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Abstract

To allow for a higher degree of flexibility in model parameters, we propose a general and time-

varying nonlinear smooth transition (ST) heteroskedastic model with a second-order logistic function

of varying speed in the mean and variance. This paper evaluates the performance of Value-at-Risk

(VaR) measures in a class of risk models, specially focusing on three distinct ST functions with

GARCH structures: first- and second-order logistic functions, and the exponential function. The

likelihood function is non-differentiable in terms of the threshold values and delay parameter. We

employ Bayesian Markov chain Monte Carlo sampling methods to update the estimates and quantile

forecasts. The proposed methods are illustrated using simulated data and an empirical study. We

estimate VaR forecasts for the proposed models alongside some competing asymmetric models with

skew and fat-tailed error probability distributions, including realized volatility models. To evaluate

the accuracy of VaR estimates, we implement two loss functions and three backtests. The results

show that the ST model with a second-order logistic function and skew Student’s t error is a worthy

choice at the 1% level, when compared to a range of existing alternatives.

Keywords: Second-order logistic transition function; Backtesting; Markov chain Monte Carlo methods;

Value-at-Risk; Volatility forecasting; Realized volatility models.
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1 Introduction

Financial risk management is widely used in financial institutions in order to control risk exposures,

such as credit risk, operation risk, and volatility. The Basel II Accord, initially published in June 2004,

is intended to create international standards for banking regulators to better control risk exposures. In

theory, Basel II set up risk and capital management requirements designed to ensure that Authorized

Deposit-taking Institutions (ADIs) have enough financial ability to maintain solvency. One of the widely

used risk measures is Value-at-risk (VaR), which is designed to forecast the worst expected loss over a

given time interval under normal market conditions, at a given confidence level ↵ (Jorion 1997). The

financial firm JP Morgan proposed VaR for reporting firm wide risk in its RiskMetrics model in 1993,

known as the famous “4:15 pm report.” By 1996, amendments to the Basel II Accord permitted banks to

use an “appropriate model” to calculate their VaR thresholds.

There are many VaR estimation methods in the literature that can be classified into three categories.

They include non-parametric methods, for example, historical simulation (HS) (using past or in-sample

quantiles); semi-parametric methods, for example, the extreme value theory, the dynamic quantile re-

gression CAViaR model (Engle & Manganelli, 2004), and the threshold CAViaR model (Gerlach Chen,

& Chan, 2011, Chen et al., 2012); and parametric statistical approaches that fully specify model dynam-

ics and distribution assumptions, for example, the autoregressive conditional heteroskedasticity (ARCH)

model proposed by Engle (1982) and its generalized version by Bollerslev (1986), popularly known as

the GARCH model. It is well known that the GARCH model cannot capture the asymmetric response

of volatility, the phenomenon discovered by Rabemananjara and Zakoı̈an (1993) and Zakoı̈an (1994),

among others.

Chan and Tong (1986) introduce a smooth transition (ST) autoregressive model to allow for flexibility

in model parameters through a smooth transition, which gained popularity via Granger and Teräsvirta

(1993) and Teräsvirta (1994). Their first-order logistic function gives a continuous value between zero

and one. Jansen and Teräsvirta (1996) appear to be the first to discuss the second-order logistic function

in ST models. Van Dijk, Teräsvirta, and Franses (2002) investigate the second-order logistic function

with a slight difference in format from that of Jansen and Teräsvirta (1996), but these two papers only

focus on a transition in describing the mean equation. Most financial time series exhibit an asymmetric

behavior in the mean and in the volatility as well. The 2-regime ST models can be extended to allow for

more than two regimes and a time-varying smooth transition conditional variance.

In this paper we propose a more general and time-varying ST-GARCH model to allow an ST function
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with varying speed in the mean and variance. The second-order logistic function has been described in

the literature, but not often used in practice due to the difficulty in parameter estimation. The problem

of estimating the second-order ST-GARCH models has become a challenge. Specifically, the likelihood

function is non-differentiable in terms of the threshold values and delay parameter. Our paper exam-

ines whether such double asymmetry might be better modeled by an ST function in both the mean and

volatility equations for VaR forecasting and volatility estimation. Based on Markov chain Monte Carlo

(MCMC) methods, we employ a Bayesian approach and allow a simultaneous inference for all unknown

parameters, while the parameter constraints simply and properly form part of the prior distribution, and

the problems with estimating threshold limits and delay lags disappear. To our knowledge, this study is

the first in the literature to make Bayesian inferences and quantile forecasting for the ST-GARCH model

with a second-order logistic function.

We employ three distinct ST functions with autoregressive conditional heteroskedastic models for

VaR forecasting purposes: the first- and second-order logistic functions, and the exponential functions.

Gerlach and Chen (2008) incorporate the first-order ST functions into GARCH models to allow for

smooth nonlinearity in the mean and asymmetry of the volatility. Chen et al. (2010) employ an expo-

nential function to capture size asymmetry in the mean and volatility. Compared to existing models, our

proposed model conveys that observations in the extremes can have a dissimilar effect and an ST function

with varying speed in the mean and variance. Moreover, the ST-GARCH model, with the second-order

logistic function, can be viewed as three regimes interpreted as follows: the first regime is related to ex-

tremely low negative shocks (“bad news”), the middle regime represents low absolute returns (“tranquil

periods”), and finally, the third regime is related to high positive shocks (“good news”).

As discussed in Andersen, Bollerslev, Diebold and Labys (2001), the theory of quadratic variation

indicates that, under suitable conditions, realized volatility is an unbiased and highly efficient estimator

of return volatility. We also deal with the inclusion of realized measures of volatility in a GARCH

modelling setup. The realized GARCH (RV) model of Hansen, Huang and Shek (2012) provides an

excellent framework for the joint modelling of returns and realized measures of volatility.

This paper focuses on parametric models and Monte Carlo simulation to forecast VaR. We consider

popular variants and extensions of the GARCH model family as follows: RiskMetrics; GARCH; asym-

metric GJR-GARCH (Glosten, Jaganathan, Runkle; Glosten et al., 1993); ST-GARCH with three distinct

ST functions; and threshold nonlinear GARCH (TGARCH; Chen and So 2006). Each model includes a

specification for the volatility dynamics, and most consider three specifications for the conditional asset

return distribution: Gaussian, Student’s t, and the skew Student’s t of Hansen (1994). This paper ex-
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tensively examines the VaR forecast performance over 12 risk models and two HS methods during two

out-of-sample periods: the two-year post-global financial crisis period and the three-year global finan-

cial crisis period. To shed light on the advantage of Bayesian updating forecasting, this study examines a

sample of ten European stock markets, seven Asian stock markets, one North American market, and one

South American market, for a total of 19 stock markets over the post-global financial crisis period. We

focus on Japan and U.S. stock markets for the three-year global financial crisis period, including the RV

model.

The use of our proposed Bayesian forecasting of nonlinear ST models to deal with some complex

derivatives and to calculate their corresponding VaR formulae is of practical importance and theoretical

interests. Bayesian MCMC methods have many advantages in estimation, inference, and forecasting,

including: (i) accounting for parameter uncertainty in both probabilistic and point forecasting; (ii) allow-

ing simultaneous inference for all unknown parameters; (iii) efficient and flexible handling of complex

models and nonstandard parameters; and (iv) parameter constraints simply and properly form part of the

prior distribution. As such, MCMC methods are generally used to forecast VaR thresholds for each risk

model in this paper. We follow the procedure in Chen and So (2006) and design an adaptive MCMC

sampling scheme for estimation and quantile forecasting.

When forecasting VaR thresholds, our aim is to find the optimal combination of volatility dynamics

and error distribution in terms of the observed violation rates and two loss functions in Lopez (1999 a, b)

for both out-of-sample periods. We further consider three backtesting methods for evaluating and testing

the accuracy of VaR models. We also investigate the accuracy of volatility forecasts for all models under

three volatility proxies with three loss functions.

This paper is organized as follows. Section 2 illustrates the ST models with different ST functions.

Section 3 demonstrates the Bayesian setup and details of parameter inferences. Section 4 describes the

process of VaR forecasting. Section 5 presents a simulation study of a double ST-GARCH model with the

second-order logistic function showing the estimation performance. We further extend this class of ST-

GARCH models to incorporate a different effect (smooth transition function) for the mean and variance.

Section 6 presents empirical results, focusing on the forecasts of VaR and volatility and furthermore

showing the forecast accuracy for all models under three volatility proxies. Section 7 provides concluding

remarks.
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2 The smooth transition heteroskedastic model

We consider a general double smooth transition GARCH model to capture mean and volatility asym-

metry in financial markets. We present the ST-GARCH model as below:

yt = µ
(1)
t + F (zt�d; �, c)µ

(2)
t + at

at =

p

ht✏t, ✏t
i.i.d.⇠ D(0, 1),

ht = h
(1)
t + F (zt�d; �, c)h

(2)
t (1)

µ
(l)
t = �

(l)
0 +

p
X

i=1

�
(l)
i yt�i

h
(l)
t = ↵

(l)
0 +

g
X

i=1

↵
(l)
i a2t�i +

q
X

i=1

�
(l)
i ht�i, l = 1, 2,

where zt is the threshold variable; d is the delay lag; and D(0, 1) is an error distribution with mean 0

and variance 1. The parameter � determines the smoothness of the change in the value of F (zt�d; �, c)

function and the smoothness of the transition from one regime to the other. We consider three types

of ST functions in this work. Different choices for the transition function lead to different types of

regime-switching behaviour. A popular choice for F (zt�d; �, c) is the first-order logistic function:

F (zt�d; �, c) =
1

1 + exp

n

��(zt�d�c)
sz

o , (2)

where sz is the sample standard deviation of zt. This type of regime-switching can be convenient for

modelling, for example, asymmetry in stock markets to distinguish bad news and good news. The first-

order logistic ST is an odd function and is used to capture sign asymmetry; in other words, the asymmet-

ric responses to positive and negative values of zt�d � c. Teräsvirta and Anderson (1992) and Teräsvirta

(1994) apply the STAR model with a first-order logistic ST function to financial data, finding evidence

of sign asymmetry in the mean.

We next consider a specification of the second-order logistic function in van Dijk, Teräsvirta, and

Franses (2002).

F (zt�d; �, c) =
1

1 + exp

n

��(zt�d�c1)(zt�d�c2)
sz

o , c1 < c2, (3)

where now c = (c1; c2)
0, as proposed by Jansen and Teräsvirta (1996). Figure 1 shows some examples

for the second-order ST function for various values of the smoothness parameter � when c1 = �1.5

and c2 = 1.5. We observe that smaller values of � cause smoother, slower transitions, while � � 20 is
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effectively a sharp or abrupt transition. When � = 20, the transition function starts at 1, then decreases

to zero during the range of (c1, c2), and then increases back to one again.

When � ! 0, both logistic functions become equal to a constant (equal to 0.5), and when � = 0,

the ST-GARCH model reduces to a linear GARCH model. If � ! 1, the model with the second-order

logistic function becomes linear, whereas if � ! 1 and c1 6= c2, the function F (zt�d; �, c) is equal

to 1 for zt < c1 and zt > c2, and equal to 0 in-between. Hence, the SETAR model with the particular

transition function nests a restricted three-regime SETAR model, with a restriction of outer regimes being

identical. For the third-type function, we consider the exponential function:

F (zt�d; �, c) = 1� exp

⇢

��(zt�d � c)2

sz

�

. (4)

The behavior of yt depends on the size of the deviation from zt. The exponential ST is an even

function, which captures size asymmetry, or asymmetric responses to the magnitude of zt�d � c. See

Granger and Teräsvirta (1993) and Teräsvirta (1994) for applications of STAR with the exponential ST

(EST) model. Chen et al. (2010) apply STAR with the EST function to daily stock markets, finding

evidence of size asymmetry in mean and volatility, while the most favored transition variable is the intra-

day range. A limitation of the exponential function (4) is that for either � ! 0 or � ! 1, the function

collapses to a constant (equal to 0 and 1, respectively). Hence, the model becomes linear in both cases

and the exponential STAR model does not nest a self-exciting TAR model as a special case (see van Dijk,

Teräsvirta, and Franses 2002 for details).

We further allow the parameter � varying in the ST-GARCH with (3) to incorporate a different

effect (smooth transition function) for the mean and variance. While Gerlach and Chen (2008) illustrate

sufficient restrictions for volatility equations, they only consider the first-order ST function. In this

paper, we utilize the same restrictions upon the three ST-GARCH models. The non-negativeness of the

conditional variance is:

↵
(1)
0 > 0,↵

(1)
i > 0,�

(1)
i > 0

X

i

⇣

↵
(1)
i + ↵

(2)
i

⌘

> 0

X

j

⇣

�
(1)
j + �

(2)
j

⌘

> 0. (5)

The covariance-stationary restriction is as below:

X

i

⇣

↵
(1)
i + 0.5↵

(2)
i

⌘

+

X

j

⇣

�
(1)
j + 0.5�

(2)
j

⌘

< 1. (6)

These conditions can also be found in Anderson, Nam, and Vahid (1999). In order to allow for possible

explosive volatility and to ensure a proper prior, Gerlach and Chen (2008) generalize the above two
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restrictions as follows:

↵
(1)
0 < b1,�

(1)
i < b2,

X

i

↵
(1)
i +

X

j

�
(1)
j < b3, (7)

where b1, b2, and b3 are user-specified. In this study, we let b2, b3 � 1 to allow explosive behavior.

3 Bayesian inference

In this section, we use the Bayesian approach to carry out our parameter estimations. In the literature,

many papers have utilized the ordinary least squares method and the nonlinear least squares method

to estimate parameters. Let ✓ = (�1,�2,↵1,↵2, c,�, ⌫, d)
0, where �j =(�(j)

0 , . . . and �
(j)
p )

0, ↵j =

(↵
(j)
0 , . . . ,↵

(j)
g ,�

(j)
1 , . . . ,�

(j)
k )

0. Note that c = (c1, c2)
0 and � = (�1, �2)

0 if the ST function belongs to

the second-order ST-GARCH models, otherwise, c = c and �1 = �2. We allow for a higher degree of

flexibility in model parameters for this model. The notation y1,n denotes (y1, . . . , yn). The conditional

likelihood function for the double ST model is:

L(✓ | ys+1,n
) =

n
Y

t=s+1

⇢

1p
ht

p✏

✓

yt � µtp
ht

◆�

,

where p✏ is the density function for ✏t, n is the sample size, s = max{p, g, q, d}, ht = Var(yt|Ft�1),

and µt = E(yt|Ft�1), with Ft�1 being the information set. Based on the empirical evidence, the

empirical density function has a higher peak and longer tails than the normal density. This phenomenon

is common for daily stock returns. We consider D(0, 1) = t⇤⌫ to be a standardized Student’s t distribution,

which captures the conditional leptokurtosis observed in financial return data. The conditional likelihood

function becomes:

L(✓ | ys+1,n
) =

n
Y

t=s+1

(

�(

⌫+1
2 )

�(

⌫
2 )
p

(⌫ � 2)⇡

1p
ht



1 +

(yt � µt)
2

(⌫ � 2)ht

�� ⌫+1
2

)

.

Aside from fat tails, empirical distributions of asset returns may also be skewed. To handle this ad-

ditional characteristic of asset returns, the Student’s t distribution has been modified to become a skew

Student’s t distribution. There are many versions of skew Student’s t distribution, but we adopt the ap-

proach of Hansen (1994), which has zero mean and unit variance. The probability density function of

skew Student’s t defined by Hansen (1994) is as follows:

p✏(✏t|⌫, ⌘) =

8

>

>

>

<

>

>

>

:

bc



1 +

1
⌫�2

⇣

b✏t+a
1�⌘

⌘2
��(⌫+1)/2

if ✏t < �a
b

bc



1 +

1
⌫�2

⇣

b✏t+a
1+⌘

⌘2
��(⌫+1)/2

if ✏t � �a
b

, (8)
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where degrees of freedom ⌫ and skewness parameter ⌘ satisfy 2 < ⌫ < 1, and �1 < ⌘ < 1, respec-

tively. The constants a, b, and c are fixed as:

a = 4⌘c
⇣

⌫�2
⌫�1

⌘

, b2 = 1 + 3⌘2 � a2, c =
�
⇣

⌫+1
2

⌘

�
(

⌫
2 )
p

⇡(⌫�2)
.

This distribution already has zero mean and unit variance. We use the notation St(⌫, ⌘). The stan-

dardized Student’s t distribution is a special case of this skew Student’s t distribution, when ⌘ = 0.

3.1 The setup priors

Bayesian inference requires specifying a prior distribution for the unknown parameters, combined

with the likelihood function. We assume the parameters (�1,�2,↵1,↵2, c,�, ⌫, d), are a priori inde-

pendent. An estimation of the smoothing parameter and its identification as it tends to zero have proven

a challenge for both classical and Bayesian approaches, because the likelihood function is not integrable

for this parameter in an ST-GARCH model. To alleviate this identifiability problem as the speed of the

transition parameter tends to zero, we adopt a specific prior formulation for the mean in Equation (1),

based on George and McCulloch (1993) and extended by Gerlach and Chen (2008). Note that Gerlach

and Chen (2008) only handle the ST-GARCH model with the first-order logistic function. We define the

latent variable �
(i)
j , which determines the prior distribution of �(i)

j , via a mixture of two normals:

�
(i)
j |�(i)j ⇠ (1� �

(i)
j )N(0, k2⌧

(i)
j

2
) + �

(i)
j N(0, ⌧

(i)
j

2
), j = 1, ..., p

�
(i)
j |� =

8

<

:

1, if i = 1 or � > ⇠

0, if i = 2 and �  ⇠,
(9)

where i = 1, 2 denotes the regime and j = 1, . . . , p denotes the lag order of the AR mean terms in �j .

Here, ⇠ is a specified threshold and �  ⇠ indicates that F(zt�d; �, c) ! 0.5; that is, an AR-GARCH

model. As suggested in Gerlach and Chen (2008), we choose k to be a small positive value, so that if

�  ⇠ and �
(2)
j = 0, then the posterior value for the parameters �(2)

j will be weighted by the prior value

towards 0.

A constrained uniform prior is taken for p(↵), the constraint defined by the indicator I(S), where

S defines the constraints in Equations (5), (6), and (7). For �, we choose the log-normal distribution,

� ⇠ LN(µ� ,�
2
�). The prior for the delay lag, d, is a discrete, uniform variable:

Pr(d) =
1

d0
,

where d = 1, . . . , d0. For ⌫ degrees of freedom, we define ⇢ =

1
⌫ and set it to I(⇢ 2 [0, 0.25]) (see Chen,

Chiang, & So, 2003, for more details). We choose the flat priors for the threshold parameters in three ST

functions, which are described as follows.
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The first-order and the exponential ST function:

When we consider a double ST model with one threshold value, a flat prior on the threshold limit c is

Unif(bz1, bz2), where (bz1, bz2) are chosen as suitable percentiles of z to allow a reasonable sample size

in each regime for inference.

The second-order ST function:

Two threshold values in the second-order ST function are much more complicated and need to be

constrained in two ways: the first ensures that c1 < c2 as required, while the second ensures that a

sufficient sample size exists in each regime for estimation. For this second constraint, a set of ranges can

be set, as relevant percentiles of the sample size n, to ensure that at least 100h (0 < h < 1) percent of

the observations are contained in each regime, as suggested by Chen, Gerlach, and Lin (2010) and Chen,

Gerlach, and Liu (2011). The general priors for c1 and c2 are:

c1 ⇠ Unif(lb1, ub1);

c2|c1 ⇠ Unif(lb2, ub2),

where lb1 and ub1 are the }h1 and }1�h1�h2 percentiles of zt, respectively. For example, if h1 = h2 =

0.1, then c1 2 (}0.1,}0.8). Furthermore, we set ub2 = }(1�h2) and lb2 = c1 + c⇤, where c⇤ is a selected

number that ensures c1 + c⇤  c2 and at least 100h2% of observations are in the range (c1, c2).

3.2 Posteriors

The posteriors are proportional to the product of the likelihood function and the priors, or in other

words:

p(✓l | ys+1,n,✓ 6=l) / p(ys+1,n | ✓) · p(✓l | ✓ 6=l),

where ✓l is a parameter group, p(✓l) is its prior density, and ✓ 6=l is the vector of all model parameters, ex-

cept for ✓l. The delay parameter d is obtained by sampling from the conditional multinomial distribution

with posterior probabilities as follows:

p(d = j | ys+1,n,✓ 6=d) =
p(ys+1,n | d = j,✓ 6=d)

Pd0
j=1 p(y

s+1,n | d = j,✓ 6=d)
, j = 1, . . . , d0. (10)

Since the posterior distributions for parameters (�j ,↵j , ⌫, �, c), with j = 1, 2 are not standard forms,

we turn to the MCMC method. For our parameters (�j , ⌫, �, c), and j = 1, 2, we estimate parameters by

exercising the Metropolis-Hasting (MH) algorithm. For the GARCH parameter ↵j , we apply a random

walk MH algorithm before burn-in period and use the independent kernel MH (IK-MH) algorithm after
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the burn-in period, since IK-MH would speed up the convergence (see Gerlach & Chen, 2008, for more

details). For details on the MCMC sampling scheme, random walk MH, and the IK-MH algorithm,

please refer to Chen and So (2006).

4 Forecasting of VaR and volatility

Understanding volatility is vital for financial time series analysis. Predicting volatility is crucial

for many functions in financial markets, such as estimation of VaR, options pricing, asset allocation,

and many other applications. VaR is determined over a given time interval and could be exercised

as a threshold value in order to avoid any downside risk on capital, given a specified probability ↵.

Mathematically, VaR is defined as:

Pr(4V (l)  �VaR | Ft�1) = ↵,

where 4V (l) is an increment in the asset value over time period l, ↵ is a given probability level, and

Ft�1 is as defined above.

A one-step-ahead VaR is the ↵% quantile level of the conditional distribution yn+1|Fn ⇠ D(µn+1, hn+1),

where hn+1 is given by one of the parametric models and D is the relevant error distribution. This pre-

dictive distribution is estimated via the MCMC simulation. The quantile VaR is then given by:

VaR[j]
n+1 = µn+1 �



D�1
↵ (⇥[j]

)

q

h
[j]
n+1

�

, (11)

where D�1 is the inverse CDF for the distribution D. For standardized Student’s t errors,

D�1
↵ =

t↵(⌫
[j]
)

p

⌫[j]/(⌫[j] � 2)

,

ẘhere t↵(⌫
[j]
) is the ↵th quantile of a Student’s t distribution with ⌫[j] degrees of freedom, and ⌫[j] is

the jth iteration of ⌫. Hence,
p

⌫ [j]/(⌫ [j] � 2) is an adjustment term for a standardized Student’s t with

⌫[j] degrees of freedom. The final forecasted one-step-ahead VaR is the Monte Carlo posterior mean

estimate:

VaRn+1 =
1

N �M

N
X

j=M+1

VaR[j]
n+1, (12)

where N is the number of MCMC iterations, and M is the size of the burn-in sample.
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4.1 VaR forecasting evaluation

In this section, we give the criteria for comparing and testing the VaR forecast models. The Basel

Committee on Banking Supervision (established in 1996) proposed backtesting to evaluate the worst 1%

expected loss over 250 trading days, so that at least one year of actual returns is compared with VaR

forecasts. The common guides for comparing the performance are the number of violations (I(yt <

�VaRt)) and the violation rate (VRate).

VRate =

1

m

n+m
X

t=n+1

I (yt < �VaRt),

where n is the in-sample period size, and m is the forecast size. Naturally, a VRate close to nominal

↵ is desirable. Furthermore, under the Basel Accord, models that over-estimate risk (VRate < ↵) are

preferable to those that under-estimate risk levels.

We are greatly interested in the magnitude of the VaR exceedance rather than simply whether or not

an exceedance occurred. A backtest can be based on a function of the observed profit or loss and the

corresponding model VaR. This would result in the construction of a general loss function, L(VaRt, yt),

which could be evaluated using past data on profits and losses and the reported VaR series. Lopez

(1999a,b) suggests this approach to backtesting as an alternative to the approach that focuses exclusively

on the hit series. We consider two loss functions that measure the difference between the observed loss

and the VaR in cases where the loss exceeds the reported VaR measure.

 1(VaRt, yt) =

8

<

:

1 + (yt � (�VaRt))
2 if yt < �VaRt

0 if yt � �VaRt

, (13)

 2(VaRt, yt) =

8

>

<

>

:

1 +

�

�

�

�

yt � (�VaRt)

�

�

�

�

if yt < �VaRt

0 if yt � �VaRt

. (14)

When an exception takes place, risk model is to be penalized. Hence we prefer to have a lower average

loss value (between two models), defined as the average of these penalty scores:

 i =
1

m

n+m
X

t=n+1

 i(VaRt, yt), i = 1, 2.

4.2 Backtesting methods

We further consider three backtesting methods for evaluating and testing the accuracy of VaR models.

The unconditional coverage (UC) test of Kupiec (1995) - a likelihood ratio test that the true violation rate
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equals ↵; the conditional coverage (CC) test of Christoffersen (1998) - a joint test, combining a likelihood

ratio test for independence of violations and the UC test; and the dynamic quantile (DQ) test of Engle

and Manganelli (2004). The details of the processes are given below.

• The UC test of Kupiec (1995): As stated in Christoffersen (1998), the UC test looks at the

unconditional probability of a violation that must be equal to the coverage rate ↵, with the LRT

being:

LRuc = 2log


↵̂X
(1� ↵̂)m�X

↵X
(1� ↵)m�X

�

⇠ �2
1,

where X = number of violations, m = total number of observations, and ↵̂ = X/m.

• The CC test of Christoffersen (1998): The CC test is a joint test that combines a likelihood ratio

test for independence of violations and the UC test, where the independence hypothesis stands for

VaR violations observed at two different dates being independently distributed.

LRind = 2log
✓

L1

L0

◆

; LRind ⇠ �2
1.

We define Tij as the number of days when condition j occurred at present status, and assuming

that condition i occurred on the previous day, we get:

i, j =

8

<

:

1, if violation occurs

0, if no violation occurs,
(15)

and L1 =

Q1
i=0(1 � ⇡i1)

Ti0⇡Ti1
i1 , L0 = (1 � ⇡)

P1
i=0 Ti0⇡

P1
i=0 Ti1 . ⇡i1 = Ti1/(Ti0 + Ti1), and

⇡ = (T01 + T11)/m, with m being the total number of observations. Thus, the joint CC test is a

chi-square test, in which LRcc = LRuc + LRind, when LRcc ⇠ �2
2.

• The DQ test of Engle and Manganelli (2004): The DQ test is based on a linear regression model

of the hits variable on a set of explanatory variables including a constant, the lagged values of

the hit variable, and any function of the past information set suspected of being informative. H0:

Ht = I(yt < -VaRt)� ↵ is independent of W . The test statistic is:

DQ(q) =
H 0W (W 0W )

�1
W 0H

↵(1� ↵)
,

where W = lagged observations, hits, etc. and q = 4. This is the same setting as in Engle and

Manganelli (2004); DQ(q) ⇠ �2
q .
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4.3 Volatility proxies

Though volatility is unobservable, we consider the following three proxy variables. One is based on

absolute returns and the two others are range-based proxies, using root mean square error (RMSE), mean

absolute deviation (MAD), and quasi Log-likelihood (QLIKE) as loss functions. Patton and Sheppard

(2009) show that the QLIKE loss function is more robust to noise in the volatility proxy. The first

range-based proxy is like that of Parkinson (1980), the second is based on Alizadeh, Brandt, and Diebold

(2002) and employed by Lin, Chen, and Gerlach (2012). The formulae for the three volatility proxies are

the following.

1. Proxy 1: |yt|.

2. Proxy 2: Rt/
p

4 ln(2); (Parkinson, 1980).

3. Proxy 3: exp[ln(Rt)� 0.43 + 0.292/2]; (Alizadeh, Brandt, and Diebold, 2002),

where Rt = (maxPt � minPt) ⇥ 100, Pt is the log price index at time t, and yt is the ith intra-day

return on day t. We denote ˆhi,t+1|t, i = 1, . . . , 3 as the ith competitive one-step-ahead forecast of ht+1,

where m is the forecast period size. Three measures are calculated as follows:

RMSE =

"

1

m

n+m�1
X

t=n

(ei,t+1|t)
2

#0.5

,

MAD =

1

m

n+m�1
X

t=n

�

�ei,t+1|t
�

�,

QLIKE =

1

m

n+m�1
X

t=n

ẽi,t+1|t � log

�

ẽi,t+1|t
�

� 1,

where ei,t+1|t =
p

ht+1 �
q

ˆhi,t+1|t, ẽi,t+1|t =

p

ht+1
q

ˆhi,t+1|t

i = 1, . . . , 3.

When comparing the models, it is favorable to have smaller error values under the three criteria.

5 Simulation study

We perform simulation studies for the Bayesian estimation to examine the effectiveness of the

MCMC sampling scheme. Considering finite sample properties and consistencies of the MCMC es-

timators, 500 replications are generated, with sample size n = 2000. We consider the second-order
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ST-GARCH model with a skew Student’s t distribution as follows:

yt = (0.1 + 0.4yt�1) + F1(zt�1)(0.1� 0.25yt�1) + at, (16)

at =

p

ht✏t, ✏t
i.i.d.⇠ SK(7,�0.4)

ht = (0.15 + 0.2a2t�1 + 0.7ht�1) + F2(zt�1)(�0.1� 0.1a2t�1 � 0.2ht�1),

Fi(zt�1) =

1

1 + exp

n

��i(zt�1�(�0.35))(zt�1�0.3)
sz

o ,

where (�1, �2) = (4, 10), zt is the daily returns of the S&P500 index and sz is its sample standard

deviation. Since under the proposed model, it would be difficult to generate a series of zt, we use

S&P500 returns instead. Orders p, g, and q are all set to 1. The maximum delay, d0, is chosen to be

3. The initial values for each parameter are �1 = (0, 0), �2 = (0, 0), ↵1 = ↵2 = (0.01, 0.1, 0.1),

⌫ = 100, � = 30, and (c1, c2) = (0, 0.1).

Based on Figure 1, F (.) becomes a sharp or abrupt transition when � > 20. Therefore, we consider

only choices of (µ� ,��) that ensure the prior density becomes small for � > 20. We establish two setups

of prior information for �i, i = 1, 2, LN(µ� ,��) = (1.609, 0.767) and (1.609, 0.575), in which the

densities are in Figure 2. We set the hyper-parameters to (⇠, k) = (0.5, 0.001) in the mixture specification

(9), with ⌧i = 0.35, c1 ⇠Unif(}0.2,}0.7), and c2|c1 ⇠Unif(c1 + c⇤,}0.8). Hence, c⇤ is chosen, which

leads to at least 10% of observations in-between. We also set b1 = s2y, b2 = 1, and b3 = 1.1 in (7)

allowing for possible explosiveness in the variance equation. Note that these settings are suggested by

Gerlach and Chen (2008).

We use a burn-in sample of M = 10, 000 and a total sample of N = 30, 000 iterations, but only every

2nd iteration in the sample period for inference. Parameter estimation results are in Table 1, in which

numbers are the averages of posterior mean, median, standard deviation, and 95% credible interval for

500 replications, except for the parameter d, which is the delay lag. We provide the average, median, and

standard deviation among 500 posterior modes in the last row in Table 1. They 100% correctly indicate

d=1 for each 500 replications.

We extensively examine trace plots and the autocorrelation function (ACF) plots to confirm con-

vergence and to infer adequate coverage. We observe the trace plots for parameters that converge im-

mediately. The ACF plots cut off fairly quickly, which means that the MCMC mixing is fast and the

autocorrelation is low. Those plots are not shown to save space.

We assume the same prior density for �1 and �2 - that is, we do not have any restriction about the

magnitude of �1 and �2. The estimates of (�1,�2) = (4, 10) are (5.04, 10.03) and (4.95, 8.68) based on

priors 1 and 2, which are sound. The average standard deviations for prior 2 are slightly smaller versus
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those of prior 1. These simulation results indicate that the posterior estimates obtained by the proposed

sampling scheme are reliable. Non-Bayesian methods are unable to accomplish this desired purpose for

estimation.

Figure 1: Plots of the second-order ST function for c1=-1.5 and c2=1.5.

Figure 2: Two prior densities for �.

6 Empirical study

To examine the performance of the models under highly varied market conditions, this study exam-

ines two distinct forecasting periods. The first complete dataset is divided into two: an in-sample period

from January 1, 2004 to October 31, 2011, and 500 out-of-sample forecast days, from November 1, 2011

14



Table 1: Simulation results for the second-order ST-GARCH model in (16) based on n=2000 and ob-

tained from 500 replications.

True Mean Med Std Mean Med Std

Prior 1 Prior 2

�(1)
0 �0.10 �0.0992 �0.0991 0.0345 �0.1012 �0.1009 0.0347

�(1)
1 0.30 0.3072 0.3048 0.0833 0.3019 0.2997 0.0834

�(2)
0 0.10 0.0980 0.0966 0.0412 0.1026 0.1021 0.0412

�(2)
1 �0.25 �0.2605 �0.2579 0.0993 �0.2467 �0.2472 0.0991

↵(1)
0 0.15 0.1629 0.1672 0.0295 0.1632 0.1651 0.0289

↵(1)
1 0.20 0.2080 0.2034 0.0762 0.2170 0.2153 0.0768

�(1)
1 0.70 0.6503 0.6524 0.1141 0.6651 0.6678 0.1116

↵(2)
0 �0.10 �0.1084 �0.1110 0.0330 �0.1089 �0.1106 0.0320

↵(2)
1 �0.10 �0.1083 �0.1001 0.0845 �0.1140 �0.1109 0.0858

�(2)
1 �0.20 �0.1819 �0.1859 0.1394 �0.1905 �0.1933 0.1349

⌫ 7.00 7.1252 6.9782 1.0762 7.0909 6.9636 1.0733

⌘ �0.40 �0.4016 �0.4018 0.0292 �0.3963 �0.3966 0.0291

�1 4.00 5.0494 4.3081 3.1122 4.9478 4.4164 2.3318

�2 10.00 10.0281 9.0847 4.5053 8.6667 8.1056 3.1059

c1 �0.35 �0.3356 �0.3326 0.1077 �0.3333 �0.3303 0.1076

c2 0.30 0.2886 0.2866 0.1075 0.2849 0.2815 0.1068

d⇤ 1.00 1 1 0 1 1 0

Average of posterior modes and median of posterior modes for d.

to late October or mid-November 2013. Small differences in end-dates across markets occurred due to

different market trading days. This time frame is a period after the effects of the global financial crisis

hit the markets. The study includes ten European stock markets, seven Asian stock markets, and 1 North

American market and 1 South American market, making 19 stock markets in all. We utilize three regions

for the daily closing prices of stock markets, including (i) Americas: the S&P500 (U.S.) and the Bovespa

Index (Brazil). (ii) Asia: KOSPI (South Korea), HANG SENG Index (Hong Kong), Nikkei 225 (Japan),

CNX 500 (India), SHANGHAI SE A SHARE (China), TAIEX (Taiwan), and SET Index (Thailand).

(iii) Europe: FTSE 100 (U.K.), DAX 30 (Germany), CAC 40 (France), AEX Index (Netherlands), PSI

20 (Portugal), MIB Index (Italy), ISEQ (Ireland), Athex Composite Index (Greece), RTS Index (Russia),

and IBEX 35 (Spain).

To examine how the models perform during the recent financial crisis period (2007-2009) and eval-

uate how the crisis affects risk management, a second time span in considered: a learning period from

January 4, 2000 to December 31, 2006 and a second validation or out-of-sample forecast evaluation

window: January 3, 2007 to December 30, 2009. We mainly focus on S&P500 and Nikkei 225 for this
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financial turmoil period.

All data are obtained from Datastream International. The returns are the difference of the logarithm

of the daily price index:

rt = [ln(Pt)� ln(Pt�1)]⇥ 100,

where Pt is the closing index on day t. Table 2 shows summary statistics for the 19 markets during

the in-sample period from January 1, 2004 to October 31, 2011. The statistics include stock-index

return means, extreme values, standard deviations, skewness, kurtosis, the Jarque-Bera normality test,

and Liung-Box Q(5) values for both returns and squared returns. As per the characteristics of financial

data, the daily return has heavy tails and is negatively skewed (exceptions are for Hong Kong, Germany,

France, Greece, and Spain). The normality test exhibits a clear rejection for each market by the Jarque-

Bera normality test under a 1% significant level. Furthermore, high volatility is clearly evident during

the global financial crisis period (around late - 2008 to 2009).

The DT-GARCH model is a special case of the first-order ST-GARCH (1STF-GARCH) model when

the smoothness parameter � goes to infinity (see Chen and So, 2006). We state the DT-GARCH(1,1)

model as follows:

yt =

8

<

:

�
(1)
0 + �

(1)
1 yt�1 + at yt�d < c

�
(2)
0 + �

(2)
1 yt�1 + at yt�d � c

, (17)

at =

p

ht✏t, ✏t
i.i.d.⇠ t⇤⌫ ,

ht =

8

<

:

↵
(1)
0 + ↵

(1)
1 a2t�1 + �

(1)
1 ht�1 yt�d < c

↵
(2)
0 + ↵

(2)
1 a2t�1 + �

(2)
1 ht�1 yt�d � c

, (18)

where d is the delay lag and c is the threshold value. Parameters in the DT-GARCH model, �(j)
0 , �(j)

1 ,

↵
(j)
0 , ↵(j)

1 , �(j)
1 , (where j = 1, 2,) c, d, and ⌫, are estimated by the Bayesian method proposed by Chen

and So (2006). When ↵
(2)
0 = �

(2)
1 = 0, d = 1, and c = 0 in Equation (18), then this model becomes a

special case: GJR-GARCH model (Glosten, Jaganathan, Runkle, 1993).

We report Bayesian estimates for the U.S. market during the in-sample period (from January 1, 2004

to October 31, 2011) based on the five nonlinear heteroskedastic models: first-order logistic function

(1STF-GARCH) with Student’s t error, second-order logistic function ST-GARCH (2STF-GARCH) with

Student’s t and skew Student’s t errors, the exponential function ST-GARCH (ESTF-GARCH), and the

DT-GARCH model with Student’s t errors. The priors’ settings for ST-GARCH are the same as in the

simulation study, and the estimation is based on a total of 30,000 MCMC iterations, discarding the first

10,000 iterations as a burn-in period. Those estimations would perform differently when the rolling
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window span is allowed to move. Table 3 presents the estimated posterior median and standard deviation

of parameters. To save space, we do not report 95% credible intervals here.

The majority of coefficients in mean equations are insignificant, which are indicated by the 95%

credible intervals. Allowing AR(1) in the conditional mean helps account for possible asymmetric auto-

correlations in the returns. The delay lag d is not always fixed and swings from 1 to 3, based on learning

periods. In order to show further justification about the same effect or the same smooth transition function

in the mean and variance, we allow Model “2STsk-GARCH” to incorporate different smooth transition

functions for the mean and variance and skew Student’s t errors. The estimated skew parameter and

degrees of freedom are �0.149 and 6.955, indicating the skew Student’s t assumption is appropriate.

However, the estimates of �1 and �2 are 5.562 and 4.545, respectively. It seems that the same effect in

the mean and variance due to the two estimated smoothness parameters is indistinguishable. In order to

further examine about whether we should include different effects in mean and variance, we plan to use

these five models for VaR forecasting.

In the out-of-sample period, a rolling window approach is used to produce a one-step-ahead forecast-

ing of hn+1, 1% VaR, and 5% VaR under the following 2 HS methods and 12 risk models: the HS-Short

term with 25 observation days (ST), the HS-Long term with 100 observation days (LT), RiskMetrics

(RM), AR(1)-GARCH(1,1) and AR(1)-GJR-GARCH(1,1) with three error distributions, 1STF-GARCH

with Student’s t error, second-order logistic function ST-GARCH (2STF-GARCH) with Student’s t and

skew Student’s t errors, the exponential ST-GARCH (ESTF-GARCH), and the DT-GARCH model with

Student’s t errors. For the global financial crisis period, realized volatility (RV) models with three error

probability distributions are considered for U.S. and Japan stock markets.

Post-global financial crisis period

Tables 4 and 5 report the empirical results for the 19 markets: VRate/↵ = 1 under the 1% and 5%

confidence levels based on a forecast period of 500 trading days. The ratio VRate/↵ = 1 indicates a good

VaR method/model. Figure 3 displays boxplots for VaR prediction performance over the 19 markets and

2 HS methods and 12 risk models at 1% and 5% levels. The figure illustrates that models with Gaussian

errors and HS methods underestimate risk level at the 1% in all or most markets. Among these models,

top three are G-sk, GJRsk, and 2STsk-GARCH models, in which the means of VRate are closest to

nominal at the 1% level. These three best models have skew Student’s t errors; clearly fat tails with

additional skew characteristic are required in this forecasting time period. The results are different from

↵ = 1% to 5%. There are several models whose violation rates equal to or less than one at the 5% level.

We notice that the range of the other VRate/↵ varies from [1.2, 5.2] for the Greece stock market

17



at the 1% level, which is far away from 1. The worst performance for most of the risk models occurs

in the Greece market. Three models - GARCH, GJR-GARCH, and 2STF-GARCH models with skew

Student’s t - along with 2STF-GARCH with Student’s t errors stand out as performing the best across

the European region at the ↵ = 1% level. The 2STF-GARCH model with Student’s t error is favored

by Ireland and Spain markets. We would like to point out that the banking crisis in Ireland in November

2010 further dented confidence in an already uncertain global financial market. It is estimated that Ireland

owes well over $130 billion to German and British banks. The wide exposure of the crisis to the rest of

the European market will likely weaken market confidence in that region in the coming months. Under

these circumstances, the 2STF-GARCH model is a good choice for these markets during the post-global

financial crisis period at a 1% level.

These results are also confirmed by Table 6. Based on the idea of Lopez (1993 a, b), we construct

the following loss function in Table 6 to evaluate the performance of risk models (methods) that penalize

those violation rates exceeding the ↵ level by using the squared difference.

 (VRate) =

8

<

:

↵+ (VRate � ↵)2 if VRate > ↵

0 if VRate  ↵
. (19)

Three models, GARCH, GJR-GARCH, and 2STF-GARCH models with skew Student’s t perform the

best at both 1% and 5% levels which yield the three lowest average loss values based on (19).

To evaluate the efficiency of risk measurement, Table 7 presents the results of Lopez’s loss functions.

Three models with skew Student’s t errors, G-sk, GJRsk, and 2STsk-GARCH models, are the best three

based on the median of quadratic loss and the absolute loss at the 1% level. It is clear that the choice of

error distribution is highly important during this period. The best models turn out to be 2STsk-GARCH,

GJR-n, and GJR-sk over quadratic loss and absolute loss at the 5% level. The family of GJR models is a

good choice when we only consider risk at the 5% level.

Table 8 briefly describes the number of rejections for each model, over the 19 markets, at the 5%

significance level, for each of the three tests considered: the UC, CC, and the DQ tests. Four lags are

used, as stated in Engle and Manganelli (2004) for the DQ test. The “Total” states are the number of

markets rejected by any backtests under each model. Under the ST method, all markets fail under the

three backtests. At ↵ = 1%, the ST method, the LT method, and the RM model are rejected in most of

the markets, mainly by the DQ test. The 1STF-GARCH model and the DT-GARCH model have fewer

rejections among tests in all the markets. At ↵ = 5%, there are 10 models with only 0 or 1 rejections

across markets.

Global financial crisis period

18



We next consider the recent financial crisis period (2007-2009) as an out-of-sample forecast evalu-

ation window. We also investigate the realized GARCH models proposed by Hansen, Huwan and Shek

(2012), where the daily returns and realized measure of volatility calculated using the intraday returns

are jointly modelled. The realized measure of volatility calculated using the intraday returns may be

subject to the bias caused by microstructure noise and non-trading hours. The realized GARCH model

can adjust the bias in the realized measure. As a realized measure of volatility, we use the realized kernel

calculated by taking account of the bias caused by microstructure noise (Barndorff-Nielsen et al. 2008).

The realized kernel of the S&P 500 index is downloaded from the Oxford-Man Institute Realized Library

(Heber et al., 2009) and that of the Nikkei 225 index is calculated using one-minute returns of the Nikkei

225 index obtained from the Nikkei NEEDS-tick data (Ubukata and Watanabe, 2014). We describe the

realized GARCH model with three error distributions, given by the following three equations:

rt = �t⇣t, ⇣t
iid⇠ D(0, 1) (20)

ln�2
t = ! + � ln�2

t�1 + � lnxt�1 (21)

lnxt = ⇠ + ' ln�2
t�1 + ⌧(⇣t) + ut, (22)

where rt is the return and xt is the realized kernel. Here, ⇣t
iid⇠ D(0, 1), D(0, 1) indicates a distribution

that has mean 0 and variance 1, ut
iid⇠ N(0,�2

u), and �2
t =var(rt|Ft�1) with Ft = �(rt, xt, rt�1, xt�1, . . .).

Equation (22) is called a measurement equation, which relates the realized measure of volatility to the

true volatility. If the realized measure were an unbiased estimator of the true volatility, then ⇠ and '

would be 0 and 1, respectively. Realized volatility, however, has a bias caused by microstructure noise

and non-trading hours. Since we use the realized kernel, the bias caused by microstructure noise may

be negligible. New York Stock Exchange and Tokyo Stock Exchange are open only for 6.5 hours and 5

hours, respectively, within a normal trading day and our realized kernels are calculated using the intraday

returns only when the market is open. Thus, we should expect ⇠ < 0 or ' < 1.

In Equation (22), ⌧(⇣t) = ⌧1⇣t+⌧2(⇣
2
t �1) is utilized to generate an asymmetric response in volatility

to return shocks. Three error distributions are used for the i.i.d. disturbances in each RV-type model in

Equation (20). The choice D(0,1) is a standard Gaussian and labelled as RV-n. The Student’s t (RV-t) and

skew Student’s t (RV-sk) distributions need to be standardized to have unit variance. We use the classical

estimator, employing the “rugarch” package in R software, for modelling and forecasting RV models in

(20)-(22) (see Ghalanos 2014). To save space, we do not provide the parameter estimation for RV models

here, which are available from the authors upon request. However, we do observe that the estimated ⇠

is significantly negative and ' is significantly less than one for both U.S. and Japan stock markets. The
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estimate of ⌧1 is significantly negative for both stock markets, indicating a negative correlation between

today’s return and tomorrow’s volatility.

We construct the results of VRate/↵ and three backtests in Table 9. In the global financial crisis

forecast period, however, all models significantly underestimate risk levels at the 1% and 5% quantiles

and no model could be recommended as being accurate. All VRate/↵ values are greater than 1. For the

Japan market, the violation rates of G-n, GJR-sk, 2ST-GARCH, and 2STsk-GARCH reach a minimum

value (equal to 1.5) at the 1% level. For the U.S. market, RV-sk has a minimum VRate at the 1% level.

Clearly, during the financial turmoil period, a skew error distribution with fat tails is very important to

capture risk dynamics and level, at the 1% level, under a 1-day horizon. Most backtests for both markets

are rejected at the 5% level. The measurements in Table 10 are based on Lopez’s loss functions. It

turns out that GJR-sk is the best model for the Japan market, while RV-sk and GJR-sk have the best

performance for the U.S. market during financial turmoil periods.

Table 11 provides an evaluation of volatility forecasting based on three proxies and three loss func-

tions. As the loss functions are judged under RMSE, MAD, and QLIKE, we prefer the model with the

smallest value. The performances of volatility forecasts and VaR are in contrast to one another. Ap-

parently, the DT-GARCH model and the ESTF-GARCH model are suitable under these criteria based

on proxies (RM is better in some cases), but the VaR forecasts for them are not the best among the

risk models. VaR estimates depend much more on the choice of distribution than volatility estimates

do. However, when comparing the performance of the 2STF-GARCH model and the rest of models, the

differences do not seem too large. We conclude that the 2STF-GARCH model is not excellent, but is still

acceptable in volatility forecasting.

7 Conclusion

VaR is exercised as a threshold value in order to avoid downside risks on capital, given a specified

probability. This paper evaluates performance of VaR forecasts across a range of competing parametric

heteroskedastic models and non-parametric methods. Three variant ST functions are employed in order

to capture the asymmetry in nonlinear, double threshold GARCH models. For a comparison, we also

consider two popular asymmetric families: GJR-GARCH and DT-GARCHs models. Bayesian MCMC

methods are employed on all heteroskedastic models (except the RV model) for estimation, inference,

and forecasts. A simulation study shows that model parameters are well estimated for the 2STF-GARCH

model with a different effect (smooth transition function) for the mean and variance and skew Student’s
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Figure 3: The boxplots for VaR prediction performance over the 19 markets and 2 HS methods and 12

risk models at the 1% and 5% levels.
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t errors.

We evaluate two out-of-sample periods in light of the recent global financial crisis. For the post-

global financial crisis, GARCH, GJR, and 2ST-GARCH with skew Student’s t errors perform best at the

1% level based on Lopez’s loss functions. The results show that the second-order logistic ST model is

a good choice at the 1% level during the post-global financial crisis period, when compared to a range

of existing alternatives. Both DT-GARCH and ESTF-GARCH models have a favorable out-of-sample

volatility forecasting performance. Based on the empirical application, we conclude that higher moments

(skewness and kurtosis) need to be explicitly modeled in order to obtain better VaR predictions.

For the global financial crisis period, all risk models underestimate the risk levels. We find that

volatility asymmetry is most important for capturing risk, with skew errors also prominent, especially at

the 1% level during the global financial period. In further works, we can also focus on expected shortfalls

- that is, the expected number on the worst side, under a given percentage, which is more sensitive than

VaR.

The use of our proposed Bayesian forecasting of nonlinear ST models to deal with some complex

derivatives and to calculate their corresponding VaR formulae is of practical importance and theoretical

interests. The Bayesian approach provides risk traders with the flexibility of adjusting their VaR models

according to their subjective opinions. The findings of this research contribute to a better understanding

of the performance of Bayesian forecasting of VaR based on various nonlinear ST models and hence

could help securities traders or commercial banks in terms of valuating their risky portfolios.
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Table 2: Summary statistics of market returnsa: in-sample period from January 1, 2004 to October 31,

2011

Mean Min Max Std. Skewness Kurtosis Jarque-Bera test Q(5) Q2(5)

Americas

Brazil 0.050 -12.100 13.680 1.9463 -0.081 8.263 < 0.001 0.024 < 0.001

U.S. 0.006 -9.470 10.960 1.3848 -0.312 13.161 < 0.001 < 0.001 < 0.001

Europe

France -0.005 -9.472 10.590 1.4814 0.065 10.559 < 0.001 < 0.001 < 0.001

Germany 0.022 -7.433 10.800 1.4383 0.052 10.354 < 0.001 0.025 < 0.001

Greece -0.053 -10.210 13.430 1.7603 0.047 7.956 < 0.001 0.036 < 0.001

Ireland -0.030 -13.960 9.733 1.6616 -0.575 9.966 < 0.001 0.536 < 0.001

Italy -0.026 -8.598 10.880 1.5155 -0.043 10.172 < 0.001 0.001 < 0.001

Netherlands -0.005 -9.590 10.030 1.4455 -0.174 11.957 < 0.001 < 0.001 < 0.001

Portugal -0.007 -10.380 10.200 1.2099 -0.114 13.874 < 0.001 0.134 < 0.001

Russia 0.052 -21.200 20.200 2.3665 -0.454 14.085 < 0.001 < 0.001 < 0.001

Spain 0.007 -9.586 13.480 1.5068 0.150 11.685 < 0.001 0.001 < 0.001

U.K. 0.011 -9.266 9.384 1.2913 -0.150 11.307 < 0.001 < 0.001 < 0.001

Asia

China 0.026 -9.261 9.033 1.8159 -0.294 5.920 < 0.001 0.078 < 0.001

Hong Kong 0.024 -13.580 13.410 1.7202 0.044 11.652 < 0.001 0.184 < 0.001

India 0.052 -12.880 15.030 1.7253 -0.488 11.131 < 0.001 < 0.001 < 0.001

Japan -0.009 -12.110 13.230 1.6112 -0.569 12.236 < 0.001 0.230 < 0.001

South Korea 0.044 -11.170 11.280 1.5320 -0.578 9.212 < 0.001 0.233 < 0.001

Taiwan 0.013 -6.912 6.525 1.397 -0.432 5.996 < 0.001 0.0216 < 0.001

Thailand 0.012 -16.060 10.580 1.4913 -0.928 15.513 < 0.001 0.221 < 0.001

a The summary statistics results exclude the out-of-sample forecasting period.
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Table 3: Bayesian estimation of parameters for 1STF, 2STF, ESTF-GARCH specifications, and DT-
GARCH for the S&P500 index.

1ST-GARCH 2ST-GARCH 2STsk-GARCH EST-GARCH DT-GARCH
Med Std Med Std Med Std Med Std Med Std

�(1)
0 0.533 0.302 0.029 0.055 -0.036 0.079 0.027 0.028 0.033 0.035

�(1)
1 -0.177 0.162 -0.008 0.069 -0.150 0.103 -0.008 0.042 -0.084 0.040

�(2)
0 -0.908 0.605 0.088 0.091 0.104 0.109 0.102 0.156 0.034 0.074

�(2)
1 0.274 0.313 -0.087 0.102 0.099 0.132 -0.098 0.075 -0.033 0.064

↵(1)
0 0.206 0.006 0.185 0.010 0.030 0.025 0.006 0.005 0.007 0.008

↵(1)
1 0.345 0.013 0.273 0.008 0.128 0.039 0.006 0.006 0.133 0.018

�(1)
1 0.354 0.007 0.331 0.012 0.681 0.057 0.885 0.018 0.947 0.019

↵(2)
0 0.188 0.023 0.196 0.016 0.004 0.039 0.312 0.092 0.008 0.007

↵(2)
1 0.167 0.017 0.133 0.016 -0.059 0.048 0.105 0.022 0.005 0.006

�(2)
1 0.286 0.011 0.273 0.007 0.266 0.065 0.014 0.037 0.883 0.018
⌫ 4.081 0.112 4.174 0.231 6.955 1.298 6.784 1.194 7.220 1.309
⌘ -0.149 0.029
� 0.247 0.103 6.714 1.657 0.238 0.041 - -
�1 5.562 3.424
�2 4.545 2.867
c 0.054 0.377 - - 0.672 0.052 0.325 0.269
c1 - - -0.326 0.186 0.183 0.131 - - - -
c2 - - 0.568 0.123 0.518 0.094 - - - -
d⇤ 1 1 2 1 1

* denotes the posterior mode for d.
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Table 4: VaR prediction performance using 2 HS methods and 12 risk models and 500 forecasted stock
returns under ↵ = 1%. VRate/↵ are given.

Markets ST LT RM G-n G-t G-sk GJRn GJRt GJRsk 1STF 2STF 2STsk ESTF DT
GARCH GARCH GARCH GARCH GARCH

Americas (5.1) (1.5) (1.7) (1.5) (1.0) (0.8) (1.3) (0.7) (0.4) (0.6) (0.8) (0.7) (0.9) (0.8)

Brazil 5.0 1.6 1.4 0.8 0.8 0.6 0.8 0.2 0.2 0.4 0.8 0.6 0.4 0.4
U.S. 5.2 1.4 2.0 2.2 1.2 1.0 1.8 1.2 0.6 0.8 0.8 0.8 1.4 1.2
Europe (4.20) (1.68) (1.88) (1.81) (1.49) (1.28) (1.92) (1.66) (1.44) (1.56) (1.44) (1.42) (1.66) (1.62)

France 3.2 1.4 1.6 1.6 1.2 1.2 1.6 1.6 1.4 1.4 1.4 1.6 1.2 1.4
Germany 4.0 1.6 2.0 1.6 1.2 1.4 2.0 1.6 1.4 1.2 1.4 1.6 1.6 1.8
Greece 5.2 1.2 1.8 2.2 1.8 1.6 2.4 2.2 2.0 2.0 1.8 1.8 2.0 2.0
Ireland 4.8 1.6 1.4 1.6 1.4 1.2 1.6 1.6 1.2 1.2 1.2 1.4 1.4 1.6
Italy 3.6 1.6 2.2 2.5 2.3 1.4 2.4 2.0 2.0 2.2 2.0 1.8 2.4 2.0
Netherlands 4.6 1.8 2.2 2.0 1.6 1.4 1.8 1.6 1.6 1.8 1.2 1.2 1.8 1.6
Portugal 4.2 2.0 2.0 2.2 2.0 1.8 2.2 1.6 1.4 1.8 2.0 1.8 1.8 1.8
Russia 4.0 1.8 2.2 1.6 1.2 0.8 1.0 0.8 0.6 1.0 1.2 1.0 1.2 0.6
Spain 4.0 2.0 1.8 1.6 1.2 1.2 2.4 2.0 1.8 1.6 1.2 1.2 1.8 2.0
UK 4.4 1.8 1.6 1.2 1.0 0.8 1.8 1.6 1.0 1.4 1.0 0.8 1.4 1.4
Asia (4.89) (2.00) (1.74) (1.36) (1.01) (0.60) (1.03) (0.86) (0.66) (0.86) (0.97) (0.66) (1.06) (0.86)
China 4.8 1.4 2.4 2.3 1.5 0.4 1.4 1.0 0.4 0.6 0.8 0.4 1.0 1.0
Hong Kong 4.0 1.8 2.0 1.8 1.8 1.4 1.4 1.4 1.4 1.4 1.6 1.6 1.6 1.4
India 4.4 3.0 1.6 1.0 0.8 0.2 1.2 0.8 0.4 0.6 1.0 0.4 1.0 0.6
Japan 4.6 2.6 1.4 1.4 1.0 0.8 1.4 1.2 1.0 1.0 1.2 1.0 1.6 1.2
South Korea 5.6 1.6 2.2 0.8 0.6 0.4 0.2 0.2 0.0 0.4 0.6 0.2 0.6 0.2
Taiwan 4.6 1.2 1.8 1.2 0.6 0.4 0.4 0.4 0.4 0.6 0.6 0.2 0.6 0.6
Thailand 6.2 2.4 0.8 1.0 0.8 0.6 1.2 1.0 1.0 1.4 1.0 0.8 1.0 1.0

Note that the values in (.) are the average VRate/↵ for each method/model in each region.
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Table 5: VaR prediction performance using 2 HS methods and 12 risk models and 500 forecasted stock
returns under ↵ = 5%. VRate/↵ are given.

Markets ST LT RM G-n G-t G-sk GJRn GJRt GJRsk 1STF 2STF 2STsk ESTF DT
GARCH GARCH GARCH GARCH GARCH

Americas (1.74) (1.08) (1.06) (0.98) (1.09) (0.96) (0.96) (1.00) (0.88) (0.94) (1.00) (0.84) (1.04) (0.90)
Brazil 1.80 1.16 1.12 1.00 1.06 0.96 0.88 0.88 0.84 0.88 0.92 0.88 0.96 0.80
U.S. 1.68 1.00 1.00 0.96 1.12 0.96 1.04 1.12 0.92 1.00 1.08 0.80 1.12 1.00
Europe (1.59) (0.95) (1.07) (1.07) (1.13) (1.05) (1.05) (1.10) (1.00) (1.16) (1.14) (1.05) (1.26) (1.10)
France 1.60 0.88 1.00 1.12 1.20 1.00 1.08 1.08 1.00 1.20 1.24 1.16 1.20 1.20
Germany 1.68 0.92 0.92 1.08 1.08 1.00 1.04 1.04 1.00 1.20 1.16 1.08 1.20 1.24
Greece 1.68 1.12 1.16 1.08 1.16 1.28 1.24 1.28 1.28 1.36 1.12 1.24 1.64 1.12
Ireland 1.60 1.12 0.92 0.88 0.96 0.96 0.92 0.96 0.92 1.00 1.00 1.00 1.08 1.04
Italy 1.52 0.80 1.04 1.20 1.26 1.04 1.12 1.16 1.04 1.20 1.24 1.08 1.56 1.12
Netherlands 1.60 0.80 1.12 0.84 1.12 0.96 1.00 1.00 0.96 1.16 1.08 0.96 1.24 1.12
Portugal 1.64 1.08 1.12 1.24 1.16 1.24 1.16 1.28 1.16 1.24 1.24 1.08 1.24 1.08
Russia 1.40 1.00 1.16 0.96 1.00 0.80 0.76 0.84 0.76 0.80 1.00 0.80 0.84 0.84
Spain 1.72 1.00 1.04 1.12 1.12 1.12 1.12 1.24 1.04 1.12 1.12 0.96 1.28 1.12
UK 1.44 0.80 1.20 1.20 1.24 1.12 1.04 1.12 0.88 1.28 1.20 1.16 1.28 1.16
Asia (1.66) (1.10) (1.06) (0.95) (1.11) (0.88) (0.83) (0.95) (0.82) (0.93) (1.01) (0.87) (0.97) (0.97)
China 1.64 0.96 1.16 0.96 1.26 0.72 0.76 0.96 0.72 0.76 0.84 0.64 0.76 0.76
Hong Kong 1.56 1.04 1.04 0.96 1.04 0.92 0.88 0.92 0.88 0.96 1.12 0.96 0.96 0.84
India 1.48 1.16 1.08 1.08 1.24 0.92 0.84 0.84 0.76 0.84 1.04 0.80 0.84 0.96
Japan 1.52 1.24 0.92 0.92 0.92 0.88 1.04 1.04 0.92 0.92 0.96 0.88 1.08 1.12
South Korea 1.80 0.84 1.16 1.12 1.20 1.00 0.92 1.04 0.92 1.08 1.16 1.04 1.16 1.08
Taiwan 1.72 0.92 1.04 0.92 1.12 0.76 0.76 0.88 0.72 0.92 0.96 0.76 1.04 1.04
Thailand 1.92 1.52 1.04 0.68 1.00 0.96 0.64 1.00 0.84 1.00 0.96 1.00 0.96 0.96

Note that the values in (.) are the average VRate/↵ for each method/model in each region.
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Table 6: Evaluating VaR prediction performance using the 19 markets with 500 out-of-sample forecasting

Mean Med Ave loss⇤ Min Max
1%
ST 4.55 4.60 1.131 3.20 6.20
LT 1.78 1.60 1.008 1.20 3.00
RM 1.81 1.80 0.955 0.80 2.40
G-n 1.61 1.60 0.796 0.75 2.50
G-t 1.26 1.20 0.634 0.60 2.25
G-sk 0.98 1.00 0.475 0.20 1.80
GJRn 1.53 1.60 0.796 0.20 2.40
GJRt 1.26 1.40 0.635 0.20 2.20
GJRsk 1.04 1.00 0.476 0.00 2.00
1STF-GARCH 1.20 1.20 0.581 0.40 2.20
2STF-GARCH 1.20 1.20 0.581 0.60 2.00
2STsk-GARCH 1.06 1.00 0.475 0.20 1.80
ESTF-GARCH 1.36 1.40 0.688 0.40 2.40
DT-GARCH 1.25 1.40 0.635 0.20 2.00
5%
ST 8.16 8.20 5.104 7.00 9.60
LT 5.09 5.00 2.111 4.00 7.60
RM 5.33 5.20 3.687 4.60 6.00
G-n 5.08 5.00 2.371 3.40 6.20
G-t 5.59 5.60 3.953 4.60 6.25
G-sk 4.89 4.80 1.318 3.60 6.40
GJRn 4.80 5.00 2.370 3.20 6.20
GJRt 5.18 5.20 2.635 4.20 6.40
GJRsk 4.62 4.60 1.054 3.60 6.40
1STF-GARCH 5.22 5.00 2.374 3.80 6.80
2STF-GARCH 5.38 5.40 3.162 4.20 6.20
2STsk-GARCH 4.81 4.80 1.844 3.20 6.20
ESTF-GARCH 5.64 5.60 3.436 3.80 8.20
DT-GARCH 5.16 5.40 3.161 3.80 6.20

⇤:

 (VRte) =

(

↵+ (VRate � ↵)2 if VRate > ↵

0 if VRate  ↵
,
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Table 7: Evaluating VaR estimates based on Lopez’s loss functions using the 19 markets with 500 out-
of-sample forecasting

Mean Med Std Min Max(1) Mean Med Std Min Max(2)

Quadratic Loss Absolute Loss

1%
ST 8.63 7.94 3.03 5.75 18.25 7.49 7.48 1.13 6.06 11.17
LT 3.05 2.57 1.73 1.55 9.25 3.24 2.56 2.08 1.78 11.04
RM 3.04 2.89 1.11 1.70 5.60 2.84 2.97 0.67 1.56 3.98
G-n 2.87 2.42 1.69 1.10 8.11 2.56 2.69 0.94 1.25 4.73
G-t 2.15 1.83 1.44 0.71 6.57 1.93 1.78 0.80 0.81 3.77
G-sk 1.73 1.39 1.41 0.33 6.21 1.53 1.60 0.82 0.36 3.44
GJRn 2.88 2.12 2.22 0.25 9.39 2.50 2.33 1.26 0.30 5.49
GJRt 3.38 1.84 6.17 0.21 28.13 2.11 2.03 1.43 0.24 6.66
GJRsk 1.90 1.36 1.87 0.00 7.25 1.61 1.52 1.07 0.00 4.25
1STF-GARCH 2.34 1.72 2.00 0.43 8.02 1.99 2.00 1.18 0.48 4.68
2STF-GARCH 2.21 1.52 1.64 0.68 7.20 1.94 1.67 0.90 0.79 3.93
2STsk-GARCH 1.83 1.36 1.55 0.23 6.75 1.63 1.56 0.94 0.27 3.71
ESTF-GARCH 2.65 2.00 2.30 0.46 9.64 2.25 1.98 1.20 0.53 5.08
DT-GARCH 2.32 1.72 1.92 0.42 7.67 1.98 1.92 1.04 0.49 4.47

Mean Med Std Min Max(1) Mean Med Std Min Max(3)

Quadratic Loss Absolute Loss

5%
ST 16.54 14.95 6.06 10.56 36.91 15.47 14.11 6.76 11.11 41.91
LT 9.97 8.78 4.04 5.64 20.07 8.65 8.32 1.79 6.06 12.44
RM 10.08 8.93 3.39 6.69 21.08 8.92 8.53 1.40 6.88 13.07
G-n 10.00 8.12 4.16 6.24 23.25 8.63 8.35 1.83 5.81 12.79
G-t 10.93 9.11 4.23 7.27 24.68 9.42 8.89 1.68 7.35 13.53
G-sk 9.30 7.77 4.31 4.95 24.18 8.15 7.80 1.94 5.49 13.97
GJRn 9.23 6.95 4.87 4.62 25.24 7.98 7.39 2.19 5.20 14.04
GJRt 10.00 8.78 4.95 5.15 26.31 8.65 8.04 2.13 5.79 14.57
GJRsk 8.86 7.74 4.86 4.40 25.60 7.65 6.96 2.18 4.90 14.27
1STF-GARCH 10.70 8.46 5.77 5.84 29.92 8.94 8.58 2.59 5.95 16.06
2STF-GARCH 10.79 9.03 4.40 6.76 24.57 9.25 8.78 1.81 7.31 13.33
2STsk-GARCH 9.28 7.46 4.42 4.92 24.28 8.06 8.10 2.01 5.47 13.74
ESTF-GARCH 11.69 9.09 6.49 6.43 32.97 9.73 9.20 3.06 6.24 18.29
DT-GARCH 10.37 8.53 4.86 5.81 26.04 8.74 8.04 2.00 6.02 13.50

(1): All extreme quadratic losses occurred in the Greece market, except for “LT” method.
(2): All extreme absolute losses occurred in the Greece market, except for “LT” and RiskMetrics.
(3): All extreme absolute losses occurred in the Greece market, except for the “ST” method.
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Table 8: Counts of model rejections for three backtests across the 19 markets at the 5% level

↵ = 1% ↵ = 5%

Model UC CC DQ4 Total UC CC DQ4 Total
ST 19 19 19 19 19 19 19 19
LT 5 3 12 13 1 2 7 7
RM 9 2 14 15 0 2 4 4
G-n 5 0 7 9 0 0 0 0
G-t 3 1 4 6 1 1 0 1
G-sk 2 0 4 6 0 0 0 0
GJRn 4 2 3 5 0 0 0 0
GJRt 6 3 5 7 1 0 0 1
GJRsk 5 0 4 6 0 0 0 0
1STF-GARCH 2 0 3 4 0 0 0 0
2STF-GARCH 2 0 6 7 0 0 1 1
2STsk-GARCH 2 0 4 6 0 0 1 1
ESTF-GARCH 3 2 4 5 2 2 3 3
DT-GARCH 4 0 2 4 0 0 0 0
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Table 9: Evaluating VaR prediction performance over the time period from January 2007 to December
2009 at the 1% and 5% levels.

Method/Model Japan U.S.

1% VRate/↵ UC CC DQ 1% VRate/↵ UC CC DQ

1%
ST 4.17 5.33
LT 2.50 3.17
MR 2.18 2.80
G-n 1.77

p p
3.34

G-t 1.64
p p

1.87
p

G-sk 1.50
p p

1.60
p p

GJRn 1.91
p

3.20
GJRt 1.64

p p p
1.87

p

GJRsk 1.50
p p p

1.47
p p p

1STF-GARCH 2.18
p

2.80
2STF-GARCH 1.50

p p
2.67

2STsk-GARCH 1.50
p p

2.00
ESTF-GARCH 3.68

p p
3.74

p

DT 1.77
p p p

2.54
RV-n 2.86 2.94
RV-t 2.73 2.40
RV-sk 2.46 1.34

p p p

5% VRate/↵ UC CC DQ 5% VRate/↵ UC CC DQ

5%
ST 1.73 1.90

p

LT 1.17
p

1.40
p

MR 1.58 1.44
G-n 1.64 1.55
G-t 1.64 1.60
G-sk 1.50 1.47
GJRn 1.45 1.52
GJRt 1.50

p
1.50

GJRsk 1.39 1.42
1STF-GARCH 1.58 1.44

p

2STF-GARCH 1.66 1.60
2STsk-GARCH 1.56 1.50
ESTF-GARCH 2.02 2.00
DT 1.53 1.60
RV-n 2.18 1.63
RV-t 2.21 1.60
RV-sk 1.99 1.39

“
p

” indicates that we fail to reject H0 at the 5% significance level.
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Table 10: Evaluating VaR estimates based on Lopez’s loss functions over the time period from January
2007 to December 2009 at the 1% and 5% levels.

Quadratic Loss Absolute Loss

NK225 SP500 NK225 SP500
1%
ST 14.19 12.41 8.41 9.79
LT 16.82 7.69 6.75 5.75
MR 8.53 4.85 4.94 4.42
G-n 6.54 5.60 3.99 5.13
G-t 5.94 3.44 3.68 3.08
G-sk 5.17 2.84 3.33 2.56
GJRn 4.84 5.04 3.65 4.70
GJRt 4.04 3.20 3.09 2.92
GJRsk 3.47 2.48 2.73 2.26
1STF-GARCH 4.31 4.56 3.49 4.14
2STF-GARCH 5.75 4.21 3.57 3.98
2STsk-GARCH 5.14 3.16 3.33 3.03
ESTF-GARCH 5.88 6.71 3.17 6.30
DT 6.35 4.28 5.45 4.05
RV-n 7.34 5.94 5.68 4.72
RV-t 8.47 4.55 7.26 3.73
RV-sk 7.39 2.81 6.54 2.26

Quadratic Loss Absolute Loss

NK225 SP500 NK225 SP500
5%
ST 28.93 23.82 16.82 18.14
LT 55.01 24.82 16.73 14.06
MR 26.32 17.11 15.13 13.61
G-n 24.12 19.25 15.66 14.89
G-t 25.72 19.77 15.98 15.34
G-sk 23.39 17.60 14.52 14.01
GJRn 20.15 17.17 13.86 13.90
GJRt 21.19 17.00 14.31 13.82
GJRsk 19.24 14.90 13.05 12.60
1STF-GARCH 22.27 18.63 15.03 13.81
2STF-GARCH 26.43 19.69 16.47 15.50
2STsk-GARCH 24.20 17.53 15.14 14.28
ESTF-GARCH 24.82 25.71 15.40 19.51
DT 24.49 19.30 17.12 15.13
RV-n 31.80 18.46 20.88 14.29
RV-t 34.45 18.08 23.46 14.05
RV-sk 30.67 15.43 21.27 11.99
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Table 11: Evaluation of volatility forecasting based on three proxies and three loss functions

RMSE MAD QLIKE
Proxy 1 Mean Med Std Mean Med Std Mean Med Std
RM 0.895 0.859 0.257 0.726 0.709 0.212 0.490 0.499 0.096
G-n 0.891 0.849 0.243 0.732 0.680 0.200 0.498 0.503 0.102
G-t 0.890 0.847 0.243 0.731 0.680 0.200 0.496 0.504 0.102
G-sk 1.279 1.125 0.723 0.998 0.799 0.581 0.653 0.573 0.307
GJRn 1.295 1.146 0.707 0.991 0.856 0.565 0.603 0.571 0.103
GJRt 1.313 1.162 0.716 1.001 0.849 0.573 0.620 0.573 0.174
GJRsk 1.302 1.152 0.711 0.992 0.844 0.569 0.626 0.556 0.233
1STF-GARCH 0.890 0.848 0.241 0.728 0.682 0.197 0.497 0.510 0.103
2STF-GARCH 0.889 0.859 0.243 0.729 0.707 0.199 0.494 0.506 0.102
2STsk-GARCH 1.301 1.111 0.700 1.013 0.787 0.563 0.604 0.591 0.094
ESTF-GARCH 0.878 0.838 0.230 0.716 0.684 0.185 0.491 0.493 0.101
DT-GARCH 0.882 0.834 0.245 0.720 0.684 0.202 0.489 0.498 0.103
Proxy 2 Mean Med Std Mean Med Std Mean Med Std
RM 0.647 0.583 0.241 0.543 0.486 0.233 0.366 0.132 0.851
G-n 0.645 0.583 0.231 0.558 0.509 0.237 0.379 0.140 0.866
G-t 0.643 0.589 0.232 0.556 0.515 0.237 0.378 0.141 0.867
G-sk 1.151 0.917 0.752 0.900 0.692 0.637 0.498 0.218 0.959
GJRn 1.184 0.890 0.727 0.900 0.690 0.612 0.452 0.221 0.933
GJRt 1.206 0.926 0.734 0.911 0.704 0.618 0.501 0.226 0.948
GJRsk 1.193 0.923 0.731 0.902 0.695 0.615 0.511 0.220 0.975
1STF-GARCH 0.649 0.607 0.245 0.558 0.509 0.251 0.380 0.142 0.877
2STF-GARCH 0.646 0.595 0.228 0.555 0.497 0.235 0.377 0.138 0.867
2STsk-GARCH 1.178 0.920 0.725 0.916 0.690 0.616 0.452 0.225 0.929
ESTF-GARCH 0.630 0.611 0.231 0.541 0.493 0.237 0.374 0.139 0.867
DT-GARCH 0.637 0.600 0.246 0.549 0.496 0.248 0.373 0.143 0.872
Proxy 3 Mean Med Std Mean Med Std Mean Med Std
RM 0.611 0.517 0.246 0.498 0.398 0.240 0.310 0.106 0.829
G-n 0.606 0.541 0.242 0.510 0.447 0.246 0.320 0.109 0.844
G-t 0.604 0.540 0.243 0.508 0.444 0.247 0.319 0.109 0.845
G-sk 1.097 0.853 0.723 0.844 0.647 0.611 0.465 0.179 0.947
GJRn 1.129 0.829 0.699 0.848 0.635 0.589 0.416 0.187 0.912
GJRt 1.150 0.861 0.706 0.859 0.649 0.595 0.472 0.181 0.932
GJRsk 1.138 0.859 0.704 0.849 0.640 0.592 0.483 0.176 0.965
1STF-GARCH 0.613 0.551 0.258 0.511 0.467 0.262 0.322 0.113 0.855
2STF-GARCH 0.607 0.537 0.239 0.508 0.447 0.244 0.319 0.113 0.845
2STsk-GARCH 1.120 0.860 0.697 0.858 0.627 0.592 0.410 0.184 0.909
ESTF-GARCH 0.600 0.508 0.246 0.500 0.443 0.248 0.319 0.119 0.845
DT-GARCH 0.597 0.523 0.257 0.500 0.450 0.260 0.410 0.184 0.909
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