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Abstract

We consider varying coefficient Cox models with high-dimensional covariates.
We apply the group Lasso to these models and propose a variable selection proce-
dure. Our procedure can cope with simultaneous variable selection and structure
identification from a high dimensional varying coefficient model to a semivarying
coefficient model. We also derive an oracle inequality and closely examine re-
strictive eigenvalue conditions. In this paper, we give the details for Cox models
with time-varying coefficients. The theoretical results on variable selection can
be easily extended to some other important models and we briefly mention those
models since those models can be treated in the same way. The models consid-
ered in this paper are the most popular models among structured nonparametric
regression models. The results of numerical studies are also reported.

Keywords: censored survival data, high-dimensional data, group Lasso, B-spline
basis, structured nonparametric regression model, semivarying coefficient model
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1. Introduction

The Cox model is one of the most popular and useful models to analyze cen-
sored survival data. Since the Cox model was proposed in Cox[9], many authors
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have studied a lot of extensions or variants of the original Cox model to deal
with complicated situations or carry out more flexible statistical analysis. In this
paper, we consider varying coefficient models and additive models with high-
dimensional covariates. These models with moderate numbers of covariates are
investigated in many papers, for example, Huang et al.[18], Cai and Sun[8], and
Cai et al.[7].

We apply the group Lasso (for example, see Lounici et al.[25] and Huang et
al.[16]) to varying coefficient models with high-dimensional covariates to carry
out variable selection and structure identification simultaneously. Although we
focus on time-varying coefficient models here, our method can be applied to vari-
able selection for another type of varying coefficient models and additive models
and we briefly mention how to apply our procedure and how to derive the theoret-
ical results.

Suppose that we observe censored survival times Ti and high-dimensional ran-
dom covariates Xi(t) = (Xi1(t), . . . , Xip(t))T . More specifically, we have n i.i.d.
observations of

Ti = min{T0i,Ci}, δi = I{T0i ≤ Ci}, (1)

and p-dimensional covariate Xi(t) on the time interval [0, τ], where T0i is an un-
censored survival time andCi is a censoring time satisfying the condition of the in-
dependent censoring mechanism as in section 6.2 of Kalbfleisch and Prentice[20].
Hereafter we set τ = 1 for simplicity of presentation. Note that p can be very
large compared to n in this paper, for example, p = O(ncp) for a very large pos-
itive constant cp or p = O(exp(ncp)) for a sufficiently small positive constant cp.
We assume that the standard setup for the Cox model holds as in chapter 5 of [20]
and that Ti or Ni(t) = I{t ≥ Ti} has the following compensator Λi(t) with respect
to a suitable filtration {Ft}:

dΛi(t) = Yi(t) exp{XT
i (t)g(t)}λ0(t)dt, (2)

where Yi(t) = I{t ≤ Ti}, g(t) = (g1(t), . . . , gp(t))T is a vector of unknown functions
on [0, 1], aT denotes the transpose of a, and λ0(t) is a baseline hazard function.
As in chapter 5 of [20],Xi(t) is predictable and

Mi(t) = Ni(t) − Λi(t) (3)

is a martingale process with respect to {Ft}. In the original Cox model, g(t) is a
vector of unknown constants and we estimate this constant coefficient vector by
maximizing the partial likelihood.
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In this paper, we are interested in estimating g(t) in (2). Recently we have
many cases where there are (ultra) high-dimensional covariates due to drastic de-
velopment of data collecting technology. In such high-dimensional data, usually
only a small part of covariates are relevant. However, we cannot directly apply
standard or traditional estimating procedures to such high-dimensional data. Thus
now a lot of methods for variable selection are available, for example, the SCAD
and the Lasso. See Bühlmann and van de Geer[6] and Hastie et al.[14] for excel-
lent reviews of these procedures for variable selection. See also Bickel et al.[3]
and Zou[41] for the Lasso and the adaptive Lasso, respectively.

As for high dimensional Cox models with constant coefficient, Bradic et al.[4]
studied the SCAD and Huang et al.[17], Kong and Nan[22], and Lemler[23] con-
sidered the Lasso. Zhang and Luo[36] proposed an adaptive Lasso estimator for
the Cox model. The authors of [17] developed new ingenious techniques to derive
oracle inequalities. We will fully use their techniques to derive our theoretical
results such as an oracle inequality. Sun et al.[28] modified the Lasso penalty
to incorporate side information. Wang et al.[32] proposed a hierarchical group
penalty. Some variable screening procedures have also been proposed in Zhao
and Li[40] and Yang et al.[34], to name just a few. Estimation of the baseline
hazard function is considered in Guilloux et al.[13] in a high-dimensional setup.
A model free screening procedure for censored data with high-dimensional co-
variates is proposed in Song et al.[27].

In this paper, we propose a group Lasso procedure to select relevant covariates
and identify the covariates with constant coefficients among the relevant covari-
ates, namely the true semivarying coefficient model from a much larger varying
coefficient model. We can achieve this goal by a suitable two-stage procedure
consisting of the proposed group Lasso with and an adaptively weighted Lasso
procedure as in Yan and Huang[33] and Honda and Härdle[15] or the SCAD. In
[33], the authors proposed an adaptive Lasso procedure for structure identification
with no theoretical result. Our procedure can be applied to the varying coefficient
model with an index variable Zi(t):

dΛi(t) = Yi(t) exp{g0(Zi(t)) +XT
i (t)g(Zi(t))}λ0(t)dt (4)

and the additive model:

dΛi(t) = Yi(t) exp
{ p∑

j=1

gj(Xi j(t))
}
λ0(t)dt. (5)

We mention these model later in section 4.
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Some authors considered the same problem by using the SCAD. For exam-
ple, see Lian et al.[24] and Zhang et al.[37]. They proved the existence of local
optimizer satisfying the same convergence rate as ours. In contrast, we prove the
existence of the global solution with desirable properties. In Bradic and Song[5],
the authors applied penalties similar to ours to additive models and obtained theo-
retical results with model misspecifications considered. We have derived a better
convergence rate in our cases. See Remark 3 in section 3 about the convergence
rate. We also carefully examined the RE (restrictive eigenvalue) conditions. While
the other authors considered the L2 norm of the estimated second derivatives for
additive models, we adopt the orthogonal decomposition approach to structure
identification. We give some details on why we have adopted the orthogonal de-
composition approach in Appendix C.

This paper is organized as follows. In section 2, we describe our group Lasso
procedure for time-varying coefficient models. Then we present our theoretical
results in section 3. We mention the two other models in section 4. The results of
numerical studies are reported in section 5. The proofs of our theoretical results
are postponed to section 6 and section 7 concludes this paper. We collected useful
properties of our basis functions and the proofs of technical lemmas in Appendices
A-D.

We define some notation and symbols here. In this paper, C, C1, C2, . . . are
positive generic constants and their values change from line to line. For a vector a,
|a|, |a|1, and |a|∞ mean the L2 norm, the L1 norm, and the sup norm, respectively.
For a function g on [0, 1], ‖g‖, ‖g‖1, and ‖g‖∞ stand for the L2 norm, the L1 norm,
and the sup norm, respectively. For a symmetric matrix A, we denote the minimum
and maximum eigenvalues by λmin(A) and λmax(A), respectively. Besides, sign(a)
is the sign of a real number a and an ∼ bn means there are positive constants C1
and C2 such that C1 < an/bn < C2. We write S for the complement of a set S. For
a function g(z) and a constant c, g(z) ≡ c and g(z) � c means that a function g(z)
is c and it is not a constant c, respectively.

2. Group Lasso procedure

First we decompose gj(t), j = 1, . . . , p, into the constant part and the non-
constant part:

gj(t) = gc j + gn j(t), (6)
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where
∫ 1
0 gn j(t)dt = 0. When gj(t) � 0, gj(t) is a non-zero constant or a non-

constant function. We denote the index sets of relevant covariates by

Sc = { j | gc j � 0} and Sn = { j | gn j(t) � 0} (7)

and set
sc = #Sc, sn = #Sn, and so = sc + sn,

where #A is the number of the elements of a set A. Even though p is large, only
a small number of covariates are relevant in most cases. Then we consider sparse
models and therefore we assume that s0 = o(L(ln n)−1/2), where L is the dimension
of our B-spline basis.

Next we introduce our spline basis B(t) to approximate gj(t), j = 1, . . . , p.
We construct B(t) from the L-dimensional equispaced B-spline basis B0(t) =
(b01(t), . . . , b0L(t))T on [0, 1] and the basis has the following properties :

B(t) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
b1(t)
b2(t)
...

bL(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
(
1/
√

L
B(t)

)
= A0B0(t) and

∫ 1

0
B(t)B

T
(t)dt = L−1I, (8)

where

A0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
aT
01

aT
02
...

aT
0L

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
(
1T/
√

L
A−1

)

and 1 = (1, . . . , 1)T . Besides, we define a0 j and A−1 in the above equations. Note
that for j = 1, . . . , L,

bj(t) = aT
0 jB0(t)

and that 1/
√

L andB(T ) = (b2(t), . . . , bL(t))T in (8) are designed for gc j and gn j(t),
respectively. Recall that 1TB0(t) ≡ 1 and see Schumaker[26] for the definition of
B-spline bases. We have collected how to constructB(t) and A0 and some useful
properties of B(t) and A0 in Appendix A. We can use another basis which has
desirable properties such as (A.1), (A.3), and (A.4) in Appendix A. We also use
the local properties of the B-spline basis in the proofs.

We impose some technical assumptions on g(t).
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Assumption G : gj(t), j = 1, . . . , p, are twice continuously differentiable and
there is a positive constant Cg such that

p∑
j=1

‖gj‖∞ ≤ Cg,

p∑
j=1

‖g′j‖∞ ≤ Cg, and
p∑

j=1

‖g′′j ‖∞ ≤ Cg.

Besides we have

min
j∈Sc
|gc j|L2 → ∞ and min

j∈Sn
‖gn j‖L2 → ∞.

Hereafter we take L = cLn1/5(cL > 0) for simplicity of presentation and the
order of the B-spline basis should be larger than or equal to 2. In the former of
Assumption G, most of gj are irrelevant and satisfy gj(z) ≡ 0 since we are dealing
with sparse models. Then only a small number or bounded number of gj such that
only j ∈ Sc ∪ Sn are relevant in this assumption and the summations. The latter
of Assumption G means relevant coefficient functions are larger than the spline
approximation error. As for the identifiability of g(t), we need an assumption
such as λmin(E{Σ}) > C1/L for a positive constant C1, where E{Σ} is defined in
Proposition 3.

When Assumption G holds, there are γ∗j = (γ∗1 j,γ
∗T
−1 j)

T ∈ RL, j = 1, . . . , p,
such that for a positive constant Capprox depending on Cg,

p∑
j=1

‖gj − γ∗Tj B(t)‖∞ ≤ CapproxL−2. (9)

When j ∈ Sc, we can take γ∗1 j =
√

Lgc j and γ∗−1 j ∈ RL−1 depends on gn j(t). If
j ∈ Sn and j ∈ Sc, we take γ∗−1 j = 0 and γ∗1 j = 0, respectively. See Appendix A
for more details on these γ∗j = (γ

∗
1 j,γ

∗T
−1 j)

T .
We state assumptions on our Cox model before we describe the log partial

likelihood for new covariates

Wi(t) =Xi(t) ⊗B(t), (10)

where ⊗ means the Kronecker product.
Assumption M : |X1 j(t)| ≤ CX uniformly in j and t for a positive constant CX. We
also have E{Y1(1)} ≥ CY for a positive constant CY . Besides, the baseline hazard
function is bounded from above and satisfies λ0(t) ≥ Cλ on [0, 1] for a positive
constant Cλ.
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The first one is used to evaluate the inside of the exponential function. When
we deal with additive models, we can do without it. The other ones are standard
in the literature.

We denote the log partial likelihood by Lp(γ) :

Lp(γ) =
1
n

n∑
i=1

∫ 1

0
γTWi(t)dNi(t) −

∫ 1

0
ln
[ n∑

i=1

Yi(t) exp{γTWi(t)}
]
dN(t), (11)

where γ = (γT
1 , . . . ,γ

T
p )T ∈ RpL and N(t) = n−1

∑n
i=1 Ni(t). We also use the same

sample mean notation for Mi(t) and Yi(t).
Set

�p(γ) = −Lp(γ) (12)

for notational convenience. Then we should minimize this �p(γ) with respect to
γ. However, when pL is larger than n, we cannot carry out this minimization
properly and we add some penalty as in the literature on high-dimensional data.
We define the convex penalty :

P1(γ) =
p∑

j=1

(|γ1 j| + |γ−1 j|). (13)

This P1(γ) also plays the role of the L1 norm for γ ∈ RpL and is a very im-
portant technical tool in this paper. Besides, we define a kind of sup norm P∞(γ)
by

P∞(γ) = max
1≤ j≤p

|γ1 j| ∨ |γ−1 j|, (14)

where a ∨ b = max{a, b}. This is also an important technical tool.
Thus our group Lasso objective function is defined by

Q1(γ; λ) = �p(γ) + λP1(γ). (15)

Our group Lasso estimate is given by

γ̂ = argmin
γ∈RpL

Q1(γ; λ). (16)

If we are interested in only variable selection, we should minimize

Q(γ; λ) = �p(γ) + λ
p∑

j=1

|γ j|. (17)
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By using the results on the Lasso for quantile regression in Belloni and Chernozhukov[1],
Tang et al.[29] and Kato[21] considered variable selection for varying coefficient
and additive quantile regression models, respectively.

We state our theoretical results only for Q1(γ; λ) in section 3 since we can
deal with Q(γ; λ) in the same way. However, the sup norm P∞(γ) should be
modified to P∞(γ) = max1≤ j≤p |γ j| and the oracle inequality gives an upper bound
of
∑p

j=1 |γ̂ j − γ∗j | when we deal with Q(γ; λ).
The standard optimization theory implies that we have for γ̂ in (16),

∂�p

∂γ j
(γ̂) = −λ∇ jP1(γ̂), j = 1, . . . , p, (18)

where ∇ jP1(γ) is the subgradient of P1(γ) with respect to γ j and it consists of

∇1 j|γ1 j| =
⎧⎪⎪⎨⎪⎪⎩sign(γ1 j), |γ1 j| � 0
ε1 j, γ1 j = 0

,

and

∇−1 j|γ−1 j| =
⎧⎪⎪⎨⎪⎪⎩γ−1 j/|γ−1 j|, |γ−1 j| � 0
ε−1 j, γ−1 j = 0

.

Note that |ε1 j| ≤ 1 and |ε−1 j| ≤ 1 and ∇1 j and ∇−1 j are subgradients with respect
to γ1 j and γ−1 j, respectively. See chapter 5 of [14] for more details about convex
optimality conditions.

Consequently from (8), our estimates of gc j and gn j are

ĝc j = γ̂1 j/
√

L and ĝn j(t) = BT (t)γ̂−1 j. (19)

Remark 1. The Lasso is not necessarily selection consistent although our simu-
lation results are very good for variable selection. This phenomenon is closely
examined in [41] and some other papers for L2 linear regression. They proved
that the Lasso needs a restrictive condition on covariates to be selection consis-
tent even for L2 linear regression. See section 2.7 in [6]. Hence the adaptive
Lasso is proposed in [41]. Recently more general adaptively weighted Lasso pro-
cedures have been considered in the literature. Consequently the Lasso procedure
often has to be followed by a next step like an adaptively weighted Lasso proce-
dure or the SCAD. The SCAD also needs a good initial estimate or should have
a smaller number of covariates. We usually calculate the weights of adaptively
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weighted Lasso procedures based on estimators with desirable properties such as
so-called screening consistency. See section 2.8 in [6] about these kinds of two
step procedures. For Cox models, the authors of [36] and [15] considered adap-
tively weighted Lasso procedures. See also Fan et al.[10] about L1 regression and
Fan et al.[11] for a more general principle. However, we have never seen our or-
thonormal basis applied to structure identification for Cox models. Our Theorem
1, which is an oracle inequality and a standard main result in the Lasso litera-
ture, gives a solid theoretical basis for our group Lasso procedure to be used as a
first step for those adaptively weighted group Lasso or group SCAD procedures
for Cox models. As one of the reviewers pointed out, we can use Q(γ; λ) first and
then apply Q1(γ; λ) with adaptive weights or the group SCAD. However, when we
use Q1(γ; λ) first and Q1(γ; λ) with adaptive weights or the group SCAD next, we
will be able to remove more of irrelevant non-constant components at the first step
based on Q1(γ; λ). Inclusion of one irrelevant non-constant component increases
the dimension of Wi(t) by L − 1. Our theoretical results cover both strategies.
From a theoretical point of view, if we choose a threshold value tλ based on our
theoretical results in section 3 and define Ŝc and Ŝn by

Ŝc = { j | |̂gc j| > tλ} and Ŝn = { j | ‖̂gn j‖ > tλ}, (20)

they are consistent estimators of Sc and Sn, respectively. Then we estimate the pa-
rameters based on Ŝc and Ŝn. This is called the thresholded Lasso in the literature.
See sections 2.9 and 7.6.2 in [6]. However, adaptively weighted Lasso procedures
are much more popular in the literature. This is partly because the Lasso estimator
is a biased one.

Remark 2. In some situations, we should assume

Sn ⊂ Sc. (21)

We may incidentally have gc j = 0 for j ∈ Sn even if gn j(z) � 0. This can happen
partly because the value of gc j can depend on the definition of the decomposition
of gj(z) into gc j and gn j(z). However, this will rarely happen and gc j should be
included into the model if the nonparametric regression coefficient function for
j is included in the model. Then we can define a kind of hierarchical penalty
Ph(γ) as in (22) by taking the assumption in (21) into consideration and following
Zhao et al.[39] and Zhao and Leng[38]. We take the subscript h of Ph(γ) from the
hierarchical assumption (21) and our hierarchical penalty Ph(γ) is

Ph(γ) =
p∑

j=1

(|γ1 j|q + |γ−1 j|q)1/q +
p∑

j=1

|γ−1 j| (22)
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for some fixed q > 1. Then we can derive almost the same result for

γ̂ = argmin
γ∈RpL

Qh(γ; λ), where Qh(γ; λ) = �p(γ) + λPh(γ),

as for Q1(γ; λ). When we deal with Qh(γ; λ), P1(γ) and P∞(γ) still play the role
of the L1 and sup norms, respectively and the oracle inequality is an inequality
about P1(γ̂ − γ∗). We describe some more details in Appendix E in the supple-
ment to this paper. When we assume (21) and the group Lasso based on Q1(γ; λ)
concludes that ‖gn j‖ > 0 and |gc j| = 0, we may have to take (21) into consideration
and modify this conclusion to the one that both of them are relevant for this j.

3. Oracle inequality

An oracle inequality for γ̂ from Q1(γ; λ) is given in Theorem 1. All the proofs
are postponed to section 6. First we define some notation. We borrow some
notation from [17] and proceed as in [17]. Some other notation is standard in the
literature of the Cox model and the Lasso.

Let γS consist of {γ1 j} j∈Sc and {γ−1 j} j∈Sn . On the other hand, γS consists of{γ1 j} j∈Sc
and {γ−1 j} j∈Sn

.
We need some notation to give explicit expressions of the derivatives of �p(γ).

S (k)(t,γ) =
1
n

n∑
i=1

Yi(t)W ⊗k
i (t) exp{W T

i (t)γ}, (23)

where a⊗0 = 1, a⊗1 = a, and a⊗2 = aaT . In addition,

W̃n(t,γ) =
S (1)(t,γ)
S (0)(t,γ)

and Vn(t,γ) =
S (2)(t,γ)
S (0)(t,γ)

− (W̃n(t,γ))⊗2. (24)

Hence we have the following expressions of the derivatives of �p(γ), which
are denoted by �̇p(γ) and �̈p(γ) :

∂�p

∂γ
(γ) = −1

n

n∑
i=1

∫ 1

0
{Wi(t) − W̃n(t,γ)}dNi(t) = �̇p(γ) (25)

and

∂2�p

∂γ∂γT (γ) =
∫ 1

0
Vn(t,γ)dN(t) = �̈p(γ) (26)
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Note that �̇p(γ) and �̈p(γ) are define in the above equations.
In Proposition 1, we prove that γ̂ is in a restricted parameter space. We define

some more notation to state Proposition 1. Set

D� = P∞(�̇p(γ∗)) and θ̂ = γ̂ − γ∗. (27)

We evaluate D� later in Proposition 2. We define θS and θS in the same way as γS
and γS. Recall that γ

∗ = (γ∗T1 , . . . ,γ
∗T
p )T is given in (9). This proposition follows

from only (18).

Proposition 1. If λ > D�, we have

(γ̂ − γ∗)T {�̇p(γ̂) − �̇p(γ∗)} ≤ (λ + D�)P1(θ̂S) − (λ − D�)P1(θ̂S)

and

(λ − D�)P1(θ̂S) ≤ (λ + D�)P1(θ̂S).

Therefore if D� ≤ ξλ (ξ < 1), we have

P1(θ̂S) ≤
1 + ξ
1 − ξP1(θ̂S).

We define a restricted parameter space Θ(ζ) by

Θ(ζ) = {θ ∈ RpL | P1(θS) ≤ ζP1(θS)}.
For θ ∈ Θ(ζ), we have

P1(θ) ≤ (1 + ζ)P1(θS) and P1(θS) ≤ s1/20 |θS| ≤ s1/20 |θ|. (28)

Recall that s0 is defined just after (7).
To state the compatibility and restrictive eigenvalue conditions, we define

κ(ζ,Σ) and RE(ζ,Σ) for an n.n.d.(non-negative definite) matrix Σ with some mod-
ifications adapted to our setup.

κ(ζ,Σ) = inf
θ∈Θ(ζ),θ�0

s1/20 (θTΣθ)1/2

P1(θS)
and RE(ζ,Σ) = inf

θ∈Θ(ζ),θ�0
(θTΣθ)1/2

|θ| .

The latter is more commonly used in the literature of the Lasso. It is known that

κ2(ζ,Σ) ≥ RE2(ζ,Σ) ≥ λmin(Σ)
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and that if Σ1 − Σ2 is n.n.d., we also have
κ(ζ,Σ1) ≥ κ(ζ,Σ2) and RE(ζ,Σ1) ≥ RE(ζ,Σ2).

Some more notation is necessary for Theorem 1. Set

CW = 2CX{λmax(A0AT
0 )}1/2, RE∗ = RE

(1 + ξ
1 − ξ , �̈p(γ

∗)
)
, (29)

κ∗ = κ
(1 + ξ
1 − ξ , �̈p(γ

∗)
)
, and τ∗ =

s0λCW

(1 − ξ)(κ∗)2 for ξ ∈ (0, 1). (30)

Note thatCW is bounded from above. We closely look at RE∗ and κ∗ in Proposition
3. Let η∗ be the smaller solution of

η exp(−η) = τ∗

as in [17]. Note that τ∗ should tend to 0 as in Remark 3. Actually it does for the
choice of λ in Remark 3 due to our assumption on s0.

We can deal with Q(γ; λ) in (17) and Qh(γ; λ) in Remark 2 in almost the same
way and drive the same results with just conformable changes.

Theorem 1. Assume that Assumptions G and M hold. Then if D� ≤ ξλ for some
ξ ∈ (0, 1), we have

P1(γ̂ − γ∗) ≤ η∗/CW .

Then we also have

max
1≤ j≤p

|̂gc j − gc j| ≤ Cc
( η∗
L1/2 + L−2

)
, max

1≤ j≤p
‖̂gn j − gn j‖ ≤ Cn1

( η∗
L1/2 + L−2

)
,

max
1≤ j≤p

‖̂gn j − gn j‖∞ ≤ Cn2
( η∗
L1/2 + L−2

)
,

where Cc, Cn1, and Cn2 depend on CW, Cg, and the properties of the B-spline basis
on [0, 1] and they are bounded.

Some remarks are in order.

Remark 3. When p = O(ncp) for some cp, we have D� = Op((n−1 ln n)1/2) and
should take λ = C(n−1 ln n)1/2 for some sufficiently large C. As in shown in
Proposition 3, we usually have (κ∗)2 ∼ L−1 with probability tending to 1 in suitable
setups. Then when s0 is bounded, τ∗ ∼ L(n−1 ln n)1/2 and η∗/τ∗ → 1. This leads to
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the convergence rate of O(n−2/5(ln n)1/2) for ĝc j and ĝn j. Our rate improves that of
[5], which is O(n−7/20(ln n)1/2) for their additive model in a similar setup. In their
Theorems 1 and 2, λn ≥ C1n−1/4d−1(ln n)1/2 for some positive constant C1. Their
convergence rate about coefficient estimaion has the order of {(n1/2d)−1 ln n}1/2.
Their d corresponds to our L, but it appears in the denominator, not in the numer-
ator. If we take d ∼ n1/5 for this convergence rate, it reduces to n−7/20(ln n)1/2. Our
rate is optimal except for (ln n)1/2 for nonparametric regression under Assumption
G when s0 is bounded. Our results can deal with ultra high-dimensional cases if
p ∼ exp(ncp) and cp is sufficiently small. See Corollary 1 after Propositions 2 and
3.

Remark 4. Suppose that

min
j∈Sc
|gc j|/(n−2/5(ln n)1/2)→ ∞ and min

j∈Sn
‖gn j‖/(n−2/5(ln n)1/2)→ ∞.

Then if we take tλ satisfying tλ/λ → ∞ sufficiently slowly for λ in Remark 3, Ŝc

and Ŝn in (20) are consistent estimators of Sc and Sn, respectively. The conditions
in this remark require that the relevant coefficients should be large enough. Note
that n−2/5(ln n)1/2 except for (ln n)1/2 comes from the optimal order of nonparamet-
ric regression under the assumption of the second order differentiability condition.
When p ∼ exp(ncp), ln n should be replaced with ln p.

Next we evaluate D� in Proposition 2, which is called the deviation condition.
From Assumption M and application of Bernstein’s inequality (for example, see
van der Vaart and Wellner[31]), we have with probability larger than 1 − PY ,

1
n

n∑
i=1

Yi(1) = Y(1) > CY , (31)

where

PY = exp
{
− C2

Yn
2(1 + 2CY/3)

}
.

Since

�̇p(γ∗) = −1n
n∑

i=1

∫ 1

0
{Wi(t) − W̃n(t,γ∗)}dNi(t), (32)

13



we evaluate �̇op defined in (33) and �̇op − �̇p(γ∗) in (35). Note that this �̇op has no
argument.

�̇op = −1n
n∑

i=1

∫ 1

0

{
Wi(t) −

S (1)
0 (t)

S (0)
0 (t)

}
dNi(t) (33)

= −1
n

n∑
i=1

∫ 1

0

{
Wi(t) −

S (1)
0 (t)

S (0)
0 (t)

}
dMi(t),

where

S (k)
0 (t) =

1
n

n∑
i=1

Yi(t)W ⊗k
i (t) exp{gT (t)Xi(t)}, k = 0, 1, 2. (34)

�̇op − �̇p(γ∗) =
∫ 1

0

{
W̃n(t,γ∗) −

S (1)
0 (t)

S (0)
0 (t)

}
dN(t). (35)

By combining evaluations of (33) and (35), we obtain Proposition 2. The proof
is postponed to section 6. Recall that W̃n(t,γ∗) is defined in (24).

Proposition 2. Assume that Assumptions G and M hold. Then we have

P∞(�̇p(γ∗)) ≤ a1
L5/2 +

x(ln n)1/2√
n

with probability larger than

1 − PY − La2 exp{−a3nL−1} − 2pL exp
{
− a4x2 ln n
1 + x(n−1L ln n)1/2

}
,

where a j, j = 1, . . . , 4, are positive constants depending only on the assumptions
and they are independent of n.

Finally we deal with κ∗ and RE∗. In Proposition 3, we give their lower bounds.
They are called the compatibility condition and the restricted eigenvalue condi-
tion, respectively.

Proposition 3. Assume that Assumptions G and M hold. Then with probability
larger than 1 − PY − PA − PB − PC, we have

κ2(ζ, �̈p(γ∗)) ≥ exp(−CXCg)(1 + O(L−2))κ2(ζ,E{Σ})
− s0(1 + ζ)2L

{ c1
L3 +

x(ln n)1/2√
nL

}
14



and

RE2(ζ, �̈p(γ∗)) ≥ exp(−CXCg)(1 + O(L−2))RE2(ζ,E{Σ})
− s0(1 + ζ)2L

{ c2
L3 +

x(ln n)1/2√
nL

}
where

Σ =

∫ 1

0
GY(t)λ0(t)dt, GY(t) =

1
n

n∑
i=1

Yi(t){Wi(t) − μY(t)}⊗2,

μY(t) =
E{Y1(t)W1(t)}

E{Y1(t)} , PA = 2(pL)2 exp
{
− c3x2 ln n
1 + x(ln n)1/2(n−1L)1/2

}
,

PB = 5(pL)2 exp
{
− c4x(n ln n)1/2

1 + x1/2(n−1 ln n)1/4
}
,

PC = 2(pL)2 exp
{
− c5x2 ln n
1 + x(n−1 ln n)1/2

}
.

Note that c j, j = 1, . . . , 5, are positive constants depending only on the assump-
tions and they are independent of n.

In Propositions 2 and 3, the lower bounds of the probabilities depend on both p
and n. By taking this p into consideration, we should choose x in the propositions
to make the lower bounds of the probabilities tend to 1. When p = O(ncp) and
p ∼ (exp(ncp)), we should take x = C and x = C

√
ln p/ ln n, respectively for a

sufficiently large positive constant C in the propositions. See also the proof of
Corollary 1 at the end of section 6 when p ∼ exp(ncp).

In the literature, it is often assumed that there is a positive constant C1 such
that λmin(E{Σ}) ≥ C1/L due to (A.1) and (A.2) in Appendix A. Then for some
positive constants C2 and C3, we have

κ2(ζ, �̈p(γ∗)) ≥ C2

L
+ op(L−1) and RE2(ζ, �̈p(γ∗)) ≥ C3

L
+ op(L−1)

under the assumption of s0 = O(L(ln n)−1/2) and p = O(ncp).
We give a corollary on unltra-high dimensional cases by employing Proposi-

tions 2 and 3. This corollary is proved at the end of section 6.

Corollary 1. In addition to the assumptions in Theorem 1 and Propositions 2 and
3, we assume that s0 < Ca and λmin(E{Σ}) ≥ Cb/L for some positive constants Ca
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and Cb. Then if p ∼ exp(ncp) and ncp = o(n2/5) for some positive constant cp, we
have

η∗ in Theorem 1 ∼ L(n−1 ln p)1/2 → 0

by taking λ = C(n−1 ln p)1/2 for some sufficiently large positive constant C.

4. Other models

4.1. Varying coefficient models with index variables
When we observe (Zi(t),Xi(t)) and Zi(t) is an influential variable treated as the

index variable, the following model for the compensator is among candidates of
our models for statistical analysis.

dΛi(t) = Yi(t) exp{g0(Zi(t)) +XT
i (t)g(Zi(t))}λ0(t)dt, (36)

where Zi(t) ∈ [0, 1],
∫ 1
0 g0(z)dz = 0, and gj(z) = gc j + gn j(z), j = 1, . . . , p, as in

section 2. Then we can proceed in almost the same way with

Wi(t) = (BT (Zi(t)),XT
i (t) ⊗B

T
(Zi(t)))T ,

γ = (γT
−10, γ11,γ

T
−11, . . . , γ1p,γ

T
−1p)

T ,

P1(γ) =
p∑

j=1

|γ1 j| +
p∑

j=0

|γ−1 j|, P∞(γ) = {max
1≤ j≤p

|γ1 j| ∨ |γ−1 j|} ∨ |γ−10|,

Q1(γ; λ) = �p(γ) + λP1(γ), and Q(γ; λ) = �p(γ) + λ|γ−10| + λ
p∑

j=1

|γ j|.

We can define a hierarchical version Qh(γ) as in Remark 2.
We can carry out simultaneous variable selection and structure identification

of this model as for time-varying coefficient models and we are able to prove the
same results in almost the same way. Almost no change is necessary to the proofs
of Proposition 1 and Theorem 1. When we consider Propositions 2 and 3, we
should be a little careful in evaluating predictable variation processes and so on.
Then we have to deal with terms like

n−1
n∑

i=1

|b0 j(Zi(t))|, n−1
n∑

i=1

|bj(Zi(t))|, and n−1
n∑

i=1

|bj(Zi(t))bk(Zi(t))|

as compared to
|b0 j(t)|, |bj(t)|, and |bj(t)bk(t)|
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for time-varying coefficient models. Note that we can use exponential inequalities
for generalized U-statistics as given in Gine et al.[12] instead of Lemma 4.2 in
[17] in the proof of Proposition 3. We give more details in Appendix D.

4.2. Additive models
When we have no specific index variable, the following additive model may

be suitable.

dΛi(t) = Yi(t) exp
{ p∑

j=1

gj(Xi j(t))
}
λ0(t)dt, (37)

where
∫ 1
0 gj(x)dx = 0 and Xi j(t) ∈ [0, 1]. These gj(x) can be orthogonally decom-

posed into the linear part and the nonlinear part as well.
We should take b2(Xi j(t)) = (12L−1)1/2(Xi j(t) − 1/2) and use b2(Xi j(t)) and

(b3(Xi j(t)), . . . , bL(Xi j(t)))T for the linear part and the nonlinear part, respectively.
We have no b1(Xi j(t)) and divide γ−1 j into γ2 j and γ−2 j = (γ3 j, . . . , γL j)T . Then
we can apply the same group Lasso procedure for variable selection and structure
identification with

Wi(t) = (BT (Xi1(t)), . . . ,BT (Xip(t)))T , γ−1 = (γT
−11, . . . ,γ

T
−1p)

T ,

P1(γ−1) =
p∑

j=1

|γ2 j| +
p∑

j=1

|γ−2 j|, P∞(γ−1) = max
1≤ j≤p

|γ2 j| ∨ |γ−2 j|,

Q1(γ−1; λ) = �p(γ−1) + λP1(γ−1), and Q(γ−1; λ) = �p(γ−1) + λ
p∑

j=1

|γ−1 j|.

We can define a hierarchical version Qh(γ−1) as in Remark 2.
We have the same theoretical results with just conformable changes. We

should be careful in the proofs of Propositions 2 and 3 as for varying coefficient
models with index variables, too. We have to deal with terms like

n−1
n∑

i=1

|b0 j(Xi�(t))|, n−1
n∑

i=1

|bj(Xi�(t))|, and n−1
n∑

i=1

|bj(Xi�(t))bk(Xim(t))|

as compared to
|b0 j(t)|, |bj(t)|, and |bj(t)bk(t)|

for time-varying coefficient models. We can use exponential inequalities for gen-
eralized U-statistics as given in Gine et al.[12] instead of Lemma 4.2 in [17] in the
proof of Proposition 3.
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5. Numerical studies

5.1. Simulation study
We carried out a simulation study for the two models in section 4 with the P1

penalty because time-varying coefficient models are rather numerically intractable
to us at present. We used the grpsurv function of the package ‘grpreg’ version
3.0-2 (Breheny[2]) for R in our numerical study and all the covariates are time-
independent. We used R x64 3.3.1.

First we describe the data generating process of the covariates : {Xi j}qj=1, {Xi j}pj=q+1,
and Zi are mutually independent. Then Xi j, j = q+ 1, . . . , p, and Zi follow U(0, 1)
independently. We define {Xi j}qj=1 in (38).

Xi j = F(Yi j), j = 1, . . . , q, (38)

where {Yi j} is a stationary Gaussian AR(1) process with ρ = 0.3 and F(y) is the
distribution function of Yi j.

Next we gives the details for our varying coefficient model with an index vari-
able Z. We took

λ0(t) = 0.5, g1(z) = g2(z) = 1, g3(z) = 4z, g4(z) = 4z2.

The other functions are taken to be 0. Hence we have sc = 4 and sn = 2. Note
that X1 and X2 are relevant for only the constant component and that X3 and X4 are
relevant for both the constant component and the non-constant one. All the other
covariates are irrelevant. We imposed no penalty on the coefficient vector for g0(z)
in this simulation study. This does not affect the theoretical results. See the proof
of Proposition 1. The censoring variable Ci follows the exponential distribution
with mean= 1/0.85 independently of all the other variables and the censoring rate
is about 20%.

Then we describe the details for our additive model. We took

λ0(t) = 0.5, g1(x) = g2(x) = 21/2(x − 1/2),
g3(x) = 2−1/2 cos(2πx) + (x − 1/2), g4(x) = sin(2πx).

The other functions are taken to be 0. Hence we have sc = 4 and sn = 2 and note
that X1 and X2 are relevant for only the linear component and that X3 and X4 are
relevant for both the linear component and the nonlinear one. All the other covari-
ates are irrelevant. The censoring variable Ci follows the exponential distribution
with mean= 1/0.80 independently of all the other variables and the censoring rate
is about 30%.
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When we carried out simulations, we took n = 300, p = 500, 300, 150, 50,
q = 8. We took L = 4 and L = 5 for the varying coefficient model and the additive
model, respectively. We used the quadratic spline basis and the repetition numbers
are 400 for p = 300, 150, 50 and 100 for p = 500, respectively. The results are
given in Tables 1 and 2. When |̂γ1 j|, |γ̂−1 j|, |̂γ2 j|, and |γ̂−2 j| are less than 0.00001,
they are put to 0. We give some figures of estimation errors of our procedure in
Appendix F in the supplement. The Lasso estimator is a kind of biased estimator
for variable selection. Thus our group Lasso estimator didn’t perform very well
in terms of estimation error.

In the tables, FNR, Correct, and FPR, respectively stand for
FNR: The rate of relevant covariates that are not chosen wrongly,
Correct: The rate of correct decisions,
FPR: The rate of irrelevant covariates that are wrongly chosen.
As for the tuning parameter λ, there is no theoretically definitive procedure

and there is no result for selection consistency. In this simulation study, we chose
λ by minimizing the AIC and the BIC. Our AIC and BIC for varying coefficient
models are defined in (39) and (40).

AIC = �p(γ̂) +
1
n
{̂sc + (L − 1)̂sn}, (39)

BIC = �p(γ̂) +
ln n
2n
{̂sc + (L − 1)̂sn}, (40)

where γ̂ is defined as in (16), ŝc is the number of non-zero |̂γ1 j|, and ŝn is the
number of non-zero |γ̂−1 j|. Our AIC and BIC for additive models are similarly
defined.

Tables 1 and 2 imply that the AICminimization works very well. However, the
BIC minimization does not work at all and we present only the tables of the AIC
minimization here. Those of the BIC are given in Appendix F in the supplement.
In Table 2, we sometimes missed the linear components of X3 and X4. If we
incorporate the assumption in (21), we will not miss these linear components.

The results for the group SCAD are also given in Appendix F in the supple-
ment. We took only p = 50 since the results for the other cases are unstable and
bad. Probably the minimization of the grpsurv function does not work when we
use it for the SCAD with large p and this may be a kind of general problem due
to the nonconvexity of the SCAD penalty, not that of the specific R package. This
is why various kinds of screening procedures have been proposed to give suitable
initial values or reduce the numbers of covariates for the SCAD implementation.
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Our procedure can be seen as a screening procedure as stated in Remark 1. To
find the true model for large p, we go on to the second step for example, adaptively
weighed group Lasso procedures or the SCAD procedure after our group Lasso
procedure as the first step. Therefore it is very important to reduce the number
of covariates properly. Our procedure based on Q1(γ; λ) can remove irrelevant
non-constant or nonlinear components as shown, especially in Table 1. Irrelevant
non-constant and nonlinear components will have serious negative effects on the
dimension of Cox models at the second step since these components have larger
dimensions than constant and linear components. Note again that we will not miss
the linear components if we incorporate the assumption in (21) in Table 2.

n = 300 X1 and X2 X3 and X4 X5 to Xq(q = 8) Xq+1 to Xp
p = 500 Const. Non-const. Const. Non-const. Const. Non-const. Const. Non-const.
FNR 0.020 — 0.000 0.165 — — — —
Correct 0.980 0.995 1.000 0.835 0.940 1.000 0.951 0.998
FPR — 0.005 — — 0.060 0.000 0.049 0.002
p = 300 Const. Non-const. Const. Non-const. Const. Non-const. Const. Non-const.
FNR 0.012 — 0.000 0.118 — — — —
Correct 0.988 0.992 1.000 0.882 0.932 0.994 0.941 0.997
FPR — 0.008 — — 0.068 0.006 0.059 0.003
p = 150 Const. Non-const. Const. Non-const. Const. Non-const. Const. Non-const.
FNR 0.002 — 0.000 0.060 — — — —
Correct 0.998 0.990 1.000 0.940 0.922 0.983 0.917 0.991
FPR — 0.010 — — 0.078 0.017 0.083 0.009
p = 50 Const. Non-const. Const. Non-const. Const. Non-const. Const. Non-const.
FNR 0.001 — 0.000 0.028 — — — —
Correct 0.999 0.965 1.000 0.972 0.866 0.952 0.862 0.970
FPR — 0.035 — — 0.134 0.048 0.138 0.030

Table 1: Varying coefficient model with an index variable(AIC)
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n = 300 X1 and X2 X3 and X4 X5 to Xq(q = 8) Xq+1 to Xp
p = 500 Linear Nonlinear Linear Nonlinear Linear Nonlinear Linear Nonlinear
FNR 0.010 — 0.405 0.075 — — — —
Correct 0.990 0.990 0.595 0.925 1.000 0.998 0.999 0.993
FPR — 0.010 — — 0.000 0.002 0.001 0.007
p = 300 Linear Nonlinear Linear Nonlinear Linear Nonlinear Linear Nonlinear
FNR 0.014 — 0.335 0.038 — — — —
Correct 0.986 0.986 0.665 0.962 0.999 0.990 0.999 0.988
FPR — 0.014 — — 0.001 0.010 0.001 0.012
p = 150 Linear Nonlinear Linear Nonlinear Linear Nonlinear Linear Nonlinear
FNR 0.011 — 0.232 0.018 — — — —
Correct 0.989 0.966 0.768 0.982 0.996 0.978 0.997 0.975
FPR — 0.034 — — 0.004 0.022 0.003 0.025
p = 50 Linear Nonlinear Linear Nonlinear Linear Nonlinear Linear Nonlinear
FNR 0.001 — 0.122 0.004 — — — —
Correct 0.999 0.896 0.878 0.996 0.986 0.907 0.987 0.916
FPR — 0.104 — — 0.014 0.093 0.013 0.084

Table 2: Additive model(AIC)

5.2. Real data analysis
We applied a varying coefficient model to the German Breast Cancer Study

Group 2(GBSG2) dataset. The dataset is available from the package ‘TH.data’
for R. See https://cran.r-project.org/web/packages/TH.data/TH.data.pdf for more
details on the data set.The data set consists of recurrence free survival times in
days of 686 women with censoring indicators and eight covariates of three cat-
egorical covariates from tgrade to menostat and five continuous covariates from
age to estrec. 56.5% of the observations were censored.
tgrade (X1, X2) : tumor grade, a ordered factor at levels I < II < III. X1 = tgrade2
and X2 = tgrade3 are dummy variables for II and III, respectively.
horTh (X3) : hormonal therapy, a factor at two levels no and yes. X3 is the dummy
variable for yes.
menostat (X4) : menopausal status, a factor at two levels pre (premenopausal) and
post (postmenopausal). X4 is the dummy variable for post
age (Z) : age of the patients in years
tsize (X5) : tumor size (in mm)
pnodes (X6) : number of positive nodes
progrec (X7) : progesterone receptor (in fmol)
estrec (X8) : estrogen receptor (in fmol).
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We took age as Z as in [24]. Specifically,

Z = Φ
(age − mage

vage

)
,

where mage and vage are the mean and the variance of age, respectively and Φ(x)
is the distribution function of the standard normal distribution. Then our varying
coefficient model has

g0(Zi) +
8∑

j=1

Xi jg j(Zi)

in the exponential function. Note that g0(z) has no constant component and we
always included it in our selection with no penalty. We added (p− 8) artificial co-
variates Xj with gj(z) ≡ 0 for j = 9, . . . , p. Among the artificial covariates, X9 and
X10 take 0 and 1 and X11, . . . , X14 are continuous and correlated with tsize, pnodes,
progrec,and estrec. The other ones are i.i.d. normal or uniform random variables.
More details are given in Appendix G in the supplement. We considered two
cases. We took L = 4 and p = 500, 300, 150, 50 and used the quadratic spline
basis. We adopted the AIC minimization rule for tuning parameter selection as in
our simulation study. Tables 4, 5, 7, and 8 report |̂gc j| and ‖̂gn j‖ by the SCAD and
the coxph function of R with no additional artificial covariates. Entires in Z and
menostat suggest that there seems to be serious multicollinearity among dummy
variables.
Standardized case : We just standardized tsize, pnodes, progrec,and estrec by
subtracting the mean and dividing the standard deviation.

The group Lasso selected for p = 150 and 300 the constant components of
horTh, pnodes, progrec and no non-constant component, three components in to-
tal. When p = 50 and 500, it selected only the constant components of pnodes
and progrec, two components in total. The group SCAD didn’t work for p = 150,
300, or 500 even for p = 50 as shown in Table 3. Table 3 shows the numbers of
false positive artificial covariates. Recall we always select g0(z) with no penalty
on it.

Because of the consistency of the BIC for small and fixed p, the BIC results
in Tables 4 and 7 suggest that screening procedures should select at least the fol-
lowing components.
Const : horTh, pnodes, progrec
Non-const: menostat
The constant component of tszie and the non-constant component of pnodes are
relatively small for the AIC and disappeared for the BIC in Table 4.

22



The group Lasso missed the non-constant component of menostat for every p.
We suspect from the results of Z and menostat in Tables 4 and 5 that that there
is serious multicollinearity among dummy variables, tgrade2, tgrade3, horTh, and
menostat. In addition, the design matrix also suggests the existence of it. See
Appendix G in the supplement.

We think this multicollinearity is the reason that the group Lasso missed the
menostat non-constant component. In order to recover variables such as this
menostat, we should use another sure independence screening procedure simulta-
neously or closely look at the solution path. Aside from this menostat, our group
Lasso procedure selected the necessary components for p = 150 and 300. For
p = 50 and 500, the group Lasso missed horTh, too. Note that this horTh is not in
the BIC result in Table 4, either.
Transformed case : We transformed tsize, pnodes, progrec,and estrec so that they
are distributed on [0, 1]. The details are given in the supplement.

The group Lasso selected for every p the constant components of horTh, pn-
odes, progrec and no non-constant component, three in total. The group SCAD
didn’t work for p = 150, 300, or 500 and it selected constant components of
tgrade2, tgrade3, horTh, pnodes, progrec and the non-constant component of
menostat for p = 50, six in total. Table 6 shows the numbers of false positive
artificial covariates.

Tables 7 and 8 suggest that screening procedures should select at least the con-
stant components of horTh, pnodes, and progrec and the non-constant component
of menostat as well. The group Lasso missed only the non-constant component of
menostat for every p. The same comment for the standardized case applies to this
menostat, too.
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X9 and X10 X11 to X14 X15 to Xp
Const. Non-const. Const. Non-const. Const. Non-const.

Lasso, p = 500 0 0 0 0 0 0
Lasso, p = 300 0 0 0 0 0 4
Lasso, p = 150 0 0 0 0 0 3
Lasso, p = 50 0 0 0 0 0 0
SCAD, p = 50 0 2 0 1 3 19

Table 3: False positive numbers (AIC, Standardized)

SCAD Z tgrate2 tgrade3 horTh menostat tsize pnodes progrec estrec
AIC Const. — 0.602 0.724 0.428 0.000 0.031 0.304 0.409 0.000

Non-Const. 1.063 0.228 0.000 0.000 1.761 0.000 0.040 0.000 0.000
BIC Const. — 0.000 0.000 0.000 0.000 0.000 0.304 0.478 0.000

Non-Const. 1.127 0.000 0.000 0.000 1.755 0.000 0.000 0.000 0.000

Table 4: Norms by SCAD (No additional variables, Standardized)

coxph Z tgrate2 tgrade3 horTh menostat tsize pnodes progrec estrec
Const. — 0.613 0.724 0.437 3.311 0.120 0.264 0.412 0.158
Non-Const. 6.399 0.273 0.354 0.195 6.789 0.055 0.068 0.246 0.177

Table 5: Norms by coxph (No additional variables, Standardized)
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X9 and X10 X11 to X14 X15 to Xp
Const. Non-const. Const. Non-const. Const. Non-const.

Lasso, p = 500 0 0 0 0 9 0
Lasso, p = 300 0 0 0 0 5 0
Lasso, p = 150 0 0 0 0 1 0
Lasso, p = 50 0 0 0 0 0 0
SCAD, p = 50 0 1 0 3 0 6

Table 6: False positive numbers (AIC, Transformed)

SCAD Z tgrate2 tgrade3 horTh menostat tsize pnodes progrec estrec
AIC Const. — 0.000 0.000 0.458 0.000 0.000 2.003 1.061 0.000

Non-Const. 1.117 0.000 0.000 0.000 1.680 0.000 0.000 0.000 0.000
BIC Const. — 0.000 0.000 0.458 0.000 0.000 2.003 1.061 0.000

Non-Const. 1.117 0.000 0.000 0.000 1.680 0.000 0.000 0.000 0.000

Table 7: Norms by SCAD (No additional variables, Transformed)

coxph Z tgrate2 tgrade3 horTh menostat tsize pnodes progrec estrec
Const. — 0.519 0.503 0.462 2.368 0.174 1.857 1.000 0.070
Non-Const. 5.007 0.333 0.432 0.202 5.225 0.073 0.246 0.389 0.312

Table 8: Norms by coxph (No additional variables, Transformed)
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6. Proofs

We prove Propositions 1-3, Theorem 1, and Corollary 1. We present the proofs
of technical lemmas in Appendix B.

For a vector a and a matrix A, (a)i and (A)i j mean the ith element of a and the
(i, j) element of A, respectively.

Proof of Proposition 1. Note that

(γ̂ − γ∗)T {�̇p(γ̂) − �̇p(γ∗)} (41)

=
∑
j∈Sn

θ̂T
−1 j
∂�p

∂γ−1 j
(γ̂) +

∑
j∈Sn

θ̂T
−1 j
∂�p

∂γ−1 j
(γ̂)

+
∑
j∈Sc

θ̂1 j
∂�p

∂γ1 j
(γ̂) +

∑
j∈Sc

θ̂1 j
∂�p

∂γ1 j
(γ̂) + {−θ̂T (�̇p(γ∗)}

= E1 + E2 + E3 + E4 + E5 ≥ 0
Note that Ek, k = 1, . . . , 5, are defined in the above equation. The last inequality
follows from the convexity of �p(γ) and we should recall that θ̂ = γ̂ − γ∗.

We evaluate Ek, k = 1, . . . , 5, by exploiting (18). Write Ek =
∑

j Ek j.
E1 : Notice that γ̂−1 j = θ̂−1 j. Then we should evaluate

E1 j = θ̂T
−1 j
∂�p

∂γ−1 j
(γ̂) = γ̂T

−1 j
∂�p

∂γ−1 j
(γ̂).

When γ̂−1 j � 0, we have
E1 j = −λ|θ̂−1 j|. (42)

When γ̂−1 j = 0, we have
E1 j = −λ|θ̂−1 j| = 0. (43)

From (42) and (43), we obtain

E1 ≤ −λ
∑
j∈Sn

|θ̂−1 j|. (44)

E2 : We should evaluate

E2 j = θ̂T
−1 j
∂�p

∂γ−1 j
(γ̂).
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We have E2 j ≤ λ|θ̂−1 j| because

| ∂�p
∂γ−1 j

(γ̂)| ≤ λ.

Thus we obtain
E2 ≤ λ

∑
j∈Sn

|θ̂−1 j|. (45)

E3 and E4 : In a similar way, we obtain

E3 ≤ −λ
∑
j∈Sc

|̂θ1 j| and E4 ≤ λ
∑
j∈Sc

|̂θ1 j|. (46)

E5 : We have
E5 ≤ P1(θ̂)D� = (P1(θ̂S) + P1(θ̂S))D�. (47)

(44), (45), (46), and (47) yield that

E1 + E2 + E3 + E4 + E5 ≤ (λ + D�)P1(θ̂S) − (λ − D�)P1(θ̂S).

The first and second inequalities follow from (41) and the above inequality. The
third inequality follows from the following expression of the second one.

P1(θ̂S) ≤
λ + D�
λ − D�

P1(θ̂S)

Hence the proof of the proposition is complete.

We establish the oracle inequality.

Proof of Theorem 1. First we define D(θ) by

D(θ) = max
i, j

max
0≤t≤1
|θTWi(t) − θTW j(t)|.

We need two lemmas.

Lemma 1.
D(θ) ≤ CWP1(θ)

Lemma 2.

e−D(θ)θT �̈p(γ∗)θ ≤ (γ∗ + θ − γ∗)T (�̇p(γ∗ + θ) − �̇p(γ∗) ≤ eD(θ)θT �̈p(γ∗)θ
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Now we begin to prove the oracle inequality. If θ̂ = 0, the desired inequality
holds. Hence we assume θ̂ � 0 and set

b̂ =
θ̂

P1(θ̂)
.

We have from Proposition 1 and the definition of P1(γ) that

b̂ ∈ Θ
(1 + ξ
1 − ξ

)
and P1(̂b) = P1(̂bS) + P1(̂bS) = 1. (48)

When D� ≤ ξλ, the first inequality of Proposition 1 implies that the following
inequalities hold at x = 0 and x = P1(θ̂).

b̂T {�̇p(γ∗ + x̂b) − �̇p(γ∗)} (49)
≤ (1 + ξ)λP1(̂bS) − (1 − ξ)λP1(̂bS)

= 2λP1(̂bS) − λ(1 − ξ) ≤ λ

1 − ξ {P1(̂bS)}2. (50)

We also used (48) here.
Note that (49) is monotone increasing and continuous in x due to the convexity

of �p(γ) and we have (50) on [0, P1(θ̂)]. Let xb be the maximum of x satisfying

b̂T {�̇p(γ∗ + x̂b) − �̇p(γ∗)} ≤ λ

1 − ξ {P1(̂bS)}2 (51)

for any s ∈ [0, x].
If we find an upper bound of xb, say x0, we have P1(θ̂) ≤ x0. Therefore we

will find an upper bound of xb as in [17].
From Lemmas 1 and 2, we have for θ = x̂b,

x̂bT {�̇p(γ∗ + x̂b) − �̇p(γ∗)} ≥ x2 exp{−D(x̂b)}̂bT �̈p(γ∗)̂b (52)

≥ x2 exp{−CW x}̂bT �̈p(γ∗)̂b.

The definition of κ∗ and (52) imply that

b̂T {�̇p(γ∗ + x̂b) − �̇p(γ∗)} ≥ x exp{−CW x} (κ
∗)2

s0
{P1(̂bS)}2. (53)

It follows from (51) and (53) that
λs0CW

(1 − ξ)(κ∗)2 = τ
∗ ≥ CW x exp{−CW x}.
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Consequently we have from the definition of η∗ and the above inequality that

CW xb ≤ η∗ and
τ∗

η∗
→ 1 if τ∗ → 0.

We have found that η∗/CW is an upper bound of xb and that P1(θ̂) ≤ η∗/CW .
As for the the rest of the theorem, the result on ĝc j is straightforward from

(19). The upper bounds on ĝn j(t) follow from (A.1), (A.4), and the following
inequalities.

|(γ̂−1 j − γ∗−1 j)
TB(t)| ≤ {λmax(A−1AT

−1)}1/2|γ̂−1 j − γ∗−1 j||B0(t)| and
|B0(t)| ≤ 1

Recall that the properties of our basis are collected in Appendix A.
Hence the proof of the theorem is complete.

Now we prove Proposition 2.

Proof of Proposition 2. We implicitly carry out our evaluation on {Y(1) > CY}.
C1,C2, . . . are generic positive constants and they depend only on the assumptions.

First we deal with (35), which is represented as∫ 1

0

[S (0)
0 (t){S (1)(t,γ∗) − S (1)

0 (t)}
S (0)(t,γ∗)S (0)

0 (t)
+

S (1)
0 (t){S (0)

0 (t) − S (0)(t,γ∗)}
S (0)(t,γ∗)S (0)

0 (t)

]
dN(t). (54)

We can rewrite the expression in (54) as

(54) = (I ⊗ A0)
∫ 1

0

[S (0)
0 (t){S (1)

(t,γ∗) − S
(1)
0 (t)}

S (0)(t,γ∗)S (0)
0 (t)

(55)

+
S
(1)
0 (t){S (0)

0 (t) − S (0)(t,γ∗)}
S (0)(t,γ∗)S (0)

0 (t)

]
dN(t)

= (I ⊗ A0)Δ�̇p,

where Δ�̇p is defined in the above equation,

S
(1)
(t,γ) =

1
n

n∑
i=1

Yi(t)(Xi(t) ⊗B0(t)) exp{W T
i (t)γ},

S
(1)
0 (t) =

1
n

n∑
i=1

Yi(t)(Xi(t) ⊗B0(t)) exp{Xi(t)Tg(t)}.
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Due to the definition of γ∗, we have uniformly in t and k(0 ≤ k < p),

|S (0)
0 (t) − S (0)(t,γ∗)| ≤ C1L−2, C2 ≤ S (0)

0 (t) ∧ S (0)(t,γ∗), S (0)
0 (t) ∨ S (0)(t,γ∗) ≤ C3,

|(S (1)
0 (t) − S

(1)
(t,γ∗))kL+ j| ≤ C4L−2|b0 j(t)|,

|(S (1)
0 (t))kL+ j| ∨ |(S (1)

(t,γ∗))kL+ j| ≤ C5|b0 j(t)|.
Now we evaluate Δ�̇p. Its (kL + j)th element is bounded from above by

C6L−2
∫ 1

0
|b0 j(t)|dN(t). (56)

for some positive constant C6. First notice that∫ 1

0
|b0 j(t)|dN(t) =

∫ 1

0
|b0 j(t)|dM(t) + O(L−1) (57)

uniformly in j. This is bacause

dN(t) − dM(t) =
1
n

n∑
i=1

Yi(t) exp{XT
i (t)g(t)}λ0(t).

Then application of an exponential inequality for martingales (Lemma 2.1 in van
de Geer[30]) yields

Pr
(
max
2≤ j≤L

∫ 1

0
|b0 j(t)|dM(t) >

x
L
)
≤ LC7 exp

{
−C8

nL−1x2

1 + x
}
. (58)

We used the properties of the support of the B-spline basis in (57) and (58). Taking
x = 1 in (58), we have established

|Δ�̇p|∞ ≤ C9

L3 (59)

with probability larger than 1 − LC7 exp
{
− 2−1C8nL−1

}
. Recall Δ�̇p is defined in

(55).
From (55), (59), and (A.3), we obtain

P∞(�̇op − �̇p(γ∗)) ≤ C10L−5/2 (60)
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with probability larger than 1 − LC7 exp
{
− 2−1C8nL−1

}
. See (33) and (35) about

�̇op.
Finally we deal with (33) by exploiting the same exponential inequality for

martingales.
For the (kL + j)th element with j = 1, we have

Pr
(
|(�̇op)kL+ j| ≥ x(ln n)1/2√

nL

)
≤ 2 exp

{
− C11x2 ln n

x(n−1 ln n)1/2 + 1
}
. (61)

For the (kL + j)th element with j ≥ 2, we have

Pr
(
|(�̇op)kL+ j| ≥ x(ln n)1/2√

nL

)
≤ 2 exp

{
− C12x2 ln n

x(n−1L ln n)1/2 + 1
}
. (62)

We used the fact that∫ 1

0
b2j(t)λ0(t)dt ≤ CλaT

0 jΩ0a0 j = O(L−1) (63)

when we evaluated the predictable variation process.
It follows from (61) and (62), that

P∞(�̇op) ≤ x(ln n)1/2n−1/2 (64)

with probability larger than

1 − 2pL exp
{
− C13x2 ln n

x(n−1L ln n)1/2 + 1
}
. (65)

Hence the desired result follows from (31), (60), and (64) and the proof of the
proposition is complete.

We give the proof of Proposition 3.

Proof of Proposition 3. C1,C2, . . . are generic positive constants and they depend
only on the assumptions. We use the following lemma, which is a version of
Lemma 4.1(ii) in [17].

Lemma 3.

κ2(ζ,Σ1) ≥ κ2(ζ,Σ2) − s0(1 + ζ)2Lmax
j,k
|(Σ1 − Σ2) jk|

RE2(ζ,Σ1) ≥ RE2(ζ,Σ2) − s0(1 + ζ)2Lmax
j,k
|(Σ1 − Σ2) jk|

When Σ2 − Σ1 is n.n.d., we can replace Σ1 − Σ2 in the above inequalities with Δ
such that Δ − (Σ2 − Σ1) is n.n.d.
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We implicitly carry out our evaluation on {Y(1) > CY}. First we outline the
proof and then give the details. Recall that Vn(t,γ), S (0)

0 (t), and S (0)(t,γ) are
defined in (24), (34), and (23), respectively.

Define Σ̃0 by

Σ̃0 =

∫ 1

0
Vn(t,γ∗)S (0)

0 (t)λ0(t)dt (66)

and set

Δ1 = �̈p(γ∗) − Σ̃0 =
∫ 1

0
Vn(t,γ∗)dM(t). (67)

We treat Δ1 by using the exponential inequalities for martingales.
Next define Σ̃ by

Σ̃ =

∫ 1

0
Vn(t,γ∗)S (0)(t,γ∗)λ0(t)dt

and set Δ2 = Σ̃0 − Σ̃. Since
|W T

i (t)γ
∗ −XT

i (t)g(t)| ≤ CXCapproxL−2

and we can use the results on predictable variation process in evaluating Δ1, we
can easily prove

max
j,k
|(Δ2) jk| ≤ C1L−3. (68)

We omit the details for (68) in this paper.
Define Σ̂ by

Σ̂ =

∫ 1

0
ĜY(t)λ0(t)dt, (69)

where

ĜY(t) =
1
n

n∑
i=1

Yi(t){Wi(t) −W Y(t)}⊗2,

W Y(t) =
n−1
∑n

i=1 Yi(t)Wi(t)
n−1
∑n

i=1 Yi(t)
.

Then by just following the arguments on pp.1161-1162 of [17] with a sufficiently
small M, we obtain

Σ̃ − exp{−CXCg}{1 + O(L−2)}̂Σ is n.n.d. (70)
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Finally we recall the definitions of Σ, GY(t), and μY(t) in Proposition 3 and set

Δ3 = Σ̂ − Σ = −
∫ 1

0
Y(t){W Y(t) − μY(t)}⊗2λ0(t)dt (71)

and Δ4 = Σ − E{Σ}. Then we evaluate
max

j,k
|(Δ3) jk| and max

j,k
|(Δ4) jk|.

Now we give the details for Δ1, Δ3, and Δ4.
Δ1 : We denote the ( jL + r, kL + m) element of Vn(t,γ∗) by v jL+r,kL+m(t). Then we
have

v jL+r,kL+m(t) = (S (2)(t,γ∗)) jL+r,kL+m − (S (1)(t,γ∗)) jL+r(S (1)(t,γ∗))kL+m

S (0)(t,γ∗)
(72)

and it is easy to see that |v jL+r,kL+m(t)| is uniformly bounded in j, k, r, m, and t.
Besides,

(S (2)(t,γ∗)) jL+r,kL+m ≤ C2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
L−1, r = m = 1
L−1/2|br(t)|, r ≥ 2, m = 1
L−1/2|bm(t)|, r = 1, m ≥ 2
|br(t)||bm(t)|, r ≥ 2, m ≥ 2

(73)

and

(S (1)(t,γ∗)) jL+r ≤ C3

⎧⎪⎪⎨⎪⎪⎩L−1/2, r = 1
|br(t)|, r ≥ 2 . (74)

By (72)-(74) and some calculation, we evaluate the predictable variation pro-
cess of Δ1 and obtain∫ 1

0
|v jL+r,kL+m(t)|2d < M,M > (t) ≤ C4

n

∫ 1

0
|v jL+r,kL+m(t)|λ0(t)dt ≤ C5

nL
, (75)

where < M,M > (t) is the predictable variation process of M(t). We used (63)
here.

Thus we have from the exponential inequality for martingales that

Pr
(
max

j,k
|(Δ1) jk| ≥ x(ln n)1/2√

nL

)
≤ 2(pL)2 exp

{
− C6x2 ln n

x(ln n)1/2(n−1L)1/2 + 1
}
. (76)
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Δ3 : Notice that Σ − Σ̂ is n.n.d. Therefore instead of Δ3, we treat

Δ′3 =
1

CY

∫ 1

0
{Y(t)}2{W Y(t) − μY(t)}⊗2λ0(t)dt

=
1

CY

∫ 1

0

[
n−1

n∑
i=1

{
Wi(t) − Yi(t)μY(t)

}]⊗2
λ0(t)dt.

We evaluate (Δ′3)kr = (CYn2)−1
∑

i, j fi j, where μY(t) = (μY1(t), . . . , μY p(t))T and

fi j =

∫ 1

0
{Wik(t) − Yi(t)μYk(t)}{Wjr(t) − Yj(t)μYr(t)}λ0(t)dt.

Note that | fi j| ≤ C7L−1. Thus by applying Lemma 4.2 in [17], we obtain

Pr
(
max

k,r
|(Δ′3)kr| ≥ x(ln n)1/2√

nL

)
≤ 5(pL)2 exp

{
− C8x(n ln n)1/2

x1/2(n−1 ln n)1/4 + 1
}
. (77)

Δ4 : Note that

(Σ)kr =
1
n

n∑
i=1

∫ 1

0
Yi(t){Wik(t) − μYk(t)}{Wir(t) − μYr(t)}λ0(t)dt and

∣∣∣∣ ∫ 1

0
Yi(t){Wik(t) − μYk(t)}{Wir(t) − μYr(t)}λ0(t)dt

∣∣∣∣ ≤ C9L−1.

Applying Bernstein’s inequality to (Σ)kr, we have

Pr
(
|(Δ4)kr| ≥ x(ln n)1/2√

nL

)
≤ 2 exp

{
− C10x2 ln n

x(n−1 ln n)1/2 + 1
}
.

Consequently we have

Pr
(
max

k,r
|(Δ4)kr| ≥ x(ln n)1/2√

nL

)
≤ 2(pL)2 exp

{
− C10x2 ln n

x(n−1 ln n)1/2 + 1
}
. (78)

By combining (67), (68), (70), (71) and (76)-(78) and exploiting Lemma 3,
we obtain the desired results. Hence the proof of the proposition is complete.

Finally we verify Corollary 1.
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Proof of Corollary 1. Checking Proposition 3 and PA, PB, and PC there, we find
we need x/{n1/5(ln n)−1/2} → 0 and ncp ∼ x2 ln n to have

κ2(ζ, �̈p(γ∗)) ≥ C1

L
+ op(L−1) and RE2(ζ, �̈p(γ∗)) ≥ C2

L
+ op(L−1)

for some positive constants C1 and C2.
Proposition 2 implies that with probability tending to 1,

P∞(�̈p(γ∗)) ≤ a1
L5/2 +C3

√
ln p
n

with x = C3(ln p/ ln n)1/2 for some positive large constant C3.
Then we obtain

τ∗ in (30) ∼ L(ln p/n)1/2 → 0

and we have η∗ ∼ τ∗ ∼ L(ln p/n)1/2.
Hence the proof of the corollary is complete.

7. Concluding remarks

We proposed an orthonormal basis approach for simultaneous variable selec-
tion and structure identification for varying coefficient Cox models. We have de-
rived an oracle inequality for the group Lasso procedure and our method and the-
ory also apply to additive Cox models. These models are among important struc-
tured nonparametric regression models. This orthonormal basis approach can be
used for the adaptive group Lasso and SCAD. Our simulation study implies that
this orthonormal basis approach performs well and that tuning parameter selection
by the AIC minimization also works well.
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Appendix A. Construction and properties of basis functions

We describe how to construct B(t), the properties of B(t), and the approxi-
mations to g(t). Set

Ω0 =

∫ 1

0
B0(t)BT

0 (t)dt and Ω =

∫ 1

0
B(t)B

T
(t)dt.

First we describe how to construct A0 andB(t). Set

b1(t) = 1/
√

L and b2(t) =
√
12L−1(t − 1/2)

and define a inner product on the L2 function space on [0, 1] by

(g1, g2) =
∫ 1

0
g1(t)g2(t)dt.

Then we have
‖b1‖2 = ‖b2‖2 = L−1 and (b1, b2) = 0.

Note that there is some L-dimensional vector a02 satisfying b2(t) = aT
02B0(t).

We can obtain bj, j = 3, . . . , L, by just applying the Gram-Schmidt orthonor-
malization to (L − 2) elements of B0(t) with the normalization of ‖bj‖2 = L−1.
Since every bj(t) is a linear combination ofB0(t), we have

B(t) = A0B0(t).

Hence we have

Ω = A0Ω0AT
0 =

(
1/L 0T

0
∫
B(t)BT (t)dt

)
=

(
1/L 0T

0 A−1Ω0AT
−1

)
=
1
L

I. (A.1)

It is known that for some positive constants C1 and C2, we have

C1

L
≤ λmin(Ω0) ≤ λmax(Ω0) ≤ C2

L
(A.2)

See Huang et al.[19] for more details.
Thus (A.1) and (A.2) imply that

C3 ≤ λmin(A0AT
0 ) ≤ λmax(A0AT

0 ) ≤ C4 (A.3)
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and

C5 ≤ λmin(A−1AT
−1) ≤ λmax(A−1AT

−1) ≤ C6 (A.4)

for some positive constants C3, C4, C5, and C6. Note that (A.3) implies that

C3 ≤ λmin(AT
0 A0) ≤ λmax(AT

0 A0) ≤ C4.

On the other hand, the definition ofB0(t), (A.1), and (A.4) imply that∫ 1

0
bj(t)dt = 0, for j = 2, . . . , L, and sup

2≤ j≤L
‖bj‖∞ = O(1). (A.5)

Besides, we have for γ j = (γ1 j,γ
T
−1 j)

T ∈ RL,

γT
j B(t) = γT

j A0B0(t) and

|γT
j B(t)| ≤ (γT

j A0AT
0γ j)1/2|B0(t)| ≤ C7|γ j| (A.6)

uniformly on [0, 1] for some positive constant C7. Note that we used (A.3) and
the local property ofB0(t) to derive (A.6).

Next we consider the approximations to g(t). From Corollary 6.26 in [26] and
Assumption G, there exist γ∗0 j ∈ RL, j = 1, . . . , p, satisfying

p∑
j=1

‖gj −BT
0 γ
∗
0 j‖∞ ≤

Capprox

2L2 , (A.7)

where Capprox depends on Cg.
In this paper, we useB(t) instead ofB0(t). Then

BT
0 (t)γ

∗
0 j = B

T
(t)(AT

0 )
−1γ∗0 j = B

T
(t)γ∗j

= B
T
(t)
(
γ∗1 j
γ∗−1 j

)
,

where γ∗j, γ
∗
1 j, and γ

∗
−1 j are defined in the above equations.

Noticing
p∑

j=1

∣∣∣∣ ∫ 1

0
gj(t)dt − γ

∗
1 j

L1/2 −
∫ 1

0
γ∗T−1 jB(t)dt

∣∣∣∣
=

p∑
j=1

|gc j − L−1/2γ∗1 j| ≤
Capprox

2L2 ,
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we take γ∗j = 0 for Sc ∩ Sn,

γ∗1 j = L1/2gc j and γ∗−1 j = 0 for j ∈ Sc ∩ Sn, (A.8)
γ∗1 j = L1/2gc j and γ∗−1 j = γ∗−1 j for j ∈ Sn.

Then from (A.7), we have
p∑

j=1

‖gj −BT
γ∗j ‖∞ ≤

Capprox

L2 (A.9)

and uniformly in j,

‖gj‖2 = |gc j|2 + ‖gn j‖2 = γ∗Tj Ωγ
∗
j + O(L−4)

=
|γ∗1 j|2

L
+ γ∗T−1 j

∫ 1

0
B(t)BT (t)dtγ∗−1 j + O(L−4)

=
|γ∗1 j|2

L
+
|γ∗−1 j|2

L
+ O(L−4).

We also have

|gc j|2 =
|γ∗1 j|2

L
and ‖gn j‖2 =

|γ∗−1 j|2
L
+ O(L−4). (A.10)

Appendix B. Proofs of technical lemmas

Proof of Lemma 1. From the definitions ofB(t) andWi(t). we have

θT (Wi(t) −W j(t)) = θT (Ip ⊗ A0)(Xi(t) ⊗B0(t) −X j(t) ⊗B0(t)). (B.1)

Notice that for θ = (θT
1 , . . . ,θ

T
p )T ,

|θT
k A0B0(t)| ≤ |AT

0θk| ≤ {λmax(A0AT
0 )}1/2|θk|. (B.2)

Here we used that |B0(t)| ≤ 1.
Consequently (B.1) and (B.2) yield that

|θT (Wi(t) −W j(t))|

≤
p∑

k=1

|Xik(t) − Xjk(t)||θT
k A0B0(t)|

≤ 2CX{λmax(A0AT
0 )}1/2

p∑
k=1

|θk| ≤ CWP1(θ).

Hence the proof is complete.
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Proof of Lemma 2. This lemma is just a version of Lemma 3.2 in [17]. We can
verify this lemma in the same way by taking

ai(t) = θT {Wi(t) − W̃n(t,γ∗)} and wi(t) = Yi(t) exp{γ∗TWi(t)}
in the proof. The details are omitted. Hence the proof is complete.

Proof of Lemma 3. This is almost proved in [17]. We should just note that

|γT (Σ1 − Σ2)γ | ≤ |γ |21 maxj,k
|(Σ1 − Σ2) jk| ≤ L{P1(γ)}2 max

j,k
|(Σ1 − Σ2) jk|,

P1(γ) ≤ (1 + ζ)P1(γS), and P1(γS) ≤ s1/20 |γ |.
When Σ2 − Σ1 is n.n.d., we have

|γT (Σ1 − Σ2)γ | ≤ γTΔγ ≤ L{P1(γ)}2 max
j,k
|(Δ) jk|.

Hence the proof is complete.

Appendix C. Derivatives of the B-spline basis

In this section, we examine properties of∫ 1

0
B′0(t)(B

′
0(t))

T dt (C.1)

and describe why we have adopted the orthogonal decomposition approach while
the other authors have considered the L2 norm of the estimated derivatives when
they deal with structure identification for additive models or partially linear addi-
tive models.

We take a function gA(t) on [0, 1] defined by

gA(t) = sin(2πAt)

for A→ ∞ sufficiently slowly. Then it is easy to see

‖gA‖2 ∼ 1, ‖g′A‖2 ∼ A2, and ‖g′′A‖2 ∼ A4.

On the other hand, we can approximate this gA(t) by B0(t)γA accurately enough
and we have

γT
AΩ0γA ∼ 1, |γA|2 ∼ L, and γT

A

∫ 1

0
B′0(t)(B

′
0(t))

T dtγA ∼ A2 → ∞.
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This means some eigenvalues of the matrix defined in (C.1) have the order larger
than L−1.

Hence we cannot follow the proofs given in those papers based on the L2 norm
of the estimated derivatives. This is because the eigenvalue property just proved
in this paper violates their assumptions on matrices similar to∫ 1

0
B′′0 (t)(B

′′
0 (t))

T dt.

The above matrix also should have some larger eigenvalues as that in (C.1). Be-
sides, it is more difficult to estimate the derivatives of the coefficient functions.
This is why we have adopted the orthogonal decomposition approach. Zhang et
al.[35] is based on the smoothing spline method and it is difficult to apply their
ingenious approach to the loss function other than the L2 loss function.

Appendix D. Proofs for other models

We outline necessary changes in the proofs for the former model in section
4 since both models in the section can be treated in almost the same way as the
time-varying coefficient model. Especially, almost no change is necessary to the
proofs of Proposition 1 and Theorem 1.

We assume standard assumptions for varying coefficient models here.

Proof of Proposition 2) The poof consists of (56)-(60) and (61)-(65).
(56)-(60): Note that |b0 j(t)| is replaced with n−1

∑n
i=1 |b0 j(Zi(t))|. When we evaluate

the predicable variation process in (58),∫ 1

0
|b0 j(t)|2λ0(t)dt ≤ C

∫ 1

0
|b0 j(t)|λ0(t)dt

is replaced with∫ 1

0

{
n−1

n∑
i=1

|b0 j(Zi(t))|
}2
λ0(t)dt ≤ C

∫ 1

0
n−1

n∑
i=1

b20 j(Zi(t))λ0(t)dt. (D.1)

We can evaluate the second term in (D.1) by using Bernstein’s inequality and

E
{
n−1
∫ 1

0

n∑
i=1

b20 j(Zi(t))λ0(t)dt
}
=

∫ 1

0
E{b20 j(Z1(t))}λ0(t)dt = O(L−1).
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(61)-(65): When we apply the martingale exponential inequality, (63) is replaced
with

1
n

n∑
i=1

∫ 1

0
b2j(Zi(t))λ0(t)dt.

We can evaluate this expression by using Bernstein’s inequality and

E
{ ∫ 1

0
b2j(Z1(t))λ0(t)dt

}
≤ CaT

0 j

∫ 1

0
E{B0(Z1(t))(B0(Z1(t)))T }λ0(t)dta0 j

= O(L−1).

We need some assumptions for E{B0(Z1(t))(B0(Z1(t)))T } as for Ω0 in Appendix
A.

Proof of Proposition 3) The proof consists of evaluating Δ1, Δ3, and Δ4.
Δ1: We should just follow the line of (61)-(65).
Δ3: This is almost a U-statistic and we can also apply the exponential inequality
for U-statistics as (3.5) in [12] to the part of a U-statistic.
Δ4: This is a sum of bounded independent random variables and we can deal with
this by applying Bernstein’s inequality.
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Supplement to “Variable selection and structure identification
for varying coefficient Cox models”

by Toshio Honda and Ryota Yabe

Appendix E. Hierarchical penalty

We give an expression of ∇ jPh(γ). Recall that

∇ jPh(γ) = ∇ j(|γ1 j|q + |γ−1 j|q)1/q + ∇ j|γ−1 j|.
Set

∇ j(|γ1 j|q + |γ−1 j|q)1/q =
(

d1 j
d−1 j

)
,

where d1 j ∈ R and d−1 j ∈ RL−1.
When |γ1 j| = 0 and |γ−1 j| = 0,

d1 j = ε1 j and d−1 j = ε−1 j,

where |ε1 j| ≤ a and |ε−1 j| ≤ b such that (a, b) satisfies (1 + tq)1/q ≥ a + bt for any
t ≥ 0. This follows from the definition of subgradient and we note that 0 ≤ a ≤ 1
and 0 ≤ b ≤ 1.

When |γ1 j| � 0 and |γ−1 j| = 0,
d1 j = sign(γ1 j) and d−1 j = 0.

When |γ1 j| = 0 and |γ−1 j| � 0,
d1 j = 0 and d−1 j = γ−1 j/|γ−1 j|. (E.1)

This property is essential to hierarchical selection for gc j and gn j(t). See [39].
When |γ1 j| � 0 and |γ−1 j| � 0,

d1 j = (|γ1 j|q + |γ−1 j|q) 1q−1sign(γ1 j)|γ1 j|q−1

and

d−1 j = (|γ1 j|q + |γ−1 j|q) 1q−1 γ−1 j

|γ−1 j| |γ−1 j|q−1.

We state a version of Proposition 1 for Qh(γ; λ). We state this proposition,
Proposition 4, in terms of P1(γ). This is essential in proving the oracle inequality
for Qh(γ; λ) and they are not any typos. Once this proposition is established,
we can proceed exactly in the same way as for Q1(γ; λ) with changes of some
constants.
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Proposition 4. If λ > D�, we have

(γ̂ − γ∗)T {l̇p(γ̂) − l̇p(γ∗)} ≤ (2λ + D�)P1(θ̂S) − (λ − D�)P1(θ̂S)

and

(λ − D�)P1(θ̂S) ≤ (2λ + D�)P1(θ̂S).

Therefore if D� ≤ ξλ (ξ < 1), we have

P1(θ̂S) ≤
2 + ξ
1 − ξP1(θ̂S).

Proof) Note that

(γ̂ − γ∗)T (l̇p(γ̂) − l̇p(γ∗) (E.2)

=
{∑

j∈Sc

θ̂1 j
∂�p

∂γ1 j
(γ̂) +

∑
j∈Sc

θ̂T
−1 j
∂�p

∂γ−1 j
(γ̂)
}

+
{ ∑

j∈Sn∩Sc

θ̂1 j
∂�p

∂γ1 j
(γ̂) +

∑
j∈Sn∩Sc

θ̂T
−1 j
∂�p

∂γ−1 j
(γ̂)
}

+
{∑

j∈Sn

θ̂1 j
∂�p

∂γ1 j
(γ̂) +

∑
j∈Sn

θ̂T
−1 j
∂�p

∂γ−1 j
(γ̂)
}

+{−θ̂T (l̇p(γ∗)} = E1 + E2 + E3 + E4 ≥ 0,
where E j, j = 1, . . . , 4, are defined in the above equation.

The last inequality follows from the convexity of �p(γ) and we should recall
that θ̂ = γ̂ − γ∗.

We evaluate E j, j = 1, 2, 3, 4.
E1 : Notice that γ̂ j = θ̂ j. Then we should evaluate

E1 j = θ̂1 j
∂�p

∂γ1 j
(γ̂) + θ̂T

−1 j
∂�p

∂γ−1 j
(γ̂).

When γ̂1 j � 0 and γ̂−1 j � 0, we have

E1 j = −λ(|̂θ1 j|q + |θ̂−1 j|q)1/q − λ|θ̂−1 j|. (E.3)

46



When γ̂1 j � 0 and γ̂−1 j = 0, we have

E1 j = −λ|̂θ1 j|. (E.4)

When γ̂1 j = 0 and γ̂−1 j � 0, we have

E1 j = −2λ|θ̂−1 j|. (E.5)

From (E.3)-(E.5), we obtain

E1 ≤ −λ
∑
j∈Sc

(|̂θ1 j| + |θ̂−1 j|). (E.6)

E2 : First notice that

γ̂−1 j = θ̂−1 j and | ∂�p
∂γ1 j

(γ̂)| ≤ λ

and we should evaluate

E2 j = θ̂1 j
∂�p

∂γ1 j
(γ̂) + γ̂T

−1 j
∂�p

∂γ−1 j
(γ̂).

When γ̂1 j � 0 and γ̂−1 j � 0, we have

E2 j ≤ λ|̂θ1 j| − λ(|̂γi j|q + |θ̂−1 j|q) 1q−1|θ̂−1 j|q − λ|θ̂−1 j| (E.7)

≤ λ(|̂θ1 j| − |θ̂−1 j|).
When γ̂1 j � 0 and γ̂−1 j = 0, we have

E2 j ≤ λ|̂θ1 j|. (E.8)

When γ̂1 j = 0 and γ̂−1 j � 0 and when γ̂1 j = 0 and γ̂−1 j = 0, we have

E2 j ≤ λ|̂θ1 j| − 2λ|θ̂−1 j|. (E.9)

From (E.7)-(E.9), we obtain

E2 ≤ λ
∑

j∈Sn∩Sc

(|̂θ1 j| − |θ̂−1 j|) ≤ λ
∑

j∈Sn∩Sc

(2|̂θ1 j| − |θ̂−1 j|). (E.10)
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E3 : Notice that
∂�p

∂γ1 j
(γ̂)| ≤ λ and | ∂�p

∂γ−1 j
(γ̂)| ≤ 2λ.

Then we have
E3 ≤ 2λ

∑
j∈Sn

(|̂θ1 j| + |θ̂−1 j|). (E.11)

E4 : We have
E4 ≤ P1(θ̂)D� = (P1(θ̂S) + P1(θ̂S))D�. (E.12)

(E.6), (E.10), (E.11), and (E.12) yield that

E1 + E2 + E3 + E4 ≤ (2λ + D�)P1(θ̂S) − (λ − D�)P1(θ̂S).

The first and second inequalities follow from (E.2) and the above inequality. The
third inequality follows from the following expression of the second one.

P1(θ̂S) ≤
2λ + D�
λ − D�

P1(θ̂S)

Hence the proof of the proposition is complete.
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Appendix F. Additional simulation results

In this appendix, we present the following.
1. BIC minimization results for the simulations in section 5
2. Estimation error results for the simulations in section 5
3. SCAD results for the simulations in section 5
4. Simulation results for another varying coefficient model

BIC results: The results for the group Lasso with the BIC minimization are given
in Tables F.9 and F.10. The group Lasso with the BIC minimization does not work
well because it tends to remove relevant covariates.

n = 300 X1 and X2 X3 and X4 X5 to Xq(q = 8) Xq+1 to Xp
p = 500 Const. Non-const. Const. Non-const. Const. Non-const. Const. Non-const.
FNR 0.080 — 0.000 0.790 — — — —
Correct 0.920 1.000 1.000 0.210 1.000 1.000 0.996 1.000
FPR — 0.000 — — 0.000 0.000 0.004 0.000
p = 300 Const. Non-const. Const. Non-const. Const. Non-const. Const. Non-const.
FNR 0.062 — 0.004 0.719 — — — —
Correct 0.938 1.000 0.996 0.281 0.988 1.000 0.994 1.000
FPR — 0.000 — — 0.012 0.000 0.006 0.000
p = 150 Const. Non-const. Const. Non-const. Const. Non-const. Const. Non-const.
FNR 0.058 — 0.001 0.616 — — — —
Correct 0.942 1.000 0.999 0.384 0.986 1.000 0.989 1.000
FPR — 0.000 — — 0.014 0.000 0.011 0.000
p = 50 Const. Non-const. Const. Non-const. Const. Non-const. Const. Non-const.
FNR 0.030 — 0.001 0.332 — — — —
Correct 0.970 0.998 0.999 0.668 0.959 0.998 0.961 0.999
FPR — 0.002 — — 0.041 0.002 0.039 0.001

Table F.9: Varying coefficient model with an index variable(BIC)
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n = 300 X1 and X2 X3 and X4 X5 to Xq(q = 8) Xq+1 to Xp
p = 500 Linear Nonlinear Linear Nonlinear Linear Nonlinear Linear Nonlinear
FNR 0.195 — 0.695 0.435 — — — —
Correct 0.805 1.000 0.305 0.565 1.000 0.998 1.000 1.000
FPR — 0.000 — — 0.000 0.002 0.000 0.000
FNR 0.134 — 0.631 0.345 — — — —
Correct 0.866 0.998 0.369 0.655 1.000 1.000 1.000 0.999
FPR — 0.002 — — 0.000 0.000 0.000 0.001
p = 150 Linear Nonlinear Linear Nonlinear Linear Nonlinear Linear Nonlinear
FNR 0.080 — 0.499 0.222 — — — —
Correct 0.920 0.995 0.501 0.778 0.999 0.998 0.999 0.997
FPR — 0.005 — — 0.001 0.002 0.001 0.003
p = 50 Linear Nonlinear Linear Nonlinear Linear Nonlinear Linear Nonlinear
FNR 0.034 — 0.348 0.105 — — — —
Correct 0.966 0.991 0.652 0.895 0.999 0.991 0.998 0.991
FPR — 0.009 — — 0.001 0.009 0.002 0.009

Table F.10: Additive model(BIC)

Estimation error: We show the estimation errors of the AIC minimum and oracle
estimators in Figure F.1 for the varying coefficient model and Figure F.2 for the
additive model. These figures are the box plots of√√√ p∑

j=1

‖̂gj − gj‖2

by the AIC minimization group Lasso (AIC) and the oracle estimator (coxph).
Note that we used the coxph function and the knowledge of the true models for
the oracle estimator.

As shown in the figures, the group Lasso may not be a good estimator of
the parameters or functions since they are biased in spite of its nice theoretical
properties. We think we should use the group Lasso as a tool of variable selection
or simultaneous variable selection and structure identification because it showed
very good performances for these purposed in our numerical studies. We should
do some kind of debiasing as in
van de Geer, S., Bühlmann, P., Ritov, Y.A. and Dezeure, R. On asymptotically
optimal confidence regions and tests for high-dimensional models. The Annals of
Statistics 42(2014), pp.1166-1202.
However, it is a topic of future research for more complicated models than linear
models.
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Figure F.1: Estimation error for the varying coefficient model
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Figure F.2: Estimation error for the additive model
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SCAD results: The results for the group SCAD are given in F.11 and F.12. The
models are the same ones as in section 5. We took only p = 50 since the results for
p = 150 and p = 300 are unstable and very bad. Probably the minimization of the
grpsurv function does not work and this is due to the nonconvexity of the SCAD
penalty. That is why various kinds of screening procedures have been proposed to
give suitable initial values or reduce the numbers of covariates.

n = 300 X1 and X2 X3 and X4 X5 to Xq(q = 8) Xq+1 to Xp
AIC Const. Non-const. Const. Non-const. Const. Non-const. Const. Non-const.
FNR 0.116 — 0.022 0.118 — — — —
Correct 0.884 0.778 0.978 0.882 0.979 0.789 0.974 0.827
FPR — 0.222 — — 0.021 0.211 0.026 0.173
BIC Const. Non-const. Const. Non-const. Const. Non-const. Const. Non-const.
FNR 0.066 — 0.019 0.230 — — — —
Correct 0.934 0.991 0.981 0.770 0.988 0.994 0.992 0.996
FPR — 0.009 — — 0.012 0.006 0.008 0.004

Table F.11: Varying coefficient model with an index variable(SCAD, p = 50)

n = 300 X1 and X2 X3 and X4 X5 to Xq(q = 8) Xq+1 to Xp
AIC Linear Nonlinear Linear Nonlinear Linear Nonlinear Linear Nonlinear
FNR 0.015 — 0.145 0.002 — — — —
Correct 0.985 0.934 0.855 0.998 0.991 0.922 0.990 0.933
FPR — 0.066 — — 0.009 0.078 0.010 0.067
BIC Linear Nonlinear Linear Nonlinear Linear Nonlinear Linear Nonlinear
FNR 0.040 — 0.264 0.058 — — — —
Correct 0.960 0.986 0.736 0.942 0.998 0.976 0.996 0.978
FPR — 0.014 — — 0.002 0.024 0.004 0.022

Table F.12: Additive model(SCAD, p = 50)
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Another varying coefficient model: We replaced g3(z) and g4(z) of the varying
coefficient model in section 5 with

g3(z) = 3{2−1/2 cos(2πz) + (z − 1/2)} and g4(z) = 3 sin(2πz),

respectively. We didn’t change the other setup including the censoring variable.
Then the censoring rate is about 45%. We presented the results for our group
Lasso procedure with AIC minimization in Table F.13. Both X3 and X4 have no
constant component. We have a rather high false discovery rate for the constant
components for X3 and X4. The BIC minimization didn’t perform well for this
model, either and we omitted the BIC results.

n = 300 X1 and X2 X3 and X4 X5 to Xq(q = 8) Xq+1 to Xp
p = 500 Const. Non-const. Const. Non-const. Const. Non-const. Const. Non-const.
FNR 0.090 — — 0.070 — — — —
Correct 0.910 0.990 0.855 0.930 0.958 0.998 0.956 0.997
FPR — 0.010 0.145 — 0.042 0.002 0.044 0.003
p = 300 Const. Non-const. Const. Non-const. Const. Non-const. Const. Non-const.
FNR 0.054 — — 0.051 — — — —
Correct 0.946 0.984 0.826 0.949 0.948 0.995 0.947 0.994
FPR — 0.016 0.174 — 0.052 0.005 0.053 0.006
p = 150 Const. Non-const. Const. Non-const. Const. Non-const. Const. Non-const.
FNR 0.038 — — 0.049 — — — —
Correct 0.962 0.974 0.836 0.951 0.935 0.982 0.931 0.988
FPR — 0.026 0.164 — 0.065 0.018 0.069 0.012
p = 50 Const. Non-const. Const. Non-const. Const. Non-const. Const. Non-const.
FNR 0.021 — — 0.014 — — — —
Correct 0.979 0.916 0.795 0.986 0.903 0.956 0.890 0.961
FPR — 0.084 0.205 — 0.097 0.044 0.110 0.039

Table F.13: Another varying coefficient model with an index variable(AIC)
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Appendix G. More details on real data analysis

First we give more details on artificial covariates. Let Rj, j = 1, 2, . . . , inde-
pendently follow the standard normal distribution in the standardized case and the
uniform distribution on [0, 1] in the transformed case, respectively.
X9 and X10 : They follow the Bernoulli distribution with Pr(Xj = 1) = 0.5 inde-
pendently of each other and all the other variables.
X11, . . . , X14 : We define them by X10+ j = ρX4+ j + (1 − ρ)Rj with ρ = 0.2 for
j = 1, 2, 3, 4.
X15, . . . , Xp : We define them by X10+ j = Rj for j = 5, . . . , p.

Next we examine the design matrix. We define a matrix D by

D = n−1XT
DXD,

where XD is a n×5 matrix and its first column consists of 1 and the other columns
consist of X1, . . . , X4. Its maximum eigenvalue is 2.051 and its minimum one
is 0.035. Thus λmax(D)/λmin(D) = 2.051/0.035 is larger than 58. Even if we
remove X1 = tgrad2, the ratio is still more than 11. This also suggests serious
multicollinearity among dummy variables.

Finally we describe the transformation of continuous variables. We examined
the histograms and minimum values of continuous variables and then transformed
them so that they look uniformly distributed on [0, 1]. Specifically,

X5 = PCHI(tsize, d f = mtsize)
X6 = PEXP(pnodes, rate = 0.13)
X7 = PEXP(progrec, rate = 1/mprogrec)
X8 = PEXP(estrec, rate = 1/mestrec),

where mvariable is the mean of the variable, PCHI(x, d f = m) is the distribution
function of the chi-squared distribution with d f = m, and PEXP(x, rate = 1/m) is
the distribution function of the exponential distribution with mean= m.

This is the end of the supplement.
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