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Abstract

This study proposes a no-arbitrage term structure model that can capture the volatility of

interest rates without sacrificing the goodness-of-fit to the cross-section and predictive ability

about the level of interest rates. The key feature of the model is the covariance matrix of

changes in factors, which is specified as quadratic functions of factors. The quadratic specifi-

cation can capture intense volatility even with spanned factors, which is not the case for the

affine specification. Furthermore, since the quadratic specification guarantees the positive def-

initeness of the covariance matrix without restricting the sign of factors, it allows for a flexible

specification of the physical drift as does the Gaussian term structure model, contributing also

to accurate level prediction.
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1 Introduction

No-arbitrage affine term structure models are known to have difficulties in that stochastic volatility

factors, when extracted from the cross-section of interest rates, do not behave similarly with

standard volatility measures. In particular, it is often the case that the volatility implied by

the models fluctuates too little or correlates negatively with standard measures; see, for example,

Collin-Dufresne, Goldstein, and Jones (CDGJ) (2009), and Jacobs and Karoui (2009). The purpose

of this study is to propose non-affine models that can capture interest-rate volatility without

sacrificing the goodness-of-fit to the cross-section and predictive ability about the level of interest

rates.

There are mainly two sources of the problem of volatility implied by the affine models. The

first is specification: the covariance matrix of changes in factors is specified as a linear function of

factors. The second is estimation: some interest rates are assumed to be measured without error

to extract factors from the cross-section. By combining these two sources, it is implied that a

conditional variance of an interest rate, for any horizon and maturity, can be described by a linear

combination of interest rates. This implication, however, is statistically rejected by Andersen and

Benzoni (2010).

To improve the fit to the volatility, previous studies modify the affine models in terms of

specification, or estimation, or both. Collin-Dufresne and Goldstein (2002) propose an affine term

structure model with unspanned stochastic volatility factors that do not appear in the cross-section

of interest rates and hence are free to fit the time-series of interest rates or the cross-section of

bond derivatives. They show that originally spanned stochastic volatility factors in affine models

can be made unspanned by imposing certain parameter constraints. The constraints, however, are

usually at the cost of reducing the cross-sectional fit, leading to statistical rejection in favor of

unconstrained affine models; see, for example, Bikbov and Chernov (2009), and Thompson (2008).

Thompson (2008) proposes an estimation method that prevents affine models with stochastic

volatility factors from overfitting the cross-section. This method, however, is not a fundamental

solution of the trade-off between fitting the time-series and cross-section as it reduces the latter.

Our approach to resolving the trade-off is to change the specification of volatility while main-

taining the assumption that some interest rates are measured without error for the cross-sectional

fit. Hence, all factors in the proposed models are spanned by interest rates, which means that

none of the factors may behave like volatility. The question then is how to drive the volatility

by non-volatility factors. Our answer is to use quadratic functions of factors as a driving force of
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volatility. An intuition behind this specification is an ARCH model, where the volatility is driven

by the squared change of an interest rate (after subtracting the conditional mean) between time t

and time t+∆. This change may be well captured by squaring and appropriately combining many

interest rates at time t. In fact, using time-series models of interest rates, Takamizawa (2015)

shows evidence in favor of a quadratic specification of volatility. However, he does not show that

this evidence can be extended to no-arbitrage models, in which the factors are treated as latent

variables and hence should be estimated simultaneously.

In addition to the potential of resolving the trade-off between fitting the time-series and cross-

section of interest rates, the quadratic specification might resolve another trade-off between pre-

dicting the level and volatility of interest rates, a trade-off within time-series properties. The

affine models also have this trade-off. Intuitively, as Duffee (2002) demonstrates, the Gaussian

term structure model, which is an affine model with constant volatility, is good at predicting the

level of interest rates. However, it cannot then explain time-varying volatility. The second trade-off

stems from the conditions to keep stochastic volatility factors nonnegative. The so-called admissi-

bility conditions include the following: (i) the instantaneous correlations between volatility factors

are zero; (ii) the constant term in the drift of change in a volatility factor is positive; (iii) the drift

of change in a volatility factor does not depend on non-volatility factors that can change signs;

and (iv) the drift of change in a volatility factor can depend on the other volatility factors but

only positively. The more the number of volatility factors, the more binding are the admissibility

conditions. The Gaussian model is the only affine model that is free of the admissibility condition-

s. Similar to the Gaussian model, the proposed models do not need the admissibility conditions

because the quadratic specification guarantees the positive definiteness of the covariance matrix.

In this manner, the proposed models can inherit the strength of the Gaussian model in terms of

predicting the level of interest rates while overcoming its weakness of constant volatility.

An obvious weakness of the proposed models, on the other hand, is that there is no closed-form

solution for no-arbitrage bond prices and yields. This study overcomes this weakness by relying

on an approximation method proposed by Takamizawa and Shoji (2009), which approximates

conditional moments of multi-dimensional diffusion processes as the solution to ordinary differential

equations. Since bond prices are computed as conditional expectation of a stochastic discount

factor, it is straightforward to apply this method. The accuracy of the approximation is maintained

for the proposed models with reasonable parameter values.

Empirical analysis shows that the proposed models indeed predict the volatility better than the
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affine models while having a similar descriptive power for the cross-section and predictive power

for the level. The affine and proposed models are both estimated by the quasi-maximum likelihood

method with the assumption that some interest rates are measured without error to maintain the

descriptive power for the cross-section. The proposed models attain larger likelihood values than

the affine models. The larger values are attributed to improving not the cross-sectional fit but

the time-series fit. The improvement in the time-series fit leads to a higher predictive accuracy

for the volatility of interest rates, especially with long maturities. However, it does not raise the

predictive accuracy for the level of interest rates.

The rest of the manuscript is structured as follows. Section 2 introduces first the affine models

and then the proposed models. Section 3 explains estimation and prediction methods. Sections

4 through 6 report empirical results of estimation, volatility prediction, and level prediction, re-

spectively. Section 7 concludes. Technical arguments on the approximation of no-arbitrage bond

prices and its accuracy are collected in Appendices.

2 Models

The purpose of this study is to propose no-arbitrage term structure models that can capture the

volatility without sacrificing the goodness-of-fit to the cross-section of interest rates. To achieve

this purpose, we change the covariance matrix of changes in factors from affine to quadratic

specifications. Meanwhile, we do not change the drift vectors in both the risk-neutral and physical

probability measures from the affine specification. This is aimed at controlling for the drift vectors

and attributing the improvement, if any, to the covariance matrix.

The affine models are first introduced. They can be classified by the number of factors driving

the volatility. Using the notation of affine models proposed by Dai and Singleton (2000), let Am(n)

denote an affine term structure model that has n factors in total, among which m factors drive the

volatility. This study uses n = 3 following Litterman and Scheinkman (1991) and the subsequent

studies, and then considers m = 1, 2, 3. For each m, the affine covariance matrix is replaced by

a quadratic counterpart. The same quadratic specification is used for all m. However, the effect

of the quadratic specification will differ in m because the severity of the admissibility conditions

imposed on the original affine models differs in m.

Section 2.1 presents Am(3) (m = 1, 2, 3) and Section 2.2 introduces quadratic specifications into

each of the affine models. Section 2.3 provides a brief explanation of how to compute no-arbitrage
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bond prices by the proposed models.

2.1 Affine models

Let Xt be a three-dimensional state vector. For the affine models, the risk-neutral and physical

distributions of instantaneous change in Xt can be expressed generally as

(Risk-neutral) dXt ∼ N [(KQ
0 +KQ

1 Xt) dt, Σt dt] , (1)

(Physical) dXt ∼ N [(K0 +K1Xt) dt, Σt dt] . (2)

The specification of Σt differs in m. Furthermore, the specification of KQ
i (i = 0, 1) depends on

the rotation of factors as well as m. This study adopts the rotation proposed by CDGJ (2008).

Finally, the specification of Ki (i = 0, 1) depends on the specification of market price of risks in

addition to m. This study adopts the so-called essentially affine specification proposed by Duffee

(2002).

We next parameterize the vectors and matrices in (1) and (2) for each m.

2.1.1 A1(3)

A state vector Xt consists of Xt = (rt µt x3,t)
′, where rt is the instantaneous risk-free rate, µt

is the risk-neutral, conditional mean of change in rt, and x3,t represents a volatility factor. Then,

the parameters in (1) and (2) are given by

KQ
0 =


0

kQµ,0

kQ3,0

 , KQ
1 =


0 1 0

kQµ,1 kQµ,2 kQµ,3

0 0 kQ3,3

 , K0 =


kr,0

kµ,0

kQ3,0

 , K1 =


kr,1 kr,2 kr,3

kµ,1 kµ,2 kµ,3

0 0 k3,3

 , (3)

Σt =


srr,0 srµ,0 0

srµ,0 sµµ,0 0

0 0 0

 +


srr,3 srµ,3 sr3,3

srµ,3 sµµ,3 sµ3,3

sr3,3 sµ3,3 s33,3

x3,t , (4)

where the first and second matrices on the right-hand side (RHS) of (4) are nonnegative and

positive definite, respectively.

Since x3,t must be nonnegative in both the risk-neutral and physical probability measures, the

drift of change in x3,t should not depend on rt nor µt; the (3,1) and (3,2) elements of KQ
1 and

K1 are set to zero. Also of note is that by the essentially affine specification of the market price
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of risks, the first and second rows of Ki (= 0, 1) can be different from those of KQ
i . This is not

the case for x3,t: the constant term kQ3,0, which is positive as one of the admissibility conditions, is

shared between the two probability measures. Finally, for identification of x3,t, k
Q
µ,3 = 1 is placed.

By this normalization, all factors have a similar level, which eases comparison of their dynamics.

It is, however, noted that an alternative normalization such as s33 = 1 does not change the model’s

fit.

2.1.2 A2(3)

A state vector Xt consists of Xt = (rt x2,t x3,t)
′, where rt is the instantaneous risk-free rate, and

xi,t (i = 2, 3) represents volatility factors. Then,

KQ
0 =


kQr,0

kQ2,0

kQ3,0

 , KQ
1 =


kQr,1 kQr,2 kQr,3

0 kQ2,2 kQ2,3

0 kQ3,2 kQ3,3

 , K0 =


kr,0

kQ2,0

kQ3,0

 , K1 =


kr,1 kr,2 kr,3

0 k2,2 kQ2,3

0 kQ3,2 k3,3

 , (5)

Σt =


srr,0 0 0

0 0 0

0 0 0

 +


srr,2 sr2,2 0

sr2,2 s22,2 0

0 0 0

x2,t +


srr,3 0 sr3,3

0 0 0

sr3,3 0 s33,3

x3,t , (6)

where all matrices on the RHS of (6) are nonnegative definite.

By the essentially affine specification of the market price of risks, all parameters in the drift

of change in rt can be different between the two probability measures. Meanwhile, the physical

drift for the volatility factors is restricted in a way where only the diagonal elements of K1 can

be different from those of KQ
1 . To prevent xi,t (i = 2, 3) from being negative in both probability

measures, the following constraints are imposed on the drift parameters: kQ2,0 > 0 and kQ3,0 > 0;

the (2,1) and (3,1) elements of KQ
1 (and hence K1) are zero; and kQ2,3 ≥ 0 and kQ3,2 ≥ 0. By these

constraints together with the specification of Σt, the correlation between x2,t and x3,t cannot take

a negative value. For identification of xi,t (i = 2, 3), kQr,2 = −kQr,3 = 1 is placed. An alternative

normalization such as s22,2 = s33,3 = 1 does not change the model’s fit: in this case, the estimate

of kQr,2 is positive while that of kQr,3 is negative. This is why kQr,3 = −1 is placed instead of kQr,3 = 1.
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2.1.3 A3(3)

All components of a state vector Xt are volatility factors, Xt = (x1,t x2,t x3,t)
′. The instantaneous

risk-free rate rt is a linear combination of the elements of Xt as

rt = δ0 + δ1x1,t + δ2x2,t + δ3x3,t . (7)

The parameters in (1) and (2) are given by

KQ
0 =


kQ1,0

kQ2,0

kQ3,0

 , KQ
1 =


kQ1,1 kQ1,2 kQ1,3

kQ2,1 kQ2,2 kQ2,3

kQ3,1 kQ3,2 kQ3,3

 , K0 =


kQ1,0

kQ2,0

kQ3,0

 , K1 =


k1,1 kQ1,2 kQ1,3

kQ2,1 k2,2 kQ2,3

kQ3,1 kQ3,2 k3,3

 , (8)

Σt =


s11x1,t 0 0

0 s22x2,t 0

0 0 s33x3,t

 , (9)

where sii > 0 (i = 1, 2, 3).

By the essentially affine specification of the market price of risks, only the diagonal elements

of K1 are different from those of KQ
1 , and the remaining parameters are shared between the two

probability measures. For xi,t (i = 1, 2, 3) to be nonnegative, it is required that all elements of

KQ
0 (and hence K0) be positive and that the off-diagonal elements of KQ

1 (and hence K1) be

nonnegative. These constraints, together with the specification of Σt, exclude the possibility that

the correlations between any pair of factors are negative.

For the identification of xi,t (i = 1, 2, 3), δ1 = −δ2 = δ3 = 1 is placed in (7). An alternative

normalization such as s11 = s22 = s33 = 1 does not change the model’s fit: in this case, the

estimates δ1 and δ3 are positive whereas that of δ2 is negative, leading to the above normalization

based on δi (i = 1, 2, 3). Additionally, δ0 = −1 is placed for two reasons. First, it is difficult to

obtain a precise estimate of δ0. Second, a sufficiently negative value (relative to the level of factors)

gives volatility factors a wide margin for taking positive values.

As seen above, more restrictions are placed by increasing m. The literature prefers m = 1,

which strikes the balance between time-varying volatilities and flexible correlations. In the next

subsection, we replace the affine covariance matrix in each of the affine models with a quadratic

counterpart, aiming at pursuing both time-varying volatilities and flexible correlations. Although

the specification of the quadratic covariance matrix is the same for all m, its effect can be different

because of the different restrictions in the original affine models.
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2.2 Proposed models

We specify Σt in (1) and (2) as quadratic functions of Xt. The remaining components of the

distributions are the same as those for the original affine models, which allows us to highlight

the effect of a quadratic Σt. To guarantee the positive definiteness of Σt, it is convenient to first

decompose Σt and then specify the components. We consider two decompositions.

2.2.1 LSD model

LSD is an abbreviation of Linear Standard Deviation. The first decomposition of Σt follows

Bollerslev (1990) and Engle (2002):

Σt = HtRHt , (10)

where Ht is a diagonal matrix and R is a constant correlation matrix. 1 Then, the i-th diagonal

element of Ht, denoted as hi(Xt), is specified by a linear function of Xt:

hi(Xt) = βi
0 + βi′Xt (i = 1, 2, 3) . (11)

A model having (1)–(2) and (10)–(11) is labeled as Am(3)-LSD (m = 1, 2, 3).

2.2.2 QEV model

QEV is an abbreviation of Quadratic EigenValues. The second decomposition of Σt is the eigen-

value decomposition:

Σt = PLtP
′ , (12)

where Lt is a diagonal matrix consisting of the eigenvalues, and P is an orthonormal matrix

consisting of the corresponding eigenvectors, which are fixed as in the previous studies; Fan et al.

(2003), Han (2007), Jarrow et al. (2007), Longstaff et al. (2001), and Pérignon and Villa (2006).

P can be expressed as

P =


1 0 0

0 cosφP
3 − sinφP

3

0 sinφP
3 cosφP

3




cosφP
2 0 − sinφP

2

0 1 0

sinφP
2 0 cosφP

2




cosφP
1 − sinφP

1 0

sinφP
1 cosφP

1 0

0 0 1

 , (13)

1In the previous version of this manuscript, a state-dependent correlation matrix is also considered. It offers

little improvement, however, over a constant correlation matrix because none of the parameters related to the

state-dependence are statistically significant.
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where the parameters to be estimated are sinφP
i (i = 1, 2, 3). For identification, φP

i ∈ [−π/2, π/2]

is imposed so that cosφP
i =

√
1− sin2 φP

i .

For Σt to be positive definite, all eigenvalues in Lt must be positive. Then, the i-th diagonal

element of Lt, denoted as li(Xt), is specified by a quadratic function of Xt:

li(Xt) = ci0 +X ′
tΓ

iXt (i = 1, 2, 3) , (14)

where ci0 > 0 and Γi is a nonnegative definite matrix. Similar to Σt, Γ
i is parameterized based on

the spectral decomposition:

Γi = QiM iQi′ (i = 1, 2, 3) , (15)

where

M i =


mi

1 0 0

0 mi
2 0

0 0 mi
3

 , with 0 ≤ mi
1 ≤ mi

2 ≤ mi
3 , (16)

and

Qi =


1 0 0

0 cosφi
3 − sinφi

3

0 sinφi
3 cosφi

3




cosφi
2 0 − sinφi

2

0 1 0

sinφi
2 0 cosφi

2




cosφi
1 − sinφi

1 0

sinφi
1 cosφi

1 0

0 0 1

 , (17)

with φi
j ∈ [−π/2, π/2]. It is noted that sinφi

j cannot be identified for some mi
j . For instance,

when mi
j = 0 for all j, sinφi

j cannot be identified for all j. In such cases, sinφi
j = 0 is placed.

Furthermore, when the value of a parameter with sign constraint reaches the boundary in the

estimation, it is fixed in the following and then the remaining parameters are re-estimated: ci0 =

10−8 (as ci0 > 0); mi
j = 0 (as mi

j ≥ 0).

A model having (1)–(2) and (12)–(17) is labeled as Am(3)-QEV (m = 1, 2, 3).

2.2.3 Difference between the LSD and QEV models

Though Σt is quadratic in Xt for both models, the instantaneous variance has a different form. For

the LSD model, the instantaneous variance of the i-th factor is given by h2i (Xt), that is, a squared

linear combination of Xt. Hence, it is easy to see which factor is more influential for driving the

variance. For the QEV model, it is given by p2i1l1(Xt)+p2i2l2(Xt)+p2i3l3(Xt), where pij is the (i, j)

element of P . Then, this linear combination of quadratic functions may be more appropriate for

capturing complicated behavior of volatility that is intense in some periods and calm in the other.

It is, however, difficult to distinguish influential factors for the variance in the QEV model.
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2.3 An approximation of no-arbitrage bond prices and yields

Let P (Xt, τ) be the price at time t of a zero-coupon bond with τ years to maturity. Then, by the

absence of arbitrage, it is given by

P (Xt, τ) = EQ
t

[
exp

{
−

∫ t+τ

t
rudu

}]
, (18)

where EQ
t [·] stands for the conditional expectation under the risk-neutral probability measure. The

yield to maturity of a τ -year zero-coupon bond is given by Y (Xt, τ) = − 1
τ lnP (Xt, τ).

Since the proposed models are non-affine, there is no closed-form for P (Xt, τ). To make it

possible to estimate the models with no-arbitrage conditions, P (Xt, τ) is approximated using

a method proposed by Takamizawa and Shoji (2009). The method approximates a vector of

conditional moments of multi-dimensional diffusion processes as the solution to a system of ordinary

differential equations. Since the zero-coupon bond price is given as the conditional expectation,

the method can be directly applied. The outline of the method is provided in Appendix A and the

accuracy of the approximation is examined in Appendix B. In brief, the accuracy is maintained at

least for maturities of up to ten years when reasonable values of parameter and state vectors are

provided.

3 Estimation and prediction method

3.1 Dataset

Weekly (Wednesday) data on the U.S. dollar LIBOR and swap rates are used, which cover the

period from January 4, 1991 to May 27, 2009 with 961 observations in total. The data are divided

into in-sample for estimation, ending in April 9, 2003 with 641 observations, and out-of-sample for

prediction. This partition is intended to incorporate information on the lowest range of interest

rates into model estimation as well as to reserve sufficient out-of-sample observations.

The LIBOR rates with maturities of 6 and 12 months, and swap rates with maturities of 2, 3,

4, 5, 7, and 10 years are used to obtain zero-coupon bond yields on a continuously compounded

basis by a bootstrap method with linear interpolation to discount functions. The maturities of the

zero yields used for the analysis are 0.5, 1, 2, 3, 5, and 10 years. Following the previous studies

(e.g., CDGJ, 2008 and Duffee, 2002), this study assumes that the yields with maturities of 0.5, 2,

and 10 years are measured without error to extract latent factors and that the rest of the yields

are measured with error. While there may be a concern that this choice is arbitrary, it is actually
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convenient. By selecting yields that are measured without error from each of the short, medium,

and long segments of the yield curve and combining them appropriately, proxies for the level, slope,

and curvature of the yield curve can also be measured without error.

3.2 Realized volatility measure

A realized measure of the one-week ahead variance of a τ -year yield is computed using daily data

as

RVt,t+∆,τ =

mt+∆∑
j=1

(yt+ ∆
mt+∆

j,τ − yt+ ∆
mt+∆

(j−1),τ )
2 (τ = 0.5, 1, 2, 3, 5, 10) , (19)

where ∆ is a week interval, set at 1/52, and mt stands for the number of observations during

a week ending at time t (usually mt = 5). The realized measure is generated every Wednesday.

The total number of observations is 960, among which the first 640 observations belong to the

in-sample.

A realized measure of the h-week ahead variance of a τ -year yield is computed as

RVt,t+h∆,τ =
h∑

j=1

RVt+(j−1)∆,t+j∆,τ . (20)

The annualized variance is obtained by dividing RVt,t+h∆,τ by h∆. RVt,t+h∆,τ is also generated

weekly, which means that some overlapping daily observations are used in successive observations

of RVt,t+h∆,τ with h > 1. This study considers h = 4, 13, 26.

3.3 Model estimation

The models are estimated by the quasi maximum likelihood method. To clarify the parameters to

estimate, let Θ = ΘP ∪ΘQ be the parameter vector of a term structure model, where ΘP consists

of the parameters in K0 and K1 as well as those in Σt and ΘQ consists of the parameters in KQ
0

and KQ
1 as well as those in Σt.

Let yt,τ be a yield of a zero-coupon bond observed at time t with τ years to maturity, and

Y p
t = (yt,0.5 yt,2 yt,10)

′ be a vector of yields measured without error. The corresponding vector of

model-implied yields is denoted as

Υ(Xt; ΘQ) = (Y (Xt, 0.5;ΘQ) Y (Xt, 2;ΘQ) Y (Xt, 10;ΘQ))
′ . (21)

Then, Xt is extracted by solving Y p
t = Υ(Xt; ΘQ) for Xt. Since for the proposed models,

Y (Xt, τ ; ΘQ) has no closed-form, this extraction is performed numerically. However, only a few
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iterations are sufficient if a good initial value of Xt is given. It is actually the value of Xt implied

by the original affine model.

The rest of the yields, denoted as Y e
t = (yt,1 yt,3 yt,5)

′, are measured with error, denoted as

Ut = (ut,1 ut,3 ut,5)
′. It is assumed to be independent of Xs for any s and follow

Ut ∼ i.i.d.N(0, ς2I) . (22)

The reason for assuming such a simple distribution is to let the models explain various features of

the data as much as possible.

The joint density function at time t conditioned on time t −∆ can be written and developed

as follows:

f(Y p
t , Y

e
t |Y

p
t−∆; Θ, ς2) = f(Xt, Ut|Xt−∆; Θ, ς2)

∣∣∣∣dΥ(Xt; ΘQ)

dX ′
t

∣∣∣∣−1

= fT (Xt|Xt−∆; ΘP )fC(Ut|Xt; ΘQ, ς
2)

∣∣∣∣dΥ(Xt; ΘQ)

dX ′
t

∣∣∣∣−1

. (23)

The first equality is from changes of variables from Y p
t to Xt, by which the Jacobian term arises,

and from Y e
t to Ut. The second equality is from the decomposition of the joint density into the

marginal (fT ) and conditional (fC) components with Xt being Markovian.

For the LSD and QEV models, the transition density, fT , has no closed-form with finite ∆. It

is then approximated by the multivariate normal density function, which seems to be justified by

a relatively short interval, ∆ = 1/52. The conditional first and second moments to be substituted

are computed with the same method used for pricing bonds. It is noted that these moments

can be computed exactly because the drift vector is linear in Xt and the covariance matrix is at

most quadratic in Xt. The Jacobian term is computed in the process of extracting Xt. On the

other hand, fC is the multivariate normal density function from (22). The objective function for

estimating Θ is then

∑
t

{
ln fT (Xt|Xt−∆; ΘP ) + ln fC(Ut|Xt; ΘQ, ς

2)− ln

∣∣∣∣dΥ(Xt; ΘQ)

dX ′
t

∣∣∣∣} . (24)

Once Θ is estimated using the in-sample data, it is held fixed throughout the out-of-sample

period. That is, Θ is not re-estimated each time the out-of-sample prediction is made. This

approach does not seem to be a serious concern because the volatility can be captured without

changing the structural parameters, as will be seen in Section 5.1.
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3.4 Volatility prediction

The models predict the h-week-ahead annualized standard deviation of a τ -year yield. Let predt,t+h∆,τ

denote a model forecast defined as follows:

predt,t+h∆,τ =

√
vart[Y (Xt+h∆, τ)]

h∆
(h = 4, 13, 26 ; τ = 0.5, 1, 2, 3, 5, 10) , (25)

where vart[·] stands for a model-implied conditional variance computed under the physical proba-

bility measure. It is noted that in computing predt,t+h∆,τ , the standard deviation of measurement

errors, ς, introduced for estimation is omitted as it is a small constant.

Since for the proposed models, there is no closed-form of vart[Y (Xt+h∆, τ)], it is computed

using the Monte Carlo method. Let {X(i)
s }t+h∆

t denote the i-th path of the state vector, starting

from Xt (known initial value) and ending in X
(i)
t+h∆ (simulated value). It is generated from a

discretized version of (2), where dt is simply replaced by ∆/10, the frequency corresponding roughly

to two observations per day. Once X
(i)
t+h∆ is generated, it is substituted into the approximate

function, Y (X
(i)
t+h∆, τ). This computation is repeated n = 10, 000 times with antithetic variates.

A simulated value of conditional variance of a τ -year yield is given by 1
n

∑n
i=1 Y (X

(i)
t+h∆, τ)

2 −

{ 1
n

∑n
i=1 Y (X

(i)
t+h∆, τ)}2.

Let rsdt,t+h∆,τ =
√

RVt,t+h∆,τ

h∆ be an annualized, h-week standard deviation realized at time

t + h∆. This study considers two criteria for evaluating the forecasting performance. The first

is the root mean squared error (RMSE), in which the prediction error et+h∆,τ is computed as

et+h∆,τ = rsdt,t+h∆,τ − predt,t+h∆,τ . The second is the correlation between the realized and

predicted values, corr(rsdt,t+h∆,τ , predt,t+h∆,τ ).

4 Results of model estimation

Before estimation, we restrict the parameters of the physical drift, which applies to both the affine

and proposed models as they have the same specification of the drift. Specifically, only the diagonal

elements of K1 are estimated as free parameters, and the rest of the parameters in the physical drift

are the same as those in the risk-neutral drift. It is noted that this is not an additional restriction

for the A3(3) model. The restriction is intended to match the condition on estimating the physical

drift among the models. In Section 6, it is removed from the A1(3) and A1(3)-LSD/QED models

to examine an additional benefit of a more flexible specification of the physical drift for predicting

the level of interest rates.
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To keep the models simple, insignificant parameters in the previous round of estimation are

set to zero and the remaining parameters are re-estimated. Similarly, when a parameter with sign

constraint hits the boundary, it is fixed at the boundary value and the remaining parameters are

re-estimated. The estimation results are reported for each m.

4.1 Results for the A1(3) and A1(3)-LSD/QEV models

Tables 1–3 present parameter estimates (standard errors) for the A1(3) and A1(3)-LSD/QEV

models. Standard errors are computed by the outer product of gradients of the log-likelihood

function. First of all, the value of the maximum log-likelihood, LogL, for the LSD and QEV

models is larger by 70 and 112, respectively, than that for the A1(3) model, indicating that the

overall fit is improved by the quadratic specification of volatility. But the standard deviation of

measurement errors ς is estimated to be between 6.13 and 6.15 basis points (bps). These results

together imply that the improvement by the quadratic specification is attributed not to the cross-

sectional fit but to the time-series fit. Consistent with the almost equal cross-sectional fit, the

estimates in the risk-neutral drift are similar across the models. Specifically, the estimate of kQ3,3

is around −0.007, indicating that x3,t is the most persistent factor affecting the long end of the

yield curve. The result is in line with the previous work reporting that a realized volatility factor

in the A1(3) model is related to long-term interest rates.

In Table 2, the estimates in hi(Xt) (i = 1, 2, 3) for the LSD model show an interesting pattern.

First, it is not x3,t but µt that is the most influential for driving the volatility. In addition,

the estimate of βi
2 is negative for all i, implying that the volatilities increase by decrease in µt.

Second, the estimate of βi
1 (i = 1, 2) is also negative, implying an inverse relationship between

the volatilities and the risk-free rate. These results are consistent with recent observations that

hike in volatilities tends to be accompanied by fall in interest rates. Such an inverse relationship

is difficult to capture using the A1(3) model because the volatilities are related positively to x3,t,

which is related positively to (long-term) interest rates. Third, the volatility of change in x3,t

does not depend on rt nor x3,t. The result that a persistent factor has a relatively simple form of

volatility is also confirmed in the QEV model shown in Table 3, where l3(Xt) is a dominant driver

of the instantaneous variance of x3,t.
2 Only the estimate of m3

3 is significant, which is in contrast

2If P = I (the identity matrix), l3(Xt) is exactly the instantaneous variance of x3,t. Actually, the estimate of

sinφP
i is close to zero for all i. Hence, an estimated P has the diagonal elements close to one and the off-diagonal

elements close to zero.
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to li(Xt) with i = 1, 2, where the estimate of mi
2 is also significant. These results are consistent

with Andersen and Benzoni (2010) showing that the volatilities of longer-term interest rates, which

are more persistent than shorter-term interest rates, are more difficult to capture with the level of

interest rates.

Figure 1 displays the time-series of realized factors. There is little discrepancy in the realized

series across the models despite the difference in the covariance matrix. The behavior of x3,t does

not look like that of typical volatility measures, which may be crucial for the A1(3) model but

not for the LSD and QEV models. The similarity in realized factors is due to the rotation of

factors proposed by CDGJ (2008), which clarifies ex-ante roles of factors. Specifically, rt is the

instantaneous risk-free rate, which is identified model-independently as the initial point of the yield

curve. Since the measurement of rt is accurate, its drift can also be measured accurately, nearly

free of models. Though the ex-ante role of x3,t may be different between the original and proposed

models, there is little room for different realizations of x3,t. This is because the other two factors

are almost identical and because the three interest rates used for extracting the factors are the

same among the models.

4.2 Results for the A2(3) and A2(3)-LSD/QEV models

Table 4–6 present estimated parameters (standard errors) for the A2(3) and A2(3)-LSD/QEV

models. In terms of the goodness-of-fit, a similar pattern to Tables 1–3 emerges. The value of

LogL for the LSD and QEV models is larger than that for the A2(3) model but the estimate of ς

is similar, around 6.15 bps, for all models. By the estimates of the risk-neutral drift, x2,t is the

most persistent factor and rt is the least for all models. The estimates of kQ2,0 and kQ3,0 for the

LSD model, shown in Table 5, are 0.0044 and 0.096, respectively, both of which appear larger than

those for the A2(3) model, 0.0034 and 0.068, shown in Table 4. The corresponding estimates for

the QEV model, shown in Table 6, are similar to those for the A2(3) model. The difference in

these estimates is related to the difference in realized factor values, which is addressed below.

In Table 5, the estimates in hi(Xt) (i = 1, 2, 3) for the A2(3)-LSD model show a similar pattern

to that for the A1(3)-LSD model. First, a moderately persistent factor x3,t is the most influential

for the volatility. Second, rt is of no relevance to the volatility as βi
1 is set to zero for all i due to

statistical insignificance. Consequently, the covariance matrix for the LSD model is driven by x2,t

and x3,t alone, similarly to the A2(3) model. Third, the volatility of change in the most persistent

factor x2,t, again, has a simpler form. This can also be confirmed in the QEV model shown in
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Table 6, where l2(Xt) is of the most simple form.

Figure 2 displays the time-series of realized factors. Between the A2(3) and QEV models, there

is little difference in the realized series. However, it is noticed that the time-series of x2,t and

x3,t for the LSD model are shifted upward with the shape unchanged. As suggested earlier, the

upward shift is due to the larger estimates of kQ2,0 and kQ3,0 for the LSD model. Despite the shift, the

difference between x2,t and x3,t is similar to that in the other models. This is not surprising because

x2,t−x3,t enters into the risk-neutral drift of change in rt, which is measured model-independently.

An important implication of the result is then that there is a room for identifying each volatility

factor differently across models. But a certain combination of volatility factors has no such room

when it is related to rt. This implication is further confirmed by the results from the A3(3) and

proposed models shown below.

4.3 Results for the A3(3) and A3(3)-LSD/QEV models

Tables 7–9 present estimates (standard errors) for the A3(3) and A3(3)-LSD/QEV models. A

different pattern from the previous ones emerges. First of all, in Table 7, the overall goodness-of-

fit of the A3(3) model is worse than that of the other affine models. The value of LogL is 21955,

which is smaller by 321 than that for the A1(3) model. The smaller LogL is attributed to the loss in

both the cross-sectional and time-series fit. The lower cross-sectional fit is evident in the estimate

of ς, 6.22 bps. Though the increase of ς is less than 0.1 bps, it reduces the value of LogL because

of a tight relationship in the cross-section of interest rates. The lower time-series fit appears as

the failure in capturing the volatility, which is addressed in Section 5.3.

The primary reason for the worse fit of the A3(3) model is that all factors are restricted to

be nonnegative. By the restriction, all elements of KQ
0 should be positive and the off-diagonal

elements of KQ
1 should be nonnegative, which indeed is binding. In fact, only the estimate of kQ2,3

is positive, and the rest of the off-diagonal elements of KQ
1 are set to zero because they are negative

when estimated as free parameters. If they are left unrestricted, which, however, is inadmissible

from a theoretical point of view, the overall goodness-of-fit is equivalent to that of the A1(3) and

A2(3) models. The result indicates that the admissibility conditions are sever for m = 3, but not

for m = 1, 2, given n = 3. It will not be surprising, therefore, that the quadratic specification of

volatility brings a significant improvement when introduced into the A3(3) model.

Tables 8 and 9 present the results for the A3(3)-LSD/QEV models. The value of LogL for the

LSD and QEV models is 22289 and 22300, respectively, increased from that for the A3(3) model
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by 334 and 345. Furthermore, the estimate of ς for the QEV model is 6.15 bps, which is of the

same magnitude as in the previous cases. While the estimates of the risk-neutral drift are similar

between the LSD and QEV models, they are different from those for the A3(3) model. Specifically,

the value of kQ3,0 for the A3(3), LSD, and QEV models is 0.012, 0, and −0.143, respectively. A

negative estimate of kQ3,0 is allowed only in the proposed models. The difference in the value of kQ3,0

produces the difference in the realized series of x3,t. Figure 3 shows that x3,t switches signs over

time for the LSD model and remains negative for most of the time for the QEV model. In contrast,

for the A3(3) model, it stays in a positive region without moving largely. Additionally, the realized

time-series of x2,t also look different between the original and proposed models. Nevertheless, the

time-series of the instantaneous risk-free rate, computed as rt = −1 + x1,t − x2,t + x3,t, are almost

identical among the models. These results confirm the previous finding that though each factor

can realize differently, a certain combination of factors such as related to rt cannot.

In Table 8, the estimates in hi(Xt) (i = 1, 2, 3) for the LSD model show that x2,t alone, which

is a moderately persistent factor implied by the estimate of kQ2,2, drives the covariance matrix. The

estimates of ρ12 and ρ23, the instantaneous correlations of x2,t with x1,t and x3,t, respectively, are

statistically different from zero, 0.264 and 0.948. Non-zero correlations are also implied in the QEV

model. Specifically, in Table 9, the eigenvector matrix P is statistically different from the identity

matrix as the estimates of sinφP
1 and sinφP

3 are both significant, −0.782 and −0.667, respectively.

Such non-zero instantaneous correlations are not allowed in the A3(3) model by the admissibility

conditions, which is one of the reasons for reducing the value of LogL.

In summary, the quadratic specification of volatility improves the time-series fit for all cases.

It also improves the cross-sectional fit for m = 3, where the admissibility conditions are binding.

In the next two sections, we address where the improvement in the time-series fit appears, a higher

predictive accuracy for the volatility and/or the level.

5 Results of volatility prediction

The volatility forecasting performance is evaluated by the RMSE and correlation criteria. As are

the estimation results, the prediction results are reported for each m, the number of factors driving

the volatility in the affine models, to highlight the effect of the quadratic specification that will be

different in m.
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5.1 Results for the A1(3) and A1(3)-LSD/QEV models

Table 10 presents the prediction results for the A1(3) and A1(3)-LSD/QEV models. Panel A

presents the RMSEs in bps. As in CDGJ (2009), the Diebold and Mariano (DM) (1995) test is

performed with the null hypothesis of equal predictive accuracy between the affine and each of

the proposed models. 3 The standard error is computed using the Newey and West method (with

Bartlett weights). The truncation lag length is set at the nearest integer of
√
T ; T = 640 for

in-sample and T = 320 for out-of-sample. This lag length is recommended by Coroneo and Iacone

(2016) when a nonstandard (fixed-smoothing) asymptotic distribution of the test statistic is used,

where the ratio of lag length to sample size is fixed at a constant. The use of this alternative

distribution alleviates the problem of over-rejecting the null hypothesis when the asymptotic stan-

dard normal distribution is used. The critical values of the distribution are obtained from Kiefer

and Vogelsang (2005, Table 1). Specifically, these values at the 5% significance level are 2.078 for

in-sample (T = 640) and 2.127 for out-of-sample (T = 640), both of which are larger than 1.96 for

the standard normal distribution. In Panel A of Table 10, the asterisk “*” indicates that the null

hypothesis is rejected at the 5% significance level.

Looking at the left side of Panel A, we find that the in-sample forecasting performance of the

proposed models is better than that of the A1(3) model. Specifically, the in-sample RMSEs for the

LSD model are smaller than those for the A1(3) model for all h and τ by between 0.8 and 4.7 bps.

The in-sample RMSEs for the QEV model are also smaller for all h except at τ = 10. A higher

predictive accuracy of the proposed models is more evident on the right side of Panel A showing

the out-of-sample RMSEs. Generally, the relative accuracy tends to improve with τ , which holds

for all h. For instance, at h = 4 and τ = 1, the out-of-sample RMSEs for the A1(3) and LSD

models are 37.1 and 35.6 bps, respectively, with the gap 1.5 bps. The gap increases to 10.4 bps at

τ = 10. For the QEV model, the out-of-sample RMSE at h = 4 and τ = 0.5 is 46.2 bps, which is

larger than that for the A1(3) model by 2.2 bps. At τ = 10, however, the RMSEs for the A1(3)

and QEV models are 49.6 and 31.2 bps, respectively, with the gap 18.4 bps. A large gap at τ = 10

remains for longer h, 20.0 and 14.1 bps.

Panel B of Table 10 presents the correlations between the predicted and realized series of

volatility. The better performance of the proposed models can also be found, which is robust to

3As noted by Diebold (2015), the DM test is designed to compare forecasts, but not models, as it treats forecast

errors as primitive variables. Patton (2015) offers an interpretation of the DM test as the one comparing forecasts

produced at estimated parameter values.
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extending h and more evident in the out-of-sample period. On the left side of Panel B, a general

pattern is that the in-sample correlations decrease with τ . But the rate of decrease is different

among the models. It is faster for the A1(3) model than for the proposed models. Specifically,

at τ = 0.5, the in-sample correlations for the A1(3) model range between 0.54 (h = 4) and 0.60

(h = 26), which do not appear to differ much from those for the proposed models. But at τ = 10,

they decrease up to −0.35 (h = 26). The result of negative correlations is also reported by the

previous work using recent samples; see, for example, Jacobs and Karoui (2009). In contrast, the

in-sample correlations for the proposed models remain positive except the LSD model at h = 26

and τ = 10. On the right side of Panel B showing the out-of-sample correlations, the performance

of the QEV model is remarkable. At h = 4, the correlations range from 0.55 (τ = 0.5, 1) to 0.71

(τ = 10), exhibiting the reverse pattern in that the correlations tend to be higher with longer τ .

Also, the correlations for the LSD model increase with τ from 0.20 (τ = 0.5) to 0.62 (τ = 10).

These results are robust to extending h. In contrast, the out-of-sample correlations for the A1(3)

model do not exceed 0.1 at h = 4. They are negative at τ = 0.5, 10. The negative correlations

disappear at h = 26, however, a large gap remains between the original and proposed models.

Figure 4 exhibits the time-series of four-week-ahead (h = 4) forecasts of the annualized standard

deviation of a τ -year yield with τ = 0.5, 2, 10 produced by the A1(3) model, together with the

corresponding realized series. It is apparent that the forecast series do not fluctuate largely nor

move in accordance with the realized series. In contrast, Figure 5 shows that the forecast series

generated by the LSD model trace the realized series for all τ . More strikingly, in Figure 6, the

QEV model not only traces the trend of the realized series but also predicts large variation in

volatility observed in the out-of-sample period. It is worth noting that the parameter values are

fixed at the in-sample estimates throughout the out-of-sample period.

As seen, the proposed models have a higher predictive accuracy both in-sample and out-of-

sample. They overcome the difficulties of the A1(3) model, which is a preferred affine model

suffering the least from the trade-offs between fitting the time-series and cross-section and between

predicting the level and volatility. The A1(3) model fails to generate large variation in volatility

because the volatility factor x3,t is realized as a persistent level factor that does not vary much

by nature as a consequence of being used for matching the cross-section of interest rates. Small

variation in x3,t also holds for the proposed models, as seen in Figure 1. However, the specification

of volatility is different. In the A1(3) model, the conditional variances are linear in x3,t alone

whereas in the proposed models they are quadratic in not only x3,t but the other factors, rt and
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µt. By the quadratic specification, it is possible to generate intense behavior of volatility simply

because the factors affecting the volatility are squared.

The quadratic specification can also resolve the problem of negative correlations between the

forecast and realized volatility in the A1(3) model. It is difficult for the A1(3) model to generate

high volatility when the level of interest rates is low because the volatility factor x3,t is positively

related to both the level and volatility. Then, the negative correlations may arise in a period when

the actual volatility is high but the level is low: in this case, the volatility predicted by the A1(3)

model is low. Indeed, the combination of high volatility and low level is a feature of our sample,

including several hikes in volatility, as seen in Figures 4–6, with the level in a decreasing trend.

The positive relationship implied by the A1(3) model between the level and volatility breaks down

in the proposed models. Again, the reason is simple. By the quadratic specification, the volatility

rises when the factors take extreme values in either a positive or negative direction: at least one

direction is a state of low interest rates.

In this way, the proposed models can generate high volatility both when the level of interest

rates is high and when it is low. The affine models work in the former period but not in the latter

period. Looking at the U.S. data on interest rates, high volatility is observed in not only the period

of high level (e.g., the late 70s and early 80s) but the period of low level (e.g., around 2008). It

seems then that the proposed models are more robust to different samples than the affine models.

In the next two subsections, we find the similar results in the A2(3)- and A3(3)-based models,

which, therefore, are reported more briefly.

5.2 Results for the A2(3) and A2(3)-LSD/QEV models

Table 11 presents the prediction results for the A2(3) and A2(3)-LSD/QEV models. A higher

predictive accuracy of the proposed models is also found both in-sample and out-of-sample. On

the left side of Panel A, the in-sample RMSEs at h = 4 for the QEV model are smaller than those

for the A2(3) model by between 1.4 (τ = 3) and 2.1 bps (τ = 0.5). The gap slightly widens by

extending h. At h = 26, it ranges from 2.0 (τ = 10) to 3.4 bps (τ = 1). The predictive accuracy

of the LSD model is higher at short maturities but lower at τ = 10 than that of the A2(3) model,

which holds for all h. The right side of Panel A shows that the out-of-sample RMSEs for the

proposed models are smaller than those for the A2(3) model for all h and τ except the QEV model

at h = 26 and τ = 0.5, 1. The improvement by the proposed models is more evident at longer

maturities. Specifically, at h = 4 and τ = 10, the RMSE for the A2(3) model is 44.7 bps, and the
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corresponding RMSEs for the LSD and QEV models are 34.1 and 35.1 bps, respectively, which are

smaller by around 10 bps. Such a large gap at τ = 10 remains for longer h.

In Panel B presenting the correlations between the predicted and realized series of volatility, the

general pattern is similar to the previous one based on the A1(3) model. On the left side of Panel

B, the in-sample correlations for the A2(3) model are similar to those for the proposed models

at τ ≤ 3 for all h. However, they decrease rapidly by increasing τ . At τ = 10, the correlations

are negative and more so by extending h. The result indicates that even though the volatility

is driven by a moderately persistent factor x3,t as well as the most persistent factor x2,t, it is

difficult to break down the positive relationship between the level and volatility of interest rates.

Lower correlations at longer maturities are also implied by the proposed models. However, they

remain equal or above 0.2 at τ = 10 for all h. On the right side of Panel B, it is first noticed that

the out-of-sample correlations are positive for all cases. At h = 4, the correlations for the QEV

model range from 0.53 (τ = 1) to 0.71 (τ = 10). Though the correlations for the LSD model are

lower than those for the QEV model at short-maturities, they are comparable at middle to long

maturities. Relative to the QEV model, the correlations for the A2(3) model are low at τ = 0.5, 1,

comparable at τ = 2, 3, and again low at τ = 5, 10. This pattern is robust to extending h though

the gap at the short maturities tends to shrink.

5.3 Results for the A3(3) and A3(3)-LSD/QEV models

Table 12 presents the prediction results for the A3(3) and A3(3)-LSD/QEV models. Panel A

shows that the A3(3) model has much larger RMSEs at short to middle maturities than the

proposed models for all h and both in-sample and out-of-sample. Such large RMSEs are due

to the admissibility conditions for preventing the factors from being negative. As suggested in

Section 4.3, when the A3(3) model is estimated without the admissibility conditions, it has a

similar predictive accuracy to the other affine models, which in turn implies the severity of the

admissibility conditions for m = 3. By introducing the quadratic specification of volatility, the

predictive accuracy again improves. The RMSEs for the proposed models are smaller than those

for the A3(3) model for most of the cases with a few exceptions (the in-sample RMSEs for the

LSD model at τ = 10).

Panel B of Table 12 shows that the A3(3) model when evaluated by the correlation criterion

is not as bad as when evaluated by the RMSE criterion. The in-sample correlations for the A3(3)

model are similar to those for the proposed models, implying that a positive relation between
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the level and volatility can be weakened by increasing m. In the out-of-sample period, the pro-

posed models have higher correlations especially at both ends of the maturity spectrum, a pattern

consistent with the previous ones.

6 Results of level prediction

We have seen that the proposed models improve the predictive accuracy for the volatility of interest

rates while maintaining the goodness-of-fit to the cross-section of interest rates. This section

investigates whether they are at least as good at predicting the level of interest rates as the affine

models. As noted earlier, the quadratic specification of volatility, aimed originally at capturing

the volatility, has another advantage of removing the admissibility conditions. By this advantage,

the proposed models can specify the physical drift of changes in factors as flexibly as the Gaussian

term structure model. It is, therefore, natural to consider the Gaussian model, or A0(3), as a

benchmark for the level prediction. The A1(3) model is also included in the horserace for both

cases with and without the restriction that the free parameters in the physical drift are limited to

the diagonal of K1. The comparison allows for uncovering how beneficial a more flexible physical

drift is. The other affine models, A2(3) and A3(3), are not included as they are less flexible in the

physical drift. Then, the predictive accuracy of the A1(3)-LSD/QEV models, both the restricted

and unrestricted versions, is examined. 4

Table 13 presents the RMSEs in bps. The structure of the table is the same as that of Panel

A of Tables 10–12. In particular, the forecasting horizons are the same, h = 4, 13, 26, and both

in-sample and out-of-sample analyses are conducted. Furthermore, the asterisk “*” indicates that

the null hypothesis of equal predictive accuracy between the A0(3) model and the model indicated

in each row is rejected at the 5% significance level. As in the volatility prediction, the critical

values are obtained from Kiefer and Vogelsang (2005, Table 1). The unrestricted version of the

models is distinguished by the upper subscript “F.”

Overall, the proposed models, both the restricted and unrestricted versions, do not outperform,

nor are outperformed by, the affine models. At h = 4, the in-sample RMSEs are similar across the

models. This also holds for the out-of-sample RMSEs except at τ = 0.5, where the A0(3) model

produces a smaller RMSE than the other models. Between the restricted and unrestricted versions,

4Since the parameters in the physical drift alone are different between the restricted and unrestricted versions,

the results of volatility prediction as well as of parameter estimation of the covariance matrix and risk-neutral drift

are similar between the two versions.
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the latter have in general slightly smaller RMSEs both in-sample and out-of-sample. With such

narrow gaps, it is difficult to find a significant merit of a more flexible physical drift. These results

are robust to extending h. In sum, there is no decisive ranking of models with respect to predictive

accuracy for the level of interest rates. Still, it can at least be concluded that the proposed models

do not sacrifice level prediction for the sake of volatility prediction.

7 Concluding Remarks

No-arbitrage affine term structure models of interest rates face two trade-offs. The first is the

trade-off between fitting the time-series and cross-section of interest rates and the second is the

trade-off between predicting the level and volatility of interest rates. This study proposed term

structure models that can mitigate the two trade-offs. The key feature of the models is that the

covariance matrix of changes in factors is specified as quadratic functions of factors. The quadratic

specification is shown to be able to capture the volatility even with spanned factors, mitigating

the first trade-off. In particular, it is possible to predict high volatility when interest-rate level is

low. The combination of low level and high volatility is a phenomenon observed in recent data

but difficult to explain using affine term structure models. An additional advantage is that the

proposed models allow for a flexible specification of the physical drift because the sign of factors

does not need to be restricted. The proposed models are shown to have the predictive ability

about the level of interest rates that is at least equal to that of the Gaussian term structure model,

mitigating the second trade-off.
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Appendix A. An approximation method of conditional moments

and its application to the pricing of bonds

A1. Outline of the method

This section explains an approximation method for pricing no-arbitrage bond prices. The method

generally allows for the computation of up to n-th conditional moments, if they exist, for a d-

dimensional diffusion process. To ease the explanation, we use a specific case of (n, d) = (2, 2),

that is, conditional first and second moments of a two-dimensional diffusion process.

Let Xt = (xt,1 xt,2)
′ be a two-dimensional diffusion process, which evolves according to the

following stochastic differential equation (SDE):

dxt,i = fi(Xt)dt+ ξi(Xt)
′dWt (i = 1, 2) , (26)

where Wt is two-dimensional Brownian motion, and the drift and diffusion functions, fi and ξi

(i = 1, 2), satisfy certain technical conditions for the solution to equation (26) to exist for an

arbitrary X0.

Let Ψs,t be a vector consisting of the first and second moments of changes in Xt conditioned

on time s < t:

Ψ′
s,t = Es

(
xt,1 − xs,1 xt,2 − xs,2 (xt,1 − xs,1)

2 (xt,2 − xs,2)
2 (xt,1 − xs,1)(xt,2 − xs,2)

)
.

The goal is to obtain an approximation of Ψs,t, which will turn out to be the solution to a system

of ordinary differential equations.

By integrating equation (26) and taking the conditional expectation,

Es[xt,i − xs,i] = Es

[∫ t

s
fi(Xu)du

]
. (27)

By applying the Taylor expansion to fi(Xu) around Xs up to the second order

fi(Xu) = fi(Xs)

+f
(1,0)
i (Xs)(xu,1 − xs,1) + f

(0,1)
i (Xs)(xu,2 − xs,2) +

1

2
f
(2,0)
i (Xs)(xu,1 − xs,1)

2

+
1

2
f
(0,2)
i (Xs)(xu,2 − xs,2)

2 + f
(1,1)
i (Xs)(xu,1 − xs,1)(xu,2 − xs,2) + ei , (28)

where f (k,l) = ∂k+lf
∂xk

1∂x
l
2
, and ei is a residual term. By substituting equation (28) into equation (27)

and expressing the resulting equation in a vector form

Es[xt,i − xs,i] = fi(t− s)

+

(
f
(1,0)
i f

(0,1)
i

1

2
f
(2,0)
i

1

2
f
(0,2)
i f

(1,1)
i

)∫ t

s
Ψs,udu+Ri , (29)
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where Xs is omitted for notational convenience, and Ri = Es[ei].

Next, by applying the Ito formula to (xt,1 − xs,1)
2 and taking the conditional expectation,

Es[(xt,1 − xs,1)
2] = Es

[∫ t

s
{2f1(Xu)(xu,1 − xs,1) + g11(Xu)}du

]
, (30)

where g11 = ξ′1ξ1. By applying the Taylor expansion to f1(Xu) and g11(Xu) around Xs up to the

first and second orders, respectively, the integrand of equation (30) becomes

2f1(Xu)(xu,1 − xs,1) + g11(Xu)

= g11(Xs) + {2f1(Xs) + g
(1,0)
11 (Xs)}(xu,1 − xs,1) + g

(0,1)
11 (Xs)(xu,2 − xs,2)

+{2f (1,0)
1 (Xs) +

1

2
g
(2,0)
11 (Xs)}(xu,1 − xs,1)

2 +
1

2
g
(0,2)
11 (Xs)(xu,2 − xs,2)

2

+{2f (0,1)
1 (Xs) + g

(1,1)
11 (Xs)}(xu,1 − xs,1)(xu,2 − xs,2) + e11 , (31)

where g(k,l) is defined analogously with f (k,l), and e11 is a residual term. By substituting equation

(31) into equation (30),

Es[(xt,1 − xs,1)
2] = g11(t− s)

+

(
2f1 + g

(1,0)
11 g

(0,1)
11 2f

(1,0)
1 +

1

2
g
(2,0)
11

1

2
g
(0,2)
11 2f

(0,1)
1 + g

(1,1)
11

)
×

∫ t

s
Ψs,udu+R11 , (32)

where R11 = Es[e11]. A similar manipulation is applied to Es[(xt,2−xs,2)
2] and Es[(xt,1−xs,1)(xt,2−

xs,2)]. Expressing the resulting equations together in a vector form leads to

Ψs,t = A(Xs)

∫ t

s
Ψs,udu+ b(Xs)(t− s) +R , (33)

where

A =



f
(1,0)
1 f

(0,1)
1

1
2f

(2,0)
1

1
2f

(0,2)
1 f

(1,1)
1

f
(1,0)
2 f

(0,1)
2

1
2f

(2,0)
2

1
2f

(0,2)
2 f

(1,1)
2

2f1 + g
(1,0)
11 g

(0,1)
11 2f

(1,0)
1 + 1

2g
(2,0)
11

1
2g

(0,2)
11 2f

(0,1)
1 + g

(1,1)
11

g
(1,0)
22 2f2 + g

(0,1)
22

1
2g

(2,0)
22 2f

(0,1)
2 + 1

2g
(0,2)
22 2f

(1,0)
2 + g

(1,1)
22

f2 + g
(1,0)
12 f1 + g

(0,1)
12 f

(1,0)
2 + 1

2g
(2,0)
12 f

(0,1)
1 + 1

2g
(0,2)
12 f

(1,0)
1 + f

(0,1)
2 + g

(1,1)
12


,

b = (f1 f2 g11 g22 g12)
′ ,

R = (R1 R2 R11 R22 R12)
′ .

Equation (33) can be solved as

Ψs,t =

∫ t

s
eA(Xs)(t−u)b(Xs)du+ R̂ . (34)
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If, in addition, A is invertible,

Ψs,t = A−1(Xs){eA(Xs)(t−s) − I}b(Xs) + R̂ . (35)

Equations (33)–(35) hold for any (n, d). In general, Ψs,t consists of
(n+d

n

)
−1 = (n+d)!/(n!d!)−1

elements. Correspondingly, up to n-th derivatives of fi and gij (i, j = 1, ..., d) are taken to compute

the elements of A(Xs). In the analysis, (n, d) = (3, 3) is used for computing bond yields.

It is noted that R in equation (33) contains conditional expectations of derivatives of fi higher

than the first order and derivatives of gij higher than the second order. Then, if fi and gij

are linear and quadratic in Xs, respectively, there is no residual term. This is the case for the

proposed models (both LSD and QEV), and conditional first and second moments, used for the

quasi-maximum likelihood method, are exact.

A2. Application to bond prices

To apply the approximation method to the pricing of bonds, define

zs,t = exp

{
−

∫ t

s
r(Xu)du

}
, (36)

and the price of a zero-coupon bond at time t maturing at time T is equal to the conditional

first moment of zt,T under the risk-neutral probability measure. This (actually EQ
t [zt,T − zt,t]) is

computed as one of the elements of the moment vector, Ψt,T . Specifically, a state vector is first

extended as X̂t = (X ′
t zs,t)

′, where Xt is a d-dimensional diffusion process and zs,t is treated as

the (d+ 1)-th process. By the Ito formula,

dzs,t = −r(Xt)zs,tdt , zs,s = 1 , (37)

and

fd+1(X̂t) = −r(Xt)zs,t , (38)

gi d+1(X̂t) = 0 (i = 1, ..., d+ 1) . (39)

Then, the elements of A(X̂t) can be readily computed by taking appropriate derivatives of fi

(i = 1, ..., d + 1) (the risk-neutral drift functions here) and gij (i, j = 1, ..., d + 1; i ≤ j). The

accuracy of the approximation of EQ
t [zt,T ] is investigated in Appendix B.
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Appendix B. Accuracy of the approximation of bond prices

The purpose of this section is to let the cost of using the approximation be known. By construction

of the method, the accuracy becomes worse the longer the time interval, t− s. Here, the interval

is up to ten years for pricing bonds, which may raise concerns with the application of this method.

To check the accuracy of the approximation, two cases with and without closed-form solutions of

no-arbitrage bond prices are considered.

B1. Comparison with closed-form solution for bond prices

The A1(3) model is treated as the true model having closed-form solution. The examination of

the accuracy is conducted in three steps according to the degree of approximation involved. Let

Θ0 be the parameter vector of the A1(3) model, the elements of which are set at the estimates

presented in Table 1. The extracted state vector can then be expressed as X(Y p
t ; Θ0), where

Y p
t = (yt,0.5 yt,2 yt,10)

′.

In the first step, we examine the accuracy of the approximation in terms of pricing bonds

alone. Specifically, both Θ0 and X(Y p
t ; Θ0) are given as input for the approximation method.

Then, compare:

Y (X(Y p
t ; Θ0), τ ; Θ0) v.s. Ỹ (X(Y p

t ; Θ0), τ ; Θ0) (τ = {0.5, 1, 2, 3, 5, 10}) ,

where Y and Ỹ stand for the closed-form and approximate functions, respectively (the tilde symbol

is used for emphasizing that the approximation method is used).

In the second step, we examine the accuracy of the approximation in terms of extracting state

variables as well as pricing bonds. Here, only Θ0 is given. Using the approximation method,

the state vector is first extracted, which is denoted as X̃(Y p
t ; Θ0), and the rest of the yields are

computed. Then, compare:

X(Y p
t ; Θ0) v.s. X̃(Y p

t ; Θ0) ,

Y (X(Y p
t ; Θ0), τ ; Θ0) v.s. Ỹ (X̃(Y p

t ; Θ0), τ ; Θ0) (τ = {1, 3, 5}) .

Note that at τ = {0.5, 2, 10}, both Y (Xt, τ ; Θ0) and Ỹ (X̃t, τ ; Θ0) are equal to the observed yields

by construction of the inversion method.

In the last step, we examine the accuracy of the approximation in terms of estimating model

parameters as well as pricing bonds and extracting state variables. Here, no prior information is

given regarding the true value of the parameter or state vector. Instead, using the approximation
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method, the parameter vector of the A1(3) model is first estimated; denote it as Θ̃0. Next, the

state vector is extracted; denote it as X̃(Y p
t ; Θ̃0). Finally, the rest of the yields are computed.

Then, compare:

Θ0 v.s. Θ̃0 ,

X(Y p
t ; Θ0) v.s. X̃(Y p

t ; Θ̃0) ,

Y (X(Y p
t ; Θ0), τ ; Θ0) v.s. Ỹ (X̃(Y p

t ; Θ̃0), τ ; Θ̃0) (τ = {1, 3, 5}) .

It is noted that the accuracy in the third step, which is a more realistic setting, is not examined

by Takamizawa and Shoji (2009).

Apart from the parameter vector, the key input for these comparisons is Y p
t . The following

nine observations of Y p
t are selected. First, Y p

t is transformed to the conventional level (levt), slope

(slot), and curvature (curt) factors by
levt

slot

curt

 =


0 0 1

−1 0 1

−1 2 −1




yt,0.5

yt,2

yt,10

 . (40)

Then, from the whole sample period, three dates are selected in which levt takes the minimum,

median, or maximum value. Likewise, the three dates are selected for each of the other proxies,

leading to nine dates in total. In this way, the accuracy of the approximation is evaluated at both

typical and atypical states.

Table B1 presents the differences in yields/factors between the approximate and closed-form

solutions in basis point (bps). Panel A presents the results for the first step comparison, where the

true values of the parameter and state vectors are given as input for the approximation method.

For maturities of up to five years, the approximation errors are negligibly small at all states. Even

for the ten-year maturity, the error exceeds 2 bps only at the maximum-level and slope states.

Panel B presents the results for the second-step comparison, where only the true value of the

parameter vector is given. A systematic pattern is found in the approximation errors for the state

variables. Specifically, the approximation undervalues both r and x3 and overvalues µ. Again, the

accuracy is the worst at the maximum-level and slope states. The approximation errors for the

remaining yields, with maturities of up to five years, are small.

Panel C presents the results for the third-step comparison, where no prior information is given.

Compared with Panel B, the magnitude of the approximation errors for the state variables is

generally larger, reflecting also the difference in parameter estimates between the approximate and
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closed-form solutions. This is the reality. Here, an error pattern is less clear though it is found that

x3 (µ) tends to be overvalued (undervalued). Also, the difficulty of the approximation method is

not limited to the maximum-level and slope states. For example, the approximation error for x3

exceeds 15 bps at the median-slope and maximum-curvature states as well as at the maximum-level

state. The remaining yields are accurately computed as in the second-step comparison.

B2. Comparison with numerical solution for bond prices

The Monte Carlo (MC) method is employed to obtain the solution of no-arbitrage bond prices

for the A1(3)-based LSD and QEV models. Let Θ be the true parameter vector, the elements of

which are set at the estimates presented in Table 2 (LSD) and Table 3 (QEV). The state vector

is extracted by the approximation method, but not the MC method, with which the extraction

is computationally very demanding. The extracted state vector is denoted as X̃(Y p
t ; Θ). Then,

compare:

Y (X̃(Y p
t ; Θ), τ ; Θ) v.s. Ỹ (X̃(Y p

t ; Θ), τ ; Θ) (τ = {0.5, 1, 2, 3, 5, 10}) .

In the MC simulations, {Xs}t+τ
t is generated from the risk-neutral distribution (1), where dt

is replaced by ∆t = 1/1, 000, an interval corresponding roughly to four observations per day. The

number of repetition is set at 10,000 with antithetic variates.

Table B2 presents the differences in yields between the approximate and MC solutions in bps.

Generally, the error pattern is similar to that for the first-step comparison with the closed-form

solution. For maturities of up to five years, the approximation errors are within 1 bp at all

states for both models. For the ten-year yield, the approximation error exceeds 2 bps only at the

maximum-level state for the LSD model and at the maximum-level and slope states for the QEV

model.

It is noted, however, that this comparison scheme does not take into consideration the ap-

proximation errors in the parameter and state vectors. In reality, therefore, the approximation

errors for the resulting yields would be larger, as is the case for the third-step comparison with the

closed-form solution.
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Factor (Index)
r (i = 1) µ (i = 2) x3 (i = 3)

Risk-neutral drift

kQ.,0 0 0 0.0016 (0.0001)

kQ.,1 0 −0.887 (0.025) 0

kQ.,2 1 −1.852 (0.051) 0

kQ.,3 0 1 −0.0064 (0.0019)

Physical drift
Diag(K1) −0.238 (0.051) −2.465 (0.430) −0.057 (0.044)

Covariance matrix
srr,0 0
s.µ,0 0 0
srr,3 × 102 0.112 (0.005)
s.µ,3 × 102 −0.238 (0.021) 1.782 (0.100)
s.3,3 × 102 0.012 (0.005) 0.156 (0.019) 0.155 (0.009)

ς × 104 6.150 (0.096)
LogL 22276

Table 1: Parameter estimates (standard errors) for A1(3)
A state vector Xt consists of Xt = (rt µ2,t x3,t)

′, where rt is the instantaneous risk-free rate,
µt is the risk-neutral drift of change in rt, and x3,t is a volatility factor. The parameters in
the drift and covariance matrix are given in (3) and (4), respectively. Among the physical-
drift parameters, only the diagonal elements of K1 (Diag(K1)) are estimated. To normalize
x3,t, k

Q
µ,3 = 1 is placed. Insignificant parameters are set to zero and parameters reaching the

boundary (if any) are set to the boundary value before the final round of estimation. ς is the
standard deviation of measurement errors and LogL is the log-likelihood value. In-sample data
from January 4, 1991 to April 9, 2003 are used for the estimation (641 observations).
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Factor (Index)
r (i = 1) µ (i = 2) x3 (i = 3)

Risk-neutral drift

kQ.,0 0 0 0.0016 (0.0001)

kQ.,1 0 −0.883 (0.024) 0

kQ.,2 1 −1.765 (0.047) 0

kQ.,3 0 1 −0.0078 (0.0018)

Physical drift
Diag(K1) −0.203 (0.046) −2.364 (0.388) −0.068 (0.042)

Volatility function hi(Xt)
βi
0 −0.006 (0.001) 0 0.0096 (0.0004)

βi
1 −0.049 (0.008) −0.320 (0.048) 0

βi
2 −0.084 (0.011) −0.171 (0.038) −0.043 (0.012)

βi
3 0.286 (0.030) 0.790 (0.045) 0

Correlation matrix R
ρ12 −0.517 (0.037)
ρ.3 0.101 (0.043) 0.311 (0.033)

ς × 104 6.132 (0.097)
LogL 22346

Table 2: Parameter estimates (standard errors) for A1(3)-LSD
A state vector Xt consists of Xt = (rt x2,t x3,t)

′. The risk-neutral and physical drift vectors are
the same as those in the A1(3) model. The covariance matrix Σt is decomposed as Σt = HtRHt,
where R is a constant correlation matrix and Ht is a diagonal matrix with the i-th diagonal
element specified as hi(Xt) = βi

0 + βi′Xt (i = 1, 2, 3). Insignificant parameters are set to zero
before the final round of estimation. ς is the standard deviation of measurement errors and
LogL is the log-likelihood value. In-sample data from January 4, 1991 to April 9, 2003 are used
for the estimation (641 observations).
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Factor (Index)
r (i = 1) µ (i = 2) x3 (i = 3)

Risk-neutral drift

kQ.,0 0 0 0.0017 (0.0001)

kQ.,1 0 −0.915 (0.026) 0

kQ.,2 1 −1.852 (0.051) 0

kQ.,3 0 1 −0.0073 (0.0019)

Physical drift
Diag(K1) −0.170 (0.032) −2.455 (0.560) −0.077 (0.044)

Eigenvalue function li(Xt)
ci0 × 103 10−5 10−5 0.070 (0.007)
mi

1 0 0 0
mi

2 0.045 (0.008) 0.495 (0.181) 0
mi

3 0.081 (0.013) 1.308 (0.368) 0.106 (0.027)
sinφi

1 0.584 (0.025) 0.343 (0.118) 0
sinφi

2 0.247 (0.055) 0.274 (0.101) 0.221 (0.087)
sinφi

3 0.860 (0.042) 0.804 (0.103) 0.911 (0.032)

Eigenvector matrix P
sinφP

i 0.136 (0.008) −0.244 (0.032) 0.065 (0.013)

ς × 104 6.139 (0.096)
LogL 22388

Table 3: Parameter estimates (standard errors) for A1(3)-QEV
A state vector Xt consists of Xt = (rt x2,t x3,t)

′. The risk-neutral and physical drift vectors are
the same as those in the A1(3) model. The covariance matrix Σt is decomposed as Σt = PLtP

′:
P is an orthonormal eigenvector matrix given in (13), and Lt is a diagonal eigenvalue matrix
with the i-th diagonal element specified as li(Xt) = ci0+X ′

tΓ
iXt (i = 1, 2, 3), where ci0 > 0 and Γi

is a non-negative definite matrix given in (15)–(17). Insignificant parameters are set to zero and
parameters reaching the boundary (if any) are set to the boundary value before the final round
of estimation. ς is the standard deviation of measurement errors and LogL is the log-likelihood
value. In-sample data from January 4, 1991 to April 9, 2003 are used for the estimation (641
observations).
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Factor (Index)
r (i = 1) x2 (i = 2) x3 (i = 3)

Risk-neutral drift

kQ.,0 0 0.0034 (0.0004) 0.068 (0.009)

kQ.,1 −1.075 (0.078) 0 0

kQ.,2 1 −0.013 (0.002) 0

kQ.,3 −1 0 −0.861 (0.057)

Physical drift
Diag(K1) −1.310 (0.098) −0.439 (0.223) −0.673 (0.105)

Covariance matrix
srr,0 0
srr,2 × 102 0.025 (0.007)
s.2,2 × 102 0.005 (0.003) 0.094 (0.013)
srr,3 × 102 0.035 (0.011)
s.3,3 × 102 0.099 (0.018) 0.854 (0.121)

ς × 104 6.151 (0.091)
LogL 22278

Table 4: Parameter estimates (standard errors) for A2(3)
A state vector Xt consists of Xt = (rt x2,t x3,t)

′, where rt is the instantaneous risk-free rate
and xi,t (i = 2, 3) are volatility factors. The parameters in the drift and covariance matrix
are given in (3) and (4), respectively. Among the physical-drift parameters, only the diagonal
elements of K1 (Diag(K1)) are estimated. To normalize x2,t and x3,t, kQr,2 = −kQr,3 = 1 is
placed. Insignificant parameters are set to zero and parameters reaching the boundary (if any)
are set to the boundary value before the final round of estimation. ς is the standard deviation of
measurement errors and LogL is the log-likelihood value. In-sample data from January 4, 1991
to April 9, 2003 are used for the estimation (641 observations).
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Factor (Index)
r (i = 1) x2 (i = 2) x3 (i = 3)

Risk-neutral drift

kQ.,0 0 0.0044 (0.0005) 0.096 (0.013)

kQ.,1 −1.061 (0.058) 0 0

kQ.,2 1 −0.017 (0.002) 0

kQ.,3 −1 0 −0.867 (0.047)

Physical drift
Diag(K1) −1.288 (0.083) −0.414 (0.174) −0.722 (0.083)

Volatility function hi(Xt)
βi
0 0 0 0

βi
1 0 0 0

βi
2 0.034 (0.006) 0 0.064 (0.025)

βi
3 0.017 (0.007) 0.093 (0.012) 0.131 (0.025)

Correlation matrix R
ρ12 0
ρ.3 0.404 (0.032) 0

ς × 104 6.138 (0.090)
LogL 22303

Table 5: Parameter estimates (standard errors) for A2(3)-LSD
A state vector Xt consists of Xt = (rt x2,t x3,t)

′. The risk-neutral and physical drift vectors are
the same as those in the A2(3) model. The covariance matrix Σt is decomposed as Σt = HtRHt,
where R is a constant correlation matrix and Ht is a diagonal matrix with the i-th diagonal
element specified as hi(Xt) = βi

0 + βi′Xt (i = 1, 2, 3). Insignificant parameters are set to zero
before the final round of estimation. ς is the standard deviation of measurement errors and
LogL is the log-likelihood value. In-sample data from January 4, 1991 to April 9, 2003 are used
for the estimation (641 observations).
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Factor (Index)
r (i = 1) x2 (i = 2) x3 (i = 3)

Risk-neutral drift

kQ.,0 0 0.0032 (0.0006) 0.064 (0.020)

kQ.,1 −1.084 (0.076) 0 0

kQ.,2 1 −0.013 (0.002) 0

kQ.,3 −1 0 −0.884 (0.058)

Physical drift
Diag(K1) −1.301 (0.094) −0.439 (0.229) −0.676 (0.126)

Eigenvalue function li(Xt)
ci0 × 103 10−5 0.116 (0.019) 10−5

mi
1 0 0 0

mi
2 0.0015 (0.0006) 0 0.032 (0.017)

mi
3 0.224 (0.030) 0.029 (0.017) 0.115 (0.050)

sinφi
1 0 0 0

sinφi
2 −0.677 (0.041) 0 0.708 (0.121)

sinφi
3 0.710 (0.019) 0.448 (0.080) −1

Eigenvector matrix P
sinφP

i 0 −0.123 (0.013) 0

ς × 104 6.151 (0.092)
LogL 22334

Table 6: Parameter estimates (standard errors) for A2(3)-QEV
A state vector Xt consists of Xt = (rt x2,t x3,t)

′. The risk-neutral and physical drift vectors are
the same as those in the A2(3) model. The covariance matrix Σt is decomposed as Σt = PLtP

′:
P is an orthonormal eigenvector matrix given in (13), and Lt is a diagonal eigenvalue matrix
with the i-th diagonal element specified as li(Xt) = ci0+X ′

tΓ
iXt (i = 1, 2, 3), where ci0 > 0 and Γi

is a non-negative definite matrix given in (15)–(17). Insignificant parameters are set to zero and
parameters reaching the boundary (if any) are set to the boundary value before the final round
of estimation. ς is the standard deviation of measurement errors and LogL is the log-likelihood
value. In-sample data from January 4, 1991 to April 9, 2003 are used for the estimation (641
observations).
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Factor (Index)
x1 (i = 1) x2 (i = 2) x3 (i = 3)

Risk-neutral drift

kQ.,0 0.0025 (0.0001) 0.001 0.012 (0.006)

kQ.,1 −0.001 0 0

kQ.,2 0 −0.989 (0.244) 0

kQ.,3 0 7.780 (3.067) −0.917 (0.220)

Physical drift
Diag(K1) −0.005 (0.004) −0.907 (0.248) −0.784 (0.224)

Covariance matrix
sii 0.0095 (0.0003) 0.035 (0.004) 0.030 (0.008)

ς × 104 6.220 (0.094)
LogL 21955

Table 7: Parameter estimates (standard errors) for A3(3)
A state vector Xt consists of volatility factors alone: Xt = (x1,t x2,t x3,t)

′. The instantaneous
risk-free rate rt is given by rt = −1 + x1,t − x2,t + x3,t. The parameters in the drift and
covariance matrix are given in (3) and (4), respectively. Among the physical-drift parameters,
only the diagonal elements of K1 (Diag(K1)) are estimated. Insignificant parameters are set
to zero and parameters reaching the boundary (if any) are set to the boundary value before
the final round of estimation. ς is the standard deviation of measurement errors and LogL is
the log-likelihood value. In-sample data from January 4, 1991 to April 9, 2003 are used for the
estimation (641 observations).
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Factor (Index)
x1 (i = 1) x2 (i = 2) x3 (i = 3)

Risk-neutral drift

kQ.,0 0.031 (0.002) 0.103 (0.017) 0

kQ.,1 −0.025 (0.002) 0 0

kQ.,2 0 −0.676 (0.025) 0

kQ.,3 0 0 −1.437 (0.072)

Physical drift
Diag(K1) −0.028 (0.003) −0.623 (0.039) −1.479 (0.114)

Volatility function hi(Xt)
βi
0 0 0.009 (0.004) 0.011 (0.004)

βi
1 0 0 0

βi
2 0.066 (0.009) 0.179 (0.015) 0.180 (0.015)

βi
3 0 0 0

Correlation matrix R
ρ12 0.264 (0.030)
ρ.3 0 0.948 (0.012)

ς × 104 6.178 (0.093)
LogL 22289

Table 8: Parameter estimates (standard errors) for A3(3)-LSD
A state vector Xt consists of Xt = (x1,t x2,t x3,t)

′, and the instantaneous risk-free rate rt is
given by rt = −1 + x1,t − x2,t + x3,t. The risk-neutral and physical drift vectors are the same
as those in the A3(3) model. The covariance matrix Σt is decomposed as Σt = HtRHt, where
R is a constant correlation matrix and Ht is a diagonal matrix with the i-th diagonal element
specified as hi(Xt) = βi

0 + βi′Xt (i = 1, 2, 3). Insignificant parameters are set to zero before
the final round of estimation. ς is the standard deviation of measurement errors and LogL is
the log-likelihood value. In-sample data from January 4, 1991 to April 9, 2003 are used for the
estimation (641 observations).

39



Factor (Index)
x1 (i = 1) x2 (i = 2) x3 (i = 3)

Risk-neutral drift

kQ.,0 0.035 (0.002) 0.093 (0.014) −0.143 (0.066)

kQ.,1 −0.026 (0.002) 0 0

kQ.,2 0 −0.689 (0.024) 0

kQ.,3 0 0 −1.500 (0.075)

Physical drift
Diag(K1) −0.031 (0.003) −0.609 (0.043) −1.565 (0.087)

Eigenvalue function li(Xt)
ci0 × 103 10−5 0.221 (0.012) 1.822 (0.365)
mi

1 0 0 0
mi

2 0 0 0
mi

3 0.0007 (0.0002) 0 0.972 (0.220)
sinφi

1 0 0 0
sinφi

2 0 0 0
sinφi

3 −1 0 −0.580 (0.161)

Eigenvector matrix P
sinφP

i −0.782 (0.009) 0 −0.667 (0.006)

ς × 104 6.148 (0.093)
LogL 22300

Table 9: Parameter estimates (standard errors) for A3(3)-QEV
A state vector Xt consists of Xt = (x1,t x2,t x3,t)

′, and the instantaneous risk-free rate rt is
given by rt = −1 + x1,t − x2,t + x3,t. The risk-neutral and physical drift vectors are the same
as those in the A3(3) model. The covariance matrix Σt is decomposed as Σt = PLtP

′: P is
an orthonormal eigenvector matrix given in (13), and Lt is a diagonal eigenvalue matrix with
the i-th diagonal element specified as li(Xt) = ci0 +X ′

tΓ
iXt (i = 1, 2, 3), where ci0 > 0 and Γi is

a non-negative definite matrix given in (15)–(17). Insignificant parameters are set to zero and
parameters reaching the boundary (if any) are set to the boundary value before the final round
of estimation. ς is the standard deviation of measurement errors and LogL is the log-likelihood
value. In-sample data from January 4, 1991 to April 9, 2003 are used for the estimation (641
observations).
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Panel A: First-step comparison
y0.5 y1 y2 y3 y5 y10

Level 0.00 0.00 0.00 0.00 0.00 0.09
Minimum Slope 0.00 0.00 0.00 0.00 0.00 0.20

Curvature 0.01 0.01 0.00 0.00 0.00 0.42

Level 0.00 0.00 0.00 0.00 0.06 1.46
Median Slope 0.00 0.00 0.00 0.01 0.07 1.41

Curvature 0.00 0.00 0.00 0.00 0.03 0.71

Level 0.00 0.00 0.00 0.01 0.10 2.57
Maximum Slope 0.00 0.00 0.00 0.01 0.14 2.62

Curvature 0.00 −0.01 0.00 0.01 0.06 1.15

Panel B: Second-step comparison
r µ x3 y1 y3 y5

Level −0.03 0.19 −0.13 0.01 −0.02 −0.06
Minimum Slope −0.07 0.41 −0.28 0.02 −0.05 −0.13

Curvature −0.15 0.85 −0.57 0.05 −0.09 −0.25

Level −0.48 2.87 −1.98 0.15 −0.32 −0.81
Median Slope −0.46 2.78 −1.92 0.14 −0.30 −0.78

Curvature −0.23 1.41 −0.97 0.07 −0.16 −0.40

Level −0.84 5.02 −3.46 0.26 −0.55 −1.43
Maximum Slope −0.85 5.12 −3.52 0.26 −0.56 −1.41

Curvature −0.38 2.27 −1.56 0.11 −0.24 −0.63

Panel C: Third-step comparison
r µ x3 y1 y3 y5

Level −1.02 6.44 −2.66 0.27 −0.45 −0.91
Minimum Slope −0.40 2.76 6.12 0.08 −0.07 −0.12

Curvature 0.11 −0.11 5.42 −0.10 0.25 0.38

Level 0.49 −3.08 8.82 −0.12 0.11 −0.06
Median Slope 0.52 −3.53 15.21 −0.11 0.09 0.01

Curvature 0.02 −0.18 5.61 0.01 −0.08 −0.30

Level 1.00 −6.15 17.64 −0.28 0.38 0.38
Maximum Slope 0.68 −4.56 8.08 −0.14 0.02 −0.44

Curvature 0.38 −2.75 15.09 −0.07 0.01 −0.08

Table B1: Accuracy of approximation using A1(3)
Approximation errors, defined as the difference in yields/factors between the approximate and closed-

form solutions, are presented in bps. The errors are evaluated at nine states taken from the actual data

from January 4, 1991 to May 27, 2009, where the level, slope, and curvature factors take the minimum,

median, or maximum value. Panel A presents the first-step comparison, where the true values of both

parameter and state vectors are given as input for the approximation method. Panel B presents the

second-step comparison, where the true value of only the parameter vector is given. Panel C presents the

third-step comparison, where no prior information is given.
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Maturity 0.5 1 2 3 5 10

Panel A: LSD model

Level 0.12 0.07 0.02 −0.01 −0.01 0.04
Minimum Slope 0.17 0.14 0.09 0.06 0.07 0.34

Curvature 0.34 0.29 0.18 0.06 −0.02 0.44

Level −0.04 −0.07 −0.07 −0.11 −0.09 1.37
Median Slope −0.16 −0.13 −0.10 −0.02 0.09 1.09

Curvature −0.04 −0.05 −0.04 −0.03 0.04 0.94

Level 0.05 0.07 0.18 0.25 0.42 2.13
Maximum Slope −0.18 −0.20 −0.26 −0.24 −0.13 1.91

Curvature −0.22 −0.19 −0.16 −0.13 −0.12 0.54

Panel B: QEV model

Level 0.12 0.14 0.14 0.10 0.04 0.21
Minimum Slope 0.20 0.02 −0.26 −0.36 −0.41 −0.23

Curvature 0.33 0.22 −0.13 −0.23 −0.14 1.53

Level −0.01 0.00 0.05 0.04 0.04 1.36
Median Slope −0.19 −0.18 −0.14 −0.13 −0.02 1.14

Curvature −0.02 −0.01 −0.03 −0.01 −0.02 0.58

Level 0.02 −0.04 −0.19 −0.26 0.00 2.80
Maximum Slope −0.16 −0.12 −0.16 −0.13 0.10 2.88

Curvature −0.26 −0.24 −0.14 −0.02 0.24 1.14

Table B2: Accuracy of approximation using A1(3)-LSD/QEV
Approximation errors, defined as the difference in yields between the approximate and Monte
Carlo solutions, are presented in bps. The errors are evaluated at nine states taken from the
actual data from January 4, 1991 to May 27, 2009, where the level, slope, and curvature factors
take the minimum, median, or maximum value. The parameter values of the LSD and QEV
models are given in Tables 2 and 3, respectively.
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