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Abstract

Within the affiliated private-values paradigm, we develop a tractable empirical model of equi-
librium behaviour at first-price, sealed-bid auctions. Themodel is non-parametrically identified,
but the rate of convergence in estimation is slow when the number of bidders is even moderately
large, so we develop a semiparametric estimation strategy,focusing on the Archimedean family
of copulae and implementing this framework using particular members—the Clayton, Frank, and
Gumbel copulae. We apply our framework to data from low-price, sealed-bid auctions used by
the Michigan Department of Transportation to procure road-resurfacing services, rejecting the
hypothesis of independence and finding significant (and high) affiliation in cost signals.
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1. Motivation and Introduction

During the past half century, economists have made remarkable progress in understanding
the theoretical structure of equilibrium strategic behaviour under market mechanisms, such as
auctions, when the number of potential participants is relatively small; see Krishna [18] for a
comprehensive presentation and evaluation of progress.

One analytic device commonly used to describe bidder motivation at single-object auctions
is a continuous random variable that represents individual-specific heterogeneity in valuations.
The conceptual experiment involves each potential bidder’s receiving an independent draw from
a distribution of valuations. Conditional on his draw, a bidder is then assumed to act purposefully,
maximizing either the expected profit or the expected utility of profit from winning the auction.
Another, frequently-made assumption is that the independent valuation draws of bidders are from
the same distribution of valuations; this is often referredto as thesymmetric independent private-
values paradigm(symmetric IPVP). Under this assumption, the researcher can then focus on a
representative agent’s decision rule when describing equilibrium behaviour.
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At many real-world auctions, the latent valuations of potential bidders are probably depen-
dent in some way. In auction theory, it has been typically assumed that this dependence satisfies
affiliation, a term coined by Milgrom and Weber [24]. Affiliation is a condition concerning
the joint distribution of signals. In the case of continuousrandom variables, following Karlin
[17], some refer to affiliation asmultivariate total positivity of order two(or MTP2, for short).
Essentially, under affiliation for continuous random variables, the off-diagonal elements of the
Hessian of the logarithm of the joint probability density ofsignals are all non-negative; i.e., the
joint probability density function is log-supermodular. Under joint normality of signals, affilia-
tion requires that the pair-wise covariances be weakly positive. Krishna [18] as well as de Castro
[5] have also noted that affiliation implies positive correlation; i.e., affiliation is a much stronger
condition than positive correlation.

Investigating equilibrium behaviour at auctions, empirically, when latent valuations are af-
filiated has challenged researchers for some time. Laffont and Vuong [20] have noted that
identification is impossible to establish in many models when affiliation is present. In fact, one
result of Laffont and Vuong is that any model within the affiliated-values paradigm (AVP) is
observationally equivalent to a model within the affiliated private-values paradigm (APVP). For
this reason, when admitting dependence, nearly all empirical workers have considered models
within the APVP, the notable exception being Brendstrup andPaarsch [1].

Most structural econometric research devoted to investigating equilibrium behaviour at auc-
tions has involved single-object auctions within the symmetric IPVP. Examples include Paarsch
[28, 29]; Donald and Paarsch [6, 7, 8]; Laffont, Ossard, and Vuong [19]; Guerre, Perrigne, and
Vuong [13] (hereafter GPV, for short); Haile and Tamer [14];and Li [21]. Paarsch and Hong
[30] have summarized some of the important empirical work inthis area.

Only a few researchers have dealt explicitly with models within the APVP. In particular, Li,
Perrigne, and Vuong [22] have demonstrated non-parametricidentification within the condi-
tional IPVP, a special case of the APVP, while Li, Perrigne, and Vuong [23] (hereafter LPV, for
short) have demonstrated non-parametric identification within the APVP. When implementing
their approach, LPV faced two related problems: first, the LPV non-parametric estimator suffers
from the curse of dimensionality as the number of bidders gets large; second, their estimator is
plagued by the curse of dimensionality as the number of covariates gets large. Consequently, the
LPV estimator can be slow to converge. Most importantly, however, LPV do not impose affilia-
tion in their estimation strategy, so the first-order condition used in estimation need not constitute
an equilibrium.

In this paper, we investigate the advantages of using a semiparametric estimation strategy
as a dimension-reducing device to speed-up convergence. Specifically, we address the curse of
dimensionality stemming from the number of bidders at auction, not the number of covariates.
Under our approach, we also use the properties of a particular family of copulae to impose
affiliation, thus ensuring an equilibrium is satisfied by the measurement equation. We focus our
efforts on affiliation within models of first-price, sealed-bid auctions,the most important auction
format used in practice, at least in terms of the value of goods and services either sold or procured.

Our paper has seven remaining parts. In the next section, we briefly define affiliation and
explain why it is used in theoretical models of auctions. Because the copula is central to our
analysis, in section 3, we present a brief review of the theory concerning copulae. Subsequently,
in section 4, we introduce a simple model of bidding at first-price, sealed-bid auctions in which
affiliation is imposed on the copula to guarantee a unique, monotone pure-strategy equilibrium.
In section 5, we propose a semiparametric estimator, demonstrating that it is consistent and
deriving its asymptotic distribution; we also demonstratethat the proposed estimator attains the
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optimal rate of convergence. In section 6, we investigate the small-sample properties of our
estimator using Monte Carlo methods, while in section 7, we apply our methods in an empirical
investigation of low-price, sealed-bid, procurement-contract auctions held by the Department of
Transportation in the State of Michigan. We summarize and conclude in section 8, the final
section of the paper. In an appendix, we collect several lemmata (and their proofs) that are too
cumbersome and detailed to include in the text of the paper; we also document the creation of
the data set used.

2. Definition and Use of Affiliation

Suppose valuationsV1, V2, . . ., Vn have joint probability density functionfV(v) wherev col-
lects (v1, v2, . . . , vn), with lower-case letters denoting realizations of upper-case random variables.
Considerv′ andv′′. The random variablesV are said to be affiliated if

fV(v′ ∨ v′′) fV(v′ ∧ v′′) ≥ fV(v′) fV(v′′) (1)

where
(v′ ∨ v′′) = [max(v′1, v

′′
1 ),max(v′2, v

′′
2 ), . . . ,max(v′n, v

′′
n )]

denotes the component-wise maxima ofv′ andv′′, sometimes referred to as thejoin, while

(v′ ∧ v′′) = [min(v′1, v
′′
1 ),min(v′2, v

′′
2 ), . . . ,min(v′n, v

′′
n )]

denotes the component-wise minima, sometimes referred to as themeet. Affiliation is sufficient
to guarantee conditions important in delivering a unique, monotone, pure-strategy equilibrium
(MPSE). de Castro [5] has also noted that affiliation is a stronger condition than is necessary to
guarantee a unique MPSE.

3. Some Results concerning Copulae

The main analytic device we use to organize our analysis is thecopula. Nelsen [26] has provided
a detailed introduction to the theory of copulae. Here, we simply repeat some basic facts that are
relevant to our later work as well as establish a notation. Inwhat follows, for expositional rea-
sons, for the most part, we restrict our discussion to bivariate copulae, but the results generalize
to the case ofn variables easily. Given two variables,U1 andU2, a bivariate copulaC(u1,u2) is
a continuous function having the following properties:

1. Domain(C) = [0,1]2;

2. C(u1,0) = 0 = C(0,u2);

3. C(u1,1) = u1 andC(1,u2) = u2;

4. C is a twice-increasing function, so

C(u1
1,u

1
2) − C(u0

1,u
1
2) − C(u1

1,u
0
2) + C(u0

1,u
0
2) ≥ 0

for anyu0
1, u0

2, u1
1, u1

2 ∈ [0,1]2, such thatu0
1 ≤ u1

1 andu0
2 ≤ u1

2.
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BecauseU1 andU2 are both defined on the unit interval, they can be viewed as uniform random
variables withC(u1,u2) being their joint distribution function. Alternatively,U1 andU2 can be
viewed as the cumulative distribution functions of two random variablesV1 andV2 which are
collected in the vectorV. In this case, their marginal distribution functionsF1(v1) andF2(v2) are
linked to their joint distributionFV(v1, v2) by

FV(v1, v2) = C[F1(v1), F2(v2)].

One attractive feature of copulae is that the marginal cumulative distribution functions do not
depend on the choice of the dependence function for the two random variables in question. When
one is interested in the association between random variables, copulae are a useful device to use
because the dependence structure can be separated from the marginal cumulative distribution
functions.

We know, too, from Sklar’s Theorem, that the copulaC always exists, and is a unique function
linking FV(v1, v2) with F1(v1) andF2(v2). Of course, whenV1 andV2 are independent, the copula
is a trivial function as

FV(v1, v2) = F1(v1) × F2(v2).

Also, if we introduce the copulae

U(u1,u2) = min(u1,u2)

and
B(u1,u2) = max(0,u1 + u2 − 1),

then the following inequalities hold:

B(u1,u2) = max(0,u1 + u2 − 1) ≤ C(u1,u2) ≤ min(u1,u2) = U(u1,u2),

which are known as theFréchet–Hoeffding bounds.
Consider nowS1 andS2 which are, respectively, two strictly increasing functions of V1 and

V2, denotedσ1(V1) andσ2(V2). Denote the cumulative distribution functions ofS1 andS2 by
G1(s1) andG2(s2), respectively. It is important to note that

C [G1(s1),G2(s2)] = C
(
F1

[
σ−1

1 (s1)
]
, F2

[
σ−1

2 (s2)
])
= C [F1(v1), F2(v2)] .

To wit, the copulae of two random variables and two strictly increasing functions of those two
random variables are identical. This result is Theorem 2.4.3 of Nelsen [26].

Different families of copulae exist. A simple, and commonly-used, family of copulae that
admits non-linear dependence is theArchimedeanfamily, which is uniquely characterized by its
generator functionζ(·) where

Cζ(u1,u2) = ζ−1[ζ(u1) + ζ(u2)]. (2)

Here,ζ(·) is a convex, decreasing function. Note, too, thatζ(1) must equal zero andζ−1(u) must
be zero for anyu exceedingζ(0). These conditions are both necessary and sufficient forCζ to
be a distribution function. Copulae within the Archimedeanfamily have the following bivariate
joint density function:

cζ(u1,u2) = −ζ
′′(FV)ζ′(u1)ζ′(u2)

[ζ′(FV)]3
,
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Table 1: Commonly-Used Archimedean Copulae

Member Copula ζ(u; θ) Domain

Clayton (u−θ1 + u−θ2 − 1)−
1
θ

1
θ
(u−θ − 1) θ ∈ [−1,∞)\ {0}

Frank − 1
θ

log
{
1+ [exp(−θu1)−1][exp(−θu2)−1]

[exp(−θ)−1]

}
− log

[
exp(−θu)−1
exp(−θ)−1

]
θ ∈ (−∞,∞)\ {0}

Gumbel exp
{
−

[
(− logu1)θ + (− logu2)θ

] 1
θ

}
(− logu)θ θ ∈ [1,∞)

which generalizes naturally ton-variates.
Three commonly-used members of the Archimedean family of copulae are theClayton,

Frank, andGumbelcopulae. In table 1, we present the copula and generator functions of each
as a function of a dependence parameterθ. What interpretation can be given to the dependence
parameterθ? Consider the Frank copula: in the bivariate case, the larger is a positive value of
θ, the greater the concordance, positive dependence. On the other hand, a very negative value of
θ indicates negative dependence. Independence obtains whenθ approaches zero. Note that, for
the Frank copula, whenn exceeds two,θ is restricted to be positive because a negativeθ would
imply a non-monotonic inverse-generator function; see example 4.22 in Nelsen [26]. Similar
interpretations exist for the Clayton and Gumbel copulae and can be also found in Nelsen [26].

Müller and Scarsini [25] have characterized various notionsof positive dependence, such as
MTP2 andconditionally increasingness in sequence(CIS) for Archimedean copulae.1 They have
also presented a general condition that the generator of an arbitrary Archimedean copula must
satisfy in order to guarantee that MTP2 holds (cf. Theorem 2.11 in their paper).

For the Frank copula, Genest [11] has demonstrated that the relevant condition fortotal
positivity of order two(TP2) coincides with the condition that guarantees a monotonic inverse-
generator function whenn exceeds two; viz.,θ must be positive. Although Genest’s condition
for TP2 only concerned bivariate copulae, it can be applied to multivariate Frank copulae, too.
For it is well-known that a function is MTP2 if and only if it is TP2 in all pairs of its arguments.
For the Clayton copula, the parameterθmust be positive if that copula is to satisfy TP2, while the
parameterθ of the Gumbel copula must be (weakly) greater than one if thatcopula is to satisfy
TP2.

4. First-Price, Sealed-Bid Auction Model with Affiliation

We consider a model in which each ofn(≥ 2) potential bidders draws a valuationV from
the joint distributionFV(v) whereFi(vi) denotes the marginal cumulative distribution function of
bidderi. Now, by Sklar’s theorem, there exists a unique copula functionC such that

FV(v) = C[F1(v1), F2(v2), . . . , Fn(vn)].

For notational simplicity, however, we consider the case whereFi(·) is the same for all bidders
and equalsF0(·); this is thesymmetricAPVP. The extension to the asymmetric APVP is straight-
forward, but incredibly cumbersome and tedious, notationally speaking. Under the symmetric
APVP,

FV(v) = C[F0(v1), F0(v2), . . . , F0(vn)].

1We are grateful to Professor Alfred M̈uller for sharing with us his extensive knowledge and insights concerning
MTP2 and the Archimedean family of copulae.
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Let V−1 denote (V2, . . . ,Vn), soV without V1. The following lemma is key to our derivation of
the equilibrium bid function:

Lemma 1. Assume that FV(v1, . . . , vn) is a symmetric distribution that can be expressed as

FV(v1, . . . , vn) = C[F0(v1), . . . , F0(vn)]

whereC is a copula and F0(·) is the marginal distribution of vi . The conditional distribution
FV−1|V1(v2, ...vn|v1) can be expressed as

FV−1|V1(v2, ...vn|v1) = C1[F0(v1), F0(v2), . . . , F0(vn)]

whereC1 is the partial derivative ofC with respect to the first component.

Proof.

Let fV(v1, . . . , vn) denote the joint density function related toFV(v1, . . . , vn). Now,

FV(v1, . . . , vn) = C[F0(v1), . . . , F0(vn)]

=

∫ v1

· · ·
∫ vn

fV(u1, . . . ,un) du1 · · · dun.

Differentiating both sides of the last equality with respect tov1 yields

C1[F0(v1), . . . , F0(vn)] f0(v1) =
∫ v2

· · ·
∫ vn

fV(v1,u2, . . . ,un) du2 · · · dun.

Thus, ∫ v2 · · ·
∫ vn fV(v1,u2, . . . ,un) du2 · · ·dun

f0(v1)
= C1[F0(v1), . . . , F0(vn)]. (3)

But the left-hand side of equation (3) is justFV−1|V1(v2, ...vn|v1), so the desired result obtains.
Note that the assumption of symmetry is unnecessary to our proof; we use it to simplify

notation as we shall only investigate the symmetric APVP in our empirical work below. Note,
too, that at this stage no structure has been assumed ofC(·). Specifically, we have not imposed
affiliation. Affiliation is a sufficient condition assumed by Milgrom and Weber [24] to guarantee
a unique MPSE in the game specified below.

Within the symmetric APVP, we can consider the behaviour of any bidder so, without loss
of generality, we focus on bidder 1 who has valuev1 and is assumed to maximize his expected
profit

E[π(s1, v1)] = (v1 − s1) Pr[V2 ≤ σ−1(s1), . . . ,Vn ≤ σ−1(s1)|v1]
= (v1 − s1)C1

(
F0(v1), F0[σ−1(s1)], . . . , F0[σ−1(s1)]

)

by choice of bidding strategys1, whereσ(·) denotes the strictly increasing bidding strategy and
where the second equality follows from Lemma 1. Under symmetry, and after some algebra, the
first-order condition yields

σ′(v1) = [v1 − σ(v1)](n− 1) f0(v1)
C12[F0(v1), . . . , F0(v1)]
C1[F0(v1), . . . , F0(v1)]

. (4)
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A sufficient condition for equation (4) to characterize a unique MPSE is that the copulaC(·)
satisfy MTP2, which we now assume it does.

IntroducingG0(·) to denote the marginal distribution of equilibrium bids and g0(·) to denote
its corresponding probability density function, we can apply the GPV approach which involves
noting that

G0(s1) = F0(v1)

and

g0(s1) =
f0(v1)
σ′(v1)

.

Thus, re-arranging terms of the first-order condition in equation (4) yields

v1 = s1 +
C1[G0(s1), . . . ,G0(s1)]

(n− 1)g0(s1)C12[G0(s1), . . . ,G0(s1)]
, (5)

where we use the fact that the copulaC(·) is invariant under strictly-increasing transformations
of its arguments.

5. A Semiparametric Estimator

We frame the intuition behind our estimation strategy in terms of the previous literature and
then, subsequently, demonstrate parameter consistency and asymptotic normality of our estima-
tor later in this section. Consider a sample ofT auctions at which no reserve price exists, so
issues of participation can be safely ignored. In this case,each of then participants has tendered
a bid at theT auctions, so given the following data:

{{Sit }ni=1}Tt=1,

one can non-parametrically estimateG0(s) andg0(s) using the methods proposed by GPV. Denote
these estimates bỹG0(s) and g̃0(s). From these, again using the sample data, one can then
estimateC[F0(v1), . . . , F0(vn)] non-parametrically using standard methods for copulae;see, for
example, Nelsen [26] as well as Brendstrup and Paarsch [1]. Based on these, one can then form
the pseudo-values according to

Ṽit = Sit +
C̃1[G̃0(Sit ), . . . , G̃0(Sit )]

(n− 1)̃g0(Sit )C̃12[G̃0(Sit ), . . . , G̃0(Sit )]
.

Note, however, that standard kernel-smoothing techniquestypically do not guarantee that̃C(·)
satisfies MTP2. However, if the true copulaC0(·) satisfies MTP2, then C̃(·) will converge in
probability toC0(·).

In addition, ifn is even moderately large, then a non-parametric estimator of the copulaC(·)
may be slow to converge. Thus, we advocate using semiparametric methods. In particular, one
can still estimate bothG0(s) andg0(s) non-parametrically, but now put some structure on the
copulaC(·). For example, suppose thatC(·) is a member of the Archimedean family which is
uniquely characterized by the generator functionζ(·).

One flexible way of estimating the generating functionζ(·) would involve introducing a fam-
ily of shape-preserving polynomials. One would then estimate the coefficients of these polyno-
mials. The estimation strategy would involve allowing the number of terms in the polynomials
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to increase as the sample size increased, but at a rate which is slower than that of the sample size.
Sieve estimation is an example of such a method; see, for example, Chen and Shen [3]. A draw-
back of this approach is that the polynomial approximationsof ζ(·) need not satisfy MTP2, so the
first-order condition used to define the pseudo-valuations need not correspond to an equilibrium.

Alternatively, consider a family of copulae that is known upto some finitep-dimensional
parameter vectorθ, soC(·; θ). A number of members of the Archimedean family have simple
parametric representations which can be easily constrained to respect affiliation, MTP2. When
the true copulaC0(·) belongs to a parametric family

C = {Cθ, θ ∈ Θ}

defined by the vectorθ, then a parameter-consistent and asymptotically-normal estimator ofθ0,
the true value, can be obtained by applying the method of maximum likelihood.

Now, under the hypothesis of equilibrium, from Theorem 2.4.3 of Nelsen [26], we know
that the parameter vectorθ0 which characterizes the degree of affiliation in the joint distribution
of valuations is the same parameter vector which characterizes the degree of affiliation in the
joint distribution of equilibrium bids. Thus, we can focus on observed bids when estimating the
dependence in unobserved valuations.

Thus, we estimateG0
0(s), the marginal cumulative distribution function ofS using

G̃0(s) =
1

nT + 1

T∑

t=1

n∑

i=1

1(Sit ≤ s).

Here, [1/(nT + 1)] is used to scale the cumulative sum in the definition of theempirical dis-
tribution function to avoid boundary problems encounteredwhen implementing the copulae.
Subsequently, we insert̃G0(·) into the logarithm of the likelihood function and maximizewith
respect to the parameter vectorθ.2 BecausẽG0(·) is different from the true population cumula-
tive distribution functionG0

0(·), we refer to this method aspseudo maximum-likelihood(PML)
estimation.

Of course, ifC0 depends on a parameter, then so too does the support ofG0
0(·), so one of

the regularity conditions imposed by maximum-likelihood estimation is violated. To see this,
consider the following fully parametric model where the marginal probability density function
depends on a vector of unknown parametersγ, so f0(v;γ). Under this assumption, not only
does the marginal probability density function ofS depend onγ, it also depends on the copula
parameter vectorθ, sog0(s;γ, θ). In addition, the upper bound of support ofS depends onγ and
θ, so

v ≤ s≤ s̄(γ, θ) = σ(v̄)

wherev andv̄ are the lower and upper bounds of support ofV, respectively.
What to do? Well, it turns out that, under our proposed approach, one can ignore this support

problem. In fact, this is one of the most compelling featuresof our approach. To see how this
works, consider the simple case wheren is three. The joint density function of bids, can be

2Fermanian and Scaillet [10] have shown that the bias is smallerunder a two-step approach than when the model is
estimated at one go—i.e., when the parameters of the marginal distribution and those of the copula are estimated simulta-
neously. Furthermore, they have argued that there is “littleto lose but lots to gain from shifting towards a semiparametric
approach” in terms of efficiency.
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written in terms of the copula and the marginal cumulative distribution and probability density
functions ofS at auctiont as

C123[G0(s1t;γ, θ),G0(s2t;γ, θ),G0(s3t;γ, θ); θ]g0(s1t;γ, θ)g0(s2t;γ, θ)g0(s3t;γ, θ),

the logarithm of which (when aggregated over thet = 1, . . . ,T auctions) is then

T∑

t=1

log
(
C123[G0(s1t;γ, θ),G0(s2t;γ, θ),G0(s3t;γ, θ); θ]

)
+

log[g0(s1t;γ, θ)] + log[g0(s2t;γ, θ)] + log[g0(s3t;γ, θ)].

As mentioned above, one of the regularity conditions used toprove the parameter-consistency of
the maximum-likelihood estimator is violated because ¯s(γ, θ), the upper bound of support of the
strategy, depends on the parameters in the logarithm of the likelihood function.

Consider now our semiparametric, PML estimator. A major difference between our approach
and the fully parametric approach is that we do not specify parametric functional forms forF0(·)
and, consequently,G0(·). Instead, we use the observed bids to estimateG0(·), which can then be
used to estimateg0(·). UsingG̃0(·) andg̃0(·), we then maximimize, with respect toθ,

T∑

t=1

log
(
C123[G̃0(s1t), G̃0(s2t), G̃0(s3t); θ]

)

instead of

T∑

t=1

log
(
C123[G̃0(s1t), G̃0(s2t), G̃0(s3t); θ]

)
+ log[̃g0(s1t)] + log[̃g0(s2t)] + log[̃g0(s3t)].

Clearly, the upper bound of support ¯s(γ, θ) still depends onθ, but this does not cause us any
technical problems because, when we search overθ, g̃0(sit ) is always positive as it does not
depend onθ, unlike in the fully parametric case, so it can effectively be ignored. In the fully
parametric approach, values ofγ andθ can result ing0(sit ;γ, θ)’s being zero, so its logarithm is
then undefined.

5.1. Asymptotic Properties of the Estimator

As mentioned, given an initial estimatẽG0(·), we propose to estimate the copula dependence
parameter by maximizing the followingpseudo log-likelihoodfunction:

L̃(θ) =
1
T

T∑

t=1

logC1,...,n[G̃0(s1t), . . . , G̃0(snt); θ]

with respect to the unknown parameter vectorθ, having constrainedθ to respect affiliation,
MTP2. Thus, the PML estimator̂θ is

θ̂ = argmax
θ

L̃(θ).

As noted by Chen and Fan [2], the main difficulty in establishing the asymptotic properties
of θ̂ is that the score function and its derivatives can approach infinity (become undefined) at
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the boundaries of the space under alternative choices of copula functions. To circumvent this
problem, Chen and Fan [2] introduced a weighting function. Their approach is as follows: first,
they established convergence of the non-parametric estimator for the marginal distribution in a
weighted metric and, then, they established the asymptoticproperties of the copula dependence
parameter(s). Specifically, the weighting function is constructed so that it equals one when the
score function and its derivatives are defined at the boundary; otherwise, the weighting function
is defined to be some smooth function that becomes zero at the boundaries—zero and one. Al-
though Chen and Fan [2] investigated the estimation of copula-based semiparametric time-series
models using the copula to model the joint distribution of the time seriesYt andYt−1, leaving the
marginal distribution unspecified, their weighting-function approach can be applied in our case.
We make the following assumptions that apply to our auction application:

A1. {(S1t, . . . ,Snt)}Tt=1 is a random sample from the joint distribution modelled by the copula
C[G0

0(·), . . . ,G0
0(·); θ0] whereG0

0(·) is absolutely continuous with respect to Lebesgue mea-
sure on the real line andC(·, . . . , ·; θ0) is the true parametric copula for (S1t, . . . ,Snt), which
is absolutely continuous with respect to Lebesgue measure on [0,1]n, and does not attain
either the lower or the upper bounds of Fréchet–Hoeffding described in section 3.

A2. θ0 ∈ Θ, a compact set inRp, andE[ℓθ(U1, . . . ,Un; θ0)] equals zero, if and only ifθ equals
θ0, where

ℓθ(u1, . . . ,un; θ) ≡ ∇θ logC1,...,n(u1, . . . ,un; θ).

A3. ℓθ(u1, . . . ,un; θ) is defined for (u1, . . . ,un) ∈ [0,1]n×Θ and for allθ0 ∈ Θ; ℓθ(u1, . . . ,un; θ)
is Lipschitz continuous atθ almost surely;ℓθ,i(u1, . . . ,un; θ) for i = 1, . . . ,n are defined
and continuous in (u1, . . . ,un; θ) ∈ [0,1]n ×Θ.

A4. E{supθ∈Θ ||ℓθ(U1, . . . ,Un; θ)|| log[1+ ||ℓθ(U1, . . . ,Un; θ)||]} < ∞.

A5. E{supθ∈Θ,G∈Gδ ||ℓθ,i [G(S1t), . . . ,G(Snt); θ]||w(Ui)} < ∞ whereGδ equals{G ∈ G : ||G −
G0

0||G ≤ δ} with G being the space of continuous probability distributions over the support
of Sit , andw(v) denotes [v(1− v)]1−ξ for v ∈ (0,1) andξ ∈ (0,1).

Note that these assumptions are adapted from those in Chen and Fan [2]. While Chen and Fan
considered time-series data with two variablesYt andYt−1, we consider data from a cross-section
of n variables (S1t, . . . ,Snt). The following proposition states the consistency resultof θ̂.

Proposition 1. Under A1–A5,

θ̂
P→ θ0.

The proof of Proposition 1, which follows closely the proof of Proposition 4.2 in Chen and Fan
[2], is omitted as it is straightforward. For the asymptoticdistribution, following Chen and Fan
[2], we make the following assumptions:
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A6. (i) A2 is satisfied withθ0 in the interior ofΘ; (ii) B ≡ −E[ℓθ,θ(U1, . . . ,Un; θ0)] is positive
definite; (iii)Σ ≡ limT→∞ Var(

√
TAT) is positive definite where

AT ≡
1
T

T∑

t=1

ℓθ(U1, . . . ,Un; θ0) +
n∑

i=1

Wi(Ui)



with

Wi(Ui) =
∫ 1

0
· · ·

∫ 1

0
[1(Ui ≤ vi) − vi ]ℓθ,i(v1, . . . , vn; θ0)C1,...,n(v1, . . . , vn; θ0) dv1 · · ·dvn;

(iv) θ̂ = θ0 + oP(1) and sups |[G̃0(s) −G0
0(s)]/w[G0

0(s)]| = OP(T−1/2) wherew(·) is defined
in A5.

A7. ℓθ,θ(u1, . . . ,un; θ) andℓθ,i(u1, . . . ,un; θ) for i = 1, . . . ,n are all defined, and continuous in
(u1, . . . ,un, θ) ∈ [0,1]n × Int(Θ).

A8. It is valid to interchange the order of differentiation and integration ofℓθ[Gη(s1t), . . . ,Gη(snt); θη]
with respect toη ∈ (0,1) where{(θη,Gη) : η ∈ [0,1]} ⊂ Fδ ≡ {(θ,G) ∈ Θ×Gδ : ||θ − θ0|| ≤
δ} for a smallδ, is a one-dimensional smooth path inFδ.

A9. BothE{sup(θ,G)∈Fδ ||ℓθ[G(S1t), . . . ,G(Snt); θ]||}2 < ∞ andE{||∑n
i=1Wi(Ui)||2} < ∞.

A10. E{sup(θ,G)∈Fδ ||ℓθ,θ[G(S1t), . . . ,G(Snt); θ]||}2 < ∞.

A11. E{sup(θ,G)∈Fδ ||ℓθ,i [G(S1t), . . . ,G(Snt); θ]||w(Ui)}2 < ∞ for i = 1, . . . ,n.

These assumptions are modified versions of those in Chen and Fan [2] because we consider data
from a cross-section case, while they consider data from a time-series. We can now state the
following result concerning the

√
T asymptotic normality of̂θ.

Proposition 2. Under A6–A11,

√
T(θ̂ − θ0)

d→ N(0,B−1
ΣB−1).

WereG0
0(·) known, then

∑n
i=1Wi(Ui) would disappear fromAT and, thus, fromΣ. In other

words, the term
∑n

i=1Wi(Ui) is introduced becauseG0
0(·) is unknown and must be estimated.

For ease of exposition, the preceding asymptotic results were established for the case where
auctioned objects are homogenous. The results can, however, be readily extended to the case
where the auctioned objects are heterogenous and are conditioned on ad-dimensional vector of
covariatesX.
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5.2. Optimal Uniform Convergence Rate: Estimator of fV

Having obtained the PML estimatorθ̂, we can now calculate the pseudo private-values. To
this end, in addition to the non-parametric estimator of themarginal cumulative distribution, we
define the non-parametric estimator of the probability density function as follows:

g̃0(s) =
1

nThg

T∑

t=1

n∑

i=1

κg

(
s− Sit

hg

)

wherehg is a bandwidth andκg(·) is a kernel with a compact support whose length isρg. Let Smin

andSmax denote the minimum and maximum of thenT observed bids, and define the pseudo
private-value corresponding toSit as

Ṽit =


Sit +

C̃1[G̃0(Sit ),...,G̃0(Sit )]
(n−1)g̃0(Sit )C̃12[G̃0(Sit ),...,G̃0(Sit )]

if Smin + ρghg/2 ≤ Sit ≤ Smax− ρghg/2

∞ otherwise.

Note that, here, the trimming, which follows GPV, is necessary because ˜g0(·) is biased near the
boundaries. The pseudo private-valuesṼit can then be used to estimate the marginal probability
density function of private values via

f̃0(v) =
1

nThf

T∑

t=1

n∑

i=1

κ f


v− Ṽit

hf



wherehf is a bandwidth andκ f (·) is a kernel with compact support.
Since we can also estimate the marginal distribution of private values by

F̃0(v) =
1

nT + 1

T∑

t=1

n∑

i=1

1(Ṽit ≤ v),

we can now estimate the joint density ofn private values by

f̃V(v1, . . . , vn) = C1,...,n[F̃0(v1), . . . , F̃0(vn); θ̂]
n∏

i=1

f̃0(vi)

≡ C̃1,...,n[F̃0(v1), . . . , F̃0(vn)]
n∏

i=1

f̃0(vi).

GPV studied the optimal rate of uniform convergence of the non-parametric density estimator
f̃0(·) when then private values are independent. In this case, the private value can be expressed
as

Vit = Sit +
G0(Sit )

(n− 1)g0(Sit )

and the pseudo private-values can be defined accordingly. Itturns out that under suitable regular-
ity conditions, we can establish the optimal rate of uniformconvergence for̃f0(·), which is given
in the next proposition.

Proposition 3. When (i) f0(·) has R bounded, continuous derivatives inside its support; (ii)

H(u, θ) ≡ C1(u, . . . ,u; θ)
C12(u, . . . ,u; θ)
12



is continuously differentiable in both u andθ in (0,1)× Int(Θ) with all derivatives being bounded
in absolute value; and (iii) hg = cg(logT/T)1/(2R+3) with hf = cf (logT/T)1/(2R+3), then

sup
v∈ζ(V)

| f̃0(v) − f0(v)| = O((logT/T)R/(2R+3)) almost surely

for any closed inner subsetζ(V) of the support of f0(·) where(logT/T)R/(2R+3) is indeed the
optimal uniform convergence rate for two-step non-parametric estimators of the density f0(·)
from the observed bids.

Proposition 3 follows directly from Theorems 2 and 3 in GPV because of the differentiability of
H(u, θ) assumed in (ii) above. A comparison of our estimatorf̃0(·) to the one in GPV indicates
that our estimator behaves (asymptotically) in the same wayas the one in GPV provided that
(ii) is met: once this condition is satisfied,{C̃1[G̃0(Sit ), . . . , G̃0(Sit )]/C̃12[G̃0(Sit ), . . . , G̃0(Sit )]},
which is nowH[G̃0(Sit ), θ̂], behaves likẽG0(Sit ), at least asymptotically, so

Sit +
1

(n− 1)g̃0(Sit )
C̃1[G̃0(Sit ), . . . , G̃0(Sit )]

C̃12[G̃0(Sit ), . . . , G̃0(Sit )]

behaves like

Sit +
G̃0(Sit )

(n− 1)g̃0(Sit )
,

at least asymptotically. In particular, as in Lemma B2 in GPV, we can show that the uniform rate
of convergence ofH[G̃0(Sit ), θ̂] over an expanding subset is the same as that ofG̃0(Sit ), which is
(logT/T)(R+1)/(2R+3). Furthermore, because of this proposition, and the way in which we estimate
the joint density of private values, we can obtain the same optimal uniform rate of convergence
for the joint density estimator of private values, which is stated in the following corollary.

Corollary 1. Under the assumptions of Proposition 3, the optimal uniformconvergence rate of
f̃V(·, . . . , ·) is also(logT/T)R/(2R+3).

The result given in Corollary 1 is worth some discussion. It implies that the joint density of
private values can be estimated at the same rate as the marginal density of private values. The
semiparametric nature of our approach—imposing a parametric copula specification for the joint
distribution of private values (and, hence, bids) while leaving the marginal distribution of bids
unspecified—delivers sufficient structure to guarantee this rate of convergence. Thus, the two-
step nature of our estimation strategy parallels that considered by GPV. Consequently, the con-
vergence rate is faster than the rate of the fully non-parametric LPV estimator.

Following Theorems 2 and 3 of GPV, Proposition 3 and Corollary 1 can be readily extended
to the case of heterogenous objects; i.e., the probability density and cumulative distribution func-
tions can be conditioned on ad-dimensional vector of covariates, viz.,X. Then, the optimal
uniform convergence rates for both̃f0(·|·) and f̃V(·, . . . , ·|·) are (logT/T)R/(2R+d+3). Of course, in
this case, the non-parametric estimators ofG̃0(s|x), g̃0(s|x), and f̃0(v|x) need to be accordingly
modified following GPV.

As mentioned above, the LPV estimator suffers from the curse of dimensionality in two ways.
The first is the dimensionn—viz., the number of bidders at the auction, which determinesthe
dimension of joint density of private values; the second isd, the dimension of the covariate vector.
We have demonstrated that, under our approach, the optimal rate of convergence obtains when

13



a parametric copula is used because this reduces then dimension to one; thed dimension still
remains. Our method is especially useful when the number of bidders is large. Our estimator,
however, still does not address the problem caused by a largenumber of covariates. In this
regard, it would be useful to consider possible extensions of our semiparametric estimator. One
such extension would involve a single index model, which canbe used to reduce the curse of
dimensionality introduced byd. Of course, the price of the single-index assumption is a reduction
of flexibility and generality.

Note, too, that when estimating the underlying distribution of private values using the ob-
served bids, our semiparametric approach specifies a parametric copula with a dependence pa-
rameter, while nonparametrically estimating the marginaldistribution of the private values. There-
fore, our semiparametric estimator is different from most of the semiparametric estimators de-
rived within a regression framework; for example those studied by Newey and McFadden [27].
The objective in that reseearch is to estimate the parametric part of the model, while treating the
nonparametric part as a nuisance parameter (albeit of an infinite dimension). Despite this differ-
ence, our estimator of the dependence parameter attains

√
T rate of convergence (see Proposition

2), which is the common rate for the class of semiparametric estimators studied by Newey and
McFadden [27].

6. Some Monte Carlo Results

Below, we describe a Monte Carlo experiment designed to shedlight on the small-sample
properties of our estimation strategy. In the tradition of the theoretical literature concerning
auctions, our model of bidding in section 4 was developed in terms of valuations for an object to
be sold at auction under the first-price, sealed-bid format.Sealed-bid tenders are often used in
procurement—i.e., low-price, sealed-bid auctions at whicha buyer (often a government agency)
seeks to find the lowest-cost producer of some good or service. Because our empirical example
in section 7 involves investigating procurement of road resurfacing by a government agency, our
simulation study is couched in terms of a procurement auction. For the case of low-price, sealed-
bid procurement auctions, we collect several lemmata and their proofs in an appendix to this
paper.

In all of the experiments, the simulated data involved a truncated Pareto random variableC
(for costs) having the following marginal cumulative distribution function:

F0(c) =
FC(c) − FC(c)

[FC(c) − FC(c)]
(6)

where
FC(c) = 1−

(
γ0

c

)γ1

0 < γ0 ≤ c, 1 < γ1.

Our simulation study involved samples of sizeT equal fifty, one hundred, and two hundred with
n of three bidders; each sample was replicated 1,000 times. The lower bound of support, the
lowest costc, was one, while the upper bound of support, the highest costc, was three. The
parameters of the Pareto distribution wereγ0 equal one andγ1 equal two.

To compare estimators, we considered the strategies proposed by GPV and LPV as well as our
copula approach for three members of the Archimedean family—the Clayton, Frank, and Gumbel
copulae, which are the most frequently used copulae in empirical applications. The Archimedean
family was discussed in section 3 and copula-specific equations needed for estimation, such as
the survival representation, are presented in an appendix to this paper.
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6.1. Performance using Independent Data
While the focus of our research concerns auctions in the presence of affiliation, it is useful

to compare the performance of the estimation strategies when signals are independent. Such an
analysis provides a benchmark to contrast the performance of a given strategy when dependence
is introduced. In addition, researchers may not knowex antewhether a given data set contains
dependence, or not, so there is value in investigating the performance of our semiparametric
estimator, which nests independence as a special case.

In the case of independence, we first generated uniform drawsfrom U(0,1). To convert the
ith uniform drawui into a draw from the truncated Pareto distributionci , we simply inverted the
cumulative distribution according to the following formula:

ci =
γ0(

1− ui

[
FC(c) − FC(c)

]
− FC(c)

)1/γ1
.

Simulated costsci were then mapped into simulated bidsbi using the following symmetric equi-
librium bid function:

bi = β(ci) = ci +

∫ c

ci
[1− F0(u)]n−1 du

[1− F0(ci)]n−1

whereF0(·) is the truncated Pareto distribution specified in equation(6) and the integral was
computed numerically using quadrature.

The estimation procedures proposed by GPV and LPV are discussed in detail in their respec-
tive papers. When implementing their estimators, we employed the kernel function and adopted
the optimal bandwidths they suggested. To implement our copula approach, we first modified the
approach of GPV to estimateG0(b) andg0(b) non-parametrically using the following estimators:

G̃0(b) =
1

nT + 1

T∑

t=1

n∑

i=1

1 (bit ≤ b) (7)

and

g̃0(b) =
1

(nT + 1)h

T∑

t=1

n∑

i=1

κ

(
b− bit

h

)
. (8)

Again, the division by (nT + 1) rather thannT is a rescaling to avoid numerical complications
arising at the boundary of the copula; e.g., recall (from section 3 above) thatC(1,u2) equalsu2

andC(u1,1) equalsu1. We employed the triweight kernel

κ(u) =
35
32

(
1− u2

)3
1(|u| ≤ 1)

with bandwidth

h = d

(
4
3

)1/5

σ̂(nT + 1)−1/5

whered equal 2.978 is the bandwidth transformation constant from Härdle [15] and ˆσ was the
standard deviation ofb which is the vector collecting the data{{bit }ni=1}Tt=1. We then estimatedθ
by the method of PML using the following pseudo log-likelihood function:

L̃(θ; b) =
T∑

t=1

log
(
cζ

[
G̃0(b1t), G̃0(b2t), G̃0(b3t); θ

])
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Table 2: Performance of Methods using IID Data, MSEP

Method T = 50 T = 100 T = 200
GPV 0.00188 0.00105 0.00058
LPV n/a 3.15053 0.02362
LPV (log transform) 1.13816 0.00945 0.00603
Clayton 0.00176 0.00100 0.00055
Frank 0.00185 0.00103 0.00057
Gumbel 0.00194 0.00111 0.00065

where

cζ(u1,u2,u3) =
∂3Cζ(u1,u2,u3)

∂u1∂u2∂u3
.

Thus, the PML estimator̂θ is defined by

θ̂ = argmax
θ

L̃(θ; b).

Using θ̂ as well asG̃0(b) andg̃0(b) from equations (7) and (8), we then computed estimates of
the partial derivatives of each respective survival copulaaccording to

S̃1(bi) = S1

[
1− G̃0(bi),1− G̃0(bi),1− G̃0(bi); θ̂

]

and
S̃12(bi) = S12[1 − G̃0(bi),1− G̃0(bi),1− G̃0(bi); θ̂]

when we were interested in recovering the pseudo-cost ˜ci associated with bidbi . We then used
our g̃0(b) from equation (8) in conjunction with̃S1(b) and S̃12(b) to compute the pseudo-cost
associated with any bidb

c̃ = b− S̃1(b)

(n− 1)g̃0(b)S̃12(b)
. (9)

To account for biases, near the boundaries, that obtain because we kernel-smoothed the density,
we only used the bid function in the prior step to recover the cost if the observed bid was in the
range [b+ h,b− h] whereb was min{bit } andb was max{bit }.

By construction, in the Monte Carlo study, we knew the true costs associated with the sim-
ulated datab. Each estimation strategy was used to recover a predicted pseudo-cost associated
with each bid. This allowed us to evaluate the error associated with each of the predicted values;
i.e., the error for theith cost is (ci − c̃i). To compare the performance of the estimation strategies,
we computed the mean squared error of the prediction (MSEP) using

MSEP=
M∑

i=1

(ci − c̃i)2

M

whereM is the number of costs that survived the trimming described above for the particular
estimation strategy, in a given simulation.

In table 2, we present the MSEPs that obtained using the estimation strategies with independently-
and identically-distributed (IID) data, where the Monte Carlo samples were held fixed across all
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Figure 1: Types of Dependence in Archimedean Copulae

methods. As expected, the MSEPs for all estimation strategies decrease as the sample size in-
creases, which can be seen by comparing the three right-mostcolumns of the table along a given
row. Our results indicate that the copula estimator performed as well as the GPV estimator which
was designed for IID data. The MSEPs associated with the copula approaches, regardless of the
copula chosen, are comparable to the MSEPs obtained using the GPV approach. We considered
the LPV approach using the raw bids as well as the logarithm ofbids, which is what the authors
suggested researchers consider when the distribution of bids is skewed. We found that the LPV
approach had difficulty with IID data whenT was small (for example, 50) because the kernel
density took values close to zero and resulted in exceedingly high pseudo-costs. However, even
for the largest sample size, which involved 200 auctions, the MSEP obtained using the LPV ap-
proach was forty times that of GPV or our copula approach. Performance of the LPV approach
improved substantially when the logarithmic transformation was used and the pseudo costs were
recovered using an appropriate modification of equation (9).

6.2. Performance using Affiliated Data

In our simulation study, with affiliated data, we considered data generated under different
“levels” of dependence as well as different “types” of dependence. We generated dependent data
from the Clayton, Frank, and Gumbel copulae to evaluate the performance of our method using
data that exhibited different types of dependence. For example, in figure 1, we depictbivariate
draws generated from Clayton, Frank, and Gumbel copulae. The figures illustrate the type of de-
pendence inherent in the data varies depending on the copulaused.3 In the scatterplots, and in our
simulation study, we fixed the level of dependence accordingto Kendall’sτ—a non-parametric
measure of association which is defined in terms of concordance. As was demonstrated by Gen-
est and MacKay [12], a direct relationship exists between Kendall’s τ and the parameter of an
Archimedean copula. In table 3, we list the correspondence between Kendall’sτ and the parame-
ter of each Archimedean copula we considered, here denotedθ. We exploited these relationships
to provide structure in our simulation study: they allowed us to fix the level of dependence
across generating copulae by computing the copula parameters associated with given choices of
Kendall’sτ. For example, in figure 1, the parameters of the Clayton, Frank, and Gumbel copulae
were chosen to correspond with a value for Kendall’sτ of 0.75.

The discussion above centered around bivariate copulae, while in our simulation study we
considered auctions with three bidders. However, the relationship between Kendall’sτ and

3The type of dependence is easier to see using bivariate draws, which can be plotted in two dimensions. Of course,
the relationships apply to multivariate draws, as will becomeclear in the discussion that follows.
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Table 3: Kendall’sτ and Archimedean Copula Parameters

Copula Relationship

Clayton τ = θ
θ+2

Gumbel τ = 1− 1
θ

Frank∗ τ = 1− 4
θ
[D1(θ) − 1]

∗ D1(θ) = 1
θ

∫ θ
0

x
exp(x)−1 dx

Archimedean copulae derived by Genest and MacKay [12] can beapplied to the multivariate
copulae we considered. Because we are concerned with the symmetric affiliated private-cost
paradigm (APCP), the marginal distribution functions of each random variable are identically
distributed. Note, too, that a copula is consideredexchangeableif the marginal distribution func-
tions are the same and the arguments are treated equivalently by the copula; i.e., in the bivariate
case,

C(u1,u2) = C(u2,u1)

givenU1 andU2 are identically distributed. Thus, exchangeability is a form of symmetry. Jouini
and Clemen [16] have demonstrated that, in the bivariate case, Kendall’sτ is sufficient to con-
struct ann-dimensional, exchangeable copula. This implies the unique relationships presented
in table 3 can be used to relate Kendall’sτ to the parameter of the multivariate Archimedean
copulae of interest, all of which are exchangeable.

To simulate data from the Clayton, Frank, or Gumbel copulae with dependence, we followed
the approach described by Cherubini, Luciano, and Vecchiato [4]. Theirs involvesconditional
samplingwhere, initially,w1, aU(0,1) random draw, is taken and thenu1 is set equal to it. The
next (dependent) drawu2 is found by solving

w2 = C2(u2|u1),

and so on, so thatun is found by solving

wn = Cn(un|u1, . . . ,un−1)

where all thewis are independentU(0,1) draws. Because the inverse function does not have a
closed-form for some copulae, the procedure is computationally intensive because the root of
each copula, conditional on the previous draws, must be solved numerically.

After converting the dependent draws into costs from the truncated Pareto distributionF0(·),
the simulated costsci were then mapped into simulated bidsbi using the following first-order
condition for profit maximization:

β′(ci) =
[
β(ci) − ci

] (n− 1) f0(ci)S12 [1− F0(ci),1− F0(ci),1− F0(ci)]
S1 [1− F0(ci),1− F0(ci),1− F0(ci)]

whereβ(·) is the equilibrium bid function. This first-order condition is a standard ordinary dif-
ferential equation which, subject to the boundary condition

β(c) = c,
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yields the symmetric equilibrium bid function under affiliation

bi = β(ci) = ci +

∫ c

ci

exp

(
−

∫ u

ci

(n− 1) f0(w)S12 [1− F0(w),1− F0(w),1− F0(w)]
S1 [1− F0(w),1− F0(w),1− F0(w)]

dw

)
du.

The results from the discussion above allowed us to conduct aMonte Carlo study using
dependent data in which we varied the number of auctions, thecopula used to generate the de-
pendent data, and the amount of dependence inherent in the generating copula. Kendall’sτ
provided a convenient way of assigning the same level of dependence to simulations generated
under different copulae. Again, we compared the performance of the GPVand the LPV estima-
tion strategies as well as our copula approach in which the Clayton, Frank, and Gumbel copulae
were chosen for estimation, regardless of the generating copula. This exercise also provides
insight into the question of which copula should be chosen inempirical applications and helps
to determine the importance of copula choice in these auction models; cf. Fermanian [9] for
goodness-of-fit tests for copulae.

In the next three tables, we present the MSEPs obtained usingeach of the estimation strate-
gies with dependent data generated from a specific Archimedean copula. In particular, in table
4, we present results when data were generated from the Clayton copula. Likewise, in tables
5 and 6, we present the MSEPs when data were generated from theFrank and Gumbel copu-
lae, respectively. In each table, the first column indicatesthe level of dependence, as measured
by Kendall’sτ. We generated data from each copula using the copula-specific parameter corre-
sponding to Kendall’sτ equal to 0.25, 0.50, and 0.75. The second column in each table describes
the estimation strategy used, while the last three columns present the MSEPs for different sam-
ples sizes:T equal to fifty, one hundred, and two hundred auctions each having n equal to three
bidders.

Each of the tables reveals that the GPV estimation strategy is an inappropriate one when
signals are affiliated: as the dependence increases, the MSEPs increase. Inaddition, for a given
level of dependence, increasing the sample size often yielded an higher MSEP under GPV. This
is clearly unfortunate, but perhaps not surprising: under GPV, in the presence of affiliation, the
measurement equation is mis-specified.

In contrast, the simulation results for the LPV non-parametric estimation strategy, which was
designed to account for affiliation, show promise. Regardless of the copula used to generate the
data or the level of dependence in the data, the performance of the LPV method improved as the
sample size increased. Furthermore, the MSEPs obtained using the LPV method on dependent
data were substantially lower than those found for that method when independent signals were
used.

Interestingly, this does not hold for the LPV approach when alogarithmic transformation of
the bids was used. While the transformation was attractive for independent data, the use of the
raw bids in the LPV approach often outperformed the log-transformed bids, at least in terms of
MSEP, for dependent data. In fact, the MSEP for the LPV approach when no transformation
was used is always lower than that of the logarithmic transformation forτ equal 0.75, regardless
of the copula used to generate the data. The logarithmic transformation was introduced so that
fewer data would be trimmed for skewed bid distributions. With highly-dependent data, this
rationale may no longer hold as one high (low) bid means otherbids are more likely to be high
(low). Consequently, the logarithmic transformation may result in an increase in the number of
bids that are trimmed, which is what happened in the Monte Carlo study.

Perhaps not surprisingly, for any given simulation, the lowest MSEPs of all the estimation
strategies obtained for our copula approach when it was usedto estimate the model that generated
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Table 4: Performance of Methods using Data Generated from Clayton Copula, MSEP

Dependence Method T = 50 T = 100 T = 200

τ = 0.25

GPV 0.00289 0.00189 0.00143
LPV 0.01079 0.00558 0.00341
LPV (log transform) 0.00675 0.00352 0.00204
Clayton 0.00185 0.00104 0.00059
Frank 0.00195 0.00113 0.00070
Gumbel 0.00215 0.00154 0.00114

τ = 0.50

GPV 0.00386 0.00374 0.00487
LPV 0.00682 0.00372 0.00228
LPV (log transform) 0.00705 0.00487 0.00357
Clayton 0.00187 0.00104 0.00057
Frank 0.00229 0.00172 0.00136
Gumbel 0.00333 0.00246 0.00199

τ = 0.75

GPV 0.01033 0.01271 0.01613
LPV 0.01364 0.01222 0.00980
LPV (log transform) 0.02240 0.02343 0.01953
Clayton 0.00267 0.00131 0.00064
Frank 0.00481 0.00433 0.00382
Gumbel 0.00641 0.00583 0.00545

the data. Note, too, that our copula approach always performed well when either the Frank or
the Gumbel copulae were used in estimation, regardless of the copula that generated the data.
The type of dependence inherent in the Clayton copula is quite specific, as illustrated in figure
1. Because of this, the simulation results show that when ourcopula approach used the Clayton
copula in the estimation, but the data were not generated from a Clayton copula, the MSEPs were
closer to those obtained using the LPV method.

7. An Empirical Application

To illustrate the feasibility of our estimation strategy, we have chosen to implement it using
data from low-price, sealed-bid, procurement auctions held by the Department of Transportation
in the State of Michigan. At these auctions, qualified firms are invited to bid on jobs that involve
resurfacing roads in Michigan. We have chosen this type of auction because the task at hand is
quite well-understood. In addition, there are reasons to believe that firm-specific characteristics
make the private-cost paradigm a reasonable assumption; e.g., managerial ability at specific firms
can differ considerably. On the other hand, other factors suggest that the cost signals of individual
bidders could be dependent, even affiliated; e.g., these firms hire labour services in the same
market and face similar costs for inputs, such as energy as well as paving inputs. Thus, the
APCP seems reasonable. We have eschewed investigating issues relating to asymmetries across
bidders (i.e., introducingFis that vary across bidders) because we simply have insufficient data to
identify such models. Instead, we focus on the symmetric APCP outlined above and developed
further in the first section of the appendix to this paper. As no reserve price exists at these
auctions, we treat the number of participants as if it were the number of potential bidders and
focus on auctions at which three bidders participated. In short, we are ignoring the potential
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Table 5: Performance of Methods using Data Generated from Frank Copula, MSEP

Dependence Method T = 50 T = 100 T = 200

τ = 0.25

GPV 0.00468 0.00323 0.00238
LPV 0.01064 0.00553 0.00329
LPV (log transform) 0.00808 0.00419 0.00249
Clayton 0.00290 0.00187 0.00135
Frank 0.00217 0.00115 0.00064
Gumbel 0.00236 0.00153 0.00106

τ = 0.50

GPV 0.00413 0.00353 0.00380
LPV 0.00972 0.00672 0.00457
LPV (log transform) 0.01064 0.00920 0.00681
Clayton 0.00484 0.00451 0.00476
Frank 0.00178 0.00096 0.00055
Gumbel 0.00292 0.00199 0.00151

τ = 0.75

GPV 0.01658 0.01826 0.02052
LPV 0.02348 0.02192 0.01780
LPV (log transform) 0.03078 0.03175 0.02665
Clayton 0.02398 0.02430 0.02428
Frank 0.00160 0.00089 0.00048
Gumbel 0.00333 0.00293 0.00298

importance of participation costs which others, includingLi [21], have investigated elsewhere.
In table 7, we present the summary descriptive statistics concerning our sample of 834 obser-

vations from 278 auctions. Our bid variable is the price per mile. Notice that both the winning
bids as well as all tendered bids vary considerably, from a low of $41,760.32 per mile to an high
of $5,693,872.81 per mile. What explains this variation? Well, presumbably heterogeneity in the
tasks that need to be performed. One way to control for this heterogeneity would be to retrieve
each and every contract and then to construct covariates from those contracts. Unfortunately, the
State of Michigan cannot provide us with this information, at least not any time soon.

How can we deal with this heterogeneity? Well, in our case, wehave an engineer’s estimate
x of the cost per mile of performing the project. Thus, we condition on this exogenous covari-
ate when estimatingG0

0(b|x) andg0
0(b|x). In table 8, we present the PML estimates as well as

standard errors of the copula parameters. We used the bootstrap to calculate the standard errors:
specifically, we drew 278 triplets of bids along with the engineer’s estimate for that auction at
random, with replacement, from the sample distribution to form bootstrap estimates̃G∗0(b|x) and
g̃∗0(b|x). We then estimated the dependence parameterθ for each chosen copula, replicating this
for 1,000 bootstrap samples.

Of course, we cannot compare directly the parameter estimates across copulae because the
values of the parameters are specific to a given copula and imply different levels of dependence.
Thus, alongside these parameter estimates, we present the corresponding estimated values of
Kendall’sτ, with standard errors, again obtained via the bootstrap.

The estimates, and their standard errors, indicate considerable (and significantly) positive
dependence—affiliation—within the Archimedean family of copulae. In figure 2, we depict
f̃0(c|x), a non-parametric estimate off 0

0 (c|x) admitting dependence, evaluated at the sample me-
dian ofx for each copula used in estimating the pseudo-costs. The PMLestimates off 0

0 (c|x) are
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Table 6: Performance of Methods using Data Generated from Gumbel Copula, MSEP

Dependence Method T = 50 T = 100 T = 200

τ = 0.25

GPV 0.00452 0.00295 0.00219
LPV 0.01408 0.00747 0.00463
LPV (log transform) 0.00967 0.00514 0.00323
Clayton 0.00354 0.00228 0.00180
Frank 0.00305 0.00178 0.00123
Gumbel 0.00216 0.00114 0.00065

τ = 0.50

GPV 0.00383 0.00323 0.00331
LPV 0.01240 0.00984 0.00688
LPV (log transform) 0.01110 0.00915 0.00697
Clayton 0.00787 0.00694 0.00650
Frank 0.00352 0.00291 0.00227
Gumbel 0.00150 0.00084 0.00046

τ = 0.75

GPV 0.02047 0.02107 0.02173
LPV 0.03073 0.02827 0.02389
LPV (log transform) 0.03266 0.03167 0.02728
Clayton 0.02906 0.02760 0.02514
Frank 0.00542 0.00530 0.00474
Gumbel 0.00090 0.00047 0.00024

Table 7: Sample Descriptive Statistics—Dollars/Mile, n = 3, T = 278

Variable Mean St. Dev. Median Minimum Maximum
Engineer’s Estimate 475,544.54 491,006.52 307,331.26 54,574.41 3,694,272.59
Winning Bid 466,468.63 507,025.81 286,102.57 41,760.32 3,882,524.81
All Tendered Bids 507,332.42 564,842.58 317,814.77 41,760.32 5,693,872.81

all very close, regardless of the copula used in estimation.
In figure 3, we present the bid function (pseudo-costs) predicted by our approach. Notice

how our estimates are very close to the 45◦-line. In figure 4, we plot our pseudo-cost estimates
versus those estimated using the methods of GPV. One of the pseudo-costs estimated by the
method of GPV is negative, while no costs are estimated to be negative using our approach. The
main point, however, is that our PML estimated pseudo-costsare systematically above the GPV
estimates. In the presence of affiliation, an higher cost is implied for a given bid than under
independence because players (typically) bid closer to their costs. The average absolute relative
difference between the GPV estimates and the PML estimates obtained using the Clayton, Frank,
and Gumbel copulae are 13.27 percent, 20.75 percent, and 19.24 percent, respectively.

Why is affiliation potentially interesting to an economist? In figure 5, we illustrate that, in
the presence of affiliation, low-cost bidders (those who are likely to win the auction) behave
more competitively than would be the case under independence. The figure was constructed
using the analytic bid function for the Frank copula with parameters corresponding to the values
for Kendall’sτ denoted in the figure. Here,τ∗ equals the value estimated using a Frank copula
in the application given in table 8. In fact, even with just three bidders, the winners (typically
those with low costs) bid very close to their costs. Affiliation disciplines bidders: when a bidder
contemplates his having the lowest cost, and thus winning the auction, he must also recognize

22



Table 8: Copula Parameter and Kendall’sτ Estimates

Copula Parameter Kendall’sτ
Copula Estimate St. Err. Estimate St. Err.
Clayton 3.8028 0.3177 0.6553 0.0211
Frank 11.2898 0.6645 0.6973 0.0167
Gumbel 3.0187 0.1319 0.6687 0.0176

that, under affiliation, his opponents will probably have costs close to his, and this forces him to
bid more aggressively than he would under independence.

8. Summary and Conclusions

Within the affiliated private-values paradigm, we have developed a tractable empirical model
of equilibrium behaviour at first-price, sealed-bid auctions. While the model is non-parametrically
identified, the rate of convergence is slow when the number ofbidders is even moderately large.
Also, the affiliation sufficient for the measurement equation in an empirical specification to con-
stitute an equilibrium is difficult to preserve in the course of non-parametric estimation. Thus,
we have developed a semiparametric estimation strategy, which respects affiliation as well as
avoids the curse of dimensionality that relates to the number of bidders, focusing our atten-
tion on the Archimedean family of copulae and implementing this framework using particular
members—the Clayton, Frank, and Gumbel copulae. We have applied our framework to data
from low-price, sealed-bid auctions used by the Michigan Department of Transportation to pro-
cure road-resurfacing services, rejecting the hypothesisof independence and finding significant
(and high) affiliation in cost signals. Ignoring this potential affiliation has important implications
concerning estimates of the procurement-cost distribution, which can be important to a policy-
maker seeking to design the optimal procurement mechanism.
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Appendix

In this appendix, we present calculations too cumbersome for inclusion in the text of the
paper as well as describe the creation of the data set used.

Low-Price, Sealed-Bid, Procurement-Auction Model

In this section of the appendix, we present the calculationsnecessary to implement the low-
price, sealed-bid, procurement-auction model investigated in section 6 and implemented in sec-
tion 7.

We first extend the result of Nelsen [26] concerning the copula representation of the bivariate
survival copula to the case ofn of three or greater, and then use this result, in conjunctionwith
the GPV transformation, to isolate the pseudo-costs in a symmetric affiliated private-cost model
of a procurement auction.

Lemma 2:

Pr(C1 ≥ c1, . . . ,Cn ≥ cn) = 1−
n∑

i=1

Pr(Ci < ci)+

∑

1≤i≤ j≤n

Pr(Ci < ci ,C j < c j) − . . .+

(−1)n Pr(C1 < c1, . . . ,Cn < cn).

Proof.

The proof is by induction. We begin by demonstrating the result for the case ofn equal two, and
then demonstrate it forn greater than two. Note that, whenn is two, we have

Pr(C1 ≥ c1,C2 ≥ c2) = Pr(C1 ≥ c1) − Pr(C1 ≥ c1,C2 < c2)

= 1− Pr(C1 < c1) − [Pr(C1 ≥ c1,C2 < c2) − Pr(C1 < c1,C2 < c2)]

= 1− Pr(C1 < c1) − Pr(C2 < c2) + Pr(C1 < c1,C2 < c2).

Now, suppose the result holds for the case of (n− 1) wheren is three or greater, then

Pr(C1 ≥ c1, . . . ,Cn ≥ cn) = Pr(C1 ≥ c1, . . . ,Cn−1 ≥ cn−1)−
Pr(C1 ≥ c1, . . . ,Cn−1 ≥ cn−1,Cn < cn)
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= 1−
n−1∑

i=1

Pr(Ci < ci)+

∑

1≤i≤ j≤n−1

Pr(Ci < ci ,C j < c j) − . . .+

(−1)n−1 Pr(C1 < c1, . . . ,Cn−1 < cn−1)−
Pr(C1 ≥ c1, . . . ,Cn−1 ≥ cn−1|Cn < cn) Pr(Cn < cn)

= 1−
n−1∑

i=1

Pr(Ci < ci)+

∑

1≤i≤ j≤n−1

Pr(Ci < ci ,C j < c j) − . . .+

(−1)n−1 Pr(C1 < c1, . . . ,Cn−1 < cn−1)−

[1 −
n−1∑

i=1

Pr(Ci < ci |Cn < cn)+

∑

1≤i≤ j≤n−1

Pr(Ci < ci ,C j < c j |Cn < cn) − . . .+

(−1)n−1 Pr(C1 < c1, . . . ,Cn−1 < cn−1|Cn < cn)]

Pr(Cn < cn)]

= 1−
n∑

i=1

Pr(Ci < ci)+

∑

1≤i≤ j≤n−1

Pr(Ci < ci ,C j < c j) − . . .+

(−1)n Pr(C1 < c1, . . . ,Cn < cn)

Note that this lemma gives a copula representation of the survival copula, which is useful in
the characterization of the first-order condition of the equilibrium bid at a procurement auction.
The lemma is a generalization of the case forn of two given by Nelsen [26] on page 28. We
introduce the notationS to denote the survival copula and define a survival copula as

S[1 − F1(c1), . . . ,1− Fn(cn)] ≡ 1−
n∑

i=1

Pr(Ci < ci)+

∑

1≤i≤ j≤n−1

Pr(Ci < ci ,C j < c j) − . . .+

(−1)n Pr(C1 < c1, . . . ,Cn < cn)

whereFi(·) denotes the cumulative distribution function of variableCi .

Lemma 3:
Pr(C2 ≥ c2, . . . ,Cn ≥ cn|c1) = S1[1 − F0(c1), . . . ,1− F0(cn)]

whereS1 denotes the partial derivative ofS with respect to the first component.
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Proof.

Let fC(c1, . . . , cn) denote the probability density function corresponding toFC(c1, . . . , cn). Now,

Pr(C1 ≥ c1, . . . ,Cn ≥ cn) = S1[1 − F0(c1), . . . ,1− F0(cn)]

=

∫

c1

· · ·
∫

cn

fC(u1, . . . ,un) du1, . . . dun.

Differentiating both sides of the last equality with respect toc1 yields

−S1[1 − F0(c1), . . . ,1− F0(cn)] f0(c1) = −
∫

c2

· · ·
∫

cn

fC(c1,u2, . . . ,un) du2, . . . dun.

Thus, we have
∫

c2
· · ·

∫
cn

fC(c1,u2, . . . ,un) du2, . . . dun

f0(c1)
= S1[1 − F0(c1), . . . ,1− F0(cn)]. (10)

But the left-hand side of equation (10) is just Pr(C2 ≥ c2, . . . ,Cn ≥ cn|c1). The desired result
then follows.

Within the APCP, for any bidder (focus, say, on bidder 1), we assume that he maximizes
expected profit

E[π(b1, c1)] = (b1 − c1)S1

(
1− F0(c1),1− F0[β−1(b1)], . . . ,1− F0[β−1(b1)]

)

by choice of bidb1 wherec1 is bidder 1’s private cost and whereβ(·) is a strictly monotonically
increasing function. The first-order condition for expected-profit maximization implies

∂E[π(b1, c1)]
∂b1

= 0

= S1

(
1− F0(c1),1− F0[β−1(b1)], . . . ,1− F0[β−1(b1)]

)
−

(b1 − c1)
n∑

j=2

f0[β−1(b1)]
dβ−1(b1)

db1

× S1 j

(
1− F0(c1),1− F0[β−1(b1)], . . . ,1− F0[β−1(b1)]

)

which can be re-written as

S1

(
1− F0(c1),1− F0[β−1(b1)], . . . ,1− F0[β−1(b1)]

)

= (b1 − c1)(n− 1) f0[β−1(b1)]
dβ−1(b1)

db1

× S12

(
1− F0(c1),1− F0[β−1(b1)], . . . ,1− F0[β−1(b1)]

)

because

S1 j

(
1− F0(c1),1− F0[β−1(b1)], . . . ,1− F0[β−1(b1)]

)
=

S1k

(
1− F0(c1),1− F0[β−1(b1)], . . . ,1− F0[β−1(b1)]

)
∀ j , k.
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Given this last equality, we can useS12(·) without loss of generality. Applying the GPV approach,
we note that

G0(b1) = F0(c1)

and

g0(b1) =
f0(c1)
β′(c1)

,

so we can re-arrange terms to get

c1 = b1 −
S1[1 −G0(b1),1−G0(b1), . . . ,1−G0(b1)]

(n− 1)g0(b1)S12[1 −G0(b1),1−G0(b1), . . . ,1−G0(b1)]
,

which expresses bidder 1’s cost solely as a function of the bid.

Data

The data for the empirical part of this paper, which concern procurement contracts for road
resurfacing, were provided in raw form by the Department of Transportation of the State of
Michigan. To create the final data set, we first extracted contract length and determined the num-
ber of bidders at each auction. Next, we looked for observations having missing data, scanning
each file to ensure that all contract lengths were properly extracted. Finally, we checked to ensure
that all data were in the same units; e.g., we converted contracts that were measured in kilometres
into miles. At this point, we had 4,200 observations concerning 1,041 contracts. Subsequently,
we focused on auctions havingn of three; this constrained us to 278 auctions.
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