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Abstract

This paper studies stable and (one-sided) strategy-proof rules in many-to-one
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cumulative offer process or the deferred acceptance algorithm.
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1 Introduction

Stability and (one-sided) strategy-proofness are two leading desiderata in two-sided

matching market design.12 In the classic setup, it is well-known that a matching rule is

stable and strategy-proof if and only if it is the one induced by the deferred acceptance algo-

rithm (Gale and Shapley, 1962; Dubins and Freedman, 1981; Roth, 1982; Alcalde and Bar-

berà, 1994). The same result holds true in the generalized matching with contracts model, as

long as hospitals’ choice functions satisfy the substitutes condition and the law of aggregate

demand.3 With these conditions, Hatfield and Milgrom (2005) verify, among many other

things, that the deferred acceptance rule is stable and strategy-proof, and Sakai (2011)

further shows that no other rule satisfies both desiderata. Recently, however, several real-

world markets that violate the substitutes condition (and the law of aggregate demand)

have been found.4

To cover such a broader range of markets, we study stable and strategy-proof rules

with the only assumption that the choice functions on the hospital side satisfy a common

mild requirement, called the irrelevance of rejected contracts (henceforth, IRC) condition.

This rationality condition requires that if a contract is not chosen from a menu, remov-

ing it from the menu should not change the chosen set. It is logically independent of

the substitutes condition and the law of aggregate demand, and is (implicitly) assumed

1Throughout the paper, we refer to one side of the market as doctors and the other as hospitals, whereas
applications of two-sided matching theory are not restricted to medical matches.

2It is common in the literature to impose strategy-proofness only for the doctor side, partly because
strategy-proofness for both sides is incompatible with stability on the full domain of admissible prefer-
ences (Roth, 1982). While the present study also investigates one-sided strategy-proof rules, an alternative
approach is to study two-sided strategy-proofness on restricted domains (e.g., Alcalde and Barberà, 1994,
Sections 4–5; Sönmez, 1999). See also Section 4.2 for further discussion on the role of the preference domain
in the present study.

3The substitutes condition requires that if a contract is chosen from a menu, it should be also chosen
when other contracts are removed from the menu. The law of aggregate demand requires that the number
of chosen contracts be weakly greater when the menu enlarges in the set sense.

4The examples include cadet-branch matching in the U.S. Army (Sönmez, 2013; Sönmez and Switzer,
2013), affirmative actions in school choice programs and college admissions (Aygün and Turhan, 2016;
Kominers and Sönmez, 2016), and lawyer-court matching in Germany (Dimakopoulos and Heller, 2014).
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throughout the literature.5

Only with this assumption, we obtain the following results. Theorems 1–2 are on the

uniqueness of stable and strategy-proof rules and extend the existing results mentioned

above: Theorem 1 states that the number of such rules is at most one, although there may

or may not exist one without additional restrictions; and Theorem 2 establishes that the

doctor-optimal stable rule is the unique candidate for a stable and strategy-proof rule,

whenever it is well-defined, although it may or may not be strategy-proof without addi-

tional assumptions. Theorem 3 is on the constrained optimality of a stable and strategy-

proof rule. Namely, we show that a stable and strategy-proof rule, if it exists, is never

dominated in terms of doctor welfare by any other individually rational and strategy-

proof rule. Furthermore, Theorem 4 shows that the same holds true even if stability is

weakened to non-wastefulness in the above statement. These latter two theorems gen-

eralize similar existing results in the school choice literature (e.g., Abdulkadiroglu et al.,

2009; Kesten, 2010; Kesten and Kurino, 2016).

Our approach is novel in the study of matching with contracts without the substitutes

condition. The common approach in the literature is, as in Hatfield and Kojima (2010),

to introduce weaker conditions of substitutability and investigate the performance of the

deferred acceptance algorithm or its variant called the cumulative offer process. In contrast,

we do not rely on any substitutes condition or the algorithmic properties of a specific rule.

As a consequence, a major advantage of our approach is broader applicability. Particu-

larly, our analysis covers the following cases where standard results in the literature fail

to hold due to lack of the substitutes condition:

• cases where a (unique) stable and strategy-proof rule exists but differs from the ones

induced by the deferred acceptance algorithm and the cumulative offer process;

5Aygün and Sönmez (2012, 2013) point out the importance of this condition, which is implicitly assumed
in Hatfield and Milgrom (2005) and Hatfield and Kojima (2010).
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• cases where the set of stable allocations does not have a lattice structure and/or the

doctor-optimal stable allocation does not exist;

• cases where the “rural hospital theorem” fails to hold (i.e., cases where a doctor is

matched at one stable allocation but not at another); and

• cases where “embedding” into a simpler model of matching with salaries à la Kelso

and Crawford (1982) is impossible.6

Relatedly, our weak assumption also necessitates new analytical techniques, because we

cannot exploit the above-mentioned standard results even though some of them have

been often useful in the related literature. We thus develop a new proof technique that

only relies on stability and strategy-proofness (as well as the IRC condition), thereby re-

vealing the direct link between the two desiderata and our conclusions. The transparency

of the logic could be another merit of our general approach.

The rest of this paper is organized as follows. Section 2 describes the model and intro-

duces key concepts. Section 3 presents the main results. Section 4 further discusses our

approach. Appendix A provides additional examples.

2 Preliminaries

We study the standard setting of a many-to-one matching market with contracts. Let

D and H be finite sets of doctors and hospitals, respectively. The finite set of possible

contracts is given by X ⊂ D × H × Θ for some finite Θ.7 For each contract x ∈ X, let d (x)

and h (x) be its projections onto D and H, i.e., x = (d (x) , h (x) , θ) for some θ ∈ Θ. In

6Under the substitutes condition, Echenique (2012) establishes a one-to-one correspondence between a
market with contracts and a market with salaries where doctors are gross substitutes in the standard sense.
When such “embedding” is possible, some of the results in the market with contracts would directly follow
their counterparts in the market with salaries. See also Schlegel (2015) for the possibility of embedding with
weaker substitutes conditions.

7For example, Θ can be interpreted as the set of discretized wage levels (Kelso and Crawford, 1982)
and/or job descriptions (Roth, 1984).
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other words, x is a bilateral contract between d (x) ∈ D and h (x) ∈ H.

A subset X′ ⊂ X of contracts is said to be an allocation if it includes at most one contract

for each doctor, i.e., if x, x′ ∈ X′ and x �= x′ imply d (x) �= d (x′).8 The set of all possible

allocations is denoted by X ⊂ 2X. For each allocation X′ ∈ X and doctor d ∈ D, let

x (d, X′) denote the contract that X′ assigns to d; i.e., x (d, X′) = x if x ∈ X′ and d (x) = d.

If there is no such contract in X′, doctor d is said to be assigned a null-contract and we

write x (d, X′) = ∅. Similarly, let X (h, X′) = {x ∈ X′ : h (x) = h} be the set of (non-null)

contracts that X′ assigns to hospital h ∈ H.

Each doctor d ∈ D has a strict preference relation �d over {x ∈ X : d (x) = d} ∪ {∅}.

The domain of all possible preferences for doctor d is denoted by Pd. Given his prefer-

ence relation �d, a non-null contract x is said to be acceptable to doctor d if x �d ∅.9 The

set of acceptable contracts to doctor d, as a function of �d, is given by Ac(�d) := {x ∈ X :

x �d ∅}. The profile of the doctors’ preference relations is denoted by �D = (�d)d∈D. Let

PD := ∏d∈D Pd be the domain of all possible preference profiles. Each hospital h ∈ H

has a choice function Ch : 2X → X such that for all X′ ⊂ X, (i) Ch(X′) ∈ 2X′ ∩ X and

(ii) h (x) = h for all x ∈ Ch(X′). Throughout the paper, except for Section 4.2, we assume

that the choice functions satisfy the following mild requirement: Hospital h’s choice func-

tion Ch(·) is said to satisfy the irrelevance of rejected contracts (henceforth, IRC) condition if

x �∈ Ch(X′ ∪ {x}) implies Ch(X′ ∪ {x}) = Ch(X′) for all X′ ⊂ X and x ∈ X.10 The profile

of the hospitals’ choice functions is denoted by CH(·) = (Ch(·))h∈H.

Given �D and CH(·), we define the following concepts on X : An allocation X′ ∈ X is

said to be individually rational if (i) x (d, X′) �d ∅ for all d ∈ D, and (ii) Ch(X′) = X (h, X′)

for all h ∈ H. A pair of a hospital h ∈ H and a subset X′′ ⊂ X of contracts is said to block

8As a contract is a tuple (d, h, θ), this definition is parallel to defining a matching as a set of married
couples in the marriage market.

9Note that x �d ∅ implies d (x) = d since �d is defined over {x ∈ X : d (x) = d} ∪ {∅}.
10Note that this condition is satisfied if a choice function is induced by a strict preference over subsets of

contracts (as in most of the examples below).
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an allocation X′ if (i) Ch(X′ ∪ X′′) = X′′ �= Ch(X′) and (ii) x (d, Ch(X′ ∪ X′′)) �d x (d, X′)

for all d ∈ {d (x)}x∈Ch(X′∪X′′). An allocation X′ is said to be stable if it is individually

rational and not blocked by any (h, X′′) ∈ H × 2X. An allocation X′ is said to strictly

dominate another allocation X′′ �= X′ if x (d, X′) �d x (d, X′′) for all d ∈ D.11 A stable

allocation X∗ is said to be doctor-optimal if it strictly dominates any other stable allocation.

Given CH(·) as well as (D, H, X), a matching rule is a mapping f : PD → X , which

associates each possible preference profile of doctors with an allocation. A rule f (·) is

said to be stable (resp. individually rational) if for all �D ∈ PD, its output f (�D) is sta-

ble (resp. individually rational) with respect to (CH(·),�D). Similarly, the doctor-optimal

stable rule, denoted by X∗(·) if it exists, is a rule such that for all �D ∈ PD, its output

X∗(�D) is the doctor-optimal stable allocation with respect to (CH(·),�D). A rule f (·)
is said to strictly dominate another rule g(·) �= f (·) if x (d, f (�D)) �d x (d, g(�D)) for all

d ∈ D and �D ∈ PD.12 Finally, a rule f (·) is said to be strategy-proof if x (d, f (�D)) �d

x
(

d, f
(
�′

d,�D−{d}
))

for all d ∈ D, �D ∈ PD, and �′
d ∈ Pd, where �D−{d} = (�d′)d′∈D−{d}.

3 Results

To start our analysis, we introduce the following weaker notion of blocking coalitions: We

say that a pair (h, X′′) ∈ H × 2X weakly blocks an allocation X′ if (i) Ch(X′ ∪ X′′) �= Ch(X′)

and (ii) x (d, Ch(X′ ∪ X′′)) �d x (d, X′) for all d ∈ {d (x)}x∈Ch(X′∪X′′). This definition is

weak in that the first part does not require Ch(X′ ∪ X′′) = X′′. Under the IRC condi-

tion, however, it is straightforward to verify that the two blocking concepts are equally

effective in the following sense.

Lemma 1. Suppose that hospital h’s choice function Ch(·) satisfies the IRC condition. For any

11Note that X′ �= X′′ and x (d, X′) �d x (d, X′′) for all d imply x (d′, X′) �d′ x (d′, X′′) for some d′.
12Again, g(·) �= f (·) implies x (d′, f (�D)) �d′ x (d′, g(�D)) for some d′ and �D if f (·) strictly dominates

g(·).
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allocation X′ ∈ X , then, there exists X′′ ⊂ X such that (h, X′′) blocks X′ if and only if there

exists X′′′ ⊂ X such that (h, X′′′) weakly blocks X′.

Proof. The “only if” part is immediate from the definitions. To see the “if” part, suppose

that (h, X′′′) weakly blocks X′, and let X′′ := Ch(X′ ∪ X′′′). Then, the IRC condition

implies Ch(X′ ∪ X′′) = Ch(X′ ∪ X′′′) = X′′ and hence, the first requirement for (h, X′′) to

block X′ is satisfied. The second requirement is also trivially satisfied by the assumption

that (h, X′′′) weakly blocks X′. �

Lemma 1 leads to the following observation, which will be the key in the proofs of

Theorems 1–2.

Lemma 2. Suppose that every hospital h ∈ H has a choice function Ch(·) satisfying the IRC

condition, and that X′ and X′′ are two distinct stable allocations at (CH(·),�D). Then, there

exists a doctor d ∈ D who is assigned distinct non-null contracts by X′ and X′′, i.e., ∅ �=
x (d, X′) �= x (d, X′′) �= ∅.

Proof. The proof is by contraposition. Assume the negation of the consequent, i.e.,

[
x
(
d, X′) �= x

(
d, X′′)] =⇒ [

∅ ∈ {x
(
d, X′) , x

(
d, X′′)}] , for all d ∈ D,

where X′ and X′′ are two (possibly identical) stable allocations at (CH(·),�D). Since X′′

is stable (and thus individually rational), this implies for all d ∈ D,

[
x
(
d, X′′) �= ∅

]
=⇒ [

x
(
d, X′′) �d ∅ = x

(
d, X′) or x

(
d, X′) = x

(
d, X′′)] ,

and hence,

[
x
(
d, X′′) �= ∅

]
=⇒ [

x
(
d, X′′) �d x

(
d, X′)] .
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For an arbitrary hospital h ∈ H, then, (h, X′′) satisfies the second requirement to weakly

block X′. Since (h, X′′) cannot weakly block X′ by stability and Lemma 1, it must vi-

olate the first requirement; i.e., Ch(X′ ∪ X′′) = X (h, X′) must hold. As the symmetric

arguments also imply Ch(X′ ∪ X′′) = X (h, X′′) for all h ∈ H, it follows that X (h, X′) =

X (h, X′′) for all h ∈ H and thus X′ = X′′. �

Our first main result generalizes the existing results on the uniqueness of a stable and

strategy-proof rule by Alcalde and Barberà (1994, Theorem 3) and Sakai (2011, Theorem

1). While this theorem does not require any substitutes condition or the law of aggregate

demand, its proof depends on Lemma 2, which in turn necessitates the IRC condition.

See Example 3 in Appendix A for a counterexample in the absence of the IRC condition.

Theorem 1. Suppose that every hospital h ∈ H has a choice function Ch(·) satisfying the IRC

condition. Then, there exists at most one stable and strategy-proof rule; i.e., if f (·) and g(·) are

both stable and strategy-proof, f (�D) = g(�D) for all �D ∈ PD.

Proof. Towards a contradiction, suppose that there exist two distinct stable and strategy-

proof rules, f (·) and g(·). Among preference profiles satisfying f (�D) �= g(�D), let �∗
D

be a “minimal” one in terms of the total number of acceptable contracts across doctors;

that is, f (�∗
D) �= g(�∗

D) and

[
f (�D) �= g (�D) =⇒ ∑

d∈D
|Ac(�d)| ≥ ∑

d∈D
|Ac(�∗

d)|
]

for all �D ∈ PD.13

Then, by Lemma 2, there must exist a doctor d∗ such that ∅ �= x (d∗, f (�∗
D)) �=

x (d∗, g(�∗
D)) �= ∅. Note that this also implies |Ac(�∗

d∗)| ≥ 2.

Now, suppose without loss of generality that x (d∗, f (�∗
D)) �∗

d∗ x (d∗, g(�∗
D)), and let

�∗∗
D :=

(
�∗∗

d∗ ,�∗
D−{d∗}

)
, where �∗∗

d∗ is a preference relation of doctor d∗ such that only

13Note that �∗
D exists because X is assumed to be finite and thus so is PD.
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x (d∗, f (�∗
D)) is acceptable, i.e., Ac(�∗∗

d∗ ) = {x (d∗, f (�∗
D))}. Notice that

x (d∗, f (�∗∗
D )) , x (d∗, g(�∗∗

D )) ∈
{

x (d∗, f (�∗
D)) ,∅

}
,

since f (·) and g(·) are assumed to be stable (and hence individually rational). Then, the

strategy-proofness of f (·) and g(·) implies

x (d∗, f (�∗
D)) = x (d∗, f (�∗∗

D )) �= ∅, and

x (d∗, g(�∗
D)) �= x (d∗, g(�∗∗

D )) = ∅,

respectively, and hence, f (�∗∗
D ) �= g(�∗∗

D ). This, however, contradicts the definition of

�∗
D, since

∣∣Ac
(�∗∗

d∗
)∣∣ = 1 < 2 ≤ ∣∣Ac(�∗

d∗)
∣∣ and �∗∗

D−{d∗} = �∗
D−{d∗}, and the proof is

complete. �

Following the same line of proof, we can also show that whenever it exists, the doctor-

optimal stable rule is the unique candidate for a stable and strategy-proof rule. Note,

however, that this unique candidate may or may not be strategy-proof without additional

assumptions.

Theorem 2. Suppose that every hospital h ∈ H has a choice function Ch(·) satisfying the IRC

condition, and that the doctor-optimal stable allocation X∗(�D) exists for all �D ∈ PD. If f (·)
is a stable and strategy-proof rule, then, f (�D) = X∗(�D) for all �D ∈ PD.

Proof. Towards a contradiction, suppose that the doctor-optimal stable rule X∗(·) is well-

defined, and that f (·) �= X∗(·) is a stable and strategy-proof rule. As in the proof of

Theorem 1, let �∗
D ∈ PD be a “minimal” preference profile, which exists by assumption,
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such that f (�∗
D) �= X∗ (�∗

D) and

[
f (�D) �= X∗ (�D) =⇒ ∑

d∈D
|Ac(�d)| ≥ ∑

d∈D
|Ac(�∗

d)|
]

for all �D ∈ PD.

Then, by Lemma 2, there must exist a doctor d∗ such that ∅ �= x (d∗, f (�∗
D)) �=

x (d∗, X∗(�∗
D)) �= ∅. Note that this also implies x (d∗, X∗(�∗

D)) �∗
d∗ x (d∗, f (�∗

D)) �∗
d∗ ∅.

Now let �∗∗
D :=

(
�∗∗

d∗ ,�∗
D−{d∗}

)
, where �∗∗

d∗ is a truncation of �∗
d∗ at x (d∗, X∗(�∗

D)),

i.e., a preference relation such that

Ac (�∗∗
d∗ ) =

{
x ∈ X : x �∗

d∗ x (d∗, X∗(�∗
D))

}
,

and

[x �∗∗
d∗ y ⇐⇒ x �∗

d∗ y] for all x, y ∈ Ac(�∗∗
d∗ ).

Notice that X∗(�∗∗
D ) = X∗(�∗

D) by construction.14 Together with the strategy-proofness

of f (·), this further implies

x (d∗, X∗(�∗∗
D )) = x (d∗, X∗(�∗

D)) �∗
d∗ x (d∗, f (�∗

D)) �∗
d∗ x (d∗, f (�∗∗

D )) ,

and hence, f (�∗∗
D ) �= X∗(�∗∗

D ). This, however, contradicts the definition of �∗
D, since

Ac
(�∗∗

d∗
) ⊂ Ac

(�∗
d∗
)− {

x (d∗, f (�∗
D))

}
and �∗∗

D−{d∗} = �∗
D−{d∗}, and the proof is com-

plete. �

Compared to the existing uniqueness results, Theorems 1–2 above are technically

14To see this, note first that X∗(�∗
D) is also stable at �∗∗

D . For X∗(�∗∗
D ) �= X∗(�∗

D) to hold, therefore,
X∗(�∗∗

D ) cannot be stable at �∗
D. For some (h, X′) to block X∗(�∗∗

D ) at �∗
D but not at �∗∗

D , however,
x (d∗, X∗(�∗∗

D )) = ∅ must hold. Since x (d∗, X∗(�∗
D)) �∗∗

d∗ ∅, this means that X∗(�∗∗
D ) cannot dominate

X∗(�∗
D) at �∗∗

D , which is a contradiction.
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novel for two related reasons. First, our proof of Theorem 1 requires no dominance rela-

tion between f (·) and g(·). Consequently, it is applicable even when the doctor-optimal

stable allocation does not always exist. In contrast, the uniqueness results by Alcalde

and Barberà (1994, Theorem 3) and Sakai (2011, Theorem 1) are established by showing

that any stable rule that is strictly dominated by the doctor-optimal stable rule cannot be

strategy-proof, and hence, the existence of the doctor-optimal stable rule is critical in their

proofs. Second, our proofs do not call for the rural hospital theorem either, which states that

every agent (i.e., every doctor and every hospital) signs the same number of non-null con-

tracts across all stable allocations. Instead we utilize Lemma 2, which could be seen as a

weaker version of the rural hospital theorem but holds true without any restrictions on

CH(·) other than the IRC condition.15 It is this distinction that makes the proof of Theorem

2 non-trivial, although its statement might look very close to the previous results.

A natural question that stems from Theorem 2 would be whether or not we can replace

doctor-optimal stability with a weaker requirement that is applicable even when the doc-

tor optimal stable rule is not well-defined. Specifically, one might wonder if a stable and

strategy-proof rule always chooses an allocation that is not dominated by another stable

allocation. Actually, the answer to this question is known to be negative.16

Fact 1 (Kominers and Sönmez, 2016). A stable and strategy-proof rule may choose an allocation

that is strictly dominated by another stable allocation.17

Given that the outcomes of a stable and strategy-proof rule may be dominated even

among stable allocations, it could be of policy interest whether the doctor welfare can be

Pareto-improved. Since Theorem 1 implies that such improvement is impossible main-

15Note that the conclusion of Lemma 2 immediately follows if the rural hospital theorem holds.
16In matching markets without contracts, contrastingly, Pathak and Sönmez (2013, Lemma 1) establish

that the dominance in terms of outcomes between two stable rules implies the dominance in terms of
manipulability. For an extension of this result, see also Chen et al. (2016).

17See Theorem 3 and Example 4 of Kominers and Sönmez (2016).
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taining both stability and strategy-proofness, it would be natural to ask if it becomes pos-

sible once we weaken the stability requirement. Our next main result, Theorem 3, shows

that such improvement is generally impossible. This extends the existing results in the

school choice literature that the student-optimal stable rule is second-best optimal among

strategy-proof rules (see, Abdulkadiroglu et al., 2009; Kesten, 2010; Kesten and Kurino,

2016).18

Theorem 3. Suppose that every hospital h ∈ H has a choice function Ch(·) satisfying the IRC

condition. Then, no individually rational and strategy-proof rule strictly dominates a stable and

strategy-proof rule.

Proof. Towards a contradiction, suppose that f (·) is individually rational and strategy-

proof, g(·) is stable and strategy-proof, and that f (·) strictly dominates g(·). As in the

proofs of Theorems 1–2, let �∗
D ∈ PD be a preference profile, which exists by assumption,

such that f (�∗
D) �= g (�∗

D) and

[
f (�D) �= g (�D) =⇒ ∑

d∈D
|Ac(�d)| ≥ ∑

d∈D
|Ac(�∗

d)|
]

for all �D ∈ PD.

Then, there must exist d∗ ∈ D such that

x (d∗, f (�∗
D)) �∗

d∗ x (d∗, g(�∗
D)) �∗

d∗ ∅. (∗)

To see this, suppose contrarily that for all d ∈ D, x (d, f (�∗
D)) �∗

d x (d, g(�∗
D)) implies

x (d, g(�∗
D)) = ∅. This entails f (�∗

D) � g(�∗
D) and hence, for some h ∈ H,

Ch ( f (�∗
D) ∪ g(�∗

D)) = Ch ( f (�∗
D)) = X (h, f (�∗

D))

�= X (h, g(�∗
D)) = Ch (g(�∗

D)) ,

18See also Anno and Kurino (2016) and Erdil (2014) for related results.
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where the second and last equalities hold by the individual rationality of f (·) and g(·), re-

spectively. Therefore, (h, f (�∗
D)) weakly blocks g(�∗

D), but by Lemma 1, this contradicts

the stability of g(·).
Now, take a new preference relation �∗∗

d∗ of d∗ such that Ac(�∗∗
d∗ ) = {x (d∗, f (�∗

D))},

and let �∗∗
D :=

(
�∗∗

d∗ ,�∗
D−{d∗}

)
. Then, the strategy-proofness of f (·) and g(·), along with

equation (∗), implies

x (d∗, f (�∗∗
D )) = x (d∗, f (�∗

D)) �∗
d∗ x (d∗, g(�∗

D)) �∗
d∗ x (d∗, g(�∗∗

D )) = ∅,

and thus, f (�∗∗
D ) �= g(�∗∗

D ). However, this contradicts the definition of �∗
D since∣∣Ac(�∗∗

d∗ )
∣∣ < ∣∣Ac(�∗

d∗)
∣∣ and �∗∗

D−{d∗} = �∗
D−{d∗}, and the proof is complete. �

In Theorem 3, the individual rationality of the dominating rule is indispensable. To see

this, note that the rule that always assigns each doctor his first-best contract is strategy-

proof and dominates any other rule. In the classic matching and assignment models,

such “first-best” rules are usually precluded by the quotas of hospitals. While we do not

have the exact counterpart of quotas in the current framework, it is the requirement of

Ch(X′) = X (h, X′) that plays a similar role. In other words, the individual rationality of

the hospital side encompasses what is usually referred to as the feasibility constraint.

4 Discussion

4.1 Applicability of Our Results

This paper studies the model of many-to-one matching with contracts, and derives a

number of properties that a stable and strategy-proof rule must generally satisfy. A no-

table feature of our approach is that we only impose a minimal structure on hospitals’
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choice functions, i.e., the IRC condition, and do not rely on any algorithmic properties

of a matching rule. This generality allows us to capture the joint implications of stability

and strategy-proofness transparently, making our results widely applicable. Particularly,

our results are applicable even if a stable and strategy-proof rule is not equal to the ones

induced by the cumulative offer process and the deferred acceptance algorithm, and such

markets actually exist as we exemplify below. To formally state our claim, we now define

the two algorithms with our notation.

Definition 1. Given (CH(·),�D), the cumulative offer process proceeds as follows.19

• Initial condition: Let D0 = D and M0 = ∅.

• Step t ≥ 1: An arbitrarily chosen doctor dt ∈ Dt−1 offers his best contract, xdt
t ,

among those remaining (i.e., among X −⋃t−1
τ=1{xdτ

τ }). Let Mt = Mt−1 ∪ {xdt
t } be the

menu of contracts that have been offered up to this step. Among Mt, each hospital h

holds the best combination of contracts, Ch(Mt). Finally, let Dt be the set of doctors

for whom (i) no contract is currently held by any hospital and (ii) not all acceptable

contracts have been offered yet, i.e.,

Dt =

{
d ∈ D :

[
d �∈ {

d
(

x′
)}

x′∈Ch(Mt)
for all h ∈ H

]
and

[
Ac(�d)−

t⋃
τ=1

{
xdτ

τ

}
�= ∅

]}
.

Proceed to step t + 1 if Dt is non-empty and terminate otherwise.

• Outcome: When the process terminates at step T, its outcome is
⋃

h∈H
Ch(MT).

The deferred acceptance algorithm is almost the same as the cumulative offer process, with

the only difference being Mt =

[ ⋃
h∈H

Ch(Mt−1)

]
∪ {xdt

t }. That is, at each step of the de-

ferred acceptance algorithm, hospitals can choose only from the newly offered contract
19The following is based on the definition by Hatfield and Kojima (2010), which is commonly used in the

literature. Strictly speaking, it defines a class of algorithms rather than a single algorithm, because it does
not specify how dt is chosen from Dt−1. The algorithms in this class are not outcome-equivalent in general,
although they are under certain conditions (Hatfield and Kominers, 2014; Hatfield et al., 2015; Hirata and
Kasuya, 2014; Kominers and Sönmez, 2016). For further properties of the cumulative offer process, see also
Afacan (2014, 2016).
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and those currently being held, but not from those rejected in previous steps. �

Fact 2. There exists a market (i.e., (D, H, X, CH(·))) where a stable and strategy-proof rule exists

but is not induced by the cumulative offer process or the deferred acceptance algorithm.20

Proof. The proof is by example. See Example 1 in Section 4.1.1. �

This fact would highlight the distinction between the scope of the present paper and of

Hatfield et al. (2015), who identify a sufficient condition and an almost necessary condi-

tion for the cumulative offer process to be stable and strategy-proof. That is, our results

cover a strictly larger domain, whereas those of Hatfield et al. (2015) are stronger in iden-

tifying the exact form of a stable and strategy-proof rule.

For another instance, our results are also applicable even if the rural hospital theorem

does not hold. Given the arguments presented after Theorem 2, this would be particularly

important for the relevance of Theorem 2. That is, the question is if the doctor-optimal

stable rule can be strategy-proof even when the rural hospital theorem fails to hold. If

there is no such case, Theorem 2 would boil down to previous results and Theorem 1,

since the doctor-optimal stable rule can be shown to be strategy-proof whenever the rural

hospital theorem holds.21 In fact, there exist such markets and hence, Theorem 2 applies

to a strictly larger domain of choice functions than the previous results.

Fact 3. There exists a market (i.e., (D, H, X, CH(·))) where the doctor-optimal stable rule exists

and is strategy-proof whereas the rural hospital theorem does not hold for all �D.

Proof. The proof is by example. See Example 2 in Section 4.1.1. �

20More precisely, what we illustrate below is a stable and strategy-proof rule that is not induced by any
cumulative offer process or deferred acceptance algorithm, even though we can define a class of (non-
outcome-equivalent) cumulative offer processes and of deferred acceptance algorithms. See also footnote
19 above.

21See the proofs of Hatfield and Milgrom (2005, Theorem 11) and Hatfield and Kojima (2010, Theorem 7).
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4.1.1 Examples for the Proofs of Facts 2–3

Example 1. Let D = {d1, d2, d3}, H = {h}, and X = {xi, yi}i∈{1,2,3}, where xi and yi

denote two distinct contracts between di and h. The hospital has a preference relation

�h: {x1, y2, y3} �h {y1, x2, y3} �h {x1, x2, y3}
�h {y1, y2} �h {y1} �h {y2} �h {x3} �h ∅,

which induces its choice function Ch(·).22 In what follows, we establish that in this mar-

ket, a stable and strategy-proof rule f (·) exists, whereas neither the cumulative offer pro-

cess nor the deferred acceptance algorithm induces f (·).23

First, define a stable rule f (·) as in Tables 1–2. We can verify the strategy-proofness

of f (·) as follows. By checking each column of Tables 1–2 we can make the following

observation: Taking �d2 and �d3 as fixed, doctor d1 is always assigned his best contracts

either from {x1, y1,∅} or from {y1,∅}. In either case, as his “choice set” is independent

of �d1 , it is apparent that doctor d1 has no incentive to misreport. Similarly, we can see, by

checking the rows of Tables 1–2, that doctor d2 cannot profitably manipulate f (·). Further,

although it is more cumbersome, we can also confirm that f (·) is also strategy-proof for

doctor d3. To do so, divide Pd1 ×Pd2 (i.e., all possible
(�d1 ,�d2

)
’s) into four cases, as in

Table 3. Note first that when
(�d1 ,�d2

)
is in case A, x (d3, f (�D)) is constant with respect

to �d3 . For the remaining three cases, moreover, d3 is always assigned his best contract

(i) from {x3, y3,∅} in case B, (ii) from {x3,∅} in case C, and (iii) from {y3,∅} in case D.

Thus, doctor d3 has no incentive to misreport �d3 for any
(�d1 ,�d2

)
taken as fixed.

22That is, for each X′ ⊂ X, Ch(X′) is the most preferred subset of X (h, X′) according to �h.
23While the doctor-optimal stable rule does not exist in this example, it is not necessarily such non-

existence that prevents the cumulative offer process from operating well. Example 4 in Appendix A
presents a market where the doctor-optimal stable rule exists and is strategy-proof, but not all cumulative
offer processes induce it.

24Here we abuse notation and identify preferences with ordered lists (up to the null contract). For in-
stance, “x1, y1,∅” represents �d1 such that x1 �d1 y1 �d1 ∅. The same applies to all tables below.
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x2, y2,∅ y2, x2,∅ x2,∅ y2,∅ ∅

x1, y1,∅ {x1, x2, y3} {x1, y2, y3} {y1, x2, y3} {x1, y2, y3} {y1}
y1, x1,∅ {y1, x2, y3} {y1, y2} {y1, x2, y3} {y1, y2} {y1}

x1,∅ {x1, y2, y3} {x1, y2, y3} {x3} {x1, y2, y3} {x3}
y1,∅ {y1, x2, y3} {y1, y2} {y1, x2, y3} {y1, y2} {y1}

∅ {y2} {y2} {x3} {y2} {x3}

(a) Case of x3 �d3 y3 �d3 ∅.

x2, y2,∅ y2, x2,∅ x2,∅ y2,∅ ∅

x1, y1,∅ {x1, x2, y3} {x1, y2, y3} {x1, x2, y3} {x1, y2, y3} {y1}
y1, x1,∅ {y1, x2, y3} {y1, y2} {y1, x2, y3} {y1, y2} {y1}

x1,∅ {x1, x2, y3} {x1, y2, y3} {x1, x2, y3} {x1, y2, y3} {x3}
y1,∅ {y1, x2, y3} {y1, y2} {y1, x2, y3} {y1, y2} {y1}

∅ {y2} {y2} {x3} {y2} {x3}

(b) Case of y3 �d3 x3 �d3 ∅.

x2, y2,∅ y2, x2,∅ x2,∅ y2,∅ ∅

x1, y1,∅ {x1, x2, y3} {x1, y2, y3} {x1, x2, y3} {x1, y2, y3} {y1}
y1, x1,∅ {y1, x2, y3} {y1, y2} {y1, x2, y3} {y1, y2} {y1}

x1,∅ {x1, x2, y3} {x1, y2, y3} {x1, x2, y3} {x1, y2, y3} ∅

y1,∅ {y1, x2, y3} {y1, y2} {y1, x2, y3} {y1, y2} {y1}
∅ {y2} {y2} ∅ {y2} ∅

(c) Case of y3 �d3 ∅ �d3 x3.

Table 1: Definition of f (·) in Example 1. The rows and columns represent the preferences
of doctor d1 and d2, respectively.24
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x2, y2,∅ y2, x2,∅ x2,∅ y2,∅ ∅

x1, y1,∅ {y1, y2} {y1, y2} {y1} {y1, y2} {y1}
y1, x1,∅ {y1, y2} {y1, y2} {y1} {y1, y2} {y1}

x1,∅ {y2} {y2} {x3} {y2} {x3}
y1,∅ {y1, y2} {y1, y2} {y1} {y1, y2} {y1}

∅ {y2} {y2} {x3} {y2} {x3}

(a) Case of x3 �d3 ∅ �d3 y3.

x2, y2,∅ y2, x2,∅ x2,∅ y2,∅ ∅

x1, y1,∅ {y1, y2} {y1, y2} {y1} {y1, y2} {y1}
y1, x1,∅ {y1, y2} {y1, y2} {y1} {y1, y2} {y1}

x1,∅ {y2} {y2} ∅ {y2} ∅

y1,∅ {y1, y2} {y1, y2} {y1} {y1, y2} {y1}
∅ {y2} {y2} ∅ {y2} ∅

(b) Case of Ac (�d3) = ∅.

Table 2: Definition of f (·) in Example 1 (continued). The rows and columns represent the
preferences of doctor d1 and d2, respectively.

x2, y2,∅ y2, x2,∅ x2,∅ y2,∅ ∅

x1, y1,∅ D D D D A

y1, x1,∅ D A D A A

x1,∅ D D B D C

y1,∅ D A D A A

∅ A A C A C

Table 3: Partition of Pd1 × Pd2 in Example 1. The rows and columns represent the pref-
erences of doctor d1 and d2, respectively.
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To show that the cumulative offer process does not induce f (·), suppose that �D is

given by

�d1 : x1 �d1 y1 �d1 ∅,

�d2 : x2 �d2 y2 �d2 ∅, and

�d3 : x3 �d3 y3 �d3 ∅.

With this preference profile, f (�D) = {x1, x2, y3}, as specified in the colored cell in Table

1a. For the cumulative offer process to return this outcome, doctor d3 needs to propose

y3 and hence, x3 must be rejected beforehand. This further implies that y1 or y2 (or both)

must be offered by the end of the process. Then, however, the final pool of offers (i.e., the

first definition of Mt in Definition 1) must include {x1, y2, y3} or {y1, x2, y3} (or both) and

thus, the hospital must not pick f (�D) = {x1, x2, y3}, which is less preferable. That is,

the cumulative offer process cannot induce the stable and strategy-proof rule f (·) in this

market.

Analogously, the deferred acceptance algorithm cannot induce f (·) either. At �D as

specified above, either y1 or y2 must be offered by the end of the algorithm for exactly the

same reasoning as in the previous paragraph. Since x1 �d1 y1 and x2 �d2 y2, this implies

that either x1 or x2 is rejected beforehand. At the last step of the algorithm, therefore, the

choice set for h (i.e., the second definition of Mt in Definition 1) cannot contain both x1

and x2. That is, the deferred acceptance algorithm cannot return f (�D) = {x1, x2, y3} at

�D. �

Example 2. Suppose that D = {d1, d2, d3}, H = {h, h′}, and X = {xi, x′i}i∈{1,2,3}, where

xi (resp. x′i) represents a contract between doctor di and hospital h (resp. h′). The choice
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functions of the hospitals, Ch(·) and Ch′(·), are induced by preference relations

�h : {x1} �h {x2, x3} �h {x2} �h {x3} �h ∅, and

�h′ : {x′2} �h′ {x′1} �h′ ∅,

respectively. With the resulting choice functions, the doctor-optimal stable allocation ex-

ists (and coincides with the outcome of the deferred acceptance algorithm) for any �D,

as summarized in Table 4. In what follows, we check that in this market, the rural hos-

pital theorem does not hold for all �D, whereas the doctor-optimal stable rule X∗(·) is

strategy-proof.

To see the rural hospital theorem fails to hold in this market, fix a preference profile

�D such that

�d1 : x′1 �d1 x1 �d1 ∅,

�d2 : x2 �d2 x′2 �d2 ∅, and

�d3 : x3 �d3 ∅.

As shown in the colored cell in Table 4, the doctor-optimal stable allocation at �D is

X∗ = {x′1, x2, x3}, whereas there exists another stable allocation X∗ = {x1, x′2}. Note that

doctor d3 is assigned a non-null contract at X∗ but not at X∗, and hence, the rural hospital

theorem fails.

It remains to verify that the doctor-optimal stable rule, X∗(·), is strategy-proof in this

market. For doctors d1 and d2, note that x (d1, X∗(�D)) and x (d2, X∗(�D)) are indepen-

dent of �d3 . Hence, the incentives for doctors d1 and d2 to manipulate will remain un-

changed if d3 is eliminated from the market. Actually, once d3 is omitted, the remaining

market reduces to a standard one-to-one matching market without contracts and thus,
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x2, x′2,∅ x′2, x2,∅ x2,∅ x′2,∅ ∅

x1, x′1,∅ {x1, x′2} {x1, x′2} {x1} {x1, x′2} {x1}
x′1, x1,∅ {x′1, x2, x3} {x1, x′2} {x′1, x2, x3} {x1, x′2} {x′1, x3}

x1,∅ {x1, x′2} {x1, x′2} {x1} {x1, x′2} {x1}
x′1,∅ {x′1, x2, x3} {x′2, x3} {x′1, x2, x3} {x′2, x3} {x′1, x3}

∅ {x2, x3} {x′2, x3} {x2, x3} {x′2, x3} {x3}

(a) Case of x3 ∈ Ac (�d3).

x2, x′2,∅ x′2, x2,∅ x2,∅ x′2,∅ ∅

x1, x′1,∅ {x1, x′2} {x1, x′2} {x1} {x1, x′2} {x1}
x′1, x1,∅ {x′1, x2} {x1, x′2} {x′1, x2} {x1, x′2} {x′1}

x1,∅ {x1, x′2} {x1, x′2} {x1} {x1, x′2} {x1}
x′1,∅ {x′1, x2} {x′2} {x′1, x2} {x′2} {x′1}

∅ {x2} {x′2} {x2} {x′2} ∅

(b) Case of x3 �∈ Ac (�d3).

Table 4: Doctor optimal stable allocations in Example 2. The rows and columns represent
the preferences of doctor d1 and d2, respectively.

d1 and d2 have no incentive to manipulate the doctor-optimal stable rule (Dubins and

Freedman, 1981; Roth, 1982). For doctor d3, observe that x (d3, X∗(�D)) is either x3 or

∅, and that it depends on �d3 only through whether or not x3 ∈ Ac(�d3). Therefore, d3

has no incentive to report that x3 is acceptable when it is not, and vice versa. In sum, the

doctor-optimal stable rule is strategy-proof in this market. �
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4.2 Applicability of Our Proof Technique

In our analysis, all proofs share a common technique of deriving a contradiction starting

from a “minimal” preference profile in terms of the number of acceptable contracts. On

the one hand, this requires a sufficiently rich preference domain so that the preference

profile remains admissible even after manipulation. Consequently, our results do not di-

rectly extend to the cases of restricted preference domains, such as in Kesten (2010) and

Kesten and Kurino (2016), who consider the domain where any school seats are necessar-

ily acceptable. On the other hand, as long as the full domain is assumed, our technique

can be applicable elsewhere, e.g., to study other solution concepts than stability. For in-

stance, consider the following weakening of stability:

Definition 2. An individually rational allocation X′ is non-wasteful if there is no other

individually rational allocation X′′ with X′′ � X′.25 �

That is, an allocation is non-wasteful if it is maximal in the set sense among the in-

dividually rational ones. While it is a part of the standard definition for non-wasteful

allocations to be maximal among those both feasible and individually rational, feasibility

can be seen as a part of individual rationality in the matching-with-contracts framework,

as argued after Theorem 3. In the standard assignment problems, indeed, our definition

reduces to the maximality among feasible and individually rational assignments, if we

endow each hospital (or object) h with Ch(·) such that Ch(X′) = X (h, X′) if and only if

|X (h, X′)| ≤ qh, where qh is the “quota” of h.26 Nevertheless, the present framework

25It is immediate to verify that under the IRC condition, stability implies non-wastefulness as defined
above. This is not necessarily the case in the absence of the IRC condition; see Example 5 in Appendix A.

Relatedly, Alva and Manjunath (2016) propose a related condition called participation-maximality, and
establish various results on individually rational and participation-maximal allocations, some of which are
close to ours in the present paper. A key distinction between the two papers is that (among individually
rational allocations) their participation-maximality is stronger than our non-wastefulness and consequently,
the former is not necessarily implied by stability even when the hospitals’ choice functions satisfy the IRC
condition.

26Of course, the quota does not uniquely pin down Ch(·), because it imposes no restriction on Ch(X′)
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allows a richer class of constraints that could be of practical relevance.27 Based on our

proof technique, Theorem 3 can be extended to non-wasteful and strategy-proof rules as

follows:

Theorem 4. No individually rational and strategy-proof rule strictly dominates a non-wasteful

and strategy-proof rule.28

Proof. In the proof of Theorem 3, the stability of g(·) and the IRC condition are needed

only to guarantee the existence of d∗ satisfying equation (∗). Hence it suffices to prove this

part from non-wastefulness. Indeed, if such d∗ does not exist, it follows as in the proof of

Theorem 3 that f (�∗
D) � g(�∗

D), which directly contradicts non-wastefulness. �

Theorem 4 can be slightly further strengthened since, as is apparent from the defini-

tion of individual rationality, the choice functions are relevant for non-wastefulness only

through whether Ch(X′) = X (h, X′) or not. Although it is technically straightforward,

this extension allows us to incorporate weak preferences of the hospital side and conse-

quently, includes Theorem 1 of Abdulkadiroglu et al. (2009) as a special case.29

Corollary 5. Suppose that CH(·) and C′
H(·) are such that Ch(X′) = X (h, X′) ⇒ C′

h(X′) =

X (h, X′) for all h ∈ H and X′ ⊂ X. Then, no strategy-proof rule that is individually rational

with respect to CH(·) strictly dominates a strategy-proof rule that is non-wasteful with respect to

C′
H(·).

when |X (h, X′)| exceeds the quota. However, this additional degree of freedom is irrelevant for the current
purpose (see Corollary 5 below).

27For example, suppose that a school offers two distinct programs, and they require some common re-
sources at different factor intensity (e.g., one is mathematics-teacher intensive while the other is English-
teacher intensive). Then, the total number of students that those programs can accommodate would be
non-constant and depend on its composition. Such a constraint cannot be represented as either the quota
of the school or the quotas of the programs.

28Note that the IRC condition is unnecessary in this Theorem (and Corollary 5 below).
29In the school choice problem, Ch(X′) = X (h, X′) holds only when the number of students is no more

than the quota of h, or equivalently, only when no tie-breaking is necessary. If Ch(·) and C′
h(·) are two choice

functions resulting from different tie-breakings but the same weak priority structure, thus, they satisfy the
condition in Corollary 5, Ch(X′) = X (h, X′) ⇒ C′

h(X′) = X (h, X′).
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Proof. The proof is exactly the same as of Theorems 3–4 and thus omitted. �
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A Additional Examples

This appendix provides the examples that are referred to but omitted in the main body.

The first example illustrates that Lemmas 1–2 do not generally hold true without the

IRC condition. As a consequence, multiple stable and strategy-proof rules exist in this

example.

Example 3. Let D = {d1, d2}, H = {h}, and X = {x1, x2}, where for each i ∈ {1, 2}, xi

is a contract between di and h. Hospital h’s choice function is given by Ch({x1}) = x1,

Ch({x2}) = x2, and Ch({x1, x2}) = ∅. It is immediate to check that Ch(·) violates the

IRC condition. Now suppose that each doctor di has a preference relation with xi �di ∅.

At this (CH(·),�D), then, neither allocation {x1} nor {x2} is blocked by any coalition,
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although both are weakly blocked by (h, {x1, x2}).30 That is, the conclusion of Lemma 1

fails to hold. Consequently, both {x1} and {x2} are stable at this profile, and the conclu-

sion of Lemma 2 also fails. Lastly, define for each i ∈ {1, 2} a rule f i(·) by

f i(�′
D) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

{xi} if xi �′
di
∅,

{xj} if ∅ �′
di

xi and xj �′
dj
∅,

∅ otherwise,

where j ∈ {1, 2}− {i}. In words, f i(·) is the serial dictatorship where doctor i has priority

over j. Further, note also that stability reduces to individual rationality in this market,

because both {x1} and {x2} are stable at �D as defined above. Given these observations,

we can check both f 1(·) and f 2(·) are stable and strategy-proof. �

The next example shows that in general, the cumulative offer process may not lead to

the doctor-optimal stable rule, even if it exists and is strategy-proof.

Example 4. Let D = {d1, d2}, H = {h}, and X = {xi, yi}i∈{1,2}, where xi and yi denote

two distinct contracts between di and h. The hospital’s choice function is induced by

�h: {x1, x2} �h {y1, x2} �h ∅.

In this market, the doctor-optimal stable rule X∗(·) exists:

X∗(�D) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

{x1, x2} if x1 = max {x1, y1,∅} and x2 ∈ Ac(�d2),

{y1, x2} if y1 = max {x1, y1,∅} and x2 ∈ Ac(�d2),

∅ otherwise,

30The second requirement of weak blocking is vacuously satisfied since Ch({x1, x2}) = ∅.
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where the maximums are taken with respect to �d1 . Thus, our Theorem 2 tells that X∗(·) is

the unique candidate for a stable and strategy-proof rule, and indeed, it is strategy-proof.

To see this, note that X∗(·) selects the best allocation for doctor d1 subject to the individual

rationality constraints for d2 and h. Hence, doctor d1 has no incentive to misreport. Doctor

d2 cannot manipulate X∗(·) either, since (i) it depends on �d2 only through whether x2 ∈
Ac(�d2) or not, and (ii) X∗(�D) � x2 only when x2 ∈ Ac(�d2).

While the doctor-optimal stable rule exists and is strategy-proof, not all the cumulative

offer processes induce X∗(·).31 To see this, consider the process such that doctor d1 makes

an offer whenever d1 ∈ Dt−1, where Dt−1 is as defined in Definition 1. Then, when �D is

given by

�d1 : y1 �d1 x1 �d1 ∅, and

�d2 : y2 �d2 x2 �d2 ∅,

this cumulative offer process returns {x1, x2} �= X∗(�D) = {y1, x2}. �

The last example shows that non-wastefulness as in Definition 2 does not necessarily

follow from stability in the absence of the IRC condition.

Example 5. Let D = {d1, d2}, H = {h1, h2}, and X = {x1, x2}, where for each i ∈ {1, 2},

xi is a contract between di and hi. Suppose that each di has a preference relation such that

xi �di ∅, and each hi has a choice function Chi(·) such that Chi(X) = xi and Chi(X′) = ∅

for all X′ � X. Allocation X′ = ∅ is then wasteful. At the same time it is also stable,

because there is no blocking coalition although both (h1, {x1, x2}) and (h2, {x1, x2}) weakly

block X′ = ∅. �

31In this market, there are multiple non-outcome-equivalent cumulative offer processes. Depending on
how to specify who makes an offer at each step, some of them induce X∗(·) while others do not.
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