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Abstract

This paper characterizes the social value of information in Bayesian

games with symmetric quadratic payoff functions and normally distributed

public and private signals. The main result provides a necessary and suffi-

cient condition for welfare to increase with public or private information. In

so doing, we represent welfare as a linear combination of the variance of a

common term in an equilibrium strategy and that of an idiosyncratic term,

which are referred to as the common variance and the idiosyncratic variance

of actions, respectively. The ratio of their coefficients is a key parameter

in our condition. If the coefficient of the common variance is relatively

large, welfare necessarily increases, but if it is relatively small, welfare can

decrease. Using our condition, we find eight types of games with different

welfare effects of information.

JEL classification: C72, D82.

Keywords: Bayesian game, incomplete information, optimal information

structure, potential game, private signal, public signal, team, value of in-

formation.
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1 Introduction

In multi-agent situations, more information is not necessarily valuable, thus raising

doubts over the desirability of transparency. A notable example is a beauty contest

game of Morris and Shin [32] (henceforth MS).1 They show that increased precision

of public information is detrimental to welfare if players have access to sufficiently

precise private information. As explained by MS, the key factor underlying the

anti-transparency result is a strategic complementarity, which induces players’

overreaction to public information.

However, Angeletos and Pavan [3] (henceforth AP) make it clear that a strate-

gic complementarity is neither necessary nor sufficient for the anti-transparency

result. The key factor is what AP refer to as the equilibrium degree of coordination

relative to the socially optimal degree of coordination. AP consider a general class

of Bayesian games where a continuum of players have symmetric quadratic payoff

functions and receive normally distributed public and private signals on the state

of fundamentals,2 which includes a beauty contest game. AP ask under what con-

ditions welfare necessarily increases or decreases with public or private information

and show the following among others.3 In games with strategic complementarities,

welfare necessarily increases with public information if the equilibrium degree of

coordination is lower than the socially optimal degree of coordination. Symmetri-

cally, in games with strategic substitutabilities, welfare necessarily increases with

private information if the equilibrium degree of coordination is higher than the

socially optimal degree of coordination.4

The comparison of the degrees of coordination is intuitive, insightful, and use-

1Earlier papers on this issue include Hirshleifer [23], Ho and Blau [24], Levine and Ponssard

[29], Green and Stokey [17], Kamien et al. [27], Neyman [35], Bassan et al. [7], and Teoh [38].
2As a model of informationally decentralized organizations, Ui [39] independently proposes

a more general class of quadratic Bayesian potential games with a finite number of players,

allowing asymmetry of payoff functions and information structures.
3AP decompose an information structure into its accuracy and its commonality and study

their social value, from which AP examine the social value of public and private information.
4More precisely, these results hold in games of which equilibria are efficient under complete

information but inefficient under incomplete information.
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ful in understanding the social value of information. A minor limitation is that

it is not universally applicable. For example, it does not say much about the

social value of public information in games with strategic substitutabilities and

that of private information in games with strategic complementarities. Moreover,

the following questions remain unanswered. Exactly in what games can welfare

decrease with public or private information? In such games, exactly when does

welfare decrease? Does complete information remain socially optimal? If not,

what information structure maximizes welfare? Specifically, what is the optimal

degree of transparency in public information?

The purpose of this paper is to figure out a universally applicable key factor

determining the social value of information and to answer the above questions by

using it. To this end, our main result provides a necessary and sufficient condition

for welfare to increase with public or private information for given precision of

information, by which we find out the key factor. Our condition is in contrast

to AP’s conditions ensuring that welfare necessarily increases or decreases with

public or private information, regardless of precision of information.

In the main result, we consider a finite-player version of AP’s model because

of the following advantages. First, it is straightforward to extend the finite case

to the continuum case. Next, we can conduct comparative statics with respect to

the number of players. Finally, the assumption of a continuum of players is inap-

propriate in some cases for studying the social value of information. For example,

in voluntary provision of public goods, each player would make no contribution

facing an infinite number of opponents, where information has no influence on

welfare.

Our measure of welfare is the ex ante expected payoff in the equilibrium, which

is the same as AP’s measure. The difference is that we represent it as a linear

combination of the variance of a common term in the equilibrium strategy and that

of an idiosyncratic term.5 These variances are referred as the common variance

and the idiosyncratic variance of actions, respectively.

5AP use a similar but different representation. See Section 5.1.
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Our main result reveals that a key factor determining the social value of infor-

mation is the ratio of the coefficients of the common variance and the idiosyncratic

variance. For example, suppose that both coefficients are positive. Then, if the

coefficient of the common variance is relatively large, welfare necessarily increases

with both public and private information, but if it is relatively small, welfare

can decrease with both public and private information. This is due to the fol-

lowing properties of the common variance and the idiosyncratic variance. The

common variance equals the covariance of actions. Thus, it necessarily increases

with both public and private information because more precise information causes

more correlated actions. In contrast, the idiosyncratic variance equals the differ-

ence between the variance and covariance of actions. Thus, it can decrease with

both public and private information because a higher correlation of actions brings

the covariance and variance closer.

There are eight types of games with different welfare effects of information,

which are determined by the coefficients of the idiosyncratic variance and the

common variance in welfare. For example, consider a class of games in which the

coefficient of the idiosyncratic variance is nonnegative. The following taxonomy

is based upon the relative weight of the common variance in welfare. If the rela-

tive weight is sufficiently large, welfare necessarily increases with both public and

private information as discussed above. We call this game type +I. If the relative

weight is intermediate, welfare can decrease, but only with public information. We

call this game type +II. If the relative weight is sufficiently small but still positive,

welfare can decrease as well as increase with both public and private information.

We call this game type +III. If the relative weight is negative, welfare can decrease

with both, but can increase only with private information. We call this game type

+IV. The remaining four types of games, which are referred to as types −I, −II,

−III, and −IV, are the counterparts of types +I, +II, +III, and +IV with the

opposite welfare effects of information, respectively.

In each type, we characterize the information structure that maximizes wel-

fare.6 Complete information is optimal in types +I, +II, and −IV. No information

6Bergemann and Morris [8] study a Cournot game with a continuum of players and identify
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is optimal in types −I, −II, and −III. Incomplete information only with appro-

priate noisy private signals is optimal in types +III and +IV. We also identify

the optimal precision of public information fixing the precision of private informa-

tion and the optimal precision of private information fixing the precision of public

information.

There are several applications. For example, a Cournot game with linear de-

mand and cost functions is type +I with two players, type +II with three, and

type +III with four or more. Thus, the expected profit can decrease with both

public and private information if there are more than four players. In contrast, the

expected total surplus necessarily increases, irrespectively of the number of players

[43, 44]. We can verify it using our main result because the expected total surplus

is represented as a linear combination of the common variance and the idiosyn-

cratic variance. That is, we show that there exists a fictitious game such that the

equilibrium coincides with that of a Cournot game and the expected payoff equals

the expected total surplus, and that this game is type +I. Therefore, the expected

total surplus necessarily increases with both public and private information.

We also consider public goods games with quadratic production and linear cost

functions. If production is random, this game is type +I, but if cost is random,

this game is type −I. Thus, the welfare effects of information can be opposite

depending upon the source of uncertainty.

All the above results have their counterparts in games with a continuum of

players, which are also classified into eight types with the same properties as

those in the finite case. For example, MS’s beauty contest game is type +I or +II,

but its variant studied by Hellwig and Veldkamp [21] is type +I or −IV. Thus,

welfare can decrease only with public information in MS’s beauty contest game,

but only with private information in Hellwig and Veldkamp’s beauty contest game.

The aforementioned characterization of the socially optimal information struc-

tures also holds in the continuum case, and it is useful in identifying socially

its optimal information structure, which is a special case of our result in the continuum case. See

Section 5.3. In an auction with many bidders, Bergemann and Pesendorfer [9] study its optimal

information structure that maximizes revenue.
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optimal Bayesian correlated equilibria. Consider a mediator who knows the true

state and makes private action recommendations to players having no information

about the state. If each player has an incentive to follow the mediator’s recommen-

dation, we say that the resulting joint action distribution is a Bayesian correlated

equilibrium. Bergemann and Morris [8] show that, in games with a continuum of

players, the set of all Bayesian correlated equilibria coincides with the set of all

action distributions of Bayesian Nash equilibria generated by the bivariate (public

and private) signal structures. This finding implies that the action distribution

of the Bayesian Nash equilibrium under the aforementioned optimal information

structure is the Bayesian correlated equilibrium that achieves the highest welfare.

Thus, the recommended actions in the optimal Bayesian correlated equilibria are

completely correlated in types +I, +II, and −IV, constant in types −I, −II, and

−III, and conditionally independent given the state in types +III and +IV. This

characterization of optimal Bayesian correlated equilibria in AP’s model comple-

ments that in a large Cournot game due to Bergemann and Morris [8] because a

large Cournot game is a special case of AP’s model. Bergemann and Morris [8]

show that the optimal recommended actions in a large Cournot game are either

completely correlated or conditionally independent given the state, which is also

implied by our result because a large Cournot game is type +I, +II, or +III.

Early studies on the social value of information in Bayesian games such as

Levine and Ponssard [29] and Ho and Blau [24] consider 2× 2 games with binary

states and demonstrate that more information can be harmful. On the other hand,

many recent studies including MS and AP adopt quadratic payoff functions and

normally distributed signals, of which the study originates in the work of Radner

[36] and is elaborated by Basar and Ho [6] and Vives [43, 44].7 As demonstrated

by Vives [43, 44], we can incorporate endogenous information structures into this

framework such as information sharing and information acquisition.

Quadratic Bayesian games are also used in the following debates on MS’s anti-

transparency result. Svensson [37] points out that it is a consequence of unreason-

7For more details, see Ui [39] and references therein.
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able parameter values. Angeletos and Pavan [2] and Hellwig [20] note that it stems

from the particular payoff function, which leads to AP’s general model. Several

authors study more elaborated beauty contest models.8 Cornand and Heinemann

[13] argue that welfare increases when more precise public information reaches

only a fraction of players. Colombo and Femminis [11] show that welfare neces-

sarily increases with public information when players can choose the precision of

private information and the marginal cost of private information exceeds that of

public information. In contrast, James and Lawler [25] show that welfare necessar-

ily decreases with public information when a policy maker has a direct influence

on payoffs as well as announces public information. Morris and Shin [33] study

semi-public information that is common knowledge among a fraction of players

and demonstrate a trade-off between precision of information and fragmentation

of that information. These results also stem from the particular payoff function,

but Colombo et al. [12] adopt AP’s model and study the difference between the

social value of public information when the precision of private information is

endogenously determined and that when it is exogenous.

In contrast to the above papers, this paper gives a complete characterization

of the social value of information in AP’s model under exogenous information

structures, which offers another way to understand why more information can be

harmful in terms of the common variance and the idiosyncratic variance. A limita-

tion of our study is that the social value of public information under endogenous

information structures can be different from that under exogenous information

structures, as demonstrated by Colombo et al. [12].9

This paper is organized as follows. After introducing the model in Section 2,

we present the main result in Section 3 and discuss applications in Section 4.

Section 5 is devoted to the continuum case. We conclude the paper in Section 6.

8See also Arato and Nakamura [5].
9Ui [42] suggests one way to reconcile the difference using convexity of information acquisition

costs.
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2 The model

Consider a Bayesian game with n players. An individual player is indexed by

i ∈ N ≡ {1, . . . , n}. Player i’s action is a real number ai ∈ R. His payoff function

is quadratic in an action profile a ≡ (ai)i∈N ∈ RN and a payoff state θ ∈ R and

symmetric with respect to the permutation of players; that is,

ui(a, θ) =− a2i + 2αai
∑
j ̸=i

aj + 2βθai

+ κ
∑
j ̸=i

a2j + λ
∑

j<k:j,k ̸=i

ajak + µ
∑
j ̸=i

θaj + ν
∑
j ̸=i

aj + f(θ), (1)

where α, β, κ, λ, µ, ν ∈ R are constants and f : R → R is a measurable function.

Constants α and β are coefficients of terms including ai, which determine player

i’s best response. This game exhibits strategic complementarity if α > 0 and

strategic substitutability if α < 0. We assume β > 0 without loss of generality.

Constants κ, λ, µ, and ν are coefficients of terms not including ai, which have no

influence on player i’s best response. As we will see later, ν and f(θ) play no role

in our welfare analysis.

Player i observes a private signal xi = θ + εi and a public signal y = θ + ε0,

where εi, ε0, and θ are independently and normally distributed10 with

E[θ] = θ̄, E[εi] = E[ε0] = 0, var[θ] = τ−1
θ , var[εi] = τ−1

x , var[ε0] = τ−1
y ,

and εi and εj are independent for i ̸= j. Player i’s signal vector is denoted

by si = (xi, y)
⊤. We refer to τx, τy, and τ = (τx, τy) as the precision of private

information, that of public information, and an information structure of the game,

respectively.

Let σi : R2 → R be player i’s strategy for i ∈ N , which maps a signal vector

si ∈ R2 to an action σi(si) ∈ R. A strategy profile (σi)i∈N is a Bayesian Nash

equilibrium if each player maximizes his interim expected payoff given the oppo-

nents’ strategies; that is, σi(si) = argmaxai E[ui((ai, σ−i), θ)|si] for all si ∈ R2 and

10We can weaken the assumption of normal distributions using the result of Ericson [15]. See

Vives [44].
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i ∈ N , where σ−i = (σj(sj))j ̸=i. The first order condition for equilibrium is

σi(si) = α
∑
j ̸=i

E[σj(sj)|si] + βE[θ|si], (2)

which is also player i’s best response. Following AP, we confine our attention to

a symmetric Bayesian Nash equilibrium.

As pointed out by Basar and Ho [6] and Vives [43, 44], players in this class

of games behave as if they are in teams, where payoff functions are identical.

In other words, this game is a Bayesian potential game [31, 22, 39]. Thus, we

can calculate a unique symmetric Bayesian Nash equilibrium using the result of

Radner [36, Theorem 5] on team decision problems.11

Lemma 1. If α̂ ≡ (n − 1)α < 1, then a Bayesian game with (1) has a unique

symmetric Bayesian Nash equilibrium (σi)i∈N with

σi(si) = b⊤(si − E[si]) + c (3)

for all si ∈ R2 and i ∈ N , where

b = (bx, by)
⊤ =

(
βτx

τθ + (1− α̂)τx + τy
,

βτy
(1− α̂)(τθ + (1− α̂)τx + τy)

)⊤

, c =
βθ̄

1− α̂
.

Proof. See Appendix A.

The ratio of the coefficient of a private signal to that of a public signal is

bx/by = (1− α̂)τx/τy. (4)

Thus, if α̂ is close to one or τx/τy is small, the relative weight of a public signal is

large, and if α̂ is small or τx/τy is large, the relative weight of a private signal is

large.

To obtain the expected payoff, it is useful to rewrite the equilibrium strategy

as

σi(si) =bx(θ + εi − θ̄) + by(θ + ε0 − θ̄) + c

=bxεi +
(
byε0 + (bx + by)θ

)
+
(
c− (bx + by)θ̄

)
, (5)

11See Vives [45, Chapter 8], Vives [46, Chapter 2], and Ui [39]. Radner [36] allows asymmetry

of payoff functions and information structures. Ui [39] asks what games have the same best

response correspondences as those of teams of Radner [36].
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where bxεi is an idiosyncratic random term and byε0 + (bx + by)θ is a common

random term. We refer to the variances of these terms, var[bxεi] and var[byε0 +

(bx + by)θ], as the idiosyncratic variance and the common variance of actions,

respectively. Because εi, ε0, and θ are independent, it holds that

var[byε0 + (bx + by)θ] = cov[σi, σj], var[bxεi] = var[σi]− cov[σi, σj].

That is, the common variance equals the covariance of actions and the idiosyncratic

variance equals the difference between the variance and covariance of actions.

The next lemma represents the expected payoff as a linear function of the

idiosyncratic variance and the common variance.

Lemma 2. The ex ante expected payoff E[ui(σ, θ)] equals

W (τ) ≡ζvar[bxεi] + ηvar[byε0 + (bx + by)θ]

=ζ(var[σi]− cov[σi, σj]) + ηcov[σi, σj] (6)

plus a constant independent of τ , where

ζ = µ̂/β + κ̂+ 1, η = (1− α̂)µ̂/β + κ̂+ λ̂+ 1, (7)

κ̂ = (n− 1)κ, λ̂ = (n− 1)(n− 2)λ/2, µ̂ = (n− 1)µ, ν̂ = (n− 1)ν. (8)

Proof. See Appendix B.

We adopt W (τ) as a measure of welfare because the ex ante expected payoff

equals W (τ) plus a constant independent of τ . Note that welfare under no in-

formation is normalized to zero. In fact, when players have no information, they

choose a constant strategy (i.e., bx = by = 0) and thus the variances are zero.

Remark 1. AP’s measure of welfare is also the ex ante expected payoff, but AP use

a different representation. See Section 5.1. MS’s measure of welfare is the condi-

tional expected payoff given the true state θ. However, the conditional expected

payoff in MS’s beauty contest game does not depend upon θ. Thus, the welfare

analysis of MS’s beauty contest game is essentially the same as that based upon

the ex ante expected payoff. See Section 5.2.
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3 Results

3.1 Social value of information

We study the social value of information in terms of the signs of ∂W (τ)/∂τx

and ∂W (τ)/∂τy. AP ask under what conditions ∂W (τ)/∂τx > 0 for all τ or

∂W (τ)/∂τy > 0 for all τ . In contrast, we ask under what conditions ∂W (τ)/∂τx >

0 for given τ or ∂W (τ)/∂τy > 0 for given τ . The main result of this paper is the

following necessary and sufficient condition.

Proposition 1. Assume that α̂ < 1, β > 0, and (ζ, η) ̸= (0, 0). Define

X ≡

(1− α̂)− 2η/ζ if ζ ̸= 0,

−∞ if ζ = 0,

Y ≡ (1− α̂) (2(1− α̂)ζ/η − 3) if η ̸= 0.

Then, the following holds for τx, τy, τθ > 0.

(i) In a game with ζ ≥ 0 and η > 0,

∂W (τ)

∂τx
≷ 0 ⇔ X ≶ (τy + τθ)/τx,

∂W (τ)

∂τy
≷ 0 ⇔ Y ≶ (τy + τθ)/τx,

where X ≤ Y and the equality holds only if X, Y < 0.

(ii) In a game with η ≤ 0 < ζ,

∂W (τ)

∂τx
≷ 0 ⇔ X ≶ (τy + τθ)/τx,

∂W (τ)

∂τy
< 0 for all τ,

where X > 0.

(iii) In a game with ζ ≤ 0 and η < 0,

∂W (τ)

∂τx
≷ 0 ⇔ X ≷ (τy + τθ)/τx,

∂W (τ)

∂τy
≷ 0 ⇔ Y ≷ (τy + τθ)/τx,

where X ≤ Y and the equality holds only if X, Y < 0.
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(iv) In a game with ζ < 0 ≤ η,

∂W (τ)

∂τx
≷ 0 ⇔ X ≷ (τy + τθ)/τx,

∂W (τ)

∂τy
> 0 for all τ,

where X > 0.

Proof. See Appendix C.

We can check whether welfare increases with public or private information by

comparing (τy + τθ)/τx with X or Y . Note that X and Y are functions of ζ/η

and α̂. Thus, the social value of information is determined by the ratio of the

coefficients of the idiosyncratic variance and the common variance (i.e. ζ/η) and

the slope of best responses with respect to average actions (i.e. α̂).

To see the roles of ζ/η and α̂, consider the case of (i) with ζ ≥ 0 and η > 0.

Welfare increases with private information if and only if X < (τy+τθ)/τx, and with

public information if and only if Y < (τy+τθ)/τx. If ζ/η is sufficiently small or α̂ is

sufficiently close to one, then X, Y < 0. In this case, welfare necessarily increases

with both public and private information because max{X,Y } < (τy+τθ)/τx always

holds. In contrast, if ζ/η is sufficiently large or α̂ is sufficiently small, then X,Y >

0. In this case, welfare decreases with both public and private information if

min{X,Y } > (τy + τθ)/τx.

The following properties of the common variance and the idiosyncratic vari-

ance help us to understand the intuition. The common variance, which equals the

covariance of actions, necessarily increases with both public and private informa-

tion because more precise information causes more correlated actions. In contrast,

the idiosyncratic variance, which equals the difference between the variance and

covariance of actions, can decrease because a higher correlation of actions brings

the covariance and variance closer.

Therefore, welfare necessarily increases with both public and private informa-

tion if the common variance is relatively large in welfare, which is true when ζ/η

is sufficiently small or α̂ is sufficiently close to one. When α̂ is sufficiently close to

one, the relative weight of a public signal in the equilibrium strategy is very large
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by (4). In this case, the common variance is relatively large in welfare because it

is the variance of the common random term in the equilibrium strategy.

In contrast, welfare can decrease with both public and private information if

the idiosyncratic variance is relatively large in welfare, which is true when ζ/η

is sufficiently large or α̂ is sufficiently small. When α̂ is sufficiently small, the

relative weight of a private signal in the equilibrium strategy is very large by (4).

In this case, the idiosyncratic variance is relatively large in welfare because it is

the variance of the idiosyncratic random term in the equilibrium strategy.

We can verify the above properties of the common variance and the idiosyn-

cratic variance by applying Proposition 1 to the following two games: a game with

(ζ, η) = (0, 1) and a game with (ζ, η) = (1, 0).

Corollary 2. The common variance necessarily increases with τx and τy for all

τ . The idiosyncratic variance decreases with τy for all τ , and with τx if and only

if τx > (τy + τθ)/(1− α̂).

Remark 2. The idiosyncratic variance not only decreases but also increases with

private information if its precision τx is sufficiently small. When τx = 0, the

coefficient of a private signal in the equilibrium strategy equals zero, i.e., bx = 0,

because a player ignores his private signal. This implies that the idiosyncratic

variance var[bxεi] equals zero. In this case, as τx increases, bx increases, and thus

the idiosyncratic variance also increases.

Remark 3. Recall that the common variance is the covariance of actions and the

idiosyncratic variance is the difference between the variance and covariance of

actions. Thus, even if signals are not normally distributed or payoff functions

are not quadratic, the common variance and the idiosyncratic variance are well

defined and may have properties similar to the above. This suggests that the most

crucial assumption in this paper is a quadratic welfare function. In Section 3.4,

we consider a general quadratic welfare function.
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3.2 Types of games

To check whetherW (τ) is monotone in τ , it is enough to find the sign combinations

of ζ, η, X, and Y . By Proposition 1, there are eight combinations.

(i) In a game with ζ ≥ 0 and η > 0, all possible sign combinations of X and Y

are X ≤ Y ≤ 0, X ≤ 0 < Y , and 0 < X < Y . We call a game with each

combination type +I, type +II, and type +III, respectively.

(ii) In a game with η ≤ 0 < ζ, it holds that X > 0. We call this game type +IV.

(iii) In a game with ζ ≤ 0 and η < 0, all possible sign combinations of X and Y

are X ≤ Y ≤ 0, X ≤ 0 < Y , and 0 < X < Y . We call a game with each

combination type −I, type −II, and type −III, respectively.

(iv) In a game with ζ < 0 ≤ η, it holds that X > 0. We call this game type −IV.

To identify types +IV and −IV, it is sufficient to find the signs of ζ and η,

but to identify the other types, we must also calculate X and Y . We provide a

simpler characterization of these types by the value of (1 − α̂)ζ/η, which follows

immediately from the definitions of X and Y .

Corollary 3. A game with ζ ≥ 0 and η > 0 is type +I if 0 ≤ (1−α̂)ζ/η ≤ 3/2, type

+II if 3/2 < (1− α̂)ζ/η ≤ 2, and type +III if 2 < (1− α̂)ζ/η. A game with ζ ≤ 0

and η < 0 is type −I if 0 ≤ (1− α̂)ζ/η ≤ 3/2, type −II if 3/2 < (1− α̂)ζ/η ≤ 2,

and type −III if 2 < (1− α̂)ζ/η.

For example, consider a game with ζ ≥ 0 and η > 0. If (1−α̂)ζ/η is sufficiently

small, then this game is type +I, where welfare necessarily increases with both

public and private information because X,Y < 0. If (1 − α̂)ζ/η is sufficiently

large, then this game is type +III, where welfare can decrease with both public

and private information because X, Y > 0. Clearly, this result is consistent with

the previous discussion on the roles of ζ/η and α̂.

For each type, Table 1 summarizes the signs of ∂W/∂τx and ∂W/∂τy, which

are illustrated in Figure 1. In each graph of Figure 1, the horizontal axis is the
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type τ ∂W/∂τx ∂W/∂τy

+I all τ + +

+II τx < (τy + τθ)/Y + +

τx > (τy + τθ)/Y + −

+III τx < (τy + τθ)/Y + +

(τy + τθ)/Y < τx < (τy + τθ)/X + −

τx > (τy + τθ)/X − −

+IV τx < (τy + τθ)/X + −

τx > (τy + τθ)/X − −

−I all τ − −

−II τx < (τy + τθ)/Y − −

τx > (τy + τθ)/Y − +

−III τx < (τy + τθ)/Y − −

(τy + τθ)/Y < τx < (τy + τθ)/X − +

τx > (τy + τθ)/X + +

−IV τx < (τy + τθ)/X − +

τx > (τy + τθ)/X + +

Table 1: Eight types of games.

τy-axis (the precision of public information) and the vertical axis is the τx-axis

(the precision of private information).12 Arrows indicate the direction in which

W (τ) increases. Black lines are contour lines of W (τ). Each type has the following

properties.

+I (−I) Welfare increases (decreases) with the precision of both public and pri-

vate information at any information structure. See Figure 1a (Figure 1e).

+II (−II) If τx < (τy + τθ)/Y , welfare increases (decreases) with the precision

of both public and private information. If τx > (τy + τθ)/Y , welfare in-

creases (decreases) with the precision of private information and decreases

12This follows the choice of the axes in Figure 1 of MS.
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Figure 1: Welfare and information structures in the (τy, τx)-plane. The horizontal axis

is the τy-axis (the precision of public information) and the vertical axis is the τx-axis

(the precision of private information). Arrows indicate the direction in which W (τ)

increases.
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(increases) with that of public information. See Figure 1b (Figure 1f), where

the dashed line is a graph of τx = (τy + τθ)/Y .

+III (−III) If τx < (τy + τθ)/Y , welfare increases (decreases) with the precision

of both public and private information. If (τy + τθ)/Y < τx < (τy + τθ)/X,

welfare increases (decreases) with the precision of private information and

decreases (increases) with that of public information. If τx > (τy + τθ)/X,

welfare decreases (increases) with the precision of both public and private

information. See Figure 1c (Figure 1g), where the lower and upper dashed

lines are graphs of τx = (τy + τθ)/Y and τx = (τy + τθ)/X, respectively.

+IV (−IV) If τx < (τy+τθ)/X, welfare increases (decreases) with the precision of

private information and decreases (increases) with that of public information.

If τx > (τy + τθ)/X, welfare decreases (increases) with the precision of both

public and private information. See Figure 1d (Figure 1h), where the dashed

line is a graph of τx = (τy + τθ)/X.

3.3 Optimal information structures

As a corollary of Proposition 1, we obtain the information structure that maximizes

welfare in each type. Clearly, the most precise information is optimal in type +I,

but it is not necessarily so in the other types.

Corollary 4. In types +I, +II, and −IV, supτ W (τ) = W (τx,∞) = W (∞, τy).

In types +III and +IV, supτ W (τ) = W (τθ/X, 0). In types −I, −II, and −III,

supτ W (τ) = W (0, 0).

Proof. See Appendix D.

The highest precision is optimal not only in type +I but also in types +II

and −IV, whereas the lowest precision is optimal in types −I, −II, and −III. In

contrast, it is optimal to receive only noisy private signals in types +III and +IV.

In Figures 1c and 1d, the optimal information structure is depicted as the intercept

of the dashed line τx = (τy + τθ)/X. In these types, the idiosyncratic variance

17



term is dominant in W (τ). The idiosyncratic variance is maximized when τy = 0

and τx < ∞ because it decreases with τy for all τ and with τx if τx is sufficiently

large, as shown by Corollary 2. This is why it is optimal to receive only noisy

private signals in types +III and +IV.

Note that complete information is optimal if and only if welfare never decreases

with both public and private information (i.e., types +I, +II, and −IV), which

gives a simple test of optimality of the highest degree of transparency. For example,

MS show that welfare can decrease with public information but not with private

information in their beauty contest game, which implies that the highest degree

of transparency is optimal.13 Svensson [37] elaborates this point and argues that

MS’s result is not an anti-transparency result because welfare increases with public

information as long as the precision of public information is not implausibly low.

In contrast, no information is optimal if and only if welfare decreases with

both public and private information when the precision of private information is

sufficiently low (i.e., types −I, −II, and −III).14 In a public goods game studied

by Teoh [38], which does not conform to our formulation, welfare is highest when

there is no information. We will study a public goods game in Section 4.3.

Next, we obtain the optimal precision of public information, fixing the precision

of private information.

Corollary 5. In types +I, +II, and −IV, supτy W (τ) = W (τx,∞). In type +III,

sup
τy

W (τ) =

W (τx,∞) if τx < ητθ/((1− α̂)Xζ),

W (τx, 0) if τx ≥ ητθ/((1− α̂)Xζ).

In types +IV and −I, supτy W (τ) = W (τx, 0). In types −II and −III,

sup
τy

W (τ) =

W (τx, 0) if τx < τθ/Y,

W (τx, Y τx − τθ) if τx ≥ τθ/Y.

Proof. See Appendix E.

13In fact, this game is type +II. See in Section 5.2.
14In the two-player case, Ui [39] gives a sufficient condition for complete information to achieve

the lowest welfare.
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This result provides the optimal degree of transparency in public information.

In types +I, +II, and −IV, the highest precision is optimal, while in types +IV

and −I, the lowest precision is optimal.

In the other types, the optimal precision depends upon the precision of private

information. In type +III, the highest precision is optimal if private information

has low precision, and the lowest precision is optimal if private information has

high precision. That is, if players have sufficiently precise private information, no

disclosure of public information is optimal.

In types −II and −III, the lowest precision is optimal if private information has

low precision, and intermediate precision Y τx−τθ is optimal if private information

has high precision, which corresponds to a point (Y τx − τθ, τx) on the dashed line

τx = (τy + τθ)/Y in Figures 1f and 1g. That is, if players have sufficiently precise

private information, a disclosure of a noisy public signal is optimal, and the optimal

precision of public information is increasing in the precision of private information.

Finally, we obtain the optimal precision of private information, fixing the pre-

cision of public information.

Corollary 6. In types +I, +II, and −IV, supτx W (τ) = W (∞, τy). In types

+III and +IV, supτx W (τ) = W ((τy + τθ)/X, τy). In types −I, −II, and −III,

supτx W (τ) = W (0, τy).

Proof. See Appendix F.

In types +I, +II, and −IV, the highest precision is optimal, while in types

−I, −II, and −III, the lowest precision is optimal. In types +III and +IV, the

optimal precision is (τy + τθ)/X, which corresponds to a point (τy, (τy + τθ)/X) on

the dashed line τx = (τy + τθ)/X in Figures 1c and 1d.

To see what this implies, imagine that each player is allowed to choose the

precision of his private information as well as his strategy given the opponents’

precision and strategies. The cost of information acquisition is linear in the pre-

cision. This is a one-stage model of information acquisition introduced by Hauk

and Hurkens [19] in the context of a Cournot game.15 If the marginal cost is suffi-
15Li et al. [30] and Vives [44] consider a two-stage model of information acquisition in the
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ciently small, players choose strictly positive precision. However, if the underlying

game is type −I, −II, or −III, the lowest precision is socially optimal. In such a

case, an increase in the marginal cost can improve welfare.16

3.4 Quadratic welfare functions

Using Proposition 1, we study a general quadratic welfare function

E
[
c1

n∑
i=1

σ2
i + c2

∑
i<j

σiσj + c3

n∑
i=1

θσi + c4

n∑
i=1

σi

]
+ c5, (9)

where c1, c2, c3, c4, c5 ∈ R are constant.17 For example, the expected total surplus

in a Cournot game with a linear demand function has the above representation

(see Section 4.1). A quadratic welfare function also appears in the literature of

monetary policy [1].

This measure of welfare is represented as a linear combination of the idiosyn-

cratic variance and the common variance.

Lemma 3. The measure of welfare (9) equals

W ∗(τ) = ζ∗(var[σi]− cov[σi, σj]) + η∗cov[σi, σj]

plus a constant independent of τ , where ζ∗ = n(c1 + c3/β) and η∗ = n(c1 + (n −

1)c2/2 + (1− α̂)c3/β).

Proof. See Appendix G.

Moreover, we can find the signs of ∂W ∗(τ)/∂τx and ∂W ∗(τ)/∂τy by replacing

(ζ, η) in Proposition 1 with (ζ∗, η∗).

Corollary 7. For a given game with a payoff function (1) and a given measure of

welfare W ∗(τ) in Lemma 3, the signs of ∂W ∗(τ)/∂τx and ∂W ∗(τ)/∂τy are given

context of Cournot games. Colombo and Femminis [11], Hellwig and Veldkamp [21], and Myatt

and Wallace [34] consider a two-stage model of information acquisition in the context of beauty

contest games with a continuum of players. Equilibria in one-stage and two-stage models are

the same if the number of players is infinite. See Hauk and Hurkens [19].
16See Ui [41] for more details.
17We thank a referee for suggesting a formal discussion of this issue.
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by those of ∂W (τ)/∂τx and ∂W (τ)/∂τy in Proposition 1, respectively, where (ζ, η)

is replaced with (ζ∗, η∗).

Proof. See Appendix H.

Note that parameters used in Proposition 1 are α, β, ζ, and η, where (α, β)

determines an equilibrium and (ζ, η) determines a measure of welfare. Corollary 7

means that we can apply Proposition 1 for any combination of an equilibrium

determined by (α, β) and a measure of welfare determined by (ζ, η).

4 Applications

4.1 Cournot competition

Consider a Cournot game with a homogeneous product. Player i produces ai

units of the product. We assume a constant marginal cost c > 0 and a linear

inverse demand function θ′ − ρ
∑

i ai, where θ′ is normally distributed and ρ > 0

is constant. Thus, there is uncertainty about the demand intercept. Then, player

i’s profit is

(θ′ − ρ
∑
j∈N

aj)ai − cai = ρ(−a2i − ai
∑
j ̸=i

aj + (θ′ − c)ρ−1ai). (10)

The type of this game is summarized as follows by Corollary 3.

Corollary 8. This game is type +I if n = 2, type +II if n = 3, and type +III if

n ≥ 4.

Proof. See Appendix J.

This result says that the expected profit can decrease with the precision of

both public and private information if n ≥ 4. In this case, the slope of best

responses with respect to average actions, α̂ = −(n − 1)/2, is very small. Thus,

the relative weight of a private signal in the equilibrium strategy is very large,

and so is that of the idiosyncratic variance in the expected profit, by which more

precise information can reduce welfare.
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While the expected producer surplus can decrease with the precision of both

public and private information if n ≥ 4, the expected total surplus necessarily

increases with the precision of both public and private information as shown by

Vives [43, 44], which we can confirm using Corollaries 3 and 7. A direct calculation

shows that the expected total surplus is

W ∗(τ) =
3nρ

2
(var[σi]− cov[σi, σj]) +

n(n+ 2)ρ

2
cov[σi, σj]

plus a constant.18 By Corollaries 3 and 7, it follows that ∂W ∗(τ)/∂τx > 0 and

∂W ∗(τ)/∂τy > 0 for all τ because ζ∗ = 3nρ/2, η∗ = n(n+2)ρ/2, and (1−α̂)ζ∗/η∗ =

3/2× (n+ 1)/(n+ 2) < 3/2.

4.2 Bertrand competition

Consider a Bertrand game with differentiated products. Player i produces good i

and chooses its price ai. We assume a linear demand function 1− ai + ρ
∑

j ̸=i aj,

where ρ is constant. The goods are gross substitutes if ρ > 0 and gross comple-

ments if ρ < 0. The marginal cost is a normally distributed random variable θ′.

Then, player i’s profit is

(1− ai + ρ
∑
j ̸=i

aj)(ai − θ′) = −a2i + ρai
∑
j ̸=i

aj + (θ′ + 1)ai − ρ
∑
j ̸=i

θ′aj − θ′. (11)

We assume ρ̂ ≡ (n−1)ρ < 2 to guarantee the uniqueness of symmetric equilibrium.

The type of this game is summarized as follows by Corollary 3.

Corollary 9. This game is type +I if ρ̂ ≤ 1/2 and type −IV if ρ̂ > 1/2.

Proof. See Appendix J.

This result says that the expected profit can decrease with the precision of pri-

vate information if ρ is sufficiently large, that is, if the goods are gross substitutes

and the cross price effect is large enough. When ρ is sufficiently large, the slope of

best responses, α̂ = ρ̂/2, is close to one, which means that the common variance is

18The expected producer surplus is nρvar[σi] plus a constant by (6) and the expected consumer

surplus is E
[
ρ
2

(∑
i∈N σi

)2]
= ρ

2

(
nE[σ2

i ] + n(n− 1)E[σiσj ]
)
.
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relatively large. However, the coefficient of the idiosyncratic variance, ζ = 1− 2ρ̂,

is negative, which plays a dominant role. Thus, the expected profit decreases with

the precision of private information if the precision is sufficiently low.

4.3 Voluntary provision of public goods

We consider two different formulations of public goods games, where player i

chooses his contribution level ai.

In the first game, each player receives a common benefit −(
∑

j aj)
2+ θ′

∑
j aj,

where θ′ is normally distributed. Note that the common benefit is a quadratic

function of the total contribution
∑

j aj. The marginal cost of a player’s contri-

bution is a constant c > 0. Then, player i’s payoff is(
−
(∑

j

aj

)2
+ θ′

∑
j

aj

)
− cai. (12)

In the second game, each player receives a common benefit −(
∑

j aj)
2+c

∑
j aj,

where c > 0 is constant. The marginal cost of a player’s contribution is a normally

distributed random variable θ′. Then, player i’s payoff is(
−
(∑

j

aj

)2
+ c
∑
j

aj

)
− θ′ai. (13)

The difference is the source of uncertainty: the production is random in the

first game and the cost is random in the second game, which results in the opposite

welfare effects of information.

Corollary 10. Suppose that n ≥ 3. The first game with a payoff function (12) is

type +I. The second game with a payoff function (13) is type −I.

Proof. See Appendix J.

In the second game, the common benefit is independent of the state. Because it

is concave in the total contribution
∑

j aj, the expected common benefit is greater

when players choose the constant expected action E[σi] than when they follow

the equilibrium strategy σi by Jensen’s inequality. However, E[σi] is not a best
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response when a player has some information about the marginal cost θ′. This is

why information is harmful in the second game. In contrast, the common benefit

in the first game depends upon the state, and information is useful in adjusting

actions to increase the common benefit. This is why information is beneficial in

the first game.

Teoh [38] studies the social value of public information in a public goods game

with binary states and random production, which is not a quadratic Bayesian

game. Teoh [38] shows that welfare is higher without public information about

the state than with it, where concavity also plays an essential role. Our result

on the second game paraphrases the effects of concavity on the social value of

information in terms of quadratic Bayesian games.

5 A continuum of players

This section considers AP’s model with a continuum of players and discusses how

to apply Proposition 1 and its consequences to the continuum model.

5.1 The model

Let [0, 1] be a set of players with an individual player indexed by i ∈ [0, 1]. Player

i chooses an action ai ∈ R and an action profile is denoted by a = (ai)i∈[0,1]. Player

i’s payoff function is

ūi(a, θ) =− a2i + 2αai

∫ 1

0

ajdj + 2βθai

+ κ

∫ 1

0

a2jdj + λ

(∫ 1

0

ajdj

)2

+ µθ

∫ 1

0

ajdj + ν

∫ 1

0

ajdj + f(θ). (14)

Player i observes the same bivariate signal vector as that in Section 2.

Angeletos and Pavan [3, 4] show that a unique symmetric equilibrium exists if

α < 1 and obtain it. AP also obtain the socially optimal strategy profile, which

coincides with a unique symmetric equilibrium of a certain fictitious game. The

slope of best responses in the original game and that of the fictitious game are

referred to as the equilibrium degree of coordination and the optimal degree of

24



coordination, respectively. AP show that the equilibrium degree of coordination

relative to the optimal degree of coordination is useful in studying the social value

of information.

Let us connect the continuum model with the finite model. The first order

condition for a symmetric equilibrium in the continuum model coincides with that

in the finite model by the replacement of α̂ with α.19 Thus, the equilibrium

strategy in the continuum model is given by Lemma 1 with α̂ = α. Moreover,

for any continuum model, we can construct a finite model such that not only the

equilibrium but also the expected payoff coincides with that in the continuum

model by replacing κ̂, λ̂, and µ̂ in the finite model with κ, λ, and µ.20 That is, we

can represent the expected payoff in the continuum model as follows.

Lemma 4. The expected payoff E[ūi(σ, θ)] equals

W (τ) ≡ ζvar[bxεi] + ηvar[byε0 + (bx + by)θ]

= ζ(var[σi]− cov[σi, σj]) + ηcov[σi, σj] (15)

plus a constant independent of τ , where ζ = µ/β + κ + 1 and η = (1 − α)µ/β +

κ+ λ+ 1.

Proof. See Appendix I.

Therefore, we can apply Proposition 1 and its consequences to the continuum

model by replacing (α̂, ζ, η) = (α̂, µ̂/β+ κ̂+1, (1− α̂)µ̂/β+ κ̂+ λ̂+1) in the finite

model with (α, ζ, η) = (α, µ/β + κ+ 1, (1− α)µ/β + κ+ λ+ 1).

In the continuum model, there is another interpretation of the common vari-

ance and the idiosyncratic variance. Bergemann and Morris [8] consider the vari-

ance of the average action
∫
ajdj and that of the idiosyncratic difference ai−

∫
ajdj

19This implies that the theorem of Radner [36] is useful not only in the finite model but also

in the continuum model, though Angeletos and Pavan [3, 4] do not use it. See Ui and Yoshizawa

[40].
20Vives [44] compares the equilibrium and welfare with a finite number of players and those

with a continuum of players in Cournot games. He shows that the former converges to the

latter as the number of players goes to infinity. In contrast, we consider finite and continuum

models possessing the same equilibrium and welfare. See the online appendix for a more detailed

comparison.
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in the continuum model and refer to them as volatility and dispersion, respec-

tively. They show that the volatility equals cov[σi, σj] and the dispersion equals

var[σi] − cov[σi, σj]. Thus, the common variance and the idiosyncratic variance

equal the volatility and the dispersion, respectively.

This implies that W (τ) is a linear combination of the volatility and the disper-

sion. Note that, in the finite case, W (τ) is not a linear combination of volatility

and dispersion in the corresponding sense.21

AP are the first to use the terms “volatility” and “dispersion” in this context.

Dispersion is the same, but volatility is different. AP refer to the variance of∫
ajdj − x(θ) as volatility, where x(θ) is an action in the equilibrium under com-

plete information, and write welfare as a linear combination of the volatility, the

dispersion, and the other term, the last of which plays an important role in their

analysis.

In contrast, we write welfare as a linear combination of the volatility and

the dispersion in the sense of Bergemann and Morris [8], though Bergemann and

Morris [8] do not use the volatility and the dispersion for this purpose. This is

a major methodological difference in the continuum case between AP and this

paper.

We emphasize the following advantages of our representation. First, and most

importantly, the ratio of the coefficients of the volatility and the dispersion deter-

mines the social value of information. Our representation of welfare leads us to

this result. Next, we can study any quadratic welfare function. Finally, we can

study Bayesian correlated equilibria, as we will discuss later in this section. For

other differences between this paper and AP, see the online appendix.

5.2 Beauty contest

Let α = r ∈ (0, 1) and β = 1− r in (14). By the first order condition for equilib-

rium, a player’s best response is the weighted mean of the conditional expectation

21The variance of the average action
∑

i ai/n is var[σi]/n+(n−1)cov[σi, σj ]/n, which converges

to cov[σi, σj ] as n → ∞.
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of the state and that of the opponents’ actions, i.e., (1 − r)E[θ|si] + rE[σj|si].

Because it induces strategic behavior in the spirit of a Keynesian beauty contest,

this game is referred to as a beauty contest game.

MS consider a beauty contest game with a payoff function

−(1− r)(ai − θ)2 − r
(∫

(aj − ai)
2dj −

∫
(aj − ak)

2djdk
)
. (16)

In this formulation, welfare is measured by the mean squared error of an action

from the state because the expected payoff equals −(1 − r)E[(σi − θ)2]. As ar-

gued by James and Lawler [26], this formulation is appropriate to models of asset

markets.

Hellwig and Veldkamp [21] consider a beauty contest game with a payoff func-

tion

−
(
ai − r

∫
ajdj − (1− r)θ

)2
, (17)

which equals the squared error of an action from the weighted mean of the state and

the average action of the opponents. This formulation is appropriate to models

where both the aggregate action and the state impact on some macroeconomic

variable that is important for individual agents’ optimal choices.

Myatt and Wallace [34] consider a beauty contest game with a payoff function

−r
(
ai −

∫
ajdj

)2
− (1− r)

(
ai − θ

)2
, (18)

which equals the weighted mean of the squared error of an action from the state and

that from the average action of the opponents. This formulation is appropriate to

models where the aggregate action and the state separately impact on two different

macroeconomic variables that are important for individual agents’ optimal choices.

The types of these games are summarized as follows by Corollary 3.

Corollary 11. MS’s beauty contest game is type +I if r ≤ 1/2 and type +II if

r > 1/2. Hellwig and Veldkamp’s beauty contest game is type +I if r ≤ 1/2 and

type −IV if r > 1/2. Myatt and Wallace’s beauty contest game is type +I for each

r ∈ (0, 1).

Proof. See Appendix J.
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If r is sufficiently large, welfare can decrease with public information in MS’s

beauty contest game, as shown by MS, whereas it can decrease with private infor-

mation in Hellwig and Veldkamp’s beauty contest game. In contrast, welfare nec-

essarily increases with both public and private information in Myatt and Wallace’s

beauty contest game.22 When r is sufficiently large, the slope of best responses

α = r is close to one, which means that the relative weight of the common variance

is large. However, in MS’s beauty contest game, the coefficient of the idiosyncratic

variance equals ζ = 1+r and it is very large, generating the harmful effect of public

information. On the other hand, in Hellwig and Veldkamp’s beauty contest game,

the coefficient of the idiosyncratic variance equals ζ = 1 − 2r and it is negative,

generating the harmful effect of private information.

Finally, we consider a variant of Hellwig and Veldkamp’s beauty contest game

with a payoff function

−
(∫

ajdj

)2

+ ρ

∫
ajdj − c1ai − c2

(
ai − r

∫
ajdj − (1− r)θ

)2
, (19)

where ρ, c1, c2 > 0 are constant. We can interpret this as a model of conditional

cooperation in a public goods game. When player i’s contribution level is ai for

each i, every player receives a common benefit −
(∫

ajdj
)2

+ ρ
∫
ajdj, which is

a quadratic function of the total contribution
∫
ajdj. The marginal cost of each

player’s contribution is a constant c1.

To introduce the last term in (19), we assume that players are conditional

cooperators who are willing to contribute more to a public good when the oppo-

nents contribute more. Evidence for conditional cooperation comes from several

experiments [10, 16, 28]: even though no contribution is rational, a majority of the

subjects increase their contribution as the other subjects increase their contribu-

tion on average. We model incentive for conditional cooperation by incorporating

a cost of deviation c2(ai − r
∫
ajdj − (1 − r)θ)2 from a target contribution level

r
∫
ajdj + (1− r)θ.

22We can also obtain this result using Proposition 6 in AP, which provides a sufficient condition

for welfare to increase with the precision of both pubic and private information for all information

structures.
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The type of this game is summarized as follows by Corollary 3.

Corollary 12. Assume that c2 < 1/(1− r)2; that is, the incentive for conditional

cooperation is not too large. This game is type +IV if r < 1/2, type −I if r = 1/2

or if r > 1/2 and c2 ≤ 3/(1 − r2), type −II if r > 1/2 and 3/(1 − r2) < c2 ≤

2/(1− r), and type −III if r > 1/2 and 2/(1− r) < c2 < 1/(1− r)2.

Proof. See Appendix J.

Welfare necessarily decreases with both public and private information if r is

sufficiently large and c2 is sufficiently small, that is, if the slope of best responses

is close to one and the incentive for conditional cooperation is not too large. The

intuition is similar to that in Section 4.3. When the incentive for conditional co-

operation is not too large, the common benefit is dominant in the payoff function.

The common benefit is a concave function of the total contribution
∫
ajdj and thus

its expected value decreases as the variance of
∫
ajdj increases. Recall that the

variance of
∫
ajdj equals the common variance of actions. Because the common

variance increases with both public and private information and it is large when

the slope of best responses is close to one, welfare necessarily decreases with both

public and private information.

5.3 Optimal Bayesian correlated equilibrium

Consider a mediator who knows the true state and makes private, perhaps cor-

related, action recommendations to players who have no information about the

state. If each player has an incentive to follow the mediator’s recommendation,

we say that the resulting action distribution is a Bayesian correlated equilibrium.

We are interested in the Bayesian correlated equilibrium that achieves the highest

welfare.

Bergemann and Morris [8] study a game with (14) and characterize the set of

all Bayesian correlated equilibria with normally distributed action recommenda-

tions. It is known that the set of all Bayesian correlated equilibria coincides with

the set of all action distributions of Bayesian Nash equilibria generated by all
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possible signal structures. Clearly, action distributions of Bayesian Nash equilib-

ria generated by the bivariate (public and private) signal structures are Bayesian

correlated equilibria. Bergemann and Morris [8] show that the converse is also

true in games with a continuum of players; that is, the set of all Bayesian corre-

lated equilibria coincides with the set of all action distributions of Bayesian Nash

equilibria generated by the bivariate signal structures.

The finding of Bergemann and Morris [8] implies that the action distribution of

the Bayesian Nash equilibrium under the optimal information structure in Corol-

lary 4 is the optimal Bayesian correlated equilibrium. The following corollary

calculates it by plugging the optimal information structure in Corollary 4 into the

equilibrium strategy (3). In the optimal Bayesian correlated equilibrium of types

+I, +II, and −IV, actions are completely correlated with θ; in that of types −I,

−II, and −III, actions are constant; in that of types +III and +IV, actions are

conditionally independent given θ.

Corollary 13. Consider a Bayesian correlated equilibrium that achieves the high-

est welfare. If ζ ≤ 2η/(1 − α) and η ≥ 0, then the recommended action for all

players is βθ/(1 − α). If ζ ≤ 0 and η < 0, then the recommended action for all

players is βθ̄/(1 − α). If ζ > max{0, 2η/(1 − α)}, then the recommended action

for player i is β(θ+εi− θ̄)/(1−α+X)+βθ̄/(1−α), where εi is an i.i.d. normally

distributed random variable with mean zero and variance X/τθ.

This corollary complements the following result of Bergemann and Morris [8]

on a large Cournot game.23 Player i produces ai units of a homogeneous product.

The inverse demand function is θ + α
∫
ajdj, where α < 0 is constant and θ is

normally distributed, and the cost function is a2i /2. Then, player i’s profit is(
θ + α

∫
ajdj

)
ai − a2i /2. (20)

Bergemann and Morris [8] show that, in the optimal Bayesian equilibrium, actions

are completely correlated with θ if α ≥ −1 and conditionally independent given
23This game can be derived as the limit of Cournot games with a finite number of players as

shown by Vives [44]. See the online appendix. Vives [45, Section 8.4.4] studies a related but

different class of action recommendations in large markets.
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θ if α < −1. Using this result and the equivalence of Bayesian correlated and

Nash equilibria, they show that the optimal information structure is complete

information if α ≥ −1 and incomplete information only with appropriate noisy

private signals if α < −1. These results are special cases of Corollaries 4 and 13

because the type of this game is summarized as follows by Corollary 3.24

Corollary 14. This game is type +I if α ≥ −1/2, type +II if −1 ≤ α < −1/2,

and type +III if α < −1.

Proof. See Appendix J.

The difference between Bergemann and Morris [8] and this paper is that the

focus of the former is equilibria determined by (α, β),25 whereas that of the latter

is welfare determined by (ζ, η) given (correlated or Nash) equilibria. Combining

the results of both papers, we can identify all the optimal Bayesian correlated

equilibria in terms of (α, β, ζ, η) as in Corollary 13.

6 Concluding remarks

This paper characterizes the social value of information in AP’s model in terms

of the relative weights of the common variance and the idiosyncratic variance in

welfare and finds that AP’s model is classified into eight types of games with dif-

ferent welfare effects of information. If the relative weight of the common variance

is sufficiently large, welfare necessarily increases with both public and private in-

formation, but if that of the idiosyncratic variance is sufficiently large, welfare can

decrease. For example, in a Cournot game with more than four players, welfare

can decrease with both public and private information because this game exhibits

strong strategic substitutability, which induces a large weight on a private signal

in the equilibrium strategy and thus a large weight on the idiosyncratic variance

in welfare.

24This result is inconsistent with AP’s Corollary 10. See the online appendix.
25Their welfare analysis is also determined by (α, β) because they restrict attention to a large

Cournot game with κ = λ = µ = 0.
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Our approach based upon the common variance and the idiosyncratic variance

has the following advantages. Firstly and most importantly, the social value of

information is completely characterized by the ratio of their coefficients in welfare

together with the slope of best responses. Secondly, we can apply our result to the

study of all quadratic welfare functions. Put it differently, we can regard our con-

tribution as a characterization of the effects of public and private information on

quadratic welfare functions, of which special case is the expected payoff. Thirdly,

our representation of welfare and classification of games are also useful in studying

Bayesian correlated equilibria. Finally, insofar as welfare functions are quadratic,

a similar analysis could be possible even if signals are not normally distributed.

A limitation of our study is that information structures are exogenously given.

In recent years, a growing number of researchers have studied endogenous in-

formation structures using MS’s or AP’s model. Examples include Colombo and

Femminis [11], Dewan and Myatt [14], Hellwig and Veldkamp [21], Hagenbach and

Koessler [18], Myatt and Wallace [34], Colombo et al. [12], and Ui [42]. Clearly,

private collection of information and aggregation of information may have dif-

ferent effects on the expected payoff depending upon the types of games. Thus,

comparing endogenous information structures and their welfare properties in dif-

ferent types would be an interesting topic for future research. In so doing, our

representation of welfare could also be useful in more elaborated models.26

Appendix

A Proof of Lemma 1

The use of Radner’s theorem is standard in the literature of information sharing,

but it is not necessarily so in the literature of social value of information. Thus,

we give a proof for completeness.

Consider a game with κ = −1, λ = 2α, µ = 2β, ν = 0, and f(θ) = 0, where

every player has an identical payoff function v(a, θ) ≡ −
∑

j a
2
j + 2α

∑
j<k ajak +

26Such an example is found in Ui [41].
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2β
∑

j θaj. Theorem 5 of Radner [36] states that if v(a, θ) is strictly concave in a

then there exists a unique equilibrium and that each strategy in the equilibrium is

a linear function. Because each player’s best response is independent of κ, λ, µ, ν,

and f(θ), a game with an identical payoff function v(a, θ) has a unique equilibrium

if and only if a game with a payoff function (1) has the same unique equilibrium.

The leading minors of the Hessian matrix of v(a, θ) are −(1+α)k−1(1−(k−1)α)

for k = 1, . . . , n. This implies that v(a, θ) is strictly concave in a if and only if

−(n − 1) < α̂ < 1. Thus, the first order condition (2) has a unique solution if

−(n−1) < α̂ < 1. In the following, we show that a weaker condition α̂ < 1 suffices

because we confine our attention to a symmetric equilibrium following AP.

First, we show that if −(n−1) < α̂ < 1 then a unique equilibrium is symmetric.

Let (σi)i∈N be a unique solution of (2). Because the joint probability distribution

of (s1, . . . , sn) is symmetric, for any permutation π : N → N , (2) is equivalent to

σi(sπ(i)) = α
∑
j ̸=i

E[σj(sπ(j))|sπ(i)] + βE[θ|sπ(i)],

which implies that a strategy profile (σ′
i)i∈N with σ′

π(i) = σi is also a unique solution

of (2).

Next, we show that α̂ < 1 guarantees the existence and uniqueness of a sym-

metric equilibrium. Let (σi)i∈N be a symmetric equilibrium with σi = σj for all

i, j. Then, (2) is reduced to

σi(si) = α
∑
j ̸=i

E[σi(sj)|si] + βE[θ|si].

Because E[σi(sj)|si] = E[σi(sk)|si] for all j, k ̸= i, this is rewritten as

σi(si) = α̂E[σi(sj)|si] + βE[θ|si]. (A1)

If −(n − 1) < α̂ < 1, (A1) has a unique solution by Theorem 5 of Radner [36].

Because n is an arbitrary positive integer, (A1) has a unique solution if α̂ < 1.

Finally, we obtain b and c. Plugging (3) into (A1), we have

b⊤(si − E[si]) + c = α̂(b⊤(E[sj|si]− E[sj]) + c) + βE[θ|si]. (A2)
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Let us write s̄ = E[si], C = var[si], D = cov[si, sj], and g = cov[θ, si]. Then, the

property of multivariate normal distributions27 means E[sj|si] = s̄+DC−1(si− s̄)

and E[θ|si] = θ̄ + g⊤C−1(si − s̄). Plugging these into (A2), we have

−
(
b⊤(I − α̂DC−1)− βg⊤C−1

)
(si − s̄)− (1− α̂)c+ βθ̄ = 0

for all si ∈ R2. This implies that b⊤ = βg⊤(C − α̂D)−1 and c = βθ̄/(1− α̂).

B Proof of Lemma 2

Using the symmetry σi(·) = σj(·) for i ̸= j, we have

E[ui(σ, θ)] =− E[σi
2] + 2αE[σi

∑
j ̸=i

σj] + 2βE[θσi]

+ κE[
∑
j ̸=i

σj
2] + λE[

∑
j<k:j,k ̸=i

σjσk] + µE[
∑
j ̸=i

θσj] + νE[
∑
j ̸=i

σj] + E[f(θ)]

=(κ̂− 1)var[σi] + (2α̂ + λ̂)cov[σi, σj] + (2β + µ̂)cov[θ, σi]

+ (2α̂ + κ̂+ λ̂− 1)c2 + ((2β + µ̂)θ̄ + ν̂)c+ E[f(θ)].

Thus, E[ui(σ, θ)] is the sum of

(κ̂− 1)var[σi] + (2α̂ + λ̂)cov[σi, σj] + (2β + µ̂)cov[θ, σi] (B1)

and a constant independent of τ . We show that (6) equals (B1).

Multiplying the first order condition by σi(si) and taking the expectation, we

have

−E[σ2
i ]+α̂E[σiσj] + βE[θσi]

= −var[σi] + α̂cov[σi, σj] + βcov[θ, σi]− (1− α̂)c2 + βθ̄c

= −var[σi] + α̂cov[σi, σj] + βcov[θ, σi] = 0

for i ̸= j because c = βθ̄/(1− α̂) by Lemma 1, and thus

cov[θ, σi] = β−1var[σi]− α̂β−1cov[σi, σj]. (B2)

Plugging this into (B1), we obtain ζ(var[σi]− cov[σi, σj]) + ηcov[σi, σj].
27Let X = (X1, X2) be a random vector whose distribution is multivariate normal with µi =

EXi and Cij = cov(Xi, Xj) for i, j = 1, 2. Then, E[X2|X1] = µ2 + C21C
−1
11 (X1 − µ1).
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C Proof of Proposition 1

By (6), we have

W (τ) =β2
( τx
(τθ + (1− α̂)τx + τy) 2

ζ

+
((1− α̂)2τ 2x + 2(1− α̂)τxτy + τy (τθ + τy))

(1− α̂)2τθ (τθ + (1− α̂)τx + τy)
2 η

)
. (C1)

By differentiating W (τ) with respect to τx, we get

∂W

∂τx
=

β2 (−τx((1− α̂)ζ − 2η) + ζ (τθ + τy))

(τθ + (1− α̂)τx + τy) 3
. (C2)

Because the denominator is positive, ∂W/∂τx > 0 if and only if

−τx((1− α̂)ζ − 2η) + ζ (τθ + τy) > 0. (C3)

If ζ = 0, (C3) is rewritten as 2τxη > 0, and thus ∂W/∂τx > 0 if and only if η > 0,

which establishes the signs of ∂W/∂τx in (i) and (iii) with ζ = 0 because we set

X = −∞. If ζ ≷ 0, (C3) is rewritten as

X = ((1− α̂)ζ − 2η)/ζ ≶ (τy + τθ)/τx.

Thus, ∂W/∂τx > 0 if and only if either X < (τy + τθ)/τx and ζ > 0 or X >

(τy + τθ)/τx and ζ < 0, which establishes the signs of ∂W/∂τx in (i), (ii), (iii), and

(iv) with ζ ̸= 0.

By differentiating W (τ) with respect to τy, we get

∂W

∂τy
=

β2 (−(1− α̂)τx(2(1− α̂)ζ − 3η) + η (τθ + τy))

(1− α̂)2 (τθ + (1− α̂)τx + τy) 3
. (C4)

Because the denominator is positive, ∂W/∂τy > 0 if and only if

−(1− α̂)τx(2(1− α̂)ζ − 3η) + η (τθ + τy) > 0. (C5)

If η = 0, (C5) is rewritten as −2τx (1− α̂)2 ζ > 0, and thus ∂W/∂τy > 0 if and

only if ζ < 0, which establishes the signs of ∂W/∂τy in (ii) and (iv) with η = 0.

If η ≷ 0, (C5) is rewritten as

Y = (1− α̂)(2(1− α̂)ζ − 3η)/η ≶ (τy + τθ)/τx.
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Thus, ∂W/∂τy > 0 if and only if either Y < (τy + τθ)/τx and η > 0 or Y >

(τy + τθ)/τx and η < 0, which establishes the signs of ∂W/∂τy in (i) and (iii)

with η ̸= 0. This also establishes the signs of ∂W/∂τy in (ii) and (iv) with η ̸= 0

because ζη < 0 implies Y = (1− α̂)(2(1− α̂)ζ/η − 3) < 0.

Finally, if ζη > 0, then

Y −X = 2((1− α̂)ζ − η)2/(ζη) ≥ 0,

which establishes X ≤ Y in (i) and (iii). If X = Y , then (1 − α̂)ζ = η, and thus

X = Y = α̂− 1 < 0.

D Proof of Corollary 4

In types +I and +II, ∂W (τ)/∂τx > 0 for all τ , and thus W (τx, τy) < W (∞, τy) =

W (τx,∞). In type−IV, ∂W (τ)/∂τy > 0 for all τ , and thusW (τx, τy) < W (τx,∞) =

W (∞, τy).

In types +III and +IV, if τx ≥ (τy + τθ)/X ≥ τθ/X, then ∂W (τ)/∂τx ≤ 0 and

∂W (τ)/∂τy < 0, and thusW (τx, τy) ≤ W (τx, 0) ≤ W (τθ/X, 0). If τx < (τy+τθ)/X,

then ∂W (τ)/∂τx > 0, and thus W (τx, τy) < W ((τy + τθ)/X, τy) ≤ W (τθ/X, 0),

where the last inequality holds by the case with τx ≥ (τy + τθ)/X.

In type −I, ∂W (τ)/∂τx < 0 and ∂W (τ)/∂τy < 0 for all τ , and thus W (τx, τy) ≤

W (0, 0).

In types−II and−III, if τx ≤ (τy+τθ)/Y , then ∂W (τ)/∂τx < 0 and ∂W (τ)/∂τy ≤

0, and thusW (τx, τy) ≤ W (0, τy) ≤ W (0, 0). If τx > (τy+τθ)/Y , then ∂W (τ)/∂τy >

0, and thus W (τx, τy) < W (τx, Y τx−τθ) ≤ W (0, 0), where the last inequality holds

by the case with τx ≤ (τy + τθ)/Y .

E Proof of Corollary 5

In types +I, +II, and −IV, W (τx, τy) < W (τx,∞) by Corollary 4.

In type +III, if τy < Y τx− τθ, then ∂W (τ)/∂τy < 0, and if τy > Y τx− τθ, then
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∂W (τ)/∂τy > 0. Thus,

sup
τy

W (τ) = max{W (τx, 0),W (τx,∞)}.

Because W (τx,∞) = W (∞, 0), we compare W (τx, 0) and W (∞, 0). Note that if

τx > τθ/X, then ∂W (τx, 0)/∂τx < 0, and thus W (0, 0) < W (∞, 0) < W (τθ/X, 0).

Hence, there exists a unique τ ∗x < τθ/X such that W (τ ∗x , 0) = W (∞, 0) since

∂W (τx, 0)/∂τx > 0 for τx < τθ/X. Note that W (τx, 0) < W (∞, 0) if τx < τ ∗x and

W (τx, 0) ≥ W (∞, 0) if τx ≥ τ ∗x . Therefore,

sup
τy

W (τ) =

W (τx,∞) if τx < τ ∗x ,

W (τx, 0) if τx ≥ τ ∗x .

To find τ ∗x , we solve

W (τ ∗x , 0)−W (∞, 0) =
β2 ((1− α̂)τ ∗x((1− α̂)ζ − 2η)− ητθ)

(1− α̂)2 (τθ + (1− α̂)τ ∗x)
2

= 0,

and obtain τ ∗x = ητθ/((1− α̂)Xζ).

In types +IV and −I, ∂W (τ)/∂τy < 0 for all τ , and thus W (τx, τy) ≤ W (τx, 0).

In types −II and −III, ∂W (τ)/∂τy > 0 if τy < Y τx − τθ and ∂W (τ)/∂τy < 0 if

τy > Y τx − τθ. Thus, W (τx, τy) ≤ W (τx,max{Y τx − τθ, 0}).

F Proof of Corollary 6

In types +I, +II, and −IV, W (τx, τy) < W (∞, τy) by Corollary 4.

In types +III and +IV, ∂W (τ)/∂τx > 0 if τx < (τy+τθ)/X and ∂W (τ)/∂τx < 0

if τx > (τy + τθ)/X. Thus, W (τx, τy) ≤ W ((τy + τθ)/X, τy).

In types −I and −II, ∂W (τ)/∂τx < 0 for all τ , and thus W (τx, τy) ≤ W (0, τy).

In type −III, ∂W (τ)/∂τx < 0 if τx < (τy + τθ)/X and ∂W (τ)/∂τx > 0 if

τx > (τy + τθ)/X. Thus,

sup
τx

W (τ) = max{W (0, τy),W (∞, τy)} = W (0, τy)

because W (∞, τy) = W (0,∞) < W (0, τy) by ∂W (0, τy)/∂τy < 0.
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G Proof of Lemma 3

Note that (9) equals nc1var[σi] + n(n − 1)c2cov[σi, σj]/2 + nc3cov[θ, σi] plus a

constant independent of τ . Plugging (B2) into the above, we obtain Lemma 3.

H Proof of Corollary 7

It is enough to show that there exists a fictitious game such that it has the same

equilibrium as that of the given game and the ex ante expected payoff equals

W ∗(τ) plus a constant independent of τ .

Let α′, β′, κ′, λ′, and µ′ be the coefficients of the payoff function in the fictitious

game. Put α′ = α, β′ = β, κ′ = (ζ∗ − 1)/(n− 1), λ′ = 2(η∗ − ζ∗)/((n− 1)(n− 2)),

and µ′ = 0. Then, the fictitious game has the same equilibrium as that of the

given game because α and β determine players’ best responses. Moreover, the ex

ante expected payoff equals W ∗(τ) plus a constant independent of τ by Lemma 2.

I Proof of Lemma 4

Using the symmetry σi(·) = σj(·) for i ̸= j, we have

E[ūi(σ, θ)] =− E[σi
2] + 2αE[σiσj] + 2βE[θσi]

+ κE
[ ∫

σ2
jdj
]
+ λE

[( ∫
σjdj

)2]
+ µE

[
θ

∫
σjdj

]
+ νE

[ ∫
σjdj

]
+ E[f(θ)]

=(κ− 1)var[σi] + (2α + λ)cov[σi, σj] + (2β + µ)cov[θ, σi]

+ (2α + κ+ λ− 1)c2 + ((2β + µ)θ̄ + ν)c+ E[f(θ)].
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This is because we have

E
[ ∫

σ2
jdj
]
= E

[
E
[ ∫

σ2
jdj
∣∣∣θ, y]] = E[σ2

j ],

E
[( ∫

σjdj
)2]

= E
[
E
[( ∫

σjdj
)2∣∣∣θ, y]] = E[σiσj],

E
[
θ

∫
σjdj

]
= E

[
E
[
θ

∫
σjdj

∣∣∣θ, y]] = E[θσj],

E
[ ∫

σjdj
]
= E

[
E
[ ∫

σjdj
∣∣∣θ, y]] = E[σj]

by the following consequences of the law of large numbers:

E
[ ∫

σjdj
∣∣∣θ, y] = E[E[σj|θ, y]|θ, y] = E[σj|θ, y],

E
[ ∫

σ2
jdj
∣∣∣θ, y] = E[E[σ2

j |θ, y]|θ, y] = E[σ2
j |θ, y],

E
[( ∫

σjdj
)2∣∣∣θ, y] = E[(E[σj|θ, y])2|θ, y] = E[σiσj|θ, y].

The last equality follows from (5) because

(E[σj|θ, y])2 = (byε0 + (bx + by)(θ − θ̄) + c)2 = E[σiσj|θ, y].

Thus, E[ūi(σ, θ)] is the sum of (κ−1)var[σi]+(2α+λ)cov[σi, σj]+(2β+µ)cov[θ, σi]

and a constant independent of τ . By the same argument as that in Lemma 2, we

obtain (15).

J Proofs of Corollaries 8, 9, 10, 11, 12, and 14

This appendix collects proofs of results which are implied by Corollary 3.

Proof of Corollary 8. Dividing (10) by ρ and setting θ = (θ′−c)ρ−1, we can obtain

(1) with α = −1/2, β = 1/2, and κ = λ = µ = 0, which implies that ζ = η = 1

and (1− α̂)ζ/η = (n+ 1)/2.

Proof of Corollary 9. The payoff function (11) is (1) with θ = θ′+1, α = ρ/2, β =

1/2, κ = λ = 0, and µ = −ρ, which implies that ζ = 1− 2ρ̂ and η = (ρ̂− 1)2 ≥ 0.

If ρ̂ > 1/2 then ζ < 0. If ρ̂ ≤ 1/2 then we can verify that ζ ≥ 0, η > 0, and

(1− α̂)ζ/η < 3/2.
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Proof of Corollary 10. The payoff function (12) is (1) with θ = θ′ − c, α = −1,

β = 1/2, κ = −1, λ = −2, and µ = 1, which implies that ζ = n > 0, η = n2 > 0,

and (1 − α̂)ζ/η = 1. The payoff function (13) is (1) with θ = c − θ′, α = −1,

β = 1/2, κ = −1, λ = −2, and µ = 0, which implies that ζ = −(n − 2) < 0,

η = −n(n− 2) < 0, and (1− α̂)ζ/η = 1.

Proof of Corollary 11. In MS’s beauty contest game, we have κ = r, λ = −2r,

and µ = 0, which implies that ζ = 1 + r > 0, η = 1 − r > 0, and (1 − α)ζ/η =

1 + r. In Hellwig and Veldkamp’s beauty contest game, we have κ = 0, λ = −r2,

and µ = −2r(1 − r), which implies that ζ = 1 − 2r, η = (1 − r)2 > 0, and

(1− α)ζ/η = (1− 2r)/(1− r) < 1. In Myatt and Wallace’s beauty contest game,

we have κ = 0, λ = −r, and µ = 0, which implies that ζ = 1 > 0, η = 1− r > 0,

and (1− α)ζ/η = 1.

Proof of Corollary12. By normalizing the payoff function, we have a beauty con-

test game with κ = 0, λ = −r2−1/c2, and µ = −2r(1−r), which implies that ζ =

1−2r, η = (1−r)2−1/c2 < 0, and (1−α)ζ/η = (1−r)(1−2r)/((1−r)2−1/c2).

Proof of Corollary14. Multiplying (20) by 2, we have (14) with κ = λ = µ = 0.

Thus, ζ = η = 1 and (1− α)ζ/η = 1− α.
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