicate that the 

start-up ratio is positively affected by agglomeration, measured by population or business 

density (Audretsch and Firtsch, 1994a; Davidsson et al., 1994; Acs and Armington, 2004). With 

regard to the industry structure, previous studies concur that a smaller share of the 

manufacturing sector and a larger share of the service sector have positive effects on the start-up 

ratio (Evans and Leighton, 1989; Reynolds et al., 1995; Egeln et al., 1997). 

With regard to labor force structure, numerous studies focus on the effects of the qualitative 

and quantitative composition of regional labor force as well as the impact of the employment 

situation on the start-up ratio. The qualitative composition denotes the endowment of highly 

educated or skilled labor force (this issue will be addressed in detail later), while the 

quantitative composition is mainly measured by the age structure of the labor force (Evans and 

Leighton, 1989; Reynolds et al., 1995; Egeln et al., 1997). As for the effect of the 

unemployment ratio on the start-up ratio, there are contrasting views (the push hypothesis 

suggesting a positive impact and the pull hypothesis suggesting a negative impact), both of 

which find empirical support30. 

The impact of the qualitative composition of the regional labor force with regard to 

education, job experience and technical skills has attracted considerable attention from the 

human capital perspective. Several studies demonstrate that the ratio of white-collar to 

blue-collar workers (Keeble and Walker, 1994; Fotopoulos and Spence, 1999) and the 

                                                      
30 For example, Evans and Leighton (1990) and Storey (1991) find evidence for the push hypothesis, while Reynolds 

et al. (1995) and Carree (2002) support the pull hypothesis. 
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proportions of college graduates (Guesnier, 1994; Armington and Acs, 2002; Acs and 

Armington, 2004) and the workforce in professional and managerial occupations (Guesnier, 

1994; Hart and Gudgin, 1994) have positive effects on the start-up ratio. 

Such a regional labor force structure proxies the agglomeration of human capital in the 

regions. Following Becker (1975), the previous literature distinguishes between the generic and 

specific components of human capital. Generic human capital is related to the general 

knowledge acquired by founders through formal education and professional experience. 

Specific human capital comprises capabilities that founders can directly apply to the 

entrepreneurial jobs in new businesses and that can be obtained through prior work experience 

in the same industry (industry-specific human capital) or through managerial and 

self-employment experience (entrepreneur-specific human capital) (Colombo and Grilli, 2005). 

Therefore, this chapter may expect that regions that show a higher ratio of highly educated labor 

force with rich professional, managerial or specific work experience would be characterized by 

larger agglomeration of human capital. 

Why and how does such regional human capital positively affect the start-up of new 

businesses? Acs and Armington (2004, 2006) indicate the following three reasons. First, the 

agglomeration of highly educated and skilled labor force generates entrepreneurs with new 

ideas for creating new businesses (Glaeser et al., 1992). Second, it also promotes local 

knowledge spillovers, by which new start-ups are initiated and sustained (Reynolds et al., 1995). 

Third, it facilitates the founders of new firms to search for and hire skilled labor (Rauch, 1993). 

A recent trend of research on regional variations of the start-up ratio is to differentiate 

between and compare start-up types, such as high- versus low-tech (Okamuro, 2008) and 

independent businesses versus new subsidiaries (Bosma et al., 2008). On the basis of micro data 

of start-ups in the Japanese manufacturing sector, Okamuro (2008) shows that regions 

characterized by agglomerations of highly educated and specialized human capital, as well as 

research institutes and high-tech industries, attract high-tech start-ups (those in high-tech 

industries), while a high unemployment ratio would draw only low-tech start-ups (push 

hypothesis). 

Bosma et al. (2008) is practically the first study that directly addresses and empirically 

investigates the determinants of location choice of subsidiaries in comparison to independent 

start-ups. Using a Dutch regional database, they find that localization economies positively 

affect independent business start-ups, while urbanization economies stimulate the entry of new 

subsidiaries. However, they do not explicitly consider the effects of regional human capital, 
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although agglomeration economies also include general benefits such as access to a highly 

qualified labor pool. 

Bosma et al. (2008) argue that the incentives for establishing a firm in a particular region 

are essentially different for independent start-ups and new subsidiaries. A founder of an 

independent firm will decide whether or not to start a business, comparing the expected utility 

of a business start-up with that of remaining an employee. In contrast, founders of new 

subsidiaries of established firms (especially of those in other regions) are often recruited from 

the core employees or managers of these firms working in other regions. Thus, established firms 

choose the best location for the new subsidiaries, considering several regional characteristics 

such as demand and cost factors. Thus, we expect that, among various regional factors, the 

regional level of human capital affects the entry of independent start-ups more strongly than that 

of new subsidiaries. In this sense, it is important to compare the effect of regional human capital 

between independent start-ups and new subsidiaries. 

Moreover, policy measures to stimulate start-ups by inhabitants and to attract new 

subsidiaries, especially of firms located outside the region, may be quite different. Therefore, in 

the current study, different impacts of human capital on the entry of independent businesses and 

subsidiaries will be explored, founded on the basic models of Bosma et al. (2008) along with the 

concepts of Okamuro (2008). 

Several previous studies compare the factors of regional entry in the manufacturing and 

service sectors (Audretsch and Fritsch, 1994a; Hart and Gudgin, 1994; Keeble and Walker, 

1994; Audretsch and Vivarelli, 1996; Bosma et al., 2008) and in high- versus low-tech industries 

in the manufacturing sector (Nerlinger 1998; Okamuro 2008). Inter-industry comparison within 

the manufacturing or service sectors has not been conducted, except by Armington and Acs 

(2002) and Acs and Armington (2004), who performed sub-sample analyses in the service sector. 

In contrast to these studies, this research not only compares manufacturing and service sectors 

but also distinguishes between relatively high- and low-tech industries in the service sector. 

Thus, another contribution of this chapter is to compare different industries in the service sector, 

differentiating between independent start-ups and subsidiaries. 

3. Hypotheses 

Regional human capital might have different impacts on independent start-ups and new 

subsidiaries for the following reasons. On the one hand, the regional structure of human capital 
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is expected to play a significant role for independent start-ups because they depend on the 

decisions of people living or working in the region31. On the other hand, location choices of new 

subsidiaries are based on the decisions by the top management of the existing firms, which 

could be located outside the region. In this case, the regional level of demand and cost may be 

more important than the regional human capital, because the heads of new subsidiaries often 

come from other regions, especially the headquarters. 

As the measures of regional human capital, it is focused on the ratio of college graduates 

and the ratio of the workers in professional and technical occupations to the labor force. 

According to the above discussion on human capital based on Becker (1975), both measures 

relate to generic human capital. 

With regard to the ratio of college graduates, previous studies such as Colombo and Grilli 

(2005) argue that highly educated workers are likely to be more capable (‘capability theory’) 

and earn higher incomes (‘wealth effect’) than others. They may have good ideas and projects 

for their new businesses and thus expect a high return from independent start-ups, on the one 

hand, and may be financially less constrained, on the other. Hence, they are more likely to start 

new businesses than others. However, previous studies for Japan demonstrate that highly 

educated persons are more reluctant to start their own businesses than others (e.g. Small and 

Medium Enterprise Agency, 2002), because, especially under the traditional Japanese 

employment system, they are aware of the high opportunity cost of quitting the current job to 

start a business. 

Thus, the effect of high education on the regional entry of independent start-ups can be 

either positive or negative. Which of these contrasting effects is stronger than the other at the 

regional level is therefore an empirical question. Consequently, the following hypotheses with 

regard to the entry of independent start-ups are proposed. 

Hypothesis 1a:  

The agglomeration of college graduates at the prefecture level has a positive impact on the 

entry rate of independent start-ups in the prefecture. 

Hypothesis 1b:  

                                                      
31 Prior research shows that most founders start new businesses in their own region (Figueiredo et al., 2002; Stam, 

2007). 
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The agglomeration of college graduates at the prefecture level has a negative impact on the 

entry rate of independent start-ups in the prefecture. 

The top managers of the subsidiaries of existing firms are not necessarily recruited from 

among the inhabitants of the region where the subsidiaries are located. If the firms are located 

outside the region, the top managers of the subsidiaries are also often appointed from outside 

the region. Hence, in this regard, the availability of highly educated workers in the region is not 

expected to matter much for the entry of subsidiaries. 

However, in the case of local firms, the top managers of new subsidiaries are usually 

recruited from among local workers or managers. Moreover, even firms located outside the 

region recruit (at least partly) local workers as the employees for their subsidiaries. In these 

cases, regions that can provide many highly educated and skilled workers would attract the 

entry of subsidiaries32. Therefore, a positive impact of college graduates is expected also on the 

entry of subsidiaries, which is formulated in the following hypothesis. 

Hypothesis 2:  

The agglomeration of college graduates at the prefecture level has a positive impact on the 

entry rate of subsidiaries in the prefecture. 

According to the Japan Standard Occupation Classification, professional and technical 

occupations include various types of scientists and engineers, medical and health-care services, 

social welfare services, legal services and business support services (see footnote 33). People 

engaged in these occupations may not only have the potential to start new businesses (especially 

high-tech ventures or specialized service firms) by themselves, but also can be employed in new 

high-tech ventures or service firms. Moreover, they (especially those in legal and business 

support services) can also provide founders of new businesses with professional support. Thus, 

it is postulated that the agglomeration of the workers in professional and technical occupations 

positively affects the entry of independent start-ups. 

With regard to subsidiaries, even if professional workers such as engineers are required, 

they can be recruited from other regions or brought from the headquarters or other subsidiaries. 

                                                      
32 In this respect, location decisions on subsidiaries are similar to those on foreign plants by multinational companies. 

Coughlin and Segev (2000), for example, find positive effects of educational attainment on the location choice of 

multinational companies. 
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Moreover, unlike the de novo start-up of independent firms, the entry of new subsidiaries may 

not require local professional support. Therefore, any positive relationship between the regional 

structure of professional and technical workers and the entry of new subsidiaries is not 

expected. 

Hypothesis 3:  

The agglomeration of professional and technical workers at the prefecture level has a 

positive impact only on the entry rate of independent start-ups in the prefecture. 

This chapter tests these hypotheses not only with a sample of all industries but also with 

sub-samples of manufacturing and service sectors. These sectors may differ in their sensitivity 

to regional supply and demand (market) conditions as well as in the required levels and types of 

human capital. Also it is examined whether or not the effects of regional human capital are 

different between high- and low-tech industries in the service sector. In high-tech 

(research-intensive) industries such as the information and communication industry, firms 

generally face a rapid technological development. To survive technological competition, 

entrepreneurs in high-tech industries require highly educated and skilled workers to a larger 

extent than those in low-tech industries. 

4. Empirical Model and Data 

In this chapter, the impact of various regional factors on the entry rate of independent 

start-ups and new subsidiaries is estimated for each industry sector in the sample. Relying on 

Bosma et al. (2008), the seemingly unrelated regression (SUR) method is employed, which 

assumes correlation between the error terms of two regression models, because variables 

affecting the entries of both independent businesses and subsidiaries might be omitted. By the 

SUR estimation procedure, regression models for both types of entries are simultaneously 

estimated, and asymptotically more efficient estimators (i.e. more efficient than the OLS 

estimator) can be obtained (Zellner, 1962, 1963). Moreover, as mentioned above, the same 

models for each industry sector are estimated in the sample and the results are compared. 

Following Bosma et al. (2008), the following model is estimated: 
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�
ln 𝑆𝑅𝐼𝑛𝑑 = 𝛼0𝐼𝑛𝑑 + 𝛼1𝐼𝑛𝑑𝐻 + 𝑥′𝛾𝐼𝑛𝑑 + 𝑒𝐼𝑛𝑑

ln 𝑆𝑅𝑆𝑢𝑆 = 𝛼0𝑆𝑢𝑆 + 𝛼1𝑆𝑢𝑆𝐻 + 𝑥′𝛾𝑆𝑢𝑆 + 𝑒𝑆𝑢𝑆

𝑐𝑐𝑟�𝑒𝐼𝑛𝑑 , 𝑒𝑆𝑢𝑆� = 𝜌
    (4-1) 

The dependent variables are the entry rates of independent establishment (SRInd) and of new 

subsidiaries (SRSub) in natural logarithms. Following Bosma et al. (2008), the variables of the 

workforce and the stock of existing establishments are used to measure and control for the effect 

of economic size in the regions. In other words, the ‘labor market approach’ is applied to 

independent start-ups and the ‘ecological approach’ to new subsidiaries (cf., Audretsch and 

Fritsch, 1994b). 

As the main subject of this chapter, the effects of regional human capital (H) on the entry 

rate of independent start-ups and new subsidiaries are examined. As the variables for regional 

human capital, the ratio of highly educated workforce (the ratio of college graduates) and the 

ratio of the workforce in professional and technical occupations are used. The other 

determinants of entry (x) comprise demand and supply factors (population growth rate, wage 

rate and unemployment rate) and a measure of agglomeration economies. 

4.1. Regional Entry in Japan 

Pooled regional data at the prefecture level from four periods (1996–1999, 1999–2001, 

2001–2004 and 2004–2006) is used. With 47 prefectures in Japan, at most 188 observations are 

available in the pooled sample. In general, a prefecture in Japan is, on average, smaller than a 

state in the US but larger than a county or city. Thus, it may be too large an area to represent the 

local (labor) market. However, appropriate data for a narrower regional classification level (i.e. 

of the ‘municipality’) cannot be obtained, which is the main reason for the use of the 

prefecture-level data. 

Table 4.1 shows the definitions and the descriptive statistics of the variables used for 

regressions. Regional start-up data are obtained from the e-Stat Database of the Establishment 

and Enterprise Census. The number of regional independent start-ups in Japan from 1996 to 

2006 is, on average, 4600 per prefecture, annually, which is more than the number of new 

subsidiaries (2400 on average). These numbers vary among regions significantly; the maximum 

number of regional start-ups is more than 60 times the minimum. 
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Table 4.1 Definitions of the variables and sample statistics 
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Table 4.1 (continued) 

 
To control for the effects of regional economic size, the regional workforce and stock of 

establishments is used, obtained from the Establishment and Enterprise Census, as proxies for 

regional economic size. As shown in Table 4.1, the entry rate of independent start-ups is, on 

average, 4.16 per 1000 workers and ranges from 2.00 to 14.16 across prefectures, while that of 

new subsidiaries is, on average, 1.7% of the existing establishments and ranges from 0.58% to 

3.45% across prefectures. Thus, although the entry rate in Japan is at the lowest level among 

OECD countries in recent years, the entry rates of both independent start-ups and new 

subsidiaries are significantly different among regions in Japan. 

In addition, the ratio of the number of new subsidiaries to the total number of entries at the 

national level increased from 32.6% in the period 1996–1999 to 37.5% in the period 2004–2006. 

This ratio and its trend are almost the same as those in the Netherlands (Bosma et al. 2008). An 

increase in this ratio can also be observed at the prefecture level. It ranges from 15.3% to 41.5% 
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across prefectures in the period 1996–1999 and from 21.7% to 45.1% in the period 2004–2006. 

The number of entries and the rate of entry also differ between industries. Table 4.1 shows 

the industrial composition of regional independent start-ups and new subsidiaries. The entry 

rates of both independent start-ups and new subsidiaries are higher in the service sector than in 

manufacturing. Within the service sector, they are relatively lower in the information and 

communication industry, compared to commercial establishments and the restaurants industry. 

4.2. Independent Variables 

In order to test the hypotheses on the relationship between regional human capital and 

regional new business start-ups, as mentioned in the previous section, the proportions of college 

graduates (CollegeGrad) and workers in professional and technical occupations33 (Expert) to 

the entire workforce in each prefecture is used; these were obtained from the Population 

Census.34 As shown in Table 6.1, the mean values of both CollegeGrad and Expert are 

approximately 12%–13%, while the regional variations of these variables are different. The 

proportion of college graduates ranges from 7.2% to 24.2% across regions (standard deviation is 

3.7), while that of expert workers ranges from 10.1% to 17.0% (standard deviation is 1.4). 

Several control variables are also included in the estimation models as additional 

determinants of regional start-up rate. The definitions and descriptive statistics of these 

variables are summarized in Table 4.1. Following Bosma et al. (2008), we included in the 

estimation models the population growth rate (PopGrowth), the natural logarithm of average 

wage rate (Wage) and the unemployment rate (Unemp) as demand and supply factors for 

regional entrepreneurship35, and the ratio of establishment stock (ES) of each industry to the 

population as a measure of ‘localization economy’ (Localization). 

                                                      
33 According to the Standard Occupation Classification of Japan, ‘professional and technical occupations’ include 

various types of scientists and engineers; medical and health-care services, such as doctors, pharmacists, and nurses; 

social welfare services; legal services, such as lawyers; business support services, such as accountants and 

management consultants; and teachers and artists. 

34 We use the ratios not but level of the regional human capital variables (the number of college graduates and 

professional and technical workers) since the dependent variables (start-up ratio) we used are not in level but ratio. 

35 The population growth rate and the unemployment rate are calculated from the Population Census, and the 

average wage rate from the Basic Survey on Wage Structure (Wage Census), at the prefecture level. 
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Also, it is considered that the population density of each prefecture should be included as a 

proxy for urbanization economy as another agglomeration factor, following Bosma et al. (2008). 

However, since the correlation between population density and CollegeGrad is very high 

(0.721), this proxy for urbanization economy is not included in the estimation models in order 

to avoid multicollinearity. 

It is expected that the coefficients of the variables PopGrowth and Localization will be 

positive. For the independent start-up rate, the coefficient of the variable Unemp is expected to 

be positive according to the ‘push hypothesis’ and negative according to the ‘pull hypothesis’, 

while it is expected to be negative (also according to ‘pull hypothesis’) or insignificant for new 

subsidiaries. 

The effect of the variable Wage on the entry rate of subsidiaries would be negative, since a 

higher wage rate implies a higher cost to hire employees for new subsidiaries from the local 

labor market. Further, the effect of the wage rate on the independent start-up rate would be 

negative since the regional wage rate should directly reflect a potential entrepreneur’s 

opportunity cost of quitting the current job to start a new business. 

However, the regional wage rate is highly correlated with the college graduates ratio 

(CollegeGrad) in the data set (see Table 4.2). Since the productivity of highly educated workers 

would be relatively high and the wage rate offered for such productive workers would also be 

high, it would not be able to distinguish the opportunity cost effects of new business start-ups 

for highly educated workers from the effects of wage rate. For this reason, the variable Wage is 

included only in the equation for the entry rate of new subsidiaries (SRSub) as a basic 

specification. Then the robustness of the estimation results of the basic models is checked by 

excluding Wage from the equation SRSub. 

Finally, dummy variables for the periods 1999––2001, 2001––2004 and 2004––2006 

(period dummies: the baseline reference is the period 1996-1999) are included in the estimation 

models in order to control for the time-variant differences of start-up ratio in each prefecture.  
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Table 4.2 Correlation coefficients of the variables 
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Table 4.2 (continued) 

 

5. Estimation Results 

SUR estimation results of the overall industry (excluding the primary sector) are shown in 

Table 4.3 and Table 4.4. For each specification, the results of the equations for the entry rates of 

independent establishments and subsidiaries are shown in the first column (lnSRInd) and second 

column (lnSRSub) respectively, and the scores of the variation inflation factor (VIF) for each 

independent variable are also shown in the third column to check if a multicollinearity problem 

occurs36. 

                                                      
36 The VIF is a measure of the degree of multicollinearity of each independent variable in regression analysis. A 

common rule of thumb is the VIF of larger than 5 (or 10) as a sign of severe multicollinearity. However, some 

problems of this rule are also pointed out (O’Brien, 2007). 
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Table 4.3 SUR estimation results for overall industry 
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Table 4.3 (continued) 
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Table 4.4 SUR estimation results for overall industry (with all control variables) 

 

In specification I (a), in which the natural logarithm of the wage rate is included in the 

equation for the entry rate of subsidiaries, the VIF score of for CollegeGrad is 8.3. This 

indicates that the correlation between CollegeGrad and the other independent variable may 

cause multicollinearity. Thus, for a robustness check, other specifications are estimated in which 

the variables highly correlated with CollegeGrad are excluded. In specification I (b), I (e) and I 

(f), the wage rate is excluded. In specification I(c), I (d), I (e) and I (f), CollegeGrad and Expert 

are included interchangeably. Furthermore, results do not change even after including the other 

control variables in Table 4.4. The difference between specification I (g) and I (h) arises from 

the inclusion or exclusion of the wage rate. 

For all specifications, the coefficient of CollegeGrad for independent start-ups is negative 

and significant at least at the 5% level; the coefficients of Expert for independent start-ups and 

CollegeGrad for new subsidiaries are positive and significant at the 1% level. These results 

support Hypothesis 1a, Hypothesis 2 and Hypothesis 3. According to these results, an 
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agglomeration of a highly educated workforce attracts new subsidiaries, on the one hand, but 

decreases the independent start-up rate, on the other hand, while an agglomeration of workers in 

professional and technical occupations promotes regional entrepreneurship. 

With regard to the effect of control variables, an increase in the wage level has an overall 

negative but not significant effect while the population growth and unemployment rate have 

positive impacts on both types of start-up rates. However, the effect of population growth is 

significant only for the entry rate of subsidiaries, while the effect of the unemployment rate is 

significant only for the ratio of independent start-ups. Similar to the results of Bosma et al. 

(2008), a significant and positive impact of localization economies only on independent 

start-ups is found. 

5.1. Manufacturing and Service Industries 

Table 4.5 and Table 4.6 show the estimation results for the manufacturing industry and the 

service industry respectively. There are some differences in the determinants of entry between 

the manufacturing and service sectors. In the manufacturing industry, the proportion of college 

graduates (CollegeGrad) positively affects independent start-ups, while this human capital has 

no significant effects on new subsidiaries; the coefficient of Expert for independent start-ups is 

negative and significant. These results support Hypothesis 1a but do not support Hypothesis 2 

and Hypothesis 3. This implies that the agglomeration of highly educated workforce (rather than 

the professional and technical workforce) promotes regional entrepreneurship in the 

manufacturing sector, but regional human capital, contrary to natural expectations, do not 

influence the decision on the location of new subsidiaries. 

In the service industry, the results are the same as those for the industry as a whole. The 

proportion of college graduates (CollegeGrad) has a negative and significant effect on the entry 

rate of independent establishments and a positive and significant effect on new subsidiaries at 

the 1% level. The proportion of professional and technical workers (Expert) has a positive and 

significant effect on the independent start-up rate at the 1% level. These results are consistent 

with Hypothesis 1b, Hypothesis 2 and Hypothesis 3. It implies that in the service sector an 

agglomeration of highly educated workforce attracts new subsidiaries, while workers in 

professional and technical occupations promote regional entrepreneurship. 
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Table 4.5 SUR estimation results for the manufacturing and service sectors 
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Table 4.6 SUR estimation results for the manufacturing and service sectors with additional 

control variables 

  

5.2. High- and Low-Tech Service Industries 

To check the robustness of the results for the service sector, it is focused on two sub-sectors 

with regard to technological intensity: information and communications and the commerce and 

restaurant subsectors. The R&D intensity of the information and communication industry is the 
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highest (0.74%) in the service sector37, according to the Input-Output Tables of 2005. In contrast, 

the R&D intensity of the commerce and restaurant industry is only 0.22%. Thus, the 

information and communication industry is regarded as a high-tech industry and the results of 

this industry are compared to the results of the commerce and restaurant industry38. 

Table 4.7, Table 4.8 and Table 4.9 shows the estimation results for these two industries in 

the service sector39. In both subsectors, the effects of the proportion of professional and 

technical workers (Expert) on independent start-ups are positive and significant at the 1% level. 

These results are consistent with Hypothesis 3. Human capital has a different effect on start-ups 

both in a high- and low-tech service: The coefficient of CollegeGrad is significantly negative 

for independent start-ups but significantly positive for new subsidiaries in the commerce and 

restaurant industry; while the coefficients of CollegeGrad are not significant for both types of 

start-ups in the information and communication industry. Thus, Hypothesis 1b and Hypothesis 2 

are supported only in a relatively low-tech (commerce and restaurant) industry. 

                                                      
37 The R&D intensity of a certain industry is defined as the ratio of its R&D expenditure to its total output. 

38 Other service industries include various industries with different levels of technology intensity, such as research 

institutes, postal service, medical service, education, social work, advertising, machine maintenance, amusement, 

barbers and laundries. Because of data limitations, it is not able to divide them in further detail. For that reason, this 

industry is excluded from detailed analysis to test Hypotheses 2a and 2b. 

39 Because of limitations of data, this analysis is restricted to two observation periods, 2001–2004 and 2004–2006. 



Chapter 4  

94 
 

Table 4.7 SUR estimation results for high- and low- tech service industries 
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Table 4.8 SUR estimation results for high- and low- tech service industries (with additional 

control variables) 
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Table 4.9 SUR estimation results for high- and low- tech service industries (controlled for 

localization economy) 

  

6. Conclusion 

This chapter investigated the determinants of regional business entry distinguishing 

between independent start-ups and subsidiaries, with a special focus on the effects of regional 

human capital. This is the major contribution of this chapter. Another contribution to the 

literature is that it compares the determinants of regional entry between the manufacturing and 

service sectors as well as across subsectors within the service sector. For the empirical analyses, 
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pooled data of 47 Japanese prefectures for four observation periods are used. 

Table 4.10 Summary of empirical estimations 

 

The estimation results of SUR indicate considerable differences in the impact of regional 

factors between independent start-ups and subsidiaries as well as among different industries. 

Table 4.10 summarizes the empirical tests of the hypotheses. First, the ratio of college graduates 

is correlated negatively with independent start-ups (Hypothesis 1b) and positively with the entry 

of subsidiaries (Hypothesis 2). Second, the ratio of professional and technical workers 

positively affects independent start-ups but not the entry of subsidiaries (Hypothesis 3). Third, 

the relationships between regional human capital and the entry of independent start-ups and new 

subsidiaries are different across industries. The determinants of entry differ not only between 

the manufacturing and service sectors but also within the service sector. Moreover, the 

differences of the determinants between the types of start-up vary across sectors. 

The negative relationship between the ratios of college graduates and independent start-ups 

(for the overall industry and the service sector) is consistent with the previous empirical 

evidence for Japan (e.g., Small and Medium Enterprise Agency, 2002; Okamuro, 2008), but not 

with the results from other countries (Guesnier, 1994; Armington and Acs, 2002; Acs and 

Armington, 2004). This suggests that highly educated workers in Japan regard the opportunity 

cost of quitting their current job as considerably higher than the expected returns from start-ups 

their own business.  
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The estimation results for the manufacturing sector are not only different from, but almost 

contrasting to those for the service sector. For manufacturing, the ratio of college graduates is 

correlated positively with the ratio of independent start-ups. This may imply that high education 

(particularly in the natural sciences) is especially important for independent start-up in the 

manufacturing sector, or that highly educated workers in the manufacturing sector do not have 

high opportunity cost of self-employment, assuming that the founders of manufacturing firms 

come from the manufacturing sector.  

Moreover, for the manufacturing sector, the ratio of college graduates has no significant 

effect on start-ups of new subsidiaries (which does not support Hypothesis 2) and that the ratio 

of professional and technical workers has a negative effect on independent start-ups (contrary to 

Hypothesis 3). The latter results are different from the previous studies (Guesnier, 1994; Hart 

and Gudgin, 1994) that find a positive relationship for the manufacturing sector. It may be 

attributed to the definition of professional and technical occupations in Japan that covers 

numerous skills in the service sector. It is also noteworthy that the results on the effect of 

unemployment ratio on the ratio of independent start-ups clearly support the push hypothesis, 

similar to the results of previous studies in Japan. 

However, some limitations of the present study need to be addressed in future research. 

First, for the manufacturing sector, there are different results from the overall industry and the 

service sector. There might also be some heterogeneity among manufacturing industries, which 

means that a more detailed industry and occupation classification is needed in order to test the 

hypotheses more concretely. Second, although there are positive relationships between the 

regional structure of human capital and the ratio of independent start-ups, these relationships 

can be explained by two possibilities. One possibility is that entrepreneurs have accumulated 

their human capital within the regions, but another is the migration of high-skilled workers (e.g., 

Ritsila and Ovaskainen, 2001). Presently, on the basis of the data available in this study, it is 

unable to clarify these possibilities. 

Despite these limitations, this study suggests that regional policies to activate business 

start-ups should recognize the differences between encouraging local entrepreneurship and 

attracting new subsidiaries. These differences may vary even within the service sector according 

to technological intensity (or innovativeness). 
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Chapter 5  R&D, Innovation, and Business Performance of 
Japanese Start-ups: A Comparison with Established 
Firms40 

1. Introduction 

Since J. A. Schumpeter, entrepreneurship and innovation have been regarded as major sources 

of economic growth. Several empirical studies confirm the contribution of innovation to 

productivity growth (e.g., Crépon et al. 1998; Griffith et al. 2006; OECD 2009) and to 

employment growth (Hall et al. 2008; Lachenmaier and Rottmann 2011) at the firm level. 

Moreover, Acs and Armington (2004) and Audretsch and Keilbach (2005) demonstrate that 

entrepreneurial activities measured as the start-up ratio are a key factor for regional economic 

growth and productivity.  

Despite the importance of innovation activities in business start-ups, few studies have 

comprehensively compared these undertakings to equivalent ones in established firms. Several 

empirical studies estimate the determinants of R&D input and outcomes by focusing on 

start-ups (Kato et al. 2013) or SMEs (Hall et al. 2009). Okamuro et al. (2011) analyze the 

determinants of R&D cooperation of business start-ups with business partners or universities. 

Okamuro (2009) compares the determinants of the propensity to conduct R&D and the R&D 

intensity of start-ups and all SMEs in the manufacturing sector. Huergo and Jaumandreu 

(2004a) find a nonlinear relationship between firm age and the probability of introducing an 

innovation. However, to the best of the knowledge, few studies comprehensively compare the 

determinants of R&D intensity, innovation, and firm performance of start-ups and established 

firms. In order to understand the characteristics and impact of innovation activities in start-ups, 

we should focus not only on R&D input but also on innovation and its impact on firm 

performance in both start-ups and established firms.  

                                                      
40 This chapter is based on Ikeuchi and Okamuro (2013), co-authored with Hiroyuki Okamuro, which was conducted 

as a research project of the National Institute of Science and Technology Policy (NISTEP) under the “Science for 

Science, Technology and Innovation Policy” program of the Ministry of Education, Culture, Sports, Science and 

Technology in Japan. 
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Moreover, especially in Japan, despite the growing policy interests in innovation41, there is 

little empirical research that employs the national innovation surveys, except for a few studies, 

such as Kwon et al. (2008) and Isogawa et al. (2012). Thus, this chapter bridges these gaps by 

using comparable datasets from different surveys.  

In sum, the empirical results suggest that 1) the effects of public financial support on R&D 

intensity are smaller for start-ups; 2) the effects of research cooperation with business partners 

or universities on innovation are larger for start-ups; and 3) the effects of product and process 

innovation on labor productivity (level and growth) are positive both for start-ups and 

established firms. These results imply that, in order to promote the innovation and growth of 

start-ups, we should provide them with more or better support to engage in research 

cooperation.  

The remainder of this chapter is organized as follows: data and estimation models are 

explained in Sections 2 and 3. Subsequently, empirical results are presented in Section 4. 

Section 5 concludes this chapter. 

2. Data 

Based on the data sources, this chapter distinguishes start-ups from established firms as follows: 

The former are firms within two years of operation and the latter those with more than two years 

of operation.  

Data on start-ups is obtained from an original questionnaire survey series for Japanese 

start-ups that were carried out annually from 2008 to 2011. The first wave of this survey 

targeted 14,401 start-ups in the manufacturing and the software industry in Japan incorporated 

between January 2007 and August 2008; it was compiled by Tokyo Shoko Research (TSR), a 

major credit investigation company in Japan and based on the Corporation Register. Since the 

sample may also include the firms that were established earlier but incorporated after January 

2007, the “real” start-ups are extracted, that is, those that were established during 2007 and 

2008, using the survey response. The first postal survey was conducted in 2008 and 1,514 

                                                      
41 Since the mid-1990s, the Japanese government has intensively promoted R&D and innovation with the “Science 

and Technology Basic Plans.” Implementation of the science-based science and technology policy is a new and 

important agenda in the fourth plan starting in 2011.  
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responses were received, of which 1,060 were “real” start-ups42.  

Then follow-up surveys are carried out in the successive years for the respondents of the 

previous year’s survey until 2011. For the empirical analysis of this chapter, the respondent 

firms of the third survey in 2010 are extracted and incomplete responses and some outliers are 

excluded. Thus, the final dataset of start-ups comprises 894 firms less than 2 years of age at 

time of the initial survey in 2008. The data from the third survey wave (and not the first one) is 

used to obtain sufficient information on innovation and firm performance and to secure 

comparability with the dataset of established firms.  

Comparable data of established firms (that comprises approximately 2,000 firms) were 

obtained from the Japanese National Innovation Survey 2009 (J-NIS 2009) conducted in 2009 

by the National Institute of Science and Technology Policy (NISTEP), as official statistics 

carried out according to the Oslo Manual and the Community Innovation Survey 2010 

(CIS2010) in the EU. The sample of the survey comprises the firms with more than ten 

employees and covers the entire manufacturing sector and most non-manufacturing sectors, 

including the software industry. In all, 15,871 firms were selected as the sample from the 

331,037 firms in the list of the Establishment and Enterprise Census conducted in 2006 by the 

Statistics Bureau of the Ministry of Internal Affairs and Communications. Of 4,579 respondents, 

1,993 firms could be classified as belonging to the manufacturing or the software industry. 

Excluding incomplete responses and some outliers in addition to young firms less than 2 years 

of age, final dataset of established firms comprises 1,517 firms that had at least 2 years of 

operation at time of the initial survey year, 2006.  

Since the Japanese National Innovation Survey is a sampling survey, few start-up firms are 

included in this survey, e.g. in the sample only ten firms are less than 2 years of age and 23 

firms are less than 5 years of age. Therefore, this survey itself should not be appropriate for 

detailed analysis of start-up firms and this is the reason why we use a comparable original 

special survey on start-up firms. 

Table 5.1 shows the simple comparison between start-ups and established firms in the 

datasets: The former are 1) less likely to conduct R&D, but more R&D intensive on average; 2) 

less likely to cooperate with business partners, universities, or public research institutes, but 

more dependent on the information from competitors; 3) less likely to innovate; and 4) more 

likely to grow faster, but less productive and profitable.  

                                                      
42 For further information on this survey, see Okamuro et al. (2011). 
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Table 5.2 shows the correlation matrix of the variables. It reveals that, while labor 

productivity is positively associated with product and process innovation, the correlation of the 

growth rate of labor productivity with product and process innovation is negligible. Productivity 

and profitability are positively correlated each other. Profitability is positively correlated with 

product innovation but negatively correlated with process innovation. R&D input is positively 

associated with productivity, profitability and product, and process innovation. Geographic 

factors, such as the expert ratio (the ratio of workers in professional and technical occupations43 

in the workforce) and the density of industry and university, are also positively correlated with 

R&D intensity.  

3. Model 

This chapter simultaneously examines the differences between start-up firms and established 

firms in the determinants of innovation input (R&D intensity) and output (introduction of new 

products and processes) and firm performance (productivity and profitability). For this purpose, 

a three-stage model proposed by Crepon et al. 1998 (see also OECD 2009) is employed in order 

to consider the selectivity and endogeneity issues. In the first stage, R&D intensity measured as 

the ratio of R&D expenditures per person (in natural logarithm) is determined. In the second 

stage, the relationship between innovation input (R&D intensity) and output is investigated, 

distinguishing between product and process innovation and considering the effect of R&D 

cooperation. In the third and final stage, the effects of innovation output on firm performance, 

measured as the level and growth rate of labor productivity and the positive profit dummy, is 

examined.  

 

  

                                                      
43 According to the Standard Occupation Classification of Japan, ‘professional and technical occupations’ include 

various types of scientists and engineers; medical and health-care services, such as doctors, pharmacists, and nurses; 

social welfare services; legal services, such as lawyers; business support services, such as accountants and 

management consultants; and teachers and artists. 
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Table 5.1 Descriptive statistics 

  Established firms (firm age ≥ 2)   Start-up firms (firm age < 2) 

Variables n Mean S.D. Min Max   n Mean S.D. Min Max 

Positive R&D  (dummy) 1,283 0.461  0.499  0.000  1.000  
 
880 0.308  0.462  0.000  1.000  

R&D intensity (expenditure per 
person: 1mil. yen) 

1,283 0.422  1.679  0.000  28.654  
 
880 0.550  2.246  0.000  50.000  

Log. of R&D intensity 591 -1.512  1.778  -7.378  3.355  
 
271 -0.557  1.688  -6.765  3.912  

Product innovation (dummy) 872 0.669  0.471  0.000  1.000  
 
510 0.412  0.493  0.000  1.000  

Process innovation (dummy) 872 0.429  0.495  0.000  1.000  
 
510 0.161  0.368  0.000  1.000  

Labor productivity (sales per person: 
1 mil. yen) 

674 36.228  45.841  0.000  458.652  
 
223 17.030  32.669  0.000  360.000  

Log. of labor productivity 674 3.211  0.879  0.000  6.130  
 
223 2.288  1.020  0.000  5.889  

Labor productivity growth rate 674 0.004  0.351  -2.244  3.714  
 
223 0.120  0.880  -2.877  3.586  

Positive profit (dummy) 743 0.709  0.454  0.000  1.000  
 
247 0.543  0.499  0.000  1.000  

Collaboration with business partners 
(dummy) 

872 0.541  0.499  0.000  1.000  
 
510 0.408  0.492  0.000  1.000  

Collaboration with universities 
(dummy) 

872 0.271  0.445  0.000  1.000  
 
510 0.125  0.332  0.000  1.000  

Information from competitor 
(dummy) 

872 0.382  0.486  0.000  1.000  
 
510 0.500  0.500  0.000  1.000  

Employment size 1,517 321.937  1162.589  1.000  31595.000  
 
894 11.892  42.296  1.000  620.000  

Log. of employment size 1,517 4.342  1.927  0.000  10.361  
 
894 1.404  1.134  0.000  6.430  

Initial labor productivity (sales per 
person: 1 mil. yen) 

1,517 31.585  44.660  0.000  671.597  
 
894 15.407  30.763  0.000  600.000  

Log. of initial labor productivity 1,517 3.007  0.966  0.000  6.511  
 
894 2.186  1.056  0.000  6.399  

Firm age 1,517 32.879  22.049  2.000  230.000  
 
894 0.557  0.497  0.000  1.000  

Affiliated firm dummy 1,517 0.405  0.491  0.000  1.000  
 
894 0.219  0.414  0.000  1.000  

Public financial support (dummy) 1,517 0.213  0.410  0.000  1.000  
 
894 0.318  0.466  0.000  1.000  

Expert ratio – city 1,517 0.141  0.033  0.059  0.247  
 
894 0.153  0.037  0.064  0.247  

Expert ratio – prefecture 1,517 0.140  0.019  0.111  0.171  
 
894 0.146  0.020  0.111  0.171  

Industry density – city 1,517 6.181  21.550  0.000  141.182  
 
894 10.300  26.006  0.000  141.182  

Industry density – prefecture 1,517 0.714  1.364  0.000  5.566  
 
894 1.262  1.778  0.000  5.566  

University density – city 1,517 0.029  0.083  0.000  0.707  
 
894 0.040  0.097  0.000  0.707  

University density – prefecture 1,517 0.008  0.010  0.000  0.028  
 
894 0.011  0.011  0.000  0.028  
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Table 5.2 Correlation matrix of variables 

A. Established firms (firm age ≥ 2 years-old) 

    [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] 

[1] Positive R&D  
(dummy) 1.000                                         

[2] Log of R&D intensity . 1.000                    

[3] Product innovation 
(dummy) .332 .144 1.000                   

[4] Process innovation 
(dummy) .182 .005 .211 1.000                  

[5] Log of labor 
productivity .281 .333 .189 .094 1.000                 

[6] Labor productivity 
growth rate -.001 .032 -.029 .056 .226 1.000                

[7] Positive profit 
(dummy) .052 -.002 .065 -.082 .142 .092 1.000               

[8] 
Collaboration with 
business partners 
(d ) 

.209 .068 .208 .198 .113 .013 -.028 1.000              

[9] Collaboration with 
universities (dummy) .278 .190 .221 .119 .119 -.014 .016 .271 1.000             

[10] Information from 
competitor (dummy) .005 .056 .092 .030 -.020 -.077 .017 .060 .042 1.000            

[11] Log of employment 
size .325 .070 .297 .179 .389 -.120 .095 .244 .301 -.047 1.000           

[12] Log of initial labor 
productivity .320 .325 .242 .136 .920 -.175 .127 .155 .172 -.035 .396 1.000          

[13] Log. of firm age .215 -.019 .234 .164 .190 -.126 .000 .130 .202 -.118 .510 .271 1.000         

[14] Affiliated firm 
dummy .133 .171 .132 .056 .340 -.033 .042 .155 .095 -.034 .457 .290 .130 1.000        

[15] Public financial 
support (dummy) .070 .090 -.019 .008 -.100 .070 -.072 .020 .238 .058 -.123 -.032 -.113 -.114 1.000       

[16] Expert ratio – city .125 .199 .053 -.050 -.002 -.003 .110 -.019 .110 .040 .049 .036 -.060 .005 .048 1.000      

[17] Expert ratio – 
prefecture .114 .194 .029 -.030 .044 .006 .105 -.007 .065 .013 .032 .077 -.029 .012 .018 .645 1.000     

[18] Industry density – city .005 .068 -.016 -.116 -.058 -.020 .101 -.066 -.042 .044 .050 -.052 -.056 -.005 -.064 .332 .318 1.000    

[19] Industry density – 
prefecture .014 .111 .009 -.084 -.010 -.022 .119 -.031 -.001 .069 -.005 -.028 -.071 -.029 -.056 .393 .490 .653 1.000   

[20] University density – 
city .105 .152 .023 -.009 .011 -.043 .055 .048 .110 .045 .103 .049 -.042 .056 .016 .586 .474 .402 .422 1.000  

[21] University density – 
prefecture .109 .199 .063 -.016 .069 -.041 .087 .018 .105 .020 .091 .102 -.008 .025 -.015 .597 .847 .418 .649 .574 1.000 
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Table 5.2 Correlation matrix of variables (cont.) 

B. Start-up firms (firm age < 2 years-old) 

    [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] 

[1] Positive R&D  
(dummy) 1.000                     

[2] Log of R&D intensity . 1.000                    

[3] Product innovation 
(dummy) .265 .209 1.000                   

[4] Process innovation 
(dummy) .195 .122 .365 1.000                  

[5] Log of labor 
productivity .084 .011 .044 .037 1.000                 

[6] Labor productivity 
growth rate .143 .152 .009 .026 .434 1.000                

[7] Positive profit 
(dummy) -.037 -.163 .008 -.114 .343 .105 1.000               

[8] 
Collaboration with 
business partners 
(d ) 

.142 .166 .370 .217 .086 .081 -.074 1.000              

[9] Collaboration with 
universities (dummy) .173 .196 .199 .192 .077 .148 .041 .142 1.000             

[10] Information from 
competitor (dummy) -.018 -.003 .010 -.081 .063 .014 .071 -.014 -.155 1.000            

[11] Log of employment 
size -.018 -.242 .135 .114 .226 .010 .045 .068 -.017 .000 1.000           

[12] Log of initial labor 
productivity -.073 -.038 .062 .064 .621 -.436 .276 .074 -.096 .017 .103 1.000          

[13] Log. of firm age . . . . . . . . . . . . .         

[14] Affiliated firm 
dummy -.065 .117 -.053 .002 .186 .022 .007 -.019 .007 -.060 .362 .114 . 1.000        

[15] Public financial 
support (dummy) .027 .000 .142 .077 .122 .154 -.008 -.026 .099 -.018 .062 .021 . -.123 1.000       

[16] Expert ratio – city .091 .109 .009 -.055 -.037 -.038 -.025 -.042 .004 .096 -.103 .018 . -.080 -.023 1.000      

[17] Expert ratio – 
prefecture .083 .150 .000 -.089 .001 .010 .005 -.046 -.026 .166 -.118 .037 . -.097 -.001 .608 1.000     

[18] Industry density – city .003 .033 -.022 -.058 .004 .004 .113 -.129 -.033 .088 .069 -.002 . .032 -.044 .366 .323 1.000    

[19] Industry density – 
prefecture -.019 .126 -.002 -.057 .058 .022 .077 -.096 -.032 .148 -.048 .017 . -.031 -.040 .384 .571 .602 1.000   

[20] University density – 
city .070 .133 -.020 -.029 -.098 -.034 .035 -.028 -.021 .032 .013 -.007 . .037 -.005 .572 .411 .488 .468 1.000  

[21] University density – 
prefecture .028 .215 .019 -.089 .014 .009 .003 -.070 -.027 .182 -.074 .047 . -.057 -.012 .549 .862 .446 .764 .503 1.000 
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3.1. First stage: R&D intensity model 

In the first stage of the model, the R&D intensity of firms, defined as R&D expenditures per 

employee, is determined by two equations employing the generalized Tobit model (Heckman, 

1976, 1979): Firms decide at first whether or not they engage in R&D activity (the first 

equation) and then determine the level of R&D expenditures (the second equation). We use the 

same set of factors as explanatory variables for both equations, but estimate different sets of 

coefficients for each equation.  

We focus on the differences between start-up and established firms with respect to the 

effects on R&D intensity of public financial support and local accessibility to research 

personnel. To examine the effects of public financial support, we utilize a dummy variable 

which takes the value of one if the firm obtains any public financial support from national or 

local government, and zero otherwise. We define the local accessibility to research personnel as 

the density of professional and technical workers which is calculated as the number of such 

workers per square kilometers. 

Large body of literature argue that, due to information asymmetries, most start-up firms 

have difficulty in obtaining sufficient funds for investment from external capital markets (e.g., 

Honjo et al., 2014). Financial constraints might be essential particularly for R&D investment 

because of its intangible and inappropriable feature (Kamien and Schwartz, 1978) and high 

uncertainty (Carpenter and Petersen, 2002). Therefore, we expect that the effect of public 

financial support on R&D intensity of start-up firms is larger than that of established firms. 

In addition to financial resources, sufficient specific human capital is needed to conduct 

R&D projects, embodied in engineers, researchers, and/or scientists. Therefore, accessibility to 

R&D personnel can also affect R&D intensity. For start-up firms, it is difficult to procure R&D 

personnel from the distant labor market areas. This indicates that a start-up firm relies more on 

local labor market than an established firm does. Therefore, we expect that the effect of local 

accessibility to R&D personnel on R&D intensity is larger for start-up firms than for established 

firms. 

In addition, we control for the effects of firm size and age, the differences between 

affiliated and independent firms, industry-specific effects, and the density of businesses and 

universities in the municipality and prefecture where the firms’ headquarters are located. 
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3.2. Second Stage: Innovation Model 

Firms generate new products and processes as innovation outputs. In this regard, it is 

distinguished between product innovation (the generation of new or significantly improved 

products) and process innovation (the implementation of new or significantly improved 

production method)44.  

As the determinants of innovations, the predicted values of R&D intensity in the first stage 

are a main variable. In addition, Robin and Schubert (2013) have recently found a positive 

effect of cooperation with public research institutes on the probability of introducing product 

innovation but no effect on process innovation. As shown in Belderbos et al. (2004), supplier 

and customer firms and competitors might be also important as collaboration partners and 

external knowledge sources. Therefore, first, the cooperation with universities and firms is 

distinguished with supplier/customer relationships. Second, the effects of external knowledge 

from competitors are examined by utilizing a survey question on the importance of competitors 

as information sources in R&D (innovation) activity. Then the difference in the magnitude of 

the effects of those cooperation and external knowledge from competitors on innovation 

between start-ups and established firms is examined. 

Because of short experiences in their business, start-up firms tend to have smaller network 

and lower reputation than established firms do. It should be a difficult task for start-up firms to 

find appropriate research partners, and even if they find any, it is difficult for them to 

successfully make a contract with research partners. Therefore, the marginal benefits of 

collaboration with external organization and external knowledge is expected to be larger for 

start-up firms than established firms. Also, due to scarce internal resources of start-up firms, it is 

more difficult for them to complete R&D projects and commercialize the outcomes by 

themselves. For start-up firms, a collaboration with a large firm helps to commercialize R&D 

outcomes and a collaboration with a university helps to utilize basic research and scientific 

knowledge. Also, because start-up firms are free from innovators’ dilemma as compared to 

                                                      
44 According to Oslo Manual (OECD 2005), process innovation covers not only the implementation of a new or 

significantly improved production methods but also that of new or significantly improved delivery methods and 

techniques, equipment, and software in ancillary support activities. Since the survey for start-ups did not consider the 

latter two types of process innovation, only the implementation of a new production method is regarded as process 

innovation. 
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established firms, it takes advantage in smoothly utilizing the collaborative partners’ specialty. 

3.3. Third Stage: Performance Model 

Finally, to validate the measurement of the indicators for innovations and to access the 

differences in an economic impact of innovations between start-ups and established firms, the 

effects of product and process innovation on firm economic performance are estimated, such as 

the levels or growth rates of labor productivity and profitability. Since start-up firms may have 

less complementarity assets necessary to commercialize innovation compared to established 

firm, the effects of innovations on firm economic performance may differ between start-ups and 

established firms. As the proxy for productivity, labor productivity is employed. Since the 

dataset of startups does not consist of physical capital accumulation and the input of materials, it 

is not able to measure the total factor productivity and also not control for capital intensity or 

intermediate inputs. Instead, several control variables are included: initial employment size, age, 

affiliated firm dummy, and initial labor productivity level. Choice of the proxy for profitability 

is also limited because of a lack of detailed financial information. A dummy variable is used, 

which takes the value of one, if the firm’s (operating) profit is positive45. 

Product and process innovation may be complimentary. However, a marginally strong 

correlation between these two types of innovations (0.306 as shown in Table 5.2) might make it 

difficult to identify the effects of these two types of innovations. To explore the relevant 

specification, several approaches are examined: First, the predicted probability that the firm 

introduces either the product or process innovation is used as an explanatory variable. Second, 

the predicted probabilities of product innovation and process innovation are used, alternately or 

independently, as explanatory variables. Third, the predicted probability of product innovation 

only, process innovation only, and product and process innovations together is used as 

explanatory variables. 

                                                      
45 For the start-ups, it is not able to identify the firms’ answers to the profitability question based on which kind of 

profit. 
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4. Results 

4.1. First stage: R&D intensity model 

Table 3.3 shows the estimation results of the generalized Tobit model for R&D intensity. For 

each specification, the first column shows the coefficients of the probit model in which the 

dependent variable is a dummy variable for R&D conducting firms, and the second column 

reports the coefficients of linear model of the level of R&D intensity. In addition, in the last row, 

the correlation coefficients of the residuals of two equations are reported for each specification. 

The results show the positive effects of initial labor productivity on both the selection equation 

and R&D intensity and the positive effects of employment size and firm age on only R&D 

intensity. Affiliated firms conduct R&D investment at a higher probability, but their R&D 

intensity is lower than that of independent firms. Public financial support and the expert ratio in 

local labor market increase the probability of R&D investment and the R&D intensity of firms 

(see Figure 5.1 and Figure 5.2). The geographic agglomeration of industry and university have 

no effects on either the selection or the intensity of R&D. Interestingly, the effects of public 

support on both the selection and intensity of R&D are significantly smaller for start-ups than 

established firms, while there is no significant difference in the effects of the expert ratio 

between these groups. 
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Table 5.3 First stage results for R&D intensity 

(Generalized tobit model - ML estimation) 
Dependent variable: positive R&D dummy and log of R&D per employee        
    [1]   [2]   [3]   [4]   [5] 
  Dependent variable R&D>0 R&D int.   R&D>0 R&D int.   R&D>0 R&D int.   R&D>0 R&D int.   R&D>0 R&D int. 

 Initial labor productivity 0.405*** 0.121***  0.428*** 0.125***  0.429*** 0.127***  0.435*** 0.128***  0.439*** 0.128*** 

  [0.081] [0.034]  [0.080] [0.034]  [0.079] [0.034]  [0.080] [0.034]  [0.080] [0.034] 

 Initial employment size -0.072 0.188***  -0.077 0.190***  -0.073 0.197***  -0.078 0.196***  -0.073 0.196*** 

  [0.053] [0.024]  [0.053] [0.024]  [0.053] [0.024]  [0.053] [0.024]  [0.053] [0.024] 

 Age -0.137** 0.010  0.143 0.108***  0.143 0.114***  0.149* 0.117***  0.154* 0.113*** 

  [0.058] [0.026]  [0.088] [0.041]  [0.088] [0.041]  [0.088] [0.041]  [0.089] [0.042] 

 Affiliated (dummy) 0.523*** -0.152**  0.548*** -0.154**  0.542*** -0.160**  0.535*** -0.161**  0.526*** -0.163** 

  [0.150] [0.071]  [0.147] [0.071]  [0.147] [0.071]  [0.148] [0.071]  [0.148] [0.071] 

 Public financial support (dummy) 0.504*** 0.203***  0.498*** 0.208***  0.695*** 0.404***  0.685*** 0.404***  0.694*** 0.407*** 

  [0.136] [0.067]  [0.135] [0.067]  [0.161] [0.092]  [0.160] [0.093]  [0.161] [0.093] 

 Expert ratio – city 5.414** 3.429***  5.235** 3.390***  4.987** 3.226***  7.009** 3.860**  7.575*** 3.882** 

  [2.441] [1.201]  [2.427] [1.208]  [2.407] [1.210]  [2.823] [1.541]  [2.883] [1.600] 

 Expert ratio – prefecture 1.477 7.886**  1.641 7.947***  1.901 8.007***  -0.455 8.028**  0.537 3.637 

  [5.963] [3.069]  [5.916] [3.083]  [5.919] [3.090]  [6.597] [3.497]  [7.248] [3.998] 

 Industry density – city 0.000 0.000  0.000 0.000  0.000 0.000  0.001 0.000  0.002 -0.001 

  [0.004] [0.002]  [0.004] [0.002]  [0.004] [0.002]  [0.004] [0.002]  [0.005] [0.002] 

 Industry density – prefecture -0.080 -0.038  -0.088 -0.039  -0.084 -0.037  -0.089 -0.036  -0.135 -0.059 

  [0.077] [0.037]  [0.076] [0.037]  [0.076] [0.037]  [0.076] [0.038]  [0.091] [0.051] 

 Univ. density – city 0.126 0.559  0.281 0.594  0.269 0.609  0.340 0.629  0.119 0.579 

  [0.929] [0.433]  [0.941] [0.437]  [0.933] [0.440]  [0.919] [0.441]  [1.028] [0.619] 

 Univ. density – prefecture 26.206* -7.254  23.433* -8.149  22.781 -8.113  22.114 -8.223  22.364 5.084 

  [14.033] [6.940]  [13.923] [6.984]  [13.891] [6.996]  [13.828] [7.010]  [16.087] [8.937] 

 Start-up (dummy)    1.219*** 0.402***  1.388*** 0.549***  1.291 0.796*  1.819 -0.642 

     [0.271] [0.125]  [0.286] [0.137]  [0.965] [0.456]  [1.585] [0.774] 

 Start-up x  Public financial support       -0.505* -0.401***  -0.510* -0.402***  -0.512* -0.404*** 

        [0.291] [0.136]  [0.293] [0.136]  [0.294] [0.136] 

 Start-up x Expert ratio – city          -5.823 -1.519  -6.541 -1.604 

           [4.542] [2.159]  [4.976] [2.408] 

 Start-up x Expert ratio – prefecture          6.816 -0.106  3.418 11.498* 

           [7.860] [3.849]  [12.400] [6.269] 

 Start-up x Industry density – city             -0.004 0.002 

              [0.007] [0.003] 

 Start-up x Industry density – prefecture             0.093 0.072 

              [0.141] [0.068] 

 Start-up x Univ. density – city             0.544 0.053 

              [2.039] [0.880] 

 Start-up x Univ. density – prefecture             1.272 -34.268** 

              [27.853] [13.965] 

 Constant -4.999*** -2.773***  -5.958*** -3.105***  -6.002*** -3.194***  -5.961*** -3.293***  -6.236*** -2.736*** 

  [0.933] [0.408]  [0.977] [0.421]  [0.983] [0.424]  [1.020] [0.458]  [1.093] [0.517] 

 Industry dummies (2 digit) Yes Yes   Yes Yes   Yes Yes   Yes Yes   Yes Yes 

 # of observations 2,163   2,163   2,163   2,163   2,163  
 # of firms no R&D 1301   1301   1301   1301   1301  
 Chi-squared (statistics) 328.2231   347.5391   356.9189   355.8323   357.3385  
 Chi-squared (p-value) 0.000    0.000    0.000    0.000    0.000   
 Correlation between errors 0.543   0.533   0.528   0.526   0.551  

Notes: Robust standard errors are in brackets. ***, ** and * indicate significance at the 1%, 5% and 10% levels, respectively. 
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Figure 5.1: Marginal effects of public financial support on R&D intensity 

 
Notes: The vertical axis is the predicted value of R&D expenditure (in 1 million yen) per person. The predicted 

values are calculated from the estimation results of column [4] in Table 3 at the mean values of the remaining 

covariates. 

Figure 5.2: Marginal effects of expert ratio in city on R&D intensity 

 
Notes: The vertical axis is the predicted value of R&D expenditure (in 1 million yen) per person. The predicted 

values are calculated from the estimation result of column [4] in Table 3 at the mean values of the remaining 

covariates. 
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4.2. Second Stage: Innovation Model 

Table 5.4 shows the second stage results of the bivariate probit model for product and process 

innovation. For each specification, the coefficients of the product innovation equation and those 

of the process innovation equation are reported in the first column and the second column, 

respectively. The effects of predicted R&D intensity are significantly positive on product 

innovation (see Figure 5.3) but not on process innovation (see Figure 5.4). There are positive 

effects of collaboration with business partners (see Figure 5.5 and Figure 5.6) and universities 

(see Figure 5.7 and Figure 5.8) both on product and process innovation while the information 

from competitors affects only product innovation (Figure 5.9 and Figure 5.10). Firm size has 

positive effects, but firm age has no effect. Affiliated firms have a lower probability of product 

innovation but there is no significant difference in the probability of process innovation between 

affiliated and independent firms. There are several significant differences in the effects of 

collaboration with partner firms and universities and in information from competitors on 

innovation between start-ups and established firms: the positive effects of collaboration with 

business partners (supplier and client) and universities on product innovation are greater in 

start-ups than in established firms, while the effect of information from competitors on product 

innovation is lower in start-ups than in established firms. Collaborations with universities also 

increase the probability of process innovation more in start-ups than in established firms. As the 

same as in the first stage of the R&D intensity model, there is not any significant effects of 

geographic agglomeration factors on innovations.  

4.3. Third Stage: Performance Model 

Table 5.5-Table 5.7 reports the third stage results of the firm performance model with three 

different dependent variables: the level of labor productivity in Table 5.5, the growth rate of 

labor productivity in Table 5.6, and profitability in Table 5.7. While the models shown in first 

five columns of Table 5.5 and Table 5.6 estimate the common coefficients for start-ups and 

established firms, the models in the successive five columns (6-10), include the interaction 

terms of these innovation indicators with start-up firm dummy. In those tables, the last two 

columns examine the direct effects of R&D intensity on productivity.  
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Table 5.4 Second stage results for product and process innovation 

(bivariate probit model - ML estimation) 
Dependent variables: Dummy variables indicating the introduction of product innovation and process innovation 
    [1]   [2]   [3] 
  Dependent variable Product Process   Product Process   Product Process 

 
Predicted R&D intensity 0.169*** -0.057 

 
0.186** -0.001 

 
0.283*** 0.039 

  
[0.065] [0.067] 

 
[0.082] [0.086] 

 
[0.091] [0.089] 

 
Collaboration with business partners (dummy) 0.565*** 0.443*** 

 
0.567*** 0.433*** 

 
0.355*** 0.375*** 

  
[0.076] [0.079] 

 
[0.076] [0.079] 

 
[0.098] [0.095] 

 
Collaboration with universities (dummy) 0.467*** 0.236** 

 
0.467*** 0.231** 

 
0.336*** 0.109 

  
[0.105] [0.095] 

 
[0.105] [0.095] 

 
[0.124] [0.111] 

 
Information from competitors (dummy) 0.213*** 0.024 

 
0.207*** 0.023 

 
0.344*** 0.086 

  
[0.077] [0.078] 

 
[0.077] [0.078] 

 
[0.101] [0.093] 

 
Initial employment size 0.150*** 0.081*** 

 
0.153*** 0.089*** 

 
0.167*** 0.097*** 

  
[0.029] [0.028] 

 
[0.029] [0.029] 

 
[0.030] [0.030] 

 
Age 0.074 0.062 

 
0.066 0.052 

 
0.065 0.054 

  
[0.050] [0.048] 

 
[0.051] [0.050] 

 
[0.051] [0.052] 

 
Affiliated (dummy) -0.198** -0.104 

 
-0.206** -0.141 

 
-0.235** -0.164 

  
[0.098] [0.098] 

 
[0.102] [0.103] 

 
[0.106] [0.106] 

 
Start-up (dummy) -0.069 -0.200 

 
-0.104 -0.253 

 
-0.635** -0.460 

  
[0.163] [0.174] 

 
[0.172] [0.184] 

 
[0.289] [0.308] 

 
Start-up x  Predicted R&D intensity 

      
-0.178* -0.050 

        
[0.094] [0.101] 

 
Start-up x Collaboration with business partners 

      
0.568*** 0.192 

        
[0.157] [0.175] 

 
Start-up x Collaboration with universities 

      
0.412* 0.473** 

        
[0.229] [0.224] 

 
Start-up x Information from competitors 

      
-0.277* -0.137 

        
[0.160] [0.177] 

 
Industry density – city 

   
-0.001 -0.004* 

 
-0.001 -0.004 

     
[0.002] [0.002] 

 
[0.002] [0.003] 

 
Industry density – prefecture 

   
0.016 0.075 

 
0.020 0.074 

     
[0.044] [0.048] 

 
[0.045] [0.048] 

 
Univ. density – city 

   
-0.754 0.315 

 
-0.795 0.320 

     
[0.486] [0.461] 

 
[0.506] [0.540] 

 
Univ. density – prefecture 

   
2.538 -9.868 

 
2.825 -9.821 

     
[6.380] [6.329] 

 
[6.571] [6.581] 

 
Constant -0.342 -1.287*** 

 
-0.271 -1.074*** 

 
0.039 -0.940** 

  
[0.324] [0.335] 

 
[0.391] [0.406] 

 
[0.400] [0.407] 

 
Industry dummies (2 digit) Yes Yes   Yes Yes   Yes Yes 

 
# of observations 1,382 

  
1,382 

  
1,382 

 
 

Chi-squared (statistics) 446.021 
  

456.576 
  

470.224 
 

 
Chi-squared (p-value) 0.000  

  
0.000  

  
0.000  

 
 

Correlation between errors 0.367 
  

0.366 
  

0.360 
 

Notes: Robust standard errors are in brackets. ***, ** and * indicate significance at the 1%, 5% and 10% levels, respectively. 
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Figure 5.3: Marginal effects of R&D intensity on product innovation 

 

Notes: The vertical axis is the predicted probability to have a product innovation. The predicted values are calculated 

from the estimation result of column [3] in Table 4 at the mean values of the remaining covariates. 

 

Figure 5.4: Marginal effects of R&D intensity on process innovation 

 

Notes: Vertical axis is the predicted probability to have a process innovation. Predicted values are calculated from the 

estimation result of column [3] in Table 4 at the mean values of the remaining covariates. 
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Figure 5.5: Marginal effects of business partner cooperation on product innovation 

 
Notes: The vertical axis is the predicted probability to have a product innovation. The predicted values are calculated 

from the estimation result of column [3] in Table 4 at the mean values of the remaining covariates. 

 

Figure 5.6: Marginal effects of business partner cooperation on process innovation 

 

Notes: The vertical axis is the predicted probability to have a process innovation. The predicted values are calculated 

from the estimation result of column [3] in Table 4 at the mean values of the remaining covariates. 
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Figure 5.7: Marginal effects of university cooperation on product innovation 

 

Notes: the vertical axis is the predicted probability to have a product innovation. The predicted values are calculated 

from the estimation result of column [3] in Table 4 at the mean values of the remaining covariates. 

 

Figure 5.8: Marginal effects of university cooperation on process innovation 

 
Notes: The vertical axis is the predicted probability to have a process innovation. The predicted values are calculated 

from the estimation result of column [3] in Table 4 at the mean values of the remaining covariates. 
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Figure 5.9: Marginal effects of competitor information on product innovation 

 
Notes: The vertical axis is the predicted probability to have a product innovation. The predicted values are calculated 

from the estimation result of column [3] in Table 4 at the mean values of the remaining covariates. 

 

Figure 5.10: Marginal effects of competitor information on process innovation 

 

Notes: The vertical axis is the predicted probability to have a process innovation. The predicted values are calculated 

from the estimation result of column [3] in Table 4 at the mean values of the remaining covariates. 
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The results in column [1] to [3] in Table 5.5 show that positive effects of product and 

process innovation on the level of labor productivity, controlling for effects of scale economy 

and affiliated firms. When we jointly include product and process innovation in the specification 

[4] and [5] of Table 5.5, however, the coefficient of process innovation turn negative. The 

effects of process innovation on productivity are also controversial in the literature. On the one 

hand, OECD (2009) consistently reports the significantly negative coefficients of process 

innovation on productivity of 18 countries, while the coefficients of product innovation are 

jointly estimated as positive. On the other hand, Griffith et al. (2006) report the significantly 

positive effects of process innovation and product innovation, using capital investment intensity 

only as an instrumental variable for process innovation46.  

There can be found the negative coefficients of the interaction terms between the start-up 

firm dummy and product and process innovations. These imply that the effects of product or 

process innovation are smaller in start-ups than in established firms. In column [11] and [12], 

there are also the significant effects of predicted R&D intensity on productivity. These imply 

that the innovation indicators might not capture the whole effects of R&D.  

  

                                                      
46 Hall et al. (2009) confirms that the effect of process innovation on productivity is estimated as significantly 

positive only when they instrument it by capital investment intensity and do not include capital investment intensity 

in the productivity equation; otherwise, it is estimated as negative or positive but not as significant. 
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Table 5.5 Third stage results for performance (1):  

Level of labor productivity (linear model - OLS estimation) 
Dependent variable: Log. of labor productivity 

            
    [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] 

 
Product or process innovation (predicted probability) 1.088*** 

    
1.670*** 

    
0.447** 0.284 

  
[0.221] 

    
[0.309] 

    
[0.201] [0.287] 

 
Product innovation (predicted probability) 

 
1.119*** 

 
1.560*** 

  
1.510*** 

 
2.263*** 

   

   
[0.193] 

 
[0.285] 

  
[0.254] 

 
[0.359] 

   

 
Process innovation (predicted probability) 

  
0.865*** -0.927** 

   
0.956*** -1.340*** 

   

    
[0.292] [0.421] 

   
[0.301] [0.438] 

   

 
Product innovation only (predicted probability) 

    
1.224*** 

    
2.077*** 

  

      
[0.354] 

    
[0.552] 

  

 
Process innovation only (predicted probability) 

    
-2.426*** 

    
-3.108*** 

  

      
[0.931] 

    
[1.179] 

  

 
Product and process innovation (predicted probability) 

    
0.560* 

    
0.502 

  

      
[0.294] 

    
[0.365] 

  

 
Start-up (dummy) 

     
0.214 -0.054 -0.096 -0.111 0.200 -1.078*** -1.248*** 

       
[0.242] [0.204] [0.161] [0.203] [0.382] [0.133] [0.299] 

 
Start-up x Product or process innovation 

     
-0.891** 

     
0.242 

       
[0.397] 

     
[0.346] 

 
Start-up x Product innovation 

      
-0.606* 

 
0.123 

   

        
[0.360] 

 
[0.477] 

   

 
Start-up x Process innovation 

       
-0.430 -2.006*** 

   

         
[0.487] [0.694] 

   

 
Start-up x Product innovation only 

         
-0.779 

  

           
[0.788] 

  

 
Start-up x Process innovation only 

         
-8.436*** 

  

           
[2.448] 

  

 
Start-up x Product and process innovation 

         
-0.409 

  

           
[0.600] 

  

 
Predicted R&D intensity 

          
0.707*** 0.720*** 

            
[0.051] [0.054] 

 
Start-up x Predicted R&D intensity 

           
-0.021 

             
[0.078] 

 
Initial employment size 0.091*** 0.081*** 0.120*** 0.088*** 0.086*** 0.067** 0.058** 0.117*** 0.065** 0.072*** 0.114*** 0.120*** 

  
[0.028] [0.028] [0.028] [0.028] [0.028] [0.028] [0.028] [0.028] [0.028] [0.027] [0.024] [0.024] 

 
Age 0.011 0.019 0.011 0.038 0.050* -0.063 -0.062 -0.032 -0.067* -0.067* -0.129*** -0.124*** 

  
[0.029] [0.029] [0.029] [0.029] [0.030] [0.038] [0.038] [0.038] [0.038] [0.038] [0.035] [0.037] 

 
Affiliated (dummy) 0.363*** 0.362*** 0.363*** 0.339*** 0.337*** 0.359*** 0.357*** 0.357*** 0.309*** 0.278*** -0.077 -0.085 

  
[0.067] [0.067] [0.068] [0.067] [0.067] [0.067] [0.067] [0.068] [0.066] [0.067] [0.066] [0.064] 

 
Constant 1.379*** 1.462*** 1.694*** 1.457*** 1.676*** 1.302*** 1.576*** 1.812*** 1.603*** 1.912*** 4.692*** 4.808*** 

  
[0.165] [0.151] [0.153] [0.150] [0.208] [0.209] [0.184] [0.188] [0.182] [0.329] [0.306] [0.337] 

 
Industry dummies (2 digit) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

 
# of observations 897 897 897 897 897 897 897 897 897 897 897 897 

 
F-test (statistics) 16.5 17.3 16.1 16.8 18.4 17.3 18.0 15.6 17.6 18.1 29.9 28.2 

 
F-test (p-value) 0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  

 
R-squared 0.387 0.392 0.374 0.396 0.398 0.393 0.399 0.376 0.413 0.422 0.524 0.525 

Notes: Robust standard errors are in brackets. ***, ** and * indicate significance at the 1%, 5% and 10% levels, respectively. 
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Table 5.6 shows the estimation results for the growth rate of labor productivity rather than 

the level of labor productivity, as in Table 5.5. In general, there are not large differences in the 

results on the effects of process innovation and interaction terms between start-ups and product 

and/or process innovations. The results in column [1] to [3] in Figure 5.11 show the positive 

effects of product and process innovation on the labor productivity growth. There are also no 

significant coefficients of the interaction terms between the start-up firm dummy and product 

and process innovations in column [6] to [8] in Figure 5.11. These imply that the effects of 

product or process innovation are positive and not significantly different in start-ups and in 

established firms. 

But in column [4] in Table 5.6 there is no significant coefficient when we jointly include 

product and process innovation, and in column [5] there is a significant positive coefficient only 

on joint introduction of product and process innovations. These results indicate the strong 

complementarity of product and process innovation. Moreover, the results in column [10] 

indicate that this complementarity works more in start-ups than in established firms. In 

particular, the result indicates that, for start-ups, labor productivity growth rate falls when they 

introduce process innovation but not product innovation. 

The first six columns in Table 5.7 show the estimation results of profitability equation 

without control variables, and the last four columns of this table display the results with control 

variables. The results without control variables have almost the same implications as the results 

for labor productivity growth: the positive and significant effects of product and process 

innovation, when they are not distinguished (column [1]) or included independently (column [2] 

and [3]); but no significant coefficients when they are jointly included (column [4]) and when 

they complement each other (column [5]). There is no significant difference between start-ups 

and established firms in the effects of innovation on profitability (column [6]). However, these 

significant results disappear when we add one of the control variables (column [7] to [10]): firm 

age, size, or initial labor productivity. Since a dummy variable is used and a continuous variable 

is not used for profitability, the data may not have sufficient variation to identify these effects. 
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Table 5.6 Third stage results for performance (2): 

Growth rate of labor productivity (linear model - OLS estimation) 
Dependent variable: Growth rate of labor produtivity 

            
    [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] 

 
Product or process innovation (predicted probability) 0.417** 

    
0.329* 

    
0.421** 0.099 

  
[0.172] 

    
[0.178] 

    
[0.174] [0.184] 

 
Product innovation (predicted probability) 

 
0.369** 

 
0.210 

  
0.261* 

 
0.060 

   

   
[0.153] 

 
[0.220] 

  
[0.142] 

 
[0.208] 

   

 
Process innovation (predicted probability) 

  
0.567*** 0.328 

   
0.426** 0.335 

   

    
[0.193] [0.270] 

   
[0.175] [0.270] 

   

 
Product innovation only (predicted probability) 

    
0.252 

    
0.277 

  

      
[0.270] 

    
[0.326] 

  

 
Process innovation only (predicted probability) 

    
0.522 

    
0.080 

  

      
[0.570] 

    
[0.726] 

  

 
Product and process innovation (predicted probability) 

    
0.547*** 

    
0.266 

  

      
[0.191] 

    
[0.229] 

  

 
Start-up (dummy) 

     
-0.150 -0.204 -0.159 -0.196 0.151 

 
-0.738*** 

       
[0.163] [0.141] [0.111] [0.142] [0.260] 

 
[0.234] 

 
Start-up x Product or process innovation 

     
0.149 

     
0.414 

       
[0.276] 

     
[0.283] 

 
Start-up x Product innovation 

      
0.251 

 
0.157 

   

        
[0.255] 

 
[0.349] 

   

 
Start-up x Process innovation 

       
0.556 0.328 

   

         
[0.416] [0.579] 

   

 
Start-up x Product innovation only 

         
-0.670 

  

           
[0.590] 

  

 
Start-up x Process innovation only 

         
-3.885** 

  

           
[1.941] 

  

 
Start-up x Product and process innovation 

         
1.221* 

  

           
[0.626] 

  

 
Predicted R&D intensity 

          
-0.006 0.078** 

            
[0.032] [0.035] 

 
Start-up x Predicted R&D intensity 

           
-0.213*** 

             
[0.071] 

 
Initial employment size -0.001 -0.001 0.000 -0.003 -0.003 0.001 0.002 0.000 0.000 0.003 -0.001 0.011 

  
[0.018] [0.018] [0.017] [0.018] [0.018] [0.017] [0.017] [0.017] [0.017] [0.017] [0.018] [0.018] 

 
Age -0.021 -0.017 -0.027 -0.024 -0.025 -0.032 -0.031 -0.030 -0.030 -0.033 -0.022 -0.036 

  
[0.022] [0.022] [0.023] [0.022] [0.022] [0.025] [0.025] [0.024] [0.025] [0.025] [0.022] [0.025] 

 
Affiliated (dummy) 0.087** 0.086** 0.094** 0.093** 0.093** 0.086** 0.084** 0.094** 0.093** 0.075* 0.090* 0.044 

  
[0.043] [0.043] [0.043] [0.043] [0.043] [0.043] [0.043] [0.044] [0.044] [0.044] [0.046] [0.044] 

 
Initial labor productivity -0.212*** -0.214*** -0.206*** -0.211*** -0.210*** -0.212*** -0.214*** -0.202*** -0.206*** -0.211*** -0.210*** -0.207*** 

  
[0.034] [0.034] [0.034] [0.034] [0.034] [0.034] [0.034] [0.034] [0.034] [0.034] [0.035] [0.035] 

 
Constant 0.384*** 0.438*** 0.460*** 0.436*** 0.407*** 0.481*** 0.549*** 0.525*** 0.534*** 0.535** 0.361** 0.816*** 

  
[0.108] [0.098] [0.096] [0.099] [0.134] [0.141] [0.127] [0.126] [0.130] [0.216] [0.169] [0.261] 

 
Industry dummies (2 digit) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

 
# of observations 897 897 897 897 897 897 897 897 897 897 897 897 

 
F-test (statistics) 2.9 2.9 2.9 2.9 2.8 2.8 2.8 2.8 2.7 2.6 2.8 2.7 

 
F-test (p-value) 0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  

 
R-squared 0.131 0.131 0.131 0.132 0.132 0.133 0.134 0.135 0.136 0.146 0.131 0.150 

Notes: Robust standard errors are in brackets. ***, ** and * indicate significance at the 1%, 5% and 10% levels, respectively. 
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Figure 5.11: Marginal effects of product/process innovation on labor productivity growth 

 
Notes: The vertical axis is the predicted growth rate of labor productivity. The predicted values are calculated from 

the estimation result of column [6] in Table 6 at the mean values of the remaining covariates. 
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Table 5.7 Third stage results for performance (3): 

Profitability (probit model - ML estimation) 
Dependent variable: Positive profit dummy 

          
    [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] 

 
Product or process innovation (predicted probability) 0.824*** 

    
0.584* 0.398 0.248 -0.127 0.258 

  
[0.229] 

    
[0.355] [0.283] [0.246] [0.330] [0.249] 

 
Product innovation (predicted probability) 

 
0.731*** 

 
0.461 

      

   
[0.214] 

 
[0.430] 

      

 
Process innovation (predicted probability) 

  
1.004*** 0.441 

      

    
[0.304] [0.609] 

      

 
Product innovation only (predicted probability) 

    
0.774 

     

      
[0.515] 

     

 
Process innovation only (predicted probability) 

    
1.751 

     

      
[1.298] 

     

 
Product and process innovation (predicted probability) 

    
0.916*** 

     

      
[0.318] 

     

 
Start-up (dummy) 

     
-0.150 

    

       
[0.328] 

    

 
Start-up x Predicted product or process innovation 

     
-0.433 

    

       
[0.502] 

    

 
Affiliated (dummy) 0.143 0.143 0.168* 0.148 0.150 0.097 0.127 0.095 -0.033 -0.012 

  
[0.092] [0.092] [0.090] [0.093] [0.093] [0.094] [0.092] [0.095] [0.103] [0.096] 

 
Age 

      
0.089** 

   

        
[0.035] 

   

 
Initial profitability (positive profit dummy) 

       
1.000*** 

  

         
[0.112] 

  

 
Initial employment size 

        
0.136*** 

 

          
[0.034] 

 

 
Initial labor productivity 

         
0.308*** 

           
[0.054] 

 
Constant -0.365* -0.252 -0.171 -0.244 -0.443* -0.088 -0.259 -0.613*** -0.204 -0.676*** 

  
[0.215] [0.200] [0.189] [0.200] [0.266] [0.303] [0.220] [0.219] [0.219] [0.224] 

 
Industry dummies (2 digit) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

 
# of observations 990 990 990 990 990 990 990 979 990 990 

 
F-test (statistics) 52.2 51.0 49.8 51.3 52.7 63.6 56.8 124.5 67.3 81.3 

 
F-test (p-value) 0.002  0.002  0.003  0.003  0.003  0.000  0.001  0.000  0.000  0.000  

Notes: Robust standard errors are in brackets. ***, ** and * indicate significance at the 1%, 5% and 10% levels, respectively. 
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4.4. Robustness checks 

University collaboration maybe endogenous with regard to product and process innovation. 

Table 5.8 shows the results of bivariate probit model of product and process innovation with 

predicted probability of university collaboration as an explanatory variable, in which the density 

of university in the region is used as the instrument for the collaboration with a university. 

Compared to the results shown in Table 5.4, the estimated coefficients on university 

collaboration are smaller. However, while the effects of university collaboration on established 

firms’ product and process innovation are no longer significant, the coefficient of the interaction 

term between university collaboration and start-up firms is still significantly positive. This 

suggests that the positive effect of university collaboration on start-up firms’ product innovation 

is robust. 

We perform another robustness checks. Since the data sources are different between 

start-up firms and established firms, data generating processes might also be different between 

them. Therefore, we separate the sample into start-up firms and established firms and estimate 

the same models for each group. Table 5.9, Table 5.10 and Table 5.11 show the estimation 

results of the first stage, the second stage, and the third stage model, respectively. The difference 

between start-up firms and established firms in the effects of public financial support on R&D 

intensity, in the effects of collaboration on innovations, and in the effects of product innovation 

on labor productivity is almost similar to the results of the pooled sample with interaction terms 

with start-up firm dummy variable shown in Table 5.3, Table 5.4 and Table 5.5.  

Finally, the definition of established firms in this chapter (operating for more than 2 years) 

may be arbitrary. Specifically, it may be problematic that the group of established firms also 

includes several start-ups (for example, those operating for more than 2 years but still less than 

5 years). We may focus on older, really established firms. In this sense, we check the sensitivity 

of the estimation results to this definition of established firms and confirmed that the results do 

not significantly change even if we redefine established firms as those operating for 10 years or 

more, 20 years or more, or 30 years or more. 

5. Conclusion 

In this chapter, the differences between start-ups and established firms are empirically examined 

with respect to determinants of R&D and innovation and the relationship between innovation 

and firm performance using a comprehensive datasets derived from two surveys on innovation 
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activities in Japanese private firms in the last years of the first decade of the new century; one is 

the survey of start-ups and another is the Japanese national innovation survey. Empirical results 

suggest that 1) the local labor pooling of research relevant workforces (professional and 

technical occupations) positively relates to the R&D intensity of the firms located in 

neighborhood, 2) the effects of public financial support on R&D intensity are generally positive 

but smaller for start-ups, 3) the effects of research cooperation with business partners or 

universities on innovation are generally positive but larger for start-ups, and 4) the effects of 

product and process innovation on labor productivity (level and growth) are positive both for 

start-ups and established firms.  

Among the control variables, we found interesting results on the effects of difference 

between affiliated firm and independent firm (affiliated firm dummy) on R&D, innovation and 

performance: In comparison to independent firms, affiliated firm is more likely to conduct R&D 

but their R&D intensity is lower (Table 5.3) and less likely to innovate their product (Table 5.4) 

while the level and growth rate of labor productivity is higher (Table 5.5). These mixed results 

may indicate that firms within business group take some specific R&D and innovation strategy. 

However, this study has several limitations: First, an appropriate correction for the reported 

standard errors is needed. Second, the correction for endogeneity in public subsidies and R&D 

cooperation should be examined. Third, differences in intensity, magnitude, or quality of 

innovations between firms are ignored. Fourth, since we do not identify survival effects and 

aging effects in the empirical model, our estimates of the differences between start-ups and 

established firms are mix of both effects.  

Despite these limitations, empirical results imply that in order to promote innovation and 

growth of start-ups, we should provide more or better support for start-ups to engage in research 

cooperation with both business partners and universities, rather than the financial support. In 

general, start-up firms have scarce internal knowledge and R&D stock compared to established 

or mature firms, despite their greater incentives for innovation; and they rely heavily on external 

knowledge and research collaboration with others. These findings indicate that governments can 

accelerate innovation and productivity growth more efficiently by promoting research 

collaborations between start-up firms and universities and between start-ups and their business 

partners, rather than by increasing public financial supports for start-ups. 
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Table 5.8 Robustness check for the second stage model with additional instruments for 

university collaboration 

(bivariate probit model - ML estimation) 
Dependent variables: Dummy variables indicating the introduction of product innovation and process innovation 
    [1]   [2] 
  Dependent variable Product Process   Product Process 

 
Predicted R&D intensity 0.201*** -0.021 

 
0.336*** 0.006 

  
[0.077] [0.080] 

 
[0.091] [0.090] 

 
Collaboration with business partners (dummy) 0.619*** 0.479*** 

 
0.412*** 0.401*** 

  
[0.075] [0.078] 

 
[0.096] [0.093] 

 
Predicted probability to collaborate with universities -0.017 0.016 

 
-0.288 -0.044 

  
[0.420] [0.383] 

 
[0.423] [0.396] 

 
Information from competitors (dummy) 0.198*** 0.013 

 
0.344*** 0.098 

  
[0.076] [0.078] 

 
[0.100] [0.093] 

 
Initial employment size 0.166*** 0.095*** 

 
0.168*** 0.094** 

  
[0.035] [0.034] 

 
[0.037] [0.036] 

 
Age 0.077 0.057 

 
0.095* 0.066 

  
[0.050] [0.048] 

 
[0.051] [0.051] 

 
Affiliated (dummy) -0.229** -0.133 

 
-0.260** -0.139 

  
[0.104] [0.105] 

 
[0.107] [0.109] 

 
Start-up (dummy) -0.072 -0.239 

 
-0.928*** -0.381 

  
[0.163] [0.173] 

 
[0.341] [0.369] 

 
Start-up x  Predicted R&D intensity 

   
-0.279*** -0.047 

     
[0.103] [0.111] 

 
Start-up x Collaboration with business partners 

   
0.558*** 0.230 

     
[0.155] [0.173] 

 
Start-up x Predicted prob. to collaborate with universities 

   
1.646* 0.479 

     
[0.922] [0.970] 

 
Start-up x Information from competitors 

   
-0.334** -0.263 

     
[0.158] [0.174] 

 
Industry density – city -0.001 -0.004 

 
-0.001 -0.004 

  
[0.002] [0.002] 

 
[0.002] [0.003] 

 
Industry density – prefecture 0.011 0.034 

 
0.017 0.036 

  
[0.033] [0.037] 

 
[0.034] [0.038] 

 
Constant -0.252 -1.185*** 

 
0.191 -1.098*** 

  
[0.346] [0.360] 

 
[0.376] [0.387] 

 
Industry dummies (2 digit) Yes Yes   Yes Yes 

 
# of observations 1,383 

  
1,383 

 
 
Chi-squared (statistics) 450.1029 

  
453.54 

 
 
Chi-squared (p-value) 0.000  

  
0.000  

 
 
Correlation between errors 0.379 

  
0.377 

 
Notes: Robust standard errors are in brackets. ***, ** and * indicate significance at the 1%, 5% and 10% levels, respectively. 

Instrumental variables for collaboration with universities are university density at city and prefecture level. 
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Table 5.9 Robustness check for the first stage model with separate specification 

(Generalized tobit model - ML estimation) 
  Established firms   Start-up firms 
Dependent variable R&D>0 R&D int.   R&D>0 R&D int. 
Initial labor productivity 0.982*** 0.345*** 

 
-0.028 -0.092* 

 
[0.116] [0.050] 

 
[0.093] [0.049] 

Initial employment size -0.011 0.231*** 
 

-0.503*** 0.039 

 
[0.057] [0.031] 

 
[0.116] [0.047] 

Age 0.018 0.052 
   

 
[0.093] [0.045] 

   
Affiliated (dummy) 0.341** -0.181** 

 
0.797*** -0.194 

 
[0.164] [0.091] 

 
[0.276] [0.127] 

Public financial support (dummy) 0.701*** 0.452*** 
 

0.259 -0.001 

 
[0.162] [0.097] 

 
[0.226] [0.100] 

Expert ratio – city 8.852*** 3.879** 
 

-1.495 1.699 

 
[2.873] [1.688] 

 
[3.781] [1.856] 

Expert ratio – prefecture -0.276 3.259 
 

-2.108 14.781*** 

 
[6.986] [4.164] 

 
[10.124] [4.909] 

Industry density – city 0.001 -0.001 
 

-0.002 0.001 

 
[0.005] [0.003] 

 
[0.006] [0.002] 

Industry density – prefecture -0.156* -0.072 
 

-0.049 0.030 

 
[0.094] [0.055] 

 
[0.119] [0.054] 

Univ. density – city 0.141 0.553 
 

1.188 0.975 

 
[1.021] [0.653] 

 
[1.760] [0.632] 

Univ. density – prefecture 12.316 4.218 
 

42.554* -31.219*** 

 
[15.611] [9.416] 

 
[25.392] [11.572] 

Constant -7.440*** -3.194*** 
 

-1.175 -2.521*** 

 
[1.221] [0.557] 

 
[1.653] [0.626] 

Industry dummies (2 digit) Yes Yes   Yes Yes 
# of observations 1,283 

  
881 

 
# of firms no R&D 692 

  
609 

 
Chi-squared (statistics) 271.0883 

  
. 

 
Chi-squared (p-value) 0.000  

  
. 

 
Correlation between errors 0.587 

  
0.240 

 
Notes: Robust standard errors are in brackets. ***, ** and * indicate significance at the 1%, 5% and 10% levels, respectively. 
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Table 5.10 Robustness check for the second stage model with separate specification 

 (bivariate probit model - ML estimation) 
  Established firms   Startup firms 

Dependent variable 
Product 

innovation 
Process 

innovation 
  

Product 
innovation 

Process 
innovation 

Predicted R&D intensity 0.185*** -0.011 
 

0.902* 0.301 

 
[0.058] [0.055] 

 
[0.484] [0.583] 

Collaboration with business partners (dummy) 0.353*** 0.386*** 
 

0.948*** 0.641*** 

 
[0.100] [0.096] 

 
[0.130] [0.161] 

Collaboration with universities (dummy) 0.364*** 0.122 
 

0.729*** 0.650*** 

 
[0.125] [0.111] 

 
[0.200] [0.207] 

Information from competitors (dummy) 0.353*** 0.087 
 

0.084 -0.130 

 
[0.103] [0.095] 

 
[0.130] [0.162] 

Initial employment size 0.118*** 0.087** 
 

0.652*** 0.306 

 
[0.036] [0.035] 

 
[0.244] [0.295] 

Age 0.122** 0.073 
   

 
[0.053] [0.053] 

   
Affiliated (dummy) -0.036 -0.095 

 
-1.083*** -0.592 

 
[0.118] [0.110] 

 
[0.404] [0.483] 

Industry density – city -0.002 -0.006 
 

0.003 0.001 

 
[0.003] [0.004] 

 
[0.004] [0.005] 

Industry density – prefecture -0.017 0.052 
 

0.095 0.108 

 
[0.061] [0.060] 

 
[0.070] [0.087] 

Univ. density – city -0.718 0.429 
 

-1.555* -0.123 

 
[0.676] [0.646] 

 
[0.904] [1.134] 

Univ. density – prefecture 8.010 -5.374 
 

-30.200 -24.747 

 
[7.881] [7.130] 

 
[19.825] [24.140] 

Constant -0.229 -1.076*** 
 

0.420 -1.102 

 
[0.335] [0.331] 

 
[0.823] [0.988] 

Industry dummies (2 digit) Yes Yes   Yes Yes 
# of observations 872 

  
511 

 
Chi-squared (statistics) 233.2894 

  
147.3032 

 
Chi-squared (p-value) 0.000  

  
0.000  

 
Correlation between errors 0.270 

  
0.590 

 
Notes: Robust standard errors are in brackets. ***, ** and * indicate significance at the 1%, 5% and 10% levels, respectively.  
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Table 5.11 Robustness check for the third stage model with separate specification  

Dependent variable: Level of labor productivity (linear model - OLS estimation) 

  [1] [2] [3] [4] [5] [6] 

  
Established 

firms 

Startup 

firms 

Established 

firms 

Startup 

firms 

Established 

firms 

Startup 

firms 

Product or process innovation 
(predicted probability) 

1.894*** 0.513* 
    

[0.328] [0.308] 
    

Product innovation  
(predicted probability)   

2.026*** 0.518* 
  

  
[0.262] [0.304] 

  
Process innovation  
(predicted probability)     

-0.044 0.958* 

    
[0.337] [0.535] 

Initial employment size 0.069** 0.116* 0.041 0.116* 0.160*** 0.120** 

 [0.031] [0.062] [0.030] [0.062] [0.030] [0.061] 

Age -0.080** 
 

-0.096** 
 

-0.018 
 

 [0.038] 
 

[0.038] 
 

[0.039] 
 

Affiliated (dummy) 0.313*** 0.128 0.288*** 0.125 0.331*** 0.129 

 [0.070] [0.184] [0.069] [0.184] [0.071] [0.184] 

Constant 1.129*** 1.650*** 1.397*** 1.659*** 1.990*** 1.735*** 

 [0.233] [0.291] [0.197] [0.288] [0.220] [0.279] 

Industry dummies (2 digit) Yes Yes Yes Yes Yes Yes 

# of observations 674 223 674 223 674 223 

R-squared 0.359 0.204 0.389 0.205 0.322 0.205 

Notes: Robust standard errors are in brackets. ***, ** and * indicate significance at the 1%, 5% and 10% levels, respectively.  
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Chapter 6  Conclusion 

This thesis investigated several sources of the agglomeration economies in each chapter. In 
Chapter 2, the effects of transportation costs were examined. Combining a spatial demand 
function derived from the theoretical literature on the NEG (e.g., Krugman 1980; Fujita et al. 
1999) with a production function, a revenue function was proposed, which would capture the 
effects of transportation costs on a firm’s revenue. Since such spatial effects are generated by the 
transportation costs on a firm’s own products and its intermediate goods, the suggested revenue 
function makes it possible to relate the geographic agglomeration economy to the transportation 
costs, which was not conducted in previous empirical studies. The proposed model was 
empirically examined using the regional panel data of the manufacturing sector in Japan. The 
estimation results of the revenue function show significant, robust, and positive transportation 
costs for the manufacturing products. Moreover, consistent GMM estimation results present 
evidence of positive transportation costs for the outputs of both the manufacturing and primary 
and service sectors. These outcomes indicate that the efficiency of the manufacturing firms 
depends on their access to the markets and the intermediate goods supply. 

Chapter 3 examined the effects of R&D spillovers on TFP, with a large panel dataset of 
Japanese manufacturing plants matched with R&D survey data. This chapter simultaneously 
analyzed the role of public (universities and research institutes) and private R&D spillovers, 
while examining the effects due to ‘relational’ (supplier-customer) proximity, as well as 
technological and geographic proximity. My analysis confirms the importance of positive 
spillover effects from R&D by the firms with plants in technologically related industries. The 
latter spillover effects are attenuated by distance, and my estimates suggest that most spillover 
effects disappear beyond 500 km. Positive impacts of public R&D spillovers are also observed, 
with the effects substantially larger for the plants with access to internal R&D. However, no 
evidence shows that public R&D spillover effects are attenuated by distance.  

‘Relational proximity’ due to buyer and supplier linkages generates additional ‘pecuniary’ 
R&D spillovers of a similar magnitude as the knowledge spillovers due to technological 
proximity. However, the role of geographic distance in these buyer and supplier spillovers 
cannot be identified. The chapter concludes that both public and private R&D spillovers matter 
for TFP growth, while relational and technological proximity should be considered to arrive at 
representative estimates of the social effects of private R&D. 

 Decomposition analysis shows that the contribution of private R&D spillovers to TFP 
growth has declined since the late 1990s. This is due to a declining growth in R&D stocks, 
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while another important factor is the exit of proximate plants operated by R&D-intensive firms. 
A mildly decreasing contribution of public R&D spillovers is primarily due to a reduced growth 
of R&D by public research organizations since the late 1990s. Exploring the effects at the 
regional level, we observe strong, adverse exit effects occurring particularly in Japan’s major 
industrial agglomerations such as Tokyo and Osaka. The results help explain the two stylized 
facts of the Japanese productivity growth: the exit of relatively productive plants and the 
declining TFP growth of surviving plants (Fukao and Kwon 2006; Kneller et al. 2012). They 
suggest that these two trends may be causally related. The exit of plants owned by 
R&D-intensive firms reduces the available R&D spillovers and hampers the TFP growth of the 
surviving plants. 

Chapter 4 investigated the determinants of regional business entry, distinguishing between 
independent start-ups and subsidiaries, with a special focus on the effects of regional human 
capital. It is this chapter’s major contribution to the literature. Another one is the comparison of 
the determinants of regional entry between the manufacturing and service sectors, as well as 
across subsectors within the service sector. For the empirical analyses, pooled data of 47 
Japanese prefectures for four observation periods were used. The estimation results of SUR 
indicate considerable differences in the impact of regional factors between independent start-ups 
and subsidiaries, as well as among different industries.  

First, the ratio of college graduates is correlated negatively with independent start-ups 
(Hypothesis 1b) and positively with the entry of subsidiaries (Hypothesis 2). Second, the ratio 
of professional and technical workers positively affects independent start-ups but not the entry 
of subsidiaries (Hypothesis 3). Third, the relationships between regional human capital and the 
entry of independent start-ups and new subsidiaries are different across industries.  

The determinants of entry differ not only between the manufacturing and service sectors, 
but also within the service sector. Moreover, the differences of the determinants between the 
start-up types vary across sectors. The negative relationship between the ratios of college 
graduates and independent start-ups (for the overall industry and the service sector) is consistent 
with the previous empirical evidence for Japan (e.g., Small and Medium Enterprise Agency 
2002; Okamuro 2008), but not with the results from other countries (Guesnier 1994; Armington 
and Acs 2002; Acs and Armington 2004). This suggests that highly educated workers in Japan 
regard the opportunity cost of quitting their current jobs as considerably higher than the 
expected returns from start-up their own business.  

The estimation results for the manufacturing sector are not only different from, but almost 
contrasting those for the service sector. For manufacturing, the ratio of college graduates is 
positively correlated to that of independent start-ups. This may imply that a high educational 
level (particularly in the natural sciences) is especially important for independent start-ups in the 



Chapter 6  

132 
 

manufacturing sector or that highly educated workers in the manufacturing sector do not have a 
high opportunity cost of self-employment, assuming that the founders of manufacturing firms 
come from the manufacturing sector. Moreover, for the manufacturing sector, the ratio of 
college graduates has no significant effect on start-ups of new subsidiaries, while the ratio of 
professional and technical workers has a negative impact on independent start-ups.  

The latter results are different from those of the previous studies (Guesnier 1994; Hart and 
Gudgin 1994) that found a positive relationship for the manufacturing sector. It may be 
attributed to the definitions of professional and technical occupations in Japan that cover 
numerous skills in the service sector. It is also noteworthy that this study’s results regarding the 
effect of the unemployment ratio on the ratio of independent start-ups clearly support the push 
hypothesis, similar to the findings of previous research in Japan. This study suggests that 
regional policies to activate business start-ups should recognize the differences between 
encouraging local entrepreneurship and attracting new subsidiaries. These differences may vary 
even within the service sector, according to technological intensity (or innovativeness). 

In Chapter 5, the differences between start-ups and established firms were empirically 
examined, with respect to the determinants of R&D and innovation and the relationship between 
innovation and firm performance. A comprehensive dataset was used, derived from two surveys 
on innovation activities in Japanese private firms; one was an original survey of start-ups and 
the other was the Japanese National Innovation Survey. The empirical results show that 1) the 
local labor pooling of the research-relevant workforce (professional and technical occupations) 
positively relates to the R&D intensity of the firms located in the neighborhood, 2) the effects of 
public financial support on R&D intensity are generally positive but smaller for start-ups, 3) the 
impacts of research cooperation with business partners or universities on innovation are 
generally positive but larger for start-ups, and 4) the effects of product and process innovation 
on labor productivity (level and growth) are positive for both start-ups and established firms.  

The contribution of this thesis to the literature is its empirical examination of the 
mechanisms of regional economic growth, using the data from Japan in recent years. In sum, the 
results suggest the importance of Marshall’s (1920) three sources of the agglomeration 
economies (input sharing, knowledge spillovers, and labor pooling) in enhancing regional 
productivity growth, business start-ups, or innovation activities. However, some limitations of 
this thesis should be addressed in future research. First, the three sources of agglomeration 
economies were examined separately. The relative importance of the sources should be different, 
may also vary across industries, and have been changing over time.  

Second, to investigate effective regional and location policies, additional empirical analyses 
of the dynamics of firm and labor supply locations are needed. From the results of Chapter 2, 
only comparative statics can be performed. From the dynamic perspective, other essential 



Chapter 6  

133 
 

aspects should be considered, including relocation cost, entry cost, or time lags. They can be 
analyzed only in dynamic models of location choice.  

Third, this study ignores the export and import activities and roles of trade hubs, such as 
harbors, airports, or train stations. Since the distance from such trade hubs should affect both the 
transportation costs and efficiency of firms, it is necessary to control for such effects.  

Fourth, the lack of estimated distance effects for public R&D (Chapter 3) may be because 
public R&D spillovers occur most often through active collaboration across longer distances 
(Gittelman 2007; Okamuro and Nishimura 2013). This explanation can be explored by 
incorporating the available information on research relationships between firms and universities.  

Fifth, this thesis disregards the effects of overseas R&D conducted or outsourced by the 
firms and the potential, international knowledge transfers and spillovers (e.g., Branstetter 2001; 
Griffith et al. 2008).  

Finally, the positive relationships between the regional structure of human capital and the 
ratio of independent start-ups (Chapter 4) may have two explanations. One reason is the 
entrepreneurs’ accumulation of human capital within the region; the other is the migration of 
high-skilled workers (e.g., Ritsila and Ovaskainen 2001). On the basis of the data available in 
this study, it is not currently possible to distinguish between these effects.  
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