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Abstract

We develop point-identification and inference methods for the local average

treatment effect when the binary treatment contains a measurement error. The

standard instrumental variable estimator is inconsistent for the parameter since

the measurement error is non-classical by construction. Our proposed analysis cor-

rects the problem by identifying the distribution of the measurement error based

on the use of an exogenous variable such as a covariate or instrument. The mo-

ment conditions derived from the identification lead to the generalized method of

moments estimation with asymptotically valid inferences. Monte Carlo simulations

demonstrate the desirable finite sample performance of the proposed procedure.
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1 Introduction

The local average treatment effect (LATE) is a popular causal parameter in the mi-

croeconometric literature (e.g., Angrist and Pischke, 2008, Chapter 4). It represents the

average causal effect of binary endogenous treatment T ∗ on outcome Y for the unit whose

treatment status changes depending on the value of binary instrument Z. As shown by

Imbens and Angrist (1994), the instrumental variable (IV) estimator identifies the LATE

under suitable identification conditions. While the identification of the LATE needs the

precise measurement of true treatment T ∗ in addition to the identification conditions,

in practice, observed binary treatment T may be a mismeasured variable of T ∗. LATE

applications may involve such a degree of misclassification that the actually treated unit

can even be misrecorded as untreated and vice versa. While econometricians are not

aware of the presence of measurement errors in their data, as we discuss below, ignoring

such measurement errors may lead to drawing misleading economic implications.

As an illustrative application, let us consider the causal analysis of returns to school-

ing, one of the most important applications of LATE inferences. In this case, Y is an

individual outcome such as wages, T ∗ is an indicator of educational attainment such as

a high school, college, or doctoral degree, and Z is an IV based on some schooling sys-

tems such as variations in compulsory schooling laws (e.g., Acemoglu and Angrist, 2001;

Lochner and Moretti, 2004). Educational attainment may be mismeasured for some rea-

son such as random recording error or the provision of intentionally/unintentionally false

statements. Indeed, several studies have pointed out the prevalence of measurement errors

when reporting educational attainment (e.g., Kane and Rouse, 1995; Card, 1999; Black,

Sanders, and Taylor, 2003; Battistin, De Nadai, and Sianesi, 2014). LATE inferences for

returns to schooling may be contaminated by mismeasured educational attainment.

The present study contributes to the literature by proposing a novel inference proce-

dure for the LATE with the mismeasured treatment. The measurement error brings out a

bias such that the IV estimator under- or overestimates the LATE. While the IV estima-

tion solves the problem of the classical measurement error that is independent of the true

variable (e.g., Wooldridge, 2010, Chapters 4 and 5), the bias for the LATE is caused in
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our situation since the measurement error for the binary variable must be non-classical; in

other words, the error is correlated with the true unobserved treatment because the sup-

port of the measurement error depends on the true variable (e.g., Aigner, 1973). Indeed,

the bias for the LATE depends on the distribution of the measurement error, meaning

that we cannot point-identify the LATE without identifying the distribution.

To correct the identification bias due to the measurement error, we develop a point-

identification analysis for the LATE and the distribution of the measurement error based

on the availability of an exogenous observable variable, say V . While many previous

studies have corrected problems due to measurement errors by using exogenous variables

(e.g., Hausman, Newey, Ichimura, and Powell, 1991; Lewbel, 1997, 1998, 2007; Mahajan,

2006; Schennach, 2007; Hu, 2008; Hu and Schennach, 2008), our identification analysis

builds on this strand of the literature. In particular, we extend Lewbel’s (2007) result for

the average treatment effect (ATE) with the mismeasured exogenous treatment to the

LATE inference with the mismeasured endogenous treatment.

The main idea behind our identification is, under a set of empirically plausible condi-

tions, to derive moment conditions whose number is no fewer than the number of unknown

parameters including the LATE, true first-stage regression, and distribution of the mea-

surement error. The key identification conditions are threefold. First, the measurement

error of the treatment is non-differential in the sense that mismeasured T does not af-

fect the mean of outcome Y once true T ∗ is conditioned on. Second, V has to satisfy a

rank condition that requires an effect of V on T ∗. Finally, V has to satisfy an exclusion

restriction under which V cannot affect the difference in the conditional means of Y and

the distribution of the measurement error. These conditions may be satisfied when V is

a covariate or instrument. Importantly, our exclusion restriction does not rule out the

possibility that V directly affects Y . Our exclusion restriction may hold if V affects the

potential outcomes with and without the true treatment equally.

To illustrate the intuitions behind our identification conditions, again, let us consider

the returns to schooling analysis. To correct the problem of mismeasuring educational

attainment, one may use the quarters of birth (QOB) as exogenous V (e.g., Angrist and

3



Keueger, 1991).1 The non-differential error requires that the misreported educational

degree in the data does not affect the mean wage once the true educational degree is

conditioned on. Our rank condition is satisfied if the QOB affects the true degree. Our

exclusion restriction allows the effect of the QOB on wages, but it requires that the effect

of the QOB on potential wages with the degree is the same as that without the degree.

The moment conditions derived from the identification result lead to moment-based

estimators for the LATE, true first-stage regression, and distribution of the measure-

ment error. The present study proposes adopting Hansen’s (1982) generalized method of

moments (GMM) estimator because of its popularity in the econometric literature. Desir-

ably, the GMM inference is easy to implement in practice, and its asymptotic properties

are well understood. As usual, asymptotically valid inferences can be developed based on

asymptotic normality or bootstrap procedures. In particular, the overidentification test

allows us to examine the validity of the identification conditions.

Monte Carlo simulations illustrate the problem of the measurement error and evaluate

the finite sample properties of the proposed GMM estimation based on the identification.

These demonstrate that the IV estimator based on the mismeasured treatment exhibits

significantly large bias for the LATE. On the contrary, the bias and standard deviation

of the proposed GMM estimator are satisfactory with a sample size of 1,000.

Related literature To our knowledge, three studies have thus far examined LATE

inferences where the binary endogenous treatment may contain a measurement error.

Battistin et al. (2014) use two repeated measurements for the possibly misclassified

treatment to develop point-identification and semiparametric estimation for the LATE.

The necessity of their analysis is the presence of multiple repeated measurements for the

true treatment from resurvey data. While their approach is useful given the availability

of resurvey data, econometricians often lack such data in practice. Instead of requiring

resurvey data, the present study exploits the availability of an exogenous variable.

1 For the returns to schooling analysis, the literature suggests many other potential exogenous vari-
ables such as proximity to college (e.g., Card, 1993), parental/sibling education (e.g., Altonji and Dunn,
1996), and the sex of siblings (e.g., Butcher and Case, 1994). They are candidates for the exogenous
variable in order to overcome the measurement error problem. See, for example, Card (1999, 2001) for
a survey on returns to schooling analyses based on such exogenous variables.
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DiTraglia and Garcia-Jimeno (2016) develop identification for the LATE in a nonpara-

metric model with an additively separable error under assumptions on its higher moments.

Their approach has the advantage that it does not require the availability of an exogenous

variable and/or resurvey data. However, their additively separable model does not allow

the individual treatment effect to depend on the unobservables. Their approach cannot

identify the LATE when, for example, returns to schooling depend on unobservables such

as individual ability. On the contrary, the present study allows arbitrary heterogeneous

treatment effects, although we still need the availability of an exogenous variable.

Ura (2016) proposes sharp partial-identification for the LATE with the mismeasured

treatment in the general setting. His approach allows heterogeneous treatment effects in

a nonparametric and nonseparable model in line with the present study. The advantage

of his partial-identification approach is that it does not require resurvey data and/or the

use of an exogenous variable. However, his analysis does not attain point-identification

for the LATE in general, implying that one cannot point-estimate the LATE based on

his result. Despite requiring the presence of an exogenous variable, our approach attains

point-identification and point-estimation for the LATE.

The present study also relates to the literature on the misclassification problem.

Bollinger (1996), Hausman, Abrevaya, and Scott-Morton (1998), and Frazis and Loewen-

stein (2003) consider the estimation of parametric and semiparametric models with pos-

sibly mismeasured discrete variables. Mahajan (2006) and Lewbel (2007) develop point-

identification and estimation methods for the ATE in nonparametric models where the

binary exogenous treatment may be misclassified with the non-differential error. In par-

ticular, the approach in the present study builds on Lewbel’s (2007) result that allows

the exogenous variable for correcting the misclassification problem to affect the outcome.

As in the present paper, Yanagi (2017) extends Lewbel’s (2007) result to the regression

discontinuity design with the mismeasured treatment. Elsewhere, Imai and Yamamoto

(2010) consider the partial-identification of the ATE when the binary treatment may con-

tain a differential measurement error. Molinari (2008) and Hu (2008) propose inferences

on the distribution of the measurement error for the discrete exogenous variable.

5



Finally, many econometric studies examine the non-classical measurement error and/or

nonlinear errors-in-variables models, and our proposed inference also builds on this body

of the literature. For example, Amemiya (1985), Hsiao (1989), Horowitz and Manski

(1995), Hu and Schennach (2008), Hu and Sasaki (2015), and Song, Schennach, andWhite

(2015) study problems and solutions for such measurement errors in microeconometric

applications. See Bound, Brown, and Mathiowetz (2001), Chen, Hong, and Nekipelov

(2011), and Schennach (2013) for excellent reviews of the literature in this regard.

Paper organization Section 2 introduces the setup, reviews the LATE inference, and

explains the identification problem due to the measurement error. Section 3 develops a

point-identification analysis. Section 4 proposes GMM estimation based on the identifi-

cation. Section 5 presents the Monte Carlo simulations. Section 6 concludes. Appendices

A, B, and C contain the proofs of all the theorems and some additional discussions.

2 Setting

This section explains the setting considered in this study. Section 2.1 introduces the

econometric model and the LATE. Section 2.2 briefly reviews the LATE inference when

the true treatment can be observed without a measurement error. Section 2.3 discusses

the problem due to a measurement error for the treatment.

2.1 The model and the LATE

We have a random sample of outcome Y ∈ R, possibly mismeasured binary treatment

T ∈ {0, 1} for true unobservable treatment T ∗ ∈ {0, 1}, binary IV Z ∈ {0, 1}, and

exogenous variable V ∈ supp(V ) ⊂ R such as a covariate or instrument. While the

standard LATE inference does not require the presence of exogenous variables such as V ,

our analysis needs V to correct the problem due to a measurement error for T .

True treatment T ∗ may be endogenous due to omitted variables in the sense that

unobservables exist that affect both Y and T ∗. Observed treatment T may contain a
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measurement error, meaning that T ̸= T ∗ in general. We discuss the features of the

measurement error and the problem due to this error in Section 2.3.

V can be a binary, general discrete, or continuous variable. V may affect both T ∗ and

Y . However, V has to satisfy an exclusion restriction and a rank condition to identify and

estimate the LATE and the distribution of the measurement error for T . The conditions

that V has to satisfy and their implications are discussed in Section 3.

The aim of the inference is to examine the causal relationship between T ∗ and Y . Let

Y0 and Y1 be the potential outcomes when the unit is untreated (T ∗ = 0) and when it is

treated (T ∗ = 1), respectively. Similarly, let T ∗
0 and T ∗

1 be the potential true treatment

statuses when Z = 0 and Z = 1, respectively. We can write Y = Y0 + T ∗(Y1 − Y0) and

T ∗ = T ∗
0 +Z(T ∗

1 − T ∗
0 ). The individual causal effect of T

∗ on Y is Y1 − Y0, which may be

heterogeneous across units depending on the observables and/or unobservables.

To define the causal parameter, we define the following subsets of the common prob-

ability space (Ω,F , P ) on which the random variables are defined:

Always taker: A := {ω ∈ Ω : T ∗
0 (ω) = T ∗

1 (ω) = 1},

Complier: C := {ω ∈ Ω : T ∗
0 (ω) = 0, T ∗

1 (ω) = 1},

Defier: D := {ω ∈ Ω : T ∗
0 (ω) = 1, T ∗

1 (ω) = 0},

Never taker: N := {ω ∈ Ω : T ∗
0 (ω) = T ∗

1 (ω) = 0}.

Intuitively, A or D is the set of units that always take or deny, respectively, the treatment

(in the sense of true T ∗), C is that of units whose treatment statuses are positively affected

by Z, and D is that of units whose treatment statuses are negatively affected by Z. The

units belonging to C or D change their treatment statuses depending on the value of Z.

The parameter of interest is the LATE, which is defined as

E(Y1 − Y0|C) = E(Y1 − Y0|T ∗
1 > T ∗

0 ). (1)

The LATE, which is the ATE for compliers, captures the average causal effect for units

whose treatment statuses are positively altered by their instrumental values.
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For example, in a returns to schooling analysis, Y is an individual outcome such as

wages, T ∗ is an indicator of whether the individual has a high school diploma, Z is the IV

indicating whether the individual is subject to the compulsory schooling law that requires

the minimum leaving age is 16, and V is a covariate such as parental or sibling education

or an instrument such as proximity to college or the QOB. The LATE is the average wage

returns of the high school diploma for individuals who graduate from high school if and

only if they are subject to the compulsory schooling law.

Remark 1. In practice, outcome Y or instrument Z may also contain a measurement

error. However, a non-differential measurement error for Y or Z may not contaminate

the LATE inference (see Appendix C). For this reason, our analysis below presumes that

Y and Z do not contain measurement errors.

2.2 Review of the LATE inference without a measurement error

This section reviews the standard inference on the LATE when true T ∗ can be observed

without a measurement error. The analysis when we observe possibly mismeasured T as

opposed to true T ∗ is developed in the subsequent sections.

Without the measurement error, the LATE in (1) is identified by the IV estimator

based on (Y, T ∗, Z) under the following conditions. These are essentially the same as the

conditions in Imbens and Angrist (1994) and Angrist, Imbens, and Rubin (1996).

Assumption 2.1. (Y1, Y0, T
∗
1 , T

∗
0 ) is independent of Z.

Assumption 2.2. Pr(T ∗
1 > T ∗

0 ) = Pr(C) > 0 and 0 < Pr(Z = 1) < 1.

Assumption 2.3. Pr(T ∗
1 < T ∗

0 ) = Pr(D) = 0.

Assumption 2.1 is an exclusion restriction that requires the instrument to be unrelated

to the factors affecting the outcome and/or treatment. Intuitively, the assumption guar-

antees that the instrument is assigned as good as randomly. Assumption 2.2 requires the

presence of compliers. This is a rank condition in the sense that it requires the positive

effect of Z on T ∗. Assumption 2.3 is known as a monotonicity condition in the literature

on LATE inferences. This rules out the presence of defiers.
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In the example of returns to schooling, Assumption 2.1 implies that the variation of

the compulsory schooling law is unrelated to the factors affecting wages with and without

a high school diploma and/or educational attainment with and without the compulsory

schooling law. Assumption 2.2 requires the presence of individuals who graduate from

high school if and only if the compulsory schooling law is enforced. Under Assumption

2.3, there are no individuals who do attain a high school diploma without the compulsory

schooling law but do not attain the diploma with it.

Lemma 1. Suppose that Assumptions 2.1, 2.2, and 2.3 are satisfied. It holds that

E(Y1 − Y0|C) =
µ1 − µ0

p∗1 − p∗0
=

∆µ

∆p∗
, (2)

where µz := E(Y |Z = z), p∗z := E(T ∗|Z = z) = Pr(T ∗ = 1|Z = z) for z = 0, 1,

∆µ := µ1 − µ0, and ∆p∗ = p∗1 − p∗0.

Proof. The proof is in Imbens and Angrist (1994, Theorem 1) and we thus omit it.

Without a measurement error for the treatment, the LATE is identified by the IV

estimand based on the linear IV regression for (Y, T ∗, Z) in the right-hand side in (2).

The LATE is thus consistently estimated by the IV regression or the two-stage least

squares (TSLS) estimation based on (Y, T ∗, Z).

2.3 Identification problem due to measurement error

This section explores the identification problem for the LATE in (1) in the situation

where observed treatment T may be a mismeasured variable of true treatment T ∗.

The identification for the LATE in Lemma 1 implicitly requires the precise measure-

ment of true T ∗ in addition to the identification conditions of Assumptions 2.1, 2.2, and

2.3. However, observed T may contain a measurement error in practice, of which there

are a few types. For example, in the returns to schooling analysis, educational attain-

ment may be misrecorded randomly during the process of correcting survey data. Such a

measurement error may be independent of the factors affecting the outcome and/or true
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educational attainment. The inference procedure proposed in this study allows this type

of measurement error. The other possibility for the presence of measurement errors is

false reporting. For instance, individuals may misunderstand the question or have poor

recall for their educational attainment when responding a survey. Individuals might also

have an incentive to make false statements about their academic achievement to enhance

their careers. Such measurement errors may be correlated with the observables and/or

unobservables. Our identification can be developed even with false reporting if the mea-

surement error does not depend on the unobservables affecting the outcome and/or the

true treatment (see Remark 4 below).

To examine the misclassification problem, we define the misclassification probability:

mt := Pr(T ̸= T ∗|T ∗ = t) = Pr(T = 1− t|T ∗ = t) for t = 0, 1.

In other words, m0 is the probability that an individual who is actually untreated is

misclassified as treated, while m1 is analogous. The misclassification probability can also

be regarded as the distribution of the measurement error.

Importantly, the measurement error for the treatment is non-classical in the sense that

it is dependent on the true treatment. This is because the support of the measurement

error for a discrete variable depends on the true variable. To see this, we denote the

measurement error for T as UT := T − T ∗. By construction, UT ∈ {0, 1} given T ∗ = 0

but UT ∈ {−1, 0} given T ∗ = 1, meaning that UT is dependent of T ∗. Specifically,

the correlation between the error and the true treatment is always negative, whereas

its magnitude depends on the misclassification probabilities: Cov(UT , T
∗) = −(m0 +

m1) Pr(T
∗ = 0)Pr(T ∗ = 1). Also, the correlation between true T ∗ and mismeasured T

depends on the misclassification probabilities:

Cov(T ∗, T ) = (1−m0 −m1) Pr(T
∗ = 0)Pr(T ∗ = 1). (3)

If the sum of the misclassification probabilities m0 +m1 is less than one, T is positively

correlated with T ∗ and negatively correlated otherwise.
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We now explore the identification problem for the LATE due to the measurement

error for the treatment. Thanks to Lemma 1, it is sufficient to focus on the IV estimand

based on true T ∗ to identify the LATE: β∗ = ∆µ/∆p∗. Since the numerator can be

identified by the error-free observables of Y and Z, we focus on the denominator, which

is the first-stage regression in the TSLS estimation of T ∗.

We examine the relationship between observable treatment probability pz := E(T |Z =

z) = Pr(T = 1|Z = z) and true treatment probability p∗z := E(T ∗|Z = z) = Pr(T ∗ =

1|Z = z). We have the following relationship according to the law of iterated expectations:

pz := Pr(T = 1|Z = z) = m0z(1− p∗z) + (1−m1z)p
∗
z = m0z + szp

∗
z, (4)

where mtz := Pr(T ̸= T ∗|T ∗ = t, Z = z) = Pr(T = 1− t|T ∗ = t, Z = z) is the conditional

misclassification probability for t, z = 0, 1 and sz := 1−m0z −m1z for z = 0, 1. We note

that |sz| ≤ 1 by definition. The above equation implies that

p∗z =
pz −m0z

sz
. (5)

The true treatment probability thus depends on the conditional misclassification proba-

bilities and the observable treatment probability.

The misclassification of the treatment variable brings out the serious problem that the

LATE and the first-stage regression ∆p∗ cannot be point-identified based on the observ-

ables of (Y, T, Z). Equation (4) leads to the following system related to true treatment

probability p∗z, observed treatment probability pz, and misclassification probability mtz: p0 = m00 + s0p
∗
0

p1 = m01 + s1p
∗
1

.

Even when Z is not related to the misclassification probability, namely mt = mtz for

t, z = 0, 1 (this implies s = s0 = s1 for s := 1 −m0 −m1), we cannot identify p∗0 and p∗1

because there are four unknown parameters (m0, s, p
∗
0, p

∗
1) in the system of two equations.
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As a result, the true first-stage regression ∆p∗ cannot be identified based on (Y, T, Z),

implying that the true IV estimand β∗ and the LATE are unable to be identified.

Importantly, the IV estimand based on the observables may over- or underestimate

the true IV estimand β∗ and the LATE. The IV estimand based on the observables is

β :=
µ1 − µ0

p1 − p0
. (6)

From the relationship in (4), the difference between the denominators of β and β∗ (the

difference between the observable and true first-stage regressions) is expanded as follows:

p1 − p0 − (p∗1 − p∗0) = (m00 −m01) + (1 + s1)p
∗
1 − (1 + s0)p

∗
0,

which can be negative or positive depending on the misclassification probabilities. For

example, if we assume that the misclassification probabilities for the truly untreated given

Z = 0 and Z = 1 are the same so that m00 = m01, the sign of the difference between the

first-stage regressions depends on that of (m10 +m11)/(m00 +m01)− p∗0/p
∗
1. As a result,

observable β may over- or underestimate true β∗ and the LATE.

Remark 2. While β exhibits a bias for β∗ and the LATE in general, it is sufficient to

estimate β if one is interested in testing the hypothesis of whether β∗ = 0. Since β∗ = 0

if and only if β = 0, the standard IV inference based on observed (Y, T, Z) allows us to

examine whether the true treatment has a causal effect on the outcome.

Remark 3. When the misclassification probabilities do not depend on Z, namely when

mt = mtz for t, z = 0, 1 so that s = s0 = s1, it holds that

β :=
µ1 − µ0

p1 − p0
=

µ1 − µ0

m01 −m00 + s1p∗1 − s0p∗0
=

β∗

s
. (7)

Since |s| ≤ 1, |β| is an upper bound of |β∗|, but it is not the sharp bound (see Ura, 2016).
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3 Identification analysis

This section develops an identification analysis for the LATE in the situation introduced

in Section 2. Section 3.1 shows the identification for the LATE and the distribution of

the measurement error based on exogenous variable V . Section 3.2 presents the moment

conditions derived from the identification result.

3.1 Identification for the LATE with the measurement error

As well as Lewbel (2007), we need four assumptions for our identification of the LATE

and the distribution of the measurement error based on the use of exogenous variable V .

Assumption 3.1 (non-differential error). E(Y |T ∗, T, Z, V ) = E(Y |T ∗, Z, V ).

Assumption 3.1 implies that mismeasured T has no information on the mean of Y

once true T ∗, Z, and V are conditioned on. With measurement error UT := T − T ∗,

the assumption means that E(Y |T ∗, UT , Z, V ) = E(Y |T ∗, Z, V ), implying that UT is the

non-differential measurement error. The assumption of a non-differential error is popular

in the misclassification literature (e.g., Mahajan, 2006; Lewbel, 2007; Battistin et al.,

2014; DiTraglia and Garcia-Jimeno, 2016).

The non-differential error requires that the error does not depend on the observables

and unobservables affecting outcome Y and/or true treatment T ∗. However, we note that

with observable control variables, we can allow dependence between the measurement

error and the observed variables (see Remark 4). The non-differential error also rules out

placebo effects such that misclassified treatments affect the outcomes of individuals who

do not actually receive the treatment.

For example, consider the returns to schooling analysis. Under Assumption 3.1, the

mean wage for individuals who do report high school diplomas and, indeed, did not

graduate from high school is identical to that for individuals who did not graduate from

high school with precise reports. This could be satisfied if the misclassification is caused

by accident or by false statements depending observable control variables such as age and

sex. On the contrary, the assumption might be violated if the misclassification depends
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on the causal effect of the diploma Y1 − Y0 and/or unobservables affecting wages.

Assumption 3.2 (monotonicity). 1−m0z −m1z > 0 for z = 0, 1.

Assumption 3.2 means that the sum of the misclassification probabilities is less than

one. The assumption is known as a monotonicity condition in the misclassification lit-

erature (e.g., Bollinger, 1996; Mahajan, 2006; Lewbel, 2007). This is satisfied when the

misclassification is better than the genuine random report for the treatment status in

which the misclassification probabilities m0z and m1z are equal to half. Under this as-

sumption, T ∗ is positively correlated with T according to (3), implying that the observed

treatment has positive information on the true unobserved treatment. It may be satisfied

when the misclassification is caused by accidental recording error and/or false reporting.

To introduce the next assumption, we define the shorthand notations:

mtzv := Pr(T ̸= T ∗|T ∗ = t, Z = z, V = v),

p∗zv := E(T ∗|Z = z, V = v) = Pr(T ∗ = 1|Z = z, V = v),

τ ∗zv := E(Y |T ∗ = 1, Z = z, V = v)− E(Y |T ∗ = 0, Z = z, V = v),

τ ∗z := E(Y |T ∗ = 1, Z = z)− E(Y |T ∗ = 0, Z = z),

for t, z = 0, 1 and v ∈ supp(V ) ⊂ R. Here, mtzv is the conditional misclassification

probability, p∗zv is the conditional true treatment probability, and τ ∗zv and τ ∗z are the

differences in the conditional outcome means.

Assumption 3.3 (exclusion restriction and rank condition). For each z = 0, 1, there

exist a subset Ωz ⊂ supp(V ) such that

τ ∗z = τ ∗zv, m0z = m0zv, m1z = m1zv,

for any v ∈ Ωz and

p∗zv ̸= p∗zv′ ,
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for any v, v′ ∈ Ωz such that v ̸= v′.

Assumption 3.3 requires a set of exclusion restrictions in the sense that exogenous

variable V does not affect τ ∗zv and the distribution of the measurement error. The as-

sumption of τ ∗zv rules out the effect of V on the difference in the conditional means of Y .

A sufficient condition of the assumption is that the functional form of E(Y |T ∗, Z, V ) is

given by E(Y |T ∗, Z, V ) = h1(T
∗, Z) + h2(Z, V ) for functions h1 and h2. The assumption

could hold especially when the effect of V on Y1 is the same as that on Y0. Remarkably,

Assumption 3.3 allows the direct effect of V on Y . For example, even in the linear model

of E(Y |T ∗, Z, V ) = γ0 + γ1T
∗ + γ2Z + γ3V + γ4ZV with coefficients γs, the assumption

is satisfied. The other special case in which the assumption holds is when V is randomly

assigned. Indeed, if V is independent of (Y1, Y0, T
∗
1 , T

∗
0 , Z), then it holds that

τ ∗zv = E(Y |T ∗ = 1, Z = z, V = v)− E(Y |T ∗ = 0, Z = z, V = v)

= E(Y1|T ∗
z = 1, Z = z, V = v)− E(Y0|T ∗

z = 0, Z = z, V = v)

= E(Y1|T ∗
z = 1, Z = z)− E(Y0|T ∗

z = 0, Z = z) = τ ∗z .

Under Assumption 3.3, the generating process of the misclassification also does not de-

pend on V . However, it allows the misclassification probabilities to depend on Z.

Assumption 3.3 further includes a rank condition under which V affects true treatment

probability p∗zv. It holds especially when V has a direct effect on T ∗. Importantly, the

rank condition is testable under the exclusion restriction that mtz = mtzv in Assumption

3.3. Indeed, from the definition of the observable conditional treatment probability,

pzv := E(T |Z = z, V = v) = Pr(T = 1|Z = z, V = v),

the same procedure for showing (4) leads to pzv = m0zv +(1−m0zv −m1zv)p
∗
zv. It implies

that p∗zv ̸= p∗zv′ if and only if pzv ̸= pzv′ under exclusion restriction mtz = mtzv.

To understand the practical implication of Assumption 3.3 in empirical applications,

let us consider the returns to schooling analysis. Suppose that Z is the indicator of the
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compulsory schooling law and that V indicates the QOB for the individual. The exclusion

restriction for τ ∗zv is satisfied if the mean effect of the high school graduation on wages

for individuals born in a quarter are identical to that for individuals born in the other

quarters. The condition for mtzv holds when the QOB do not determine the generation of

the measurement error. The rank condition for p∗zv is satisfied when the QOB are related

to true educational attainment.

For the next assumption, we define the following observable parameter:

τzv := E(Y |T = 1, Z = z, V = v)− E(Y |T = 0, Z = z, V = v),

for z = 0, 1 and v ∈ supp(V ) ⊂ R. Here, τzv is the difference in the conditional outcome

means, which is identified from the observable data.

The following assumption includes the conditions to solve the systems of linear equa-

tions for the identification of the misclassification probabilities. Condition (i) is for the

case where V takes at least three values. On the contrary, condition (ii) allows the

situation where V is binary. We remember set Ωz ⊂ supp(V ) in Assumption 3.3.

Assumption 3.4 (nonsingularity). One of the following assumptions holds for each z =

0, 1. (i) There are at least three elements {v1, v2, v3} ⊂ Ωz such that

(
τzv1
pzv2

− τzv2
pzv1

)(
τzv1

1− pzv3
− τzv3

1− pzv1

)
̸=
(

τzv1
1− pzv2

− τzv2
1− pzv1

)(
τzv1
pzv3

− τzv3
pzv1

)
.

(ii) It holds that mt = mtz for each t = 0, 1 and z = 0, 1 and there are at least two

elements {v1, v2} ⊂ Ωz such that

(
τ0v1
p0v2

− τ0v2
p0v1

)(
τ1v1

1− p1v2
− τ1v2

1− p1v1

)
̸=
(

τ0v1
1− p0v2

− τ0v2
1− p0v1

)(
τ1v1
p1v2

− τ1v2
p1v1

)
.

Assumption 3.4 is a set of somewhat technical conditions that guarantees the unique

solutions for the systems of linear equations. Conditions (i) and (ii) both require some

inequality, while condition (ii) requires the exclusion restriction that the distribution of

the measurement error does not depend on Z. The same exclusion restriction is assumed

16



in DiTraglia and Garcia-Jimeno (2016) and Ura (2016). The inequalities are testable in

principle since their components are identified by the data. The necessary and sufficient

conditions of the inequalities are τ ∗z ̸= 0 and m0z + m1z ̸= 1 (see Appendix B). In the

returns to schooling example, the inequalities hold if and only if average wages for high

school graduates are different from those for individuals without high school diplomas.

The following theorem states the main identification result of this study.

Theorem 1. Suppose that Assumptions 3.1, 3.2, 3.3, and 3.4 are satisfied. The mis-

classification probabilities m0z and m1z, true treatment probability p∗z for each z = 0, 1,

and IV estimand β∗ are identified. As a result, the LATE in (1) is identified when, in

addition, Assumptions 2.1, 2.2, and 2.3 are satisfied.

The main idea behind the identification is, similar to Lewbel (2007), to construct

moment conditions whose number is no fewer than the unknown parameters. The idea

can be understood by a simple sketch of the proof of Theorem 1. This proof depends on

whether we assume Assumption 3.4 (i) or (ii). Under Assumptions 3.1, 3.2, 3.3, and 3.4

(i), we can show the following system of equations for each z = 0, 1:

 B0zw0zv1v2 +B1zw1zv1v2 + w2zv1v2 = 0

B0zw0zv1v3 +B1zw1zv1v3 + w2zv1v3 = 0
, (8)

where the Bs and ws are parameters related to the unobservables and observables, re-

spectively. The Bs and ws are defined by equation (19) in the proof of Theorem 1. We

note that the ws are identified from the observable data. Assumption 3.4 (i) guarantees

the existence of the unique solutions of Bs, implying that the Bs are identified. Similarly,

under the assumption of mtz = mt for t, z = 0, 1 in Assumption 3.4 (ii), we instead have

 B0w00v1v2 +B1w10v1v2 + w20v1v2 = 0

B0w01v1v2 +B1w11v1v2 + w21v1v2 = 0
, (9)

where the Bs and ws are the unobservable and observable parameters, respectively. Note

that the Bs in (9) do not depend on z unlike the Bs in (8). In this case, Assumption
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3.4 (ii) guarantees that the Bs are identified as the solution of simultaneous equations

(9). As a next step, the identification of the Bs leads to identifying the misclassification

probabilities. Specifically, under Assumption 3.4 (i), we have

sz =
√

(B0z −B1z + 1)2 − 4B0z, m0z = (B0z −B1z + 1− sz)/2, m1z = 1−m0z − sz

for each z = 0, 1. On the contrary, under Assumption 3.4 (ii), we have

s =
√

(B0 −B1 + 1)2 − 4B0, m0 = (B0 −B1 + 1− s)/2, m1 = 1−m0 − s.

These mean that the distribution of the measurement error is identified. Finally, the

true first-stage regression is identified based on the information on the misclassification

probability and the observable treatment probability. Under Assumption 3.4 (i), we have

∆p∗ =
p1 −m01

1−m01 −m11

− p0 −m00

1−m00 −m10

,

and, under Assumption 3.4 (ii), we have

∆p∗ =
p1 − p0

1−m0 −m1

.

As a result, IV estimand β∗ := ∆µ/∆p∗ and the LATE are identified by equation (2).

Remark 4. The proposed analysis can be extended to situations in which other control

variables are observed. Suppose that we observe a vector of control variables S ∈ Rd in

addition to (Y, T, Z, V ). Let the parameter of interest be the LATE conditional on the

control variables: E(Y1 − Y0|C, S = s) = E(Y1 − Y0|T ∗
1 > T ∗

0 , S = s) where s ∈ supp(S).

If Assumptions 2.1, 2.2, and 2.3 are satisfied conditional on S, it holds that

E(Y1 − Y0|T ∗
1 > T ∗

0 , S = s) =
E(Y |Z = 1, S = s)− E(Y |Z = 0, S = s)

E(T ∗|Z = 1, S = s)− E(T ∗|Z = 0, S = s)
.

The right-hand side is the IV estimand conditional on S = s, which is identified if

(Y, T ∗, Z, S) is observed without a measurement error. Also, if Assumptions 3.1, 3.2,
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3.3, and 3.4 hold conditional on S = s, the identification result in Theorem 1 holds

conditional on S = s. Importantly, owing to the presence of control variables S, we can

allow the generation of the measurement error to depend on the observables. Specifi-

cally, Assumption 3.1 may be replaced with the non-differential error conditional on S:

E(Y |T ∗, T, Z, V, S) = E(Y |T ∗, Z, V, S). It implies that the measurement error for the

treatment does not affect the mean of Y once T ∗ and S are conditioned on.

Remark 5. When V is binary as well as Z, one may consider the analysis in which the

role of V is replaced with that of Z. Suppose that T̃ ∗
0 and T̃ ∗

1 are the potential true

treatment statuses when V = 0 and V = 1, respectively. Then, the LATE based on V is

E(Y1 − Y0|T̃ ∗
1 > T̃ ∗

0 ), (10)

which is the ATE for compliers whose treatment statuses are positively altered with the

value of V . The LATE in (10) may be different from the LATE in (1) since the definition

of compliers depends on which of V and Z is the instrument. Under Assumptions 2.1,

2.2, and 2.3 with V in place of Z, the LATE in (10) satisfies the following equation:

E(Y1 − Y0|T̃1 > T̃0) =
E(Y |V = 1)− E(Y |V = 0)

E(T ∗|V = 1)− E(T ∗|V = 0)
,

as well as Lemma 1. Further, if Assumptions 3.1, 3.2, 3.3, and 3.4 are satisfied with Z and

V in place of V and Z, respectively, the LATE and the distribution of the measurement

error are identified by adopting the same procedure as in Theorem 1. In practice, the

LATEs in both (1) and (10) may be identified based on the information on (Y, T, Z, V )

from Theorem 1 and the above discussion. In such a case, which of the LATEs in (1)

and (10) should be the main parameter of interest would depend on the objective of the

empirical application. Since the definition of the LATE depends on the members of the

complier group, the main parameter of interest should be determined by assessing which

of the compliers based on V and Z is of more interest.
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3.2 Moment conditions

We derive the moment conditions based on the identification result in Theorem 1. The

moment conditions lead to estimation procedures such as the nonlinear GMM estimation

and the empirical likelihood estimation, which allow us to estimate the parameters. Here,

we focus on the moment conditions under Assumption 3.4 (i) since that under Assumption

3.4 (ii) is simpler. We assume that V is a discrete random variable since the instruments or

covariates in the LATE inference are often discrete. We can easily derive similar moment

conditions when V is continuously distributed and/or when other control variables exist.

Define the vector of observable variables X := (Y, T, Z, V )′. For notational simplicity,

suppose that discrete V takes K values in supp(V ) = Ω0 = Ω1 = {v1, v2, . . . , vK}, where

Ωz is introduced in Assumptions 3.3 and 3.4. Define a vector of the K + 3 parameters:

θ(z) := (m0z,m1z, p
∗
zv1

, p∗zv2 , . . . , p
∗
zvK

, τ ∗z )
′.

Vector θ(z) for z = 0, 1 contains the parameters conditional on Z = z introduced in

Section 3.1. The vector of the 2K + 9 parameters to be estimated is

θ := (β∗,∆p∗, r, θ(0)
′
, θ(1)

′
)′, (11)

where ∆p∗ := p∗1 − p∗0 = E(T ∗|Z = 1) − E(T ∗|Z = 0) is the true first-stage regression

and r := E(Z) = Pr(Z = 1). The parameters except for IV estimand β∗ and true first-

stage regression ∆p∗ are nuisance parameters to overcome the misclassification problem.

Nonetheless, as well as β∗ and ∆p∗, misclassification probability mtz for t = 0, 1 and

z = 0, 1 could be of interest in empirical applications. Suppose that θ0 is the true value

of θ in the parameter space Θ ⊂ R2K+9.

Let g(X, θ) be the vector valued function with 4K+3 elements, which are the following
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components: for k = 1, 2, . . . , K and z = 0, 1,

r − Z,(
m0z + (1−m0z −m1z)p

∗
zvk

− T
)
Izvk ,(

τ ∗z +
Y T − (1−m1z)p

∗
zvk

τ ∗z
m0z + (1−m0z −m1z)p∗zvk

−
Y (1− T ) + (1−m0z)(1− p∗zvk)τ

∗
z

1− (m0z + (1−m0z −m1z)p∗zvk)

)
Izvk ,

∆p∗ −
(

TZr−1 −m01

1−m01 −m11

− T (1− Z)(1− r)−1 −m00

1−m00 −m10

)
,

β∗ − Y Zr−1 − Y (1− Z)(1− r)−1

∆p∗
,

(12)

where Izvk := 1(Z = z, V = vk) is the shorthand notation for the indicator.

The following theorem shows that the moment condition is E[g(X, θ0)] = 0 with

unique solution θ0 ∈ Θ. This is directly shown by the identification result in Theorem 1.

Theorem 2. Suppose that Assumptions 3.1, 3.2, 3.3, and 3.4 (i) hold with Ω0 = Ω1 =

{v1, v2, . . . , vK}. Then, it holds that E[g(X, θ0)] = 0 and θ0 is the unique solution of the

moment condition in the sense that E[g(X, θ)] ̸= 0 for any θ ∈ Θ such that θ ̸= θ0.

The number of overidentification restrictions depends on the number of the elements

in support of V , K. As stated above, the numbers of parameters and moment equations

are 2K + 9 and 4K + 3, respectively, according to Assumption 3.4 (i). Hence, there are

2K − 6 overidentification restrictions and θ0 is just-identified when K = 3. Similarly, we

can show that there are 2K − 4 overidentification restrictions under Assumption 3.4 (ii),

and the just-identification is achieved when K = 2.

4 GMM estimation

This section briefly discusses the GMM estimation based on E[g(X, θ0)] = 0 in Theorem

2. We develop the nonparametric estimation here, although we may also consider the

semiparametric estimation by specifying the functional forms of the functions in θ.

We have a random sample X := {Xi}ni=1 = {(Yi, Ti, Zi, Vi)}ni=1 of X := (Y, T, Z, V ).

Let Λ̂ be a (4K + 6) × (4K + 6) positive semi-definite weighting matrix. The GMM
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estimator for θ is defined as

θ̂ := argmin
θ∈Θ

(
1

n

n∑
i=1

g(Xi, θ)

)′

Λ̂

(
1

n

n∑
i=1

g(Xi, θ)

)
= argmin

θ∈Θ
ĝn(X, θ)′Λ̂ĝn(X, θ),

where ĝn(X, θ) := n−1
∑n

i=1 g(Xi, θ) is a shorthand notation.

The
√
n-consistency and the asymptotic normality of θ̂ are followed by the standard

arguments for the asymptotics on the M-estimator. Specifically, with Λ̂
p→ Λ for a

positive definite matrix Λ, G := E[∇θg(X, θ0)], and Γ := E[g(X, θ)g(X, θ)′], Theorem 3.2

in Newey and McFadden (1994) means that

√
n(θ̂ − θ0)

d−→ N
(
0, (G′ΛG)−1G′ΛΓΛG(G′ΛG)−1

)
. (13)

We can obtain the optimal GMM estimator based on the weighting matrix satisfying

Λ̂
p−→ Γ−1 (see Theorem 5.2 in Newey and McFadden, 1994) with asymptotic variance

(G′Γ−1G)−1 that is the lower bound of the asymptotic variances of the GMM estimators

based on E[g(X, θ0)] = 0. In practice, we first estimate Γ by Γ̂ := n−1
∑n

i=1 g(Xi, θ̃)g(Xi, θ̃)
′

with pilot GMM estimator θ̃. Then, the optimal GMM estimator, say θ̂opt, is based on the

weighting matrix Λ̂opt := Γ̂−1. The asymptotic variance may be estimated by (Ĝ′Γ̂Ĝ)−1

where Ĝ := n−1
∑n

i=1∇θg(Xi, θ̂) and Γ̂ := n−1
∑n

i=1 g(Xi, θ̂)g(Xi, θ̂)
′.

The confidence interval estimation and hypothesis testing for θ0 may be developed

based on the asymptotic normality or bootstrap procedures such as the nonparametric

bootstrap (Hall and Horowitz, 1996) or the k-step bootstrap (Andrews, 2002). For exam-

ple, the 1− α confidence interval for the LATE may be given by [β̂∗ − zα/2 · se(β̂∗), β̂∗ +

zα/2 · se(β̂∗)] where β̂∗ is the GMM estimator for the LATE, se(β̂∗) is the asymptotic

standard error, and zα/2 is the 1− α/2 quantile of the standard normal distribution.

Importantly, the overidentification restrictions allow us to examine the validity of

Assumptions 3.1, 3.2, 3.3, and 3.4 based on the overidentification test. Under H0 :

E[g(X, θ0)] = 0 with 2K−6 overidentification restrictions, nĝn(X, θ̂opt)
′Λ̂optĝn(X, θ̂opt)

d−→

χ2
2K−6. If the value of the test statistic exceeds the 1 − α quantile of χ2

2K−6, we reject

H0 : E[g(X, θ0)] = 0 with the significance of α. Since E[g(X, θ0)] ̸= 0 implies the violation
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of identification conditions, we can examine their validity based on this test.

5 Monte Carlo simulations

This section reports the results of the Monte Carlo simulations. The aim of the simula-

tions is to demonstrate the contamination of the LATE inference due to the measurement

error and examine the finite sample performance of the proposed GMM estimation. The

simulations are conducted with R 3.3.2. The number of simulation replications is 5,000.

DGP By using a sample size of 1,000, we generate the random variables by adopting

the following data-generating processes. Instrument Z is generated with probabilities

Pr(Z = 0) = Pr(Z = 1) = 0.5. Assuming Assumption 3.4 (ii), we generate binary V

independently of Z with probabilities Pr(V = 0) = Pr(V = 1) = 0.5. We generate the

unobservables affecting the outcome and the true treatment.

 U1

U2

 ∼ N


 0

0

 ,

 1 0.1

0.1 1


 ,

where (U1, U2) is independent of Z and V . The true treatment is generated by the probit

model T ∗ = 1(−0.5 + Z − 0.5V + ZV − U1 > 0). Observed treatment T is misclassified

independently of the other variables with misclassification probability mt := Pr(T ̸=

T ∗|T ∗ = t) = 0.2 for each t = 0, 1. Two designs are considered for the outcome variable:

Design 1: Y = 1 + 2T ∗ + U2, Design 2: Y = U3
2 + T ∗U2

2 (1− U2).

Design 1 considers the homogeneous causal effect, whereas the causal effect in design 2

is heterogeneous depending on unobserved U2.

Estimator We consider two estimators. The first is the GMM estimator based on the

identification result developed in this study. The second is the naive IV estimator β in

(6) based on observables (Y, T, Z), which is a benchmark estimator.
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In this simulation, the GMM estimation involves 11 parameters to be estimated:

θ = (β∗,∆p∗, r,m0, p
∗
00, p

∗
01, τ

∗
0 ,m1, p

∗
10, p

∗
11, τ

∗
1 )

′. The parameters of interest are the LATE

identical to IV estimand β∗, first-stage regression ∆p∗, and misclassification probabilities

m0 and m1. The moment condition E[g(X, θ0)] = 0 is composed of 11 elements. Since θ0

is just-identified here, we select the identity matrix as the weighting matrix.

Result Tables 1 and 2 summarize the Monte Carlo simulation results with designs 1 and

2, respectively. The simulation results for the proposed GMM estimation and the naive

IV estimation are reported in the columns labeled “GMM” and “IV,” respectively. The

rows in each table report the true value, bias, standard deviation (std), root mean squared

error (RMSE), and 25%, 50%, and 75% quantiles of the 5,000 simulation estimates (LQ,

MED, and UQ) for each parameter of β∗, ∆p∗, m0, and m1.

Naive IV estimator β based on the observables exhibits large biases in both designs 1

and 2. In each design, the bias is over 60% of the true value of the LATE, and the naive

IV estimator overestimates the LATE. The result is driven by the identification failure

of the naive IV estimand for the LATE as we discussed in Section 2.3. The magnitude

of the bias is also consistent with our theoretical investigation in (7). These simulation

results demonstrate that the measurement error for the treatment variable significantly

contaminates the LATE inferences. Hence, it is important to develop inference procedures

for the LATE that incorporate the presence of the measurement error.

The performance of the proposed GMM estimation based on the identification result

in Theorems 1 and 2 is successful. The bias of the GMM estimator for each parameter is

satisfactory in each design. For example, the biases of the GMM estimator for the LATE

in designs 1 and 2 are about 9% and 4% of the true value, respectively. The standard

deviation and the root mean squared error of the GMM estimator are also moderate in

each design for each parameter. With the quantiles of the estimates, we observe that the

distribution of the estimates is centered close to the true value, which can be expected

owing to the asymptotic normality of the GMM estimator. In short, our proposed GMM

estimation can successfully infer the LATE and the true first-stage regression even when

the treatment contains a measurement error.
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Table 1: Monte Carlo simulation results with design 1

GMM IV
parameter of interest β∗ ∆p∗ m0 m1 β∗

true 2.000 0.532 0.200 0.200 2.000
bias 0.186 −0.026 −0.014 −0.039 1.356
std 0.454 0.100 0.077 0.084 0.346
RMSE 0.491 0.104 0.078 0.093 1.399
LQ 1.841 0.430 0.143 0.099 3.117
MED 2.145 0.497 0.196 0.173 3.334
UQ 2.479 0.574 0.241 0.226 3.572

Table 2: Monte Carlo simulation results with design 2

GMM IV
parameter of interest β∗ ∆p∗ m0 m1 β∗

true 0.996 0.532 0.200 0.200 0.996
bias 0.044 0.001 0.036 −0.071 0.661
std 0.436 0.146 0.113 0.122 0.599
RMSE 0.439 0.146 0.119 0.141 0.892
LQ 0.733 0.431 0.181 0.010 1.240
MED 0.996 0.494 0.270 0.096 1.661
UQ 1.301 0.620 0.321 0.246 2.035
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6 Conclusion

This study presents novel point-identification and estimation methods for the LATE

when the binary endogenous treatment may contain a measurement error. Since the

measurement error must be non-classical by construction, the standard IV estimator

cannot consistently estimate the LATE. To correct the bias due to the measurement

error, we build on Lewbel’s (2007) result to point-identify the LATE, true first-stage

regression, and distribution of the measurement error based on the use of an exogenous

variable such as a covariate or instrument. The moment conditions derived from the

identification result lead to the GMM estimator for the parameters with asymptotically

valid inferences. The Monte Carlo simulations demonstrate the successful performance

of the proposed GMM estimation in finite samples.

Several important future research topics can be proposed on the basis of the findings

presented herein. First, it is desirable to develop point-identification for the LATE with

the differential measurement error for the treatment variable. The measurement error

is differential when it is related with the outcome variable even conditional on the true

variable. How to handle such a measurement error would be of interest but challenging.

Second, it would be of interest to develop inference procedures for the LATE with a mea-

surement error when the treatment is a general discrete variable. Without a measurement

error for the discrete treatment, the IV estimand identifies the LATE with the variable

treatment intensity (Angrist and Imbens, 1995). Our inference procedure proposed may

be extended to such situations.

A Appendix: Proofs of the theorems

This appendix contains the proofs of Theorems 1 and 2. In the following, we write

W := (Z, V )′ for notational convenience.
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A.1 Proof of Theorem 1

The outline of the proof is an extension of the proof for Theorems 1 and 2 in Lewbel

(2007). First, we examine the relationship between identified parameter τW := E(Y |T =

1,W )−E(Y |T = 0,W ) and true version τ ∗W := E(Y |T ∗ = 1,W )−E(Y |T ∗ = 0,W ) under

Assumption 3.1. Second, we clarify that the relationship between τW and τ ∗W involves

misclassification probabilities m0z, m1z, and sz := 1−m0z −m1z under Assumptions 3.1,

3.2, and 3.3. Third, we show that m0z, m1z, and sz are identified under Assumption 3.4

(i) or (ii). Finally, we argue that β∗ is identified based on identified parameters m0z, m1z,

and sz, which implies the identification of the LATE thanks to Lemma 1.

Step 1: Assumption 3.1 means that

E(Y |T ∗, T,W ) = E(Y |T ∗,W )

= T ∗E(Y |T ∗ = 1,W ) + (1− T ∗)E(Y |T ∗ = 0,W )

= E(Y |T ∗ = 0,W ) + T ∗ · τ ∗W .

The law of iterated expectations leads to E(Y |T,W ) = E(Y |T ∗ = 0,W )+E(T ∗|T,W )τ ∗W

so that we have

τW := E(Y |T = 1,W )− E(Y |T = 0,W )

= [E(T ∗|T = 1,W )− E(T ∗|T = 0,W )]τ ∗W .

(14)

Step 2: We next examine E(T ∗|T = t,W ) = Pr(T ∗ = 1|T = t,W ) for t = 0, 1:

Pr(T ∗ = 1|T = t,W ) =
Pr(T = t|T ∗ = 1,W ) Pr(T ∗ = 1|W )

Pr(T = t|W )
.

Thus, we can write

E(T ∗|T = 0,W ) =
m1W · p∗W
1− pW

, E(T ∗|T = 1,W ) =
(1−m1W )p∗W

pW
. (15)
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Further, we have

pW := Pr(T = 1|W ) = m0W (1− p∗W ) + (1−m1W )p∗W

= m0W + (1−m0W −m1W )p∗W .

(16)

This leads to

p∗W =
pW −m0W

1−m0W −m1W

, (17)

under the assumption that 1−m0W −m1W ̸= 0 (Assumption 3.2).

By substituting (15) and (17) into (14) and rearranging the equation, we get

τW = M(m0W ,m1W , pW )τ ∗W , (18)

where we define

M(m0W ,m1W , pW ) :=
1

1−m0W −m1W

(
1− m0W (1−m1W )

pW
− (1−m0W )m1W

1− pW

)
.

Step 3: Under Assumption 3.3, (18) implies that for each z ∈ {0, 1} and every v, v′ ∈ Ωz

τzv = M(m0z,m1z, pzv)τ
∗
z , τzv′ = M(m0z,m1z, pzv′)τ

∗
z .

This implies that τzvM(m0z,m1z, pzv′)− τzv′M(m0z,m1z, pzv) = 0 under Assumption 3.2.

This equation can be rearranged as follows:

τzv

(
1− m0z(1−m1z)

pzv′
− (1−m0z)m1z

1− pzv′

)
− τzv′

(
1− m0z(1−m1z)

pzv
− (1−m0z)m1z

1− pzv

)
= 0

⇐⇒ m0z(1−m1z)

(
τzv
pzv′

− τzv′

pzv

)
+ (1−m0z)m1z

(
τzv

1− pzv′
− τzv′

1− pzv

)
+ (τzv′ − τzv) = 0

⇐⇒ B0zw0zvv′ +B1zw1zvv′ + w2zvv′ = 0,
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where we define

B0z := m0z(1−m1z), B1z := (1−m0z)m1z,

w0zvv′ :=
τzv
pzv′

− τzv′

pzv
, w1zvv′ :=

τzv
1− pzv′

− τzv′

1− pzv
, w2zvv′ := τzv′ − τzv.

(19)

Note that ws are identified by the observables of (Y, T, Z, V ).

The remaining proof depends on whether we assume Assumption 3.4 (i) or (ii).

Step 4 under Assumption 3.4 (i): We show the identification of B0z and B1z under

Assumption 3.4 (i). Then Ωz contains at least three elements (v1, v2, v3) and we have the

system of two linear equations:

 B0zw0zv1v2 +B1zw1zv1v2 + w2zv1v2 = 0

B0zw0zv1v3 +B1zw1zv1v3 + w2zv1v3 = 0

The system can be uniquely solved for unknown parameter (B0z, B1z) as long as matrix

((w0zv1v2 , w0zv1v3)
′, (w1zv1v2 , w1zv1v3)

′) is nonsingular. The necessary and sufficient condi-

tion of the nonsingularity is the nonzero determinant of the matrix, i.e.,

(
τzv1
pzv2

− τzv2
pzv1

)(
τzv1

1− pzv3
− τzv3

1− pzv1

)
̸=
(

τzv1
1− pzv2

− τzv2
1− pzv1

)(
τzv1
pzv3

− τzv3
pzv1

)
.

Hence, (B0z, B1z) is identified under Assumption 3.4 (i).

We next show the identification of sz := 1−m0z −m1z. The equation Btz = mtz(1−

m1−t,z) in (19) for t = 0, 1 implies that (sz+m0z)m0z = B0z and 2m0z = B0z−B1z+1−sz.

Substituting the second into the first provides

(
sz +

B0z −B1z + 1− sz
2

)
B0z −B1z + 1− sz

2
= B0z

⇐⇒ sz =
√
(B0z −B1z + 1)2 − 4B0z,

under Assumptions 3.2 and 3.3. Hence, sz is identified by the identification of the Bs.

Since sz, B0z, and B1z are identified, m0z and m1z are also identified by m0z = (B0z −

B1z + 1− sz)/2 and sz = 1−m0z −m1z.
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Finally, we argue that IV estimand β∗ is identified based on the above steps. Since

it holds that pz = m0z + (1−m0z −m1z)p
∗
z, the true treatment probability and the true

first-stage regression are identified based on

p∗z =
pz −m0z

1−m0z −m1z

, p∗1 − p∗0 =
p1 −m01

1−m01 −m11

− p0 −m00

1−m00 −m10

, (20)

by identified parameters pz, m0z, and m1z. Hence, we have shown that

β∗ :=
µ1 − µ0

p∗1 − p∗0
, (21)

is identified since the numerator is identified by the data.

Step 4 under Assumption 3.4 (ii): We show the identification of B0 := m0(1−m1)

and B1 := m1(1 − m0) under Assumption 3.4 (ii). With the exclusion restriction of

mtz = mt in Assumption 3.4 (ii), we have the system of two linear equations:

 B0w00v1v2 +B1w10v1v2 + w20v1v2 = 0

B0w01v1v2 +B1w11v1v2 + w21v1v2 = 0
.

The system can be uniquely solved for unknown parameter (B0, B1) as long as matrix

((w00v1v2 , w01v1v2)
′, (w10v1v2 , w11v1v2)

′) is nonsingular. The necessary and sufficient condi-

tion of the nonsingularity is the nonzero determinant of the matrix, i.e.,

(
τ0v1
p0v2

− τ0v2
p0v1

)(
τ1v1

1− p1v2
− τ1v2

1− p1v1

)
̸=
(

τ0v1
1− p0v2

− τ0v2
1− p0v1

)(
τ1v1
p1v2

− τ1v2
p1v1

)
.

Hence, (B0, B1) is identified under Assumption 3.4 (ii).

We also show the identification of β∗. Bt = mt(1 − m1−t) for t = 0, 1 implies that

(s + m0)m0 = B0 and 2m0 = B0 − B1 + 1 − s. Substituting the second into the first

provides

(
s+

B0 −B1 + 1− s

2

)
B0 −B1 + 1− s

2
= B0 ⇐⇒ s =

√
(B0 −B1 + 1)2 − 4B0,
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under Assumptions 3.2 and 3.3, meaning that s is identified. Since s, B0, and B1 are

identified, m0 and m1 are also identified by m0 = (B0−B1+1−s)/2 and s = 1−m0−m1.

Hence, p∗z := E(T ∗|Z = z) for each z = 0, 1 is identified based on identified parameters

pz, m0, and m1, which implies the identification of β∗.

2

A.2 Proof of Theorem 2

To show the statement, it is sufficient to show that moment condition E[g(X, θ0)] = 0

with g(X, θ) defined in (12) is implied by the identification result in Theorem 1.

The first moment condition in E[g(X, θ0)] = 0 is r = E(Z) by construction. The

second moment condition in E[g(X, θ0)] = 0 is

E
[(

m0z + (1−m0z −m1z)p
∗
zvk

− T
)
Izvk

]
= 0

⇐⇒ m0z + (1−m0z −m1z)p
∗
zvk

− pzvk = 0.

This equation is equivalent to (16).

We examine the third moment restriction. By substituting the second moment con-

dition into the third moment condition, we have

E

((
τ ∗z +

Y T − (1−m1z)p
∗
zvk

τ ∗z
m0z + (1−m0z −m1z)p∗zvk

−
Y (1− T ) + (1−m0z)(1− p∗zvk)τ

∗
z

1− [m0z + (1−m0z −m1z)p∗zvk ]

)
Izvk

)
= 0

⇐⇒ E

((
τ ∗z +

Y T

pzvk
−

(1−m1z)p
∗
zvk

τ ∗z
pzvk

− Y (1− T )

1− pzvk
−

(1−m0z)(1− p∗zvk)τ
∗
z

1− pzvk

)
Izvk

)
= 0

⇐⇒ E

((
τ ∗z +

Y T

pzvk
− (1−m1z)τ

∗
z

pzvk

pzvk −m0z

1−m0z −m1z

−Y (1− T )

1− pzvk
− (1−m0z)τ

∗
z

1− pzvk

1−m1z − pzvk
1−m0z −m1z

)
Izvk

)
= 0,
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where the last follows from (17). Since pzvk = E(TIzvk)/E(Izvk), we have

τ ∗z +
E(Y TIzvk)

E(TIzvk)
− (1−m1z)τ

∗
z

pzvk

pzvk −m0z

1−m0z −m1z

− E(Y (1− T )Izvk)

E((1− T )Izvk)
− (1−m0z)τ

∗
z

1− pzvk

1−m1z − pzvk
1−m0z −m1z

= 0

⇐⇒ E(Y |T = 1, Z = z, V = vk)− E(Y |T = 0, Z = z, V = vk)

=

(
1−m1z

pzvk

pzvk −m0z

1−m0z −m1z

+
1−m0z

1− pzvk

1−m1z − pzvk
1−m0z −m1z

− 1

)
τ ∗z

⇐⇒ E(Y |T = 1, Z = z, V = vk)− E(Y |T = 0, Z = z, V = vk)

=
1

1−m0z −m1z

(
1− m0z(1−m1z)

pzvk
− (1−m0z)m1z

1− pzvk

)
τ ∗z ,

which is identical to (18) under Assumption 3.3.

Noting that E(TZ) = E(T |Z = 1)E(Z), the fourth moment condition is rearranged

as follows:

E

[
∆p∗ −

(
TZr−1 −m01

1−m01 −m11

− T (1− Z)(1− r)−1 −m00

1−m00 −m10

)]
= 0

⇐⇒ ∆p∗ −
(

p1 −m01

1−m01 −m11

− p0 −m00

1−m00 −m10

)
= 0,

which is equal to (20). Similarly, noting that E(Y Z) = E(Y |Z = 1)E(Z), the fifth

moment condition is

E

(
β∗ − Y Zr−1 − Y (1− Z)(1− r)−1

∆p∗

)
= 0 ⇐⇒ β∗ =

µ1 − µ0

p∗1 − p∗0
,

which is identical to (21).

Therefore, from the identification result in Theorem 1, it holds that E[g(X, θ0)] = 0

with the unique solution θ0.

2
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B Appendix: Necessary and sufficient conditions of

Assumption 3.4 (i) and (ii)

This appendix presents the necessary and sufficient conditions of Assumption 3.4 (i) and

(ii). To this end, we first note that (14) and (15) lead to

τW =

(
(1−m1)p

∗
W

pW
− m1p

∗
W

1− pW

)
τ ∗Z ⇐⇒ τW =

p∗W (1−m1 − pW )

pW (1− pW )
τ ∗Z ,

under Assumption 3.3. Here, from (17), we have 1−p∗W = (1−m1Z−pW )/(1−m0Z−m1Z).

It thus holds that

τW =
p∗W (1− p∗W )

pW (1− pW )
(1−m0Z −m1Z)τ

∗
Z . (22)

With the definition of RW := p∗W (1 − p∗W )/[pW (1 − pW )], we have τW = RW (1 −m0Z −

m1Z)τ
∗
Z .

We next show that Assumption 3.4 (i) is identical to τ ∗z ̸= 0 and m0z +m1z ̸= 1 for

each z = 0, 1. According to (22), the equation in the assumption is rearranged as

(
τzv1
pzv2

− τzv2
pzv1

)(
τzv1

1− pzv3
− τzv3

1− pzv1

)
−
(

τzv1
1− pzv2

− τzv2
1− pzv1

)(
τzv1
pzv3

− τzv3
pzv1

)
=

[(
Rzv1

pzv2
− Rzv2

pzv1

)(
Rzv1

1− pzv3
− Rzv3

1− pzv1

)
−
(

Rzv1

1− pzv2
− Rzv2

1− pzv1

)(
Rzv1

pzv3
− Rzv3

pzv1

)]
× (1−m0z −m1z)τ

∗
z .

Therefore, under Assumption 3.3, Assumption 3.4 (i) is satisfied if and only ifm0z+m1z ̸=

1 and τ ∗z ̸= 0 for each z = 0, 1.

We next show that the necessary and sufficient condition of Assumption 3.4 (ii) is

also that m0z + m1z ̸= 1 and τ ∗z ̸= 0 for each z = 0, 1. Under the condition that

m0 = m00 = m01 and m1 = m10 = m11, the equation in the assumption is rewritten as

(
τ0v1
p0v2

− τ0v2
p0v1

)(
τ1v1

1− p1v2
− τ1v2

1− p1v1

)
−
(

τ0v1
1− p0v2

− τ0v2
1− p0v1

)(
τ1v1
p1v2

− τ1v2
p1v1

)
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=

(
R0v1

p0v2
− R0v2

p0v1

)(
R1v0

1− p1v2
− R1v2

1− p1v1

)
−
(

R0v1

1− p0v2
− R0v2

1− p0v1

)(
R1v1

p1v2
− R1v2

p1v1

)
× (1−m0 −m1)τ

∗
0 τ

∗
1 ,

where we use (22). Hence, under Assumption 3.3, Assumption 3.4 (ii) is satisfied if and

only if τ ∗z ̸= 0 and m0 +m1 ̸= 1 for each z = 0, 1.

C Appendix: Mismeasured outcome or instrument

This appendix considers the situation in which Y ∈ R or Z ∈ {0, 1}may be a mismeasured

variable of the true unobserved variable Y ∗ ∈ R or Z∗ ∈ {0, 1}, respectively. Here, we

assume that treatment T = T ∗ is observed without a measurement error for simplicity.

We first consider that continuous outcome Y may be a mismeasured variable of true

continuous Y ∗. By assuming that measurement error UY := Y − Y ∗ satisfies E(UY |Z =

1) = E(UY |Z = 0), it holds that

E(Y |Z = 1)− E(Y |Z = 0)

E(T |Z = 1)− E(T |Z = 0)
=

E(Y ∗|Z = 1)− E(Y ∗|Z = 0)

E(T |Z = 1)− E(T |Z = 0)
.

Thus, the observable IV estimand identifies the LATE, meaning that the measurement

error that is mean-independent of the instrument does not contaminate the inference.2

We then consider the situation under which Z may be a misclassified variable of true

Z∗. The true parameter and the observable analogue are

E(Y |Z∗ = 1)− E(Y |Z∗ = 0)

E(T |Z∗ = 1)− E(T |Z∗ = 0)
, and

E(Y |Z = 1)− E(Y |Z = 0)

E(T |Z = 1)− E(T |Z = 0)
,

respectively. Note that, for each z = 0, 1, E(Y |Z = z) = E(Y |Z∗ = 1 − z) Pr(Z∗ =

1 − z|Z = z) + E(Y |Z∗ = z) Pr(Z∗ = z|Z = z) under the non-differential measurement

error E(Y |Z∗, Z) = E(Y |Z∗). Hence, we have E(Y |Z = 1)− E(Y |Z = 0) = [E(Y |Z∗ =

1)−E(Y |Z∗ = 0)][Pr(Z∗ = 1|Z = 1)−Pr(Z∗ = 1|Z = 0)]. By using the same procedure,

2Note that the measurement error for discrete Y may not satisfy the condition of E(UY |Z = 1) =
E(UY |Z = 0) as in the analysis for the mismeasured binary treatment in this study. The measurement
error for the discrete outcome should be analyzed based on other approaches.
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we can show that E(T |Z = 1) − E(T |Z = 0) = [E(T |Z∗ = 1) − E(T |Z∗ = 0)][Pr(Z∗ =

1|Z = 1)−Pr(Z∗ = 1|Z = 0)] under the non-differential measurement error E(T |Z∗, Z) =

E(T |Z∗). Therefore, we have

E(Y |Z = 1)− E(Y |Z = 0)

E(T |Z = 1)− E(T |Z = 0)
=

E(Y |Z∗ = 1)− E(Y |Z∗ = 0)

E(T |Z∗ = 1)− E(T |Z∗ = 0)
.

Thus, the non-differential measurement error for Z does not contaminate the inference.
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