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Abstract

This paper studies the constructive nature of social welfare orders on infinite utility

streams defined on X=Yℕ, satisfying the Pigou-Dalton transfer principle (PD), which are

known to be representable (see Alcantud (2010) and Sakamoto (2012)). We describe the

restrictions on domain Y for explicit representation or construction of the social welfare orders

satisfying (i) PD and monotonicity; or (ii) PD only. We show that the restrictions on Y for

either (a) construction; or (b) explicit representation of the social welfare orders are identical in

both cases.
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I. Introduction

In this paper, we consider the Pigou-Dalton transfer principle (written hereafter as PD),

which shows preference for a non-leaky and non-rank switching redistribution of a good from a

rich person to a poor with no-one else being affected. The redistribution is non-leaky in the

sense that the gain to the poor person is exactly equal to the loss suffered by the rich person

and non-rank switching in the sense that the poor does not end up having more than the other.

The redistribution is inequality reducing as was initially hinted at by Pigou (1912, p. 24) as

“The Principle of Transfers” and recognized by Dalton (1920, p. 351), as “If there are only two

income-receivers and a transfer of income takes place from the richer to the poorer, inequality

is diminished.” . In the literature on intergenerational equity, this scheme of re-distribution is
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known as an illustration of consequentialist equity. It is a core principle on measuring

inequality in the sense that any index of inequality must register a Pigou-Dalton transfer in

income as reducing the measure of inequality. Philosophers have justified Pigou-Dalton transfer

as a principle of distributive justice (see Adler (2013)).

We focus on the social welfare order (SWO), a complete and transitive binary relation on

the set X of infinite utility streams, where X takes the form of X=Yℕ, with Y being a non-

empty sub-set of real numbers ℝ, and ℕ being the set of natural numbers. Early contributions

on the representation of SWO satisfying PD with finitely many agents are Atkinson (1970) and

Dasgupta et al. (1973). Dasgupta et al. (1973, Lemma 2) give an elegant statement of the

representation theorem, which is based on the theory of mathematical inequalities by Hardy et

al. (1952). In recent literature, PD has been applied to more general economies with infinitely

many agents (or equivalently to the infinite utility streams). Some of the initial contributions

defining the version of PD in the infinite horizon framework are Sakai (2006, p. 44), Hara et al.

(2008, p. 183), and Bossert et al. (2007, p. 591), who describe it as “strict transfer principle”.

In the general infinite utility setting, PD involves comparing a pair of utility streams (x and

y) in which all generations except two have the same utility levels in both utility streams.

Regarding the two remaining generations (say, i and j), one of the generations (say i) is better

off in utility stream x, and the other generation ( j) is better off in utility stream y, thereby

setting up a conflict. If for both utility streams, generation j is at least as well off as generation

i (so that we have y >x ≥xi>yi and x can be obtained from y by transferring utility from

generation j to generation i (so that y −x =xi−yi), then x is socially preferred to y.

We take a brief detour to describe results on SWOs satisfying procedural equity

(anonymity) and efficiency. In a seminal paper, Diamond (1965) proved that there does not

exist any SWO satisfying anonymity (who defined it as “equal treatment” of all generations

(present and future)), Strong Pareto and continuity with respect to sup-metric. It could be used

to infer that there is no social welfare function (SWF), a real valued map on X, which respects

anonymity, Strong Pareto, and sup-metric continuity. Basu and Mitra (2003) refined this result

by showing that the impossibility persists even when the continuity axiom is dropped. Svensson

(1980) showed that it is possible to escape the negative outcome by discarding both the sup-

metric continuity and representability conditions. He proved that there exists a SWO satisfying

anonymity and Strong Pareto axioms. However, the existence result was established by using

the variant of Szpilrajnʼs Lemma given in Arrow (1951), which is a non-constructive device.

Fleurbaey and Michel (2003) explored the necessity of use of such non-constructive

techniques and conjectured that it may not be possible to explicitly describe the SWO. The

conjecture, if found to be true, could have important consequences since the SWO would then

be of limited practical use in policy making. The conjecture received wide attention owing to

its significance in applications. Lauwers (2010) and Zame (2007) using alternative techniques

proved the necessity of reliance on some non-constructive device to establish the existence

result, thereby confirming the conjecture. Lauwers (2010) relied upon the existence of non-

Ramsey sets to establish the non-constructive nature of the SWOs. Dubey (2011) using

technique devised in Lauwers (2010), further refined the results obtained by Lauwers (2010)

and characterized the domain Y, for which the conjecture of Fleurbaey and Michel (2003)

holds. It led to a correspondence principle that if there is no SWF satisfying the Weak Pareto

and anonymity axioms, then there is no SWO, satisfying Weak Pareto and anonymity axioms,
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which can be constructed.

This set of results relating to procedural equity inspired similar analysis in the case of

consequentialist equity conditions. In the literature on consequentialist equity, there are several

instances of the existence of equitable and efficient SWOs which are not representable. If the

SWO is shown to exist using some form of the Axiom of Choice (written hereafter as AC), then

it remains an open question if the SWO admits explicit construction. An affirmative answer

would enable the social planner to at least be able to do the pair wise ranking of infinite utility

streams and would be useful to the policy makers. In this paper, we pursue this line of

investigation in the case of PD.

It is well known that SWO satisfying PD exists (Bossert et al. (2007, Theorem 1)).

However, this existence result is derived by using the variant of Szpilrajnʼs Lemma given in

Arrow (1951), which is a non-constructive device. Dubey and Mitra (2014b, Proposition 2),

show that for Y=0,1, the existence of SWO satisfying PD implies the existence of a non-

Ramsey set, which is a non-constructive object. It implies that a SWO satisfying PD cannot be

constructed over infinite utility streams when the domain set is Y=0,1.
In two recent contributions, Alcantud (2010, Proposition 5) and Sakamoto (2012,

Proposition 3) have proved the existence of a representable SWO satisfying PD, when the

domain set is Y=0,1. The techniques used by them are similar to that introduced by Basu and

Mitra (2007, Proposition 1), who show the existence of a representable SWO satisfying the

anonymity and an efficiency principle known as weak dominance. However, this existence

result uses AC and therefore the representation could potentially be non-constructive.

The possibility of representable SWOs satisfying PD allows us to enrich the research

question posed earlier. If the representation admits explicit description, then the SWO itself

becomes constructive. A positive answer would demonstrate that the use of AC in the existence

proof of equitable SWO is not essential. Negative outcome would on the other hand lead to a

version of correspondence principle, i.e., the domains for which a representable SWO satisfying

PD admits explicit description is the same as the domains for which the representable SWO

satisfying PD is constructive.

Alcantud (2012, Proposition 1) and Sakamoto (2012, Proposition 5) have shown that there

does not exist a SWF satisfying PD and Weak Pareto axiom for Y⊃0,1 . Therefore, we

combine the weaker efficiency condition of monotonicity with the PD first, and characterize the

subsets of Y=0,1 for which the SWOs are constructive. In the first set of results (Propositions

1-6), we show that the subsets Y for which the monotone SWOs satisfying PD are (i)

constructive; or (ii) have a representation, coincide. This leads to a correspondence principle

(Theorem 1) in line with similar results in relation to other procedural (Dubey (2011)) as well

as consequentialist (Dubey and Mitra (2014a), Dubey and Mitra (2014b), and Dubey (2016))

equity notions.
1

Even though monotonicity is a very weak efficiency axiom, it turns out to be strong

enough to rule out the existence of representable SWOs for Y containing more than five distinct

elements. We therefore explore the possibility of explicit representation of SWOs satisfying PD

without insisting on monotonicity. It would bring out the conflict between the equity and

explicit representation. Results are reported in Propositions 7-10. We show that the domain
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restrictions, for the SWOs satisfying PD (i) to be constructive; or (ii) to have an explicit

representation, coincide. This leads to a variation of the correspondence principle (Theorem 2).

Rest of the paper is organized as follows. Section II contains the definitions of the

concepts needed in the paper. In Section III, we consider monotone SWOs satisfying PD.

Section IV deals with SWOs satisfying PD with no additional assumption. We conclude in

Section V and the Appendix A contains all the proofs.

II. Preliminaries

1. Notation

Let ℝ and ℕ be the sets of real numbers and natural numbers respectively. For all

y,z∈ℝℕ, we write y≥z if yn≥zn, for all n∈ℕ; we write y>z if y≥z and y≠z; and we

write y≫z if yn>zn for all n∈ℕ.

2. Definitions

Let Y, a non-empty subset of ℝ, be the set of all possible utilities that any generation can

achieve. Then X≡Yℕ is the set of all possible utility streams. If x ∈X, then x=x1, x2,⋯,
where, for all n∈ℕ, xn∈Y. We consider binary relations on X, denoted by ≳, with symmetric

and asymmetric parts denoted by ~ and ≻ respectively, defined in the usual way. A social

welfare order (SWO) is a complete and transitive binary relation. A social welfare function

(SWF) is a mapping W: X→ℝ. Given a SWO ≳ on X, we say that ≳ can be represented by a

real-valued function if there is a mapping W: X→ℝ such that for all x, y∈X, we have x ≳ y if

and only if Wx≥Wy.

1) Equity and Efficiency Axioms

The following consequentialist equity and efficiency axioms on social welfare orders are

used in this paper.

Definition. Pigou-Dalton transfer principle (PD): If x, y∈X, and there exist i, j∈ℕ, such that

y >x ≥xi>yi, and y +yi=x +xi while yk=xk for all k∈ℕi, j, then x≻y.

Definition. Monotonicity (M): If x, y∈X, with x≥y, then x ≳ y.

2) Ramsey and Non-Ramsey Collections of Sets

Let T be an infinite subset of ℕ. We denote by ΩT the collection of all infinite subsets of

T, and we denote Ωℕ by Ω. Thus, for any infinite subset T of ℕ, we have T⊂ℕ, and T∈Ω.

A collection of sets Γ⊂Ω is called Ramsey if there exists T∈Ω such that either ΩT⊂Γ or

ΩT⊂ΩΓ. Next we define collection of sets known as non-Ramsey.

Definition. Non-Ramsey Sets: A collection of sets Γ⊂Ω is non-Ramsey if for every T∈Ω,

the collection ΩT intersects both Γ and its complement ΩΓ.

3) Constructive Statements and Objects
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Next we define statements and objects which are constructive. Consider the statement of

the following form “There exists a SWO satisfying a given property.”. This statement asserts

the existence of an object (SWO, in this case) satisfying the given property. We call such

statement to be constructive if it can be established in every model of Zermelo-Fraenkel (ZF)

set theory, i.e., with AC (ZFC set theory); as well as without AC (ZF set theory). In this

situation, we say that the object is constructive and that the object can be constructed.

However, if the statement (i) can be established in every model of ZFC set theory, but (ii)

there is some model of ZF set theory (without AC) in which it cannot be established, we will

say that the statement is non-constructive. Further, we will also say that the object is non-

constructive, and that the object cannot be constructed.

For illustration, consider the statement, “There exists a non-Ramsey collection of sets

Γ⊂Ω.”. This statement has been established under ZFC set theory in Erdós and Rado (1952).

However, Mathias (1977) has shown that in Solovayʼs model 1 (which satisfies ZF, but does

not satisfy AC) every collection of sets Γ⊂Ω is Ramsey. Therefore, there is a model of ZF set

theory in which the statement cannot be proved. Applying our definition, this statement is non-

constructive. In addition, we say that the object “a non-Ramsey collection of sets” is a non-

constructive object, and this object cannot be constructed.

We refer the reader to Dubey and Mitra (2014b, Section 2.2.5) for a detailed discussion

drawn from the mathematics literature on the interpretation of “non-constructive statements and

objects”, which is relevant for this paper.

III. Monotone SWF Satisfying PD

Dubey and Mitra (2014a) have shown that SWF combining Strong Equity
2

with

Monotonicity exists for Y containing not more than five distinct elements. Observe that for any

pair of sequences x and y, comparing sequences using PD is a more restrictive exercise

compared to using SE. Among all possible SE comparisons, only non-leaky transfers qualify

for comparison using PD. Further non-rank switching condition is consistent with the possibility

of the utilities of the rich and poor being equal post transfer. We continue with the domain

Y≡a, b, c, d, e with a<b≤c≤d<e containing five (possibly distinct) elements. Observe that

in order to perform any PD comparison, we need at least three distinct elements in Y . Also,

elements in Y could be inconsistent for comparing utility streams using PD. In such case

W: X→ℝ as Wx=0 satisfies M and PD trivially.

(1) Y contains three distinct elements. Following proposition shows existence of a SWF

satisfying PD and M.

Proposition 1. If Y=a, b, c is such that a+c=2b, then, there exists a SWF on X≡Yℕ

satisfying PD and M which is defined without using AC.

(2) Y contains four distinct elements. Let a+d=b+c and 2b=a+c (take a=0, b=1, c=2

and d=3). Following propositions deal with SWF and SWO in this case.
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Proposition 2. [Alcantud (2013, Theorem 1, footnote 3)] If Y=a, b, c, d is such that

a+d=b+c and 2b=a+c, then, there does not exist a representable SWO on X≡Yℕ

satisfying PD and M.

Proposition 3. If Y=a, b, c, d is such that a+d=b+c and 2b=a+c, then, the existence

of a SWO on X≡Yℕ, satisfying PD and M, entails the existence of a collection of sets

Γ⊂Ω, which is non-Ramsey.

(3) Y contains five distinct elements, i.e. Y≡a, b, c, d, e.3

(a) Let b+e=c+d and either (i) 2b=a+c, or (ii) 2b=a+d or (iii) 2b=a+e.
4

Following

PD comparisons are possible for any pair of utility streams, with

(A) the pre-transfer rich and poor generation to have utility e and b respectively and the

post-transfer rich and poor generation to have utility d and c respectively;

(B) the pre-transfer rich to have utility c, or d or e in case (i), (ii) or (iii) respectively,

and the pre-transfer poor to have utility a; and the post-transfer rich and poor

generation to have utility b and b respectively.

In each of these cases, we can show following Dubey and Mitra (2014a, Proposition 2)

that no SWF satisfying PD and M exists. For illustration we consider the second case:

2b=a+d.

Proposition 4. If Y=a, b, c, d, e is such that b+e=c+d, and 2b=a+d, then, there

does not exist a representable SWO on X≡Yℕ, satisfying PD and M.

Following the approach in case (2), we show that the correspondence principle holds in

this situation as well.

Proposition 5. If Y=a, b, c, d, e is such that b+e=c+d, and 2b=a+d, then, the

existence of a SWO on X≡Yℕ satisfying PD and M, entails the existence of a collection

of sets Γ⊂Ω, which is non-Ramsey.

(b) (i) Let b+e=c+d, with either 2c=a+d or 2c=a+e . (take for instance a=0, b=4,

c=6, d=12, and e=14; or a=0, b=4, c=7, d=11, and e=14). The utility

streams can be compared using PD, with

(A) the pre-transfer rich and poor generation to have utility e and b respectively

and the post-transfer rich and poor generation to have utility d and c

respectively;

(B) the pre-transfer rich to have utility d or e and pre-transfer poor to have utility a

and the post-transfer rich and poor generation to have utility c and c

respectively;
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(C) in case of 2c=a+e, the pre-transfer rich and poor generation to have utility d

and a respectively and the post-transfer rich and poor generation to have utility

c and b respectively.

(ii) Let a+e=c+d, with either 2c=b+d or 2d=b+e. (take for instance a=0, b=4,

c=5, d=6, and e=11; or a=0, b=1, c=5, d=6, and e=11). Following PD

comparisons are possible for any pair of utility streams, with

(A) the pre-transfer rich and poor generation to have utility e and a respectively

and the post-transfer rich and poor generation to have utility d and c

respectively;

(B) in case of 2c=b+d, the pre-transfer rich to have utility d and pre-transfer

poor to have utility b and the post-transfer rich and poor generation to have

utility c and c respectively;

(C) in case of 2d=b+e, the pre-transfer rich to have utility e and pre-transfer poor

to have utility b and the post-transfer rich and poor generation to have utility d

and d respectively;

(D) in case of 2d=b+e, the pre-transfer rich and poor generation to have utility d

and a respectively and the post-transfer rich and poor generation to have utility

c and b respectively.

(iii) Let a+e=b+d=2c, c+d≠b+e and 2d≠c+e (take a=0, b=1, c=3, d=5, and

e=6). Following PD comparisons are possible for any pair of utility streams, with

(A) the pre-transfer rich and poor generation to have utility e and a respectively

and the post-transfer rich and poor generation to have utility d and b

respectively;

(B) the pre-transfer rich and poor generation to have utility d and b respectively

and the post-transfer rich and poor generation to have utility c and c

respectively;

(C) the pre-transfer rich and poor generation to have utility e and a respectively

and the post-transfer rich and poor generation to have utility c and c

respectively.

None of the utility levels b, c, and d can be assigned to both pre-transfer poor and

post transfer rich generations.

In each of the cases (i), (ii) and (iii), we can show that the SWF in Dubey and Mitra

(2014a, Proposition 1) satisfies PD and M (as well as WP).

(c) Let Y be such that a, c≺b, b and c, e≺d, d be the only two possible PD

comparisons (i. e., 2b=a+c, and 2d=c+e are such that no other PD comparison is

feasible (take a=0, b=1, c=2, d=5, and e=8). Next proposition shows that there

exists a SWF satisfying PD and M.

Proposition 6. If Y=a, b, c, d, e is such that a, c≺b, b and c, e≺d, d are the

only feasible PD comparisons, then, there exists a SWF on X≡Yℕ satisfying PD and M

which is defined without using AC.

The Propositions 1-6 exhaust all possible Y⊂ℝ for which representation or explicit
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construction of SWO is possible. For remaining Y neither any SWF satisfying PD and M exists

nor the SWO is constructive. Thus we are led to following theorem.

Theorem 1. If SWO ≳ on X satisfies PD and M, then the SWO admits a representation if and

only if it is constructive.

IV. SWO Satisfying PD

In this section we consider SWOs over infinite utility streams satisfying PD. It is known

(see Alcantud (2010) and Sakamoto (2012)) that SWOs satisfying PD are representable when

the domain set Y is the interval 0, 1. However, the possibility result uses AC. In Dubey and

Mitra (2014b) it has been shown that there is no SWO satisfying PD which can be constructed

when Y=0, 1.
We take the subsets of ℝ as our object of investigation with the aim to characterize the

sets Y for which the SWFs can be described without relying on AC. Our result shows the

restrictive effect of the weak inequality in the post transfer welfare of the two generations on

the cardinality of domain set Y with regard to the construction possibility of the SWO. We

show that for Y containing a minimal set of four distinct elements (appropriately chosen), an

explicit formula of a SWF satisfying PD exists.

Proposition 7. If Y=a, b, c, d is such that a+c=2b and b+d=2c, then, there exists a SWF

on X≡Yℕ satisfying PD which is defined without using AC.

Next we show that for any Y consisting of five distinct elements (suitably chosen), every

SWO satisfying Pigou-Dalton transfer principle must be non-constructive in nature.

Proposition 8. If Y=a, b, c, d, e is such that a+c=2b, b+d=2c, and c+e=2d, then, the

existence of a SWO on X≡Yℕ satisfying PD, entails the existence of a collection of sets Γ⊂Ω,

which is non-Ramsey.

By Proposition 8 we have also been able to show that the SWF satisfying PD (which exist

by Alcantud (2010, Proposition 5) and Sakamoto (2012, Proposition 3)) does not exhibit the

property of explicit description. If it did, then it would be possible to construct the SWO in this

case as “x ≳ y if and only if Wx≥Wy” contradicting the Proposition 8.

It is important to emphasize the role played by the choice of five elements in Proposition

8. For an appropriately chosen set Y consisting of six distinct elements, there exists a SWF

satisfying PD.

Proposition 9. If Y=a, b, c, d, e, f is such that a+d=b+c, b+e=c+d, and c+f=d+e

and neither b nor e is the post transfer utility level of rich or poor, then, there exists a SWF on

X≡Yℕ satisfying PD which is defined without using AC.

Mitra (2010) presents an example of a SWF satisfying SE for the domain Y containing

seven distinct elements. It can be used to demonstrate that it is possible to describe explicitly a

SWF satisfying PD for an appropriately chosen set Y consisting of seven distinct elements (for

example, Y consisting of seven elements, a, b, c, d, e, f, g with a=1, b=2, c=6, d=7,

e=11, f=12 and g=16). Observe that the SWFs in Proposition 9 as well as in the seven
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element case violate M. However in Dubey and Mitra (2014b, Proposition 2), it has been

shown that for Y with eight or more distinct elements, every SWO satisfying PD is necessarily

non-constructive.

Proposition 10. [Dubey and Mitra (2014b, Proposition 2)] If Y=a, b, c, d, e, f, g, h is such

that a+h=b+g, c+f=d+e, a+d=b+c, e+h=f+g, then, the existence of a SWO on

X≡Yℕ satisfying PD, entails the existence of a collection of sets Γ⊂Ω, which is non-Ramsey.

As in the case of Proposition 8, the Proposition 10 also entails that the SWF satisfying PD

(which exists in this case, see Alcantud (2010, Proposition 5) and Sakamoto (2012, Proposition

3)) must be non-constructive. Thus we have covered all possible cardinality of set Y. For sets Y

containing up to seven appropriately chosen distinct elements, there exists an explicitly

constructed SWF (and SWO) . For remaining Y neither any SWF satisfying PD has explicit

description nor the SWO is constructive. The Propositions 7-10 lead to following theorem for

SWO satisfying PD.

Theorem 2. If SWO ≳ on X satisfies PD, then the SWO admits a representation without using

AC if and only if it is constructive.

V. Conclusions

In this paper we have established the following version of correspondence principle. The

domains Y, for which the SWO satisfying PD (with or without M) admits (a) explicit

representation; or (b) is constructive, are identical. The cardinality of set Y is finite in each

case. We present explicit functional forms of the social welfare functions when they exist. The

second result pertains to restrictions of domain set Y for explicit representation and construction

of social welfare orders satisfying PD. It explains the non-constructive nature of the possibility

result in Alcantud (2010, Proposition 5) and Sakamoto (2012, Proposition 3).

Our paper has devised a convenient mechanism to examine the possibility of explicit

description of SWF satisfying PD. If the SWO satisfying PD is non-constructive then the

representation (the SWF) is also non- constructive.

We note that PD is a more restrictive equity condition compared to the Strong Equity

axiom as PD requires transfers to be non-leaky and allows the post transfer rich and poor to

have equal utility level. In section IV, we have examined PD without imposing any additional

axiom. It is important to note that not all utility transfer satisfying SE would be comparable by

PD.
5

Although the set Y is finite in case the SWO is constructive, the cardinality of the set of

utility streams which could be pairwise ranked is uncountable. For the population divided

among rich, upper middle class, lower middle class, and poor (or ultra-rich, rich, median and

poor on the basis of income), SWO satisfying PD could be useful tool for policy makers.

To further expand the cardinality of set Y admitting explicit representation of SWOs, we

might consider weakening of PD. A weaker version of PD could be no regressive transfer

principle which retains the strict ranking as obtained in PD but modifies the non-leaky transfer
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condition to include the situations where the sum of post transfer welfare levels is higher than

pre- transfer levels. Another version is the weak Pigou Dalton transfer which replaces the strict

ranking in PD by weak ranking. We keep these two issues for future research.

APPENDIX A Proofs

Proof of Proposition 1. For x∈X, let, Nx=n: xn=a, αn=−
1

2n , and δn=−αn for all n∈ℕ. We

define W: X→ℝ as follows:

W(x)=
∑

nNx

α(n) if N(x)is non-empty,

∑


n1

δ(n)(xn−a) otherwise.

(1)

Brief intuition for showing that W satisfies PD and M is as follows. We partition the set of

individuals ℕ into poor xi=a and non-poor xi>a. If no individual is poor in a utility stream, then W

is a sum of discounted utilities xi−a and is positive. Further, in case there is any poor individual, W

ignores all non-poor individuals and assigns negative weight to each poor individual. To show that W

satisfies PD, note that the utility a must be assigned to the pre-transfer poor generation. Since, W accounts

for every improvement of the pre-transfer poor generation (having utility a), the above formula satisfies

PD. It is easy to verify that W also satisfies WP. Let x≫y. There are two possibilities. (i) Ny≠∅. Then

Wx>0>Wy. (ii) Ny=∅. Then Wx−Wy=
n1



δnxn−yn>0.

□

Remark 1. This SWF also satisfies PD and M in case Y contains four (a+d=b+c, and 2b≠a+c,

consider a=0, b=1, c=3, and d=4, where pre-transfer poor can be at utility level a only) or five (where

b and c are never pre-transfer poor, consider a=0, b=1, c=3, d=4 and e=8 with only two PD

redistributions, i. e., 0, 4≺1, 3 and 0, 8≺4, 4.) distinct elements.

Proof of Proposition 3. Let N≡n1, n2, n3, n4,⋯ be an infinite subset of ℕ such that nk<nk1 for all

k∈ℕ . Let N=1, 2,⋯, 2n4−1 . For any T∈ΩN, T≡t1, t2, t3, t4,⋯ with t k<t k1 for all k∈ℕ, we

partition the set of natural numbers ℕ in U=2t1−1, 2t1,⋯, 2t2−1, 2t3−1,⋯, 2t4−1,⋯ and

L=ℕU= 1, 2,⋯, 2t1−1, 2t2−1, 2t2,⋯, 2t3−1,⋯ . Let LTE=t∈L∩N: t is even and LTO=

L∩NLTE . Also, UTE=t∈U∩N: t is even, UTO=U∩NUTE, LCN=LN, and UCN=UN . We

define the utility stream xT, N whose components are,

xt=
b if t∈LTO, d if t∈LTE,

c if t∈UTO, c if t∈UTE,

a if t∈LCN, b if t∈UCN.

(2)

We also define the sequence yT, N using the subset Tt1 in place of subset T, in the following

fashion. The two partitions of the set of natural numbers ℕ areU
=2t2−1, 2t2,⋯, 2t3−1, 2t4−1,⋯,

2t5−1,⋯ and L
=ℕU. Let LTE=t∈L

∩N: t is even and LTO=L
∩NLTE. Also, UTE=
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t∈U
∩N: t is even, UTO=U

∩NUTE, LCN=L
N, and UCN=U

N . We define the utility stream

yT, N whose components are,6

yt=
b if t∈LTO, d if t∈LTE,

c if t∈UTO, c if t∈UTE,

a if t∈LCN, b if t∈UCN.

(3)

As N is unique for any N, xS, N and yS, N are well-defined for any S∈ΩN.

Let ≳ be a social welfare order satisfying M and PD. We claim that the collection of sets

Γ≡N∈Ω: yN≻xN is non-Ramsey. We need to show that for each T∈Ω, the collection ΩT

intersects both Γ and ΩΓ. For this, it is sufficient to show that for each T∈Ω, there exists S∈ΩT such

that either T∈Γ or S∈Γ, with the either/or being exclusive. Let T≡t1, t2,⋯. In the remaining proof we

are concerned with infinite utility sequences xT, T, yT, T and xS, T, yS, T where S∈ΩT. For ease

of notation, we omit reference to T. As the binary relation is complete, one of the following cases must

arise: (a) yT≻xT; (b) xT≻yT; (c) xT~yT. Accordingly, we now separate our analysis into three

cases.

(a) Let yT≻xT, i.e., T∈Γ . We drop t1 from T to obtain S=t2, t3, t4,⋯ . Hence S∈ΩT . Let

T1≡2t1−1, 2t1+1,⋯, 2t2−3 and T2≡2t1, 2t1+2,⋯, 2t2−2. Observe that

(A) for all t∈ℕ, xtS=ytT;

(B) for all t∈T1, xtT=c>b=ytS; for all t∈T2, xtT=c<d=ytS; and

(C) for all the remaining t∈ℕ, xtT=ytS.

Then for the generations 2t1−1 and 2t1, y2t11S=b<c=x2t11T≤x2t1T=c<d=y2t1S and

y2t11S+y2t1S=x2t11T+x2t1T or b+d=2c . Similar inequalities hold for the pair of generations

2t1+1, 2t1+2,⋯, 2t2−3, 2t2−2. Each of these pairs leads to PD improvements in xT compared

to yS . Since these are finitely many PD improvements, xT≻yS by PD. Also, xS~yT . Since

yT≻xT, we get, xS~yT≻xT≻yS. Thus, xS≻yS by transitivity of ≳, and so S∉Γ.

(b) Let xT≻yT, i.e., T∉Γ. We drop t1 and t4n, t4n1 for all n∈ℕ from T to obtain S=t2, t3, t6, t7,⋯.

Hence S∈ΩT. Let T1≡2t1−1, 2t1+1,⋯, 2t2−3, T2≡2t1, 2t1+2,⋯, 2t2−2, and T
≡2t4n−1,

2t4n,⋯, 2t4n1−2: n∈ℕ. Observe that,

(A) for all t∈T1, xtT=c>b=ytS; for all t∈T2, xtT=c<d=ytS;

(B) for all t∈T

, xtT=xtS=a<b=ytT=ytS; and

(C) for all the remaining coordinates, xtT=ytS and xtS=ytT.

Then for the generations 2t1−1 and 2t4−1, x2t41T=a<b=y2t41S≤y2t11S=b<c=x2t11T and

y2t41S+y2t11S=x2t41T+x2t11T or a+c=2b . There are finitely many generations in T1 and

infinitely many generations in T


. Let the cardinality of set T1 be K . Thus it is possible to choose
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generations l1=2t4−1, l2,⋯, l from T


such that similar inequalities hold for the pair of generations

2t1+1, l2, ⋯, 2t2−3, l. Each of these pairs leads to PD improvements in yS compared to xT.

Since these are finitely many PD improvements, and also by comparing remaining generations

t∈T2∪T
l1,⋯, l, yS≻xT by PD and M. Also, yT≳xS by M. Since xT≻yT, we get

yS≻xT≻yT≳xS. Thus, yS≻xS by transitivity of ≳, and so S∈Γ.

(c) Let xT~yT, i.e., T∉Γ. We drop t1, t2, t3 and t4n2, t4n3 for all n∈ℕ from T to obtain

S=t4, t5, t8, t9,⋯. Hence S∈ΩT . Denote the set of coordinates T1≡2t2−1, 2t2+1,⋯, 2t3−3,

T2≡2t2, 2t2+2,⋯, 2t3−2, T3≡2t1−1, 2t1+1,⋯, 2t2−3∪2t3−1, 2t3+1,⋯, 2t4−3, T4≡2t1,

2t1+2,⋯, 2t2−2∪2t3, 2t3+2,⋯, 2t4−2, and T
≡2t4n2−1,⋯, 2t4n3−2: n∈ℕ.

(i) For xS and yT,

(A) for all t∈T1, ytT=c>b=xtS; for all t∈T2, ytT=c<d=xtS;

(B) for all t∈T

, xtS=a<b=ytT; and

(C) for all the remaining coordinates, ytT=xtS.

Then for the generations 2t2−1 and 2t2, x2t21S=b<c=y2t21T≤y2t2T=c<d=x2t2S and

x2t21S+x2t2S=y2t21T+y2t2T or b+d=2c. Similar inequalities hold for the pair of

generations 2t2+1, 2t2+2,⋯,2t3−3, 2t3−2. Each of these pairs leads to PD improvements in

yT compared to xS . Since these are finitely many pairs of PD improvements, and also by

comparing generations t∈T

, xS≺yT by PD and M.

(ii) For xT and yS,

(A) for all t∈T3, xtT=c>b=ytS; for all t∈T4, xtT=c<d=ytS;

(B) for all t∈T

, xtT=a<b=ytS; and

(C) for all the remaining coordinates, xtT=ytS.

Then for the generations 2t1−1 and 2t6−1, x2t61T=a<b=y2t61S≤y2t11S=b<c=x2t11T

and x2t61T+x2t11T=y2t61S+y2t11S or a+c=2b. There are finitely many generations in T3

and infinitely many generations in T


. Let the cardinality of set T3 be K . Thus it is possible to

choose generations l1=2t6−1, l2,⋯, l from T


such that similar inequalities hold for the pair of

generations 2t1+1, l2,⋯, 2t4−3, l . Each of these pairs leads to PD improvements in yS

compared to xT. Since these are finitely many pairs of PD improvements, and also by comparing

remaining generations t∈T4∪T
l1,⋯, l, yS≻xT by PD and M.

Since xT~yT, we get yS≻xT~yT≻xS. Thus, yS≻xS by transitivity of ≳, and so S∈Γ.

□

Proof of Proposition 4. If not, then there is Y=a, b, c, d, e, where a<b<c<d<e, and ≳ is a

representable social welfare order on X=Yℕ satisfying the PD and M. Let W: X→ℝ be a function which

represents ≳ on X.

Let I≡0, 1 and r1, r2,⋯ be a given enumeration of the rational numbers in I . For each real

number p∈I, define Np=n: n∈ℕ; n>2: rn∈0,p and M p=ℕNp∪1,2. Define following pair
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of sequences xp∈X and yp∈X as:

xnp=
e if n=1,

b if n=2,

b if n∈Np,

a otherwise,

ynp=
d if n=1,

c if n=2,

b if n∈Np,

a otherwise,

(4)

Note that x2p=b<c=y2p<y1p=d<e=x1p and xnp=ynp for all n>2 . Hence by PD,

yp≻xp, and Wyp>Wxp. Now let q∈p,1. Observe that Np⊂Nq and M q⊂M p. There are

infinitely many elements in Nq∩M p. Let jp,q≡min Nq∩M p for which y p,qp=a<b=x p,qq

holds. Define

zn=d if n=2,

ynp otherwise,
(5)

Since z2=d>c=y2p and z≥yp, z⩾y(p) by M. Also, zp,q=a<b=x p,qq=b=x2q<d=z2;

and xnq≥zn for all other n∈ℕ. This implies xq≻z by PD and M. Combining it with z⩾y(p) we get

xq≻yp and so Wxq>Wyp . This leads to a contradiction, by using the arguments in Basu and

Mitra (2003, Theorem 1). □

Proof of Proposition 5. Define Y≡a, b, c, d, e, with a<b<c<d<e<f, b+e=c+d, and a+d=2b .

We use the technique of proof used in Proposition 3 with the following modified sequence xT, N,

xt=
b if t∈LTO, e if t∈LTE,

c if t∈UTO, d if t∈UTE,

a if t∈LCN, b if t∈UCN.

(6)

and yT, N,

yt=
b if t∈LTO, e if t∈LTE,

c if t∈UTO, d if t∈UTE,

a if t∈LCN, b if t∈UCN.

(7)

□

Proof of Proposition 6. Given any sequence x∈X, define Nx=n: xn=a, and M x=m: x=b or

x=c. Let αn=−
1

2n , βn=−
1

3n and δn=−αn for all n∈ℕ. We define W: X→ℝ by

W(x)=
∑

nNx

α(n)+ ∑
mMx

β(m) if N(x) or M(x) is non-empty,

∑


n1

δ(n)(xn−a) otherwise.

(8)

Then, it is easy to show that Wx satisfies PD and M. □

Remark 2. Unlike in the previous cases, W does not satisfy WP. Consider y=b, b,⋯ and x=c, c,⋯.
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Then, x≻y by WP, whereas Wx=Wy=−
1

2
.

Proof of Proposition 7. Note that Y with a=0, b=1, c=2 and d=3 satisfies the specified conditions. Let

αn=−
1

2n , and δn=−αn . For x∈X, let Nx=n: xn=a, and M x=n: xn=d . We define the

SWF as follows.

W(x)=
∑

nNx

α(n)+ ∑
mMx

α(m) if N(x) or M(x) is non-empty,

∑


n1

δ(n)(xn−a) otherwise.

(9)

Now we show that W satisfies PD. There are three possible situations in which we can compare pair

of sequences x and y using PD.

(a) For x, y∈X let there exists i, j∈ℕ such that

yi=a<b=xi≤x =c<d=y , and xk=yk for all k∈ℕi, j,

then we need to show that Wx>Wy. Note Nx∪i=Ny and M x∪ j=M y.

(i) If Nx=M x=∅, then, Wx>0>Wy since Ny≠∅ and M y≠∅.

(ii) If Nx≠∅ or M x≠∅, then:

Wx−Wy=∑
nNx

αn−∑
nNy

αn + ∑
 x

αm− ∑
 y

αm

=∑
nNx

αn− ∑
nNxi

αn+ ∑
 x

αm− ∑
 x

αm

= −αi−α j=
1

2 i+
1

2  > 0.

(b) For x, y∈X let there exists i, j∈ℕ such that

yi=a<b=xi≤x =b<c=y , and xk=yk for all k∈ℕi, j,

then we need to show that Wx>Wy. Note Nx∪i=Ny and M x=M y.

(i) If Nx=M x=∅, then, Wx>0>Wy since Ny≠∅.

(ii) If Nx≠∅ or M x≠∅, then:

Wx−Wy=∑
nNx

αn−∑
nNy

αn

=∑
nNx

αn− ∑
nNxi

αn= −αi=
1

2 i > 0.

(c) For x, y∈X let there exists i, j∈ℕ such that

yi=b<c=xi≤x =c<d=y , and xk=yk for all k∈ℕi, j,

then we need to show that Wx>Wy. Note Nx=Ny and M x∪ j=M y.

(i) If Nx=M x=∅, then, Wx>0>Wy since M y≠∅.
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(ii) If Nx≠∅ or M x≠∅, then:

Wx−Wy= ∑
 x

αm− ∑
 y

αm

= ∑
 x

αm− ∑
 x

αm= −α j=
1

2  > 0.

□

Remark 3. It is easy to see that the SWF violates M, as it should. Consider x=b, b,⋯ and y=d, d,⋯.

Then Wy=−1 and Wx=b−a>0. Thus Wx>Wy whereas y⩾x by M.

Proof of Proposition 8. Define Y≡a, b, c, d, e with a<b<c<d<e, a+c=2b, b+d=2c, and c+e=2d

. Let N≡n1, n2, n3, n4,⋯ be an infinite subset of ℕ such that nk<nk1 for all k∈ℕ. Let

N=1, 2,⋯, 2n4−1. For any T∈ΩN, T≡t1, t2, t3, t4,⋯ with t k<t k1 for all k∈ℕ, we partition the

set of natural numbers ℕ in U=2t1−1, 2t1,⋯, 2t2−1, 2t3−1,⋯, 2t4−1,⋯ and L=ℕU=

1,2,⋯,2t1−1,2t2−1,2t2,⋯,2t3−1,⋯ . Let LTE=t∈L∩N: t is even and LTO=L∩NLTE . Also,

UTE=t∈U∩N: t is even and UTO=U∩NUTE . Further, LCTE=t∈LN: t is even, LCTO=

LNLCTE, UCTE=t∈UN: t is even, UCTO=UNUCTE. The utility stream xT,N is,

xt=
b if t∈LTO, d if t∈LTE,

c if t∈UTO, c if t∈UTE,

a if t∈LCTO, e if t∈LCTE,

b if t∈UCTO, d if t∈UCTE.

(10)

The utility assigned to odd and even generations in L∩N are b, and d, respectively. The utility

assigned to each generation in U∩N is c . Similarly the utility assigned to odd and even generations in

LN are a, and e respectively. Lastly the utility assigned to odd and even generations in UN are b and d

respectively.

The utility stream yT, N is defined using the subset Tt1 in place of subset T, in identical fashion.

The two partitions of the set of natural numbers ℕ are U
=2t2−1, 2t2,⋯, 2t3−1, 2t4−1,⋯,2t5−1,⋯

and L
=ℕU . Let LTE=t∈L

∩N: t is even and LTO=L
∩NLTE . Also, UTE=t∈U

∩N: t is even

and UTO=U
∩NUTE . Further, LCTE=t∈LN: t is even, LCTO=LNLCTE, UCTE= t∈U

N: t is even, UCTO=UNUCTE. The utility stream yT, N is,7

yt=
b if t∈LTO, d if t∈LTE,

c if t∈UTO, c if t∈UTE,

a if t∈LCTO, e if t∈LCTE,

b if t∈UCTO, d if t∈UCTE.

(11)
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As N is unique for any N, xS, N and yS, N are well-defined for any S∈ΩN.

Let ≳ be a social welfare order satisfying PD. We claim that the collection of sets

Γ≡N∈Ω: yN≻xN is non-Ramsey. We need to show that for each T∈Ω, the collection ΩT

intersects both Γ and ΩΓ. For this, it is sufficient to show that for each T∈Ω, there exists S∈ΩT such

that either T∈Γ or S∈Γ, with the either/or being exclusive. Let T≡t1, t2,⋯. In the remaining proof we

are concerned with infinite utility sequences xT, T, yT, T and xS, T, yS, T where S∈ΩT. For ease

of notation, we omit reference to T. As the binary relation is complete, one of the following cases must

arise: (a) yT≻xT; (b) xT≻yT; (c) xT~yT. Accordingly, we now separate our analysis into three

cases.

(a) Let yT≻xT; that is, T∈Γ . We drop t1 from T to obtain S=t2, t3, t4,⋯ . Hence S∈ΩT . Let

T1≡2t1−1, 2t1+1,⋯, 2t2−3 and T2≡2t1, 2t1+2,⋯, 2t2−2. Observe that

(A) for all t∈T1, xtT=c>b=ytS;

(B) for all t∈T2, xtT=c<d=ytS;

(C) for all the remaining t∈ℕ, xtT=ytS.

(D) for all t∈ℕ, xtS=ytT

Then for the generations 2t1−1 and 2t1,

y2t11S=b<c=x2t11T≤x2t1T=c<d=y2t1S, and b+d=2c.

Similar inequalities hold for the pair of generations 2t1+1, 2t1+2, ⋯, 2t2−3, 2t2−2 . Each of

these pairs leads to PD improvements in xT compared to yS . Since these are finitely many PD

improvements, xT≻yS by PD. Also, xS~yT. Since yT≻xT, we get

xS~yT≻xT≻yS.

Thus, xS≻yS by transitivity of ≳, and so S∉Γ.

(b) Let xT≻yT; that is, T∉Γ. We drop t1 and minimum number of t4n, t4n1 such that

|2t1−1,⋯, 2t2−2|≤|2t4−1,⋯, 2t5−2∪⋯∪2t4k−1,⋯, 2t4k1−2|

from T to obtain S=t2, t3, t6, t7, t10, t11,⋯ . Hence S∈ΩT . Denote the set of coordinates

2t1−1, 2t1+1,⋯, 2t2−3 by T1, 2t1, 2t1+2,⋯, 2t2−2 by T2, 2t4−1, 2t4+1,⋯, 2t5−3,⋯,

2t4k−1,⋯, 2t4k1−3 by T3 and 2t4, 2t4+2,⋯, 2t5−2,⋯, 2t4k,⋯, 2t4k1−2 by T4.

(i) For xT and yS,

(A) for all t∈T1, xtT=c>b=ytS;

(B) for all t∈T3, xtT=a<b=ytS;

(C) for all t∈T2, xtT=c<d=ytS;

(D) for all t∈T4, xtT=e>d=ytS;

(E) for all the remaining coordinates, xtT=ytS.

Following cases arise.

(I) For the generations 2t1−1 and 2t4−1,

x2t41T=a<b=y2t41S≤y2t11S=b<c=x2t11T, and a+c=2b.
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Similar inequalities hold for the pair of generations 2t1+1, 2t4+1, ⋯, 2t2−3, m where

m∈T3.

(II) For the generations 2t1 and 2t4,

x2t1T=c<d=y2t1S≤y2t4S=d<e=x2t4T, and c+e=2d.

Similar inequalities hold for the pair of generations 2t1+2, 2t4+2, ⋯, 2t2−2, m+1

where m+1=m′∈T4.

(III) For the generations m′+1, m′+2, and remaining generations8 in T3∪T4,

x '1T=a<b=y′1S<y′2S=d<e=x′2T, and a+e=b+d.

Each of these instances leads to PD improvements in yS compared to xT and there are finitely

many of them. Hence, yS≻xT by PD.

(ii) For xS and yT

(A) for all t∈T3, xtS=a<b=ytS;

(B) for all t∈T4, xtS=e>d=ytT;

(C) for all the remaining coordinates, ytT=xtS.

The case of generations in T3 and T4 is similar to (b)(i)(III) above. Since these are finitely many

PD improvements, yT≻xS by PD. Since xT≻yT, we get

yS≻xT≻yT≻xS.

Thus, yS≻xS by transitivity of ≳, and so S∈Γ.

(c) Let xT~yT; that is, T∉Γ. We drop t1, t2, t3, and minimum number of t4n2, t4n3 such that

|2t1−1,⋯, 2t2−2∪2t3−1,⋯, 2t4−2|≤|2t6−1,⋯, 2t7−2∪⋯∪2t4k2−1,⋯, 2t4k3−2|

from T to obtain S=t4, t5, t8, t9,⋯. Hence S∈ΩT. Denote the set of coordinates 2t2−1,2t2+

1,⋯, 2t3−3 by T1, 2t2, 2t2+2,⋯, 2t3−2 by T2, 2t1−1, 2t1+1,⋯, 2t2−3∪2t3−1, 2t3+1,⋯,

2t4−3 by T3, 2t1, 2t1+2,⋯, 2t2−2∪2t3, 2t3+2,⋯, 2t4−2 by T4, 2t6−1, 2t6+1⋯, 2t7−3,⋯,

2t4k2−1,⋯, 2t4k3−3 by T


1, and 2t6,⋯, 2t7−2,⋯, 2t4k2,⋯, 2t4k3−2 by T


2.

(i) For xS and yT,

(A) for all t∈T1, ytT=c>b=xtS;

(B) for all t∈T2, ytT=c<d=xtS;

(C) for all t∈T


1, xtS=a<b=ytT;

(D) for all t∈T


2, xtS=e>d=ytT;

(E) for all the remaining coordinates, ytT=xtS.

For T


1, T


2, PD improvements in yT compared to xS can be shown following the case (b) (i) (III)

above. Also for T1, T2, PD improvements in yT compared to xS can be shown following the case

(a) above. Since these are finitely many instances of PD improvements, xS≺yT by PD.
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(ii) For xT and yS,

(A) for all t∈T3, xtT=c>b=ytS;

(B) for all t∈T


1, xtT=a<b=ytS;

(C) for all t∈T4, xtT=c<d=ytS;

(D) for all t∈T


2, xtT=e>d=ytS;

(E) for all the remaining coordinates, ytS=xtT.

Here, PD improvements in yT compared to xS can be shown following the case (b)(i) above.

Since these are finitely many instances of PD improvements, yS≻xT by PD.

Since xT~yT, we get

yS≻xT~yT≻xS

Thus, yS≻xS by transitivity of ≳, and so S∈Γ.

□

Proof of Proposition 9. Note that Y with a=1, b=2, c=6, d=7, e=11, and f=12 satisfies all conditions

of the proposition. Let Nx=n: xn=a or xn=f, and M x=n: xn=b or xn=e . Let αn=−
1

2n ,

βn=−
1

3n and δn=−αn for all n∈ℕ. We define the SWF as follows.

W(x)=
∑

nNx

α(n)+ ∑
mMx

β(n) if N(x) or M(x) is non-empty,

∑


n1

δ(n)(xn−a) otherwise.

(12)

We show that W satisfies PD. Suppose x,y∈X are such that (i) there exist i, j∈ℕ with

yi<xi<x <y , yi+y =xi+x , and (ii) xk=yk for all k∈ℕi, j. Observe that there are only six feasible

PD transfers.

(a) yi=a<b=xi<c=x <d=y  . Both Nx and Ny are non-empty in this case and M x=M y .

Therefore, Wx−Wy=βi−αi=−
1

3 i+
1

2 i>0.

(b) yi=a<c=xi≤c=x <e=y . Then, Ny≠∅. If Nx or M x is non-empty, then Wx−Wy=

−αi−β j>0. If both Nx and M x are empty sets, then Wx>0>Wy.

(c) yi=a<c=xi<d=x <f=y  . Then, Ny≠∅ . If Nx or M x is non-empty, then Wx−Wy=

−αi−α j>0. If both Nx and M x are empty sets, then Wx>0>Wy.

(d) yi=b<c=xi<d=x <e=y  . Then, M y≠∅ . If Nx or M x is non-empty, then Wx−Wy=

−βi−β j>0. If both Nx and M x are empty sets, then Wx>0>Wy.

(e) yi=b<d=xi≤d=x <f=y  . Then, Ny≠∅ and M y≠∅ . If Nx or M x is non-empty, then

Wx−Wy=−βi−α j>0. If both Nx and M x are empty sets, then Wx>0>Wy.

(f) yi=c<d=xi<e=x <f=y  . Both M x and M y are non-empty in this case and Nx=Ny .
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Therefore, Wx−Wy=β j−α j=−
1

3 +
1

2 >0.

□
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