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We study workers’ incentives of reporting problems within an OLG organization

consisting of a subordinate and a manager. The subordinate is responsible for

reporting a problem, and the manager is responsible for solving the reported

problem. The subordinate has an incentive to conceal a detected problem since if

he reports it but the manager is too lazy to solve the problem, the responsibility is

transferred to the subordinate since he becomes a manager in the next period. We

show that concealment is more likely either if subordinates are farsighted or the

problem’s growth rate increases over time.
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1. Introduction

Firms sometime have problems for their products and management systems. If these problems

are ignored, they would cause accidents that harm consumers. Some problems grow over time

and the harm from the accidents gets larger as time proceeds and then, procrastination of the

solution leads to a catastrophe.

As an example, consider a mass food poisoning caused by a Japanese dairy company, Snow

Brand Milk Products Co. in 2000. It left 14,780 people ill. As a cause, it is considered

that the company’s crisis management had some problems.1 In this case, the harm from an

accident could get larger over time since, as the scale of plants gets larger, the harm from a

food poisoning also gets larger.

To prevent accidents, these problems should be solved in their early stages. Therefore

workers should report problems as soon as they notice them. Do they report problems to their

superior? In the above case, the problem in the company’s crisis management was not resolved

until the accident occurred. It is suspected that no one raised an issue. However, it is also

doubtful that no one noticed the problem. Indeed, workers at the plant told that the plant’s

manual had been ignored for years.2 Thus, it is also suspected that workers did notice the

problem but not report it to the company. Such concealment of a problem is not specific to this

case. Chernov and Sornette (2016) present many detailed case studies and say that long-time

concealment of risk information is a crucial cause of catastrophic man-made disasters and

accidents, such as Chernobyl nuclear disaster and many financial crises.

This paper investigates the incentive and cause of long-time concealment in such important

problems. To see workers’ incentives of concealing problems, suppose that a worker detects a

problem and reports it to his manager. If the cost of solving the problem is too large for the

manager, the manager may not solve the problem. In this case, the problem remains in the

next period, when the worker may be promoted to a manager, in which case, he is in charge

of dealing with the problem. Moreover, if he ignores the problem and an accident occurs, he

receives harsh criticism since the problem has been reported in the firm (by himself) and he

1Failure Knowledge Database, http://www.sozogaku.com/fkd/en/cfen/CA1000622.html.
2“Snow Brand pays the price,” The Japan Times, July 12, 2000.
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Player t
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report
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ignore
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solve or ignore

The problem disappears.

Figure 1: Timing of the game

knew the problem. This possibility gives him an incentive not to report the problem in the first

place. By doing so, he can reduce the responsibility as a manager in the future. We call it the

incentive of reducing the responsibility. This paper formalizes this idea.

We consider an overlapping-generation organization that consists of two kinds of workers:

a subordinate and a manager. Each worker lives for two periods: he works as a subordinate in

his first period and works as a manager in his second period. In each period, the subordinate is

in charge of investigating whether there is a problem and reporting a problem to the manager.

Reporting a problem is costless. The manager is in charge of solving the reported problem,

which is costly for him. Figure 1 illustrates the timing of the game.

An unsolved problem may cause an accident, in which case, only the workers in that period

may be punished or criticized. If the problem has been reported in the past and hence the

manager knew the problem,3 he is exposed to harsh criticism. On the other hand, the problem

has not been reported, criticism against the manager is mild while the subordinate is punished

for not detecting or reporting the problem.4

The size of punishments (or criticism) and the cost of solving a problem are proportional to

3In other case, the problem is detected by an outsider, which also causes blames for the workers.
4This assumption is justified by a behavioral bias that people tend to attribute heavier responsibility on the

person who could make the decision. Bartling and Fischbacher (2012) show an experimental evidence. In
their experiment, persons could mitigate harsh criticism to them by delegating their decision right to another
person. In our model, if the problem has not been reported, the manager might not have a chance to solve and
therefore, the criticism would be mitigated.
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the scale of the problem. If the scale of the problem is large, solving the problem is more costly,

and when it causes an accident, it brings more harm and arouses harsher criticism against the

firm and the workers who are responsible. The problem’s scale changes over time exogenously.

Under the above setting, the incentive of reducing the responsibility arises and it has a few

interesting features. First, it has complementarity between subordinates in different genera-

tions. That is, a subordinate’s incentive for reporting a problem is larger when the subordinate

in the next generation reports. A subordinate conceals a problem mainly to leave the problem

unknown to the firm, thereby reducing the criticism against him for not solving the problem

when he is the manager. But if his subordinate reports it to him when he is the manager, his

act of concealment is wasted and the problem is officially known in the firm and hence he will

be criticized if he leaves the problem unsolved.

This complementarity creates multiple equilibria. Indeed, for some parameter values,

multiple equilibria exist where no subordinate conceals in an equilibrium and all subordinate

conceal in another equilibrium. In this case, as Kreps (1990) discusses, corporate culture has

important role for determining which equilibrium is realized. That is, if “reporting” is a culture

in the firm, each worker has an incentive to report because he believes that the other workers

also report. The culture of “reporting” is realized as an equilibrium. In the same way, the

culture of “concealment” is also realized as an equilibrium.

The present model also shows that subordinates’ incentive to conceal is large when the scale

of the problem grows fast. The reason is that the benefit of reporting a problem is to reduce

punishment imposed when an accident occurs in the present period. On the other hand, the

cost of reporting the problem is to increase punishment imposed when an accident occurs in

the next period when he is the manager. Thus, if the scale of the problem grows at a higher

rate, punishment in the next period is relatively larger, which makes reporting more costly.

A way to encourage the manager to solve reported problems is to increase punishment or

criticism against the manager when an accident occurs due to a problem that has been reported

in the firm but ignored. Indeed, the public’s anger is usually stronger when the manager knew

the problem. However, this additional criticism for ignoring the known problem may have

adverse effects on subordinates’ incentives to report. This is because, by reporting, the worker
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makes the problem officially known in the firm and hence increases criticism he receives when

he is the manager if he does not solve the problem. The additional punishment for ignoring the

problem does encourage the manager to solve problems that are reported, but it may discourage

subordinates from reporting problems to the manager.

Another way to encourage the solution of problems is to give the manager a reward for

solving problems. However, this also has adverse effects on subordinates’ incentives to report:

it gives a subordinate incentives to obtain rewards by hiding the problem and solving it himself

after he becomes the manager. The problem is found and solved by the manager, but the

solution is delayed.

1.1. Related Literature

Concealment of information is studied in the literature of disclosure games, which is developed

by Grossman (1981); Milgrom (1981) and recent literature of information design (Rayo and

Segal, 2010; Kamenica and Gentzkow, 2011). These studies focus on the sender’s disclosure

strategy to control the receivers’ belief. We rather focus on another function of information

transmission; reporting a problem also transfers responsibility. Instead of simplifying the

strategy to conceal, we discover a novel incentive of information concealment.

The incentive to report problems is also studied in the literature of whistleblowing.5 For

the costs of whistleblowing, many papers consider the revenge from the firm. For example,

in the literature of corruption, a corrupting agent can threaten the monitor to retaliate, which

discourages the monitor from reporting the corruption. In this context, Chassang and Padró

i Miquel (2016) explore anti-corruption mechanisms. Heynes and Kapur (2009) provide a

model where employees have several behavioral motivations of whistlebrowing, such as social

welfare concern. Unlike these studies, the present paper assumes that neither workers are

threatened retaliation from the firm nor they have behavioral incentives that Heynes and Kapur

assume. One of our contributions is showing that workers may hide problems even when

reporting them brings no friction between the company.

5For example, see Dasgupta and Kesharwani (2010) a survey of the literature and Bowen et al. (2010) and Dyck
et al. (2010) for empirical studies.
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This paper also relates to the studies of organizational corruption. Many papers investigate

causes of persistent corruption and demonstrate the possibility of multiple equilibria. They

consider the causes of the possibility of multiple equilibria as group reputation or social norms.

For example, Tirole (1996) develops a model of group reputation in an OLG organization, in

which a current member’s incentives are affected not only by his past behavior but also by past

members’ behavior. Tirole shows the possibility of multiple steady states with and without

corruptions. Several papers consider a corruptive situation where the cost of corrupting is

cheaper when the others corrupt but expensive the others do not. This assumption is often

justified by assuming that players take care of social norms. For example, players are reluctant

to take actions that majority of the players do not.6 This creates the situation of coordination

games. Many papers investigate how coordination is maintained in coordination games,7 which

can apply to the theory of corruption.

This paper presents a motivation of concealment of a problem and also indicates a possibility

of multiple equilibria by showing that the motivation has complementarity between subordi-

nates in different generation. Interpreting concealment as a kind of corruption, the contribution

of this paper is different from these papers in the following senses. First, in our model, players

neither have reputation concern nor take care of social norms. Second, the many past studies

assume the coordination game structure in the term of utility. In this paper, this coordination

game situation is derived from the structure of the game: the future subordinate’s concealment

reduces the possibility of severe punishment, which strengthens the motive of reducing the

responsibility. In this sense, our logic is similar to Tirole (1985)’s one who shows persistent

bubble in OLG economies.

Our study also relates to the economics of crime (Becker, 1968), which shows that increasing

punishments is less costly than increasing the probability of conviction. On the other hand,

this study shows that increasing punishments against responsible managers distorts subordi-

nates’ incentives of reporting problems, thereby leaving problems unreported and raising the

probability of accidents.

6For example, see Schneider and Bose (2017).
7In evolutionary games, see Young (1993); Kandori et al. (1993), and so on. In repeated games in an overlapping

generation organization, see Kreps (1990); Acemoglu and Jackson (2015), and so on.
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Our model also relates to dynamic contributions to a public good, since solving and reporting

a problem can be considered as a public good. For example, Bliss and Nalebuff (1984) and

Bilodeau and Slivinski (1996) consider dynamic contributions to a public good with continuous

time and simultaneous decision making. Bolle (2011) and Bergstrom (2012) consider private

provision of a public good with sequential decision making.

Unlike these papers, our model assumes that a providing a public good (i.e., solving a

problem) needs two steps of contributions: reporting and solving. In the standard model of

private provision of a public good, players’ incentives of not contributing is to free-ride on

others’ contributions. In our model, a subordinate does not report since his manager does not

solve and he has to complete the second step by himself when he becomes a manager.

2. Model

There are two players in each period. Player t ∈ N = {0, 1, 2, . . .} lives for two periods: period

t and t + 1. In period t, player t works as a subordinate and is promoted to a manager in period

t + 1.

We assume that a single problem arises in period 0, and no other problem arises thereafter. A

worker does not know what the problem is until he detects the problem himself or the problem

is reported by someone else.

The sequence of events in each period is as follows. At the beginning of each period,

the subordinate detects the problem with probability qS ∈ (0, 1) and the manager detects the

problem with probability qM ∈ [0, 1). Then players make decisions in the following order:

1. If the problem is detected by the manager (possibly in the previous period) and the

problem is not solved, the manager decides whether to solve the problem.

2. If the problem remains unsolved and the subordinate detects the problem, the subordinate

decides whether to report the problem to the manager.

3. If the problem is reported (possibly in a previous period), the manager decides whether

to solve the problem.
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Figure 2: Flow of decisions in each period

The decision flow is illustrated in Figure 2. Once the problem is reported, the problem becomes

known publicly in the firm and hence Stages 1 and 2 are skipped in subsequent periods. The

game ends when the problem is solved.

Let st denote the scale of the problem at period t. The sequence of scales (st)t∈N is

exogenously given. The cost of solving the problem for manager in period t depends on the

scale st and is given by ct st , where ct denotes the manager’s problem-solving ability and is his

private information. The manager learns the value of ct after he is promoted to a manager in

period t. For each t, ct follows a distribution function F independently. We assume that the

support of F is an interval in R++.

In each period, if the problem is unsolved, the problem causes an accident with probability

p ∈ (0, 1).8 If an accident occurs in a period, only players who live in the period are punished

(or criticized).

The amount of punishment (or criticism) against workers depends on whether the problem

has been reported. If the problem has not been reported and hence the problem is not known to

the firm, punishment (or disutility from it) is dM,U st to the manager and dSst to the subordinate.

If the problem has been reported in the past, only the manager (in the current period) is punished

and punishment is given by dM,Rst . We assume that dM,R > dM,U , i.e., punishment against the

manager is harsher when the problem is known to the firm. Note that the manager in period t

is punished if an accident occurs in period t even if the problem is reported in period t′ < t.

We assume that when an accident occurs, the problem becomes known and the manager is

8An accident may include an event where the problem is detected by an outsider and becomes a scandal.
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forced to solve the problem (and hence pay the cost ct).

Let bM st be the amount of rewards to the manager for solving the problem, and bSst be the

amount of rewards to the subordinate for reporting the problem.

Finally, let δ ∈ (0, 1) denote the common discount factor.

3. Behavior of managers and subordinates

3.1. Managers’ behavior

To consider the manager’s optimal action, first consider the case where the problem has been

reported. The expected utility of solving the problem is bM st − ct st , while the expected utility

of ignoring the problem is −p(dM,Rst + ct st). Therefore, the manager solves the reported

problem if and only if

bM + pdM,R

1 − p
⩾ ct . (1)

Next, we consider the case where the problem has not been reported but the manager knows

the problem (i.e., the manager detected the problem in the current or preceding period). Then,

before the subordinate acts, the manager decides whether to solve the problem. Let rt be the

probability that the subordinate in the current period t reports the problem when he detects the

problem. Then, the manager’s expected utility for ignoring the problem is given by

−(1 − qSrt)p(dM,U st + ct st) + qSrt max
{
bM st − ct st, −p(dM,Rst + ct st)

}
.

The expected utility of solving the problem is the same as above. The comparison of the

expected utilities implies that the manager solves the problem if and only if

bM + pdM,U

1 − p
⩾ ct .

Since we assume dM,R > dM,U , the manager’s incentive to solve the problem is stronger when

the problem is reported.

9



3.2. Subordinates’ behavior

We now consider the optimal behaviors of the subordinate. The subordinate in period t has

nothing to do if the problem has been solved or reported in the past, or the subordinate fails

to detect the problem. Thus consider the case when the problem has been neither solved nor

reported, and the subordinate detects the problem in the current period.

Let I(rt−1) denote the subordinate’s belief that the manager will ignore the problem if the

subordinate reports the problem. This is the subordinate’s updated belief that the manager’s

cost ct violates (1). The subordinate’s belief on ct is updated before his move since the manager

could solve the problem at the beginning of this period if he knew the problem at that point,

but he did not. Thus it is possible that the manager knew the problem at the beginning of this

period and chose not to solve the problem, which implies that the manager’s cost ct is likely to

be high. Formally, the subordinate’s belief I(rt−1) is given by

I(rt−1) B
1 − qSrt−1

{qS(1 − rt−1) + (1 − qS)qM}
[
1 − F

(
bM+pdM,U

1−p

)]
+ (1 − qS)(1 − qM)

×
[
1 − F

(
bM + pdM,R

1 − p

)]
Here qS(1 − rt−1) + (1 − qS)qM is the posterior probability that the current manager knew the

problem privately at the beginning of the current period.

The belief has to be modified for the manager in period 0 since he starts as a manager. To

put it differently, since the problem arises in period 0, the problem is unknown to him when

he is a subordinate. Thus the manager knows the problem in period 0 only if he detects it in

this period. Therefore the belief of the subordinate in period 0 about his manager’s cost c0 is

given by

I0 B
1

qM
[
1 − F

(
bM+pdM,U

1−p

)]
+ (1 − qM)

×
[
1 − F

(
bM + pdM,R

1 − p

)]
.

Since I(1) = I0, we can assume, without loss of generality, that r−1 = 1.

We now compute a worker’s continuation utility in the second period when the problem
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remains unsolved. Let

DR B Ec
[
max{−p(dM,R + c), bM − c}

]
, DU B Ec

[
max{−p(dM,U + c), bM − c}

]
.

Then DRst+1 gives the expected utility in the second period when the problem is unsolved but

reported, while DU st+1 is the expected utility when the problem is unsolved and unreported.

Summing up these definitions, the subordinate’s expected utility of reporting the problem is

given by

bSst + δ(1 − p)I(rt−1)DRst+1.

If, on the other hand, the subordinate does not report the problem, his expected utility is

−pdSst + δ(1 − p)
[
(1 − qSrt+1)DU st+1 + qSrt+1DRst+1

]
.

Thus the necessary and sufficient condition for the subordinate to report the problem is char-

acterized as

Lemma 1. The subordinate in period t > 0 reports the problem if and only if

φrt−1,rt+1(t) B bS + pdS + δ(1− p)
[
−(1 − I(rt−1))DR − (1 − qSrt+1)(DU − DR)

] st+1
st
⩾ 0. (2)

This value is the subordinate t’s net payoff from reporting the problem, per unit of problem

scale in period t. The first term bS is the bonus for reporting. The second term pdS is expected

punishments he receives in the current period if he does not report. The term in the square

bracket in (2) is the net gain from reporting in the second period, which consists of two terms.

The first term shows that, by reporting, the subordinate loses the continuation payoff DR (which

may be negative) if the manager solves the problem right away (which occurs with probability

1 − I(rt−1)). The next term shows that, by making the problem public, his payoff as a manager

drops by DU − DR > 0 if his subordinate does not find or report the problem (which occurs

with probability 1 − qSrt+1).

We concentrate on the case that st+1/st is monotone in t. To guarantee the monotonicity

of st+1/st , we prepare some sufficient conditions. At first, suppose that st has a continuous
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extension s : R+ → R+. If s(t) is log-concave (resp. log-convex) function of t, st+1/st is

decreasing (resp. increasing) in t. For example, the density function of a normal distribution

function is log-concave. The following fact gives other sufficient conditions.

Fact 1. Consider an increasing function G such that G(0) = 0. Suppose that st+1 = G(st) for

each t ∈ N. Then, if G is (strictly) concave, G(s)/s is (strictly) decreasing, and if G is (strictly)

convex, G(s)/s is (strictly) increasing. Thus, if G(s) > s for each s and G is strictly concave,

st+1/st is strictly decreasing.

4. Equilibrium and welfare

This section characterizes pure-strategy perfect Bayesian equilibria (PBE). As a basic model,

we assume that bM = 0. This implies that DR < 0 and DU < 0. We first investigate the

properties of incentives to report. Recall that DR < 0, DU > DR, and I(rt−1) is decreasing

in rt−1. These facts immediately implies that the subordinate’s incentives to report satisfy a

property of complementarity. Although the proof is evident, it gives an insight into incentives

to report.

Lemma 2 (Complementarity of reporting). Suppose that DR < 0. Then, for each t, φr,r ′(t) is

increasing in r and r′.

This implies that a subordinate has stronger incentives to report if the subordinates in

contiguous generations report. Lemmas 1 and 2 yield the following necessary and sufficient

conditions for the existence of two equilibria.

Lemma 3. (1) There exists a PBE where the subordinate in each period reports the problem

(if detected), if and only if φ1,1(t) ⩾ 0 for each t.

(2) There exists a PBE where the subordinate in each period conceals the problem, if and

only if φ1,0(0) ⩽ 0 and φ0,0(t) ⩽ 0 for each t ⩾ 1.

Remark 1 (Multiple equilibria). The conditions in the above lemmas are not mutually ex-

clusive. Thus there exists a profile of parameter values for which both conditions are sat-

isfied and hence multiple equilibria exist. As illustrated in Figure 3, if φ1,0(0) ⩽ 0 and
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Figure 3: Multiple equilibria

φ0,0(t) ⩽ 0 ⩽ φ1,1(t) for all t, then “all subordinates report” and “all subordinates conceal” are

both equilibria. Thus, if everyone else reports, it is optimal to report. If everyone else hides,

hiding is optimal. This suggests that corporate culture (Kreps, 1990) plays a critical role to

determine workers’ reporting behavior.

Note that while φ1,1 is increasing in qS, φ0,0 is decreasing in qS. Therefore, if qS gets larger,

since the difference φ1,1 − φ0,0 becomes also larger, and then, the inequality φ1,1 ⩾ 0 ⩾ φ0,0

becomes more likely to hold. Then, multiple equilibria are likely to occur. △

We now explore the other equilibria. We focus on the case where the growth rate of the

scale st+1/st is monotone.

First, we consider the case when st+1/st is nondecreasing in t, that is scale growth rate is

nondecreasing over time. Let t1,0 ∈ N be such that φ1,0(t1,0) > 0 > φ1,0(t1,0 + 1). If t1,0 exists,

it is unique by the monotonicity of φ1,0. If it exists, an additional equilibrium, as the following

lemma shows.

Lemma 4. Suppose that bM = 0, st+1/st is nondecreasing in t, and t1,0 exists. Then there

exists a PBE where the subordinate at period t reports if and only if t ⩽ t1,0.

We have shown that there can be three PBEs with pure strategies. The following theorem

shows that no other pure-strategy PBE exists.

Theorem 1. Suppose that bM = 0 and st+1/st is nondecreasing in t. Suppose also that

φ1,0(t) , 0 for all t. Then for each pure-strategy PBE, there exists t̂ ∈ {−1, t1,0,+∞} such that

the subordinate in period t reports if and only if t ⩽ t̂.

When st+1/st is nonincreasing, the set of equilibria is characterized similarly.

13



Corollary 1. Suppose that bM = 0, st+1/st is nonincreasing in t, and φ0,1(t) , 0 for all t.

Let t0,1 ∈ N be such that φ0,1(t0,1) < 0 < φ0,1(t0,1 + 1), which is unique if exists. Then for

each pure-strategy PBE, there exists t̂ ∈ {−1, t0,1,+∞} such that the subordinate in period t

conceals if and only if t ⩽ t̂.

In either case, the equilibrium may result in a tragedy. For example, when the growth rate

of the problem is increasing (Theorem 1), if the problem is not detected before the threshold

period t̂, the problem will never be reported. Thus the problem continues to grow at an

increasing rate until an accident occurs and causes large damage. On the other hand, when

the growth rate of the problem is decreasing, the problem grows fast in the early stage but the

problem is not reported until period t̂.

4.1. Welfare

This section computes the social welfare to show the inefficiency of the equilibria. Let

LR(s)(resp. LU(s)) be the total net loss from an accident for citizens excluding the workers of

the firm, when the scale of the problem is s and the problem is reported (resp. unreported).

Both LR(s) and LU(s) include compensation for the accident by the firm. The amounts LR(s)

and LU(s) may differ since the amount of compensation may depend on whether the problem

is reported. For example, if the workers carry liability insurance, the insurance payouts may

depend on whether the worker is responsible for the accident. Typically, if the problem is

reported, the worker has heavier responsibility and receives less from the insurance. Since the

total loss includes the insurance firm’s profits, LR(s) < LU(s).

We now calculate the utilitarian social welfare. To simplify the notation, let

c̄R =

∫ pdM,R

1−p
cdF(c), c̄U =

∫ pdM,U

1−p
cdF(c), c̄ =

∫
cdF(c)

FR = F
(

pdM,R

1 − p

)
, FU = F

(
pdM,U

1 − p

)
.

Consider an equilibrium where the subordinate in period t reports if and only if t ⩽ t̂. The
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utilitarian social welfare SWRCt̂ evaluated at period 0 is given by

SWRCt̂ = −
t̂∑

t=0

[
(1 − p)(1 − qS)(1 − qM FU)δ

] t
[
qSSWR(t) + (1 − qS)B̃t

]
−

[
(1 − p)(1 − qS)(1 − qM FU)δ

] t̂+1
[
B̃t̂+1

+ (1 − p)(1 − qM FU)δ
∞∑
τ=t̂+2

[(1 − p)(1 − q∗FU)δ]τ−t̂−2Bτ

]
,

where

SWR(t) =
∞∑
τ=t

(
(1 − FR)(1 − p)δ

)τ−t
Aτ

Aτ = (1 − p)c̄Rsτ + p(1 − FR)
(
LR(sτ) + dM,Rsτ

)
+ pc̄sτ,

B̃τ = qM(1 − p)c̄U sτ + p(1 − qM FU)
(
LU(sτ) + (dM,U + dS)sτ

)
+ pc̄sτ,

Bτ = q∗(1 − p)c̄U sτ + p(1 − q∗FU)
(
LU(sτ) + (dM,U + dS)sτ

)
+ pc̄sτ,

q∗ = 1 − (1 − qM)(1 − qS).

We consider the effect of delaying t̂. That is, we compare the welfare when t̂ = t∗ and when

t̂ = t∗ + 1, which gives9

SWRCt∗+1 > SWRCt∗ ⇐⇒ qS B̃t∗+1 + (1 − qM FU)(1 − p)δ(Bt∗+2 − (1 − qS)B̃t∗+2)

+ qS[(1 − qM FU)(1 − p)δ]2
∑
τ=t∗+3

[(1 − q∗FU)(1 − p)δ]τ−t∗−3Bτ

− qSSWR(t∗ + 1) > 0.

Since dM,R appears only in SWR(t∗ + 1), a sufficiently large amount of dM,R will yield

SWRCt∗+1 < SWRCt∗ . However, imposing an arbitrarily large amount of dM,R may be im-

possible in reality. The total amount of punishment is usually no more than the total social

damage from the accident. To capture this idea, we impose the following assumption.
9The right hand side is [(1 − p)(1 − qS)(1 − qMFU )δ]−(t∗+1)(SWRCt∗+1 − SWRCt∗ ), which is the difference in

the social welfare evaluated at period t∗ + 1.
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Assumption 1. (1) For each s, LR(s) + dM,Rs = LU(s) + (dM,U + dS)s = SD(s) > 0.

(2) For each s, LR(s) ⩾ 0 and LU(s) ⩾ 0.

Assumption (1) says that the social damage from the accident is independent of whether the

problem is reported, and SD(s) denotes the social damage. If the punishment is compensation

for the accident, this condition will be satisfied. Assumption (2) says that citizens do not

benefit from accidents.

The assumption yields

Proposition 1. Under Assumption 1, SWRCt∗+1 > SWRCt∗ for all t∗ ∈ N.

That is, the social welfare is increased if the last period of reporting is delayed. This also

implies that the equilibrium is inefficient. Since the inequality holds for all t∗, the social

optimum is no concealment (i.e., t∗ = ∞).

Remark 2 (Private vs. social gain from concealing). Suppose that LU and LR are linear in

st , which implies that At , Bt , and B̃t are also linear in st . Let SWRCt∗(t) denote the social

welfare evaluated at period t. We now compare SWRCt∗+1(t∗ + 1) − SWRCt∗(t∗ + 1) and

SWRCt∗(t∗) − SWRCt∗−1(t∗). The ratio between them is given by

SWRCt∗+1(t∗ + 1) − SWRCt∗(t∗ + 1)
SWRCt∗(t∗) − SWRCt∗−1(t∗)

=

∞∑
t=t∗
γt

st+1
st
,

where
∑∞

t=t∗ γt = 1 and γt ⩾ 0 for each t ⩾ t∗.10 If the scale increases over time, i.e., st+1/st > 1

for each t, then we obtain SWRCt∗+1(t∗ + 1) − SWRCt∗(t∗ + 1) > SWRCt∗(t∗) − SWRCt∗−1(t∗).

Note that SWRCt∗(t∗) − SWRCt∗−1(t∗) is the gain in social welfare evaluated at period t∗ when

the subordinate at t∗ reports. Therefore, the social gain from the reporting of subordinate t∗,

which is the social loss from his concealing, is larger for a larger t∗. Recall that if st+1/st is

increasing, the incentive to conceal at period t∗ is larger for a larger t∗. This implies that if the

growth rate of the problem is positive and increasing, the private incentive to conceal is large

when concealing causes a large social loss. △
10This calculation uses the fact that

∑
t at∑
t bt
=

∑
t

bt∑
t′ bt′

at

bt
if bt > 0 for each t. See also footnote 9 and the proof

of Proposition 1.
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5. Comparative statics

In this section, we assume that st+1/st is nondecreasing in t. We focus on the strategy profile

in Lemma 4, where the subordinate in period t reports if and only if t ⩽ t1,0. The equilibrium

is characterized by the function φ1,0 given by

φ1,0(t) = δ(1 − p)
[
I(1)DR − DU ] st+1

st
+ bS + pdS . (3)

If φ1,0 shifts upward, t1,0 increases, which reduces concealment.

5.1. Discount factor

Consider the effect of discount factor δ. If I(1)DR − DU ⩾ 0, then φ1,0(t) > 0 and therefore

no one conceals. Thus if someone conceals, I(1)DR − DU < 0, in which case, increasing δ

decreases φ1,0 and hence increases concealment. Thus more farsighted subordinates are more

likely to conceal. Since δ also captures the probability that a subordinate is promoted to a

manager, it also suggests that subordinates who are more likely to be promoted are more likely

to conceal.

5.2. Punishment and reward for subordinates

We now consider increasing punishment and reward for subordinates. Since they appear only

in the last two terms in (3), increasing them directly increases φ1,0. That is, increasing in

punishment or reward for subordinates decreases concealment.

Remark 3 (Resolution of multiple equilibria by onetime punishment/reward). Recall that for

some parameter values, there exist multiple equilibria (Remark 1), where “all report” and

“all conceal” are both equilibria. Their necessary and sufficient conditions are respectively,

φ1,1(t) > 0 and φ0,0(t) < 0. The multiplicity of equilibria may be resolved by increasing

punishment/reward for the subordinate at a given single period. To see this, let t be any period.

Let ∆bS > 0 be a large additional reward given to the subordinate in period t if he reports.

Choose a large amount to satisfy φ1,1(t)+∆bS > 0 and φ0,0(t)+∆bS > 0. Since the additional

17



reward is give only in period t, φ1,1(t′) and φ0,0(t′) remain the same for all t′ , t. Then,

although “all report” remains an equilibrium, “all conceal” is no longer an equilibrium since

the subordinate at period t wants to report even if the others conceal. For simplicity, suppose

that the only equilibria in the original parameter profile are “all report” and “all conceal.” With

the additional reward, the set of equilibria depends on the values of φ0,1(t − 1) and φ1,0(t + 1).

If they are both positive, the only remaining equilibrium is “all report,” which resolves the

multiplicity of equilibria.11 △

5.3. Punishment for reported managers

We now consider increasing punishment dM,R for the manager when the problem is reported

but he ignores it. Since dM,R appears in DR and I(1), the effect is not obvious. Differentiating

φ1,0 by dM,R gives

∂φ1,0(t)
∂dM,R = δ(1 − p)

[
∂I(1)
∂dM,R DR + I(1) ∂DR

∂dM,R

]
st+1
st
,

where

∂I(1)
∂dM,R = − p

1 − p


f
(

pdM,R

1−p

)
qM

[
1 − F

(
pdM,U

1−p

)]
+ (1 − qM)

 < 0,

∂DR

∂dM,R = −p[1 − F(pdM,R/(1 − p))] < 0.

Since DR < 0, we have the following observation.

Observation 1. If f (pdM,R/(1 − p)) is sufficiently small, then increasing dM,R decreases φ1,0.

Recall that I is the probability that the manager ignores the problem, which is lowered if the

punishment dM,R is increased. However, if f (pdM,R/(1 − p)) is sufficiently small, the effect

on I is negligible. On the other hand, if the value of I itself is not very small, i.e., the manager

ignores the reported problem with a non-negligible probability, then if the subordinate reports

11 If φ0,1(t − 1) and φ1,0(t + 1) are both negative, “all except for t conceal” is now equilibrium and hence multiple
equilibria remain.

18



the problem, the subordinate has a non-negligible chance to face the problem when he is the

manager. Since increasing dM,R lowers the reported manager’s expected utility, it increases

the subordinate’s incentive to conceal.

Remark 4. The condition in Observation 1 may not hold if dM,R is sufficiently large. To see

this, suppose that f is nondecreasing. Then, f has a support [c, c] such that c < c < ∞ and

f (c) > 0. Let dM,R =
1−p

p c. Then, since ∂DR

∂dM,R = 0, ∂φ1,0(t)
∂dM,R > 0. This implies that φ1,0(t) is

increasing in dM,R for sufficiently large dM,R. Furthermore, note that

∂2DR

∂(dM,R)2
= p f (pdM,R/(1 − p))] > 0.

Then, the second order derivative of φ1,0 is

∂2φ1,0(t)
∂(dM,R)2

= δ(1 − p)
[
∂2I(1)
∂dM,R DR + 2

∂I(1)
∂dM,R

∂DR

∂dM,R +
∂2DR

∂(dM,R)2
I(1)

]
st+1
st
> 0.

Thus, φ1,0(t) is a convex function of dM,R for each t. This implies that there exists d̄ such that

for each dM,R ⩽ 1−p
p c, ∂φ1,0(t)

∂dM,R > 0 if and only if dM,R > d̄.

Intuition is the following. When dM,R is sufficiently large, the manager will solve the problem

with probability close to 1, which gives the subordinate an incentive to report. This intuition

depends on the assumption that each manager is able to solve the problem with probability 1.

We revisit this problem in section 6.2. △

Example 1. Suppose that c is distributed uniformly on (0, c̄). Then

∂φ1,0(t)
∂dM,R

st

st+1

1
δ(1 − p) =

∂I(1)
∂dM,R DR + I(1) ∂DR

∂dM,R

=


3p2dM,R

(1−p)c̄

(
1 − 1

2
pdM,R

(1−p)c̄

)
− p

(
1−2p
1−p

)
if pdM,R

1−p ⩽ c̄,

0 otherwise.

This implies that if p > 1/2, φ1,0 is increasing in dM,R. For the case when p < 1/2, note first

that ∂φ1,0(t)
∂dM,R < 0 if dM,R = 0, and ∂φ1,0(t)

∂dM,R > 0 if dM,R = c̄(1 − p)/p. By Remark 4, φ1,0 is a

convex function of dM,R since the uniform distribution has a nondecreasing density. Therefore
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there exists d̄ such that φ1,0 is decreasing in dM,R < d̄ and increasing in dM,R > d̄. △

5.4. Punishment for unreported managers

We here consider increasing dM,U , punishment for the manager when the problem is not

reported. Recall that the net benefit of reporting, φ, is given by

φrt−1,rt+1(t) = δ(1 − p)
[
−(1 − I(rt−1))DR − (1 − qSrt+1)(DU − DR)

] st+1
st
+ bS + pdS .

Recall also that we have assumed dM,U < dM,R. By increasing dM,U , the reduction of

responsibility, DU − DR, gets close to 0. In the limit, where dM,U = dM,R, we have

φrt−1,rt+1(t) = δ(1 − p)
[
−(1 − I(rt−1))DR] st+1

st
+ bS + pdS .

Since DR < 0, we have φrt−1,rt+1(t) > 0, which implies that there will be no concealment. The

intuition is as follows. The subordinate has an incentive to conceal the problem if it reduces

his responsibility when he is a manager. However, if dM,R = dM,U , the punishment for the

manager is the same whether or not the problem is reported, and hence concealing the problem

does not reduce his responsibility.

5.5. Scale growth rate

We consider two problems P and P′, each of which is identified by a sequence of scales. That

is, P = (st)∞t=0 and P′ = (s′t)∞t=0. Suppose that no other parameter differs between the two

problems. Note that the corresponding φ and φ′ are given by

φrt−1,rt+1(t) = δ(1 − p)
[
−(1 − I(rt−1))DR − (1 − qSrt+1)(DU − DR)

] st+1
st
+ bS + pdS,

φ′rt−1,rt+1(t) = δ(1 − p)
[
−(1 − I(rt−1))DR − (1 − qSrt+1)(DU − DR)

] s′t+1
s′t
+ bS + pdS .

Assume that (st)t is a strictly increasing sequence and (s′t)t is strictly decreasing. That is,

st+1/st > 1 > s′t ′+1/s′t ′ for all t, t′ ∈ N. Assume that the coefficient of st+1/st in φ is negative.
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Then φ′r,r ′(t) > φr,r ′(t′) for all t, t′ and all r, r′.

Now, suppose that problem P has no PBE where all subordinates conceal. Then by Propo-

sition 3 (2), there exists t′ ∈ N such that φ0,0(t′) > 0. This implies that φ′0,0(t) > 0 for all t.

Since φ′rt−1,rt+1(t) > φ
′
0,0(t) > 0 for all t, the unique equilibrium in P′ is that all subordinates

report. To summarize,

Theorem 2. Consider two problems P and P′ where P has increasing scales and P′ has

decreasing scales. Then, if P has no equilibrium where everyone conceals, then a unique

equilibrium of P′ is that everyone reports. Conversely, if P′ has no equilibrium where everyone

reports, then a unique equilibrium of P is that everyone conceals.

This result implies that concealment is more likely in problems with increasing scales. With

increasing scales, the problem is relatively big in the next period, which gives subordinates

strong incentives to reduce punishment in the next period.

6. Extensions

This section considers a few extensions of the model. We assume that st+1/st is strictly

increasing, unless stated otherwise.

6.1. Introducing rewards for the managers

Here consider the case when bM > 0, which increases DR. If it remains DR < 0, nothing

changes. Thus we consider the case when DR > 0. This creates another incentive to conceal:

a subordinate may want to conceal the problem in order to solve it by himself in the next period

as a manager since it is rewarded handsomely. We now consider the features of this additional

incentive.
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6.1.1. Equilibria

First, we characterize equilibria. Recall that φrt−1,rt+1 is written as

φrt−1,rt+1(t) = δ(1 − p)
[
−(1 − I(rt−1))DR − (1 − qSrt+1)(DU − DR)

] st+1
st
+ bS + pdS .

Since I(rt−1) is decreasing in rt−1, it follows that φrt−1,rt+1(t) is decreasing in rt−1. This implies

that the complementarity of reporting proved in the basic model does not extend. Since

DU > DR, φrt−1,rt+1(t) is increasing in rt+1. Thus φ0,1(t) ⩾ φrt−1,rt+1(t) ⩾ φ1,0(t).

We consider two cases.

Case 1: φ0,0(t) ⩽ φ1,1(t) for some t.

This implies that the inequality φ0,0(t) ⩽ φ1,1(t) holds for all t. In this case, all pure-strategy

equilibria satisfy the following feature.

Lemma 5. Suppose that there exists t such that φ0,0(t) ⩽ φ1,1(t) ⩽ 0. Then, in any pure-strategy

PBE, subordinate t conceals the problem for each t such that φ0,0(t) < 0.

Here is a condition for a unique equilibrium.

Proposition 2. Suppose that there exists t such that φ0,0(t) ⩽ φ1,1(t) ⩽ 0, there exists no t

such that φ1,0(t) = 0, and there exists at most one t such that φ1,0(t) < 0 < φ0,0(t). Then there

exists a unique pure-strategy PBE, where subordinate t reports if φ1,0(t) > 0 and conceals if

φ1,0(t) < 0.

On the other hand, a pure-strategy PBE may not exist.

Proposition 3. Suppose that φ0,0(t) ⩽ φ1,1(t) for each t, there exists t such that φ0,1(t) ⩽ 0,

there exists no t such that φ1,0(t) = 0, and there exist at least two t such that φ1,0(t) < 0 < φ0,0(t).

Then there exists no pure-strategy PBE.

If mixed strategies are included, the following result gives a sufficient condition for the

existence of an equilibrium.

Theorem 3. Suppose that there exists t such that φ0,0(t) ⩽ φ1,1(t) ⩽ 0 and there exists no t

such that φ1,0(t) = 0. Then there exists a PBE such that subordinate t conceals the problem

for each t such that φ0,0(t) < 0.
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Case 2: φ0,0(t) ⩾ φ1,1(t) for some t.

In this case, pure-strategy equilibria exist and have the following features.

Theorem 4. Suppose that there exists t′ such that 0 > φ0,0(t′) ⩾ φ1,1(t′). Then, a pure-strategy

PBE exists and any pure-strategy PBE satisfies:

1. Subordinate t conceals the problem for all t such that φ0,0(t) < 0.

2. (Action Alternation) Let B = {t : φ0,0(t) > 0 > φ1,1(t)} and suppose that |B | ⩾ 2. Then

for all t ∈ B such that t > min B (hence t − 1 ∈ B), if subordinate t reports, subordinate

t − 1 conceals, while if subordinate t conceals, subordinate t − 1 reports.

The first feature is the same as in the previous case, while the second feature of action

alternation is specific to the present case.

The reason for the action alternation is that the action plans12 of subordinates of two

consecutive generations are strategic substitutes. That is, if the subordinate in the previous

period conceals, the subordinate in the current period has less incentives to conceal, since

the current manager is the subordinate in the previous period and hence may already know

the problem. Then, the subordinate expects that the cost of the current manager is high and

thus, even when the subordinate reports the problem, the current manager may not solve the

problem, which weakens the probability that missing the opportunity to gain the reward when

the subordinate reports. Then, the subordinate has an incentive to report the problem to avoid

punishment that is imposed when an accident occurs in the current period.

6.1.2. Comparative statics

We now consider the effect of increasing punishment or reward. Recall that the start period of

concealment is determined by φ0,0, which is given by

φ0,0(t) = δ(1 − p)(I(0)DR − DU) st+1
st
+ bS + pdS .

12Realized actions do not alternate: once someone reports the problem, there is nothing to report or conceal in
the following periods.
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The following proposition shows that φ0,0 reduces if punishment is strengthened for the manager

who neglects the reported problem.

Proposition 4. If DR > 0, then φ0,0(t) is decreasing in dM,R.

The intuition is as follows. With DR > 0, the subordinate does not want the current manager

to solve the problem. If the manager does not solve, the subordinate can earn a reward

by solving the problem himself after he becomes a manager. Increasing punishment dM,R

increases the probability that the manager solves the problem. This motivates the subordinate

to conceal the problem.

Consider the effect of increasing bM , a reward to a manager who solves the problem.

Proposition 5. Suppose that f (x)/(1−F(x)) is increasing in x. Let wR = (bM+pdM,R)/(1−p)

and wU = (bM + pdM,U)/(1 − p). Then

(1) if F(wU) > 1/2 and DR > 0, then φ0,0(t) is decreasing in bM for all t;

(2) if F(wR)(1 − F(wR)) > F(wU) and DR < 0, then φ0,0(t) is increasing in bM for all t.

If bM is sufficiently high, the conditions F(wU) > 1/2 and DR > 0 are both satisfied. Thus,

when bM is sufficiently high, φ0,0(t) is decreasing in bM . The intuition is straightforward.

With sufficiently large bM , the benefit from solving a problem is large for the manager, which

implies a low probability of facing the problem as a manager. Since the reward is large, the

incentive for seeking the reward is also large. Both of the effects strengthen the incentive for

the subordinate to conceal the problem. If DR < 0, on the other hand, managers do not want

to face the problem. Therefore, reducing the probability of facing the problem weakens the

incentive to conceal.

We also perform comparative static for the scale of the problem. If DR < 0, as in the

basic model, since the inequalities φ0,0 < φr,r ′ < φ1,1 continue to hold for all r, r′ ∈ [0, 1],

the statement of Theorem 2 remains true. With DR > 0, on the other hand, the inequalities

φ0,0 < φr,r ′ < φ1,1 do not hold, but if φ0,0 ⩽ φ1,1, the statement of Theorem 2 continues to hold

for pure-strategy equilibria, as the following result shows.

Theorem 5. Suppose that φ0,0 ⩽ φ1,1. Consider two problems P = (st)∞t=0 and P′ = (s′t)∞t=0

such that st+1/st > 1 > s′t+1/s′t for all t. Then, if P has no PBE where everyone conceals, then
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Figure 4: Illustration of function G in Example 2.
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P′ has a unique pure-strategy PBE, where everyone reports. Conversely, if P′ has no PBE

where everyone reports, then P has a unique pure-strategy PBE, where everyone conceals.

Theorem 5 does not extend to the case when φ0,0 > φ1,1, as the following example shows.

Example 2. Suppose that there is an increasing function G as drawn in figure 4. Note that there

exists s∗ such that G(s∗) = s∗. Consider two initial values s0 and s′0 and let G generate two

sequences P = (st)∞t=0 and P′ = (s′t)∞t=0 with st+1 = G(st) and s′t+1 = G(s′t). Let s0 and s′0 satisfy

s′0 < s∗ < s0, which implies that P = (st) is increasing over time while P′ = (s′t) is decreasing,

as in Theorem 5. Since the scales are generated by G, the function φ can be rewritten as

φrt−1,rt+1(s) B δ(1 − p)
[
−(1 − I(rt−1))DR − (1 − qSrt+1)(DU − DR)

] G(s)
s
+ bS + pdS,

as a function of scale s. Let the function φrt−1,rt+1(s) be as shown in figure 5, where s is denoted

by the axis.

Figure 5 shows a PBE for both scale sequences, where “R” denotes the scale at which the
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subordinate reports and “C” denotes the scale where the subordinate conceals. The right half

of the figure pertains to the sequence (st) while the left half pertains to (s′t).

To see that this indeed gives PBEs, first consider the sequence P = (st). For all t ⩾ 2,

concealing is the dominant strategy since φr,r ′(st) < 0 for all r, r′. For t = 0, since subordinate

0 is the first person who can detect the problem, it is as if r−1 = 1, as discussed early. Since

φ1,r(s0) < 0 for all r , subordinate 0’s best response is to conceal: r0 = 0. For subordinate

t = 1, since r0 = r2 = 0 and φ0,0(s1) > 0, the best response is to report. Thus, in the unique

PBE with (st), not everyone conceals.

Now, consider P′ = (s′t). For all t ⩾ 3, reporting is the dominant strategy since φr,r ′(s′t) > 0

for all r, r′. For subordinate t = 0, since φ1,r(s′0) < 0 for all r , the best response is to conceal:

r0 = 0. For subordinate t = 1, since r0 = 0 and φ0,r(s′1) > 0 for all r , the best response is to

report: r1 = 1. For subordinate t = 2, since r1 = r3 = 1 and φ1,1(s′2) < 0, the best response is

to conceal: r2 = 0. Thus, in the unique PBE with (s′t), not everyone reports. This shows that

Theorem 5 does not generalize when φ0,0 > φ1,1. △

6.2. Possibility of failure in solving the problem

We have so far assumed that managers who face the reported problem have only two choices:

whether or not to solve the problem. Here this section considers the case when there are

infinite choices: the manager can choose the probability that the problem is solved, and a

higher probability costs more.

For simplification, we assume that if the problem is not solved in the current period, the

problem is handed over to the next manager, and the cost function for the next manager is not

influenced by the amount of cost paid by the previous manager. We also assume that even

when an accident occurs, the manager in the current period is not forced to solve the problem:

if the current manager does not solve, the problem is handed over to the next manager.

The probability that the problem is solved is denoted by ρ ∈ [0, ρ̄], which is chosen

by the manager. The cost function for manager t is given by ct χ(ρ)s, where the function

χ : [0, ρ̄) → R+ is strictly convex, continuously differentiable, and strictly increasing, and

satisfies χ(0) = 0 and limρ→ρ̄ χ(ρ) = limρ→ρ̄ χ′(ρ) = ∞. The value ρ̄ ⩽ 1 is the supremum
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of achievable probability. The assumptions imply that χ′ is strictly increasing, thus having a

strictly increasing inverse function.

As in the basic model, ct is independently and identically distributed by a cumulative

distribution function F on (0, c̄), where c̄ ∈ R++. The value ct is private information of

manager t and he learns it only after he becomes a manager.

We assume that if the manager chooses a positive ρ > 0, it becomes known publicly that the

manager knows the problem, although the exact value of ρ remains private. On the other hand,

we also assume that the value of ρ does not affect the level of punishment for the manager

when an accident occurs.

Let D̃R be the expected utility of the reported manager, D̃U be the expected utility of the

unreported manager, and Ĩ be the probability that the reported manager ignores the problem.13

Then, as in the basic model, we show

Lemma 6. There exist a nonincreasing function Ĩ : [0, 1] → [0, 1] and constants D̃U and D̃R

such that subordinate t reports if and only if

φ̃rt−1,rt+1(t) B δ
[
−(1 − Ĩ(rt−1))D̃R − (1 − p)(1 − qSrt+1)(D̃U − D̃R)

] st+1
st
+ bS + pdS ⩾ 0.

We consider the effect of dM,R. As in the basic model, the equilibrium when D̃R < 0 is

determined by φ̃1,0. In the basic model, example 1 shows that φ̃1,0 is increasing in dM,R if dM,R

is sufficiently large. However, this may not hold in the current model, as the following result

shows.

Theorem 6. Suppose that the support of F is (0, c̄). If ρ̄ < 1 − p, there exists d̄ such that for

each dM,R > d̄, φ̃1,0(t) is decreasing in dM,R. If ρ̄ > 1 − p, then there exists d̄ such that for

each dM,R > d̄, φ̃1,0(t) is increasing in dM,R.

The intuition is as follows. Note that

φ̃1,0(t) B δ
[
(Ĩ(1) − p)D̃R − (1 − p)D̃U

] st+1
st
+ bS + pdS ⩾ 0.

13See the appendix for details.
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As dM,R increases, D̃R increases, which increases φ̃1,0 if and only if Ĩ(1) − p > 0. If the

subordinate reports, he will get D̃R if the manager does not solve the problem, which occurs

with probability Ĩ(1). On the other hand, if the subordinate conceals, he will get D̃R if an

accident occurs, which occurs with probability p. Since the probability that the manager solves

the problem, 1 − Ĩ(1), converges to ρ̄ as dM,R goes to infinity, Ĩ(1) − p converges to 1 − ρ̄ − p.

Thus if 1 − ρ̄ − p > 0, φ̃1,0 is increasing in D̃R and hence in dM,R if dM,R is sufficiently large.

The following proposition gives a sufficient condition for φ̃1,0 to be decreasing in dM,R.

Proposition 6. If qM = dM,U = 0, χ(ρ) ≡ ρ/(ρ̄− ρ), and ρ̄ < 1− p, then φ̃1,0 is decreasing in

dM,R.

6.3. After retirement blames

The previous sections assume that managers are not punished after their retirement. We here

relax this assumption. Suppose that workers live for at most three periods. They work as a

subordinate in their first period, work as a manager in the second period, and are retired in

the third period. Workers may die after the second period, and let µ be the probability that a

worker lives after his retirement.

If a manager neglects the reported problem, his negligence is noticed and punished when

the problem causes an accident, if he is still alive, even if he is retired then. Let dRst be the

disutility of punishment for the retired manager in period t.

We keep the assumption that the scale st is determined by a transition function G: st =

G(st−1) for all t. Let D̂Rst be the reported manager’s utility, D̂U st be the unreported manager’s

utility, and Î be the probability that the reported manager ignores the problem.14 Then the

per-scale net benefit of reporting, φ̂, is defined as in the basic model. However, since a

manager may be punished after retirement, the per-scale net benefit is affected by the scale in

his after-retirement period. This makes D̂R and Î dependent on st and thus we write D̂R(st)

and Î(rt−1, st).15

We also suppose that the support of F is (0, c̄) and F has differentiable density.

14See the appendix for details.
15For details, see the proof of the lemma.
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Then, we can show

Lemma 7. Suppose that G(s)/s and f are well defined on R+ and sups∈R+ G(s)/s < ∞. Then,

there exist functions Î : [0, 1] × R → R and D̂R : R → R and a constant D̂U such that the

subordinate in period t reports the problem if and only if φ̂rt−1,rt+1(st) ⩾ 0, where

φ̂rt−1,rt+1(st) B δ(1 − p)
[
−{1 − Î(rt−1, st)}D̂R(st) − (1 − qSrt+1)(D̂U − D̂R(st))

] G(st)
st
+ bS + pdS .

Moreover, Î is decreasing in the first argument.

Increasing the after-retirement punishment dR has similar effects as increasing dM,R. If

G(s)/s is increasing, it is the same as increasing dM,R for every period. However, the effect of

increasing dM,R depends on the level of dM,R and the distribution function, making it difficult

to determine the shape of φ̂.

To simplify the analysis, we consider the case when G(s) = αs, where α ∈ R++ is given.

Thus α > 1 implies that the scale is increasing over time. Then, φ̂, D̂, and Î are constant across

periods since G(s)/s = G2(s)/G(s) = α. Thus these variables can be written as a function of

α.

A pure-strategy equilibrium is either “all conceal” or “all report” since φ̂ is constant. Thus

we consider φ̂0,0 and φ̂1,1. For simplicity, we consider the case when D̂U < 0 (and thus

D̂R < 0 for each α). As shown in Remark 4, if f is nondecreasing, φ̂ is a convex function of

punishment. Since increasing the scale has similar effects as increasing punishment, φ̂ is high

when α is either large enough or small enough, as the following results show.

Proposition 7. If D̂R < 0, there exists ᾱ such that for each α > ᾱ, φ̂rt−1,rt+1 > 0 and φ̂rt−1,rt+1 is

increasing in α.

Proposition 8. Suppose that D̂R < 0 and F is a uniform distribution on (0, c̄). Suppose also

that p, bM and dM,U are sufficiently small, c̄ is sufficiently large, and qS < 1. Then, there exists

ᾱ such that for each α < ᾱ, φ̂rt−1,rt+1 is decreasing in α.
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7. Discussion and Conclusion

This paper studies subordinates’ incentives to conceal problems, showing that the main reason

to conceal problems is to reduce responsibility to solve them later. Imposing strong punishment

for managers who ignore reported problems may give subordinates incentives to avoid the

punishment in the future by not reporting problems. We also show that concealment is likely

when the problem grows over time. If the problem grows, the expected damage it may cause

also grows and hence efficiency requires a speedy solution of the problem. However, in

equilibrium, the problem is not even reported until the threshold period.

Our analysis surely depends on our assumptions. One of them is the assumption that

only one subordinate exists in each period and he becomes a manager in his second period

with probability one. If this assumption is relaxed to have multiple subordinates, then not

all subordinates become a manager and therefore the incentive to conceal problems to avoid

responsibility may be weakened. However, having multiple subordinates may also weaken

each subordinate’s responsibility to detect and report problems. Thus the overall effect of

relaxing the assumption may be ambiguous.

Let us point out a few questions that are left for future research. The first is punishment

and reward that maximize social welfare. In this paper, we omit the discussion about social

welfare except for showing that the equilibrium is inefficient, but optimal incentive scheme is

important for public policy. The second is to generalize the model to have more players in the

firm. The third is to generalize the model to allow the problem scale to have nonlinear effect

on punishment, reward, and problem-solving cost. In these generalizations, the incentive to

reduce future responsibility will remain, but some of the properties of equilibria may not.
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A. Omitted Proofs

A.1. Proof in Section 3

Proof of Fact 1. Differentiating G(s)/s gives

(
G(s)

s

)′
=

G′(s)s − G(s)
s2 =

s2

2 G′′(λs) − G(0)
s2 .

The second equality is by the Taylor expansion of G, that is, G(0) = G(s) − sG′(s) + s2

2 G′′(λs)

for some λ ∈ (0, 1). Since G(0) = 0, then G(s)/s is increasing if G is convex and is decreasing

if G is concave. □

A.2. Proofs in Section 4

Proof of Lemma 2. Note that I(rt−1) is decreasing in rt−1. Since DR < 0, φrt−1,rt+1(t) >

φr ′
t−1,rt+1(t) for each rt−1 > r′t−1. Since DR < DU , φrt−1,rt+1(t) > φrt−1,r ′t+1

(t) for each rt+1 > r′t+1.

Therefore, for each rt−1, rt+1 ∈ [0, 1], φ1,1(s) ⩾ φrt−1,rt+1(t) ⩾ φ0,0(t). □

Proof of Lemma 3. (1) Suppose that for each t, φ1,1(t) ⩾ 0. Consider the behavior of subordi-

nate at period t. Suppose that the other player takes the action such that he reports the problem

when he detects it. Then, rt−1 = rt+1 = 1 and thus, reporting the problem is a best response.

Suppose that φ1,1(t∗) < 0 for some t∗ ∈ N. Then, since φr,r ′(t∗) is increasing in r, r′,

φr,r ′(t∗) ⩽ φ1,1(t∗) < 0 for each r, r′ ∈ [0, 1] . Therefore, for subordinate t∗, concealing the

problem is a strict dominant strategy. Therefore, reporting for each period is not an equilibrium.

(2) Suppose that for each t, φ0,0(t) ⩽ 0 and φ1,0(0) ⩽ 0. Then, for each subordinate t > 0,

as in the proof of Lemma 3 (1), we can show that concealing is the best response. Then, since

subordinate 1 conceals, r−1 = 1, and φ1,0(0) ⩽ 0, for subordinate 0, concealing is the best

response.

To prove contraposition, suppose that φ0,0(t) > 0 for some t or φ1,0(0) > 0. If φ0,0(t) > 0

for some t, since φ0,0(t) < φr,r ′(t) for each r, r′ ∈ [0, 1], for subordinate t, reporting is a strict

dominant strategy.
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Consider the latter case, φ1,0(0) > 0. Then, since subordinate 1 conceals and r−1 = 1,

reporting is the best response. In each case, the strategy profile where each subordinate reports

is not an equilibrium. □

Proof of Lemma 4. Suppose that t1,0 exists. Therefore, for some t, φ1,0(t) < 0. Then, since

bS + pdS > 0 and st > 0, δ(1 − p)[I(1)DR − DU] < 0. Since st+1/st is increasing over time t,

φ1,0(t) is decreasing in t.

Consider the behavior of subordinate t∗ ∈ N. Suppose that the subordinate in each t , t∗

follows the strategy of the statement. Suppose also that t1,0 > 0.

Consider the case that t∗ > t1,0. We show that subordinate t∗ conceals. Note that each

subordinate t > t∗ conceals. Thus, rt∗+1 = 0. Since st+1/st is increasing in t, φ1,0(t∗) < 0.

Then, since φrt−1,rt+1 is increasing in rt−1, φrt−1,0(t∗) < 0. Therefore, for subordinate t∗,

concealing is the best response.

Consider the case that t∗ ⩽ t1,0. We show that subordinate t∗ reports. Note that each

subordinate t < t∗ reports. Thus, rt∗−1 = 1. Since st+1/st is increasing in t, φ1,0(t∗) > 0. Then,

φrt−1,rt+1 is increasing in rt+1 since φ1,rt+1(t∗) > 0. Therefore, for subordinate t∗, reporting is the

best response.

Suppose that t∗ = 0. Then, since r−1 = 1 and 0 ⩽ t1,0, as shown above, reporting is the best

response. □

Proof of Theorem 1. By Lemmas 3 and 4, each of the strategies in the statement is a PBE

under some condition.

Consider a pure-strategy equilibrium except for strategies “all report” and “all conceal”. We

show that in this strategy, the subordinate t reports if and only if t ⩽ t1,0. Since we consider

a strategy where there exist reporting subordinate and concealing subordinate, there exists

tR ∈ N such that the subordinate in period tR reports the problem if he detects it and there also

exists tC such that the subordinate in period tC does not report the problem even if he detects

it.

To show the theorem, we prove
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t∗

rt∗ = 0
t∗ + 1

rt∗+1 = 1
φrt∗−1,1(t)

φ0,1(t)
φ0,rt∗+1(t)

Figure 6: Illustration of Claim 1

Claim 1. Suppose that the hypothesis of Theorem 1 holds. Let tR be a period at which the

subordinate reports and tC a period at which the subordinate conceals. Then,

(i) In each PBE, for each t ⩽ tR, the subordinate in period t ⩾ 0 reports the problem.

(ii) In each PBE, for each t ⩾ tC , the subordinate in period t ⩾ 0 does not report the

problem.

Proof of Claim 1. We show the first part of the claim. Let t ⩽ tR.

Suppose by contradiction that t does not report the problem. Then, there is t∗ ∈ {t, t +

1, . . . , tR − 1} such that subordinate t∗ does not report and subordinate t∗ + 1 reports.

Then, since subordinate t∗ does not report at an equilibrium and rt∗+1 = 1, φrt∗−1,1(t∗) < 0.

Since φrt∗−1,1 is increasing in rt∗−1 and there is no t such that φ0,1(t∗) = 0, φ0,1(t∗) < 0.

Thus, in φ0,1, the coefficient of st+1/st is negative. Note that st+1/st is nondecreasing in t

and thus, φ0,1(t∗ + 1) < 0. Since φ0,rt∗+1(t∗ + 1) is increasing in rt∗+1, φ0,rt∗+1(t∗ + 1) < 0

(Figure 6). Therefore, for subordinate t∗ + 1, not reporting is the unique best response, which

is in contradiction with the fact that subordinate t∗ + 1 reports at equilibrium.

In the same way, we can show that in equilibrium, for each t ⩾ tC , the subordinate in period

t does not report the problem even if he detects it. □

By Claim 1, there exists t̂ such that for each t ⩾ t̂, rt = 0 and for each t < t̂, rt = 1.

Suppose that φ1,0(t̂) > 0. Then, since rt̂+1 = 0 and rt̂−1 = 1, reporting is the best response,

which is a contradiction. Therefore, φ1,0(t̂) < 0. Suppose that φ1,0(t̂ − 1) < 0. Then,

since rt̂ = 0 and rt̂−2 = 1, not reporting is the best response, a contradiction. Therefore,

φ1,0(t̂ − 1) > 0 > φ1,0(t̂). Thus, t̂ − 1 = t1,0. See Figure 7 for the illustration. □

Proof of Proposition 1. Under Assumption 1, first note that for each t, Bt > At and Bt ⩾
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Figure 7: Illustration of Theorem 1.

(1 − qS)B̃t + qS At . This is because Bτ − Aτ is given by

Bτ − Aτ = (1 − p)(c̄Uq∗ − c̄R)st + p(FR − q∗FU)SD(st).

When q∗ = 1,

Bt − At = (1 − p)(c̄U − c̄R)st + p(FR − FU)SD(st) ⩾ 0,

since SD(st) ⩾ dM,Rst and c̄R − c̄U =
∫ pdM,R

1−p
pdM,U

1−p

cdF(c). When q∗ = 0,

Bt − At = −(1 − p)(c̄R)st + pFRSD(st) ⩾ 0.

Since Bt − At is a linear function of q∗, Bt − At ⩾ 0.

Similarly,

Bt − qS At − (1 − qS)B̃t = (1 − p)qS(c̃U − c̄R)st + pSD(st)qS(FR − FU) ⩾ 0.

In the same way, we can show that B̃t ⩾ Bt . Then, since 1 − q∗FU > 1 − FR and 1 − qM FU >
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1 − FR,

SWRCt∗+1 − SWRCt∗ > [(1 − qM FU)(1 − qS)(1 − p)δ]t∗+1

×
[
qS(B̃t∗+1 − At∗+1) + (1 − qM FU)(1 − p)δ(Bt∗+2 − (1 − qS)B̃t∗+2 − qS At∗+2)

+
∑
τ=t∗+3

qS((1 − q∗FU)(1 − p)δ)τ−t∗−1(Bτ − Aτ)
]
> 0.

□

Proof of Theorem 2. (1) Suppose that there is no equilibrium such that no one reports in

problem P. Then, by Lemma 3 (2), φ0,0(t) > 0 for some t ∈ N or φ1,0(0) > 0.

Case 1. Suppose that φ0,0(t) > 0 for some t ∈ N. Then, we first show that φ′0,0(t) > 0 for

each t ∈ N. Consider the case that I(0)DR − DU ⩾ 0. Then φ′0,0(t) > 0 for each t ∈ N.

Consider the case that I(0)DR − DU < 0. Then, we have φ̃0,0(t) > φ0,0(t). This implies that

φ̃0,0(t′) > 0 for each t′ ∈ N.

Since φ′rt−1,rt+1(t
′) > φ′0,0(t′) > 0 for each t′ ∈ N. Then, reporting is the dominant strategy

for each subordinate t. Therefore, the unique PBE is the strategy that each player reports in

problem P′.

Case 2. Suppose that φ1,0(0) > 0. Then, as in the previous case, we have that φ′1,0(t) > 0 for

each t ∈ N. Then, for subordinate 0, reporting is a strict dominant strategy. Since φ′1,0(s′1) > 0

and φ′1,0(t) < φ′1,r(t) for each r , for subordinate 1, reporting is the unique best response.

Continuing this process shows that reporting is the best response for each subordinate t.

(2) Suppose that there is no equilibrium such that no one conceals in problem P′. Then, by

Lemma 3 (1), φ′1,1(t) < 0 for some t. This implies that −(1− I(1))DR − (1− q)(DU − DR) < 0.

Therefore, we have φ′1,1 > φ1,1, which implies that φ1,1(t) < 0 for each t ∈ N. Then,

φrt−1,rt+1(t′) < 0 for each t′ ∈ N, rt−1, rt+1 ∈ [0, 1]. This implies that not reporting is the

dominant strategy, and thus the unique equilibrium is the strategy such that each player does

not report in problem P. □
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Figure 8: Illustration of Lemma 5

A.3. Proofs in Section 6.1

Proof of Lemma 5. Let (rt)t∈N ∈ {0, 1}N be the profile of reporting probabilities in an equi-

librium. By assumption, there exists t such that φ1,1(t) < 0. Suppose that rt = 1 (Figure 8

(a)). Note that φ1,1(t) < 0 implies that φ1,1(t + 1) < 0 and φ1,0(t + 1) < 0. Therefore, we have

rt+1 = 0. On the other hand, φ1,1(t) < 0 also implies that φ1,0(t) < 0 and φ0,0(t) < 0, we have

rt = 0, a contradiction. Therefore, rt = 0. Let t∗ = min{t : φ1,1(t) < 0}. Since φ1,1(t) is

decreasing in t, rt = 0 for each t ⩾ t∗.

Let T = {t < t∗ : φ0,0(t) < 0}. If T = �, we are done. Suppose that T , �. Let t∗∗ = maxT

(Figure 8 (b)). Then, since φ0,0 < φ1,1, we have t∗∗ = t∗ − 1. Since φ1,0(t∗∗) < 0, φ0,0(t∗∗) < 0,

and rt∗ = 0, we have rt∗∗ = 0. Note that φ1,0(t) < 0 and φ0,0(t) < 0 for each t ∈ T . Therefore,

rt∗∗−1 = 0 if t∗∗ − 1 ∈ T . Continuing this process yields rt = 0 for each t ∈ T .

Let t∗∗∗ = minT . Since φ0,0(t) < 0 if and only if t ⩾ t∗∗∗, the above discussion completes

the proof. □

Proof of Proposition 2. Note that if φ1,0(t) > 0, reporting is a strict dominant strategy. Thus,

in equilibrium, rt = 1. By Lemma 5, for each t such that φ0,0(t) < 0, subordinate t does not

report. For each t, such that φ0,0(t) < 0, since φ1,0(t) < 0, no one has an incentive to deviate.

If |{t : φ1,0(t) < 0 < φ0,0(t)}| = 0, we are done. Consider the case that |{t : φ1,0(t) < 0 <

φ0,0(t)}| = 1. Let t be an element. Then, rt−1 = 1 and rt+1 = 0. Since φ1,0(t) < 0, not reporting

is the best response, which concludes the proof. □

Proof of Proposition 3. See Figure 9 for the illustration. Let t∗ B max{t : φ1,0(t) < 0 <

φ0,0(t)}. By Lemma 5, rt∗+1 = 0.
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Figure 9: Illustration of Proposition 3.

Suppose that rt∗ = 0. Then, since φ0,0(t∗) > 0, rt∗−1 = 1. Since |{t : φ1,0(t) < 0 < φ0,0(t)}| ⩾

2, t∗ − 1 ∈ {t : φ1,0(t) < 0 < φ0,0(t)}. Then, it must be that rt∗−2 = 0 since φ1,0(t∗ − 1) < 0.

However, since φ0,1(t∗ − 2) > 0 and φ1,1(t∗ − 2) > 0, the best response for subordinate t∗ − 2

is to report, which is a contradiction. Suppose that rt∗ = 1. Then, since φ1,0(t∗) < 0, rt∗−1 = 0.

However, since φ1,1(t∗ − 1) > 0 and φ0,1(t∗ − 1), reporting is the best response for subordinate

t∗ − 1, a contradiction. □

Proof of Theorem 4. Let (rt)t∈N be the probability to report in an equilibrium. We will prove

that each PBE satisfies the properties 1. and 2.

1. Suppose that φ0,0(t) < 0 for some t ∈ N. Let t B min{t : φ0,0(t) < 0}. We will prove

that rt = 0 (See Figure 10 (a)). To do this, suppose that rt = 1. Then, since for each

t > t, φ1,1(t) < 0 and φ1,0(t) < 0, rt+1 = 0.

Then, suppose that rt−1 = 1. Since φ1,0(t) < 0, it contradicts to the supposition that rt = 1

and rt+1 = 0. Now suppose that rt−1 = 0. Since φ0,0(t) < 0, it is also a contradiction.

Therefore, rt = 0. In the same fashion, we can show that rt+ j = 0 for each j > 0.

2. Let T = {t ∈ N : φ1,1(t) < 0 < φ0,0(t)}. Suppose that |T | ⩾ 2 (See Figure 10 (b)). Let

t∗ = maxT . Then, t∗ + 1 = t. We now show that if rt∗− j = 1, rt∗− j−1 = 0 and if rt∗− j = 0,

rt∗− j−1 = 1 for each j = 0, 1, . . . , |T | − 1.

We consider the case for j = 0. Suppose by contradiction that rt∗ = 1 and rt∗−1 = 1.

Then, since φ1,0(t∗) < 0 and rt∗+1 = 0, it follows that rt∗ = 0 is the best response, a

contradiction.

Suppose by contradiction that rt∗ = 0 and rt∗−1 = 0. Then, since φ0,0(t∗) > 0 and

rt∗+1 = 0, rt∗ = 1 is the best response, a contradiction.
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Figure 10: Illustration of Theorem 4.
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Suppose that when j = k, the statement is true and consider the case for j = k + 1

(See Figure 10 (c)). Suppose by contradiction that rt∗− j = rt∗− j−1 = 1. By induction

assumption, since rt∗− j+1 = 0 and φ1,0(t∗ − j − 1) < 0, rt∗− j = 0 is the best response, a

contradiction.

Suppose by contradiction that rt∗− j = rt∗− j−1 = 0. By induction assumption, since

rt∗− j+1 = 1 and φ0,1(t∗ − j − 1) > 0, rt∗− j = 1 is the best response, a contradiction.

We now construct a PBE. Let t∗ = minT − 1. Consider the following strategy profile:

1. subordinate t ⩽ t∗ reports

2. subordinate t∗+2k reports and subordinate t∗+2k+1 conceals for each 0 ⩽ k ⩽ [t∗−t∗]/2.

3. subordinate t > t∗ does not report the problem.

Consider t > t∗. Then, under the strategy profile, subordinate t + 1 conceals. Since for each

t > t∗, φ1,0 < φ0,0 < 0, concealing is the best response.

Consider t ∈ (t∗, t∗). Let t = t∗ + ℓ. If ℓ is an odd number, since rt−1 = 1, rt+1 = 1 and

φ1,1(t) < 0, concealing is the best response. If ℓ is an even number, since φ0,0(t) > 0, reporting

is the best response.

Then, for each t, except for t∗ and t ⩽ t∗, this strategy profile is a best response against itself.

Consider subordinate t ⩽ t∗. Since φ1,1(t) > 0, r−1 = 1 and subordinate t′ ⩽ t∗ + 1 report,

reporting is a best response.

For subordinate t∗, we have the following two cases:

Case 1. Suppose that |T | is an odd number (See Figure 10 (d)). Note that φ1,0(t∗) < 0.

Since |T | is an odd number, subordinate t∗ − 1 reports and subordinate t∗ + 1 does not report.

Then, not reporting is a best response for subordinate t∗.

Case 2. Suppose that |T | is an even number (See Figure 10 (e)). Note that φ0,0(t∗) > 0.

Since |T | is an even number, subordinate t∗ − 1 does not report and subordinate t∗ + 1 does not

report. Then, reporting is a best response for subordinate t∗ .

Therefore, this strategy profile is a PBE. □
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Proof of Proposition 4. Note that

∂I(0)
∂dM,R =

− p
1−p f

(
wR)

(qS + (1 − qS)qM)
[
1 − F

(
wU

) ]
+ (1 − qS)(1 − qM)

∂DR

∂dM,R = −p
∫
wR

dF(c) < 0,

where wR = (bM + pdM,R)/(1− p) and wU = (bM + pdM,U)/(1− p). In this case, since DR > 0,
∂φ0,0(s)
∂dM,R < 0. □

Proof of Proposition 5. Differentiating φ0,0 by bM yields

∂φ0,0(t)
∂bM = δ(1 − p)

(
∂I(0)
∂bM DR +

∂DR

∂bM I(0) − ∂DU

∂bM

)
st+1
st
.

Note that

∂I(0)
∂bM = − 1

1 − p
f
(
wR) [

Q
[
1 − F

(
wU ) ]

+Q′] − Q f
(
wU ) [

1 − F
(
wR) ]

Q
[
1 − F

(
wU

) ]
+Q′

∂DR

∂bM = F(wR), ∂DU

∂bM = F(wU),

where Q = (qS + (1 − qS)qM) and Q′ = (1 − qS)(1 − qM). Note that the probability I(0) is

maximized when qS = 1 and minimized when qS = qM = 0. Then, we have

∂I(0)
∂bM DR +

∂DR

∂bM I(0) − ∂DU

∂bM <
∂I(0)
∂bM DR + F(wR)1 − F(wR)

1 − F(wU) − F(wU), and

∂I(0)
∂bM DR +

∂DR

∂bM I(0) − ∂DU

∂bM >
∂I(0)
∂bM DR + F(wR)(1 − F(wR)) − F(wU).

Since f (x)/(1 − F(x)) is increasing in x and wR > wU , ∂I(0)
∂bM is negative. Then, if DR > 0

and F(wR)(1 − F(wR)) < F(wU)(1 − F(wU)), ∂φ0,0(s)
∂bM < 0. Conversely, if DR < 0 and

F(wR)(1 − F(wR)) > F(wU), ∂φ0,0(s)
∂bM > 0. □

Proof of Theorem 5. Suppose that there is no PBE such that no one reports in problem P.

Thus, some subordinate reports. If the subordinate is subordinate 0, φ1,0(0) ⩾ 0. Consider the

case that φ1,0(0) < 0. We now show that for some t ∈ N, φ0,0(t) ⩾ 0. Suppose by contradiction
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that for each t, φ0,0(t) < 0. Then, since subordinate 0 conceals, there is a PBE such that each

subordinate t conceals, a contradiction.

Therefore, for some t ∈ N, φ0,0(t) > 0 or φ1,0(0) > 0.

Case 1. Suppose that for some t ∈ N, φ0,0(t) ⩾ 0. Then, as in the proof of Theorem 2,

φ′0,0(t) > 0 for each t. Then, we have φ′0,1(t) > 0 for each t since φ′0,1 > φ
′
0,0. Since φ0,0 ⩽ φ1,1,

φ′1,1(t) > 0 for each t, which implies that the strategy profile that each player reports the

problem is a PBE.

Suppose by contradiction that there is a pure-strategy PBE such that a subordinate, say

subordinate t, conceals the problem. Then, it must be φ′1,0(t) < 0. Let the equilibrium strategy

profile of subordinates be denoted by (rt)∞t=0. Suppose that rt+1 = 1. Then, since φ′0,1(t) > 0

and φ′1,1(t) > 0, the best response is rt = 1, a contradiction. Suppose that rt+1 = 0. Consider

the case that rt+2 = 1. Then, since φ′1,1(t + 1) > 0, we also have a contradiction. Therefore,

we consider the case that rt+2 = 0. However, in this case, since φ′0,0(t) > 0 for each s,

φ′0,0(t + 1) > 0. Thus, the best response for subordinate t + 1 is rt+1 = 1, a contradiction.

Case 2. Suppose that φ1,0(0) ⩾ 0. Then, since φ′1,0(t) < φ′1,r(t) for each r > 0, as in the

proof of Theorem 2, each subordinate reports the problem in PBE.

The latter case is shown in the same way. □

A.3.1. Equilibrium with mixed strategy

In this subsection, we consider equilibria with mixed strategy for the case that φ1,1 > φ0,0. We

first prove Theorem 3.

Proof of Theorem 3. Let T10,00 = {t : φ1,0(t) < 0 < φ0,0(t)}. We show the case for |T10,00 | ⩽ 1

in Proposition 2. We first consider the case that |T10,00 | = 2 (See Figure 11 (a)). Let

T10,00 = {t∗, t∗ + 1}. Note that for each t < t∗, rt = 1 is the dominant strategy. Now let rt∗, rt∗+1

be the numbers that satisfy φ1,rt∗+1(t∗) = 0, φrt∗,0(t∗ + 1) = 0. Since φr,r ′ is continuous in r , r′

and it holds that t∗, t∗ + 1 ∈ T10,00, such numbers exist. Let (rt) be the strategy profile such that

rt = 1 for each t < t∗ and rt = 0 for each t > t∗ + 1. Then, (rt) is an equilibrium.

As an induction assumption, we suppose that there is an equilibrium when |T10,00 | = k

such that for each t < minT10,00, rt = 1 and t > maxT10,00, rt = 0. Consider the case that
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Figure 11: Illustration of Theorem 3.
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|T10,00 | = k + 1.

Suppose by contradiction that there is no equilibria when |T10,00 | = k+1. Let t∗ = minT10,00.

Since |T10,00 \ {t∗}| = k, if rt∗ = 1, we can constructs an equilibrium (rt)∞t=t∗+1 after period t∗

such that for each t ⩾ t∗ + k + 1, rt = 0. Let M , � be the set of equilibrium strategy after rt∗

by assuming that rt∗ = 1. Therefore, rt∗ = 1 is not the best response for (rt)∞t=t∗+1 and rt = 1 for

each t < t∗, which implies that φ1,rt∗+1(t∗) < 0 for each r ∈ M .

Note that t∗ + k ∈ T10,00 but t∗ + k + 1 < T10,00. Recall that rt∗+k+1 = 0.

Case 1. Suppose that rt∗+k = 1 (See Figure 11 (c)). Then, since φr ′,1(t) > 0 for each

t ∈ T10,00, rt∗+k−1 = 1. However, since φ1,0(t∗ + k − 1) < 0, the best response is rt∗+k = 0, a

contradiction.

Case 2. Suppose that rt∗+k = 0. Suppose also that rt∗+k−1 = 0 (See Figure 11 (d)). Then,

since φ0,0(t∗ + k) > 0, the best response is rt∗+k = 1, a contradiction.

Suppose that rt∗+k−1 = 1 (See Figure 11 (e)). Then, since φ1,0(t∗ + k − 1) < 0, we must have

rt∗+k−2 < 1. However, since φr,1(t∗ + k − 2) > 0, it should be rt∗+k−2 = 1, a contradiction.

Therefore, we have rt∗+k−1 ∈ (0, 1), that is, φrt∗+k−2,rt∗+k (t∗ + k − 1) = φrt∗+k−2,0(t∗ + k − 1) = 0.

Since there is no t ∈ T10,00 such that φ1,0(t) = 0, φ0,0(t) = 0, φ1,1(t) = 0, or φ0,1(t) = 0,

rt∗+k−2 ∈ (0, 1) (See Figure 11 (f)).

Case 2-1. Suppose that rt∗+k−3 = 1. Then, for each j < k − 2, let rt∗+ j = 1. Then r = (rt)∞t=0

is an equilibrium, which contradicts the assumption that there is no equilibrium.

Case 2-2. Suppose that rt∗+k−3 = 0, then, since φ0,r ′(t) > 0 for each r′ ∈ [0, 1] and t ∈ T10,00,

rt∗+k−2 = 1 is the best response, a contradiction.

Therefore, we have rt∗+k−3 ∈ (0, 1). Continuing this process, rt∗+ j ∈ (0, 1) for each j =

1, . . . , k − 2.

Case 3. Suppose that rt∗+k ∈ (0, 1), then, since φrt∗+k−1,0(t∗ + k − 1) = 0, rt∗+k−2 ∈ (0, 1) and

as in the case 2, we have rt∗+ j ∈ (0, 1) for each j = 1, . . . , k − 1.

By cases 1,2 and 3, we have, φrt∗+j−1,rt∗+j+1(t∗ + j) = 0 for each j = 1, . . . , k − 1. We also

have that φrt∗+k−1,rt∗+k+1(t∗ + k) ⩽ 0.

Recall that φ1,rt∗+1(t∗) < 0 for each r ∈ M . Now let r̂t∗+1 be the number that satisfies

φ1,r̂t∗+1(t∗) = 0. Then, r̂t∗+1 > rt∗+1, and thus φr̂t∗+1,rt∗+3(t∗ + 2) < 0. Then, since φr,1(t∗ +
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2) > 0 for each r ∈ [0, 1], there is r̂t∗+3 > rt∗+3 such that φr̂t∗+1,r̂t∗+3(t∗ + 2) = 0. In turn,

φr̂t∗+3,rt∗+5(t∗ + 4) < 0. Let k∗ be the largest even number less than k. Continuing this process,

for each j = 2, 4, . . . , k∗ there exist r̂t∗+1, r̂t∗+3, . . . , r̂t∗+k∗+1 such that φr̂t∗+j−1,r̂t∗+j+1(t∗ + j) = 0.

Consider the case that k is an even number. Then, k∗ = k − 2. We now construct an

equilibrium profile (r̂)∞t=0. Let r̂t = 1 for each t < t∗ and r̂t = 1 for each t > t∗ + k. Let r̂k = rk .

We have two cases.

(i) Suppose that rt∗+k > 0 (See Figure 11 (g)). Then, φrt∗+k−1,0(t∗ + k) = 0, and thus,

φr̂t∗+k−1,0(t∗ + k) < 0. Then, let r̂t∗+k = 0. Since φrt∗+k−2,rt∗+k (t∗ + k − 1) = 0, φrt∗+k−2,0(t∗ + k − 1) <

0. Then there exists r̂t∗+k−2 < rt∗+k−2 such that φr̂t∗+k−2,0(t∗ + k − 1) = 0. Then, in turn,

φrt∗+k−4,r̂t∗+k−2(t∗ + k − 3) < 0. Continuing this process, there exist r̂t∗, r̂t∗+2, . . . , r̂t∗+k−1 for

each j = 2, 4, . . . , k such that φr̂t∗+j−2,r̂t∗+j (t∗ + j − 1) = 0. Then, (r̂t)∞t=0 satisfies equilibrium

conditions.

(ii) Suppose that rt∗+k = 0. Since φrt∗+k−2,0(t∗ + k − 1) < 0, then φr̂t∗+k−2,0(t∗ + k − 1) < 0.

For each j = 2, 4, . . . , k, let r̂t∗+ j = rt∗+ j . Then, since φrt∗+j−1,rt∗+j+1(t∗ + j) = 0, we also have

φr̂t∗+j−1,r̂t∗+j+1(t∗ + j) = 0. Then, r̂ satisfies equilibrium conditions.

Consider the case that k is odd (See Figure 11 (h) for the case that rt∗+k ∈ (0, 1) and (i) for

the case of rt∗+k = 0). Then, k∗ = k − 1. Then, since φrt∗+k−1,0(t∗ + k) ⩽ 0, there is r̂t∗+k−1 ⩽

rt∗+k−1 such that φr̂t∗+k−1,0(t∗ + k) = 0. Then, in turn, φrt∗+k−3,r̂t∗+k−1(t∗ + k − 2) ⩽ 0. Since

φ0,r̂t∗+k−1(t∗ + k − 2) > 0, we can find r̂t∗+k−3 ⩽ rt∗+k−3 such that φr̂t∗+k−3,r̂t∗+k−1(t∗ + k − 2) = 0.

Continuing this process, there exist numbers r̂t∗, r̂t∗+2, . . . , r̂t∗+k−2 such that φr̂t∗+j−2,r̂t∗+j (t∗ + j + 1) =

0 for each j = 2, 4, . . . , k − 1. Then, r̂ satisfies equilibrium conditions.

Thus, in each case, we can construct an equilibrium strategy, a contradiction. □

The following propositions show the properties of equilibria with mixed strategy. Combining

Theorem 3 and the following proposition, it follows that if φ0,1(t) ⩽ 0 for some t ∈ N,16 we

can characterize the equilibrium with mixed strategy.

Proposition 9. Suppose that φ0,1(t) ⩽ 0 for some t ∈ N. Then, in each equilibrium, for each t

such that φ0,0(t) < 0, subordinate t conceals the problem.

16Note that φ0,1(t) ⩽ 0 implies that φ1,1(t) ⩽ 0.
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Proof of Proposition 9. Suppose that φ0,1(t) ⩽ 0 for some t ∈ N. Then, there exists t such that

φ0,1(t) < 0 and thus, for each r, r′, φr,r ′(t) < 0. This implies that for the subordinate in period

t, not reporting is a strictly dominant strategy. Since φ0,1(t) is decreasing in t, for each t′ > t,

subordinate in period t′ conceals in equilibrium.

Let T B {t′ : φ0,1(t′) ⩾ 0 and φ0,0(t′) < 0}. If T = �, we are done. Suppose that T , �.

Consider t∗ B maxT . Then, we have φ0,1(t∗ + 1) < 0. Thus, rt∗+1 = 0. Since φ0,0(t) ⩾ φ1,0(t),

φ1,0(t∗) < 0. Therefore, not reporting is a best response for the subordinate in period t∗. Thus,

we have rt∗ = 0. Continuing this process, we have that for each t ∈ T , subordinate t does not

report in equilibrium. □

The above proposition needs the assumption that φ0,1(t) ⩽ 0 for some t ∈ N. If the

assumption is violated, the equilibrium has the following properties.

Proposition 10. Suppose that φ1,1(t) ⩽ 0 for some t ∈ N and φ0,1(t) ⩾ 0 for each t ∈ N. Let

t∗ B min{t : φ1,1(t) < 0}. Then, in each equilibrium, the following statements hold.

(1) Suppose that rt∗ = 0. Then, for each t < t∗ such that φ0,0(t) < 0, subordinate t conceals

the problem.

(2) Suppose that rt∗ , 0. Then, for each t such that φ1,1(t) < 0, subordinate t completely

mixes reporting and concealing.

Proof of Proposition 10. (1) This claim is shown in the same way as Proposition 9.

(2) Let t∗ B min{t : φ1,1(t) < 0}. Suppose that the subordinate in period t∗ reports with

probability 1, namely rt∗ = 1. Then, since φ1,1(t∗) < 0, for each r and t′ > t∗, φ1,r(t′) < 0.

Therefore, rt∗+1 = 0. On the other hand, since φ0,0(t∗) < 0, φr,0(t∗) < 0 for each r ∈ [0, 1].

Therefore, not reporting is the best response, a contradiction.

Suppose that the subordinate in period t∗ reports with probability rt∗ < 1. This implies that

φrt∗−1,rt∗+1(t∗) = 0. If rt∗+1 = 0, φrt∗−1,rt∗+1(t∗) < 0, a contradiction. If rt∗−1 = 1, it also yields a

contradiction. Therefore, rt∗+1 > 0 and rt∗−1 < 1. We consider the following three cases:

1. rt∗+1 = 1 and rt∗−1 = 0,

2. rt∗+1 = 1 and rt∗−1 > 0,
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3. rt∗+1 < 1.

Case 1. Suppose that rt∗+1 = 1 and rt∗−1 = 0, then, since φ0,1(t) > 0 for each t ∈ N, a

contradiction.

Case 2. Suppose that rt∗+1 = 1 and rt∗−1 > 0. Then, φrt∗,rt∗+2(t∗ + 1) > 0. Since rt∗+1 = 1

and φ1,r(t∗ + 2) < 0, rt∗+2 = 0. Thus, since φ0,0(t∗ + 1) < 0 and φ1,0(t∗ + 1) < 0, not reporting

is the best response for subordinate t∗ + 1 , a contradiction.

Case 3. Suppose that rt∗+1 < 1. Since rt∗+1 > 0, φrt∗,rt∗+2(t∗ + 1) = 0. Then, rt∗+2 > 0 since

φrt∗,0(t∗ + 1) < 0. If rt∗+2 = 1, as in case 2, we have a contradiction. Continuing this process,

for each t′ > t∗, φrt ′−1,rt ′+1(t′) = 0. □

A.4. Proofs in Section 6.2

Proof of Lemma 6. When the problem is reported, the manager in period t’s objective is

max
ρ
ρbM st + (1 − ρ)(−pdM,R)st − cχ(ρ)st,

equivalently

max
ρ
ρbM + (1 − ρ)(−pdM,R) − cχ(ρ). (4)

By the Karush–Kuhn–Tucker condition, the optimal probability ρ∗(c) satisfies

bM + pdM,R − χ′(ρ∗(c))c + λ = 0, λρ∗(c) = 0,

for some nonnegative real number λ. Since χ′−1 is increasing, if bM + pdM,R < χ′(0)c, it must

be λ > 0. Therefore, ρ∗(c) = 0. On the other hand, if bM + pdM,R ⩾ χ′(0)c, λ = 0. Thus,

problem (4) has an interior solution. Therefore,

ρ∗(c) =


0 if bM + pdM,R < χ′(0)c,

χ′−1((bM + pdM,R)/c) if bM + pdM,R ⩾ χ′(0)c.
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Since χ′−1 is increasing, ρ∗(c) is decreasing in c. Then, the expected utility of facing the

reported problem as a manager is

D̃R =

∫
[ρ∗(c)bM + (1 − ρ∗(c))(−pdM,R) − cχ(ρ∗(c))] dF(c).

Consider the manager’s problem when the manager knows the problem before the subordinate’s

report. If he ignores the problem and the problem is unreported, the expected utility is

−pdM,U . If he ignores the problem and the problem is reported, the expected utility is

ρ∗(c)bM + (1 − ρ∗(c))(−pdM,R) − χ(ρ∗(c))c. Let r be the probability that his subordinate

reports the problem. Then, the expected utility of ignoring the problem is

r[ρ∗(c)bM + (1 − ρ∗(c))(−pdM,R) − cχ(ρ∗(c))] + (1 − r)[−pdM,U].

On the other hand, if he decides not to ignore the problem, that is, ρ > 0, the expected utility

is ρ∗(c)bM + (1 − ρ∗(c))(−pdM,R) − χ(ρ∗(c))c. Thus, the manager ignores the problem if and

only if ρ∗(c)bM + (1 − ρ∗(c))(−pdM,R) − χ(ρ∗(c))c < −pdM,U .

As in the previous section, let D̃U be the expected utility of facing the unreported problem,

that is,

D̃U =

∫
[max{ρ∗(c)bM + (1 − ρ∗(c))(−pdM,R) − cχ(ρ∗(c)),−pdM,U}] dF(c).

It is easy to show that D̃U ⩾ D̃R. Let c∗ be the number that solves ρ∗(c∗)bM + (1 −

ρ∗(c∗))(−pdM,R) − χ(ρ∗(c∗))c∗ = −pdM,U . Note that by the envelope theorem, ρ∗(c)bM +

(1 − ρ∗(c))(−pdM,R) − cχ(ρ∗(c)) is nonincreasing in c. Then, c∗ is uniquely determined and

D̃U is written as

D̃U =

∫ c∗

[ρ∗(c)bM + (1 − ρ∗(c))(−pdM,R) − χ(ρ∗(c))c] dF(c)

−pdM,U(1 − F(c∗)).

Therefore, the probability that the reported problem remains unsolved in the next period,
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which is denoted by Ĩ(rt−1) is

Ĩ(rt−1) B
(
(qS(1 − rt−1) + (1 − qS)qM)

∫
c∗
(1 − ρ∗(c)) dF(c)

+ (1 − qS)(1 − qM)
(∫

(1 − ρ∗(c)) dF(c)
))

×
(
(qS(1 − rt−1) + (1 − qS)qM)(1 − F(c∗)) + (1 − qS)(1 − qM)

)−1

Note that Ĩ is nonincreasing in rt−1.

Consider the subordinate’s behavior. The expected utility of reporting is

δ Ĩ(rt−1)D̃Rst+1 + bSst .

The expected utility of not reporting is

−pdSst + δ
[
pD̃Rst+1 + (1 − p)(qSrt+1D̃Rst+1 + (1 − qSrt+1)D̃U st+1)

]
.

Then, calculating the difference of these equation yields φ̃rt−1,rt+1 . □

Proof of Theorem 6. Recall that

φ̃1,0(t) B δ(1 − p)
[
(Ĩ(rt−1) − 1)D̃R − (1 − p)(D̃U − D̃R)

] st+1
st
+ bS + dS .

Then,

∂φ̃1,0(t)
∂dM,R = δ(1 − p)

[
∂ Ĩ(1)
∂dM,R D̃R + (Ĩ(1) − p) ∂D̃R

∂dM,R − ∂D̃U

∂dM,R

]
st+1
st
.

Consider the case that dM,R → ∞. Then, for sufficiently large dM,R, for each c ∈ (0, c̄),

[bM + pdM,R]/c > χ′(0). Therefore, the maximization problem (4) has an interior solution.

Therefore by the first order condition, we have χ′(ρ∗(c)) = [bM + pdM,R]/c. Then, since

limρ→ρ̄ χ′(ρ) = ∞, as dM,R → ∞, ρ∗(c) → ρ̄. This implies that χ(ρ∗(c)) → ∞. Then, we

have that for each c > 0, as dM,R → ∞, ρ∗(c)bM + (1 − ρ∗(c))(−pdM,R) − χ(ρ∗(c))c → ∞.
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Then, for sufficiently large dM,R, c∗ < 0. This implies that for sufficiently large dM,R, since

c∗ < 0 is not in the support of F, f (c∗) = 0. Therefore, for sufficiently large dM,R,

∂ Ĩ(r)
∂dM,R = −

∫
∂ρ∗(c)
∂dM,R dF(c).

This also implies that ∂D̃U/∂dM,U = 0 for sufficiently large dM,R. Therefore, to determine the

sign of ∂φ̃1,0(s)
∂dM,R , we consider only

∂ Ĩ(1)
∂dM,R D̃R + (I(1) − p) ∂D̃R

∂dM,R .

(1) We consider the case that ρ̄ < 1. We write D̃R as a function of dM,R explicitly, that is

D̃R(dM,R). Since ∂D̃R(dM,R)
∂dM,R = −p

∫
(1 − ρ∗(c)) dF(c) < −p, |D̃R(dM,R) − D̃R(0)| < pdM,R.

Therefore, |D̃R(dM,R)| < pdM,R + |D̃R(0)|.

To verify limdM,R→∞
∂ Ĩ(1)
∂dM,R D̃R(dM,R), we consider ∂ρ∗(c)/∂dM,R. Note that ∂ρ

∗(c)
∂dM,R > 0. To

show this, recall that ρ∗(c) = χ′−1([bM + pdM,R]/c). Since χ′−1 is increasing, ∂ρ
∗(c)

∂dM,R > 0. We

also write ρ∗(c) as a function of dM,R, ρ∗(c, dM,R). Note that

ρ∗(c, dM,R) − ρ∗(c, dM,R/2) =
∫ dM,R

dM,R/2
(∂ρ∗(c, d′)/∂d′) dd′

⩾ min
d∈[dM,R/2,dM,R]

dM,R(∂ρ∗(c, d)/∂dM,R)/2.

Since ρ∗(c, dM,R) → ρ̄ for each c as dM,R → ∞, ρ∗(c, dM,R)−ρ∗(c, dM,R/2) → 0 as dM,R → ∞.

Therefore,

lim
dM,R→∞

min
d∈[dM,R/2,dM,R]

dM,R

2
∂ρ∗(c, d)
∂dM,R = 0.

Since ����� ∂ Ĩ(1)
∂dM,R D̃R(dM,R)

����� < max
c

∂ρ∗(c, d)
∂dM,R (pdM,R + |D̃R(0)|),

the RHS converges to 0 as dM,R → ∞.
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Consider Ĩ(1) ∂D̃R

∂dM,R . Since c∗ < 0 for sufficiently large dM,R, Ĩ(1) =
∫
(1 − ρ∗(c)) dF(c).

Then,

(Ĩ(1) − p) ∂D̃R

∂dM,R = −p
[∫

(1 − ρ∗(c, dM,R)) dF(c) − p
] [∫

(1 − ρ∗(c, dM,R)) dF(c)
]
.

Therefore, if ρ̄ < 1 − p, since for each c, ρ∗(c) → ρ̄, (Ĩ(1) − p) ∂D̃R

∂dM,R < 0 and thus, ∂φ̃1,0
∂dM,R < 0.

On the other hand, if ρ̄ > 1 − p, (Ĩ(1) − p) ∂D̃R

∂dM,R > 0 and thus, ∂φ̃1,0
∂dM,R > 0. □

Proof of Proposition 6. Under the assumption, D̃U = 0. Note that if qM = 0, Ĩ(1) =
∫
(1 −

ρ∗(c)) dF(c). Then,

φ̃1,0(t) = δ(Ĩ(1) − p)D̃R st+1
st
+ bS + pdS .

Note that since χ(ρ) = ρ/(ρ̄ − ρ), by the Karush–Kuhn–Tucker condition,

ρ∗(c) = max
{
ρ̄ −

√
ρ̄

c
bM + pdM,R , 0

}
.

The first-order derivative is

δ

[
(Ĩ(1) − p) ∂D̃R

∂dM,R +
∂ Ĩ(1)
∂dM,R D̃R

]
st+1
st
.

Consider (Ĩ(1) − p) ∂D̃R

∂dM,R +
∂ Ĩ(1)
∂dM,R D̃R. This is calculated as

(Ĩ(1) − p) ∂D̃R

∂dM,R +
∂ Ĩ(1)
∂dM,R D̃R

= −p(1 − ρ̄)(1 − ρ̄ − p) − p
√
ρ̄τA

(
µA2

2
+ 1 − ρ̄ − p + 1 − pdM,R

2(bM + pdM,R) −
ρ̄

2

)
, (5)

where A = 1/(bM + pdM,R)1/2, τ =
∫ ρ̄/A2 √

c dF(c) and µ =
∫ ρ̄/A2

c dF(c). Then, if 1− p > ρ̄,

the first-order derivative (5) is negative. □
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A.5. Proofs in Section 6.3

Proof of Lemma 7. Consider a manager in period t who is reported a problem. Let ξ(s) be the

probability that the manager t + 1 ignores the problem. Then, the manager’s expected utility

of ignoring the problem is

−p(dM,Rst + cst) − (1 − p)pδξ(st)(1 − µ)dRG(st).

The manager in period t solves the problem if and only if

bM + pdM,R + δ(1 − p)pξ(st)(1 − µ)dR[G(st)/st]
1 − p

⩾ c

Therefore, the probability that a manager ignores, ξ, satisfies

ξ(s) = H(ξ)(s) B
1 − F ©­«

bM + pdM,R + δ(1 − p)ξ(G(s))(1 − µ)dR G2(s)
G(s)

1 − p
ª®¬
 . (6)

Then, if there is a ξ that satisfies the above condition, the managers’ behavior is determined.

Claim 2. Suppose that G(s)/s and f are well defined on R+ and sups∈R+ G(s)/s < ∞. Then,

there exists a function ξ : R+ → [0, 1] that satisfies (6).

Proof of Claim 2. To show the existence of ξ that satisfies (6), we show the existence of a fixed

point of H.

Since each [0, 1] is a nonempty convex compact set, [0, 1]R+ is a convex set and by the

Tychonoff theorem, [0, 1]R+ is a compact set under the product topology. Let O be the product

topology of RR+ . To show the existence of a fixed point of H, we use

Fact 2 (Aliprantis and Border 2006, p.206). (RR+,O) is locally convex Hausdorff space.

Fact 3 (Brouwer–Schauder–Tychonoff’s fixed point theorem, Aliprantis and Border 2006,

p.583). Let C be a nonempty compact convex subset of locally convex Hausdorff space, and

let f : C → C be a continuous function. Then f has a fixed point.
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Therefore, we only to show that H is continuous on [0, 1]R+ . To show this, let ξ, ξ′ ∈ [0, 1]R+ .

Note that the product topology is generated by the family of seminorms (|h(s)|)s∈R+ for each

h ∈ [0, 1]R+ . Note also that by the mean value theorem, there exists ξ̃ ∈ [0, 1] such that

|H(ξ)(s) − H(ξ′)(s)|

= δp(1 − µ)dR G2(s)
G(s) f ©­«

bM + pdM,R + δ(1 − p)pξ̃(1 − µ)dR G2(s)
G(s)

1 − p
ª®¬

× |ξ(G(s)) − ξ′(G(s))|.

Then, since G(s)/s is bounded above, when ξ′(s) → ξ(s) for each s, H(ξ′)(s) → H(ξ)(s) for

each s. Therefore, H is continuous. Then H has a fixed point, ξ. □

If the problem is unreported, the expected utility of ignoring the problem is

(1 − r)(−pdM,U st + cst) + r max
{
bM st − dM,Rst,

− p(dM,Rst + cst) − (1 − p)δpξ(st)(1 − µ)dRG(st)
}
,

where r is the probability that the problem is reported in the next period. Therefore, the

manager solves if and only if

bM st − cst ⩾ −(1 − r)p(dM,U + c)st + r max
{
bM st − cst,

−pdM,Rst − (1 − p)δpξ(st)(1 − µ)dRG(st)
}

If bM st − cst ⩾ −pdM,Rst − (1 − p)δpξ(st)(1 − µ)dRG(st), the condition is

bM st − cst ⩾ −p(dM,U + c)st .

If bM st − cst < −p(dM,R + c)st − (1 − p)δpξ(st)(1 − µ)dRG(st), the condition is

bM st − cst ⩾ −(1 − r)p(dM,U + c)st − r(pdM,Rst − (1 − p)δpξ(st)(1 − µ)dRG(st)).
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However, since dM,R > dM,U ,−pdM,Rst−(1−p)δpξ(st)(1−µ)dRG(st) < −pdM,U st . Therefore,

if bM st − cst < −p(dM,R + c)st − (1 − p)δpξ(st)(1 − µ)dRG(st), the above condition must not

be satisfied. Therefore, the manager solves if and only if bM+pdM,U

1−p ⩾ c. Thus, the probability

that the manager ignores problem is

Î(rt−1, s) =
(qS(1 − rt−1) + qM (1 − qS))ξ(s)

[qS(1 − rt−1) + qM (1 − qS)]
[
1 − F

(
bM+pdM,U

1−p

)]
+ (1 − qS)(1 − qM )

.

We can also show that Î is decreasing in rt−1. Let D̂U B E
[
max

{
bM − c,−p(dM,U + c)

}]
,

and

D̂R(s) B E
[
max

{
bM − c,−p(dM,R + c) − (1 − p)δpξ(G(s))(1 − µ)dR G2(s)

G(s)

}]
.

Then as in the basic model, we can define φ̂r,r ′. □

Proof of Proposition 7. Note that when st+1 = αst , D̂R, ξ and Î are no longer dependent on s

but on α. Therefore, we write these variables as functions of α.

Note also that since ξ is independent of s, ξ is uniquely determined. This is because, (6) is

written as

ξ(α) = Hα(ξ(α)) B
[
1 − F

(
bM + pdM,R + δ(1 − p)pξ(α)(1 − µ)dRα

1 − p

)]
. (7)

Then, since Hα(ξ) is decreasing in ξ, for each α, ξ(α) is uniquely determined.

Let E(α) B [−{1 − Î(rt−1, α)}D̂R(α) − (1 − qSrt+1)(D̂U − D̂R(α))]. The proof consists of

the following six steps.

Step 1: ξ(α) is decreasing in α. First note the derivative of ξ. By the implicit function

theorem, ξ(G) is differentiable and by (7), the derivative is given by

ξ′(α) = − A
1 + Aα

ξ(α) < 0,
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where

A = pδ(1 − µ)dR f
(

bM + pdM,R + δ(1 − p)pξ(α)(1 − µ)dRα

1 − p

)
.

Therefore, ξ(α) is decreasing in α. ■

Step 2: ξ(α)α is increasing in α. By step 1, ξ(α) is decreasing in α. On the other hand,

the RHS of (7) is a decreasing function of ξ(α)α. Therefore, ξ(α)α is increasing in α. ■

Step 3: ξ(α)α converges to a real number as α→ ∞. Suppose by contradiction that ξ(α)α

does not converge. By step 2, since ξ(α)α is increasing, ξ(α)α → ∞. Then, there exists ᾱ

such that for each α > ᾱ,

bM + pdM,R + δ(1 − p)pξ(α)(1 − µ)dRα

1 − p
> c̄.

Then, since the support of f is (0, c̄), ξ(α) = 0, which implies that ξ(α)α = 0, a contradiction.

■

Step 4: limα→∞ E(α) > 0. By step 3, since ξ(α)α converges as α → ∞, ξ(α) → 0. This

implies that Î(r, α) → 0. Then, since D̂R(α) < 0 and D̂U < 0,

lim
α→∞

E(α) = −qSrt+1D̂R(α) − (1 − qSrt+1)D̂U > 0.

■

Step 5: limG→∞
∂E(α)
∂α α ⩾ 0. The derivative of E(α) is given by

∂E(α)
∂α

=
∂ Î(rt−1, α)
∂α

D̂R(α) + (Î(rt−1, α) − qSrt+1)
∂D̂R(α)
∂α

,
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where

∂ Î(rt−1, α)
∂α

=
(1 − qSrt−1)ξ′(α)

[qS(1 − rt−1) + qM(1 − qS)]
[
1 − F

(
bM+pdM,U

1−p

)]
+ (1 − qS)(1 − qM)

< 0,

∂D̂R(α)
∂α

= −(1 − p)pδ(1 − µ)dR(ξ(α)α)′ξ(α) < 0.

Note that since ξ(α) → 0, ξ′(α) → 0. Therefore, ∂ Î(rt−1,α)
∂α → 0 and ∂D̂R(α)

∂α → 0. If rt+1 > 0,

since Î(rt−1, α) → 0 as α→ ∞, ∂E(α)
∂α > 0 for sufficiently large α. ■

Step 6: Completing the proof. Consider the case that rt+1 = 0. Then, since ξ(α)α is bounded

above, Î(rt−1, α)α is bounded above. Since ∂D̂R(α)
∂α → 0, (Î(rt−1, α)−qSrt+1) ∂D̂R(α)

∂α → 0. Thus,

since D̂R(α) < 0 and ∂ Î(rt−1,α)
∂α < 0, limα→∞

∂E(α)
∂α α ⩾ 0.

Note that φ̂rt−1,rt+1(α) = δ(1 − p)E(α)α + bS + pdS. Then, if E(α) > 0, φ̂rt−1,rt+1(α) > 0.

Thus, by step 5, limα→∞ φ̂rt−1,rt+1(α) > 0.

Note also that ∂φ̂rt−1,rt+1(α)/∂α = δ(1 − p) ∂E(α)
∂α α + δ(1 − p)E(α). Then by steps 4 and 5,

∂φ̂rt−1,rt+1(α)/∂α > 0. □

Proof of Proposition 8. As in the proof of Proposition 7, let

E(α) = [−{1 − Î(rt−1, α)}D̂R(α) − (1 − qSrt+1)(D̂U − D̂R(α))]

Since ∂φ̂rt−1,rt+1(α)/∂α = δ(1− p) ∂E(α)
∂α α + δ(1− p)E(α), it is sufficient to show that ∂E(0)

∂α < 0

and E(0) < 0 for sufficiently large c̄. Note that

ξ(0) = 1 − F
(

bM + pdM,R

1 − p

)
= 1 − bM + pdM,R

(1 − p)c̄ .

Then, we can write Î(rt−1, 0) = A(c̄)ξ(0). Note that A(c̄) ⩾ 1 and limc̄→∞ A(c̄) = 1. On the
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other hand,

D̂R(0) = bM bM + pdM,R

(1 − p)c̄ −
(

bM + pdM,R

(1 − p)c̄

)2 1
c̄
− pdM,R

(
1 − bM + pdM,R

(1 − p)c̄

)
+

p
c̄

(
bM + pdM,R

(1 − p)c̄

)2

− pc̄

D̂U = bM bM + pdM,U

(1 − p)c̄ −
(

bM + pdM,U

(1 − p)c̄

)2 1
c̄
− pdM,U

(
1 − bM + pdM,U

(1 − p)c̄

)
+

p
c̄

(
bM + pdM,U

(1 − p)c̄

)2

− pc̄

Then, since D̂R(0) < 0,

E(0) = [−{1 − I(rt−1, 0)}D̂R(0) − (1 − qSrt+1)(D̂U − D̂R(0))]

< −D̂R(0)bM + pdM,R

1 − p
− (1 − qSrt+1)(D̂U − D̂R(0)).

Letting c̄ → ∞ yields that

lim
c̄→∞

−D̂R(0)bM + pdM,R

1 − p
− (1 − qSrt+1)(D̂U − D̂R(0))

= p
bM + pdM,R

1 − p
− (1 − qSrt+1)p(dM,R − dM,U).

Therefore, limc̄→∞ E(0) < 0 if

p <
(1 − qSrt+1)(dM,R − dM,U) − bM

dM,R − (1 − qSrt+1)(dM,R − dM,U) .

The above condition holds when p, bM and dM,U are sufficiently small.

Next, we consider ∂E(α)
∂α , which is written as

∂E(α)
∂α

=
∂I(rt−1, α)
∂α

D̂R(α) + (Î(rt−1, α) − qSrt+1)
∂D̂R(α)
∂α

.
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Note that

ξ′(0) = −Aξ(0) = −pδ(1 − µ)dR

c̄
ξ(0), ∂D̂R(0)

∂α
= −(1 − p)δ(1 − µ)dR(ξ(0))2.

Therefore,

lim
c̄→∞

∂E(0)
∂α

= p2δ(1 − µ)dR − (1 − qSrt+1)(1 − p)δ(1 − µ)dR

= δ(1 − µ)dR(p2 − (1 − qSrt+1)(1 − p)).

Thus, if qS < 1 and p is sufficiently small, limc̄→∞
∂E(0)
∂α < 0. □
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