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Chapter 1

Overview

1.1 Introduction

1.1.1 Mean-variance portfolio selections

Mean-variance portfolio selection is a problem of the allocation of wealth

among various securities so as to attain the optimal trade-off between the

expected return of the portfolio and its risk measured by the variance of

the portfolio. This problem was first proposed and solved in the single-

period setting by Markowitz (1952). Markowitz formulated the problem of

minimizing a portfolio’s variance subject to the constraint that its expected

return equals a constant level. This analysis has long been recognized as the

basis of modern portfolio theory.

Being widely used in both academia and industry, this mean-variance

paradigm has also inspired the development of the multiperiod mean-variance

portfolio selections. As examples of studies in discrete-time multiperiod

mean-variance portfolio selections, we have Hakansson (1971), Pliska (1997)

and Li and Ng (2000). Hakansson (1971) has investigated relations between
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the optimal growth portfolio (i.e., the portfolio which is chosen so as to max-

imize its expected logarithmic utility) and the mean-variance efficiency. In

the textbook Pliska (1997), a multiperiod mean-variance portfolio selection

in a finite model (i.e., a security model where the probability space is a finite

set) is treated. The most related article to our study is Li and Ng (2000) and

they have solved a mean-variance portfolio selection in a general discrete-

time model where the growth rates of the security prices at each period are

assumed to be independent random variables. They used the framework of

multiobjective optimization and introduced an embedding technique which

embeds the original problem in quadratic utility optimization problems so

that dynamic programming can be used to obtain explicit solutions.

Continuous-time mean-variance portfolio selections have been studied by

various approaches. As examples of those studies, we have Zhou and Li

(2000), Lim (2004), Framstad et al. (2004), Basak and Chabakauri (2010)

and Bielecki et al. (2005). The embedding technique has also been employed

by Zhou and Li (2000) to solve a continuous-time mean-variance portfolio

selection using the stochastic linear-quadratic (LQ) control theory in a dif-

fusion model with deterministic coefficients. Lim (2004) has also dealt with

the problem by the stochastic LQ control in a diffusion model when the

coefficients are random. Framstad et al. (2004) treated a continuous-time

mean-variance portfolio selection in a jump-diffusion model as an applica-

tion of their main result about the stochastic maximum principle in the

model. Basak and Chabakauri (2010) tackled the problem in a continuous-

time Markovian model driven by two Brownian motions directly applying

dynamic programming without the embedding technique and they derived

the time-consistent solution to the problem. Bielecki et al. (2005) has studied

a continuous-time mean-variance portfolio selection with a condition which
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prohibits the portfolio taking negative value so that the theory can be more

suitable for the investment situation in the real world.

The multiperiod mean-variance criteria can be applied to practical in-

vestment problems because of their solvability and explicit results. For ex-

ample, both Delong and Gerrard (2007) and Wang et al. (2007) solved op-

timal investment problems for insurance companies which are formulated

as continuous-time mean-variance portfolio selections. Moreover Basak and

Chabakauri (2010) stated that the multiperiod mean-variance criteria can be

used as a benchmark for evaluation of investment. These articles motivate

us to struggle to obtain more simple and elementary solution to multiperiod

mean-variance selections. In Chapter 2 of this thesis, we will demonstrate an

alternative and perhaps simpler approach to the problems both in discrete

time and in continuous time.

1.1.2 Utility maximizations

Utility maximization is also a basic problem in mathematical finance. This

is the problem of an economic agent who invests in a financial market so

as to maximize the expected utility of her terminal wealth as well as in-

tertemporal consumption from her wealth. Optimal consumption-portfolio

policies have traditionally been derived by stochastic dynamic programming.

Samuelson (1969), Merton (1969) and Merton (1971) are the pioneering pa-

pers in this field. In particular, in the framework of a continuous-time model,

Merton (1969) derived a Hamilton-Jacobi-Bellman (HJB) equation for the

value function of the optimization problem for the first time. He also pro-

vided the closed-form solution of this equation when the utility function is a

power function, the logarithmic or an exponential function. Their work have

been greatly extended to various settings, but we make no attempt to survey
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in detail. Rogers (2013) includes a lot of variations of the original problem

presented by Merton (1969) and Merton (1971) in simple diffusion models

and readers are referred to references therein for more information on this

topic.

Pham (2009) offers an introduction to further developments in dynamic

programming for utility maximizations and other optimization problems in

mathematical finance. In particular, Chapter 4 of Pham (2009) is devoted to

explanation of application of viscosity solutions. The viscosity solution is a

kind of weak solutions of some partial differential equations. One definition

of a viscosity solution of the HJB variational inequality which is employed

to deal with singular stochastic optimization problems (i.e., the problems

whose Hamiltonians of the HJB equations diverge) is stated in Definition

4.6 in Chapter 4 of this thesis. In Chapter 4 of Pham (2009), it has been

proved that the value function of a utility maximization problem which is

possibly singular is the unique viscosity solution of the corresponding HJB

variational inequality. Obtaining similar results in various settings is often

taken to be the main purpose of research in the literature related to viscosity

solutions in mathematical finance. In Chapter 4 of this thesis, we will attempt

conversely to derive a viscosity solution of the HJB variational inequality

for a maximization problem of the utility from the terminal wealth. The

meaning of this experiment is that if we know that a particular function is a

viscosity solution of the HJB variational inequality, then we can confirm that

the function coincides with the value function in the model where the value

function is the unique viscosity solution of the HJB variational inequality.

Another important method of solving utility maximizations is the mar-

tingale representation approach. In martingale approach, one solves a utility

maximization problem by separating it into two parts. First, she transforms
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the problem into a static utility maximization problem and maximizes the

objective function over the set of all outcomes that are attainable in the given

financial market. Then, she applies the martingale representation theorem to

determine the portfolio trading strategy which generates the optimal outcome

obtained in the first step. The martingale approach in complete markets is

originally developed by Pliska (1986), Cox and Huang (1989), Cox and Huang

(1991) and Karatzas et al. (1987). In particular, Cox and Huang (1989) has

characterized the optimal policy with a linear partial differential equation

(PDE), which is much easier to solve than the nonlinear PDE obtained in

dynamic programming. In an incomplete market setting, He and Pearson

(1991) extended the result of Cox and Huang (1989) and related the optimal

policy to the solution of a quasi-linear PDE. They introduced the notion of

minimax local martingale measure which is characterized by proving a du-

ality theorem relating the original utility maximization problem to a dual

problem. The minimax local martingale measure is the solution of the dual

problem and used both in proving the existence of a solution to the original

problem and in characterizing the solution. However, the author believes

that the duality argument which is somewhat technical is not essential when

we consider only characterization of the solution. In Chapter 3 of this thesis,

we will try to provide an alternative approach to derive the PDE without

using the duality principle.

1.2 Overview

The subsequent chapters are summarized as follows.
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1.2.1 Chapter 2: On explicit solutions to mean-variance

portfolio selections via mean-variance hedgings

In Chapter 2, multiperiod mean-variance portfolio selections are solved both

in a discrete-time model and in a continuous-time model. A multiperiod

mean-variance portfolio selection concerns minimizing the variance of the

terminal value of the portfolio while keeping the expected value of the ter-

minal value at a constant level. Unlike the literature referred in the previous

section, we will deal with the problem applying the results of mean-variance

hedging problems.

We will begin with deriving an explicit solution to a multiperiod mean-

variance portfolio selection in a discrete-time model. We will employ the

ordinary Lagrange multiplier method and see that the problem of minimiz-

ing the Lagrangian with respect to the investment strategies can be regarded

as a simple mean-variance hedging. Then we can solve the mean-variance

hedging by applying the result given by Gugushvili (2003), which investigated

the mean-variance hedging in a general discrete time model by dynamic pro-

gramming.

Next, we will find an explicit solution to a continuous-time mean-variance

portfolio selection by a similar approach which is employed in discrete time.

We will solve the mean-variance hedging in continuous time appeared in the

process of solving using the result given by Rheinländer and Schweizer (1997),

which analyzed the mean-variance hedging by projections. Our main result

will show that the optimal strategy of the original problem is obtained as a

multiple of the optimal strategy of the mean-variance hedging. This result

and the method of solving the problem may be somewhat simpler than those

in the earlier studies mentioned in the previous section.

Furthermore our approach may be valid for continuous-time mean-variance
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portfolio selections in general semimartingale models if we employ the result

given by Jeanblanc et al. (2012) to handle the mean-variance hedgings.

1.2.2 Chapter 3: Remarks on optimal strategies to

utility maximizations in continuous time incom-

plete markets

In an incomplete continuous-time diffusion model, He and Pearson (1991)

related the optimal strategy of the utility maximization problem to the so-

lution of a quasi-linear PDE by analyzing the dual problem. In Chapter 3

of this thesis, we will attempt to propose an alternative approach to derive

the PDE without using the duality principle. We will see that the optimal

solution can be characterized by an equivalent martingale measure from a

simple necessary condition of optimality. Then we will identify the equiva-

lent martingale measure and derive the PDE by Itô’s formula. The optimal

strategy can be obtained from the solution of the PDE.

Moreover we apply our method to a utility maximization problem in a

model where the price process is assumed to be a compound Poisson process.

In contrast to the literature which considered utility maximizations when

the price processes are not continuous such as Aase (1984), Bellamy (2001)

and so on, the jump sizes of the price process are unpredictable. First, we

will specify the whole set of equivalent martingale measures in the model.

Then, assuming that the optimal solution exists, an equation which relates

to the optimal solution of the utility maximization will be derived by the

same approach as in the diffusion case.
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1.2.3 Chapter 4: On discrete Itô formulas and discrete

Hamilton-Jacobi-Bellman equations

In Chapter 4, we will prove a discrete Itô formula for discrete jump-diffusion

processes and derive a discrete Hamilton-Jacobi-Bellman (dHJB) equation

for expected utility maximization problems in a discrete jump-diffusion model.

Moreover we will analyze a relation between a Hamilton-Jacobi-Bellman

(HJB) variational inequality in a continuous-time geometric Brownian model

and a dHJB equation in a random walk model derived by Ishimura and Mita

(2009).

A discrete Itô formula was originally obtained by Fujita and Kawanishi

(2008) for random walks. The proof can be done by simply checking that

the formula holds in either case where the increment of the random walk is

1 or −1. We will extend this idea to discrete jump-diffusion processes. Here,

a discrete jump-diffusion process is a discrete stochastic process which have

a discrete Poisson process term in addition to a random walk term.

Applying the discrete Itô formula for random walks, Ishimura and Mita

(2009) derived a dHJB equation and prove the verification theorem. Since

the derivation of the dHJB equation and the proof of the verification the-

orem have been essentially carried out by the discrete Itô formula, we can

generalize the result in a discrete jump-diffusion model. Deriving the opti-

mality equation for the utility maximization in the model, we will apply the

discrete Itô formula derived in advance to the optimality equation and obtain

the dHJB equation in the discrete jump-diffusion model.

After that, we will also provide an application of the dHJB equation in

a random walk model. As we have mentioned in the previous section, we

will show that a proper limit of a solution of the dHJB equation becomes a

viscosity solution of the corresponding HJB variational inequality in contin-
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uous time. If the conditions in the theorem are satisfied, this result enables

us to specify the value function of the optimization problem in continuous

time and consequently find the optimal solution when we know that the value

function is the unique viscosity solution of the HJB variational inequality.
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Chapter 2

On explicit solutions to

mean-variance portfolio

selections via mean-variance

hedgings

2.1 Introduction

In this chapter, we propose a method of solving multiperiod mean-variance

portfolio selections both in a discrete-time model and in a continuous-time

model. As mentioned in Chapter 1, this problem has been studied through

various approaches. Unlike the literature , we will deal with the problem

applying the results of mean-variance hedging problems. Note that a mean-

variance hedging problem is the problem of determining the value of a fi-

nancial option by minimizing the expected value of the quadratic hedging

error.

First, we solve a multiperiod mean-variance portfolio selection in a discrete-
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time model. Li and Ng (2000) referred in Chapter 1 is the most related study

to ours and our model is more general in a sense that the growth rates of the

security price in our model are not independent random variables but only

assumed that they satisfy the deterministic mean-variance tradeoff condition

explained below. We employ the ordinary Lagrange multiplier method and

see that the problem of minimizing the Lagrangian with respect to the invest-

ment strategies can be regarded as a simple mean-variance hedging. Then we

can construct the explicit solution to the mean-variance hedging by applying

the result given by Gugushvili (2003), which investigated the mean-variance

hedging in a general discrete time model by dynamic programming.

Next, we treat a continuous-time mean-variance portfolio selection in a

continuous semimartingale model by a similar approach which is employed in

discrete time. We transform the original problem into a mean-variance hedg-

ing in continuous time and solve it using the result given by Rheinländer and

Schweizer (1997), which analyzed the mean-variance hedging by projections.

Our main result shows that the optimal strategy of the original problem is

obtained as a multiple of the optimal strategy of the mean-variance hedging.

This result and the method of solving the problem may be somewhat simpler

than those in the earlier studies mentioned in the previous chapter.

The rest of the chapter is organized as follows. In Section 2.2, a multi-

period mean-variance portfolio selection in discrete time is solved after recall-

ing results of a mean-variance hedging. A mean-variance portfolio selection

in a continuous semimartingale model is solved in Section 2.3 using a solu-

tion of a mean-variance hedging in continuous time. Section 2.4 concludes

the chapter.
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2.2 In discrete time

In this section, a multiperiod mean-variance portfolio selection in discrete

time is solved using results of a mean-variance hedging obtained by Gu-

gushvili (2003).

2.2.1 A mean-variance hedging in discrete time

In this subsection, results of a mean-variance hedging problem in discrete

time are recalled.

Let (Ω,F , P, (Ft)t=0,1,2,··· ,T ) be a filtered probability space where the fil-

tration is assumed to satisfy F0 = {∅,Ω} and FT = F .

We set a discrete-time market model with a finite terminal time T > 0.

In the market, there is a risk-free asset. In this section, we assume that the

growth rate of this risk-free asset is permanently zero. There is also a risky

asset whose price at time t is denoted by St, t = 0, 1, 2, · · · , T where S0 > 0 is

a constant and each St is Ft-measurable. We use a notation ∆St := St−St−1,

t = 1, 2, · · · , T .

We summarize results of a mean-variance hedging problem in discrete

time. A mean-variance hedging is the problem to determine a value of a

financial option by minimizing the expected value of the quadratic hedging

error. Let an FT -measurable random variable H be the payoff of a financial

option of which we want to know the price at initial time t = 0. A constant

c > 0 denotes the agent’s initial wealth. The whole set of his strategy is

defined by

Π :=

{
z =(zt)t=0,1,2,··· ,T−1

∣∣∣∣z is an adapted process

such that
T−1∑
s=0

zs∆Ss+1 is square integrable.

}
.
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The terminal value of the agent’s self-financed portfolio corresponding to a

strategy z can be written as c +
∑T−1

s=0 zs∆Ss+1. Then the mean-variance

hedging problem is defined by

inf
z∈Π

E

[(
c+

T−1∑
s=0

zs∆Ss+1 −H

)2]
. (2.1)

This problem is solved in Gugushvili (2003) by the dynamic programming in

discrete time and the optimal solution and the optimal strategy are given as

follows.

Theorem 2.1 (Theorem 1 in Gugushvili (2003)). Define the value function

v(t, x) corresponding to the mean-variance hedging problem (2.1) as

v(t, x) = inf
z∈Π

E

[(
x+

T−1∑
s=t

zs∆Ss+1 −H

)2∣∣∣∣Ft

]
,

v(T, x) = (x−H)2.

Then v(t, x) is a square trinomial in x,

v(t, x) = atx
2 + 2btx+ ct

where a, b and c are adapted processes which are determined recurrently by

at = E[at+1|Ft]−
(E[at+1∆St+1|Ft])

2

E[at+1(∆St+1)2|Ft]
,

bt = E[bt+1|Ft]−
E[at+1∆St+1|Ft]E[bt+1∆St+1|Ft]

E[at+1(∆St+1)2|Ft]
,

ct = E[ct+1|Ft]−
(E[bt+1∆St+1|Ft])

2

E[at+1(∆St+1)2|Ft]
,

aT = 1, bT = −H, cT = H. (2.2)

Moreover, the optimal strategy z∗ is given by

z∗t = − E[bt+1∆St+1|Ft]

E[at+1(∆St+1)2|Ft]
−
(
c+

t−1∑
s=0

z∗s∆Ss+1

)
E[at+1∆St+1|Ft]

E[at+1(∆St+1)2|Ft]
. (2.3)

Proof. See Theorem 1 in Gugushvili (2003). ■
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2.2.2 A mean-variance portfolio selection in discrete

time

In this subsection, a multiperiod mean-variance portfolio selection problem

in discrete time is solved explicitly.

The mean-variance portfolio selection seeks the strategy which minimizes

the variance of the terminal value of the portfolio while keeping the expec-

tation of the terminal value of the portfolio at a constant level. Imposing

an assumption which simplifies the model on the growth rate of S, we de-

rive an explicit solution to the mean-variance portfolio selection problem. In

particular, the form of the optimal strategy is fully explicit and not even

recurrent.

We consider the following problem:

inf
z∈Π

V ar

(
c+

T−1∑
s=0

zs∆Ss+1

)
,

subject to E

[
c+

T−1∑
s=0

zs∆Ss+1

]
≥ A (2.4)

where V ar means the variance of random variables and A is a sufficiently

large constant such that A > c. Here, we examine the following specific case.

Put

Rt+1 :=
St+1 − St

St

and Mt :=
(E[Rt+1|Ft])

2

E[R2
t+1|Ft]

, 0 ≤ t ≤ T − 1.

We assume here that Mt are deterministic for all t. In this case, we obtain

the next result.

Theorem 2.2. Put Rt+1 := ∆St+1/St and Mt := (E[Rt+1|Ft])
2/E[R2

t+1|Ft],

0 ≤ t ≤ T − 1. If Mt are deterministic, then the optimal strategy z∗ to the

16



problem (2.4) is given by

z∗t St =

{
A− c

∏T−1
s=0 (1−Ms)

1−
∏T−1

s=0 (1−Ms)
−

(
c+

t−1∑
s=0

z∗s∆Ss+1

)}
E[Rt+1|Ft]

E[R2
t+1|Ft]

(2.5)

or

z∗t St =
A− c

1−
∏T−1

s=0 (1−Ms)

t−1∏
s=0

(
1− Rs+1E[Rs+1|Fs]

E[R2
s+1|Fs]

)
E[Rt+1|Ft]

E[R2
t+1|Ft]

(2.6)

and the optimal solution is obtained by

V ar

(
c+

T−1∑
s=0

z∗s∆Ss+1

)
=

(A− c)2
∏T−1

s=0 (1−Ms)

1−
∏T−1

s=0 (1−Ms)
. (2.7)

Proof. We begin with solving the following problem:

inf
z∈Π

V ar

(
c+

T−1∑
s=0

zs∆Ss+1

)
,

subject to E

[
c+

T−1∑
s=0

zs∆Ss+1

]
= B (2.8)

where B is a constant such that B ≥ A. It is obvious that the solution to

the original problem (2.4) can be obtained by minimizing the solution to the

above problem (2.8) in terms of B. The Lagrangian corresponding to this

problem (2.8) is obtained by

L(z, λ) = E

[(
c+

T−1∑
s=0

zs∆Ss+1 − B

)2

+ λ

(
B − E

[
c+

T−1∑
s=0

zs∆Ss+1

])]
where λ ∈ R is a Lagrange multiplier. By Theorem 2 in Section 8.4 in

Luenberger (1969), the optimal solution zB ∈ Π and λB ∈ R to the problem

(2.8) is given by a saddle point of L, i.e., zB and λB which satisfy

L(zB, λ) ≤ L(zB, λB) ≤ L(z, λB)

for all z ∈ Π and λ ∈ R. We start with minimizing L(z, λ) in terms of z for

given λ ∈ R.
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As the example described in Section 3.3 of Øksendal and Sulem (2005),

since

E

[(
c+

T−1∑
s=0

zs∆Ss+1 − B

)2

+ λ

(
B − E

[
c+

T−1∑
s=0

zs∆Ss+1

])]

= E

[(
c+

T−1∑
s=0

zs∆Ss+1 −
(
B +

1

2
λ
))2]

− 1

4
λ2,

we should solve the following problem in advance:

inf
z∈Π

E

[(
c+

T−1∑
s=0

zs∆Ss+1 −
(
B +

1

2
λ
))2]

. (2.9)

This is a mean-variance hedging and can be solved by Theorem 2.1 above.

We define the value function of this problem (2.9) by

vB+ 1
2
λ(t, x) := essinf

z∈Π
E

[(
x+

T−1∑
s=t

zs∆Ss+1 −
(
B +

1

2
λ
))2∣∣∣∣Ft

]
Then, by Theorem 2.1, vB+ 1

2
λ can be written by

vB+ 1
2
λ(t, x) = atx

2 + 2btx+ ct

where a, b and c are adapted processes which are determined recurrently by

at = E[at+1|Ft]−
(E[at+1∆St+1|Ft])

2

E[at+1(∆St+1)2|Ft]
,

bt = E[bt+1|Ft]−
E[at+1∆St+1|Ft]E[bt+1∆St+1|Ft]

E[at+1(∆St+1)2|Ft]
,

ct = E[ct+1|Ft]−
(E[bt+1∆St+1|Ft])

2

E[at+1(∆St+1)2|Ft]
,

aT = 1, bT = −
(
B +

1

2
λ
)
, cT =

(
B +

1

2
λ
)2

. (2.10)

Moreover, the optimal strategy zB is determined by

zBt = − E[bt+1∆St+1|Ft]

E[at+1(∆St+1)2|Ft]
−
(
c+

t−1∑
s=0

zBs ∆Ss+1

)
E[at+1∆St+1|Ft]

E[at+1(∆St+1)2|Ft]
.

(2.11)
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In the present setting, sinceMt = (E[Rt+1|Ft])
2/E[R2

t+1|Ft], 0 ≤ t ≤ T−1

are deterministic where Rt+1 = ∆St+1/St, (2.10) is, inductively, partially

rewritten by

at = at+1(1−Mt), bt = bt+1(1−Mt),

aT = 1, bT = −
(
B +

1

2
λ
)
,

so that

at =
T−1∏
s=t

(1−Ms), bt = −
(
B +

1

2
λ
) T−1∏

s=t

(1−Ms). (2.12)

We can also deduce from (2.10) that

ct =
(
B +

1

2
λ
)2

T−1∏
s=t

(1−Ms).

Then the value function becomes

vB+ 1
2
λ(t, x) =

(
x−

(
B +

1

2
λ
))2 T−1∏

s=t

(1−Ms).

Now we can calculate λB. Substitute z = zB in the Lagrangian. Then the

Lagrangian can be written as

L(zB, λ) = vB+ 1
2
λ(0, c)− 1

4
λ2

=

(
c−

(
B +

1

2
λ
))2 T−1∏

s=0

(1−Ms)−
1

4
λ2.

Therefore λB ∈ R which maximizes this L(zB, λ) is given by

λB =
2(B − c)

∏T−1
s=0 (1−Ms)

1−
∏T−1

s=0 (1−Ms)
.

Substituting (2.12) and λ = λB into (2.11), we get

zBt St =

{
B +

1

2
λB −

(
c+

t−1∑
s=0

zBs ∆Ss+1

)}
E[Rt+1|Ft]

E[R2
t+1|Ft]

=

{
B − c

∏T−1
s=0 (1−Ms)

1−
∏T−1

s=0 (1−Ms)
−

(
c+

t−1∑
s=0

zBs ∆Ss+1

)}
E[Rt+1|Ft]

E[R2
t+1|Ft]

(2.13)
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This can be also written by

zBt St =

(
B − c

1−
∏T−1

s=0 (1−Ms)
−

t−1∑
s=0

zBs ∆Ss+1

)
E[Rt+1|Ft]

E[R2
t+1|Ft]

or

zBt StRt+1 =

(
B − c

1−
∏T−1

s=0 (1−Ms)
−

t−1∑
s=0

zBs SsRs+1

)
Rt+1E[Rt+1|Ft]

E[R2
t+1|Ft]

.

By solving this equation, we obtain

zBt St =
B − c

1−
∏T−1

s=0 (1−Ms)

t−1∏
s=0

(
1− Rs+1E[Rs+1|Fs]

E[R2
s+1|Fs]

)
E[Rt+1|Ft]

E[R2
t+1|Ft]

. (2.14)

Finally, the solution to (2.4) is given as follows. The solution to (2.8) is

obtained as

V ar

(
c+

T−1∑
s=0

zBs ∆Ss+1

)
= L(zB, λB) =

(B − c)2
∏T−1

s=0 (1−Ms)

1−
∏T−1

s=0 (1−Ms)
(2.15)

for each B ≥ A. Obviously, this is minimized when B = A. Therefore the

solution to the original problem (2.4) can be obtained by substituting B = A

into (2.13), (2.14) and (2.15) yields (2.5), (2.6) and (2.7), respectively. This

concludes the proof. ■

Remark 2.3. We get some implication of the optimal strategy from the

representation in (2.5). In (2.5), z∗t St means the amount of the money which

the agent should spend on the risky asset and c+
∑t−1

s=0 z
∗
s∆Ss+1 is the value

of his portfolio at time t. Then (2.5) implies that the quantity that the

agent should invest in the risky asset is the difference between a constant

(A− c
∏T−1

s=0 (1−Ms))/(1−
∏T−1

s=0 (1−Ms)) and the value of the portfolio

adjusted by E[Rt+1|Ft]/E[R2
t+1|Ft].

Remark 2.4. We can confirm that E[c+
∑T−1

s=0 z∗s∆Ss+1] = A. Indeed, from
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(2.6), we have

E[z∗t StRt+1] =
A− c

1−
∏T−1

s=0 (1−Ms)

t−1∏
s=0

(1−Ms)Mt

=
A− c

1−
∏T−1

s=0 (1−Ms)

(t−1∏
s=0

(1−Ms)−
t∏

s=0

(1−Ms)

)
for t ≥ 1 and

E[z∗0S0R1] =
A− c

1−
∏T−1

s=0 (1−Ms)
M0 =

A− c

1−
∏T−1

s=0 (1−Ms)
(1− (1−M0)).

Therefore we conclude that

E[
T−1∑
s=0

z∗s∆Ss+1] =
T−1∑
s=0

E[z∗sSsRs+ 1]

=
A− c

1−
∏T−1

s=0 (1−Ms)

{
1− (1−M0) +

T−1∑
t=1

(t−1∏
s=0

(1−Ms)−
t∏

s=0

(1−Ms)

)}

=
A− c

1−
∏T−1

s=0 (1−Ms)

(
1−

T−1∏
s=0

(1−Ms)

)
= A− c.

Remark 2.5. The condition thatMt are deterministic is called the determin-

istic mean-variance tradeoff condition which is provided by Schweizer (1995).

It is known that when this condition is satisfied, the variance-optimal mar-

tingale measure coincides with the minimal martingale measure, which can

be obtained explicitly with ease (Corollary 4.2 in Schweizer (1995)). This

is one reason why we can get an explicit optimal solution to the mean-

variance portfolio selection. We also note that it can be easily checked

that 1/
∏T−1

s=0 (1 − Ms) is equal to the square mean of the density of the

variance-optimal martingale measure (or the minimal martingale measure)

in the model (see (2.21) in Schweizer (1995) for the expression of the density

of the minimal martingale measure). This assure us that the solution (2.7)

is consistent with the solution in the continuous-time in the next section.
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2.3 In continuous time

In this section, a continuous-time mean-variance portfolio selection in a con-

tinuous semimartingale modes is solved applying results of a mean-variance

hedging obtained by Rheinländer and Schweizer (1997).

2.3.1 A mean-variance hedging in continuous time

In this subsection, we recall results of a mean-variance hedging in continuous

time.

We set a filtered probability space (Ω,F , P, (Ft)0≤t≤T ) with a filtration

(Ft)0≤t≤T satisfying the usual condition. For simplicity, we assume that F0 is

trivial and F = FT . Let X be a continuous Rd-valued semimartingale which

represents the price of d risky assets. In this section, we assume that the

growth rate of the risk-free asset is zero. We define the whole set of trading

strategies by

Θ :=

{
θ = (θs)0≤s≤T

∣∣∣∣θ is an Rd-valued predictable process such that∫ T

0

θ⊤s dXs is a square-integrable semimartingale.

}
.

In this section, we also define GT (Θ) := {
∫ T

0
θ⊤s dXs|θ ∈ Θ} and assume that

GT (Θ) is closed in L2(P ).

Next, we define the variance-optimal martingale measure in this model.

The following three definitions are taken from Rheinländer and Schweizer

(1997).

Definition 2.6. Let W denotes the linear subspace of L∞(Ω,F , P ) spanned

by the simple stochastic integrals of the form Y = h⊤(XT2 − XT1) where

T1 ≤ T2 ≤ T are stopping times such that Xt∧T2 is bounded and h is any

bounded Rd-valued FT1-measurable random variable.
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Definition 2.7. We define a set Ms(P ) as the space of all signed measures

Q ≪ P with Q(Ω) = 1 and

E

[
dQ

dP
Y

]
= 0, ∀Y ∈ W.

Moreover we define the following set of densities:

Ds :=

{
dQ

dP

∣∣∣∣Q ∈ Ms(P )

}
.

We assume that Ds ∩ L2(P ) ̸= ∅ hereafter.

Definition 2.8. The variance-optimal martingale measure P̃ is the element

of Ms(P ) such that D̃ = dP̃/dP is in L2(P ) and minimizes E[D2] over all

D ∈ Ds ∩ L2(P ).

The following lemma from Schweizer (1996) shows that D̃ can be repre-

sented by a stochastic integral with respect to X. This representation has

an important role in the proof of our main result in the subsequent section.

Lemma 2.9 (Lemma 1 (b) in Schweizer (1996)). P̃ is given by

D̃ = E[D̃2] +

∫ T

0

ζ̃⊤s dXs (2.16)

for some ζ̃ ∈ Θ.

Proof. See Lemma 1 (b) in Schweizer (1996). ■

Here, we can describe the solution of a mean-variance hedging in contin-

uous time. The solution of a mean-variance hedging when the payoff of the

derivative is constant is given as follows.

Lemma 2.10 (Lemma 4 in Rheinländer and Schweizer (1997)). Assume

that GT (Θ) is closed in L2(P ) and Ds ∩ L2(P ) ̸= ∅. Then the solution θ̃ of

a mean-variance hedging problem

inf
θ∈Θ

E

[(
1−

∫ T

0

θ⊤s dXs

)2]
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is given by

θ̃s = − ζ̃s

E[D̃2]

for 0 ≤ s ≤ T where ζ̃ is the integrand in (2.16).

Proof. See Lemma 4 in Rheinländer and Schweizer (1997). ■

2.3.2 A mean-variance portfolio selection in continu-

ous time

In this subsection, a mean-variance portfolio selection in continuous time is

solved explicitly. Let a constant c > 0 denote the agent’s initial wealth.

Then the terminal value of the agent’s self-financed portfolio corresponding

to a strategy θ can be written as c +
∫ T

0
θ⊤s dXs. We consider the following

problem:

inf
θ∈Θ

V ar

(
c+

∫ T

0

θ⊤s dXs

)
subject to E

[
c+

∫ T

0

θ⊤s dXs

]
≥ A (2.17)

where A is a sufficiently large constant such that A > c. Hereafter, we

suppose that E[D̃2] > 1. Otherwise, the original probability measure P and

the variance-optimal martingale measure P̃ almost surely coincide and it

results in E[c+
∫ T

0
θ⊤s dXs] = c for any θ ∈ Θ. Then, in the current situation

where A > c, it is obvious that the mean-variance portfolio selection (2.17)

does not admit any optimal solution.

A solution to this problem (2.17) can be obtained as follows.

Theorem 2.11. For the mean-variance portfolio selection problem (2.17),

an optimal strategy θ∗ is given by

θ∗s = − A− c

E[D̃2]− 1
ζ̃s
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for 0 ≤ s ≤ T where ζ̃ is the integrand in (2.16) and the optimal solution is

obtained by

V ar

(
c+

∫ T

0

θ∗⊤s dXs

)
=

(A− c)2

E[D̃2]− 1
. (2.18)

Proof. As the proof of Theorem 2.2, we first solve the following problem:

inf
θ∈Θ

V ar

(
c+

∫ T

0

θ⊤s dXs

)
subject to E

[
c+

∫ T

0

θ⊤s dXs

]
= B (2.19)

where B is a constant such that B ≥ A. The Lagrangian corresponding to

this problem (2.19) is obtained by

L(θ, λ) = E

[(
c+

∫ T

0

θ⊤s dXs −B

)2

+ λ

(
B − E

[
c+

∫ T

0

θ⊤s dXs

])]
where λ ∈ R is a Lagrange multiplier. As the proof of Theorem 2.2, by

Theorem 2 in Section 8.4 in Luenberger (1969), the optimal solution θB ∈ Θ

and λB ∈ R to the problem (2.19) is given by a saddle point of L. The

Lagrangian can be rewritten as

L(θ, λ) = E

[(
c+

∫ T

0

θ⊤s dXs −
(
B +

1

2
λ
))2]

− 1

4
λ2. (2.20)

The problem of minimizing this with respect to θ can be regarded as a mean-

variance hedging when the payoff of a derivative is B − c + λ/2. Therefore,

by Lemma 2.10, the strategy θB which minimizes (2.20) is given by

θBs = −B − c+ λ/2

E[D̃2]
ζ̃s (2.21)

for 0 ≤ s ≤ T . Then, by (2.16),

L(θB, λ) = E

[(
c− B − c+ λ/2

E[D̃2]

∫ T

0

ζ̃⊤s dXs −
(
B +

1

2
λ
))2]

− 1

4
λ2

= E

[(
c− B − c+ λ/2

E[D̃2]
(D̃ − E[D̃2])−

(
B +

1

2
λ
))2]

− 1

4
λ2

=
(B − c+ λ/2)2

E[D̃2]
− 1

4
λ2.
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This is maximized when λ equals

λB =
2(B − c)

E[D̃2]− 1
.

Substituting λ = λB into (2.21), θB is revealed to be

θBs = − B − c

E[D̃2]− 1
ζ̃s (2.22)

for 0 ≤ s ≤ T .

Then the optimal solution to (2.19) is obtained by

V ar

(
c+

∫ T

0

θB⊤
s dXs

)
= E

[(
c− B − c

E[D̃2]− 1

∫ T

0

ζ̃⊤s dXs − B

)2]
= (B − c)2E

[(
1 +

D̃ − E[D̃2]

E[D̃s]− 1

)2]
= (B − c)2

E[(D̃ − 1)2]

(E[D̃2]− 1)2

=
(B − c)2

E[D̃2]− 1
(2.23)

for each B ≥ A. Since this is minimized when B = A, the solution to the

original problem (2.17) can be obtained by substituting B = A into (2.22)

and (2.23) and this concludes the proof. ■

Remark 2.12. We can check that E[c+
∫ T

0
θ∗⊤s dXs] = A as follows:

E

[
c− A− c

E[D̃2]− 1

∫ T

0

ζ̃⊤s dXs

]
= c− A− c

E[D̃2]− 1
E[D̃ − E[D̃2]]

= c− A− c

E[D̃2]− 1
(1− E[D̃2])

= A.

Remark 2.13. Note that our result (2.18) is consistent with (6.9) in Zhou

and Li (2000) if our E[D̃2], which is the square mean of the density of the

variance-optimal measure is equal to exp{
∫ T

0
ρ(t)dt} in Zhou and Li (2000)
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and the risk-free rate is zero. Obviously, the result (2.18) is also consistent

with the solution (2.7) in the previous section.

Remark 2.14. Our approach may be valid for continuous-time mean-variance

portfolio selections in general semimartingale models if we employ the result

given by Jeanblanc et al. (2012) to handle the mean-variance hedging. To

our knowledge, there is no study which solved such a problem. This may

show the novelty of our approach.

2.4 Conclusion

In this chapter, explicit solutions to multiperiod mean-variance portfolio se-

lection problems in a discrete-time model and a continuous semimartingale

model are provided. We have dealt with the problem applying the results

of mean-variance hedging problems. In discrete time, for obtaining an ex-

plicit solution, we have assumed that the discounted price process of the

security satisfies the deterministic mean-variance tradeoff condition. Then

we have derived the explicit solution and realized a relation between the

optimal solution and the variance-optimal martingale measure (or the min-

imal martingale measure) in the model. In the continuous-time model, we

have solved a mean-variance portfolio selection problem by the same ap-

proach as the discrete-time case. The result shows that the optimal strategy

of the original problem is obtained as a multiple of the optimal strategy

of the mean-variance hedging. Our approach may be valid for continuous-

time mean-variance portfolio selections in general semimartingale models if

we employ the result given by Jeanblanc et al. (2012) to handle the mean-

variance hedging. However, we have always assumed that the growth rate of

the risk-free asset is zero and a way to remove this limitation is not obvious.
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We have also not concerned the condition which prohibits the value of the

portfolio becoming negative as Bielecki et al. (2005). It is left for the future

to overcome these shortcomings.
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Chapter 3

Remarks on optimal strategies

to utility maximizations in

continuous time incomplete

markets

3.1 Introduction

In this chapter, we treat utility maximization problems through the martin-

gale approach introduced in Chapter 1. In particular, we are interested in the

PDE which characterizes the optimal policy of the problem. As mentioned

in Chapter 1, the PDE is derived for the first time by Cox and Huang (1989)

in a complete market. He and Pearson (1991) extended the result and derive

the PDE in an incomplete market through analysis of the dual problem. In

this chapter, we attempt to propose an alternative approach to derive the

PDE without using the duality principle in incomplete markets. We may

observe that the derivation of the PDE can be somewhat simplified when we
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consider only characterization of the solution.

We consider a utility maximization problem in a market model which in-

cludesM risky assets whose discounted prices are driven by theN -dimensional

Brownian motion where M ≤ N . First, we recall the whole set of equivalent

martingale measures in the model. Next, we think of the objective function

as a functional defined on the set of trading strategies. Then we see that the

optimal solution of the utility maximization problem can be characterized

by an equivalent martingale measure from a simple necessary condition of

optimality of the maximization problem of the functional. The equivalent

martingale measure and the PDE which characterizes the optimal strategy

are identified by Itô’s formula and the optimal strategy can be obtained from

the solution of the PDE.

Moreover we apply our method to a utility maximization problem in a

model where the price process is assumed to be a compound Poisson process.

We study the case where the jump sizes of the price process are unpredictable.

First, we specify the whole set of equivalent martingale measures in the

model. Then, assuming that the optimal solution exists, an equation which

relates to the optimal solution of the utility maximization is derived by the

same approach as in the diffusion case.

The rest of the chapter is organized as follows. In Section 3.2, a secu-

rity market model by Brownian motions will be specified, the all equivalent

martingale measures in the model will be characterized and a utility max-

imization problem will be recalled. Under the assumption that the utility

maximization problem admits an optimal strategy, Section 3.3 will derive

the PDE which provides the optimal strategy as a necessary condition of

optimality. A case of a simple jump model is treated in Section 3.4. Section

3.5 concludes the chapter.
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3.2 Model settings and a utility maximiza-

tion problem

In this section, a utility maximization problem is recalled.

Let (Ω,F , P ) be a probability space and T > 0 be the finite terminal

time. Let W (t) = (W 1(t),W 2(t), · · · ,WN(t))⊤, 0 ≤ t ≤ T denote an N -

dimensional standard Brownian motion defined on (Ω,F , P ) and we suppose

that we have a filtration Ft, 0 ≤ t ≤ T which is an augmented filtration

generated by W . Note that, for a matrix A, A⊤ denotes the transpose of A.

We consider a single investor’s utility maximization problem. We as-

sume that there are M(≤ N) risky assets that the investor can trade in

a market. The discounted price process of those risky assets, denoted by

S(t) = (S1(t), S2(t), · · · , SM(t))⊤, 0 ≤ t ≤ T , is supposed to be defined by

dS(t) = a(t)dt+ b(t)dW (t), 0 ≤ t ≤ T,

S(0) = S0

where a is an M × 1 vector valued progressively measurable process, b is

an M × N matrix valued progressively measurable process and S0 > 0 is a

constant. We suppose further that∫ T

0

|a(t)|dt < ∞ a.s.

and rank(b(t)) = M for all t where, for a matrix A, we assume |A| =

tr(AA⊤)
1
2 .

By Proposition 2.2 in Pagè (1987) or Proposition 1 in He and Pearson

(1991), the Radon-Nikodym derivatives of equivalent martingale measures in

the current model are characterized as follows. As He and Pearson (1991),
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defining κ(t) = −b(t)⊤(b(t)b(t)⊤)−1a(t), 0 ≤ t ≤ T , we assume

E

[
exp

{
1

2

∫ T

0

|κ(t)|2dt
}]

< ∞

E

[ ∫ T

0

|b(t)|4dt
]
< ∞

for ensuring the existence of an equivalent martingale measure. If Q is an

equivalent martingale measure with respect to P , then dQ/dP = ξν(T ) for

some ν ∈ Ker(b) such that
∫ T

0
|ν(t)|2dt < ∞ a.s. where

ξν(t) = exp

{∫ t

0

(κ(s) + ν(s))⊤dW (s)− 1

2

∫ t

0

(|κ(s)|2 + |ν(s)|2)ds
}
, 0 ≤ t ≤ T

(3.1)

with

Ker(b) = {ν|ν is progressively measurable,

ν(t) ∈ RN and b(t)ν(t) = 0, 0 ≤ t ≤ T}.

The whole set Θ of the investor’s strategies is defined by

Θ :=

{
z(t) = (z1(t), z2(t), · · · , zM(t))⊤, 0 ≤ t ≤ T

∣∣∣∣z is adapted,∫ T

0

|z(t)⊤a(t)|dt < ∞ a.s. and

∫ T

0

|z(t)⊤b(t)|2dt < ∞ a.s.

}
where zi(t), i = 1, 2, · · · ,M is the number of the i th asset that the investor

holds at time t, 0 ≤ t ≤ T . Obviously, Θ forms a vector space on R. The

investor’s gain processes are defined by

Gt(z) :=

∫ t

0

z(s)⊤dS(s), z ∈ Θ, 0 ≤ t ≤ T.

Let x > 0 be the investor’s initial endowment. Then the value of a self-

financed portfolio corresponding to a strategy z ∈ Θ at time t can be ob-

tained by x+Gt(z). Suppose that the investor has a utility u(y) defined on
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(k,∞),−∞ ≤ k < ∞. Suppose further that u is a continuously differen-

tiable, strictly increasing and strictly concave function. In this chapter, we

also suppose that u is bounded from below and it is the severest restriction in

comparison with the model in He and Pearson (1991). We also assume that

the inverse function of the derivative of the utility function I(y) := (u′)−1(y)

defined on
(

lim
l→k+0

u′(l),∞
)
is continuously differentiable.

Finally, we can define the following utility maximization problem:

sup
z∈Θ

E[u(x+GT (z))]. (3.2)

3.3 Optimal strategies in Brownian models

In this section, the PDE which yields the optimal strategy to the problem

(3.2) is obtained.

Before providing the result, we need some preparations. We assume that

the problem (3.2) admits an optimal strategy which is denoted by z0(t), 0 ≤

t ≤ T . We define a functional f on Θ by

f(z) := E[u(x+GT (z))], z ∈ Θ.

Theorem 1 of Section 7.4 in Luenberger (1969) suggests that if z0 is an

optimal strategy, the Gateaux differential of f at z0 equals zero, i.e.,

∂

∂α
f(z0 + αz)|α=0 = E[u′(x+GT (z0))GT (z)] = 0, ∀z ∈ Θ

where α ∈ R. The interchange of the expectation and the differentiation is

confirmed from the cndition that u is bounded from below. Then, since u′ >

0, we can claim that u′(x+GT (z0))/E[u′(x+GT (z0))] is the Radon-Nikodym

density of an equivalent martingale measure. Therefore, there exists a process
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ν0 ∈ Ker(b) such that

u′(x+GT (z0))

E[u′(x+GT (z0))]
= ξν0(T ) (3.3)

where ξν0(t), 0 ≤ t ≤ T is the process defined by (3.1) corresponding to ν0.

The following theorem provides an explicit expression of z0 when (ξν0 , S)

are Markov processes. Below we use the abbreviation that Ft = ∂F (t, ξ, S)/∂t,

Fξ = ∂F (t, ξ, S)/∂ξ, Fξξ = ∂2F (t, ξ, S)/∂ξ2, FS is a M×1 vector valued pro-

cess ∂F (t, ξ, S)/∂S, FSξ is a M × 1 vector valued process ∂2F (t, ξ, S)/∂S∂ξ

and FSS is an M ×M matrix valued process ∂2F (t, ξ, S)/∂S2.

Theorem 3.1. Suppose that (ξν0 , S) forms a Markov process where ξν0 is

defined by (3.3) and z0 is an optimal strategy to (3.2). Define the function

F (t, ξ, S) by

F (t, ξν0(t), S(t)) :=
1

ξν0(t)
E[I(E[u′(x+GT (z0))]ξν0(T ))ξν0(T )|ξν0(t), S(t)]

where I = (u′)−1. Suppose further that F is a C1,2,2 function and Fξ ̸= 0.

Then F satisfies the partial differential equation

Ft +
1

2
|κ|2ξ2ν0Fξξ + |κ|2ξν0Fξ +

1

2
tr(FSSbb

⊤)− F⊤
Sξa = 0

with the boundary conditions

F (T, ξν0(T ), S(T )) = I(E[u′(x+GT (z0))ξν0(T )]),

F (0, 1, S0) = x

where ν0 = 0. Moreover, the optimal strategy z0 is given from F by

z⊤0 = ξν0Fξκ
⊤b⊤(bb⊤)−1 + F⊤

S .

Proof. Since u′(x+GT (z0)) = E[u′(x+GT (z0))]ξν0(T ),

x+GT (z0) = I(E[u′(x+GT (z0))]ξν0(T )).

34



By multiplying both side of this equation by ξν0(T ), we obtain

(x+GT (z0))ξν0(T ) = I(E[u′(x+GT (z0))]ξν0(T ))ξν0(T ).

Since the left hand side of this equation is a P -martingale, by taking condi-

tional expectations,

(x+Gt(z0))ξν0(t) = E[I(E[u′(x+GT (z0))]ξν0(T ))ξν0(T )|Ft].

Then we get

x+Gt(z0) =
1

ξν0(t)
E[I(E[u′(x+GT (z0))]ξν0(T ))ξν0(T )|Ft]

=
1

ξν0(t)
E[I(E[u′(x+GT (z0))]ξν0(T ))ξν0(T )|ξν0(t), S(t)]

= F (t, ξν0(t), S(t)).

By Itô’s formula,

z⊤0 adt+ z⊤0 bdW =

(
Ft +

1

2
(|κ|2 + |ν0|2)ξ2ν0Fξξ + F⊤

S a+
1

2
tr(FSSbb

⊤) + F⊤
Sξbκ

)
dt

+ (ξν0Fξ(κ+ ν0)
⊤ + F⊤

S b)dW.

Then we obtain the following simultaneous equations:

z⊤0 a = Ft +
1

2
(|κ|2 + |ν0|2)ξ2ν0Fξξ + F⊤

S a+
1

2
tr(FSSbb

⊤) + F⊤
Sξbκ, (3.4)

z⊤0 b = ξν0Fξ(κ+ ν0)
⊤ + F⊤

S b. (3.5)

By multiplying both sides of (3.5) by b⊤(bb⊤)−1, z⊤0 is determined as

z⊤0 = ξν0Fξκ
⊤b⊤(bb⊤)−1 + F⊤

S . (3.6)

Substituting this into (3.5), we have

ξν0Fξκ
⊤ = ξν0Fξ(κ+ ν0)

⊤
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by the definition of κ and we get Fξν
⊤
0 = 0. This implies ν0 = 0 by the

assumption Fξ ̸= 0. From (3.6) and ν0 = 0, (3.4) becomes

Ft +
1

2
|κ|2ξ2ν0Fξξ + |κ|2ξν0Fξ +

1

2
tr(FSSbb

⊤)− F⊤
Sξa = 0.

■

3.4 An optimal strategy in a jump model

In this section, we apply the method of deriving the equation which charac-

terizes the solution given in the previous section to a utility maximization

problem in a compound Poisson model.

Let N(t), 0 ≤ t ≤ T be a Poisson process defined on (Ω,F , P ) with

the intensity λ > 0 and Ti, i = 1, 2, . . . denote times of i-th jump of N .

Let Ci, i = 1, 2, . . . be independent and identically distributed (i.i.d.) ran-

dom variables which are supposed to have common distribution µ. Sup-

pose further that each Ci and N are independent, i = 1, 2, . . . . It is also

assumed that we have a filtration FN,C
t , 0 ≤ t ≤ T which is defined by

FN,C
t := σ(N(s), CN(s), s ≤ t).

Suppose that there are one risky asset and one risk-free asset in the mar-

ket. We suppose further that the discounted asset price process Y (t) is given

by

dY (t) = Y (t−)(αdt+ CN(t)dN(t)), 0 ≤ t ≤ T,

Y (0) = Y0 (3.7)

where α and Y0 are constants and α ̸= 0.

We consider a problem which is similar to the problem (3.2) in the model
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(3.7). We define the whole set of strategies by

ΘY :=

{
z(t), 0 ≤ t ≤ T

∣∣∣∣z is predictable,

∫ T

0

|αz(t)Y (t−)|dt < ∞ a.s.

and

∫ T

0

|CN(t)z(t)Y (t−)|dt < ∞, a.s.

}
and the gain processes by

Ht(z) :=

∫ t

0

z(s)dY (s), z ∈ ΘY , 0 ≤ t ≤ T

and we consider the following utility maximization problem:

sup
z∈ΘY

E[u(x+HT (z))] (3.8)

where u is a utility function which satisfies the same conditions provided in

Section 3.2. We assume that the problem (3.8) admits an optimal strategy

and the strategy is denoted by zY (t), 0 ≤ t ≤ T . In the subsequent argument,

we see that the similar result to Theorem 3.1 may hold true in this situation.

First, the whole of the equivalent martingale measures for the model (3.7)

is characterized. Let Q be an equivalent martingale measure with respect to

P . Then, according to Theorem 4.2 in Bardhan and Chao (1996), there exists

a predictable process ζ(t, y) which satisfies

ζ > 0 and − α∫
R yζ(t, y)dµ(y)

> 0, ∀t

and dQ/dP is written by dQ/dP = Rζ(T ) where

Rζ(t) := exp

{
λt+

∫ t

0

α∫
R yζ(s, y)dµ(y)

ds+

∫ t

0

log

(
−αζ(s, CN(s))

λ
∫
R yζ(s, y)dµ(y)

)
dN(s)

}
,

(3.9)

for 0 ≤ t ≤ T . To see this, since we have not used Poisson random measures,

we should show the correspondence of notations between Bardhan and Chao

(1996) and ours. The correspondence is as follows.
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• Our model is the case where d = 0 (i.e. no Brownian motions), n = 1, σ =

1 and r = 0 in Bardhan and Chao (1996),

• a characteristic of a martingale measure, φ1(t, z) = ζ(t, z),

• the rate of jumps, λ1(t) = λ,

• the distribution of jump sizes, ϕ1(t, z) = µ(z),

• expectations of jump sizes at t, α(t) = E[C1],

• expectations of jump sizes at t under the measure changed by φ (or ζ),

α̃(t) =
∫
R zζ(t, z)dµ(z) and

• the drift term, b(t) = α+λE[C1] (see equation (2.1) in Bardhan and Chao

(1996)),

where the left hand sides of above equations are notations in Bardhan and

Chao (1996) and right hand sides are ours. Then ϑ1 in Bardhan and Chao

(1996) is determined by equation (4.4) in Bardhan and Chao (1996). In our

model, equation (4.4) in Bardhan and Chao (1996) is

λ

(
E[C1]− ϑ1(t)

∫
R
zζ(t, z)dµ(z)

)
= α + λE[C1].

∴ ϑ1(t) = − α

λ
∫
R zζ(t, z)dµ(z)

.

Then equation (4.5) in Bardhan and Chao (1996) can be expressed as follows.

The term in the second line in equation (4.5) in Bardhan and Chao (1996) is

N(t)∏
n=1

(
−

αζ(Tn, CNTn
))

λ
∫
R zζ(Tn, z)dµ(z)

)
= exp

{N(t)∑
n=1

log

(
−

αζ(Tn, CNTn
))

λ
∫
R zζ(Tn, z)dµ(z)

)}
= exp

{∫ t

0

log

(
− αζ(s, CNs)

λ
∫
R zζ(s, z)dµ(z)

)
dN(s)

}

38



and the argument of the exponential function in the third line in equation

(4.5) in Bardhan and Chao (1996) is∫ t

0

∫
R

(
1 +

αζ(s, z)

λ
∫
R yζ(s, y)dµ(y)

)
λdµ(z)ds = λt+

∫ t

0

∫
R

αζ(s, z)∫
R yζ(s, y)dµ(y)

dµ(z)ds

= λt+

∫ t

0

α∫
R yζ(s, y)dµ(y)

ds

where the last equation is a consequence of equation (4.3) in Bardhan and

Chao (1996) which is
∫
R ζ(s, z)dµ(z) = 1 in our model. This concludes that

every martingale measure has a density Rζ by Theorem 4.2 in Bardhan and

Chao (1996). Suppose ζ0 is the process corresponding to zY , i.e.,

u′(x+HT (z
Y ))

E[u′(x+HT (zY ))]
= Rζ0(T ) (3.10)

and we assume that Rζ0 is a Markov process.

Next, by the same argument as the proof of Theorem 3.1 in the previous

section, when we define a function J(t, R) by

J(t, Rζ0(t)) :=
1

Rζ0(t)
E[I(E[u′(x+HT (z

Y ))]Rζ0(T ))Rζ0(T )|Rζ0(t)],

we can assert that by Itô’s formula,

αzY (t)Y (t−)dt+ CN(t)z
Y (t)Y (t−)dN(t) = dJ(t, Rζ0(t))

∴ αzY (t)Y (t−)dt+ CN(t)z
Y (t)Y (t−)dN(t)

=

{
Jt(t, Rζ0(t−)) +

(
λ+

α∫
R yζ0(t−, y)dµ(y)

)
Rζ0(t−)JR(t, Rζ0(t−))

}
dt

+

[
J

(
t,−

αζ0(t, CN(t))

λ
∫
R yζ0(t, y)dµ(y)

Rζ0(t−)

)
− J(t, Rζ0(t−))

]
dN(t),

where the subscripts of the function J denote the partial differentials of J

with respect to each argument. Then we obtain the following simultaneous
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equations:

αzY (t)Y (t−) = Jt(t, Rζ0(t−)) +

(
λ+

α∫
R yζ0(t−, y)dµ(y)

)
Rζ0(t−)JR(t, Rζ0(t−)),

CN(t)z
Y (t)Y (t−) = J

(
t,−

αζ0(t, CN(t))

λ
∫
R yζ0(t, y)dµ(y)

Rζ0(t−)

)
− J(t, Rζ0(t−)).

(3.11)

From these, we conclude that J satisfies the following equation:

CN(t)

α

[
Jt(t, Rζ0(t−)) +

(
λ+

α∫
R yζ0(t−, y)dµ(y)

)
Rζ0(t−)JR(t, Rζ0(t−))

]
= J

(
t,−

αζ0(t, CN(t))

λ
∫
R yζ0(t, y)dµ(y)

Rζ0(t−)

)
− J(t, Rζ0(t−)).

Therefore, we have obtained the following proposition.

Proposition 3.2. Suppose that zY is an optimal strategy to (3.8) and Rζ0

defined by (3.10) is a Markov process where Rζ is defined by (3.9). Define

the function J(t, R) by

J(t, Rζ0(t)) :=
1

Rζ0(t)
E[I(E[u′(x+HT (z

Y ))]Rζ0(T ))Rζ0(T )|Rζ0(t)],

where I = (u′)−1. Suppose further that J is a C1,1 function. Then J satisfies

the equation

CN(t)

α

[
Jt(t, Rζ0(t−)) +

(
λ+

α∫
R yζ0(t−, y)dµ(y)

)
Rζ0(t−)JR(t, Rζ0(t−))

]
= J

(
t,−

αζ0(t, CN(t))

λ
∫
R yζ0(t, y)dµ(y)

Rζ0(t−)

)
− J(t, Rζ0(t−)). (3.12)

Remark 3.3. The optimal strategy zY can be calculated from (3.11) as soon

as the equation (3.12) is solved with proper boundary conditions. However,

unlike the Brownian case in the previous section, we have not been able to

determine the characteristic of the martingale measure ζ0 yet. For further

characterization, we must find a relation between ζ0 and the function J from

the second equation in (3.11).
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3.5 Conclusion

In this chapter, we have proposed an alternative approach to derive the PDE

which relates to the optimal solution of the utility maximization problem

in a diffusion model without using the duality principle. We characterized

the optimal solution with an equivalent martingale measure from a simple

necessary condition of optimality. Moreover we applied our method to a util-

ity maximization problem in a compound Poisson model with unpredictable

jump sizes. However, in the result in the compound Poisson model, a strong

assumption that the Radon-Nikodym derivative process corresponding to the

optimal solution is a Markov process is imposed. Moreover the way to solve

the obtained equation is not obvious. It is left for future subjects to resolve

these difficulties.
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Chapter 4

On discrete Itô formulas and

discrete

Hamilton-Jacobi-Bellman

equations

4.1 Introduction

In this chapter, we prove a discrete Itô formula for discrete jump-diffusion

processes and derive a discrete Hamilton-Jacobi-Bellman (dHJB) equation

for expected utility maximization problems in a discrete jump-diffusion model.

Moreover we will analyze a relation between a Hamilton-Jacobi-Bellman

(HJB) variational inequality in a continuous-time geometric Brownian model

and a dHJB equation in a random walk model derived by Ishimura and Mita

(2009).

A discrete Itô formula was originally obtained by Fujita and Kawanishi

(2008) for random walks. Since the increment of the random walk is 1 or
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−1, the proof can be done by simply checking that the formula holds in

each case. We extend this idea to discrete jump-diffusion processes. Here, a

discrete jump-diffusion process is a discrete stochastic process which have a

discrete Poisson process term as well as a random walk term. Although the

formula includes some additional term in comparison with the formula for

randam walks, the proof remains simple.

Ishimura and Mita (2009) applied the discrete Itô formula for random

walks to the analysis of a utility maximization problem in discrete time.

They derived a dHJB equation and proved the verification theorem, which

shows that the solution of the dHJB equation actually provides the optimal

solution of the utility maximization problem. Since the derivation of the

dHJB equation and the proof of the verification theorem have been essen-

tially carried out by the discrete Itô formula, we can generalize the result in

a discrete jump-diffusion model. We set a financial model and a utility maxi-

mization problem as discrete analogues of ones in Aase (1984) which studied

utility maximizations in a simple jump-diffusion model. Then, deriving the

optimality equation for the utility maximization in the model, we apply the

discrete Itô formula derived in advance to the optimality equation and obtain

the dHJB equaiton in the discrete jump-diffusion model.

After that, we will also provide an application of the dHJB equation in a

random walk model. As we have mentioned in Chapter 1, we provide the con-

dition which assures that a proper limit of a solution of the dHJB equation

becomes a viscosity solution of the corresponding HJB variational inequal-

ity in continuous time. The viscosity solution is a kind of weak solutions of

some partial differential equations. The HJB variational inequality is often

employed to deal with singular stochastic optimization problems (i.e., the

problems whose Hamiltonians of the HJB equations diverge). In Chapter 4

43



of Pham (2009), it has been proved that the value function of a utility maxi-

mization problem which is possibly singular is the unique viscosity solution of

the corresponding HJB variational inequality. Our result conversely derives

a viscosity solution of the HJB variational inequality from the solutions of

the dHJB equations in the random walk model derived by Ishimura and Mita

(2009). If the conditions in the theorem are satisfied, this result enables us

to specify the value function of the optimization problem and consequently

find the optimal solution.

The rest of the chapter is organized as follows. Section 4.2 will derive a

discrete Itô formula and a dHJB equation in a discrete jump-diffusion model.

In Section 4.3 , it will be revealed that a solution of a dHJB equation in a

random walk model converges to a viscosity solution of an HJB variational

inequality. Section 4.4 concludes the chapter.

4.2 A discrete Itô formula and a dHJB equa-

tion in discrete jump-diffusion models

In this section, we prove a discrete Itô formula for discrete jump-diffusion

processes and derive a dHJB equation in a discrete jump-diffusion model.

4.2.1 A discrete Itô formula for discrete jump-diffusion

processes

In this subsection, we show that a discrete Itô formula holds for discrete

jump-diffusion processes.

Let (Bt)t=0,1,2,... be a symmetric random walk and (Nt)t=0,1,2,... be a dis-

crete Poisson process. To be precise, (Bt)t=0,1,2,... and (Nt)t=0,1,2,... are sup-
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posed to be discrete stochastic processes such that

P (Bt+1 −Bt = 1) = P (Bt+1 −Bt = −1) =
1

2
,

P (Nt+1 −Nt = 1) = q, P (Nt+1 −Nt = 0) = 1− q

for t = 0, 1, 2, . . . and B0 = N0 = 0 where 0 < q < 1.

Lemma in Fujita and Kawanishi (2008) and Proposition 1 in Ishimura

and Mita (2009) showed that a discrete Itô formula holds for random walks.

Fujita and Kawanishi (2008) used the formula to prove Itô’s formula for

Brownian motions in continuous time and Ishimura and Mita (2009) derived

a dHJB equation in a random walk model and prove the verification theorem

by the formula. We exhibit the formula which is a little more general, though

the proof is unchanged.

Theorem 4.1 (Lemma in Fujita and Kawanishi (2008), Proposition 1 in

Ishimura and Mita (2009)). Let (Yt)t=0,1,2,... be a discrete stochastic process

which satisfies

Yt+1 − Yt = mt + st(Bt+1 −Bt)

for some R-valued random variables mt and st, t = 0, 1, 2, . . . . Then, for any

function f : R× N → R, the following equation holds:

f(Yt+1, t+ 1)− f(Yt, t)

= f(Yt +mt, t+ 1)− f(Yt, t+ 1)

+
1

2

(
f(Yt +mt + st, t+ 1)− f(Yt +mt − st, t+ 1)

)
(Bt+1 −Bt)

+
1

2

(
f(Yt +mt + st, t+ 1)− 2f(Yt +mt, t+ 1) + f(Yt +mt − st, t+ 1)

)
+ f(Yt, t+ 1)− f(Yt, t)

for t = 0, 1, 2, . . . .
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Proof. If Bt+1 −Bt = 1, then the right hand side agrees with the left hand

side of the equation. If Bt+1 − Bt = −1, both sides of the equation agrees.

This finishes the proof. ■

We can generalize this result for discrete jump-diffusion processes which

have an additional term driven by the discrete Poisson process as well as the

random walk.

Theorem 4.2. Let (Xt)t=0,1,2,... be a discrete stochastic process which satisfies

Xt+1 −Xt = mt + st(Bt+1 − Bt) + lt(Nt+1 −Nt)

for some R-valued random variables mt, st and lt, t = 0, 1, 2, . . . . Then, for

any function f : R× N → R, the following equation holds:

f(Xt+1, t+ 1)− f(Xt, t)

= f(Xt +mt, t+ 1)− f(Xt, t+ 1)

+
1

2

(
f(Xt +mt + st, t+ 1)− f(Xt +mt − st, t+ 1)

)
(Bt+1 − Bt)

+
1

2

(
f(Xt +mt + st, t+ 1)− 2f(Xt +mt, t+ 1) + f(Xt +mt − st, t+ 1)

)
+ f(Xt, t+ 1)− f(Xt, t)

+
1

2

(
f(Xt +mt + st + lt, t+ 1)− f(Xt +mt + st, t+ 1)

− f(Xt +mt − st + lt, t+ 1) + f(Xt +mt − st, t+ 1)
)

· (Bt+1 − Bt)(Nt+1 −Nt)

+
1

2

(
f(Xt +mt + st + lt, t+ 1)− f(Xt +mt + st, t+ 1)

+ f(Xt +mt − st + lt, t+ 1)− f(Xt +mt − st, t+ 1)
)
(Nt+1 −Nt)

for t = 0, 1, 2, . . . .

Proof. In a similar way to the proof of Theorem 4.1, we only have to show

the both sides of the equation agrees when (Bt+1 − Bt, Nt+1 − Nt) = (1, 1),
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(1, 0), (−1, 1) and (−1, 0), respectively. Since it is straightforward, we omit

details. ■

4.2.2 A dHJB equation in a discrete jump-diffusion

model

In this subsection, we derive a dHJB equation in a discrete jump-diffusion

model. This is a direct extension of Theorem 2 in Ishimura and Mita (2009).

We set an expected utility maximization problem in a discrete jump-

diffusion model. Suppose that we have a filtration (Ft)t=0,1,2,... which is de-

fined by Ft = σ(B0, B1, . . . , Bt, N0, N1, . . . , Nt) for t = 0, 1, 2, . . . , T . We

define the whole set of trading strategies by

Θ := {u = (ut)0≤t≤T−1|ut is a Ft-measureable random variable

for t = 0, 1, 2, . . . , T − 1.}.

We also define an auxiliary set of trading strategies by

Θ(t, T − 1) := {u = (us)t≤s≤T−1|us is a Fs-measureable random variable

for s = t, t+ 1, . . . , T − 1.}.

We consider the following problem:

sup
u∈Θ

E[U(Xu,0,y
T )] (4.1)

where U is a utility function and, for u ∈ Θ(t, T − 1), 0 ≤ t ≤ T and y ∈ R,

Xu,t,y satisfies

Xu,t,y
s+1 −Xu,t,y

s =((µ− r)us + r)Xu,t,y
s

+ σusX
u,t,y
s (Bs+1 −Bs) + cusX

u,t,y
s (Ns+1 −Ns),

Xu,t,y
t = y
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for t ≤ s ≤ T − 1 where µ, r, σ and c are constants such that µ > r. In

words, Xu,t,y
s is the value of the portfolio which is started with value y at

time t and traded by the strategy u until time s. This is a discrete analogue

of the problem studied in Aase (1984). For convenience, we use the following

notations:

αu := (µ− r)u+ r, βu := σu, γu := cu

for u ∈ R. We define a value function associated with the problem (4.1) by

v(x, t) := sup
u∈Θ(t,T−1)

E[U(Xu,t,x
T )|Ft], (4.2)

v(x, T ) = U(x)

for x ∈ R and t = 0, 1, 2, . . . , T − 1. In this section, we assume that v(x, t) <

∞ for all x and t.

From the value function v, we can obtain a dHJB equation as follows.

Since the dynamic programming in discrete time is unfamiliar, we give a proof

in detail for completeness. For the argument of the dynamic programming

in the following proof, we have referred to proofs of Proposition A.1 and

Proposition 2.1 in Gugushvili (2003) which show the same fact in the context

of mean-variance hedgings in discrete time.

Theorem 4.3. For t = 0, 1, 2, . . . , T − 1, the value function v defined by

(4.2) satisfies a dHJB equation

sup
u∈R

{
V (x+ αux, t+ 1)− V (x, t+ 1)

+
1

2

(
V (x+ αux+ βux, t+ 1)− 2V (x+ αux, t+ 1)

+ V (x+ αux− βux, t+ 1)
)
+ V (x, t+ 1)− V (x, t)

+
q

2

(
V (x+ αux+ βux+ γux, t+ 1)− V (x+ αux+ βux, t+ 1)

+ V (x+ αux− βux+ γux, t+ 1)− V (x+ αux− βux, t+ 1)
)}

= 0. (4.3)
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Proof. We divide the proof into four steps.

(i) First, we show that for any fixed û ∈ Θ,

sup
u∈Θ(t+1,T−1)

E

[
U
(
X

u,t+1,Xû,0,y
t+1

T

)∣∣∣∣Ft

]
=E

[
sup

u∈Θ(t+1,T−1)

E

[
U
(
X

u,t+1,Xû,0,y
t+1

T

)∣∣∣∣Ft+1

]∣∣∣∣Ft

]
. (4.4)

Indeed, for any fixed û ∈ Θ,

E

[
sup

u∈Θ(t+1,T−1)

E

[
U
(
X

u,t+1,Xû,0,y
t+1

T

)∣∣∣∣Ft+1

]∣∣∣∣Ft

]
≥ E

[
E

[
U
(
X

u,t+1,Xû,0,y
t+1

T

)∣∣∣∣Ft+1

]∣∣∣∣Ft

]
= E

[
U
(
X

u,t+1,Xû,0,y
t+1

T

)∣∣∣∣Ft

]
.

Then, taking supremum, we have

E

[
sup

u∈Θ(t+1,T−1)

E

[
U
(
X

u,t+1,Xû,0,y
t+1

T

)∣∣∣∣Ft+1

]∣∣∣∣Ft

]
≥ sup

u∈Θ(t+1,T−1)

E

[
U
(
X

u,t+1,Xû,0,y
t+1

T

)∣∣∣∣Ft

]
. (4.5)

On the other hand, there exists a sequence un ∈ Θ(t+1, T − 1), n = 1, 2, . . .

such that

E

[
U
(
X

un,t+1,Xû,0,y
t+1

T

)∣∣∣∣Ft+1

]
converges to

sup
u∈Θ(t+1,T−1)

E

[
U
(
X

u,t+1,Xû,0,y
t+1

T

)∣∣∣∣Ft+1

]
monotonously from below as n → ∞. Then, by the monotone convergence

theorem, we have

E

[
U
(
X

n,t+1,Xû,0,y
t+1

T

)∣∣∣∣Ft

]
= E

[
E

[
U
(
X

un,t+1,Xû,0,y
t+1

T

)∣∣∣∣Ft+1

]∣∣∣∣Ft

]
→ E

[
sup

u∈Θ(t+1,T−1)

E

[
U
(
X

u,t+1,Xû,0,y
t+1

T

)∣∣∣∣Ft+1

]∣∣∣∣Ft

]
.
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as n → ∞. Since

sup
u∈Θ(t+1,T−1)

E

[
U
(
X

u,t+1,Xû,0,y
t+1

T

)∣∣∣∣Ft

]
≥ E

[
U
(
X

un,t+1,Xû,0,y
t+1

T

)∣∣∣∣Ft

]
,

taking the limit, we get

sup
u∈Θ(t+1,T−1)

E

[
U
(
X

u,t+1,Xû,0,y
t+1

T

)∣∣∣∣Ft

]
≥E

[
sup

u∈Θ(t+1,T−1)

E

[
U
(
X

u,t+1,Xû,0,y
t+1

T

)∣∣∣∣Ft+1

]∣∣∣∣Ft

]
. (4.6)

From (4.5) and (4.6), we obtain

sup
u∈Θ(t+1,T−1)

E

[
U
(
X

u,t+1,Xû,0,y
t+1

T

)∣∣∣∣Ft

]
=E

[
sup

u∈Θ(t+1,T−1)

E

[
U
(
X

u,t+1,Xû,0,y
t+1

T

)∣∣∣∣Ft+1

]∣∣∣∣Ft

]
.

(ii) Second, we assert that for all û ∈ Θ and y ∈ R, v(X û,0,y
t , t) is a super-

martingale, i.e.,

v(X û,0,y
t , t) ≥ E[v(X û,0,y

t+1 , t+ 1)|Ft] (4.7)

for 0 ≤ t ≤ T − 1. Indeed, from (4.4), we have

E[v(X û,0,y
t+1 , t+ 1)|Ft]

= E

[
sup

u∈Θ(t+1,T−1)

E

[
U
(
X

u,t+1,Xû,0,y
t+1

T

)∣∣∣∣Ft+1

]∣∣∣∣Ft

]
= sup

u∈Θ(t+1,T−1)

E

[
U
(
X

u,t+1,Xû,0,y
t+1

T

)∣∣∣∣Ft

]
≤ sup

u∈Θ(t,T−1)

E

[
U
(
X

u,t,Xû,0,y
t

T

)∣∣∣∣Ft

]
= v(X û,0,y

t , t)

for 0 ≤ t ≤ T − 1.
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(iii) Third, we show that

v(x, t) = sup
u∈Θ(t,T−1)

E[v(Xu,t,x
t+1 , t+ 1)|Ft] (4.8)

for x ∈ R and 0 ≤ t ≤ T − 1. Indeed, setting ûs = 0 for s ≤ t − 1 in (4.7),

we have

v(y(1 + r)t, t) ≥ E[v(X
û,t,y(1+r)t

t+1 , t+ 1)|Ft].

Since x ∈ R and ût are arbitrary, we get

v(x, t) ≥ sup
u∈Θ(t,T−1)

E[v(Xu,t,x
t+1 , t+ 1)|Ft].

On the other hand, for any û ∈ Θ(t, T − 1),

E[v(X û,t,x
t+1 , t+ 1)|Ft]

= E

[
sup

u∈Θ(t+1,T−1)

E

[
U
(
X

u,t+1,Xû,t,x
t+1

T

)∣∣∣∣Ft+1

]∣∣∣∣Ft

]
≥ E

[
U
(
X

û,t+1,Xû,t,x
t+1

T

)∣∣∣∣Ft

]
= E

[
U
(
X û,t,x

T

)∣∣∣∣Ft

]
.

Then

sup
u∈Θ(t,T−1)

E[v(Xu,t,x
t+1 , t+ 1)|Ft] ≥ sup

u∈Θ(t,T−1)

E

[
U
(
Xu,t,x

T

)∣∣∣∣Ft

]
= v(x, t).

Therefore we have

v(x, t) = sup
u∈Θ(t,T−1)

E[v(Xu,t,x
t+1 , t+ 1)|Ft].

(iv) Finally, we can show the claim of the theorem. From (4.8), we have

v(x, t)

= sup
u∈Θ(t,T−1)

E[v(x+ αutx+ βutx(Bt+1 − Bt) + γutx(Nt+1 −Nt), t+ 1)|Ft].
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Applying Theorem 4.2, we get

sup
u∈Θ(t,T−1)

E
[
v(x+ αutx, t+ 1)− v(x, t+ 1)

+
1

2

(
v(x+ αutx+ βutx, t+ 1)− 2v(x+ αutx, t+ 1)

+ v(x+ αutx− βutx, t+ 1)
)
+ v(x, t+ 1)− v(x, t)

+
q

2

(
v(x+ αutx+ βutx+ γutx, t+ 1)− v(x+ αutx+ βutx, t+ 1)

+ v(x+ αutx− βutx+ γutx, t+ 1)− v(x+ αutx− βutx, t+ 1)
)∣∣∣Ft

]
= 0.

Then, for x ∈ R, v satisfies

sup
u∈R

{
v(x+ αux, t+ 1)− v(x, t+ 1)

+
1

2

(
v(x+ αux+ βux, t+ 1)− 2v(x+ αux, t+ 1)

+ v(x+ αux− βux, t+ 1)
)
+ v(x, t+ 1)− v(x, t)

+
q

2

(
v(x+ αux+ βux+ γux, t+ 1)− v(x+ αux+ βux, t+ 1)

+ v(x+ αux− βux+ γux, t+ 1)− v(x+ αux− βux, t+ 1)
)}

= 0.

This concludes the proof. ■

Remark 4.4. Theorem 4.3 is a generalization of Theorem 2 in Ishimura

and Mita (2009) when U1 ≡ 0 in their article. Indeed, we can derive dHJB

equation derived in Ishimura and Mita (2009),

sup
u∈R

{
V (x+ αux, t+ 1)− V (x, t+ 1)

+
1

2

(
V (x+ αux+ βux, t+ 1)− 2V (x+ αux, t+ 1)

+ V (x+ αux− βux, t+ 1)
)
+ V (x, t+ 1)− V (x, t)

}
= 0,

by letting q = 0 in (4.3)

52



Remark 4.5. Related to Theorem 4.3, a verification theorem also holds.

However, since its claim and proof are almost the same as Theorem 3 in

Ishimura and Mita (2009), it is not described in this dissertation.

4.3 On a relation between solutions of a HJB

equation and a dHJB equation

In this section, we analyze a relation between an HJB variational inequality

in a continuous-time geometric Brownian model and a dHJB equation in a

random walk model derived by Ishimura and Mita (2009). Our main result

asserts that the limit of a solution of the dHJB equation is a solution of the

corresponding HJB variational inequality.

In this section, we use the following notations:

LuJ(x, t) :=αux
∂

∂x
J(x, t) +

1

2
(βux)2

∂2

∂x2
J(x, t) +

∂

∂t
J(x, t)

Lu,∆tV (x, t) :=V (x+ αux∆t, t+∆t)− V (x, t+∆t)

+
1

2

[
V (x+ αux∆t+ βux

√
∆t, t+∆t)− 2V (x+ αux∆t, t+∆t)

+ V (x+ αux∆t− βux
√
∆t, t+∆t)

]
+ V (x, t+∆t)− V (x, t)

=
1

2

[
V (x+ αux∆t+ βux

√
∆t, t+∆t)

+ V (x+ αux∆t− βux
√
∆t, t+∆t)

]
− V (x, t).

Obviously, the following relation holds:

LuJ(x, t) = lim
∆t↓0

1

∆t
Lu,∆tJ(x, t). (4.9)

With these notations, a dHJB equation derived in Ishimura and Mita (2009)
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when the time intervals are changed to be ∆t,

sup
u∈R

{
V (x+ αux∆t, t+∆t)− V (x, t+∆t)

+
1

2

[
V (x+ αux∆t+ βux

√
∆t, t+∆t)− 2V (x+ αux∆t, t+∆t)

+ V (x+ αux∆t− βux
√
∆t, t+∆t)

]
+ V (x, t+∆t)− V (x, t)

}
= 0

can be written by

sup
u∈R

Lu,∆tV (x, t) = 0.

Furthermore an HJB variational inequality for a singular stochastic control

problem can be defined as follows: Suppose that there exists a continuous

function G(x, p,m, t) defined on R× R× R× [0, T ) such that

sup
u∈A

{
αuxp+

1

2
(βux)2m

}
< ∞ if and only if G(x, p,m, t) ≥ 0,

∀(x, p,m, t) ∈ R× R× R× [0, T )

and G(x, p,m, t) ≥ G(x, p, m̂, t) when m ≤ m̂ where A ⊂ R is a set which is

chosen so that the trading strategy can be admissible in each problem. Then

the equation

min

{
− sup

u∈A
LuJ(x, t), G

(
x,

∂J

∂x
(x, t),

∂2J

∂x2
(x, t), t

)}
= 0 (4.10)

is called a HJB variational inequality. Singular stochastic control problems

often arise in cases such as A ⊂ R is not bounded and so on and HJB

variational inequalities are used to handle those problems. See Section 4.3 in

Chapter 4 of Pham (2009) for more details about HJB variational inequalities.

Next, we state the definition of viscosity solutions of (4.10). We have

referred to Definition 4.2.1 in Pham (2009) to describe the following definition

of viscosity solutions of the HJB variational inequality.
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Definition 4.6. A locally bounded function H(x, t), (x, t) ∈ R × [0, T ) is

called

(i) a viscosity subsolution of (4.10) on R× [0, T ) if

min

{
− sup

u∈A
LuJ(x̄, t̄), G

(
x̄,

∂J

∂x
(x̄, t̄),

∂2J

∂x2
(x̄, t̄), t̄

)}
≤ 0

for all (x̄, t̄) ∈ R × [0, T ) and for any C2,1 function J(x, t) such that

H(x, t) ≤ J(x, t), ∀x, t and H(x̄, t̄) = J(x̄, t̄),

(ii) a viscosity supersolution of (4.10) on R× [0, T ) if

min

{
− sup

u∈A
LuJ(x̄, t̄), G

(
x̄,

∂J

∂x
(x̄, t̄),

∂2J

∂x2
(x̄, t̄), t̄

)}
≥ 0

for all (x̄, t̄) ∈ R × [0, T ) and for any C2,1 function J(x, t) such that

H(x, t) ≥ J(x, t), ∀x, t and H(x̄, t̄) = J(x̄, t̄) and

(iii) a viscosity solution of (4.10) if it is both a subsolution and supersolution

of (4.10).

We provide our main result in this section. It claims that the limit of

a solution of the dHJB equation becomes a solution of the HJB variational

inequality when an optimal solution of the dHJB equation exists and some

conditions are satisfied.

Theorem 4.7. Suppose that there exists a continuous function G(x, p,m, t)

defined on R× R× R× [0, T ) such that

sup
u∈A

{
αuxp+

1

2
(βux)2m

}
< ∞ if and only if G(x, p,m, t) ≥ 0,

∀(x, p,m, t) ∈ R× R× R× [0, T )

and G(x, p,m, t) ≥ G(x, p, m̂, t) when m ≤ m̂ for given A ⊂ R. Suppose also

that the dHJB equation sup
u∈R

Lu,∆tV (x, t) = 0 admits an optimal strategy ũ∆t
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and an optimal solution H∆t(x, t) for each 0 < ∆t ≤ 1 such that the limit ũ =

lim
∆t↓0

ũ∆t exists and H∆t(x, t) uniformly converges to a locally bounded function

H(x, t). Suppose further that ũ has a bounded and closed neighborhood B ⊂ A

and there exists a real number ξ0 > 0 such that ũξ ∈ B for any 0 < ξ ≤ ξ0.

Then H(x, t) is a viscosity solution of the HJB variational inequality

min

{
− sup

u∈A
LuJ(x, t), G

(
x,

∂J

∂x
(x, t),

∂2J

∂x2
(x, t), t

)}
= 0.

Proof. We divide the proof into two steps.

(i) First, we show that the viscosity subsolution property. Suppose that a

C2,1 function J(x, t) and a point (x̄, t̄) satisfy H(x, t) ≤ J(x, t), ∀(x, t) and

H(x̄, t̄) = J(x̄, t̄). Assume on the contrary that

min

{
− sup

u∈A
LuJ(x̄, t̄), G

(
x̄,

∂J

∂x
(x̄, t̄),

∂2J

∂x2
(x̄, t̄), t̄

)}
> 0.

Then we have − sup
u∈A

LuJ(x̄, t̄) > 0. From this, we get LuJ(x̄, t̄) < 0 for all

u ∈ A. Since, from (4.9), we have

lim
ϵ↓0

1

ϵ
Lu,ϵJ(x̄, t̄) = LuJ(x̄, t̄) < 0

for each u ∈ A, there exists a number ϵ(u) > 0 such that Lu,ϵJ(x̄, t̄) < 0

for all 0 < ϵ ≤ ϵ(u). In particular, if we put ϵ0 = min
u∈B

ϵ(u), then we have

Lu,ϵJ(x̄, t̄) < 0 for all u ∈ B and 0 < ϵ ≤ ϵ0. Moreover since

Lu,ϵJ(x̄, t̄)

=
1

2

{
J(x̄+ αux̄ϵ+ βux̄

√
ϵ, t̄+ ϵ) + J(x̄+ αux̄ϵ− βux̄

√
ϵ, t̄+ ϵ)

}
− J(x̄, t̄)

≥ 1

2

{
H(x̄+ αux̄ϵ+ βux̄

√
ϵ, t̄+ ϵ) +H(x̄+ αux̄ϵ− βux̄

√
ϵ, t̄+ ϵ)

}
−H(x̄, t̄)

= lim
δ↓0

[
1

2

{
Hδ(x̄+ αux̄ϵ+ βux̄

√
ϵ, t̄+ ϵ)

+Hδ(x̄+ αux̄ϵ− βux̄
√
ϵ, t̄+ ϵ)

}
−Hδ(x̄, t̄)

]
= lim

δ↓0
Lu,ϵHδ(x̄, t̄),
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there exists a number δ0 > 0 such that Lu,ϵHδ(x̄, t̄) < 0 for all u ∈ B, 0 < ϵ ≤

ϵ0 and 0 < δ ≤ δ0. However, when we take a number 0 < ξ ≤ min{ϵ0, δ0, ξ0}

and u = ũξ, since ũξ and Hξ solve the dHJB equation sup
u∈R

Lu,ξV (x, t) = 0,

we must have Lũξ,ξHξ(x̄, t̄) = 0 and it yields a contradiction. Therefore

min

{
− sup

u∈A
LuJ(x̄, t̄), G

(
x̄,

∂J

∂x
(x̄, t̄),

∂2J

∂x2
(x̄, t̄), t̄

)}
≤ 0

must be true.

(ii) Second, we show that the viscosity supersolution property. Suppose

that a C2,1 function J(x, t) and (x̄, t̄) satisfy H(x, t) ≥ J(x, t), ∀(x, t) and

H(x̄, t̄) = J(x̄, t̄). Assume on the contrary that

min

{
− sup

u∈A
LuJ(x̄, t̄), G

(
x̄,

∂J

∂x
(x̄, t̄),

∂2J

∂x2
(x̄, t̄), t̄

)}
< 0.

Then we have either

− sup
u∈A

LuJ(x̄, t̄) < 0 or G

(
x̄,

∂J

∂x
(x̄, t̄),

∂2J

∂x2
(x̄, t̄), t̄

)
< 0.

However, sinceG(x̄, ∂J(x̄, t̄)/∂x, ∂2J(x̄, t̄)/∂x2, t̄) < 0 means− sup
u∈A

LuJ(x̄, t̄) =

−∞, we only have to consider the case where − sup
u∈A

LuJ(x̄, t̄) < 0. When

sup
u∈A

LuJ(x̄, t̄) > 0, there exists some ū ∈ A such that LūJ(x̄, t̄) > 0. Further-

more since we have

lim
ϵ↓0

1

ϵ
Lū,ϵJ(x̄, t̄) = LūJ(x̄, t̄) > 0,

there exists a number ϵ1 > 0 such that Lū,ϵJ(x̄, t̄) > 0 for all 0 < ϵ ≤ ϵ1. We
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can also obtain

Lū,ϵJ(x̄, t̄)

=
1

2

{
J(x̄+ αūx̄ϵ+ βūx̄

√
ϵ, t̄+ ϵ) + J(x̄+ αūx̄ϵ− βūx̄

√
ϵ, t̄+ ϵ)

}
− J(x̄, t̄)

≤ 1

2

{
H(x̄+ αūx̄ϵ+ βūx̄

√
ϵ, t̄+ ϵ) +H(x̄+ αūx̄ϵ− βūx̄

√
ϵ, t̄+ ϵ)

}
−H(x̄, t̄)

= lim
δ↓0

[
1

2

{
Hδ(x̄+ αūx̄ϵ+ βūx̄

√
ϵ, t̄+ ϵ)

+Hδ(x̄+ αūx̄ϵ− βūx̄
√
ϵ, t̄+ ϵ)

}
−Hδ(x̄, t̄)

]
= lim

δ↓0
Lū,ϵHδ(x̄, t̄).

Then there exists a number δ1 > 0 such that Lū,ϵHδ(x̄, t̄) > 0 for all 0 < ϵ ≤

ϵ1 and 0 < δ ≤ δ1. In particular, for any η ≤ min{ϵ1, δ1}, we can deduce that

Lū,ηHη(x̄, t̄) > 0. However, since ū ∈ A and ũη is a optimal strategy of the

dHJB equation, we have

Lū,ηHη(x̄, t̄) ≤ Lũη ,ηHη(x̄, t̄) = 0

and it yields a contradiction. Therefore

min

{
− sup

u∈A
LuJ(x̄, t̄), G

(
x̄,

∂J

∂x
(x̄, t̄),

∂2J

∂x2
(x̄, t̄), t̄

)}
≥ 0

must be true.

Finally, from (i) and (ii), we get the assertion. ■

Remark 4.8. By Theorem 4.7, we may use dHJB equations to analyze HJB

variational inequalities in continuous time as long as dHJB equations admit

optimal solutions and some conditions are satisfied. However, in most cases

where the Hamiltonians of HJB equations are singular, the corresponding

dHJB equations may also diverge. This flaw must be overcome for practical

use of this result.
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4.4 Conclusion

In this chapter, we have proved a discrete Itô formula for discrete jump-

diffusion processes and derived a dHJB equation for expected utility maxi-

mization problems in a discrete jump-diffusion model. We have also provided

an application of the dHJB equation in a random walk model. It has been

shown that a proper limit of a solution of the dHJB equation becomes a vis-

cosity solution of the corresponding HJB variational inequality in continuous

time under some conditions. However, in most cases where the Hamiltonians

of HJB equations are singular and HJB variational inequalities should be

used, the corresponding optimization problem in discrete time may also be

singular. Then the condition that the dHJB equation admits a solution may

not be realistic. It is left for the future to overcome this weakness.

59



Chapter 5

Conclusions

This dissertation focused on two basic optimization problems in mathemati-

cal finance, the multiperiod mean-variance portfolio selection and the utility

maximization problem, and provided some new attempts for each field of

study.

In Chapter 2, explicit solutions to multiperiod mean-variance portfolio

selection problems in a discrete-time model and a continuous semimartingale

model have been provided. Unlike the literature referred in Chapter 1, we

have dealt with the problem applying the results of mean-variance hedging

problems. In the discrete-time model, we have employed the ordinary La-

grange multiplier method to tackle the problem in a simple way. We have seen

that the problem of minimizing the Lagrangian with respect to the invest-

ment strategies can be regarded as a mean-variance hedging problem which

was solved by Gugushvili (2003) using dynamic programming. For obtain-

ing an explicit solution, we have assumed that the discounted price process

of the security satisfies the deterministic mean-variance tradeoff condition.

Then we have derived the explicit solution and realized a relation between

the optimal solution and the variance-optimal martingale measure (or the
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minimal martingale measure) in the model. In the continuous-time model,

we have solved a mean-variance portfolio selection problem by the same ap-

proach as the discrete-time case with the result of the mean-variance hedging

obtained by Rheinländer and Schweizer (1997). The result shows that the

optimal strategy of the original problem is obtained as a multiple of the op-

timal strategy of the mean-variance hedging. Our approach may be valid for

continuous-time mean-variance portfolio selections in general semimartingale

model if we employ the result given by Jeanblanc et al. (2012) to handle the

mean-variance hedging. However, we have always assumed that the growth

rate of the risk-free asset is zero and a way to remove this limitation is not

obvious. We have also not concerned the condition which prohibits the value

of the portfolio becoming negative as Bielecki et al. (2005). It is left for the

future to overcome these shortcomings.

In Chapter 3, we have proposed an alternative approach to derive the PDE

which relates to the optimal solution of the utility maximization problem in a

diffusion model without using the duality principle. We characterized the op-

timal solution with an equivalent martingale measure from a simple necessary

condition of optimality. Then we have identified the equivalent martingale

measure and derived the PDE by Itô’s formula. Moreover we applied our

method to a utility maximization problem in a compound Poisson model

with unpredictable jump sizes. Assuming that the optimal solution exists,

an equation which relates to the optimal solution of the utility maximization

was derived. However, in the result in the compound Poisson model, a strong

assumption that the Radon-Nikodym derivative process corresponding to the

optimal solution is a Markov process is imposed. Moreover the way to solve

the obtained equation is not obvious. It is left for a future subject to resolve

these difficulties.
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In Chapter 4, we have proved a discrete Itô formula for discrete jump-

diffusion processes and derived a dHJB equation for expected utility max-

imization problems in a discrete jump-diffusion model. After deriving the

optimality equation for the utility maximization in the model, we applied

the discrete Itô formula derived in advance to the optimality equation and

obtained the dHJB equation in the model. We have also provided an appli-

cation of the dHJB equation in a random walk model. It has been shown

that a proper limit of a solution of the dHJB equation becomes a viscosity

solution of the corresponding HJB variational inequality in continuous time.

If the conditions in the theorem are satisfied, this result enables us to specify

the value function of the optimization problem in continuous time and con-

sequently find the optimal solution when we know that the value function

is the unique viscosity solution of the HJB variational inequality. However,

in most cases where the Hamiltonians of HJB equations are singular and

HJB variational inequalities should be used, the corresponding optimization

problem in discrete time may also be singular. Then the condition that the

dHJB equation admits a solution may not be realistic. It is left for the future

to overcome this weakness.
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