Graduate School of Economics, Hitotsubashi University

Discussion Paper Series No. 2018-03

Testing for Changes in Forecasting Performance

Pierre Perron Yohei Yamamoto

May 2018



Testing for Changes in Forecasting Performance

Pierre Perron* Yohei Yamamoto!
Boston University Hitotsubashi University
May 24, 2018
Abstract

We consider the issue of forecast failure (or breakdown) and propose methods to
assess retrospectively whether a given forecasting model provides forecasts which show
evidence of changes with respect to some loss function. We adapt the classical structural
change tests to the forecast failure context. First, we recommend that all tests should
be carried with a fixed scheme to have best power. This ensures a maximum difference
between the fitted in and out-of-sample means of the losses and avoids contamination
issues under the rolling and recursive schemes. With a fixed scheme, Giacomini and
Rossi’s (2009) (GR) test is simply a Wald test for a one-time change in the mean of the
total (the in-sample plus out-of-sample) losses at a known break date, say m, the value
that separates the in and out-of-sample periods. To alleviate this problem, we consider
a variety of tests: maximizing the GR test over all possible values of m within a pre-
specified range; a Double sup-Wald (DSW) test which for each m performs a sup-Wald
test for a change in the mean of the out-of-sample losses and takes the maximum of
such tests over some range; we also propose to work directly with the total loss series
to define the Total Loss sup-Wald (TLSW) test and the Total Loss UDmax (TLUD)
test. Using extensive simulations, we show that with forecasting models potentially
involving lagged dependent variables, the only tests having a monotonic power function
for all data-generating processes are the DSW and TLUD tests, constructed with a
fixed forecasting window scheme. Some explanations are provided and two empirical
applications illustrate the relevance of our findings in practice.
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1 Introduction

We consider the issue of forecast failure (or breakdown) and propose methods to detect
changes in the forecasting performance over time. To this end, it is useful to clarify the
purpose of forecast breakdown tests. The aim is to assess retrospectively whether a given
forecasting model provides forecasts which show evidence of changes (improvements or dete-
rioration) with respect to some loss function. Since the losses can change because of changes
in the variance of the shocks (e.g., good luck), detection of a forecast failure does not nec-
essarily mean that a forecast model should be abandoned. Care must be exercised to assess
the source of the changes. But if a model is shown to provide stable forecasts, it can more
safely be applied in real time. In practice, such forecasts are made at the time of the last
available data, using a fixed, recursive or rolling window. Hence, there is a natural separa-
tion between the in-sample and out-of-sample periods simply dictated by the last data point.
Such is not the case when trying to assess retrospectively whether a given model provides
stable forecasts. There is then the need for a somewhat artificial separation between the in
and out-of-sample periods at some date labelled m, say. This separation date should be such
that the model in the in-sample period is stable in some sense, e.g., yielding stable forecasts.
This can, however, create problems; e.g., one needs a truncation point m to assess forecast
failures but the choice of this value is itself predicated on some knowledge of stability.

The forecast failure test of Giacomini and Rossi (2009), GR hereafter, is a global and
retrospective test which compares the in-sample average with the out-of-sample average of
the sequence of forecast losses. We shall discuss this test in some details, including extensions
and potential problems. Casini (2017) extends the analysis by considering a continuous-time
asymptotic framework and partitioning the out-of-sample into my = |T,,/nr| blocks each
containing ny observations. See Casini and Perron (2018) for a review of recent developments
and Perron (2006) for review of most issues discussed in this paper.

We adapt the classical structural change tests to the forecast failure context. First, we
recommend that all tests should be carried with a fixed scheme to have best power, which
ensures the maximum difference between the fitted in and out-of sample means of the losses.
There are contamination issues under the rolling and recursive schemes that induce power
losses. With such a fixed scheme, GR’s test is simply a Wald test for a one-time change
in the mean of the total (the in-sample plus out-of-sample) losses at a known break date
m. To alleviate this problem, which leads to important losses in power when the break in

forecasting performance is not exactly at m, one can follow Inoue and Rossi (2012) and



consider maximizing the GR test over all possible values of m within a pre-specified range.
This then corresponds to a sup-Wald test for a single change at some date constrained to
be the separation point between the in and out-of-sample periods. The test is still not
immune to non-monotonic power problems when multiple changes occur. Hence, we propose
a Double sup-Wald (DSW) test which for each m performs a sup-Wald test for a change in
the mean of the out-of-sample losses and takes the maximum of such tests over the range
m € [mg,m1]: DSW = maXeimg,mi) SWro(m), where SWio(y, is the sup-Wald test for a
change in the mean of the out-of-sample loss series for some forecast horizon 7, L9(3) for
t=m+r,..., T, defined by
SWro(m) = max [SSRpom) — SSR (T, (M) o)/ Viem):

Ty (m)€[m+en, m+(1—e)n]

where n = T'—m—7+1, SSRpo(y) is the unrestricted sum of squared residuals, SSR (T3, (m)) po(,)
is the sum of squared residuals assuming a one-time change at time Tj, (m), and Vio(n) is
the long-run variance estimate of the out-of-sample loss series. In addition, we propose to
work directly with the total loss series L (m) to define the Total Loss sup-Wald test (T LSW)
and the Total Loss UDmax test (T'LU D). Using extensive simulations, based on the orig-
inal design of GR, which involves single and multiple changes in the regression parameters
and /or the variance of the errors, we show that with forecasting models potentially involving
lagged dependent variables, the only tests having a monotonic power function for all data-
generating processes are the DSW and T LUD tests, constructed with a fixed forecasting
window scheme.

The paper is structured as follows. Section 2 provides the statistical framework adopted
and the tests considered. Section 2.1 reviews the case of a single break occurring at a known
date to which the GR test applies. Section 2.2 provides a discussion of the choice of the
forecasting scheme and why using a fixed scheme is preferable. Section 2.3 considers the case
with unknown break dates and describes new tests to be considered. The limit distribution of
some proposed tests are contained in Section 3. Section 4 offers a comprehensive simulation
analysis of all tests under the three forecasting schemes. Section 4.1 pertains to the finite
sample size of the proposed tests. Section 4.2 describes the setup considered to evaluate
the power functions. Section 4.3 provides a summary of the main results, while Section 4.4
expands on the sources of various non-monotonic power functions. Section 5 provides two
empirical applications to illustrate the relevance of our findings in practice. One relates to
forecasting oil prices and the other to U.S. inflation using a Phillips curve model. Section 6

provides brief concluding remarks. An appendix contains some technical derivations.



2 The framework and the tests

Suppose that we have data (y;,z;) where y; is a scalar variable to be forecasted and z; is
a g-dimensional vector of predictors for ¢ = 1,...,T. Consider a model forecasting y;,, at

period t, a T-period ahead forecast obtained using the direct method

Gerr = fi(Bos 2)

where Bm is the estimate of the parameter vector 5 (¢ x 1) obtained using an in-sample
window of size m > q. The out-of-sample forecast procedure basically divides the sample
from ¢t = 1,...,T into an in-sample window of size m and an out-of-sample window of size
n =T —m — 7+ 1. The model is estimated in the in-sample window and the out-of-
sample window is used for forecast error evaluation. We consider three popular forecast
schemes i) fixed window (with the in-sample consisting of observations 1 to m), ii) rolling
window (with the in-sample consisting of observations ¢ — m + 1 to t), and iii) recursive
window (with the in-sample consisting of observations 1 to t). We define the sequence of

A A

in-sample losses as Li(f3,,), defined by the in-sample fitted values of §; = fi(3,,; z:), and the
sequence of out-of-sample losses Lf(@m), defined by the forecast values 9;,.. A popular loss
function is the squared error loss, in which case Li(3,,) = (y; — f¢(B,,; ) and L2 +T(Bm) =
(Yerr — Geir)?. It will also be convenient to define i) the in-sample loss sequence: Li(m) =
(Li(B,), -y L2, (B,)); 11) the out-of-sample loss sequence: LO(m) = (L%, (Bm), - L$(Bom))
and iii) the total loss series as the stacked vector of the in-sample and out-of-sample losses,
ie., Lim) = (LL(Bu)s s Lo (Brn)s Loir(Brn)s ooy L4(B,0)); & (T — 7 + 1) x 1 vector. When
we time-index the total loss series, we denote it by {L;y,}_; -

The goal is to assess whether there are instabilities in the forecast accuracy. An example
is a deterioration in forecast accuracy, usually referred to as a “forecast breakdown”. This
can occur because of a genuine change in the stability of the forecasting regression, via the
conditional mean, or from changes in the variance of the errors. It can also occur if the
forecasting model is misspecified in which case an over-fitting problem is possible, so that
the out-of-sample losses are inflated relative to the in-sample losses irrespective of whether
a change in the stability of the forecasts is present or not. We shall be concerned about the
former case. If one wants to guard about potential changes related to over-fitting, one can
simply adjust the out-of-sample losses by subtracting a correction factor from the numerator
of the test statistic. In the case of a linear forecasting model and a quadratic loss function, GR

showed that the appropriate correction factor is ¢ = 2k X tr [T‘l ST (x4 x AVar(B)|,



where x = n'/2/m for the fixed and rolling schemes and k = n~/2log(1 4+ n/m) for the
recursive scheme.

The null hypothesis that we consider is
Hy: E[L(B")] =py forallt=1,..,T

for some % = plim,, .o Bm, which implicitly assumes that the probability limit of Bm is the

same for all m under the null hypothesis. The alternative hypothesis is:

H, : E[L((")] # E[L+1(5)] for at least one t = 1,...,T — 1.

2.1 The case with a single break occurring at a known date

It is useful to consider first the case with a single break in forecast accuracy occurring at

some known date Tj, say, so that the alternative is
E[L(B")] = py for t < Ty, py for t > Ty. (1)

In this case, the obvious thing to do is to apply a test for a change in the mean of the
total loss series occurring at date 7j,. This is achieved by setting m = T}, and assessing
whether the averages of the in-sample and out-of-sample loss functions are different. This
is exactly the test proposed by GR. Define the surprise loss as the out-of-sample loss minus

A

the mean of the in-sample losses, i.e., SLi.(5,,) = L§+T(Bm) — Li(f3,,) where Li(3,,) =

A

(m—7)"' 3" . Li(B,,), with the out-of-sample losses adjusted for over-fitting if desired.

The test they propose is

GRm:<n_1/2 o SLm) /2,

t=m-+1

where €2 is an estimate of the long-run variance of the loss sequence (see GR for the exact
form suggested). It is easy to verify that the square of this test is equivalent to an F-test
for a change in mean occurring at date m when applied to the total loss series L(m). This
test is obviously problematic since one does not know the true break date in practice even if
only one break is present. This makes the test very sensitive to the choice of m. As will be
shown via simulations, the test can have non-monotonic power (power that decreases as the

magnitude of the change in the mean of the losses increases) for a range of choices for m.

2.2 The choice of the forecasting scheme

Before considering tests that are not based on the assumption of a known break date, it

is useful to deal with this special case to analyze the relative merits and drawbacks of the
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different forecasting schemes: fixed, rolling or recursive. It is well known that to get better
forecasts it is, in general, better to adopt a recursive forecasting scheme, even in the presence
of instabilities. This is so because the parameter estimates adapt to the underlying data-
generating process to fit the data better and thereby provide more accurate forecasts. A
fixed forecasting scheme fails to provide such adjustments. A rolling forecasting scheme can
provide adjustments but at the expense of increased variability due to a smaller in-sample
window, compared to the recursive scheme.

However, when trying to detect whether a change has occurred the opposite ranking
applies. The best scheme to adopt is a fixed one. Suppose that the break date is known and
m is set accordingly. Using a fixed scheme ensures the maximum difference between the fitted
in and out-of-sample means of the losses. With a recursive scheme, the in-sample fitted mean
of the loss series is pushed towards the value of the fitted mean of the out-of-sample losses
as the forecast period increases, thereby inducing a loss of power. With a rolling window
scheme, the same phenomenon occurs but in a more pronounced fashion since the in-sample
fitted mean can eventually reach the post-break mean if the window is small enough.

Hence, when constructing tests for changes in forecast accuracy, it is preferable to use a
fixed window. This will remain true even in the case of one or multiple breaks occurring at

unknown dates. We will illustrate such issues via simulations later.

2.3 The case with unknown break dates

A simple method to alleviate the dependence of the test GR,,, on m is to take the supremum
over a range of m, say [mg, m], a version denoted by SGR, viz.

SGR= max GR,. (2)

me[mo,mi]

This test is tailored to the alternative hypothesis (1) with 7, unknown. Since the GR,, test
follows a standard normal distribution under the null hypothesis, the limit distribution and

critical values of the SGR test can be found in Inoue and Rossi (2012) for some typical

2
™m?

values of mg and m,. Alternatively, one could use SGR? = MaXe(mo,m] GRy,, Which is
equivalent to a sup-Wald test for a change in mean and use the critical values in Andrews
(1993). This modification will, however, not be immune from power problems when multiple
changes occur. To see why, consider the case with two breaks. Then for any choice of m in
the range [mg, m;| at least one segment will be contaminated in the sense that the average
loss will be reduced, thereby decreasing the power of the test. As we shall see, this problem

can be especially severe when the range [mg, m] is large.
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One way to avoid this problem is to adopt the following approach. For each possible
value of m, perform a sup-Wald test for a change in the mean of the out-of-sample losses
and take the maximum of such tests over a range m € [mg, m;]. We call this test the Double
sup-Wald (DSW) test. More precisely, it is defined by

DSW = max SWiogn),
me[mo,m1]
where SWio () is the sup-Wald test for a change in the mean of the out-of-sample loss series

A

L2(B) for t =m +7,...., T, defined by

o - T o
SWLo(m) = max SSRL (m) SSR( b(m))L (m), (3)

Typ(m)€[m+en,m+(1—€)n] VLo(m)

where SSRpo( is the restricted sum of squared residuals, SSR(T;(m))ro(m) is the sum of
squared residuals assuming a one-time change at time T,(m), and VLo(m) is the long-run
variance estimate of the out-of-sample loss series constructed using the residuals obtained
from the demeaned out-of-sample loss series with the mean changing at date 7,(m). The
long-run variance estimate can be obtained using the method of Andrews (1991). Here, € is a
small trimming value which we set at 0.1. The limit distribution of the DSW test is derived
in the next section. A step-by-step construction of the DSW test is given by: 1) Start with
an out-of-sample method with a value of the in-sample length m = mg. Note that my must
be small but large enough for one to estimate the model in-sample. Let n =T —m — 7 + 1.
" }T_T 3) Consider a regression with only

t+7 S t=m+1"
a constant: L7, = v+ ey . Apply a sup-Wald test for the constancy of v, usually with a

2) Compute the out-of-sample loss series { L

HAC variance estimate if there is evidence of serial correlation in the loss sequence. Store
the value as SWio(m). 4) Use m = m + 1 and repeat Steps 2 and 3 to compute SWiyo(n).
Continue up to m = m;. We recommend that the range of m, m; — myg, to be some fraction
of n. Denote the fraction by z. 5) Take the maximum of the sequence of {S WLO(m)}Z;mO'

The reason why the DSW test improves upon the SGR test is because the procedure
acts in such a way as to produce three segments instead of only two with SGR. One segment
is defined by m and the other by the date at which the Wald test is maximized in the range
[m + en,m + (1 — e)n]. This ensures that a segment with the largest possible average loss
can be selected, thereby increasing power. The idea is akin to that of Qu (2007) who showed
that when searching whether any part of a sample is stationary all that is needed is a search
with two breaks defining three segments.

One can also consider a similar test with the UDmax test for multiple structural changes

of Bai and Perron (1998). However, the size distortions were rather high. Hence, we shall
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not consider it further. An alternative approach is to work directly with the total loss series
L(m) instead of restricting the search for a break to the out-of-sample sequence. This can
have some power advantages given that more information is used. We consider two tests
following this approach: the Total Loss sup-Wald test (T'LSW) and the Total Loss UDmax
test (I'LUD). They are based on the maximal value of the sup-Wald or UDmax test over
the size m of the in-sample window. More precisely,
TLSW = max SWiin),
me[mo,mi]
where SWi,) is again the sup-Wald test applied for a change in the mean of the total loss
series L(m):
SSRim) — SSR(Ty(m)) L(m)

SWim) = max - ,
Ty(m)ele(T—7),(1—e) (T—7) Viim)

where SSRp ) is the restricted sum of squared residuals, SSR(Ty(m))rm) is the sum of
squared residuals assuming one-time change at time 7,(m) and VL(m) is the long-run variance
estimate of the total loss series constructed using the residuals obtained from the demeaned
total loss series with the mean changing at date T,(m). Also,
TLUD(k) = max UDJ,,,
me[mo,mi]

where

K SSRm) — SSRUT(m) Y1) Lom)
=1,k {Ti(m)} _ €A Vi(m)
with A, = {(T}(m),...,TF(m)) : |Tbi(m)—Tbi_1(m)‘ > (T — 1), TY(m) = 1,TF(m) <

(1—e)(T—7)}. Also, VL(m) is the long-run variance estimate of the total loss series constructed

using the residuals obtained from the demeaned total loss series with the mean changing
at dates Tj}(m),...,TF(m). As in Bai and Perron (1998), we set k = 5. A step-by-step
construction of the TLSW and TLUD tests is as follows: 1) Start with a value of the in-
sample length m = my. A typical choice is mo = |0.157"]. 2) Compute the total loss series
{LHT}tT:_lT. 3) Consider a regression with only a constant: Ly, = v + e;r. Apply the
sup-Wald or UDmax test for the constancy of + usually with a HAC variance estimate if
there is evidence of serial correlation in the loss sequence. Store the value as SWi .y, or
UD]’.i(m). 4) Use m = m + 1 and repeat Steps 2 and 3 to compute SW,) or UDE(m). Take
a choice of m; > my, say m; = |0.85T'], and continue up to m = m;. Note that the choice
of mg and m; does not affect the asymptotic critical values (see Theorem 2 below). 5) Take

the maximum of the sequence of {S WL(m)}::,l:mo or {U D’z( m

m)Sm=mg *
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3 Asymptotic distributions of the proposed tests

This section discusses the asymptotic distributions of the proposed test statistics under the
null hypothesis. We let “2” denote convergence in probability and “=" denote convergence

in distribution. We first require the following assumption.

Assumption 1 Under the null hypothesis of no change in forecast accuracy: 1) Bm 2 B
for all m € [mg, my); ii) the total loss series evaluated at 3°, Liyr = {Li-(8)}1_,, satisfy
E[Li ;| = p for allt and forr € [0,1], as T — oo with T fixed:

TS I B [(Ley — 1) (Losr — )] 2 702

for some fived matriz 0, and T~4/2 Ztilﬁ‘r*m (Liyr — ) = QY2W(r), with W(r) a standard
Wiener process defined on r € [0, 1].

These high level assumptions characterize the properties of the loss series under the null
hypothesis. To examine their implications, it is informative to see what they imply for a
linear forecasting model. Suppose one has a standard linear model y; = z}0 + e;. Then
Assumption 1 basically requires that 3 is stable over time under the null hypothesis of no
change in forecast accuracy and the loss sequence satisfies the standard functional limit
theorem with long-run variance 2. Another important feature of Assumption 1 is that the
loss series do not depend on m once they are evaluated using the limit value 5% of the
parameter estimates. The relevance of this assumption is examined using the same example
of a correctly specified linear model. Suppose we compute loss series using two distinct in-
sample lengths m; and ms. The coefficient estimates are denoted by Bl and BQ, say, and the
forecasting errors are 1, — xgﬁl and y; — :B;BQ respectively. Under the null hypothesis, these
series are asymptotically equivalent since, roughly speaking, both estimators converge to a
unique limit value 8* for all m. Therefore, Assumption 1 is fairly general when the model
is stable. Note that under Assumption 1, SWy,,) has the same null limiting distribution
as the standard sup-Wald test for a change in mean (Andrews, 1993) and the UDy ) has
the same null limiting distribution as the UD max test of Bai and Perron (1998). We next
present the asymptotic distribution of the DSW test.

Theorem 1 Under Assumption 1, the limit distribution of DSW s given by

(O — W (1) + (1= W () — (1 — W)
DEW = D et R i - N1- 0w ’



as Tym,n — oo at the same rate, where W(r) is a standard Wiener process defined on

r € [0,1], € is the trimming parameter and i = limy_,o(m1 — myg) /no.

The critical values of the DSW test were tabulated using 5,000 replications using 5,000
steps to approximate the Wiener process in terms of partial sums of i.i.d. N(0,1) random
variables. We report results for a grid of values for i in the range [0.20,0.80] and we set
€ = 0.1. The results are presented in Table 1. We next consider the limit distribution of
the TLSW and TLUD tests. Exploiting the fact that the loss series {L;(6%)}, do not
asymptotically depend on the value of m under the null hypothesis, we obtain the following

theorem.

Theorem 2 Under Assumption 1, the limit distribution of the TLSW test under the null
hypothesis is the same as the sup-Wald test for a change in mean (Andrews, 1993) for any
mo and my (1 < mg < my <T). Also, the limit distribution of the TLUD test under the
null hypothesis is the same as the UDmaz test of Bai and Perron (1998) for any mqy and m;
(1<mog<my <T).

T—1

Under Assumption 1, Theorem 2 follows trivially since the sequence of losses { L¢+- (%) },_;

do not depend on the in-sample length m under the null hypothesis. As such, the test sta-
tistics computed with different m’s are asymptotically perfectly correlated. This implies no
effect of taking the maximum of the statistics over m on the limiting distribution. Note
also that, unlike for the DSW test, the choices of mg and m; do not affect the limiting
distribution of the TLSW and TLUD tests.

4 Finite sample properties

This section presents simulation results to address the following issues: 1) the finite sample
size of the tests proposed in this paper (Section 4.1); 2) the power function of the tests for
a wide range of data-generating processes: Section 4.2 describes the experimental design to
perform the finite sample analysis, Section 4.3 provides a summary of the main results, while

Section 4.4 expands on the sources of various non-monotonic power functions.

4.1 Finite sample size of the proposed tests

We first examine the size of the DSW tests. The data-generating process specifies y; to be a
sequence of i.i.d. N(0,1) random variables of lengths 7' = 150 and 7" = 300. We consider the

squared error loss associated with 1) the static model: y, = c+e;, and 2) the dynamic model:
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Y = ¢+ ay;_1 + e, both estimated by OLS. We consider two versions of the tests applied
to each model, namely with or without a HAC correction for potential serial correlation in
the loss function. Throughout, the HAC variance estimate is constructed using Andrew’s
(1991) data dependent method with an AR1 approximation using the Bartlett kernel. For
all four cases, we consider a fixed, rolling or recursive forecasting scheme. The exact sizes
of the test for nominal 10%, 5%, and 1% levels are presented in Table 2 for i = 0.25, 0.5,
and 0.75. The number of replications is 1,000. We label the test without the HAC variance
estimate by “non-robust” and the tests with it by “robust”.

For i = 0.25 and 0.5, the test shows very little size distortions, if any, for all cases. Some
liberal size distortions are present when z is as large as 0.75. From unreported simulations,
these small distortions are caused by parameter uncertainty. With the larger sample size,
the distortions decrease to some extent but remain substantial for g = 0.75. Hence, it is
recommended to use g = 0.25 or 1 = 0.5.

We next examine the size of the TLSW and T'LU D tests using the asymptotic distribu-
tion stated in Theorem 2. The data-generating process and the various specifications are as
above and we again set 7" = 150, 300. We used the following values: € = 0.1, my = |0.157 |
and m; = [0.85T'] but any reasonable variations of these choices do not change the results
qualitatively. The results are presented in Table 3. The exact size is, in general, close to
the nominal size, though some distortions are present when using the robust version. These

decrease as T increases.

4.2 The experimental design for the power analysis

In order to ensure that our simulation design is not biased in favor of the tests we propose,
we adopt the same design as in GR. Note however that we do not set m to be equal to the
date of the first break. GR mention that this corresponds to the worst case scenario from a
forecasting point of view. But what is more relevant in the context of assessing the presence
of forecast instabilities is the fact that it corresponds to the best case possible for the power
of the tests. Hence, such a choice can distort the power properties of the tests which are
relevant in practice, given that the date of the break is unknown There are five different
data-generating processes (DGP) involving single or multiple changes in level or in variance.
They are specified as follows.

DGP1: (single shift in variance): y; = &, & ~ 1.i.d.N(0,0?), with 6? =1+, - I(t >
T/2);

DGP2: (recurring shift in variance): y; = &, &; ~ 1.5.d.N(0,0%), 02 = 1if t € Ay, 1+,
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otherwise.

DGP3: (single shift in mean): y; = B4 - [(t > T/2) + &4, with g; ~ 3.i.d.N (0, 1);

DGP4: (recurring shift in mean): y, = —f,4 + & if t € Ay, B4 + & otherwise, & ~
i.1.d.N(0,1).

DGPS5: (mean shifts with unequal intervals): v, = G, - I(t < T/4) =30, - I(T/4 <t <
T/2)+ /B4t >T/2) + ¢, &4 ~ i.5.d.N(0,1).

We set T' = 150 and for the cases with multiple breaks as in DGPs 2 and 4, the breaks
happen at every 50 periods, i.e. Ag € {(1,50), (101,150)}. The following tests are considered:
the GR,, test with m = 40 (GR1) and m = 100 (GR2); the supremum of the GR tests as
defined by (2) over 0.27 < m < 0.87 (SGR1) and 0.3T < m < 0.7T (SGR2), the DSW
test with 1 = 0.25 (DSW1) and o = 0.50 (DSW?2) with my = 0.2 for both cases, the
TLSW and TLUD tests with 0.157 < m < 0.857T. We again consider two forecasting
models: 1) the static model: y; = ¢ + ¢;, and 2) the dynamic model: y;, = ¢ + ay;—1 + €4,
both estimated by OLS. We consider two versions of the tests applied to each model, namely
with or without a HAC correction for potential serial correlation in the loss function. Note
that in the dynamic model an irrelevant lagged dependent variable is included, in the sense
that the true value of « is 0. This is completely inconsequential. We could extend the DGPs
to include genuine dynamics with a lagged dependent having a non-zero coefficient. The
qualitative features would remain the same. Indeed the non-monotonicity to be reported
would simply be more severe. See the discussion in Section 4.4. The static model with no
HAC correction is labelled “static, non-robust” and with a HAC correction “static, robust”.
Similarly, the dynamic model with no HAC correction is labelled “dynamic, non-robust” and
the one with a HAC correction “dynamic, robust”. We again consider forecasting schemes
using a fixed, rolling or recursive window. The number of replications is 1,000. The results
are presented in Tables 4-1 to 4-5.

The foremost criterion we adopt to compare the various tests is whether or not the
power function is monotonically increasing as the magnitude of the change(s) in forecast
accuracy increases. We view this as an essential feature for a test with good finite sample
properties. For tests with monotonically increasing power, we then compare the relative
power functions. We start with a summary of the main findings in Section 4.3 and then
expand on the explanations for the non-monotonic power functions present for various tests

and forecasting schemes.

11



4.3 Summary of the main power results

The main findings of interest can be illustrated by the results for DGPs 4 and 5 for the
case of a dynamic forecasting model with a correction for potential serial correlation in
the loss sequence. It transpires that only three tests have a monotonically increasing power
function: the two versions of the DSW and T' LU D tests, both when constructed using a fixed
forecasting window. All the other tests have a power function that initially increases and
then decreases to zero as the magnitude of changes increases in at least one and most often
many cases. One exception is the SGR test with a rolling window. The power of this test
appears high simply because of huge size-distortions. This is a finite sample feature possibly
due to the fact that the weighting of the in-sample and the out-of-sample forecasting errors
does not account for the parameter estimation errors. However, the distortions are reduced
as m increases given the documented power functions of GR2 and SGR2. As a result, the
power of SGRI1 looks monotonic, however, the fact that the power of SGR2, which has
less size-distortions, does decrease to zero with DGP5 shows that SGR1 can exhibit the
same phenomenon if the size is controlled. Cases with tests having a power function that
eventually reaches zero as the magnitude of the change(s) increases can also be found when
dealing with other DGPs (except DGP1) and other forecasting methods. The GR,, tests
can have zero or trivial power even in the “static, non-robust” case; see DGP4 (fixed and
rolling), and DGP5 (recursive).

To compare the power of the tests, it is instructive to look at the power for a change of
magnitude 3, = 0.5, otherwise the power is most often one for larger values when dealing
with tests having a monotonically increasing power function. We also avoid looking at rolling
scheme for which the SGR tests have huge size-distortions. Doing so, it transpires that for
a single break case (DGPs 1 and 3) the TLUD and SGR tests have equally the highest
power. However, if multiple breaks are involved (DGPs 2, 4 and 5), then the TLUD and
DSW tests outweigh the SGR tests in all cases. In summary, the test with highest power,
across all tests, is the Total Loss UDmax (the only exception is for DGP1 in which case
the TLUD and DSW tests have nearly the same power). Hence, the TLU D test not only
has a monotonically increasing power, it also has the highest power for small values of the
alternative. The DSW test, while having a monotonic power, can have lower power than
the TLUD test in most cases. Accordingly, our recommendation is to use the TLUD test
followed by the DSW test, both using a fixed forecasting scheme. The loss in power when
using the DSW test instead of the TLUD test may, however, be DGP-specific since the

changes involved under the alternative, i.e., recurrent regimes, are those most prone to cause
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power problems for the DSW tests. With non-recurrent regimes, the power of the DSW
tests would be closer to that of the TLUD test.

4.4 Some explanations for the power properties

DGPs 1 and 2 are cases with single and multiple variance changes, respectively (Tables
4-1 and 4-2). An important feature of this type of instability is that the forecast model is
unaffected by the choice of the T,,, the forecasting scheme or the nature of the changes. More
precisely, the forecast model is still consistently estimated because the conditional mean of
the variable to be forecasted is unchanged. All tests have nontrivial power in all cases. The
substantial difference between GR1 and G R2 is caused solely by the choice of m, showing its
importance. SGR resolves this problem by maximizing the test statistics over all permissible
m and achieves a reasonably high power in all cases. All tests proposed (DSW, TLSW and
TLUD) have, overall, high power. More precisely under DGP1, DSW has a slightly lower
power than TLSW and TLUD. Under DGP2, DSW and T'LU D have a higher power than
TLSW , because the latter only accounts for a single break. Also, under DGP2, the power
of these tests does not reach one because of the specific nature of the breaks; i.e., two breaks
with the first and last regimes being the same. This is the most difficult case to detect with
a single break test (e.g., Bai and Perron, 2006). The problem is alleviated with a UDmax
type test and our results indeed show that T'LUD and DSW are the most powerful in this
setting as they are designed to account for multiple breaks.

We now turn to models with mean breaks so that the conditional mean of the variable to
be forecasted changes, i.e. DGPs 3, 4 and 5 whose results are reported in Tables 4-3 to 4-5.
They reveal that the power functions exhibit non-monotonicity because of three potential
sources of power decline. The first is labeled as the “robust effect” indicated with an “R”
in the last row of each panel for cases with a non-monotonic power function. The second is
labelled as the “window effect” indicated with a “W”. The third cause is labelled as the
“dynamic effect” and indicated with a “D”.

The “robust effect” is due to a failure to properly account for serial correlations in the
loss sequence. As is well known, when neglected breaks are present in the losses when con-
structing the HAC variance estimate, they inflate the sample autocovariances and the value
of the bandwidth, thereby increasing HAC variance estimate and reducing power. This is a
standard problem that has been discussed at length; e.g., Vogelsang (1999), Crainiceanu and
Vogelsang (2007), Deng and Perron (2008), Kim and Perron (2009), Perron and Yamamoto
(2016), Martins and Perron (2016), Chang and Perron (2018). The “window effect”, refers
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to the change in the loss sequence induced by using some choice of window that separates the
in and out-of-sample data and causes a loss in power. This applies, for example, when some
breaks occur in the in-sample partition so that the model is not consistently estimated. The
“dynamic effect” is the most pronounced. It is basically caused by in-sample contaminations
when using a dynamic model. It is well known that if a dynamic model is estimated in the
presence of mean breaks the coefficient estimate for the lagged dependent variable is biased
toward one as the break magnitude becomes larger (Perron, 1989, 1990, 1991). This results
in forecast errors being roughly the first-differences of the forecast errors from a model with-
out lagged dependent variables. Hence, the mean breaks are transformed into spikes in the
loss sequence so that the tests have no power. Note that the “dynamic effect” will not occur
with the fixed scheme if m is sufficiently small and there is a chance that the model can be
consistently estimated in a stable in-sample window.

In order to illustrate the effect of the different sources of power decline, we present
in Figures 1-2, a “typical” realization of the loss sequences for DGPs 3-5 under the three
forecasting schemes for the tests SGR2, DSW2 and TLSW (the results using SGR1, DSW'1
and TLUD are, respectively, almost equivalent and, hence, omitted). This is done for the
static model (Figure 1) and the dynamic model (Figure 2). Because the loss sequence is
generated for every m, we present the one for which the test statistic is maximized, say m*,
whose value is indicated in parenthesis above each path.

Let us now explain some of the power functions reported in Tables 4-3 to 4-5. First, as
shown in panel (a) of Tables 4-3 to 4-5, when the static model and the fixed scheme are used,
all the non-robust tests have a monotonic power. However, the “robust effect” applies when
considering tests constructed with HAC variance estimate in panel (b). The “robust effect”
is pronounced for GR1 and GR2 and it also applies to a lesser extent to SGR1, SGR2 and
TLSW when multiple breaks are present. In particular, when the fixed scheme is used, the
“robust effect” applies to GR1 under DGPs 3 and 5, and to GR1, GR2, SGR1, SGR2 and
TLSW under DGP4. When using either the rolling or recursive scheme, the “robust effect”
applies to GR2 and DSW1 under DGP3, to GR1, GR2, SGR1, SGR2, DSW1 and DSW2
under DGP4 and to GR1, GR2 and SGR2 under DGP5. These results strongly suggest
not using GR and SGR with HAC variance estimate under any forecasting scheme. It also
shows that T'LSW is unreliable when multiple breaks are suspected.

It is interesting to see that even in panel (a) the power of GR1 and GR2 sometimes
remains very low. G R1 shows a non-monotonic power with the rolling scheme under DGP3,

with both the fixed and the rolling schemes under DGP4 and with the recursive scheme under
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DGP5, while GR2 does so with the recursive scheme under DGP5. This is because they are
affected by the “window effect” when a break occurs in the in-sample window. When the
fixed scheme is used, the “window effect” applies to GR2 under DGP4. When the rolling
scheme is used, it applies to G R2 under DGPs 3 and 4 and when the recursive scheme is used
to GR1 under DGP5. It is also worth noting that DSW may lose power when the rolling
scheme or the recursive scheme is used. This is because the loss sequence takes a triangular
shape as shown in Figure 1. In particular, this applies to DSW1 and DSW?2 under DGPA4.
For DSW, the “window effect” can be exacerbated by the “robust effect”, indicted by the
label “R, W7 in panel (b); cf. DSW1 with the rolling scheme under DGP3 and DSW'1 and
DSW?2 with the rolling and the recursive schemes under DGP4. The source of the “window
effect” can be explained by looking at the results in Figure 1. When the fixed scheme is
used, the loss sequence takes a step-wise pattern, abrupt change(s) followed by a flat region.
This is qualitatively the same for all three DGPs and test statistics. Importantly, the shape
of the loss sequence changes when the rolling or recursive scheme is used. The typical loss
sequence then shows an abrupt increase followed by a gradual decline. In the simplest case
of DGP3, the increase occurs when the in-sample window covers a stable period and the
initial date of the out-of-sample period (m + 7) coincides with the true break date. After
this point, the window increasingly contains the post-break data, which gradually causes a
bias in the forecast model estimation and thus a decline of the loss sequence!.

The non-monotonic power functions are more pronounced when a dynamic model is used,
i.e., the “dynamic effect” is especially important. Panel (c) of Tables 4-3 to 4-5 report power
functions using a dynamic model with non-robust standard errors. When the rolling or the
recursive schemes are used, this “dynamic effect” applies to all tests under DGPs 3-5. In
addition, the “dynamic effect” applies even when the fixed scheme is used if the in-sample
window is relatively large and includes the break, for instance with GR2 under DGPs 3 and
4 and with GR1, GR2 and SGR2 under DGP5?. This evidence suggests not to use any tests
with the rolling or recursive scheme when the forecast model has lagged dependent variables.
The results for the dynamic model with the robust tests are presented in panel (d) of Tables

4-3 to 4-5, which highlight all the tests with a non-monotonic power function. To gain some

!'More importantly, the shape is robust regardless of whether the static or the dynamic model is used,
except for the case in which the first break is always included in the in-sample window (SGR2 under DGP5
with the dynamic model since T'/4 < 0.3T).

2More precisely, the minimum in-sample lengths are 40 for GR1, 100 for GR2, 30 for SGR1 and 45 for
SGR2. The first break location is 75 for DGP3, 50 for DGP4 and 38 for DGP5. Hence, with the fixed
scheme, GR2 suffers from the “dynamic effect” under DGPs 3-4 and GR1, GR2 and SGR2 under DGP5.
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insight about the cause of the power losses when using the rolling or recursive scheme, Figure

2 shows that the mean breaks are transformed into spikes in the loss sequence 3.

5 Empirical applications

This section provides empirical examples to illustrate how the proposed tests and the ex-
isting methods are able to detect changes in forecast accuracy. One is related to oil price
forecasts and the other to forecasting inflation. The results will clearly illustrate the empirical

relevance of the simulation results.

5.1 Oil price forecasts

We consider first forecasting oil prices using a simple linear model. The series used is WTTI
monthly crude oil prices (U.S. dollars per barrel in logarithm form) from 1986:1 to 2011:11

plotted in Figure 3. We consider the following simple forecasting model

Pitr = C+ €iqr,

(labelled ‘static model’), and the model with a lagged dependent variable (labelled ‘dynamic
model’)

Dt+r = C+ QP + €yr.

These are not intended to be good forecasting models. Indeed, a quick look at the graph
of the series reveals large instabilities in level after 2000 and an upward trend in the mid-
sample. Hence, it is expected that these simple models produce forecasts that easily break
down or change over time. Hence, we would expect any good test to indicate a clear rejection
of the null hypothesis of no change in forecast accuracy.

We applied the following testing procedures: the DSW tests (DSW1 and DSW?2 for
g = 0.25 and 0.5), the TLSW and TLUD tests. For these tests, we used the truncation
e = 0.1 and the maximum number of breaks is set at five for the UDmax tests. We also
applied the GR,, tests (GR1 and GR2 with in-sample length m = 55 and 259) and the SGR
tests (SGR1 and SGR2 for 0.27 < m < 0.87 and 0.37 < m < 0.77). The specific choices
of the in-sample window size m = 55 (1990:7) is chosen based on the fact that it correspond
to the period before the oil price hike that occurred due to the Gulf War. The second choice
m = 259 (2007:7) corresponds to an in-sample window before the recent financial crisis. We

consider forecasts with 7 = 1 and the fixed, rolling and recursive window schemes are used.

3A few exceptions are GR2 under DGPs 3 and 4 and GR1, GR2 and SGR2 under DGP5.
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To proceed, we test for serial correlation in the squared loss using the LM test to ascertain
whether a HAC correction is needed in implementing the tests. Table 5-1 indicates that the
null of no serial correlation is strongly rejected. Given this result, Table 5-2 presents the
tests constructed by accounting for serial correlations in the loss series using a HAC variance
estimate. First, if we use the static model, all of the newly proposed tests (DSW1, DSW?2,
TLSW, and TLUD) reject the null hypothesis at the 1% level, suggesting strong evidence
of forecast breakdowns. On the other hand, the evidence in favor of a rejection is very weak
using any of the existing tests. The GR,, tests show almost no rejections and the SGR
tests reject only when the rolling scheme is used (likely due to the very large size distortions
reported earlier). Suppose now that the dynamic model is used. The new tests using a fixed
window all reject even at the 1% level, as in the case of the static model. As expected from
the simulations, these tests do not reject when using a rolling or recursive window since the
changes in levels then translate into outliers. This is consistent with our recommendation
of using a fixed window. On the other hand, the existing methods again provide very weak
evidence of forecast breakdowns. The GR,, tests yield almost no rejection and the SGR

tests barely reject with a fixed window.

5.2 US inflation forecasts using the Phillips curve

The second example follows the application in Giacomini and Rossi (2009). We consider

inflation forecasts using the Phillips Curve:
Tipr = 0o + 01(L)uy + O2(L) 7, + €44r,

where 7, is an inflation measure and w; is the unemployment gap (the difference between the
unemployment rate and a measure of the NAIRU). The difference between this forecasting
model and that used in Giacomini and Rossi (2009) is that they use the “first difference”
of the inflation rate and we use the inflation rate in level. We use the same monthly CPI
(consumer price index; revised version) and the unemployment gap data! which spans the
period 1959:1 to 2004:6. The same transformation (m; = (1200/7) In(P;/P;—.)), where P
is the CPI at month ¢, was applied to construct the inflation rate. The order of the lag
polynomial 6;(L) is either ¢, = 1 or ¢, = 3. Since the results are similar, we only report
the case with g, = 3. We also consider the order of 05(L) to be ¢, = 0,1, and 3. The
case with ¢, = 0 does not use lagged inflation as a predictor and, hence, we label this case

as the ‘static’ one, while the cases with ¢, = 1 and ¢, = 3 are labelled ‘dynamic 1’ and

4They were downloaded from Barbara Rossi’s web site.
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‘dynamic 3’, respectively. We consider two window sizes. The first choice is m = 241, as
in Giacomini and Rossi (2009). This means that the forecaster chooses the period before
1979 as the in-sample so that the Volker’s Chairmanship period of high inflation stays in
the out-of-sample (see Figure 4). The second choice is m = 301 (1984:01), in which case the
so-called Great Moderation which is deemed to have occurred in the middle of the 80’s is
in the out-of-sample period. In either case, the presumption is that there would be general
consensus of forecast breakdowns.

We first implement the LM tests for serial correlation in the squared loss series for each
model and values of m. The results in Table 6-1 indicate that in all cases the null of no
serial correlation in the loss series is strongly rejected. Hence, we use the HAC correction
to construct the tests, presented in Table 6-2. The tests considered are the same as in
the previous application. For GR1 and GR2, we use m = 241 and m = 301, respectively.
If we use the static model, the DSW tests and the TLUD test show strong rejections of
no change in forecast accuracy. The T'LSW does not reject since the loss series likely has
multiple breaks and except for the largest one the breaks are not accounted for in this case.
More interestingly, all the GR-based tests, except for the SGR tests with a rolling window
(again likely because of its large size distortions), do not detect a change in forecast accuracy.
Consider next the versions of the forecasting model that includes lagged inflation (dynamic
1 and 3). The DSW tests still strongly reject the null of no change in forecast accuracy and
the TLSW and T'LU D tests now provide even stronger rejections. More strikingly, all of the
GR-based tests completely lose power once the model includes lagged dependent variables.

In conclusion, if we use the existing methods we fail to find any evidence of a change
in forecast accuracy or a forecast breakdown which is deemed to have taken place in the
high inflation period of the Volker’s Chairmanship period. These methods are also not able
to detect a change due to the Great Moderation which is deemed to have occurred in the
mid-80’s. In contrast, the newly proposed DSW and T'LU D tests clearly show evidence of

a change in forecast accuracy in the form of a forecast breakdown.

6 Conclusion

We considered the issue of forecast failure (or breakdown) and proposed methods to de-
tect changes in the forecasting performance over time. The aim is to assess retrospectively
whether a given forecasting model provides forecasts which show evidence of changes (im-
provements or deterioration) with respect to some loss function. We adapted the classical

structural change tests to the forecast failure context. First, we recommend that all tests
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should be carried with a fixed scheme to have best power. We considered a variety of tests:
the original GR test (a t-test for a change at some pre-specified date m; maximizing the GR,,
test over all possible values of m within a pre-specified range; a Double sup-Wald test which
for each m performs a sup-Wald test for a change in the mean of the out-of-sample losses and
takes the maximum of such tests over some range; we also proposed to work directly with
the total loss series to define the T'LSW and the T'LUD tests. Using extensive simulations,
the only tests having a monotonic power function for all data-generating processes are the
DSW and TLUD tests, constructed with a fixed forecasting window scheme. The power of
the TLUD test is usually higher than that of the DSW test, hence it is recommended for

practical applications.
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Appendix: Proof of Theorem 1

In this appendix, we omit the superscript of o for the out-of-sample loss sequence, i.e.,
we denote L{ by L, for simplicity. The Wald test for a constant mean versus one break at

time ¢ = Ty = mg + | A\ng| for the series {L;,}/_" T
SSRLmy — SSR(Ty) L(m)

wm (Tb) = V )
L(m)

where SSRy (), SSR(T},)r(m) and VL(m) are defined in the main text. First, for a given m,
the restricted SSR is:

2 1 T—1 2
SSRL(m) == t m+1 Lt+T — m ( t=m+1 Lt-‘rT)

n B 2
_ 2 0 1/2
= t m+1 Ly s — T_7—m (”o t m+1 Lt+T> ’

and the unrestricted SSR assuming a break at t = T}, is given by

ng —1/2 2
SSR(Tb)L(m) - t m+1 Lt2+r - T, —m (”0 / t m+1 Lt+7)

ng —1/2 2
+ Zt =Tp+1 t+7‘ T T _._T T, (no t Tb+1 L)

Hence,

n _ 2
SSRLm) = SSR(A)Lm) = B i— (nO i t b1 Lt+T>

T—717—m

ng —1/2 2
+Tb —m (no t — Lt+T>

ng —1/2 2
gy (0 T L)

Let p = limy_.oo(m — mg)/ng. Then, using T = ng + mg + 7 — 1 and T}, = mg + [Ang], we
have

No Mg 1
P — — ,
T—17—m ngo—(m-—my)—1 1—pu

) No 1
= e i
T, —m [Ang| —(m—mg)  A—u
un Un 1

_ 0 N _
T—-1-1T, no— [Ang] —1 1—2X
Also, using Assumption 1

~1/2 o —1)2 71/2
L0 t m+1 Liv, = nq t m0+1 Liyr — Zt mo+1 Liir

= QW) - W),
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—1/2 Ty —1/2 Ty —1/2 —m
Un) t=m+1 Lt+T = Ty t=mg+1 Lt—I—T_nO Zt:mo—f—l Lt+T

= QW) =W ()],

ngl/Q tT:_TTbH Li, = n(;l/Q ;F:_,,TLOH Lyyr — "(;1/2 fim0+1 Lis
= QY2[W(1) - W(\).
Combining the above results yields
SSRL(m) — SSR(Tb)L(m) ==
1 2 1 2 1 2
Q——— 1) — — W) =W — [W(1) —W(A
= V) = W+ = W) = WP+ = W)~ W]

and under the null hypothesis we have VL(m) 2, Q. Note that g = limy_ oo (m — myg) /ng <
limy_, o0 (M1 — mg)/no = [i, so that u € [0, i]. We also have for a trimming parameter e,

T, € [m+en,m+ (1—e)nl,
Ty, — mg c {(m—mo)qLen (m—mg) + (1 —¢€)n

Y )

) N no

bl

Ty, — mg c {(m—m0)~|—e(no+mo—m) (m —mg) + (1 —€)(ng +mo —m)

)

Taking the limit gives A € [u+ €(1 — u),1 — €(1 — )], and the result follows.
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Table 1: Critical values of the DSW test

il 10% | 5% | 25% | 1%

0.20 || 10.609 | 12.217 | 13.779 | 15.620

0.25 | 10.928 | 12.782 | 14.018 | 16.310

0.30 || 11.264 | 13.065 | 15.087 | 17.688

0.35 || 11.648 | 13.529 | 15.247 | 17.660
0.40 || 11.761 | 13.770 | 15.537 | 17.777
0.45 || 12.134 | 14.027 | 15.768 | 17.968
0.50 || 12.469 | 14.279 | 16.031 | 17.961
0.55 || 12.932 | 14.565 | 16.184 | 18.455
0.60 || 13.103 | 14.850 | 16.512 | 18.562
0.65 || 13.367 | 15.003 | 16.654 | 19.027
0.70 || 13.596 | 15.181 | 16.622 | 19.103
0.75 || 13.769 | 15.418 | 17.075 | 19.130
0.80 || 14.108 | 15.870 | 17.736 | 19.968

Note: The trimming parameter € = 0.1 is used.
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Table 2: Size of the DSW test

a)[skatic, [Mon[rbbust

(T = 150)

10%

5%

1%

mu_bar mO 0.3T 02T 01T | 03T 02T 01T | 0.3T 0.2T 0.1T
0.25 fixed 0.097 0.086 0.093| 0.065 0.048 0.050| 0.033 0.025 0.020
rolling 0.101 0.075 0.051]0.072 0.049 0.034]0.032 0.018 0.012
recursive | 0.089 0.084 0.077] 0.063 0.052 0.048 [ 0.031 0.022 0.023
0.5 fixed 0.114 0.121 0.117 ] 0.075 0.071 0.071 | 0.028 0.026 0.028
rolling 0.118 0.114 0.101]0.081 0.074 0.065] 0.031 0.025 0.021
recursive | 0.113 0.117 0.115] 0.078 0.076 0.071] 0.029 0.025 0.026
0.75 fixed 0.174 0.165 0.160| 0.116 0.112 0.105] 0.055 0.049 0.046
rolling 0.174 0.160 0.151]0.125 0.112 0.104 | 0.056 0.052 0.049
recursive | 0.164 0.152 0.147 | 0.123 0.119 0.110 | 0.052 0.049 0.046
b) [static, [rbbust
10% 5% 1%
mu_bar mO0 0.3T 02T 04T | 03T 02T 04T | 0.3T 0.2T 01T
0.25 fixed 0.131 0.122 0.1220.092 0.083 0.082 | 0.044 0.035 0.027
rolling 0.128 0.090 0.059]0.092 0.056 0.037 | 0.045 0.031 0.017
recursive | 0.124 0.112 0.106 | 0.089 0.076 0.072 | 0.044 0.032 0.030
0.5 fixed 0.161 0.160 0.151| 0.112 0.107 0.100 | 0.050 0.041 0.043
rolling 0.170 0.155 0.131]0.109 0.100 0.083 | 0.055 0.043 0.036
recursive | 0.167 0.156 0.151] 0.111 0.103 0.095 | 0.053 0.044 0.038
0.75 fixed 0.278 0.254 0.24410.218 0.193 0.186 | 0.108 0.096 0.091
rolling 0.269 0.244 0.222]0.217 0.191 0.177] 0.117 0.106 0.100
recursive | 0.270 0.247 0.236] 0.218 0.191 0.178 | 0.109 0.101 0.094
¢) [dynamic, [don[rbbust
10% 5% 1%
mu_bar mO0 0.3T 02T 04T | 03T 02T 04T | 0.3T 0.2T 01T
0.25 fixed 0.109 0.099 0.127|0.078 0.071 0.092 ] 0.036 0.032 0.037
roling 0.108 0.078 0.065| 0.072 0.052 0.041|0.035 0.024 0.015
recursive | 0.103 0.097 0.103] 0.070 0.062 0.071 | 0.034 0.026 0.031
0.5 fixed 0.124 0.137 0.137|0.086 0.086 0.089| 0.033 0.033 0.034
roling 0.124 0.115 0.106 | 0.088 0.078 0.071 | 0.038 0.033 0.027
recursive | 0.121 0.128 0.133] 0.090 0.090 0.093 | 0.033 0.031 0.034
0.75 fixed 0.189 0.183 0.190| 0.132 0.131 0.133 | 0.061 0.058 0.055
rolling 0.193 0.177 0.165]0.136 0.128 0.122] 0.073 0.064 0.058
recursive | 0.192 0.177 0.176] 0.131 0.129 0.129 [ 0.061 0.060 0.058
d) [dynamic, [rbbust
10% 5% 1%
mu_bar m0 03T 02T 04T ] 03T 02T 01T ] 0.3T 0.2T 0.1T
0.25 fixed 0.135 0.124 0.134]0.095 0.081 0.093 | 0.044 0.037 0.039
rolling 0.126 0.098 0.072| 0.085 0.057 0.042 | 0.047 0.027 0.016
recursive | 0.132 0.123 0.127] 0.088 0.075 0.083 | 0.043 0.035 0.035
0.5 fixed 0.167 0.169 0.161]0.119 0.115 0.117 ] 0.053 0.049 0.047
roling 0.168 0.154 0.135|0.116 0.103 0.084 | 0.062 0.051 0.043
recursive | 0.176 0.173 0.171] 0.119 0.114 0.113 | 0.055 0.051 0.049
0.75 fixed 0.286 0.261 0.253 | 0.226 0.203 0.194 | 0.119 0.108 0.102
roling 0.280 0.256 0.2340.225 0.202 0.184|0.129 0.115 0.106
recursive | 0.282 0.257 0.251]0.234 0.209 0.203 { 0.119 0.110 0.106
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(T = 300)
a)[static, [on[rbbust

10% 5% 1%
mu_bar m0 03T 02T 04T | 03T 02T 04T | 03T 02T 01T

0.25 fixed 0.075 0.080 0.071]0.043 0.050 0.036|0.018 0.019 0.017
rolling 0.083 0.067 0.049|0.046 0.038 0.021(0.020 0.019 0.007
recursive | 0.075 0.082 0.085] 0.039 0.047 0.045]0.015 0.017 0.014

0.5 fixed 0.104 0.097 0.093 | 0.064 0.056 0.058 [ 0.019 0.023 0.025
rolling 0.116 0.102 0.078 | 0.067 0.061 0.048 [ 0.023 0.021 0.018
recursive | 0.103 0.098 0.095] 0.061 0.058 0.057 | 0.022 0.024 0.022

0.75 fixed 0.169 0.167 0.142]0.117 0.114 0.088 | 0.047 0.045 0.040
rolling 0.164 0.155 0.124|0.122 0.114 0.087 | 0.051 0.047 0.034
recursive | 0.172 0.173 0.147] 0.113 0.108 0.087 | 0.050 0.047 0.042

b) [skatic, [cbbust

10% 5% 1%
mu_bar mO0 03T 02T 04T 03T 02T 01T | 0.3T 02T 04T

0.25 fixed 0.090 0.088 0.079|0.055 0.059 0.049]0.018 0.021 0.015
rolling 0.096 0.081 0.054 | 0.054 0.042 0.022 [ 0.020 0.018 0.009
recursive | 0.092 0.090 0.081 ] 0.047 0.049 0.044 | 0.016_0.016_0.014

0.5 fixed 0.121 0.110 0.112]0.078 0.071 0.071]0.033 0.032 0.029
rolling 0.135 0.114 0.096 | 0.089 0.075 0.054 [ 0.035 0.028 0.025
recursive | 0.126  0.117 0.111] 0.078 0.068 0.072 ] 0.035 0.030 0.027

0.75 fixed 0.213 0.210 0.173|0.157 0.150 0.121 [ 0.080 0.073 0.059
rolling 0.210 0.195 0.154|0.167 0.152 0.101 | 0.082 0.073 0.062
recursive | 0.210 0.205 0.174] 0.158 0.151 0.120 ] 0.082 0.074 0.062

¢) [dynamic, [don[rbbust

10% 5% 1%
mu_bar mO0 0.3T 02T 04T | 03T 02T 0.1T | 0.3T 02T 01T

0.25 fixed 0.087 0.090 0.088|0.052 0.059 0.053|0.018 0.027 0.022
rolling 0.091 0.069 0.054|0.047 0.036 0.022 0.018 0.018 0.007
recursive | 0.086 0.086 0.089 | 0.044 0.047 0.042 | 0.017_0.021 0.018

0.5 fixed 0.107 0.103 0.110| 0.065 0.063 0.069 | 0.028 0.030 0.027
rolling 0.116 0.111 0.081| 0.071 0.065 0.049 [ 0.029 0.024 0.019
recursive | 0.108 0.106_0.105 | 0.070 0.067 0.068 | 0.029 0.031 0.026

0.75 fixed 0.175 0.175 0.155]0.115 0.113 0.103 | 0.047 0.046 0.050
rolling 0.178 0.169 0.127 | 0.126 0.119 0.089 [ 0.054 0.052 0.036
recursive | 0.177 0.175 0.151] 0.128 0.125 0.102 | 0.050 0.050 0.049

d) [dynamic, [rbbust

10% 5% 1%
mu_bar mO0 0.3T 02T 04T | 03T 02T 0.1T | 0.3T 02T 0.1T

0.25 fixed 0.105 0.093 0.081|0.058 0.060 0.051(0.019 0.024 0.018
rolling 0.103 0.077 0.054 | 0.052 0.039 0.022]0.019 0.020 0.008
recursive | 0.104 0.095 0.091]0.051 0.050 0.046 | 0.017 0.021 0.020

0.5 fixed 0.127 0.119 0.119]0.081 0.076 0.077 ] 0.032 0.033 0.034
rolling 0.138 0.126 0.094 | 0.089 0.075 0.050 | 0.037 0.031 0.026
recursive | 0.128 0.128 0.115]0.087 0.078 0.074 | 0.036_ 0.033 0.035

0.75 fixed 0.221 0.215 0.180| 0.152 0.145 0.125]0.080 0.073 0.070
rolling 0.222 0.204 0.1540.171 0.160 0.099 | 0.083 0.075 0.062
recursive | 0.219 0.211 0.178 ] 0.164 0.160 0.122 | 0.088 0.082 0.068
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T=150

a) [skatic, [Mon[rbbust

Table 3: Size of the TLSW and TLUD tests

10%

5%

1%

TLSW fixed 0.113 0.062 0.013
rolling 0.118 0.064 0.015
recursive | 0.096 0.051 0.01
TLUD fixed 0.125 0.064 0.013
rolling 0.126 0.072 0.016
recursive | 0.101 0.057 0.010
b) [skatic, [rbbust
10% 5% 1%
TLSW fixed 0.125 0.069 0.018
rolling 0.132 0.072 0.022
recursive | 0.107 0.061 0.013
TLUD fixed 0.150 0.081 0.020
rolling 0.159 0.088 0.025
recursive | 0.129 0.071 0.016
T=300
a) [skatic, [Mon[rbbust
10% 5% 1%
TLSW fixed 0.112 0.061 0.02
rolling 0.117 0.063 0.019
recursive | 0.096 0.058 0.016
TLUD fixed 0.125 0.067 0.019
rolling 0.127 0.070 0.019
recursive | 0.107 0.061 0.018
b) [skatic, [rbbust
10% 5% 1%
TLSW fixed 0.146 0.076 0.021
rolling 0.144 0.060 0.012
recursive | 0.096 0.058 0.016
TLUD fixed 0.167 0.085 0.021
rolling 0.148 0.079 0.011
recursive | 0.107 0.061 0.018

27

¢)[dynamic, [don[rbbust

10%

5%

1%

TLSW  fixed 0.166 0.093 0.031
roling | 0.146 0.083 0.023
recursive| 0.097 0.055 0.015

TLUD fixed 0.201 0.114 0.036
roling | 0.177 0.096 0.027
recursive| 0.117 0.063 0.016

d) [dynamic, [cbbust

10% 5% 1%

TLSW  fixed 0.154 0.088 0.025
roling | 0.146 0.089 0.028
recursive| 0.108 0.066 0.017

TLUD fixed 0.200 0.111 0.026
roling | 0.194 0.109 0.035
recursive| 0.149 0.080 0.018

¢)[dynamic, [don[rbbust

10% 5% 1%

TLSW fixed 0.109 0.057 0.013
roling | 0.120 0.057 0.013
recursive| 0.092 0.047 0.011

TLUD fixed 0.125 0.067 0.013
roling | 0.127 0.071 0.013
recursive| 0.105 0.055 0.010

d) [dynamic, [cbbust

10% 5% 1%

TLSW  fixed 0.142 0.072 0.019
roling | 0.146 0.072 0.022
recursive| 0.099 0.063 0.013

TLUD fixed 0.188 0.101 0.023
roling | 0.186 0.102 0.014
recursive| 0.112 0.081 0.016




a) [Static, [Mondobust

Table 4-1: Power comparison under DGP1 (5% level)

c)dynamic, [Mon[obust

bA | GR1 GR2 SGR1 SGR2|DSW1 DSW2|TLSW TLUD bA | GR1 GR2 SGR1 SGR2|DSW1 DSW2|TLSW TLUD
0.0 |0.091 0.063 0.127 0.089|0.047 0.071|0.062 0.064 0.0 |0.128 0.059 0.177 0.117]0.074 0.090 | 0.093 0.114
0.5 |0.982 0.766 0.997 0.9970.598 0.480|0.988 0.985 0.5 [0.987 0.813 0.999 0.999|0.623 0.495|0.992 0.992
3 1.0 | 1.000 0.908 1.000 1.000|0.892 0.821|1.000 1.000 3 1.0 [ 1.000 0.943 0.999 0.9990.900 0.824|1.000 1.000
£ 25 [1.000 0.963 1.000 1.000|0.974 0.942|1.000 1.000 £ 25 [1.000 0.971 1.000 1.000|0.972 0.954 |1.000 1.000
5.0 [1.000 0.975 1.000 1.000|0.986 0.971|1.000 1.000 5.0 [1.000 0.988 1.000 1.000|0.989 0.975|1.000 1.000
7.5 [ 1.000 0.974 1.000 1.000|0.988 0.975|1.000 1.000 7.5 [1.000 0.976 1.000 1.000|0.993 0.976|1.000 1.000
10.0 | 1.000 0.976 1.000 1.000(0.988 0.973|1.000 1.000 10.0 [ 1.000 0.976 1.000 1.0000.986 0.973|1.000 1.000
bA | GR1 GR2 SGR1 SGR2|DSW1 DSW2|TLSW TLUD bA | GR1 GR2 SGR1 SGR2|DSW1 DSW2|TLSW TLUD
0.0 |0.238 0.058 0.364 0.1050.052 0.069|0.064 0.072 0.0 [0.511 0.047 0.734 0.240|0.064 0.080|0.082 0.096
0.5 | 0.991 0.598 0.988 0.993|0.637 0.512|0.991 0.991 0.5 [0.999 0.666 0.997 0.996|0.634 0.534|0.994 0.997
§ 1.0 [ 1.000 0.764 1.000 1.000|0.907 0.836|1.000 1.000 g 1.0 [ 1.000 0.811 0.999 0.999|0.905 0.842(1.000 1.000
S 25 [1.000 0.845 1.000 1.000(0.979 0.953|1.000 1.000 S 25 [1.000 0.887 1.000 1.000(0.968 0.943|1.000 1.000
5.0 [1.000 0.878 1.000 1.000|0.990 0.977|1.000 1.000 5.0 [1.000 0.914 0.999 1.000|0.976 0.964|1.000 1.000
7.5 [1.000 0.870 1.000 1.000|0.991 0.977|1.000 1.000 7.5 [1.000 0.904 1.000 1.000|0.974 0.962|1.000 1.000
10.0 | 1.000 0.896 1.000 1.000(0.989 0.974|1.000 1.000 10.0 | 1.000 0.923 1.000 1.0000.967 0.951|1.000 1.000
bA | GR1 GR2 SGR1 SGR2|DSW1 DSW2|TLSW TLUD bA | GR1 GR2 SGR1 SGR2|DSW1 DSW2|TLSW TLUD
0.0 |0.072 0.060 0.074 0.058|0.055 0.075|0.051 0.057 0.0 [0.102 0.056 0.090 0.073|0.068 0.087|0.055 0.063
o 0.5 ]0.998 0.763 0.994 0.995]|0.608 0.491|0.986 0.986 o 0.5 ]0.998 0.820 0.996 0.999]0.596 0.492|0.988 0.986
é 1.0 | 1.000 0.910 1.000 1.000]0.898 0.824|1.000 0.999 é 1.0 | 1.000 0.942 0.999 0.999]0.896 0.833|0.999 0.999
§ 2.5 [1.000 0.965 1.000 1.000|0.974 0.944|1.000 1.000 § 2.5 [1.000 0.970 1.000 1.000|0.967 0.943|1.000 1.000
= 5.0 |1.000 0.975 1.000 1.000(0.986 0.974|1.000 1.000 = 5.0 |1.000 0.986 1.000 1.0000.983 0.972|1.000 1.000
7.5 [1.000 0.971 1.000 1.000|0.988 0.976|1.000 1.000 7.5 [1.000 0.975 1.000 1.000|0.981 0.973|1.000 1.000
10.0 | 1.000 0.978 1.000 1.000(0.988 0.969 | 1.000 1.000 10.0 | 1.000 0.974 1.000 1.0000.982 0.968 | 1.000 1.000
b) [Static, [rbbust d)[dynamic, tbbust
bA | GR1 GR2 SGR1 SGR2|DSW1 DSW2|{TLSW TLUD bA | GR1 GR2 SGR1 SGR2|DSW1 DSW2|TLSW TLUD
0.0 |0.090 0.061 0.111 0.096|0.083 0.109|0.069 0.081 0.0 [0.129 0.049 0.138 0.096|0.085 0.119|0.088 0.111
0.5 [0.965 0.758 0.992 0.997|0.602 0.527 | 0.986 0.987 0.5 [0.987 0.762 0.998 0.999|0.581 0.492|0.989 0.991
3 1.0 |1.000 0.894 1.000 1.000(0.884 0.805|1.000 1.000 3 1.0 |1.000 0.905 1.000 1.000(0.871 0.7851.000 1.000
£ 25 [1.000 0.944 1.000 1.000|0.963 0.942|1.000 1.000 £ 25 [1.000 0.954 1.000 1.000|0.955 0.926 |1.000 1.000
5.0 [1.000 0.965 1.000 1.000|0.977 0.956 | 1.000 1.000 5.0 [1.000 0.967 1.000 1.000|0.982 0.948 | 1.000 1.000
7.5 [1.000 0.949 1.000 1.000|0.980 0.954 | 1.000 1.000 7.5 [1.000 0.976 1.000 1.000|0.968 0.945|1.000 1.000
10.0 | 1.000 0.968 1.000 1.000(0.981 0.968|1.000 1.000 10.0 | 1.000 0.978 1.000 1.000[0.974 0.958 |1.000 1.000
bA | GR1 GR2 SGR1 SGR2|DSW1 DSW2|TLSW TLUD bA | GR1 GR2 SGR1 SGR2[(DSW1 DSW2|TLSW TLUD
0.0 [0.261 0.054 0.367 0.129|0.077 0.103 | 0.072 0.088 0.0 [0.528 0.052 0.754 0.229|0.075 0.108 | 0.089 0.109
0.5 [0.975 0.583 0.971 0.976|0.624 0.555|0.988 0.989 0.5 [0.998 0.630 0.992 0.990|0.604 0.528 | 0.991 0.993
g 1.0 |1.000 0.735 0.997 1.000]0.884 0.816|1.000 1.000 g 1.0 |1.000 0.776 0.998 0.998]0.855 0.794|0.999 0.999
S 25 [1.000 0.805 0.998 0.999|0.965 0.945|1.000 1.000 S 25 [1.000 0.839 1.000 1.000|0.941 0.908 | 1.000 1.000
5.0 [1.000 0.841 0.999 0.999|0.980 0.962 | 1.000 1.000 5.0 [1.000 0.871 1.000 1.000|0.948 0.920 | 1.000 1.000
7.5 [1.000 0.832 1.000 1.000|0.982 0.958 | 1.000 1.000 7.5 [1.000 0.886 1.000 1.000|0.937 0.917 | 1.000 1.000
10.0 | 1.000 0.860 1.000 1.000 [0.982 0.966 | 1.000 1.000 10.0 | 1.000 0.898 1.000 1.000[0.930 0.916|1.000 1.000
bA | GR1 GR2 SGR1 SGR2|DSW1 DSW2|TLSW TLUD bA | GR1 GR2 SGR1 SGR2|DSW1 DSW2|TLSW TLUD
0.0 [0.085 0.060 0.069 0.064|0.079 0.115|0.061 0.071 0.0 [0.103 0.047 0.063 0.049|0.085 0.119|0.066 0.080
o 05 ]0.994 0.752 0.980 0.989]0.614 0.529|0.986 0.985 o 0.5 ]0.999 0.763 0.993 0.997]0.571 0.501|0.986 0.986
5 1.0 |1.000 0.889 1.000 1.000]0.880 0.804|0.999 0.999 5 1.0 |1.000 0.906 1.000 1.000]0.861 0.796|0.999 0.999
§ 2.5 [1.000 0.945 1.000 1.000|0.965 0.9421.000 1.000 § 2.5 [1.000 0.960 1.000 1.000|0.952 0.923|1.000 1.000
= 50 |1.000 0.965 1.000 1.000|0.980 0.959|1.000 1.000 = 50 |1.000 0.970 1.000 1.000|0.964 0.952|1.000 1.000
7.5 [1.000 0.946 1.000 1.000|0.979 0.956 | 1.000 1.000 7.5 [1.000 0.975 1.000 1.000|0.949 0.942|1.000 1.000
10.0 | 1.000 0.970 1.000 1.000|0.982 0.968 | 1.000 1.000 10.0 | 1.000 0.979 1.000 1.000|0.959 0.937 | 1.000 1.000
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Table 4-2: Power comparison under DGP2 (5% level)

a) [Static, [Mondobust c)[dynamic, [Mon[obust
bA | GR1 GR2 SGR1 SGR2|DSW1 DSW2|TLSW TLUD bA | GR1 GR2 SGR1 SGR2|DSW1 DSW2|TLSW TLUD
0.0 | 0.091 0.063 0.127 0.089]0.047 0.071|0.062 0.064 0.0 |0.128 0.059 0.177 0.117]0.074 0.090 | 0.093 0.114
0.5 |0.135 0.375 0.229 0.263]0.780 0.675|0.512 0.626 0.5 |0.120 0.413 0.233 0.281]0.788 0.696 | 0.567 0.670
B 1.0 [0.220 0.478 0.355 0.403(0.951 0.914|0.697 0.870 B 1.0 [0.179 0.545 0.356 0.415(0.954 0.916|0.749 0.890
& 25 [0.286 0590 0.519 0.567|0.988 0.974|0.771 0.961 & 25 [0210 0642 0512 0.570]|0.988 0.971|0.823 0.970
5.0 |0.311 0.622 0.557 0.629]0.993 0.9820.791 0.966 5.0 | 0.254 0.669 0.569 0.639]0.994 0.984|0.830 0.972
7.5 10.324 0.623 0.572 0.647]0.993 0.982|0.838 0.983 7.5 10.254 0.705 0.564 0.629]0.994 0.983|0.869 0.991
10.0 | 0.301 0.677 0.549 0.6280.990 0.988|0.818 0.986 10.0 | 0.247 0.701 0.583 0.662|0.990 0.987|0.864 0.991
bA | GR1 GR2 SGR1 SGR2|DSW1 DSW2|TLSW TLUD bA | GR1 GR2 SGR1 SGR2|DSW1 DSW2|TLSW TLUD
0.0 |0.238 0.058 0.364 0.105]0.052 0.069 | 0.064 0.072 0.0 |0.511 0.047 0.734 0.240]0.064 0.080 | 0.082 0.096
0.5 | 0.157 0.649 0.413 0.409]0.778 0.684 |0.516 0.637 0.5 |0.317 0.692 0.590 0.460]0.784 0.694 | 0.572 0.680
§’ 1.0 | 0.112 0.833 0.548 0.580( 0.952 0.905|0.691 0.887 g 1.0 | 0.298 0.847 0.689 0.646|0.943 0.905|0.751 0.906
S 25 [0.083 0.886 0.638 0.686]|0.988 0.976|0.781 0.968 S 25 [0.319 0.921 0.783 0.762]|0.988 0.976|0.832 0.975
5.0 | 0.096 0.916 0.696 0.743]0.995 0.987 | 0.799 0.968 5.0 |0.304 0.941 0.814 0.791]0.994 0.986 |0.861 0.977
7.5 10.091 0.907 0.696 0.740]0.998 0.988 | 0.841 0.985 7.5 10.341 0.946 0.835 0.827]0.994 0.9830.899 0.993
10.0 1 0.099 0.929 0.720 0.768|0.994 0.987 |0.832 0.988 10.0 |1 0.331 0.952 0.830 0.816|0.992 0.987 |0.887 0.993
bA | GR1 GR2 SGR1 SGR2[(DSW1 DSW2|TLSW TLUD bA | GR1 GR2 SGR1 SGR2[(DSW1 DSW2|TLSW TLUD
0.0 | 0.072 0.060 0.074 0.058]0.055 0.075|0.051 0.057 0.0 | 0.102 0.056 0.090 0.073]0.068 0.087 | 0.055 0.063
o 05 ]0.063 0.383 0.146 0.193|0.786 0.675|0.480 0.602 o 05 ]10.062 0422 0.166 0.201|0.796 0.679|0.499 0.629
5 1.0 [0.085 0.483 0.218 0.261|0.958 0.915|0.663 0.869 5 1.0 [0.066 0.552 0.265 0.307|0.955 0.916|0.675 0.872
§ 25 10.110 0.574 0.321 0.3590.989 0.976|0.739 0.961 § 2.5 |10.068 0.644 0.370 0.415(0.987 0.975|0.752 0.962
= 50 |0.095 0.617 0.358 0.393|0.994 0.989|0.770 0.965 = 50 |0.070 0.673 0.376 0.443|0.995 0.984|0.788 0.968
7.5 10.117 0.620 0.356 0.419]0.998 0.987 | 0.814 0.982 7.5 10.077 0.705 0.409 0.451]0.996 0.985|0.830 0.988
10.0 |1 0.093 0.664 0.342 0.3940.991 0.987|0.796 0.985 10.0 |1 0.073 0.716 0.406 0.447|0.991 0.984|0.814 0.986
b) [Static, [rbbust d)[dynamic, tbbust
bA | GR1 GR2 SGR1 SGR2[(DSW1 DSW2|TLSW TLUD bA | GR1 GR2 SGR1 SGR2[(DSW1 DSW2|TLSW TLUD
0.0 |1 0.090 0.061 0.111 0.096|0.083 0.109 | 0.069 0.081 0.0 |0.129 0.049 0.138 0.096]0.085 0.1190.088 0.111
0.5 | 0.133 0.376 0.238 0.278(0.790 0.703 | 0.488 0.669 0.5 | 0.098 0.385 0.218 0.255(0.788 0.695|0.541 0.705
B 1.0 [0.192 0.468 0.313 0.376(0.940 0.881|0.639 0.888 B 1.0 [0.153 0.499 0.343 0.383]0.929 0.880|0.681 0.901
& 25 |0.233 0574 0426 0.493|0.983 0.961|0.688 0.961 & 25 |0.206 0.580 0.448 0.503|0.976 0.954 |0.722 0.966
5.0 |10.256 0.590 0.451 0.526[0.991 0.975|0.701 0.961 5.0 |0.242 0.656 0.508 0.5770.989 0.967 |0.737 0.966
7.5 10.288 0.606 0.479 0.566(0.990 0.970|0.753 0.978 7.5 10.234 0.640 0.500 0.562[0.987 0.972|0.796 0.985
10.0 |1 0.278 0.620 0.497 0.572]0.986 0.977|0.723 0.979 10.0 | 0.232 0.644 0.504 0.572]0.983 0.972|0.765 0.982
bA | GR1 GR2 SGR1 SGR2|DSW1 DSW2|TLSW TLUD bA | GR1 GR2 SGR1 SGR2|DSW1 DSW2|TLSW TLUD
0.0 |0.261 0.054 0.367 0.1290.077 0.103|0.072 0.088 0.0 |0.528 0.052 0.754 0.2290.075 0.108|0.089 0.109
0.5 |0.122 0.638 0.374 0.378[0.794 0.706 | 0.498 0.677 0.5 |0.307 0.672 0.598 0.433|0.782 0.683|0.540 0.711
g 1.0 [0.100 0.790 0.484 0.522|0.939 0.889|0.639 0.897 g 1.0 [0.285 0.820 0.639 0.559|0.915 0.874|0.685 0.908
S 25 [0.101 0.863 0.600 0.6330.983 0.961|0.688 0.963 S 25 [0.283 0.892 0.710 0.672|0.967 0.943|0.740 0.974
5.0 |0.081 0.897 0.630 0.671[0.992 0.978|0.707 0.966 5.0 |0.284 0.910 0.776 0.738(0.978 0.956 | 0.770 0.974
7.5 10.101 0.891 0.654 0.6970.991 0.980|0.751 0.980 7.5 10.324 0.927 0.770 0.743(0.977 0.961|0.815 0.989
10.0 |1 0.076 0.910 0.654 0.7040.990 0.977|0.729 0.984 10.0 | 0.354 0.924 0.791 0.750|0.977 0.961|0.786 0.989
bA | GR1 GR2 SGR1 SGR2|DSW1 DSW2|TLSW TLUD bA | GR1 GR2 SGR1 SGR2|DSW1 DSW2|TLSW TLUD
0.0 |10.085 0.060 0.069 0.064[0.079 0.115|0.061 0.071 0.0 |0.103 0.047 0.063 0.049(0.085 0.119|0.066 0.080
o 05 ]0.065 0.376 0.159 0.182[0.798 0.705|0.458 0.650 o 0.5 ]0.047 0.383 0.160 0.182]0.786 0.692|0.485 0.673
g 1.0 [0.072 0.471 0.186 0.239|0.944 0.895|0.609 0.880 5 1.0 [0.060 0.501 0.253 0.292]0.940 0.885|0.615 0.885
§ 2.5 10.073 0.573 0.261 0.3210.984 0.962|0.658 0.958 § 2.5 10.070 0.592 0.301 0.3570.978 0.961|0.675 0.963
= 50 |0.082 0590 0.295 0.355(0.993 0.979|0.662 0.959 = 50 |0.067 0.662 0.350 0.416(0.989 0.973|0.696 0.967
7.5 10.091 0.602 0.313 0.377[0.992 0.975|0.718 0.979 7.5 10.065 0.637 0.346 0.392]0.988 0.978|0.739 0.982
10.0 | 0.088 0.618 0.321 0.367|0.987 0.979|0.693 0.980 10.0 [ 0.064 0.640 0.362 0.406|0.985 0.975|0.712 0.983
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a)[static, [Mondobust

Table 4-3: Power comparison under DGP3 (5% level)

c)[dynamic, [don[robust

bA | GR1 GR2 SGR1 SGR2|(DSW1 DSW2|TLSW TLUD bA | GR1 GR2 SGR1 SGR2|DSW1 DSW2|TLSW TLUD
0.0 | 0.091 0.063 0.127 0.089]0.047 0.071|0.062 0.064 0.0 [0.128 0.059 0.177 0.117]0.074 0.090 | 0.093 0.114
0.5 |0.189 0.073 0.264 0.219]0.059 0.073|0.229 0.245 0.5 [0.286 0.084 0.348 0.293]0.087 0.093|0.333 0.358
B 1.0 [0.681 0.218 0.839 0.828(0.303 0.247|0.868 0.863 B 1.0 [0.693 0.154 0.834 0.8340.382 0.338|0.879 0.880
& 25 [1.000 0.963 1.000 1.000|1.000 1.000|1.000 1.000 & 25 [1.000 0.149 1.000 1.000(1.000 0.999|1.000 1.000
5.0 |1.000 1.000 1.000 1.000]1.000 1.000|1.000 1.000 5.0 [1.000 0.022 1.000 1.000]1.000 1.000 |1.000 1.000
7.5 |1.000 1.000 1.000 1.000]1.000 1.000|1.000 1.000 7.5 [1.000 0.023 1.000 1.000]1.000 1.000 |1.000 1.000
10.0 | 1.000 1.000 1.000 1.000| 1.000 1.000 | 1.000 1.000 10.0 | 1.000 0.011 1.000 1.000| 1.000 1.000 | 1.000 1.000
cause| O O O O O O O O cause| O D O O O O O O
bA | GR1 GR2 SGR1 SGR2|DSW1 DSW2[TLSW TLUD bA | GR1T GR2 SGR1 SGR2|DSW1 DSW2|TLSW TLUD
0.0 |10.238 0.058 0.364 0.105[0.052 0.069 | 0.064 0.072 0.0 |10.511 0.047 0.734 0.240(0.064 0.080 | 0.082 0.096
0.5 10.323 0.053 0.478 0.168|0.048 0.097 [ 0.082 0.107 0.5 |1 0.601 0.066 0.800 0.364[0.056 0.104|0.106 0.139
g 1.0 [0.580 0.055 0.724 0.481(0.038 0.216]0.132 0.284 g 1.0 [0.771 0.064 0.901 0.590(0.038 0.172|0.121 0.247
S 25 [0.998 0.099 1.000 0.999|0.649 0.961|1.000 1.000 S 25 [0.985 0.040 1.000 0.988|0.126 0.738|0.602 0.916
5.0 |11.000 0.179 1.000 1.000| 1.000 1.000 | 1.000 1.000 5.0 10.999 0.051 1.000 1.000[0.178 0.986 | 0.679 0.993
7.5 11.000 0.240 1.000 1.000| 1.000 1.000 | 1.000 1.000 7.5 11.000 0.040 1.000 1.000[0.046 0.999 | 0.174 0.934
10.0 | 1.000 0.246 1.000 1.000| 1.000 1.000 | 1.000 1.000 10.0 | 1.000 0.012 1.000 1.000]0.010 0.995|0.012 0.587
cause| O w O O O O O O cause| O D O O D D D D
bA | GR1 GR2 SGR1 SGR2[DSW1 DSW2|TLSW TLUD bA [ GR1 GR2 SGR1 SGR2[DSW1 DSW2|TLSW TLUD
0.0 |10.072 0.060 0.074 0.058[0.055 0.075(0.051 0.057 0.0 10.102 0.056 0.090 0.073|0.068 0.087 | 0.055 0.063
o 05 ]0.117 0.058 0.085 0.081]0.042 0.076(0.072 0.084 o 05 ]0.179 0.067 0.133 0.114]0.051 0.089 | 0.079 0.095
% 1.0 10.392 0.081 0.335 0.336|0.023 0.116(0.229 0.288 6 1.0 10.370 0.070 0.312 0.285(0.015 0.108|0.170 0.237
§ 2.5 |11.000 0.548 1.000 1.000[0.995 0.993(1.000 1.000 § 2.5 10.919 0.054 0.920 0.9280.136 0.571|0.836 0.940
= 50 |1.000 0.987 1.000 1.000(1.000 1.000|1.000 1.000 = 50 |0.991 0.045 0.993 0.995(0.107 0.981|0.856 0.995
7.5 11.000 1.000 1.000 1.000|1.000 1.000 | 1.000 1.000 7.5 10.994 0.044 0.997 0.996(0.039 0.999 | 0.300 0.944
10.0 | 1.000 1.000 1.000 1.000 | 1.000 1.000|1.000 1.000 10.0 [ 0.999 0.017 0.995 0.9990.012 0.996|0.017 0.609
cause| 0O O O O O O O O cause| D D D D D D D D
b) [Static, [tbbust d)[dynamic, tbbust
bA | GR1 GR2 SGR1 SGR2|DSW1 DSW2|TLSW TLUD bA | GR1T GR2 SGR1 SGR2[DSW1 DSW2|TLSW TLUD
0.0 |10.090 0.061 0.111 0.096|0.083 0.109 [ 0.069 0.081 0.0 10.129 0.049 0.138 0.096(0.085 0.119|0.088 0.111
0.5 |1 0.209 0.067 0.268 0.236|0.079 0.106 | 0.250 0.269 0.5 |0.276 0.072 0.320 0.2940.086 0.107 | 0.304 0.336
B 1.0 [0.672 0.237 0.835 0.845(0.325 0.288|0.866 0.866 3 1.0 [0.681 0.173 0.834 0.837(0.355 0.315|0.880 0.881
& 25 |1.000 0.944 1.000 1.000|1.000 1.000 |1.000 1.000 & 25 [1.000 0.214 1.000 1.000]1.000 1.000 |1.000 1.000
5.0 11.000 1.000 1.000 1.000|1.000 1.000 [1.000 1.000 5.0 10.988 0.025 1.000 1.000(1.000 1.000 |1.000 1.000
7.5 10.944 1.000 1.000 1.000|1.000 1.000 |1.000 1.000 7.5 10.878 0.020 1.000 1.000 | 1.000 1.000 | 1.000 1.000
10.0 [ 0.860 1.000 1.000 1.000 | 1.000 1.000 |1.000 1.000 10.0 [ 0.944 0.005 1.000 1.000 | 1.000 1.000 |1.000 1.000
cause| R O O O O O O O cause| R R,D O O O O O O
bA | GR1 GR2 SGR1 SGR2[DSW1 DSW2|TLSW TLUD bA | GR1 GR2 SGR1 SGR2[DSW1 DSW2|TLSW TLUD
0.0 [0.261 0.054 0.367 0.129(0.077 0.103|0.072 0.088 0.0 [0.528 0.052 0.754 0.229(0.075 0.108 |0.089 0.109
0.5 [0.330 0.048 0.425 0.180(0.071 0.133]0.102 0.135 0.5 [0.615 0.049 0.796 0.344(0.072 0.131|0.117 0.158
E’ 1.0 |0.604 0.054 0.708 0.465]0.049 0.277|0.135 0.312 g’ 1.0 [0.772 0.058 0.904 0.595]0.050 0.230 |0.123 0.271
S 25 |0.999 0.069 1.000 1.000(0.300 0.965|0.970 1.000 S 25 |0.984 0.040 0.999 0.979(0.094 0.779 |0.489 0.897
5.0 |[1.000 0.012 1.000 1.000 (0.047 1.000 |1.000 1.000 5.0 [1.000 0.044 1.000 1.000 (0.007 0.965|0.243 0.853
7.5 |1.000 0.000 1.000 1.000 (0.000 1.000 |1.000 1.000 7.5 [1.000 0.030 1.000 1.000|0.000 0.992|0.020 0.461
10.0 | 1.000 0.000 1.000 1.000 |0.000 1.000 |1.000 1.000 10.0 [ 1.000 0.004 1.000 0.999|0.000 0.991 |0.000 0.119
cause] O RW O O | RW O O O cause] O RD O RD|RD RD|RD RD
bA | GR1 GR2 SGR1 SGR2|DSW1 DSW2|TLSW TLUD bA | GR1 GR2 SGR1 SGR2|DSW1 DSW2|TLSW TLUD
0.0 [0.085 0.060 0.069 0.064|0.079 0.115]0.061 0.071 0.0 [0.103 0.047 0.063 0.049(0.085 0.119|0.066 0.080
o 0.5 ]|0.122 0.048 0.095 0.090|0.056 0.122(0.085 0.107 o 0.5 |0.186 0.052 0.130 0.1280.063 0.116 [0.095 0.118
5 1.0 |0.426 0.074 0.326 0.336]0.034 0.157 |0.224 0.303 é 1.0 [0.399 0.078 0.326 0.329]0.023 0.161 |0.188 0.277
§ 2.5 [1.000 0.490 1.000 1.000 |0.948 0.984|1.000 1.000 § 2.5 [0.923 0.057 0.896 0.909|0.134 0.670 |0.793 0.938
~ 50 [1.000 0.899 1.000 1.000 |1.000 1.000 |1.000 1.000 =~ 50 [0.971 0.043 0.866 0.9110.005 0.953 |0.427 0.885
7.5 [1.000 0.915 1.000 1.000 {1.000 1.000 |1.000 1.000 7.5 |0.905 0.036 0.534 0.636(0.000 0.989|0.041 0.476
10.0 [1.000 0.875 1.000 1.000 |1.000 1.000 |1.000 1.000 10.0 [0.793 0.011 0.224 0.309 |0.000 0.988 |0.002 0.120
cause] O RW O O O O O O cause]l RD RD RD RD|RD RD |RD RD
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a)[static, [Mondobust

Table 4-4: Power comparison under DGP4 (5% level)

c)[dynamic, [don[fobust

bA | GR1 GR2 SGR1 SGR2|DSW1 DSW2|TLSW TLUD bA | GR1 GR2 SGR1 SGR2|DSW1 DSW2|TLSW TLUD
0.0 |0.091 0.063 0.127 0.089]0.047 0.071]0.062 0.064 0.0 [0.128 0.059 0.177 0.117]0.074 0.090|0.093 0.114
0.5 | 0.502 0.075 0.510 0.453]0.418 0.397|0.241 0.639 0.5 [ 0.562 0.054 0.560 0.482]0.459 0.421|0.336 0.680
B 1.0 [0.989 0.071 0.989 0.989|0.999 0.999|0.993 1.000 B 1.0 [0.990 0.047 0.989 0.987|0.993 0.993|0.988 1.000
£ 25 [1.000 0103 1.000 1.000|1.000 1.000|1.000 1.000 £ 25 (1.000 0.035 1.000 1.000|1.000 1.000|1.000 1.000
5.0 |1.000 0.103 1.000 1.000] 1.000 1.000| 1.000 1.000 5.0 [1.000 0.000 1.000 1.000]1.000 1.000 |1.000 1.000
7.5 [1.000 0.132 1.000 1.000] 1.000 1.000| 1.000 1.000 7.5 [1.000 0.000 1.000 1.000]1.000 1.000 |1.000 1.000
10.0 | 1.000 0.155 1.000 1.000| 1.000 1.000 | 1.000 1.000 10.0 | 1.000 0.000 1.000 1.000| 1.000 1.000 | 1.000 1.000
cause| O W O O O O O O cause| O D O O O O O O
bA | GR1 GR2 SGR1 SGR2|DSW1 DSW2|TLSW TLUD bA | GR1 GR2 SGR1 SGR2|DSW1 DSW2|TLSW TLUD
0.0 |0.238 0.058 0.364 0.105]0.052 0.069|0.064 0.072 0.0 [0.511 0.047 0.734 0.240|0.064 0.080 | 0.082 0.096
0.5 [0.821 0.044 0.898 0.723|0.084 0.115]|0.099 0.229 0.5 [0.915 0.046 0.958 0.787]0.064 0.089|0.091 0.216
2 1.0 [0.997 0.031 1.000 0.999|0.024 0.048|0.731 0.937 2 1.0 [0.999 0.041 1.000 0.996|0.017 0.060 |0.285 0.606
S 25 [1.000 0.025 1.000 1.000|0.000 0.009 |1.000 1.000 S 25 [1.000 0.038 1.000 1.000|0.004 0.032|0.224 0.851
5.0 | 1.000 0.045 1.000 1.000(0.000 0.061 | 1.000 1.000 5.0 |1.000 0.000 1.000 1.000(0.000 0.000 |0.000 0.239
7.5 11.000 0.084 1.000 1.000(0.000 0.187 | 1.000 1.000 7.5 11.000 0.000 1.000 1.000|0.000 0.000 |0.000 0.021
10.0 [ 1.000 0.158 1.000 1.000|0.000 0.359| 1.000 1.000 10.0 [ 1.000 0.000 1.000 1.000|0.000 0.000 | 0.000 0.000
cause| O W O O w w O O cause| O D O O D D D D
bA | GR1 GR2 SGR1 SGR2|DSW1 DSW2|TLSW TLUD bA | GR1 GR2 SGR1 SGR2|DSW1 DSW2|TLSW TLUD
0.0 [0.072 0.060 0.074 0.058]0.055 0.075|0.051 0.057 0.0 [0.102 0.056 0.090 0.073|0.068 0.087 | 0.055 0.063
o 0.5 ]0.256 0.082 0.204 0.163|0.159 0.218(0.062 0.193 o 0.5 ]0.248 0.052 0.171 0.141|0.117 0.157 | 0.066 0.162
5 1.0 10.791 0.160 0.722 0.6980.274 0.316(0.709 0.921 5 1.0 10.569 0.059 0.453 0.400(0.070 0.137|0.227 0.542
§ 2.5 [1.000 0.706 1.000 1.000[0.998 0.997|1.000 1.000 § 2.5 [0.930 0.047 0.849 0.844|0.024 0.063|0.150 0.804
= 50 |1.000 0.998 1.000 1.000|1.000 1.000|1.000 1.000 ~ 50 |0.943 0.000 0.631 0.673|0.000 0.000|0.000 0.267
7.5 [1.000 1.000 1.000 1.000| 1.000 1.000|1.000 1.000 7.5 [0.851 0.000 0.470 0.526|0.000 0.000 | 0.000 0.014
10.0 [ 1.000 1.000 1.000 1.000| 1.000 1.000|1.000 1.000 10.0 1 0.725 0.000 0.460 0.493(0.000 0.000 |0.000 0.000
cause| O O O O O O O O cause| D D D D D D D D
b) [Static, [fbbust d)[dynamic, tbbust
bA | GR1 GR2 SGR1 SGR2|DSW1 DSW2|TLSW TLUD bA | GR1 GR2 SGR1 SGR2|DSW1 DSW2|TLSW TLUD
0.0 [0.090 0.061 0.111 0.096|0.083 0.109|0.069 0.081 0.0 [0.129 0.049 0.138 0.096[0.085 0.119|0.088 0.111
0.5 [0.476 0.067 0.438 0.394|0.439 0.445|0.193 0.672 0.5 [0.526 0.063 0.481 0.434]0.453 0.456 | 0.222 0.705
g 1.0 |0.987 0.081 0.955 0.967|0.999 0.999 [ 0.663 1.000 g 1.0 |0.984 0.047 0.945 0.9630.995 0.995|0.762 1.000
£ 25 [0376 0.096 0.282 0.288(1.000 1.000|0.721 1.000 & 25 |0.376 0.018 0.723 0.8271.000 1.000|0.977 1.000
5.0 [0.000 0.112 0.441 0.171]1.000 1.000|0.762 1.000 5.0 [0.017 0.000 0.172 0.237|1.000 1.000 | 0.664 1.000
7.5 10.000 0.131 0.562 0.199|1.000 1.000 [0.784 1.000 7.5 10.001 0.000 0.105 0.131]1.000 1.000 | 0.142 1.000
10.0 | 0.000 0.166 0.645 0.295|1.000 1.000|0.781 1.000 10.0 | 0.000 0.000 0.109 0.136|1.000 1.000 |0.050 1.000
cause| R R,W R R O O R O cause| R R,D R R O O R O
bA | GR1 GR2 SGR1 SGR2|DSW1 DSW2|TLSW TLUD bA | GR1 GR2 SGR1 SGR2|DSW1 DSW2|TLSW TLUD
0.0 |[0.261 0.054 0.367 0.129(0.077 0.103|0.072 0.088 0.0 [0.528 0.052 0.754 0.229(0.075 0.108|0.089 0.109
0.5 |0.822 0.041 0.850 0.675(0.088 0.131]0.100 0.269 0.5 [0.893 0.045 0.957 0.763(0.070 0.117|0.098 0.255
g 1.0 |[1.000 0.033 1.000 0.999]0.017 0.059|0.585 0.904 g 1.0 [0.999 0.050 1.000 0.994]0.022 0.081|0.256 0.598
S 25 [1.000 0.031 1.000 1.000|0.000 0.013|1.000 1.000 S 25 [1.000 0.024 1.000 1.000|0.004 0.035|0.043 0.441
5.0 |1.000 0.066 1.000 1.000(0.000 0.010|1.000 1.000 5.0 |1.000 0.000 1.000 0.994(0.000 0.001|0.000 0.032
7.5 11.000 0.095 1.000 1.000(0.000 0.018|1.000 1.000 7.5 10.996 0.000 0.991 0.900(0.000 0.000 |0.000 0.000
10.0 [ 1.000 0.150 1.000 1.000 |0.000 0.014|1.000 1.000 10.0 | 0.967 0.000 0.958 0.7790.000 0.000|0.000 0.000
cause O RW O O |1RW RW O O cause O RD RD RD|RD RD|RD RD
bA | GR1 GR2 SGR1 SGR2|DSW1 DSW2|TLSW TLUD bA | GR1 GR2 SGR1 SGR2|DSW1 DSW2|TLSW TLUD
0.0 |1 0.085 0.060 0.069 0.064(0.079 0.115(0.061 0.071 0.0 |0.103 0.047 0.063 0.049(0.085 0.119|0.066 0.080
o 05 10218 0.060 0.155 0.139(0.179 0.250 (0.081 0.240 o 05 ]0.257 0.058 0.178 0.163(0.137 0.206 | 0.090 0.221
é 1.0 |0.727 0.141 0.593 0.602]0.275 0.353|0.604 0.930 % 1.0 [0.542 0.056 0.367 0.358]0.087 0.175|0.224 0.591
§ 2.5 |0.736 0.652 0.934 0.949(0.958 0.949]0.999 1.000 § 2.5 10.827 0.025 0.563 0.603(0.020 0.057 |0.043 0.575
= 50 |0.001 0.992 0.977 0.974[0.990 0.999 | 1.000 1.000 = 50 [0.914 0.000 0.426 0.5280.000 0.001|0.000 0.026
7.5 10.000 1.000 0.997 0.997(0.995 1.000 |1.000 1.000 7.5 10.793 0.000 0.385 0.444(0.000 0.000 |0.000 0.000
10.0 | 0.000 1.000 0.990 0.996]0.991 0.999|1.000 1.000 10.0 [ 0.690 0.000 0.396 0.433]0.000 0.000|0.000 0.000
cause| RW O RW RW|[RW RW O O causel RD RD RD RD|RD RD |RD RD
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a) [Static, [Mondobust

Table 4-5: Power comparison under DGP5 (5% level)

c)[dynamic, [Mon[obust

bA | GR1 GR2 SGR1 SGR2|DSW1 DSW2|TLSW TLUD bA | GR1 GR2 SGR1 SGR2|DSW1 DSW2|TLSW TLUD
0.0 | 0.091 0.063 0.127 0.089]0.047 0.071|0.062 0.064 0.0 |0.128 0.059 0.177 0.117]0.074 0.090 [ 0.093 0.114
0.5 | 0.598 0.528 0.956 0.606]0.997 0.996 | 0.968 0.997 0.5 | 0.512 0.145 0.948 0.180]0.993 0.989 | 0.955 0.996
¥ 1.0 [0.960 1.000 1.000 1.000|1.000 1.000 |1.000 1.000 ¥ 1.0 [0.408 0.198 1.000 0.201]1.000 1.000 | 1.000 1.000
& 25 [1.000 1.000 1.000 1.000]1.000 1.000|1.000 1.000 & 25 [0.000 0.085 1.000 0.012]1.000 1.000|1.000 1.000
5.0 |1.000 1.000 1.000 1.000]1.000 1.000 |1.000 1.000 5.0 | 0.000 0.000 1.000 0.000]1.000 1.000 |1.000 1.000
7.5 |1.000 1.000 1.000 1.000]1.000 1.000 |1.000 1.000 7.5 10.000 0.000 1.000 0.000]1.000 1.000 |1.000 1.000
10.0 | 1.000 1.000 1.000 1.000| 1.000 1.000|1.000 1.000 10.0 | 0.000 0.000 1.000 0.000| 1.000 1.000|1.000 1.000
cause| O O O O O 0 0 O cause| D D O D O O O O
bA | GR1 GR2 SGR1 SGR2|DSW1 DSW2|TLSW TLUD bA | GR1 GR2 SGR1 SGR2|DSW1 DSW2|TLSW TLUD
0.0 |0.238 0.058 0.364 0.105]0.052 0.069 | 0.064 0.072 0.0 | 0.511 0.047 0.734 0.240]0.064 0.080 | 0.082 0.096
0.5 |0.893 0.303 0.995 0.601]0.835 0.791|0.632 0.820 0.5 |0.883 0.101 0.997 0.483]0.462 0.431|0.202 0.412
g 1.0 [0.996 0.957 1.000 0.993|1.000 1.000|1.000 1.000 g 1.0 [0.686 0.149 1.000 0.248|0.786 0.759|0.349 0.762
S 25 [1.000 1.000 1.000 1.000|1.000 1.000 | 1.000 1.000 S 25 [0.008 0.063 1.000 0.009|0.556 0.529 |0.008 0.062
5.0 |1.000 1.000 1.000 1.000| 1.000 1.000 | 1.000 1.000 5.0 | 0.000 0.000 1.000 0.000]0.308 0.237 | 0.000 0.000
7.5 |1.000 1.000 1.000 1.000| 1.000 1.000 | 1.000 1.000 7.5 |0.000 0.000 1.000 0.000]0.265 0.196|0.000 0.000
10.0 | 1.000 1.000 1.000 1.000| 1.000 1.000 | 1.000 1.000 10.0 | 0.000 0.000 1.000 0.000|0.228 0.167 | 0.000 0.000
cause| O O O O O O O O cause| D D O D D D D D
bA | GR1 GR2 SGR1 SGR2|DSW1 DSW2|TLSW TLUD bA | GR1 GR2 SGR1 SGR2|DSW1 DSW2|TLSW TLUD
0.0 |10.072 0.060 0.074 0.058[0.055 0.075|0.051 0.057 0.0 |0.102 0.056 0.090 0.073|0.068 0.087 |0.055 0.063
o 05 ]0.031 0592 0.603 0.6180.944 0.927 | 0.646 0.940 o 05 |0.068 0.155 0.221 0.145]0.548 0.529 |0.161 0.450
é 1.0 [0.007 1.000 1.000 1.000 | 1.000 1.000|1.000 1.000 % 1.0 [0.023 0.212 0.339 0.181]0.781 0.776|0.173 0.640
§ 2.5 10.000 1.000 1.000 1.000( 1.000 1.000 |1.000 1.000 § 2.5 10.000 0.086 0.032 0.013|0.772 0.732|0.000 0.020
= 50 |0.000 1.000 1.000 1.000 |1.000 1.000|1.000 1.000 = 5.0 |0.000 0.000 0.000 0.000|0.627 0.507|0.000 0.000
7.5 10.000 1.000 1.000 1.000(1.000 1.000 |1.000 1.000 7.5 10.000 0.000 0.000 0.000|0.526 0.444 |0.000 0.000
10.0 | 0.000 1.000 1.000 1.000|1.000 1.000|1.000 1.000 10.0 [ 0.000 0.000 0.016 0.000|0.477 0.366|0.000 0.000
cause| W O O 0 O O O O cause| D D D D D D D D
b) [Static, fbbust d)[dynamic, tbbust
bA | GR1 GR2 SGR1 SGR2|DSW1 DSW2|TLSW TLUD bA | GR1 GR2 SGR1 SGR2|DSW1 DSW2|TLSW TLUD
0.0 |10.090 0.061 0.111 0.096|0.083 0.109 | 0.069 0.081 0.0 |10.129 0.049 0.138 0.096|0.095 0.110|0.095 0.130
0.5 |0.458 0.452 0.776 0.5190.997 0.996 | 0.831 0.997 0.5 |0.411 0.152 0.612 0.170|0.995 1.000 | 0.745 1.000
B 1.0 [0.073 0.992 0.997 0.998|1.000 1.000 |1.000 1.000 B 1.0 [0.228 0.167 0.246 0.156 | 1.000 1.000 |0.980 1.000
& 25 |0.000 1.000 1.000 1.000|1.000 1.000 |1.000 1.000 & 25 |0.000 0.090 0.015 0.014]1.000 1.000 |0.620 1.000
5.0 |10.000 1.000 1.000 1.000|1.000 1.000 |1.000 1.000 5.0 |0.000 0.000 0.001 0.000|1.000 1.000 |0.145 1.000
7.5 10.000 1.000 1.000 1.000|1.000 1.000 |1.000 1.000 7.5 10.000 0.000 0.000 0.000|1.000 1.000 |0.165 1.000
10.0 | 0.000 1.000 1.000 1.000 | 1.000 1.000 |1.000 1.000 10.0 [0.000 0.000 0.001 0.000|1.000 1.000|0.115 1.000
cause|] R O O O O O O O cause| RD RD R R,D O O R O
bA | GR1T GR2 SGR1 SGR2|DSW1 DSW2|TLSW TLUD bA [ GR1T GR2 SGR1 SGR2|DSW1 DSW2|TLSW TLUD
0.0 |0.261 0.054 0.367 0.129(0.077 0.103|0.072 0.088 0.0 [0.528 0.052 0.754 0.229]0.110 0.110|0.095 0.135
0.5 |0.848 0.240 0.999 0.528(0.836 0.804 |0.607 0.815 0.5 [0.835 0.095 0.998 0.470|0.430 0.405|0.210 0.425
g 1.0 |0.968 0.899 1.000 0.899]1.000 1.000 |1.000 1.000 g’ 1.0 |0.603 0.126 1.000 0.253]0.595 0.615|0.315 0.560
S 25 |1.000 0.998 1.000 0.998 [1.000 1.000 |1.000 1.000 S 25 |0.005 0.066 1.000 0.010(0.260 0.315|0.000 0.005
5.0 |[1.000 0.713 1.000 0.993(1.000 1.000 |1.000 1.000 5.0 [0.000 0.000 0.964 0.000|0.075 0.105|0.000 0.000
7.5 |1.000 0.712 1.000 0.974(1.000 1.000 |1.000 1.000 7.5 |0.000 0.000 0.963 0.000|0.030 0.060 |0.000 0.000
10.0 | 1.000 0.996 1.000 0.993|1.000 1.000 |1.000 1.000 10.0 [0.000 0.000 0.990 0.000|0.030 0.070|0.000 0.000
cause O R O R O O O O causel] RD RD RD RD|RD RD|RD RD
bA | GR1 GR2 SGR1 SGR2|DSW1 DSW2|TLSW TLUD bA | GR1 GR2 SGR1 SGR2|DSW1 DSW2|TLSW TLUD
0.0 |0.085 0.060 0.069 0.064|0.079 0.115|0.061 0.071 0.0 [0.103 0.047 0.063 0.049|0.105 0.100 |0.065 0.100
o 0.5 ]0.017 0.534 0.563 0.580[0.953 0.939 |0.633 0.938 o 0.5 ]0.052 0.165 0.179 0.145[0.555 0.510 |0.150 0.445
5 1.0 |0.000 0.998 1.000 1.000|1.000 1.000 |1.000 1.000 5 1.0 |0.013 0.187 0.159 0.149]0.650 0.665 |0.115 0.410
§ 2.5 |0.000 1.000 1.000 1.000|1.000 1.000 |1.000 1.000 § 2.5 [0.000 0.095 0.012 0.013]0.535 0.490 |0.000 0.000
= 50 |0.000 1.000 1.000 1.000 |1.000 1.000 |1.000 1.000 = 50 |0.000 0.000 0.000 0.0000.230 0.125|0.000 0.000
7.5 |0.000 1.000 1.000 1.000|1.000 1.000 |1.000 1.000 7.5 |0.000 0.000 0.000 0.0000.125 0.075|0.000 0.000
10.0 [0.000 1.000 1.000 1.000|1.000 1.000 |1.000 1.000 10.0 |0.000 0.000 0.000 0.000]0.100 0.080 [0.000 0.000
cause| W,R O O ] O O O O causefl RD RD RD RD|RD RD|RD RD
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Figure 1: A realization of loss sequences: static model
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Figure 2: A realization of loss sequences: dynamic model
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Figure 3: Crude oil price (WTI: US dollar / barrel, in logarithm)
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Table 5-1: Serial correlation tests for the squared loss series (oil price forecasts)
m=55 m=259

static dynamic static dynamic

fixed 302.08*** 242.52*** 296.88*** 44.40*

rolling 231.99*** 49.66*** 293.47** 44.28***

recursive| 295.52*** 54.97** 294 .53*** 44 A7+
Note: F]FF [@hd FF* [IMdicate [significance at fhe [0 %, [B% and % [ével, késpectively.

Table 5-2: Tests for change in forecasting performance (oil price forecasts)
staticlmhodel

DSW1 DSW2 | TLSW TLUD GR1 GR2 SGR1 SGR2
fixed 315.28*** 315.28"**(609.89*** 609.89***| 1.19 1.59 2.71* 2.71*
rolling 16.09*** 26.00*** [|417.22*** 417.22***| 6.03*** 1.70* 5.37*** 435"

recursive [350.80*** 350.80***(728.24*** 728.24***| 1.84" 1.63 2.48* 2.48”

dynamic(ohodel

DSWA1 DSW2 | TLSW TLUD GR1 GR2 SGR1 SGR2
fixed 140.08*** 140.08***(176.14*** 176.14*** 1.45 0.84 5.23** 523
rolling 9.17 9.17 6.47 6.47 4.01*** 1.01 1.77 1.77

recursive | 14.00**  14.00* 6.57 6.57 0.17 0.79 0.93 0.93

Note:[SamelasTable .
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Figure 4 : US inflation rate
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Table 6-1 : Serial correlation tests for the squared loss series (US inflation forecasts)
m=241 m=301
static dynamicl dynamic[3 static dynamicl  dynamic[3
fixed 527.60*** 522.86*** 522.86*** 539.98*** 541.71** 541.71***
rolling 521.72** 522.86** 522.86*** 539.69*** 541.71* 541.71%**
recursive| 525.47*** 522.86*** 522.86*** 540.52*** 541.71%* 541.71*
Note:[Samelak Mable G,

Table 6-2 : Tests for change in forecasting performance (US inflation forecasts)

static

DSwW1 DSW2 | TLSW  TLUD GR1 GR2 SGR1 SGR2
fixed 74.91***  337.00*** 4.42 451 .51*** 0.12 0.30 1.53 1.53
rolling | 36.36*** 46.13*** | 8.72* 466.16***| 0.52 0.24 7.40***  6.20***
recursive| 55.14*** 150.54***| 7.66*  865.20***[ 0.04 0.40 1.11 0.75
dynamicl

DSwW1 DSW2 | TLSW  TLUD GR1 GR2 SGR1 SGR2
fixed | 21.45*** 21.45** | 23.86*** 2981.04**" 0.08 0.02 0.94 0.20
rolling | 15.71**  15.71** |263.20*** 2981.04** 0.13 0.03 0.38 0.38
recursive| 16.41**  16.41** [265.14*** 2981.04**1 0.12 0.02 0.26 0.26
dynamic[3

DSW1 DSW2 | TLSW  TLUD GR1 GR2 SGR1 SGR2
fixed 22.32%**  22.32*** [ 23.48*** 2993.64** 0.08 0.02 1.10 0.20
rolling | 15.74**  15.74** |266.60*** 2996.90***| 0.13 0.03 0.38 0.38
recursive| 16.24***  16.24** |267.38*** 2992.51** 0.12 0.02 0.26 0.26

Note: Samelas MableE.
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