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Abstract

This study proposes an equilibrium model of term structures of bonds and equities, which

has a similar descriptive ability to a reduced-form model proposed by Lettau and Wachter

(LW) (J. Financial Economics, 2011), and yet offers economic implications about preferences

and consumption dynamics. The ability is obtained by letting parameters of recursive utility

depend on state variables of the economy. The model is calibrated by matching it with

the LW model, showing that it can produce the term structure of real interest rates with

either a positive or negative slope and the term structure of dividend risk premiums with a

negative slope, both of which stand as challenges to any pricing models. It also shows that

while an implied behavior of state-dependent time preference is reasonable, modifications of

parameter values and cash flow processes are necessary for state-dependent risk aversion to

behave reasonably.
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1 Introduction

The pricing of cash flows at various points in time is one of central issues in finance. The term

structure of interest rates, which has long been studied, is based on fixed cash flows. Stochastic

cash flows such as dividends lead to the term structure of dividend strips or zero-coupon equities,

which is of relatively recent focus. The purpose of this study is to build an equilibrium model

of term structures of zero-coupon bonds and equities and discuss preferences and consumption

dynamics implicit in these term structures.

Essentially, any equilibrium models can price any assets. However, there are not many

such models aimed at explaining both zero-coupon bonds and equities from a term-structure

perspective. In modeling the term structure, at least two challenges are known. The first is

the term structure of real interest rates that is either upward-, flat-, or downward-sloping. This

indecisive shape in turn requires model’s flexibility. The second is the term structure of risk

premiums of dividend strips. It is on average downward-sloping, which is evidenced from various

data sources: index options (van Binsbergen, Brandt, and Koijen, 2012); index dividend futures

(van Binsbergen et al, 2013; van Binsbergen and Koijen, 2017); and the cross-section of stocks

(Weber, 2017). 1 However, as illustrated by van Binsbergen et al. (2012), the downward slope is

difficult to explain using well-established equilibrium models, such as the external habit model

of Campbell and Cochrane (1999), the long-run risks model of Bansal and Yaron (2004), and the

disaster model of Barro (2009), and Gabaix (2012). These challenges motivate recent studies to

improve equilibrium models, which are reviewed below in comparison with ours.

Without imposing equilibrium conditions, it may not be very difficult to model the term

structures of real interest rates and dividend risk premiums consistently with stylized facts.

Indeed, Lettau and Wachter (LW) (2011) propose a reduced-form model that can explain these

term structures. The key to their success is the specification of the stochastic discount factor

(SDF), which increases one for one with a negative shock to realized dividend growth. This

specification is effective for raising the risk of holding short-term dividend strips. Furthermore,

LW assume that a negative shock to realized dividend growth is highly likely to increase expected

dividend growth. This assumption makes long-term dividend strips less risky because they go up

in value when the SDF is high. Consequently, the term structure of dividend risk premiums is

sloped downward. In addition, the LWmodel can generate either an upward-, flat-, or downward-

1See also Schulz (2016), pointing out that the evidence for the downward-slope is not decisive when returns to

short-term dividend claims are adjusted for taxies or liquidities.
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sloping term structure of real interest rates by simply controlling for the correlation between

realized dividend growth and real risk-free rate.

These important mechanisms of the LW model are exogenous. Our goal is to endogenize

them. The purpose of this study is to develop an equilibrium model that offers implications

about preferences and consumption dynamics and yet has a similar descriptive ability to the

reduced-form model proposed by LW. For this purpose, we ask what kind of utility function

supports the LW’s SDF. Our answer is to let parameters of a recursive utility function of the

representative agent depend on state variables of the economy. Meanwhile, we model cash flow

processes as simply as in the original LW model: we later consider a minimal extension of cash

flows.

The idea of state-dependent preferences itself is not new. In fact, Gordon and St-Amour

(2000, 2004), Melino and Yang (2003), Chabi-Yo, Garcia, and Renault (2008), Berrada, De-

temple, and Rindisbacher (2013), and Dew-Becker (2014) consider models in which preference

parameters themselves change over time: A more detailed review is provided below. A distinct

feature of the current model is that both risk aversion parameter and time preference parameter

are driven by many state variables such as (expected) consumption and inflation growth and

financial variables such as risk-free rate and price of risks, so that the agent can fine-tune her

preferences by looking at the economy and asset markets.

A state-dependent risk aversion is beneficial for amplifying the variation in the SDF and

hence capturing high equity risk premiums. Besides, it leads to time-varying price of risks,

which naturally explains time-varying risk premium (the product of the price of risks and an

asset-specific quantity of risks) with the source of variation not limited to stochastic volatility,

or stochastic intensity in the case of jumps, of cash flow processes. Furthermore, it offers an

additional channel of raising the slope of the term structure of nominal interest rates other than

the standard channel of a negative correlation between consumption and inflation growth. A

state-dependent time preference also has an advantage of generating various shapes in the term

structure of real interest rates. Suppose, for example, there is a shock that increases the SDF.

If this shock also affects the agent’s time-preference in a way where she more heavily discounts

future cash flows, the prices of real bonds will fall with the fall more significant for longer-

term bonds due to the compound effect. The real bonds therefore cannot be hedge against

events of raising the SDF, and the real term structure will be upward-sloping. This mechanism

might also be useful when introduced into the LRR model of Bansal and Yaron (2004). One
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of the criticisms to the LRR model is that it cannot generate a flat- or upward-sloping real

term structure when calibrated consistently with various moments of financial markets because

then, real bonds work as hedge against long-run risks about consumption growth; see Bansal,

Kiku, and Yaron (2012), and Beeler and Campbell (2012) for debate over the LRR model.

State-dependent time preference has potential of relaxing this restriction of the LRR model.

The parameters of the proposed model are calibrated by matching it with the LW model.

This calibration method has two advantages. The first is to achieve a similar descriptive ability

to the LW model. Indeed, the proposed model can closely replicate various term structure

shapes generated by the LW model. The second is to obtain an equilibrium foundation of the

LW model. Indeed, it is possible to imply preferences and consumption dynamics from the LW

model through the calibration of the proposed model. The calibration results, however, contain

unrealistic implications about preferences and/or consumption dynamics. Most notably, given

consumption volatility of less than 4% per year, the mean and standard deviation of a state-

dependent risk aversion reach 150 and 128, respectively. When the mean risk aversion is reduced

to 30, then an implied consumption volatility is nearly 9%.

One possibility of these unrealistic economic implications is that parameter values originally

calibrated by LW (2011) are not appropriate. Originally, the LW model is a reduced-form

model so that there are many combinations of parameter values that can explain observed

term structures. However, once some equilibrium conditions are imposed, there are not many

combinations of parameter values that are consistent with not only observed term structures

but realistic preferences and consumption dynamics. Our model has an advantage of revealing

which combinations are more appropriate. Another possibility is that the dynamics of cash flows

in the LW model are too simple. We then slightly deviate from the LW model by introducing

jumps into consumption and dividend growth, which are interpreted as disasters. The change of

parameter values and the modification of cash flow processes together are shown to be effective

for making the behavior of both risk aversion and consumption growth economically plausible

while keeping the ability to explain various term structures.

Related literature

Our model extends the recursive utility function of Epstein and Zin (1989, 1991), and Weil

(1989) in a way where the parameters of risk aversion and time preference depend on state

variables of the economy. Melino and Yang (2003) consider the recursive utility function with
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state-dependent parameters more generally in that the elasticity of intertemporal substitution

is also state-dependent; however, they do not model how these parameters evolve over time.

The low of motion of the risk aversion is modeled by Gordon and St-Amour (2000), and Chabi-

Yo, Garcia, and Renault (2008) using Markov switching processes. Berrada, Detemple, and

Rindisbacher (2013) also use them for modeling the dynamics of both risk aversion and time

preference. Gordon and St-Amour (2004), and Dew-Becker (2014) model the risk aversion as

driven by auto-regressive processes. Our model is similar to the last two studies regarding how

to model time variation but different from them in that time preference is also state-dependent

and that the preference parameters are driven by many state variables driving the economy.

Compared with state-dependent risk aversion, state-dependent time preference has been less

of a focus. But Frederick, Loewenstein and O’Donoghue (2002) document that prior to the

Samuelson’s introduction of constant subjective discount rate, time-preference was considered

to be not necessarily constant but rather affected by various factors including psychological

ones. Halevy (2015) conducts a field experiment about time preference and shows that some

subjects (classroom students in his study) exhibit time-varying rate of subjective discount. The

direct modeling of time preference as a function of state variables—an approach taken by this

study—is different from the well-established, horizon-dependent time preference that discounts

nearby cash flows more heavily than distant ones; see, for example, Thaler (1981). However,

Harris and Laibson (2001), and Luttmer and Mariotti (2003) show that the horizon-dependent

time preference leads to an effective rate of subjective discount that depends on state variables

affecting endowment growth (unless the agent has log utility). As such, it may not be unreason-

able to consider state-dependent time preference. Besides, from an asset pricing perspective, it

is beneficial for generating the term structure of real interest rates, the average shape of which

is indecisive.

Recent studies develop equilibrium asset pricing models aimed at explaining a downward-

sloping term structure of dividend risk premiums. We limit our attention to some of these

studies that explicitly present the results for the entire term structures of risk premiums and

return volatilities of dividend strips, which are summarized in Table 1: A broader review is

provided by van Binsbergen and Koijen (2017).

There are mainly two approaches for improving equilibrium models: One is to improve

preferences or discounts as taken by this study and the other cash flows. The recent studies

taking the preference approach are as follows. Curatola (2015) considers heterogeneous agents
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who have loss-averse utility, where the reference point between gain and loss is set at the level of

external consumption habit, so that unlike many standard habit formation models, consumption

is allowed to be below the habit. Because the loss-averse agents are willing to hold long-term

dividend claims to hedge risks of future consumption being below the habit, the term structure

of dividend risk premiums is downward-sloping. The term structure of real interest rates, on the

other hand, is upward-sloping because long-term real bonds cannot be hedge against increase

in habit and hence decrease in surplus consumption. Doh and Wu (2016) impose a structure

on the LRR model such that both the equilibrium wealth-consumption ratio and the price of

a one-period dividend strip are quadratic functions of state variables and then reverse-engineer

consumption and dividend processes consistent with the imposed structure. The resulting risk

premiums of dividend strips are first decreasing with maturity and then increasing, which is not

surprising as the premiums are also quadratic in state variables.

The recent studies that modify cash flow processes propose various mechanisms that make

short-run growth of dividends volatile and pro-cyclical relative to long-run growth. Belo, Collin-

Dufresne, and Goldstein (2015) consider as a mechanism a stationary financial leverage ratio.

In their model, in response to temporal increase (decrease) in corporate earnings, measured by

EBIT, a firm is assumed to increase (decrease) debt to keep the leverage ratio to a stationary

level, which further increases (decreases) cash distributed to shareholders as dividends. Con-

sequently, dividends change more intensely than earnings in the short-run. In the long-run,

however, both EBIT and dividends are exposed to the same amount of risks due to the station-

arity of the leverage ratio that makes EBIT and dividend cointegrated. Favilukis and Lin (2016)

consider as a mechanism wage rigidity in a production economy, where a negative transitory

shock to technology, corresponding to bad states of the economy, reduces dividends more than

wages that are settled infrequently. Lopez, Lopez-Salido and Vazquez-Grande (2015) consider a

similar logic but instead use nominal rigidity that induces a countercyclical wage share of output

and hence a procyclical dividend share. Marfè (2017) also uses the wage channel together with

limited participation of asset markets. Specifically, in his model, shareholders who receive and

consume dividends provide wage insurance to workers, which is effective for the short-run but

not for the long-run because both dividends and wages are co-integrated so that they share the

same long-run risks. Then, dividends, or equivalently shareholders’ consumption in equilibrium,

are more prone to transitory shocks than wages. Meanwhile, only shareholders can access to

asset markets. Consequently, from the eyes of the pricing agents (i.e., shareholders), short-term
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dividend strips look riskier than long-term counterparts.

The above studies of the cash-flow approach seem to place more emphasis on short-run

growth of dividends than long-run growth. Hasler and Marfè (2016) pay attention to both

short-run and long-run growth. They introduce recovery after disaster into cash flow processes

as well as stochastic mean of cash flow growth and stochastic intensity of disaster occurrence.

While the latter two features alone generate an upward-sloping term structure of dividend risk

premiums as does the Wachter (2013) model, fast recovery of dividend growth after a large

negative shock reduces risks of holding long-term dividend strips, more than offsetting long-run

risks associated with stochastic mean growth and disaster intensity.

A novel approach taken by Croce, Lettau, and Ludvigson (2015) for generating a downward-

sloping term structure of dividend risk premiums is that they do not change cash flow processes

from those originally specified by Bansal and Yaron (2004) but do change the way they are

estimated. In their framework, the agent overestimates the impact of short-run shocks to con-

sumption growth on dividend growth because she erroneously revises a long-run component of

dividend growth that is irrelevant to short-run shocks to consumption growth. Consequently,

she requires high premiums of holding short-term dividend strips. Conversely, long-run shocks

to consumption growth, which are originally small, are difficult to infer from dividend growth

because they are contaminated by large idiosyncratic shocks to dividend growth. Then, long-

run consumption risks are not properly priced into long-term dividend strips, and they do not

command large risk premiums.

The strength of the proposed model is flexibility. Indeed, it is as flexible as the LW model

in term of generating various term structures despite the fact that equilibrium conditions are

imposed. Extensibility is another strength. Since the proposed model modifies the preference

of discount, it can easily be combined with more sophisticated cash-flow models.

The rest of the manuscript is organized as follows. Section 2 presents a model. Section 3

explains how to calibrate the parameters of the proposed model with a brief introduction of

the LW model. Section 4 verifies the performance of the proposed model and discusses implied

consumption dynamics and preferences. Section 5 introduces jumps into cash flow processes

to obtain more plausible economic implications. Section 6 concludes. Technical arguments are

collected in Appendices.

7



2 Model

Our model is built on a simple exchange economy, where the flow of endowments is exogenously

provided and a rational, representative agent has recursive utility of Epstein and Zin (1989,

1991), and Weil (1989). Section 2.1 first specifies the utility function and then extends it in a

way where the parameters of risk aversion and time preference depend on state variables of the

economy. Sections 2.2 through 2.4 specify endowment process and state-dependent preferences

such that the recursive equation for the agent’s continuation value is solved in closed form for a

certain case, which is presented in Section 2.5. Section 2.6 derives an analytical approximation of

the continuation value for a general case, guided by the results of Section 2.5. Finally, Section 2.7

provides pricing formulas for zero-coupon bonds and equities. The derivation of key equations

are provided in Appendix A.

2.1 Preference

Let Ut denote time-t utility of the representative agent. It is originally specified by the following

recursive form:

Ut = {(1− β)Cρt + βEt[U
1−γ
t+1 ]

ρ/(1−γ)}1/ρ , (1)

where Ct is aggregate consumption at time t to be determined by the agent (the decision vari-

able), and Et[·] stands for expectation conditioned on time t. There are three parameters in Ut:

β represents time preference or subjective discount factor (typically somewhat less than one);

γ is a coefficient of risk aversion; and ρ is related to the elasticity of intertemporal substitution

(EIS) by EIS = 1/(1− ρ).

To capture average term structures of zero-coupon bonds and equities, we let β and γ be

state-dependent as in Melino and Yang (2003). Unlike their study, we set ρ to zero or equivalently

the EIS to unity. This restriction has a merit of keeping the model simple without scarifying the

goodness-of-fit to at least average term structures. The unit EIS is considered by Piazzesi and

Schneider (2006) in modeling the term structure of interest rates. Hansen et al. (2007) show

that a model with unit EIS can be used as a basis for approximating more general models.

By substituting (βt, γt) for (β, γ) and ρ = 0 in (1),

Ut = C1−βt
t Et[U

1−γt
t+1 ]βt/(1−γt) . (2)

In solving the optimal consumption problem, we place the following assumptions: (i) βt and γt

are exogenous; and (ii) 0 < βt < 1 for all t. Assumption (i) is also considered by Gordon and

8



St-Amour (2004), who model the risk-aversion coefficient directly by a stochastic process. The

analogous assumption is made by Campbell and Cochrane (1999) in the form of external habit.

Since βt and γt are not affected by the decision variable, the optimal consumption problem can

be solved in the same way as in the case of constant preference parameters. Assumption (ii)

guarantees that the period utility in (2) is concave with respect to the decision variable and that

the wealth is positive in equilibrium.

Let Cet > 0 be time-t endowment andWt be time-t wealth, which in the endowment economy

is the cum-dividend value of a claim to the flow of endowments. The gross rate of return to

wealth, Rw,t+1, is defined by

Rw,t+1 =
Wt+1

Wt − Cet
. (3)

Then, the budget constraint for the agent is

Rw,t+1(Wt − Ct) =Wt+1 . (4)

Let Vt be the continuation value, which is the solution to the following problem:

Vt = max
Ct

Ut subject to (4) . (5)

Because of the unit EIS, the optimal consumption, C∗
t , has a closed form, irrespective of how βt

and γt are specified:

C∗
t = (1− βt)Wt . (6)

Unlike a constant-parameter case, the wealth-consumption ratio, Wt/C
∗
t , varies over time even

for a unit EIS.

The equilibrium condition is that the agent consumes the given endowment, C∗
t = Cet . The

wealth in equilibrium, W ∗
t , is then solved as W ∗

t = 1
1−βtC

e
t from (6). By substituting W ∗

t into

(3), the equilibrium, gross rate of return to wealth, R∗
w,t+1, is

R∗
w,t+1 =

1

βt

1− βt
1− βt+1

Cet+1

Cet
. (7)

The continuation value in equilibrium, V ∗
t , is the solution to the following recursive equation:

Define νt = V ∗
t /C

e
t , and νt satisfies

2

νt = Et

[(
νt+1

Cet+1

Cet

)1−γt
]βt/(1−γt)

. (8)

2We call νt the continuation value unless otherwise noted because V ∗
t does not explicitly appear in discussions

to follow.

9



The SDF, Mt+1, is obtained as

Mt+1 = βt
1− βt+1

1− βt

(
νt+1

ν
1/βt
t

)1−γt (
Cet+1

Cet

)−γt
. (9)

In general, the recursive equation for νt cannot be solved in closed form, which makes the SDF

unavailable in closed form. In the next subsections, we specify endowment process and state-

dependent preferences in a way where νt is solved in closed form for constant time preference

and approximately for state-dependent time preference, keeping the accuracy in mind.

2.2 Dynamics

Following LW (2011), all variables are assumed to be homoscedastic. Define ct = lnCet and

∆ct+1 = ct+1 − ct. The evolution of rate of growth in endowment, or equivalently aggregate

consumption in equilibrium, is specified as

∆ct+1 = µc + b′cxt + σ′czt+1 , (10)

where µc is the unconditional mean of consumption growth rate (given that the unconditional

mean of xt is zero), xt is a d-dimensional vector of state variables, and zt+1 is a (d+3)-dimensional

vector of i.i.d. normal random variables. The reason for the (d + 3) dimension will be clear

soon.

For pricing nominal zero-coupon bonds, a general price index, Πt, is introduced, which is

assumed to be determined exogenously. Define πt = lnΠt and ∆πt+1 = πt+1 − πt. Then, the

evolution of rate of growth in inflation is specified as

∆πt+1 = µπ + b′πxt + σ′πzt+1 , (11)

where the parameters and variables are interpreted similarly with the consumption process in

(10).

For pricing dividend strips, the flow of aggregate dividends needs to be specified. Let Dt be

aggregate divided payed at time t. Define dt = lnDt and ∆dt+1 = dt+1−dt. Then, the evolution

of rate of growth in dividend is specified as

∆dt+1 = µd + b′dxt + σ′dzt+1 . (12)

Aggregate dividend can be regarded as levered consumption in an endowment economy. The

most direct description of this relation is Dt = (Cet )
a for some constant a > 1 (Abel, 1999;
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Campbell, 2003). Also, it is often assumed that ∆ct+1 and ∆dt+1 are co-integrated (Bansal,

Gallant, and Tauchen, 2007). We consider their link in calibrating the parameters in Section

3.2.

Finally, a d-dimensional state vector xt is assumed to follow

xt+1 = Φ′
xxt + σ′xzt+1 . (13)

Note that the unconditional mean of xt is zero. There are totally (d+3) variables in the economy.

For notational convenience, define sij = σ′iσj . For example, the covariance between innova-

tions in ∆ct+1 and ∆dt+1 is denoted as scd = σ′cσd (scaler). Likewise, the covariance between

innovations in ∆ct+1 and xt+1 is denoted as scx = σ′xσc (d × 1 vector) and the variance of

innovation in xt+1 as sxx = σ′xσx (d× d matrix).

2.3 Risk aversion

We specify the coefficient of risk aversion as a linear function of the state vector:

γt = µγ + b′γxt . (14)

The linear specification has a merit of obtaining the SDF in closed form when time preference

is constant. It is also useful for state-dependent time preference, which will be addressed in

Section 2.6.

A caveat, on the other hand, is that since xt is Gaussian, γt becomes negative with positive

probability. This shortcoming is also seen in the previous work. Gordon and St-Amour (2004),

and Dew-Becker (2014) specify γt as a part of the VAR(1) system and an AR(1) process, respec-

tively; however, they do not theoretically impose the positivity of γt. The probability of γt < 0

in this study is addressed after calibrating the parameters in Section 4.1.

2.4 Time preference

We consider the following two specifications:

(S1) βt = β , (15)

(S2) βt = 1− exp{µβ + b′βxt} (µβ < 0) . (16)

S1 allows for solving the recursive equation (8) for νt in closed form. The resulting formula

is exponentially linear in xt, leading to the SDF of the affine class. The prices of zero-coupon
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bonds and equities are therefore available in closed form, which are also exponentially linear in

xt.

For any specification of βt except S1, νt has no closed form. To retain tractability, we perform

an analytical approximation of νt in a way where the affine pricing framework is available as for

S1. S2 is aimed at keeping the accuracy of the approximation, rather than based on economic

reasoning or statistical adequacy. Specifically, once ln νt is approximated as a linear function of

xt (this approximation is inevitable for any specification of βt), the price of risks is derived as a

linear function of xt without further approximation. Intuitively, this is understood by noticing

that the SDF given in (9) has a term 1− βt+1, which in S2 is exponentially linear in xt+1. Also

of note is that the wealth-consumption ratio given in (6) is log-linear in xt.

A caveat of S2 is that βt becomes negative with positive probability, violating the lower

bound constraint in Assumption (ii). The severity of this violation depends on parameter values

and therefore is addressed after calibration in Section 4.1.

2.5 SDF for S1

We derive the continuation value and SDF for S1. Though our interest is in S2, the results for S1

are worth presenting for three reasons. First, they are an extension of the results presented by

Hansen, Heaton and Li (2008). The extension is in the coefficient of risk aversion: It is constant

in Hansen et al. (2008) whereas it is a linear function of Gaussian state variables in this study.

Second, the fact that the SDF for S1 derived here is exact while that for S2 is approximate

clarifies the source of approximation and provides the sense of accuracy. Third, through the

comparison with S1, the extension to S2 can be highlighted.

The recursive equation (8) for νt is solved as

νt = exp{µν + b′νxt} , (17)

where µν and bν are the solutions to the following simultaneous equations:

µν = β

{
µν + µc −

1

2
vcν(µγ − 1)

}
, (18)

bν = β

(
bc +Φxbν −

1

2
vcνbγ

)
, (19)

where

vcν = vart[ln νt+1 +∆ct+1] = b′νsxxbν + 2s′cxbν + scc . (20)
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Note that (18) and (19) are quadratic equations because vcν is quadratic in bν . Appendix B

provides the condition for µν and bν to be real and addresses which real root to select. It is noted

that setting bγ = 0 in (19) (i.e., a constant risk-aversion coefficient) leads to the continuation

value presented by Hansen et al. (2008).

Next, we drive the price-of-risk vector, denoted as λt. It is the (negative) loading on the

innovation vector zt+1 in the SDF. By taking the log of (9) with βt replaced by β and defining

mt+1 = lnMt+1,

mt+1 = (1− γt) ln νt+1 − γt∆ct+1 + resmt , (21)

where resmt collects the remaining terms observed at time t. By substituting (17) and then (10)

and (13) into (21), we have mt+1 − Et[mt+1] = −λ′tzt+1, where

λt = (σxbν + σc)γt − σxbν . (22)

Since γt is assumed to be linear in xt, so is λt. Owing to γt, the risk premium of any asset is

also time-varying even without time-varying volatility. A potential drawback of λt in (22) is

that it is driven by γt alone, which is a certain linear combination of the d-dimensional state

vector as given in (14). This implies that the correlation between risk premiums of any pair

of assets is one in absolute value as long as cash flow processes are homoscedastic. LW (2011)

make a similar assumption that the price-of-risk vector is driven by one factor and point out

the drawbacks of this assumption.

The one-period real risk-free rate, denoted as rf,t+1, is the solution to the following Euler

equation: rf,t+1 = − lnEt[Mt+1]. Then, it is also derived as a linear function of xt:

rf,t+1 = Af +B′
fxt , (23)

where

Af = − lnβ + µc −
1

2
scc − (s′cxbν + scc)(µγ − 1) , (24)

Bf = bc − (s′cxbν + scc)bγ . (25)

Finally, mt+1 can be rewritten in a conventional form as

mt+1 = −rf,t+1 −
1

2
λ′tλt − λ′tzt+1 . (26)

Since both rf,t+1 and λt are linear in xt, mt+1 falls into the affine class.
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2.6 SDF for S2

The recursive equation (8) for νt cannot be solved in closed form for a state-dependent time

preference, which is denoted here as β(xt) to clarify the dependence on xt. To retain tractability,

we approximate νt by an exponentially linear function of xt. To begin with, β(xt) and β(xt)xt

are linearized around xt = 0 (the unconditional mean):

β(xt) ≈ β0 + β′1xt , (27)

β(xt)xt ≈ β0xt , (28)

where β0 = β(0) and β1 = dβ(xt)
dxt

|xt=0. For S2, they are, respectively, β0 = 1 − eµβ and

β1 = −eµβbβ. Then, νt is approximated by an exponentially linear function of xt as given in

(17), where the coefficients satisfy the following simultaneous quadratic equations:

µν = β0

{
µν + µc −

1

2
vcν(µγ − 1)

}
, (29)

bν = β0

(
bc +Φxbν −

1

2
vcνbγ

)
+ β1

{
µν + µc −

1

2
vcν(µγ − 1)

}
, (30)

where vcν is given in (20). Notice that the second term on the RHS of (30) is newly added by

the extension to S2.

The accuracy of the approximation to νt is examined in Appendix C. In brief, it seems to

be maintained for parameter values determined by the calibration procedure in Section 3.2 and

given specifically in Tables 2 and 4. Intuitively, the reason for a high accuracy is that β(xt) does

not change much, as will be addressed in Section 4.1 and Figure 1(b). Then, (27) and (28) are

not bad approximations after all.

Once ln νt is approximated as a linear function of xt, the price-of-risk vector λt is derived as

linear in xt without further approximation, which is due to S2 together with a linear specification

of γt. Specifically, from (9), the log SDF can be written as

mt+1 = ln(1− βt+1) + (1− γt) ln νt+1 − γt∆ct+1 + resmt , (31)

where resmt collects the remaining terms observed at time t. By substituting (16) and (17) and

then (10) and (13) into (31), we have as before mt+1 − Et[mt+1] = −λ′tzt+1, where

λt = (σxbν + σc)γt − σx(bβ + bν) . (32)

By a linear specification of γt given in (14), λt is also linear in xt. Apart from bν that is not

the same between S1 and S2, −σxbβ is newly added by the extension to state-dependent time

preference.

14



Finally, to obtain the one-period real risk-free rate rf,t+1 as a linear function of xt, we need

to rely on another approximation, which is to linearize lnβ(xt) around xt = 0. Specifically for

S2,

ln(1− exp{µβ + b′βxt}) ≈ ln(1− eµβ )− eµβ

1− eµβ
b′βxt . (33)

Again, this approximation may not be a serious concern due to a small variation in β(xt) as

noted above. Then, rf,t+1 is approximated as given in (23), where the coefficients are given as

follows:

Af = − lnβ0 + µc −
1

2
vcβ − (µγ − 1)(s′cxbν + scc) + (µγ − 1)(sxxbν + scx)

′bβ , (34)

Bf = bc − (s′cxbν + scc)bγ +

{
1

β0
Id×d − Φx + bγ(sxxbν + scx)

′
}
bβ , (35)

where Id×d is a d-by-d identity matrix and

vcβ = vart[ln(1− βt+1)−∆ct+1] = b′βsxxbβ − 2s′cxbβ + scc . (36)

2.7 Prices of zero-coupon bonds and equites

Both the risk-free rate and price of risks are derived as linear functions of the Gaussian state

vector exactly for S1 and approximately for S2. We now turn to the pricing of zero-coupon

bonds and equites by utilizing the affine framework.

2.7.1 Real zero-coupon bonds

Let PRt,n be time-t real price of a zero-coupon bond maturing in time t + n with the face value

normalized to one unit of consumption. The Euler equation for PRt,n is PRt,n = Et[Mt+1P
R
t+1,n−1]

with the initial condition PRt,0 = 1. The solution is of the form

PRt,n = exp{ARn +BR ′
n xt} , (37)

where ARn and BR
n are determined recursively, starting with AR0 = 0 and BR

0 = 0. The recursive

equations are provided in Appendix D.

2.7.2 Nominal zero-coupon bonds

Let PNt,n be time-t real price of a zero-coupon bond maturing in time t + n with the face value

normalized to one in nominal terms or equivalently 1/Πt+n in real terms. The Euler equation
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for PNt,n is PNt,n = Et[Mt+1P
N
t+1,n−1] with the initial condition PNt,0Πt = 1. It follows that

PNt,nΠt = Et

[
Mt+1(P

N
t+1,n−1Πt+1)

Πt
Πt+1

]
. (38)

The solution to (38) is of the form

PNt,nΠt = exp{ANn +BN ′
n xt} , (39)

where ANn and BN
n are determined recursively, starting with AN0 = 0 and BN

0 = 0. The recursive

equations are provided in Appendix D.

2.7.3 Zero-coupon equities or divided strips

Let PDt,n be time-t real price of a zero-coupon equity that pays Dt+n in time t + n. The Euler

equation for PDt,n is PDt,n = Et[Mt+1P
D
t+1,n−1] with the initial condition PDt,0/Dt = 1. It follows

that
PDt,n
Dt

= Et

[
Mt+1

PDt+1,n−1

Dt+1

Dt+1

Dt

]
. (40)

The solution to (40) is of the form

PDt,n/Dt = exp{ADn +BD ′
n xt} , (41)

where ADn and BD
n are determined recursively, starting with AD0 = 0 and BD

0 = 0. The recursive

equations are provided in Appendix D.

3 Calibration

We calibrate the parameters of the proposed model by matching it with the LW model. Specif-

ically, both the one-period real risk-free rate rf,t+1 and the price-of-risk vector λt are matched

between the two models, which means from equation (26) that the SDF of the LW model that

is exogenously specified is replicated by that of the proposed model endogenously derived from

equilibrium conditions. Both models then agree with the price of any asset. This calibration

approach has two advantages. First, it provides the proposed model with the opportunity to

inherit a high descriptive ability of the LW model with respect to average term structures of

zero-coupon bonds and equities. Second, it provides the LW model with an equilibrium foun-

dation, uncovering preferences and consumption dynamics implicit in this reduced-form model.

Section 3.1 introduces the LW model and Section 3.2 explains a calibration procedure.
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3.1 The LW model

The LW model has the following six variables (the notation is slightly changed from the original

one):

∆dt : divided growth rate

∆πt : inflation growth rate

xd,t : factor driving expected divided growth rate

xπ,t : factor driving expected inflation growth rate

xf,t : factor driving the real risk-free rate

xλ,t : factor driving the price of risks

Note that consumption growth rate does not appear in the LW model as it is a reduced-form

model. The last four variables are collected in a state vector, denoted as xLWt :

xLWt = (xd,t xπ,t xf,t − µf xλ,t − µλ)
′ , (42)

where µf and µλ are the unconditional means of xf,t and xλ,t, respectively (those of xd,t and

xπ,t are implicitly assumed to be zero). The dynamics of these variables are specified as

∆dt+1 = µd + xd,t + σ′dzt+1 , (43)

∆πt+1 = µπ + xπ,t + σ′πzt+1 , (44)

xLWt+1 = ΦLW ′
x xLWt + σLW ′

x zt+1 . (45)

The log SDF of the LW model, denoted as mLW
t+1 , is specified exogenously as

mLW
t+1 = −xf,t −

1

2
sddx

2
λ,t − xλ,tσ

′
dzt+1 , (46)

where sdd = σ′dσd A notable feature of mLW
t is that it is driven by the same innovation term

as driving dividend growth, σ′dzt+1. The conditional correlation between mLW
t+1 and ∆dt+1 is

then −xλ,t/|xλ,t|. Since the parameters calibrated by LW imply Pr{xλ,t > 0} = 0.99, these two

variables can safely be regarded as perfectly negatively correlated. That is, a negative shock to

dividend growth almost always increases the SDF. This mechanism is the key to generating high

risk premiums of short-term dividend strips that are strongly affected by shocks to dividend

growth. Risk premiums arising from shocks to the other variables are non-zero as long as these

shocks have non-zero correlations with dividend growth shock.

The parameter values of the LW model are summarized in Table 2 of this manuscript, which

are collected from tables 1–3 in LW (2011). The unconditional means, standard deviations, and
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autocorrelations are expressed in annual terms, except for conditional first and second moments

of xλ,t expressed in raw numbers. The annual numbers are transformed into quarterly raw

numbers when substituted into the models.

Several notes on the parameter values are in order. First, the autoregressive matrix of

xLWt , ΦLWx , is diagonal. The expected-dividend-growth factor xd,t and the risk-free rate factor

xf,t are relatively persistent as the autoregressive coefficients are equal to and larger than 0.9,

respectively. Second, the correlation between innovations in ∆dt and xd,t is −0.83, indicating

that a negative shock to realized dividend growth is more likely increases expected dividend

growth. An important implication of the negative correlation is that long-term dividend strips

are not as risky as short-term ones because a negative shock to realized dividend growth, which

always increases the SDF, raises the level of future dividends and thus the price of long-term

dividend strips. The negative correlation together with the innovation term of the SDF given

in (46) are the key for a downward-sloping term structure of dividend risk premiums. Third,

the correlation between innovations in ∆πt and xπ,t is set to one, indicating that realized and

expected inflation growth rates move one for one. Fourth, the correlation between innovations

in ∆dt and πt is −0.3. Because πt and xπ,t are perfectly correlated, the correlation between

innovations in ∆dt and xπ,t is also −0.3. Then, a positive shock to realized and expected inflation

growth more likely decreases realized dividend growth, which increases the SDF. Meanwhile, the

rise in realized and expected inflation growth lowers the payoffs of nominal bonds in real terms

with both short and long maturities. Hence, nominal bonds cannot be hedge against events of

raising the SDF, leading to an upward-sloping term structure of nominal interest rates. Fifth,

the correlation between innovations in ∆dt and xf,t is −0.3. The (weak) negative correlation

contributes to generating a moderately upward-sloping term structure of real interest rates.

Specifically, by a negative shock to realized dividend growth, the SDF increases and the real

risk-free rate tends to rise by the negative correlation. The rise in the real risk-free rate in turn

lowers the prices of real bonds, indicating that real bonds cannot be hedge against events of

raising the SDF.

In summary, all variables, except xλ,t, are correlated negatively with ∆dt and hence positively

with mt, which intuitively means that the agent dislikes increase in these variables. The factor

risk premiums, which are computed as −covt[mt+1, · ] = sd·xλ,t, are then negative except those

of ∆dt and xλ,t. In the last row of Table 2, the factor risk premiums evaluated at xλ,t = µλ are

presented in annual percentage terms. First, by far the largest in absolute value is the factor
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risk premium of ∆dt, 17% per year. Then, an asset that has a positive exposure to ∆dt, such as

short-term dividend strips, is supposed to command a positive risk premium. In fact, the risk

premium of the one-quarter dividend strip is exactly 17%. Second, the factor risk premium of

xλ,t is zero by the zero correlation between innovations in xλ,t and ∆dt. Then, even though an

asset has either a positive or negative exposure to xλ,t, this does not affect the risk premium of

this asset. However, the exposure to xλ,t does affect the volatility and thus the Sharpe ratio of

this asset. Third, the factor risk premiums of the rest of the variables are negative. Then, an

asset that has a positive exposure to one of these variables commands a negative risk premium

attributed to it.

3.2 Calibration procedure

The most straightforward approach for replicating the SDF of the LW model with that of the

proposed model is to use the same variables. Specifically, we match xt = xLWt and inherit the

dynamics of xLWt as well as those of ∆dt and ∆πt into the proposed model. This means that

the parameters associated with these dynamics are not calibrated in this study: We simply

borrow them from LW (2011). Then, the parameters to calibrate here are those associated with

consumption dynamics and state-dependent preferences that do not appear in the LW model.

We first re-specify the consumption process as

∆ct+1 = µc + bcxd,t + σ′czt+1 , (47)

which is similar to the dividend process given in (43). In particular, expected consumption

growth is driven by the same state variable (scaled by bc) as driving expected dividend growth.

The parameters of the consumption process are those of the drift, (µc, bc), and those associated

with the variance and covariances with the other six variables, (scc, scd, scπ, s
′
cx). Among

these consumption parameters, we fix (µc, bc) to maintain a reasonable relationship between

consumption and dividend growth (a more detailed reason is provided below). Specifically, we

set µc = µd and bc = 1/3, following Bansal and Yaron (2004). Then, there are seven consumption

parameters that need to be calibrated.

On the other hand, the parameters of state-dependent preferences are (µγ , b
′
γ) in the risk-

aversion coefficient γt and (µβ, b
′
β) in the subjective discount factor βt. Among these preference

parameters, some elements of bγ can be determined immediately. In both the LW and proposed

models, the price-of-risk vector is driven by one factor: xλ,t in the LW model and γt in the
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proposed model. It is deduced from this relation that γt is a linear function of xλ,t alone:

γt = µγ + bγ4(xλ,t − µλ) . (48)

Hence, bγi = 0 (i = 1, 2, 3), resulting in seven preference parameters that need to be calibrated.

These unknown parameters are determined by numerically solving the following sets of con-

straint equations. The first set is obtained by matching the one-period real risk-free rate, which

is given as a state variable in the LW model and as a linear function of state variables in the

proposed model. Specifically,

xf,t = Af +Bf1xd,t +Bf2xπ,t +Bf3(xf,t − µf ) +Bf4(xλ,t − µλ) . (49)

Equation (49) holds for any xt, leading to the five constraint equations:

Bf1 = Bf2 = Bf4 = 0, Bf3 = 1, Af = µf . (50)

The second set of constrained equations is obtained by matching the factor risk premiums.

In the LW model (augmented with the consumption process given in (47)):

−covt[m
LW
t+1 , ∆ct+1] = scdxλ,t , (51)

−covt[m
LW
t+1 , ∆dt+1] = sddxλ,t , (52)

−covt[m
LW
t+1 , ∆πt+1] = sdπxλ,t , (53)

−covt[m
LW
t+1 , xt+1] = sdxxλ,t . (54)

Note that (54) is four dimensional. The corresponding factor risk premiums in the proposed

model are

−covt[mt+1, ∆ct+1] = (s′cxbν + scc)γt − s′cx(bβ + bν) , (55)

−covt[mt+1, ∆dt+1] = (s′dxbν + scd)γt − s′dx(bβ + bν) , (56)

−covt[mt+1, ∆πt+1] = (s′πxbν + scπ)γt − s′πx(bβ + bν) , (57)

−covt[mt+1, xt+1] = (s′xxbν + scx)γt − s′xx(bβ + bν) . (58)

By substituting (48) into (55)–(58) and then matching the resulting equations with (51)–(54),

we have the following fourteen equations:

(Slope) (Intersept)

bγ4(s
′
cxbν + scc) = scd , (µγ − bγ4µλ)(s

′
cxbν + scc)− s′cx(bβ + bν) = 0 , (59)
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bγ4(s
′
dxbν + scd) = sdd , (µγ − bγ4µλ)(s

′
dxbν + scd)− s′dx(bβ + bν) = 0 , (60)

bγ4(s
′
πxbν + scπ) = sdπ , (µγ − bγ4µλ)(s

′
πxbν + scπ)− s′πx(bβ + bν) = 0 , (61)

bγ4(s
′
xxbν + scx) = sdx , (µγ − bγ4µλ)(s

′
xxbν + scx)− s′xx(bβ + bν) = 0 . (62)

Taken together, there are fourteen unknown parameters; two in γt, five in βt, and seven

for consumption variance and covariances. Meanwhile, there are nineteen constraint equations

needed for perfect replication; five from the risk-free rate and fourteen from the factor risk

premiums. Hence, the perfect replication is impossible in the first place. This is so even if

(µc, bc) are free parameters. In this case, these drift parameters are used for matching the factor

risk premiums, rather than capturing expected consumption growth. Consequently, unrealistic

values are returned, and this is why we fix (µc, bc) for a realistic consumption process.

Among these equations, five equations in (50) and seven slope equations in (59)–(62) are

selected. By this selection, there is no difference in the loadings of each asset on the state

vector, Bi
n (i = {R,N,D}), between the LW and proposed models; see Appendix D for detail.

Additionally, given the fact that the factor risk premium of ∆dt is by far the largest, the intercept

equation (60) is also selected. This means that the factor risk premium for ∆dt is exactly

matched between the two models, and so is the risk premium of the one-quarter dividend strip

(17% per year). Finally, one free parameter is reserved for keeping positive definite the extended

correlation matrix, which includes consumption growth but excludes realized inflation growth

due to the perfect correlation with expected inflation growth. Without this constraint, a negative

definite correlation matrix is returned in exchange for a closer fit to the SDF of the LW model.

It is noted that since the rest of the intercept equations, (59) and (61)–(62), are not satisfied,

average term structures differ between the two models, as will be seen in Section 4.3. There

are two reasons that we give priority to the slope equations over the intercept equations. First,

the constant terms in the pricing formulas, Ain (i = {R,N,D}), which matter with average

term structures, are computed recursively and dependently on the loadings; see equations (144),

(147), and (150) in Appendix D. Second, it is difficult to find the solutions to intercept equations

that satisfy the following two conditions: (i) (µν , bν) are real; and (ii) the extended correlation

matrix is positive definite.
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4 Baseline results

The purpose of this section is to address whether the proposed model can replicate the ter-

m structures of bonds and equities generated by the LW model and discuss preferences and

consumption dynamics implicit in these term structures. There are multiple, in fact numerous,

solutions to the set of constraint equations presented in Section 3.2. In Section 4.1, we first select

several solutions to discuss their pattern, and then detail one of them in Section 4.2. At this

particular solution, we generate term structures of zero-coupon bonds and equities in Section

4.3. Finally, in section 4.4, we change the shape of the average term structure of real interest

rates without much affecting the other term structures. This ability is important as the shape

of the real term structure is indecisive.

4.1 Several solutions and their pattern

Table 3 presents several solutions in ascending order of the mean risk aversion µγ . First of

all, there is an inverse relationship between µγ and the volatility of innovation in consumption

growth
√
scc. In addition, this relationship is nonlinear: The rate of decrease in

√
scc is much

slower than the rate of increase in µγ . Specifically, at µγ = 30,
√
scc is 8.84% per year, which is

large relative to historical estimates discussed below and the corresponding dividend volatility

set at 10%. It becomes half at around µγ = 120 and less than 4% at µγ = 150. Further reduction

in
√
scc is limited: (

√
scc, µγ) = (3.43%, 300), (3.32%, 500), (3.28%, 1000).

Second, the unconditional standard deviation of the risk aversion, SD[γt], also increases

with µγ . In fact, the ratio of mean to standard deviation is nearly constant at 1.2 for any

solutions. Because the standard deviation is large relative to the mean, γt becomes negative

with a nonnegligible probability. Figure 1(a) depicts the unconditional distribution of γt at

Solution (e) of Table 3 (i.e., µγ = 150). The probability of γt < 0 reaches 12%. The result may

be in line with Curatola (2015) in that risk loving agents exist at a certain proportion of the

population, which helps explain a negative slope of dividend risk premiums.

If a negative risk aversion is unacceptable, it can be avoided by specifying γt as a positive

function of xt. In Appendix C, we consider a quadratic specification and examine the accuracy

of the approximation for the continuation value νt. Alternatively, it is also possible to virtually

avoid negative values by reducing the volatility of xλ,t. It is originally set at 4 (raw figures) by

LW (2011). But the results of this study suggest that it is too large. In Section 5, we change
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the values of some of the parameters originally set by LW to see whether reasonable economic

implications are obtained without reducing the descriptive ability for average term structures

presented in this section.

Third, the unconditional mean of the subjective discount factor, E[βt], expressed in quarter-

ly terms, increases with µγ . At µγ = 30, it is 0.969, which appears to be smaller than usually

considered. At µγ = 90, it increases to a reasonable value of 0.985. Conversely, the uncondition-

al standard deviation of the subjective discount factor, SD[βt], decreases with µγ . The inverse

relationship between the mean and variance of βt is a natural consequence of the specification

given in (16), which has an upper bound of one. Figure 1(b) depicts the unconditional distri-

bution of βt at Solution (e) of Table 3 (i.e., µγ = 150). Obviously, βt does not vary largely.

Consequently, the unconditional probability of βt < 0 is negligibly small, indicating that the

specification given in (16) is virtually consistent with Assumption (ii) (i.e., 0 < βt < 1). Also

of note is that a small variation in βt is beneficial for the accuracy of the approximation to νt.

As shown in Section 2.6, the source of the approximation lies in (27) and (28). The smaller

the variation in βt, the more accurate is the approximation. In the limit, if βt is constant, no

approximation is involved as seen in Section 2.5.

In summary, through the matching of the proposed model with the LW model, it is revealed

that we face either large risk aversion or high consumption volatility, or both. This is a typical

tradeoff in the literature of equity premium puzzles. But here, it results from many equity risk

premiums having the term structure with a sharply downward slope. The tradeoff implies that

the specification of the SDF and/or the calibration of the parameters provided by LW (2011) are

not in fact realistic from an equilibrium point of view. This problem is masked by the flexibility

of the LW model. But once economic structures are imposed, it does emerge. In Section 5, we

slightly change the specification of cash flow processes as well as the values of the parameters

to resolve the trade-off and recover realistic economic implications.

4.2 Implied consumption dynamics and preferences at a particular solution

Facing the tradeoff between risk aversion and consumption volatility, we choose a reasonable

consumption volatility while giving up a reasonable risk aversion. Specifically, we focus here

on Solution (e) of Table 3, characterized by µγ = 150 and
√
scc = 3.91%. The consumption

volatility of 4% seems reasonable when viewed from U.S. historical data. For example, in Barro

(2006, Table III), a sample standard deviation of real per capita GDP growth over 1890–2004
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is 4.5%. In Mehra and Prescott (1985, table 1), originally from Grossman and Shiller (1981), a

sample standard deviation of real per capita consumption growth over 1889–1978 is 3.6%.

We report all calibrated parameters with particular attention to the following two points. The

first is the mechanism of implying a large µγ and the second is key parameters for determining

the shape of the average term structure of real interest rates. The parameters of consumption

dynamics are first addressed, followed by those of state-dependent preferences.

4.2.1 Consumption growth

Panel A of Table 4 presents implied correlations between innovations in consumption growth

∆ct and the other six variables in addition to the volatility of innovation in ∆ct. First, the

correlation between ∆ct and dividend growth ∆dt, denoted as ρcd, is 0.88. A high ρcd is a

natural consequence of the calibration procedure, which requires that the innovation term of

the SDF in the LW model be replicated by innovations in consumption growth and associated

state variables in the proposed model. The implied correlation is lower than it is in assuming

Dt = (Cet )
a: In this case ρcd = 1. However, it may be larger than conventional estimates

from time-series data on aggregate consumption and dividend growth. An economic rationale

of this result seems to be limited participation in asset markets. Namely, as assumed by Marfè

(2017), only shareholders who earn dividends and consume them can have access to the markets,

indicating that the SDF is that of shareholders. This assumption then supports not only the

SDF of the LW model but a high correlation between consumption and dividend growth.

Second, the correlation between ∆ct and expected-dividend-growth factor xd,t, denoted as

ρcx1, is −0.76, which is close to the correlation between ∆dt and xd,t originally fixed at −0.83.

These negative correlations contribute to making longer-term dividend strips less risky than

shorter-term ones.

Third, the correlation between ∆ct and expected-inflation-growth factor xπ,t, denoted as ρcx2,

is −0.09, which is somewhat smaller in absolute value than the correlation between ∆dt and xπ,t

originally fixed at −0.3. Note that the correlation between ∆ct and realized inflation growth ∆πt

is the same as ρcx2 due to the perfect correlation between ∆πt and xπ,t. Negative correlations of

consumption growth with realizedl and expected inflation growth are the key channel through

which equilibrium models generate a positive slope of the term structure of nominal interest rates

(e.g., Piazzesi and Schneider, 2006; Wachter, 2006). Empirically, however, it may be difficult

to find decisive evidence for a negative correlation. It is then beneficial to create alternative
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channels of making longer-term nominal bonds riskier. Indeed, the proposed model has such a

channel, which is addressed in Section 4.4.

Fourth, the correlation between ∆ct and risk-free-rate factor xf,t, denoted as ρcx3, is −0.05.

It is consistent in sign with, but smaller in magnitude than, the correlation between ∆dt and

xf,t originally fixed at −0.3.

Finally, the correlation between ∆ct and price-of-risk factor xλ,t, denoted as ρcx4, is 0.34,

which is higher than the correlation between ∆dt and xλ,t originally fixed at zero. A positive

ρcx4 is from a positive covariance scx4, which is needed to match the factor risk premium of

xλ,t between the LW and proposed models. Specifically, recall that the fourth row of the slope

equation (62) is

bγ4(s
′
xx4bν + scx4) = sdx4 (= 0) , (63)

where scx4 and sdx4 are, respectively, the fourth row of scx and sdx (the vectors consisting of

covariances of innovation in xt with innovations in ∆ct and ∆dt) and sxx4 is the fourth column

of sxx (the variance matrix of innovation in xt). Note that sdx4 is originally set to zero by LW

(2011). On the LHS of (63), s′xx4bν = covt[xλ,t+1, ln νt+1] turns out to be negative, which is

intuitive because a positive shock to the price of risks tends to lower the continuation value. It

then follows that scx4 = −s′xx4bν > 0.

A positive correlation between ∆ct and xλ,t appears counterintuitive as a positive shock to

consumption growth tends to raise the price of risks. Because a positive shock to consumption

growth lowers the SDF, it may be concerned that the SDF lowers in response to rise in xλ,t. We

will show below that the SDF, in fact, is correlated positively with xλ,t.

Taken together, implied parameters of the consumption process are basically consistent with

pre-determined parameters of the divided process. Though the correlation between innovations

in consumption growth and price of risks becomes positive, this is inevitable by the calibration

procedure.

4.2.2 Preferences

To ease explanation, we call 1 − βt the subjective discount rate. Panel B of Table 4 presents

implied parameters of the risk aversion γt and the log subjective discount rate ln(1−βt), together

with calculated parameters of the log continuation value ln νt.

First of all, the loadings on the expected-inflation-growth factor xπ,t are zero for all of these

functions. The reason that γt does not depend on xπ,t is noted in Section 3.2. xπ,t does not
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affect ln(1− βt) because it does not enter into the risk-free rate by the constraint Bf2 = 0 given

in (50). Since xπ,t has no influence on γt, βt, or ∆ct, it has no channel of affecting νt.

Risk aversion

As reported in Table 3, the standard deviation of γt is 128. Behind such a large value, bγ4 (the

coefficient of xλ,t) is implied to be 8.94. A large bγ4 together with a large µγ are a consequence

of explaining a large factor risk premium of ∆dt set by LW. Specifically, recall that the slope

equation for matching the factor risk premium of ∆dt is

bγ4(s
′
dxbν + scd) = sdd . (64)

On the LHS, s′dxbν = covt[∆dt+1, ln νt+1] turns out to be negative, indicating that a positive

shock to dividend growth tends to decrease the continuation value. This relation can intuitively

be understood by recalling that a positive shock to ∆dt more likely reduces xd,t due to ρdx1 =

−0.83 and hence ln νt having a positive coefficient of xd,t, bν1 = 8.86. Meanwhile, both bγ4 and

sdd in (64) are positive. It follows that scd > −s′dxbν > 0. But because scd =
√
sccsddρcd is much

smaller than sdd given a reasonable
√
scc (around 4% per year) and ρcd ≤ 1, bγ4 must be large

to equate the LHS with sdd.

This logic can also be used for explaining why a large
√
scc is required to reduce bγ4. For a

small bγ4, scd must be large to satisfy (64). But because sdd is fixed at 10% per year and because

ρcd has an upper limit of one, there is no other way but to increase
√
scc.

A large bγ4 leads to a large µγ , which is explained using the intercept equation for matching

the factor risk premium of ∆dt:

(µγ − bγ4µλ)(s
′
dxbν + scd) = s′dx(bβ + bν) . (65)

The RHS of (65) is

s′dx(bβ + bν) = covt[∆dt+1, ln νt+1] + covt[∆dt+1, ln (1− βt+1)] . (66)

As noted above, the first term on the RHS of (66) is negative. The second term on the RHS

turns out to be positive but is dominated by the first term. Then, the RHS of (65) is negative

but not very large in absolute value. Meanwhile, bγ4 on the LHS of (65) is large to satisfy (64)

and µλ is originally fixed at 17. To offset bγ4µλ, µγ must also become large.
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These explanations make it clear why we face the tradeoff between reasonable values of risk

aversion and consumption volatility. In order to reduce µγ , bγ4 must also be reduced. But this

is possible only by increasing the consumption volatility.

Because of bγ4 = 8.94, the risk aversion increases with the price-of-risk factor. Because the

correlation between ∆ct and xλ,t is positive (i.e., ρcx4 = 0.34), so is the correlation between

∆ct and γt, which may be counterintuitive. However, this relationship does not violate an

inverse relationship between ln νt and γt because ln νt has a negative coefficient of xλ,t, bν4 =

−0.003. In fact, the covariance between ln νt and γt is negative, covt[ln νt, γt] = −0.24. This

negative covariance in turn implies a positive covariance between the log SDF mt and γt, which

is fundamental for many models to explain high equity premiums. This relation is detailed after

reporting the parameters in the subjective discount rate.

Subjective discount rate

First of all, it is noticed that the signs of the coefficients in ln(1 − βt) are all opposite to

those in ln νt, indicating that the subjective discount rate moves inversely with the continuation

value. This movement makes sense by recalling that the wealth-consumption ratio is solved in

equilibrium as ln(W ∗
t /C

e
t ) = − ln(1 − βt). So, the inverse relationship between ln(1 − βt) and

ln νt is consistent with the parallel movement between the continuation value and wealth.

More precisely, increase in xf,t and xλ,t increases ln(1−βt) due to bβ3 = 30.2 and bβ4 = 0.014,

respectively. The positive relationship between subjective discount rate and risk free rate is

reasonable. From a positive bβ4, it is implied that the agent raises her discount rate and hence

becomes less patient when she becomes more risk averse. Conversely, increase in xd,t decreases

ln(1 − βt) due to bβ1 = −8.66. It is implied that the agent lowers her discount rate and hence

becomes more patient when she has brighter prospects for future consumption.

Finally, we discuss implied conditional covariances between mt and state-dependent prefer-

ences.

covt[mt+1, γt+1] = b′γ{sxx(bβ + bν)− (sxxbν + scx)γt} = 1.53 , (67)

covt[mt+1, ln(1− βt+1)] = b′β{sxx(bβ + bν)− (sxxbν + scx)γt} = 10−5(292− 1.6γt) . (68)

The conditional covariance between mt+1 and γt+1 is positive, which is consistent with many

equilibrium models in that rise in the risk aversion raises the SDF. It is constant because only

the fourth element of bγ is non-zero and because the fourth element of (sxxbν + scx) is zero by
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the slope equation (62) for matching the factor risk premium of xt. On the other hand, the

conditional covariance between mt+1 and ln(1− βt+1) depends on γt. It is positive at µγ = 150

and remains so for γt < 180. Then, it is implied that the agent more likely raises her discount

rate when the SDF is high. Because future cash flows are more discounted by the compound

effect, real bonds are devalued with the devaluation more significant for longer-term bonds.

They therefore command high risk premiums and the resulting term structure of real interest

rates will be upward-sloping.

In summary, when consumption volatility is reasonable, implied parameters of γt are large.

They are mostly determined by the factor risk premium of dividend growth, which in turn

is the key to determining risk premiums of short-term dividend strips. On the other hands,

the parameters in βt are more closely related with (real) bonds. They are calibrated so as to

explain the real term structure. In Section 4.3, we actually generate average term structures of

zero-coupon bonds and equities at Solution (e) of Table 3 discussed here.

4.3 Term structure shapes

It is first noted that any solutions, some of which are presented in Table 3, lead to almost

the same average term structures because the factor loadings Bi
n (i = {R,N,D}) do not differ

among the solutions: In fact, they are always identical to those in the LW model by design of the

calibration. The constant terms Ain (i = {R,N,D}) differ among the solutions because not all

of the intercept equations are satisfied and the resulting errors have different patterns. However,

given the identical loadings, these errors cannot be large by the recursive equations for Ain.

4.3.1 Factor loadings

We first show the term structure of factor loadings for the log-price of zero-coupon bonds and

equities, Bi
n (i = {R,N,D}). The sign and shape of Bi

n give us a clue of the term structure

of risk premiums. Since we know the sign and magnitude of factor risk premiums, which are

presented in Panel C of Table 4, we understand the risk premium of an asset if we know an

asset-specific quantity of risks, which is associated with the loadings. Also, the knowledge about

the loadings is helpful for roughly capturing the shape of the term structure of excess-return

volatilities.

Figure 2 plots Bi
n against n (quarters). First of all, the loadings are exactly the same

between the LW and proposed models, so there is virtually one curve in each graph. The plots
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are normalized by multiplying the unconditional standard deviation of each factor. Hence, they

are interpreted as the loadings on the factors with unit volatility. We begin with Panel (c)

showing the loadings on the risk-free-rate factor xf,t, which is a common factor for all assets,

producing the baseline risk. They are identical for all assets, negative for all n ≥ 1, and decrease

with n. Since the factor risk premium of xf,t is negative (−0.11% per year), the negative loadings

on xf,t lead to positive risk premiums attributed to xf,t for all assets. Furthermore, the risk

premiums are expected to increase with n as the loadings decrease with n. Since for real bonds,

the loadings on the other factors are zero as seen in the other panels of Figure 2, the term

structure of real interest rates is expected to be upward-sloping.

Panel (b) shows that only nominal bonds have non-zero loadings on the expected-inflation-

growth factor xπ,t, which are negative for all n ≥ 1 and decrease with n. Since the factor risk

premium of xπ,t is negative (−0.18% per year), the risk premiums attributed to xπ,t become

positive for all n ≥ 1 and increase with n. These premiums are added to those attributed to

xf,t, and the resulting term structure of nominal interest rates will be above that of real interest

rates with the difference between the two curves widening with n.

Panel (a) shows that only dividend strips have non-zero loadings on the expected-dividend-

growth factor xd,t, which are positive for all n ≥ 1 and increase with n. Since the factor

risk premium of xd,t is negative (−0.46% per year), the risk premiums attributed to xd,t are

negative for all n ≥ 1 and more so for longer n. This means that a dividend strip has two

opposing components of the risk premium: One is a positive risk premium attributed to xf,t

and the other is a negative risk premium attributed to xd,t. The latter dominates the former.

Specifically, while the magnitude of the normalized loadings is similar in absolute value between

xd,t and xf,t as seen in Figures 2(a) and 2(c), the normalized factor risk premium of xd,t is

about three times larger in absolute value than that for xf,t. Consequently, the term structure

of dividend risk premiums will have a downward slope.

Finally, in Panel (d), the loadings on the price-of-risk factor xλ,t are presented, which are

negative for all assets. They differ in shape, however. They decrease monotonically with n

for both real and nominal bonds whereas they are inversely hump-shaped for dividend strips.

These shapes do not matter with the risk premium of any assets in the original LW model,

however, because the factor risk premium of xλ,t is zero. They do matter with the volatility

and hence the Sharp ratio. Specifically, the negative hump at around n = 35 − 40 will raise

the volatility of return to dividend strips with these maturities. In contrast to the LW model,
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the negative loadings on xλ,t also matter with any assets’ risk premiums in the proposed model

because the factor risk premium of xλ,t is negative as presented in Panel C of Table 4. Hence,

the negative loadings on xλ,t generate additional risk premiums. Consequently, term structures

of risk premiums in the proposed model will be above those in the LW model, which is indeed

the case as seen below.

4.3.2 Level and volatility of real and nominal interest rates

Let Y i
t,n (i = {R,N}) be the yield to maturity of a zero-coupon bond maturing in n periods:

Y i
t,n = − 1

n lnP
i
t,n. By substituting the formulas for P it,n in (37) and (39),

Y i
t,n = − 1

n
(Ain +Bi ′

n xt) (i = {R,N}) . (69)

Then, the unconditional mean and variance of Y i
t,n are −Ain/n and Bi ′

n var[xt]B
i
n/n

2, respectively.

These moments, expressed in quarterly terms, are annualized by multiplying by four.

Figure 3(a) plots the annualized unconditional mean of real interest rates, 4E[Y R
t,n], against

n (quarters) produced by the LW (dotted line) and proposed (solid line) models. Both plots are

upward-sloping. By design of the calibration in which the real risk-free rate is matched exactly

between the two models, both plots start from the same point at n = 1. By increasing n, they

deviate gradually. At n = 160 (forty years), the mean real interest rate for the proposed model

is higher by 1% than that for the LW model in line with the argument in Section 4.3.1.

Figure 3(b) plots the annualized unconditional mean of nominal interest rates, 4E[Y N
t,n].

Again, both plots are upward-sloping and above those for real interest rates due to additional

risk premiums attributed to xπ,t. They start from almost the same point at n = 1 and deviate

gradually with the proposed model producing higher nominal rates. The deviation reaches 1.65%

at n = 160.

Figures 3(c) and 3(d) plot the annualized unconditional standard deviation of real and nom-

inal interest rates,
√
4var[Y i

t,n] (i = {R,N}). Both plots are downward-sloping. There is no

discrepancy between the LW and proposed models because the loadings Bi
n (i = {R,N}) are

the same between the two models for any n.

Figures 4(a) and 4(b) plot the term structures of real and nominal interest rates generated

by the proposed model when the risk-free-rate factor xf,t is above (+2SD) or below (−2SD) two

standard deviations from the mean while the other factors are fixed at the mean (i.e., zero).

Consistent with intuition, when xf,t is high (low), both real and nominal curves shift upward
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(downward) with the shift more significant at the short end.

Analogous plots are shown in Figures 4(c) and 4(d), where the price-of-risk factor xλ,t is

above or below two standard deviations from the mean with the other factors fixed at the mean.

It is noted that this is equivalent to changing the risk aversion coefficient γt by plus or minus two

standard deviations from the mean because γt is a linear function of xλ,t. Also consistent with

intuition, when the agent becomes more risk averse (i.e., γt is high), both curves shift upward

as she requires high risk premiums. When she is less risk averse (i.e., γt is low), both real and

nominal interest rates first decrease up to n = 12 − 16 (three to four years) and then increase

because of the constant term, −Ain/n, which is increasing in n as shown in Figures 3(a) and

3(b).

The term structures of interest rates in Figures 4(e) and 4(f) are drawn when the economy

is “Good” and “Bad,” respectively. We arguably define a good (bad) state of the economy as

a state with low (high) xλ,t and high (low) (xd,t, xπ,t, xf,t). The high (low) value corresponds

to two standard deviations above (below) the mean. When the economy is good, both real

and nominal interest rates start from high levels, decrease with increasing n up to around

n = 40 (ten years), and then turn slightly increasing. Overall, both curves can be regarded

as flat- or downward-sloping. In contrast, when the economy is bad, both curves are sharply

upward-sloping, starting with low levels. The nominal interest rate at n = 1 is negative as the

model consists of Gaussian state variables. These plots do not seem to deviate largely from real

observations of the economy though some level adjustments may be necessary.

4.3.3 Risk premium, volatility, and Sharpe ratio of dividend strips

Let rDt+1,n−1 be the log return to a dividend strip, defined and developed as

rDt+1,n−1 = ln

(
PDt+1,n−1

PDt,n

)

= ln

(
PDt+1,n−1/Dt+1

PDt,n/Dt

)
+ ln

(
Dt+1

Dt

)
= (σxB

D
n−1 + σd)

′zt+1 + resDt , (70)

where resDt collects the remaining terms observed at time t. We define the risk premium of

a dividend strip, denoted as RPDt,n−1, based on the excess log return adjusted for convexity or

Jensen’s inequality term:

RPDt,n−1 = Et[r
D
t+1,n−1]− rf,t+1 +

1

2
vart[r

D
t+1,n−1]
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= −covt[mt+1, r
D
t+1,n−1] , (71)

where the second equality follows from the Euler equation, Et[e
mt+1+rDt+1,n−1 ] = 1. By developing

the conditional covariance in (71),

RPDt,n−1 = ARPDn−1 +BRPD
n−1 γt , (72)

where

ARPDn−1 = −(bβ + bν)
′(sxxB

D
n−1 + sdx) , (73)

BRPD
n−1 = s′dxbν + scd + (sxxbν + scx)

′BD
n−1 . (74)

The unconditional risk premium is then obtained as E[RPDt,n−1] = ARPDn−1 +BRPD
n−1 µγ .

Figure 5(a) plots the annualized unconditional mean of risk premiums, 4E[RPDt,n−1], against

n (quarters) implied by the LW (dotted line) and proposed (solid line) models. Both plots are

downward-sloping. They start from the same point, 17%, which is remarkably high. By increas-

ing n, they deviate gradually with the proposed model again producing higher risk premiums.

At n = 160, the risk premiums implied by the LW and proposed models are, respectively, 4.4%

and 5.8%, and both curves are almost flat.

Next, we compute the unconditional variance of excess return to a dividend strip, var[rDt+1,n−1−

rf,t+1]. First, it can be decomposed as

var[rDt+1,n−1 − rf,t+1] = var[Et[r
D
t+1,n−1 − rf,t+1]] + E[vart[r

D
t+1,n−1 − rf,t+1]] . (75)

The first term on the RHS of (75) is developed as

var[Et[r
D
t+1,n−1 − rf,t+1]] = var[RPDt,n−1] = BRP ′

n−1 var[γt]B
RP
n−1 . (76)

The first equality in (76) follows from the definition of the risk premium given in (71), where

vart[r
D
t+1,n−1] is actually constant. The second equality follows by substituting (72). By (14),

var[γt] = b′γvar[xt]bγ . The second term on the RHS of (75) is developed as

E[vart[r
D
t+1,n−1 − rf,t+1]] = vart[r

D
t+1,n−1] = BD ′

n−1sxxB
D
n−1 + 2s′dxB

D
n−1 + sdd , (77)

where the first equality follows because rf,t+1 is observed at time t and because vart[r
D
t+1,n−1] is

constant. The second equality follows by substituting (70).

Figure 5(b) plots the annualized volatility,
√
4var[rDt+1,n−1 − rf,t+1], implied by the LW and

proposed models. Both plots are the same because both BD
n and BRPD

n are the same for any
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n ≥ 1 between the two models. The reason for the same BD
n is that all slope equations (59)–(62)

are satisfied. In addition, BRPD
n is the same because the intercept equation (60) associated with

the factor risk premium of dividend growth is satisfied. The volatility curve is hump-shaped

with the peak at around n = 35− 40, which corresponds to the trough of the term structure of

loadings on xλ,t shown in Figure 2(d).

Finally, we compute the unconditional Sharpe ratio of dividend strips as a ratio of the

unconditional mean of risk premiums to the unconditional volatility of excess returns. Figure

5(c) plots the annualized ratio, 4E[RPDt,n−1]/
√
4var[rDt+1,n−1 − rf,t+1]. Both plots are sharply

downward-sloping with the curve for the proposed model less steep. As seen in Figures 5(a) and

5(b), the risk premiums are high while the volatilities are low at the short end. This combination

produces high Sharpe ratios. In the medium maturity range, the risk premiums decrease while

the volatilities increase, leading to a sharp decrease in the Sharpe ratio. At the long end, since

both risk-premium and volatility curves are almost flat, so is the curve of the Sharpe ratio.

Figure 6 presents the term structures of dividend risk premiums and Sharpe ratios gener-

ated by the proposed model when the price-of-risk factor xλ,t is above or below two standard

deviations from the mean. It is noted that since risk premiums are driven by γt, which is a

linear function of xλ,t alone, changing the other factors does not change the plots. Also, since

excess-return volatilities are constant for any maturities, the volatility curve does not change by

changing factor values. Accordingly, it is not surprising that only a parallel shift is observed in

both risk-premium and Sharpe-ratio curves. Consistent with intuition, the curves shift upward

(downward) when xλ,t and thus γt are large (small).

If we wish to see a more flexible shift in the risk premium curve, such that the curve is sloped

upward in times of good economy, it may be necessary to incorporate stochastic volatility into

cash flow processes.

In summary, the proposed model can produce average term structures of zero-coupon bonds

and equities that are close to those produced by the LWmodel. In the next subsection, we further

examine whether the proposed model can also generate the term structure of real interest rates

that is flat- or downward-sloping without much affecting the shape of the other term structures.

4.4 Changing the shape of the real term structure

The LW model can easily change the shape of the average term structure of real interest rates.

This ability is rooted in the SDF that is driven by the same innovation term as driving dividend
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growth, which makes it easy to change the correlations between the SDF and factors affecting

the real term structure. Since the proposed model does not have such a simple mechanism, it

cannot change the average real yield curve as easily as the LW model. However, as demonstrated

in Sections 4.1–4.3, the proposed model can replicate the LW model, which motivates us to take

the following two steps to generate a downward-sloping term structure of real interest rates:

The first step is to generate it using the LW model, and the second step is to replicate the LW

model using the proposed model.

In the first step, we change the correlation between innovations in dividend growth ∆dt and

risk-free-rate factor xf,t, denoted as ρdx3, from −0.3 to 0.1 while keeping the other parameters

unchanged in the LW model. When ρdx3 = 0.1, the factor risk premium of xf,t is now positive

because a positive shock to xf,t more likely increases ∆dt and hence decreases the SDF. Mean-

while, it is the robust feature, regardless of the value of the correlation parameter, that the (log)

price of real bonds is negatively exposed to xf,t and that the negative exposure is increasing with

maturity. Then, the combination of a positive factor risk premium and increasingly negative

exposures associated with xf,t results in increasingly negative risk premiums of real bonds. The

term structure of real interest rates will then have a negative slope. If we wish to lower the slope

further, we simply increase the value of ρdx3 (up to one). But it is noted that since the loadings

on xf,t are the same for all assets as shown in Figure 2(c), the slope for nominal interest rates

and dividend risk premiums is also lowered for a more negative ρdx3.

In the second step, this exogenous mechanism through correlation parameters is again en-

dogenized by the proposed model using the parameters of consumption dynamics and state-

dependent preferences. They need to be re-calibrated entirely even though only a single param-

eter is changed in the original LW model. As in the baseline calibration, there are numerous

solutions to the set of constraint equations presented in Section 3.2. We then pick a solution

with µγ = 150 to ease comparison to the baseline calibration.

In Figure 7, the average term structures generated by the LW (dotted line) and proposed

(solid line) models are presented: Those of volatilities are not shown for saving space. It is noted

that each term structure starts from the same point as that in the baseline calibration presented

in Figures 3 and 5. First, Figure 7(a) shows that the real term structure is indeed slightly

downward-sloping. The proposed model generates higher rates with the deviation reaching

0.55% at n = 160 (forty years). Second, Figure 7(b) shows that the term structure of nominal

interest rates is flattened for both models, reflecting a downward-sloping real term structure.
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The nominal term structure is still positively sloped because of positive risk premiums attributed

to xπ,t. By increasing these risk premiums, it is possible to raise the slope of the nominal term

structure. In the LW model, this is achieved by making the correlation between dividend growth

and realized/expected inflation growth more negative (up to minus one). In addition to this

correlation channel, the proposed model has an alternative channel through state-dependent

preferences, which may be beneficial when empirical evidence of the correlation channel is weak.

The benefit of this alternative channel is illustrated in Section 4.5. Third, in Figures 7(c) and

7(d), the average term structures of dividend risk premiums and Sharpe ratios remain sharply

downward-sloping. In fact, the downward slope is reinforced due to negative risk premiums

attributed to xf,t.

Table 5 presents calibrated parameters for ρdx = 0.1. There are two major changes in con-

sumption dynamics shown in Panel A. First, the consumption-growth volatility
√
scc is increased

from 3.91% to 4.96%, which can also be explained using the slope equation (64) for matching

the factor risk premium of ∆dt: In this equation, s′dxbν = covt[∆dt+1, ln νt+1] becomes more

negative than in the baseline calibration because increase in xf,t, which decreases the log contin-

uation value ln νt+1 in both the previous and current calibrations due to bν3 < 0, now tends to

increase, rather than decrease, ∆dt+1 by changing ρdx3 from −0.3 to 0.1. Second, the correlation

between innovations in ∆ct and xf,t (i.e., ρcx3) is increased from −0.046 to 0.085 consistently

with the change in ρdx3 from −0.3 to 0.1.

Panel B of Table 4 presents preference parameters. Overall, the signs of the parameters

do not change from those in the baseline calibration. Since we originally select a particular

solution with µγ = 150, an implied value of bγ4 (the coefficient of xλ,t in γt) does not change

much from that in the baseline calibration. Instead, implied parameters in ln(1 − βt) exhibit

some changes. Specifically, the unconditional mean of βt is increased from 0.987 to 0.998, which

is mainly due to the decrease of µβ from −4.39 to −6.34. Furthermore, implied values of bβ

are changed toward reducing the conditional covariance between ln(1−βt) and mt. Specifically,

covt[mt+1, ln(1−βt+1)] = 10−5(171−11.5γt), which is now negative at µγ = 150, indicating that

the agent tends to lower her discount rate when the SDF is high. The decrease of this covariance

is mainly attributed to the decrease of bβ1 from −8.66 to −12. Then, a positive shock to xd,t,

which increases mt as reflected into a negative factor risk premium of xd,t, decreases ln(1− βt)

more than previously. Also, the increase of bβ3 from 30 to 45 has an additional contribution to

decreasing this covariance. Specifically, a positive shock to xf,t increases ln(1 − βt) more than
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previously while it more likely decreases the SDF due to ρdx3 = 0.1.

In summary, the proposed model is shown to be as flexible as the LW model in terms

of generating the average term structure of real interest rates. Again, state-dependent time

preference has an important role for this flexibility, which is crucial for any models as the shape

of the real term structure is indecisive.

4.5 Raising the slope of the nominal term structure

As seen in Section 4.4, the real term structure is sloped downward by setting ρdx3 = 0.1. But

at the same time, the nominal term structure is flattened. We attempt to raise the nominal

slope while keeping the real slope negative by changing not correlation parameters but some

preference parameters.

There are two approaches for this purpose. The first is a direct approach, which is to increase

bγ2 (the coefficient of xπ,t in γt), originally set at zero. Specifically, we set bγ2 = 90. Then, the

agent dislikes increase in xπ,t more than previously as it increases the risk aversion γt and thus

the log SDF mt. Consequently, she requires higher risk premiums of holding nominal bonds that

are exposed (increasingly) negatively to xπ,t, and the term structure of nominal interest rates

will be more positively sloped. It is noted that after changing the value of bγ2, we need to solve

the recursive equation (8) for the continuation value νt. Then, the solution would not exist if bγ2

were changed largely from zero (the original value) because the rest of the parameters regarding

consumption dynamics and state-dependent preferences remain unchanged.

Figures 8(a) and 8(b) plots the average term structures of real and nominal interest rates

for bγ2 = 90 together with those for bγ2 = 0 (the same plots shown in Figures 7(a) and 7(b)).

Indeed, the nominal term structure is shifted upward with the shift more significant at the long

end. Consequently, the spread between nominal interest rates at n = 160 and n = 1 is increased

from 1.44% for bγ2 = 0 to 1.79% for bγ2 = 90.

The second is an indirect approach, which is to increase bβ2 (the coefficient of xπ,t in ln(1−

βt)), originally set at zero. Specifically, we set bβ2 = 2. The reason that a positive bβ2 raises

the slope of the nominal term structure is less obvious but will be understood by recalling an

inverse relationship between ln(1− βt) and ln νt as evidenced in Tables 4 and 5. Then, it is not

surprising that by setting bβ2 > 0, the corresponding coefficient in ln νt, bν2, which is obtained

as a solution to the recursive equation (8), is negative. By a negative bν2, the agent becomes

more risk averse to increase in xπ,t as it reduces the continuation value. It is also noted that as
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is the case for bγ2, if bβ2 were changed largely from zero (the original value), there would be no

solution for νt.

Figures 8(c) and 8(d) plots the average term structures of real and nominal interest rates

for bβ2 = 2 together with those for bβ2 = 0 (the same plots shown in Figures 7(a) and 7(b)).

Again, the nominal term structure is more upward-sloping with the spread between long-term

and short-term rates increased to 2.14%.

In summary, the proposed model can raise the slope of the term structure of nominal inter-

est rates when the term structure of real interest rates is sloped downward and the correlation

between consumption and inflation growth is moderate. The key is again state-dependent pref-

erence parameters, which control for agent’s aversion to inflation risks.

5 Alternative parameter values and cash flow dynamics

While the proposed equilibrium model can generate the term structures of bonds and equities

as flexibly as the reduced-form LW model, it obtains some counterfactual implications about

consumption dynamics and/or preferences. The purpose of this section is to make the proposed

model plausible from an economic point of view. There are two steps to achieve this purpose.

First in Section 5.1, we change some parameter values originally calibrated by LW (2011) and

then re-calibrate the parameters of the proposed model in the same procedure as explained in

Section 3.2. This change is aimed at reducing the mean and standard deviation of the state-

dependent risk aversion without much increasing the volatility of consumption growth. Second

in Section 5.2, we slightly deviate from the LW model and incorporate jumps into cash flows to

further reduce the consumption volatility.

5.1 Changing some parameter values of the LW model and re-calibrating the

proposed model

The values of the following three parameters originally calibrated by LW (2011) are changed

while the other parameters are kept fixed at the values presented in Table 2:√
vart[xλ,t+1] : 4 → 0.2 ,√
vart[∆dt+1] : 10% → 18% (per year) ,

E[xλ,t] : 17 → 2.62 (= 0.085/0.182) ,
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where xλ,t is a price-of-risk factor and ∆dt is realized dividend growth. The reduction of the

volatility of xλ,t from 4 to 0.2 is aimed at reducing the variance of the state-dependent risk

aversion, which is specified as γt = µγ + bγ4(xλ,t − µλ). This change, however, also reduces

return volatility for dividend strips, shifting downward the volatility term structure with the

shift more significant at the short end. To offset the downward shift, the volatility of innovation

in ∆dt, simply denoted as
√
sdd, is increased from 10% to 18% per year, which seems to be

still in an acceptable range. In the LW model, the increase in sdd directly raises the factor risk

premium of ∆dt, or equivalently the risk premium of the one-period dividend strip, as it is given

by E[−covt[m
LW
t+1 , ∆dt+1]] = sddE[xλ,t]. To keep it in a reasonable range, then, E[xλ,t] = µλ

is reduced from 17 to 2.62. It is note that by this change, we lower the factor risk premium of

∆dt by half, from 17% to 8.5% per year. Still, the level of 8.5% seems to stand as a challenge

to equilibrium models; see Table 1.

After changing the values of the three parameters in the LW model as above, the parameters

of the proposed model are calibrated by the same procedure as explained in Section 3.2. Again,

there are numerous solutions to the set of constraint equations, and among them we focus on

the solution with E[γt] = µγ = 30. This is because we wish to highlight the degree to which the

volatility of consumption growth decreases when the mean risk aversion is fixed at 30. The level

of 30 may still be large but is in a range of values considered or estimated by the previous work:

21 (Bansal and Shaliastovich, 2013), 50 (Doh and Wu, 2016), 66 (van Binsbergen, Fernandez-

Villaverde, Koijen, and Rubio-Ramirez, 2012), and 75 (Rudebusch and Swanson, 2012).

The results of the calibration are provided in the “No JUMP” row of Table 6. The total

volatility (Total vol.) is computed as
√
vart[∆ct+1] for consumption growth and

√
vart[∆dt+1]

for dividend growth. They are the same as
√
scc (=

√
σ′cσc) and

√
sdd (=

√
σ′dσd), respectively,

in the current model: In Section 5.2, we extend the model by introducing jumps into cash flows,

and in this extended model,
√
scc and

√
sdd correspond to the Gaussian component of the total

volatility.

An implied
√
scc is 5.05% per year, which is smaller than 8.84% in the baseline calibration

presented in Table 3 but still seems to be large relative to historical estimates. An intuitive

explanation of why the volatility of consumption growth is smaller in spite of the fact that

the volatility of dividend growth is increased from 10% to 18% is as follows. By reducing

the volatility of xλ,t, bγ4 (the coefficient of xλ,t in γt) is increased from 1.78 in the baseline

calibration (i.e., Solution (a) of Table 3) to 12.03: These numbers are not shown in any tables.
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The result indicates that though both bγ4 and sdd are increased, the rate of increase is larger

in the former than in the latter. It then follows from the slope equation for the factor risk

premium of ∆dt, given by bγ4(s
′
dxbν + scd) = sdd, that the consumption volatility, which appears

in scd =
√
sccsddρcd, does not need to be as large as in the baseline calibration.

The unconditional standard deviation of γt, denoted as SD[γt], is implied to be 8.6, which is

smaller than 25 shown in Table 3. Panel (a) of Figure 9 depicts the unconditional distribution of

γt. Though still non-zero due to the normal distribution, the probability of γt < 0 is negligibly

small, showing that one of the shortcomings of the proposed model is resolved.

The unconditional mean and standard deviation of the subjective discount factor, denoted

as E[βt] and SD[βt], are 0.996 and 0.00085, respectively. Compared with the corresponding

values at row (a) of Table 3, the mean becomes more reasonable, and the standard deviation

becomes much smaller because of a lower volatility of xλ,t. As noted in Sections 2.6 and 4.1, a

lower volatility of βt improves the accuracy of the approximation to the continuation value νt.

Panel (b) of Figure 9 depicts the unconditional distribution of βt, showing that the peak is near

the upper bound of one and that the left tail is not long.

Figure 10 presents the average term structures of real and nominal interest rates. Panels

(a) and (b) show that both yield curves are upward-sloping. The slope, however, is less steep

than in the baseline calibration shown in Figure 3 because of a smaller mean of xλ,t. Panels

(c) and (d) show that both volatility curves are downward-sloping. The negative slope is more

pronounced than in the baseline calibration because of a lower volatility of xλ,t.

Figure 11 presents the term structures of risk premiums, excess-return volatilities, and Sharpe

ratios of dividend strips. Panel (a) shows that the proposed model can still generate a downward-

sloping term structure of dividend risk premiums. The risk premiums at n = 1 (one quarter) and

n = 160 (forty years) are 8.50% and 5.77% per year, respectively. Though the range is narrower

than in the baseline calibration, it is still comparable to those for the previous models listed in

Table 1. Panel (b) shows that the volatility curve is first decreasing up to around n = 40 (ten

years) and then turns slightly increasing. The volatilities at n = 1, 40, and 160 are, respectively,

18.0%, 15.2%, and 16.3% per year. Compared with the baseline calibration shown in Figure 5,

the volatilities at the short end are higher, reflecting the increase in the volatility of ∆dt. In the

medium maturity range, they are lower due to a lower volatility of xλ,t. At the long end, the

volatilities in both the baseline and alternative calibrations converge to a similar level. Panel

(c) shows that the model can also generate a downward-sloping term structure of Sharpe ratios,
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ranging from 0.47 (n = 1) to 0.35 (n = 160). The range seems to be comparable to the previous

models though narrower than in the baseline calibration.

In summary, the proposed model can still generate the term structures that stand as chal-

lenges to equilibrium models. But changing parameter values alone may not be sufficient because

the volatility of ∆ct still seems to be high. In Section 5.2, we modify the dynamics of cash flows

to overcome this problem. But the modification is kept minimal as our focus is on the extension

of preference, or discount, rather than cash flows.

5.2 Introducing jumps into cash flows

To further reduce the volatility of consumption growth, we introduce jumps into both consump-

tion and dividend processes. The jumps can be interpreted as disastrous events in line with

Reitz (1988), Barro (2009), Gabaix (2012), and Wachter (2013). The agent dislikes jump shocks

(infrequent but large negative shocks) to consumption growth more than Gaussian shocks (small

but frequent shocks) if these two types of shocks have the same volatility in a statistical sense.

Then, for a given level of the agent’s measure of consumption risks, it is possible to reduce a

statistical measure of consumption risks by introducing jumps.

5.2.1 Cash flow dynamics and the derived SDE

Our introduction of jumps is simple by assuming that realized consumption and dividend growth

alone can jump: Neither inflation growth nor state vector can. Additionally, we assume that

both jump intensity and jump size are constant. Then, we re-specify the consumption and

dividend processes as

∆ct+1 = µc + bcxd,t + σ′czt+1 + (ln ξ)Nt+1 , (78)

∆dt+1 = µd + xd,t + σ′dzt+1 + k(ln ξ)Nt+1 , (79)

where Nt follows an i.i.d. Poisson distribution with intensity parameter l > 0 and is independent

of the Gaussian shock zt. A jump size in consumption growth is captured by ξ (0 < ξ < 1).

When a single jump occurs at time t + 1 (i.e., Nt+1 = 1), Cet+1 = ξCet , ignoring the other

components. Multiple jumps at a point in time are also possible, which can be interpreted as

representing how serious the disaster is. Specifically, when Nt+1 = n, Cet+1 = ξnCet . But this

interpretation makes it difficult to identify l and ξ separately as both are related to the disaster’s
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seriousness. Then, we fix l at 1/40, which roughly corresponds to the frequency at which a jump

occurs once in every ten years on average.

The same Nt+1 is used for capturing jumps in dividend growth, which means that the jump

event occurs to both processes simultaneously. But the jump size for dividend growth is amplified

by k > 1 because Dt+1 = ξnkDt for Nt+1 = n, ignoring the other components.

It is noted that a number of extensions are possible regarding a jump component and ac-

cordingly that the results below can be further improved. First, the jump size can be stochastic.

A conventional probability distribution such as an exponential, gamma, or normal distribution

does not violate the model’s tractability. Second, the jump intensity can be stochastic. Gabaix

(2012) and Watcher (2013) demonstrate the importance of time-varying jump intensity for cap-

turing high equity premiums. Third, the disaster can be followed by the recovery. Hasler and

Marfè (2016) model consumption and dividend processes that mean-revert after a large fall,

with the rate of mean-reversion differing between the two processes, and successfully explain a

downward-sloping term structure of dividend risk premiums.

For notational simplicity, we denote the consumption process by the sum of Gaussian and

Jump components as ∆ct+1 = ∆cGt+1 + ∆cJt+1, where ∆cJt+1 = (ln ξ)Nt+1 and ∆cGt+1 is the

remaining Gaussian component (including the predictable one). Likewise, the dividend process

is denoted as ∆dt+1 = ∆dGt+1 +∆dJt+1.

The log continuation value ln νt is also approximated by a linear function of the state vector

xt as ln νt = µν+b
′
νxt, where (µν , b

′
ν) is the solution to simultaneous quadratic equations, which

are slightly modified due to the jump component. They are provided in Appendix A and the

accuracy of the approximation to νt is reported in Appendix C.

The log SDF mt+1 is derived as

mt+1 = −rf,t+1 −
1

2
λ′tλt − λ′tzt+1 − γt(ln ξ)Nt+1 − l(ξ−γt − 1) . (80)

The real risk-free rate rf,t+1 is also derived as a linear function of xt: rf,t+1 = Af +B
′
fxt, where

(Af , B
′
f ) are also adjusted for the jump component, presented in Appendix A. The price-of-risk

vector λt associated with Gaussian shocks is of the same form as given in (32). But it is noted

that it depends implicitly on jump parameters through (µν , b
′
ν).

The log prices of zero-coupon bonds and equities are approximated as linear in xt: lnP
i
t,n =

Ain +Bi ′
n xt (i = {R,N,D}). For real and nominal bonds, the recursive equations for (Ain, B

i ′
n )

(i = {R,N}) are of the same form as those without the jump component: They depend on jump
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parameters indirectly through (µν , b
′
ν , Af , B

′
f ). In contrast, for dividend strips, the recursive

equations for (ADn , B
D ′
n ) have additional terms related to the jump component because their

payoffs directly depend on future dividends that are exposed to jump shocks. The price of a

dividend strip when jumps are included is derived in Appendix D.

5.2.2 Calibration

The parameters of the extended model are calibrated by taking the following conditions into

account: E[γt] = 30; E[∆ct] = E[∆dt] = 1.29% per year in equations (78) and (79) (the same

level as in the baseline calibration); vart[∆ct+1] = 4% per year in equation (78); vart[∆dt+1] =

18% per year in equation (79); l = 1/40; and the average term structures of interest rates and

dividend risk premiums do not change much from those in Section 5.1.

The results of the calibration are provided in the “JUMP” row of Table 6. It is first noted

that the solution to (an approximation of) the continuation value and hence the SDF does exist

that satisfies the conditions listed above. Indeed, we can successfully reduce the volatility of

consumption growth while keeping reasonable the behavior of state-dependent preferences. Of

the total volatility of ∆ct set at 4%, the Gaussian component
√
sdd reaches 3.98%. Once a

jump event occurs with the intensity set at l = 1/40, the current consumption falls by 1.26%

(computed by ξ − 1) from the previous quarter. These results imply that the role of jumps is

not crucial for consumption growth. It is, however, for dividend growth. Of the total volatility

of ∆dt set at 18%, the Gaussian component is 16.52%, and upon occurrence of a jump, the

dividend falls by more than 20% (computed by ξk − 1) from the previous quarter.

The standard deviation of the state-dependent risk aversion is decreased from 8.6 to 8.1 when

jumps are included. The difference, however, does not seem to be economically large, judged

from the unconditional distribution of γt presented in Figure 9(a). Indeed, the probability of

γt < 0 is negligibly small in both cases.

On the other hand, the inclusion of jumps can change the mean and standard deviation of

the subjective discount factor βt. The unconditional mean E[βt] is decreased to 0.986 while the

unconditional standard deviation SD[βt] is increased to 0.00232. But still, the mean is reasonable

and the standard deviation is smaller than in the baseline calibration because of the decrease

in the volatility of xλ,t. Consequently, the accuracy of the approximation to the continuation

value νt is maintained even by the introduction of jumps: The results of the accuracy with

jumps are provided in Appendix C. We plot the unconditional distribution of βt in Figure 9(b),
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noticing leftward shift and longer left tail. The change of the distribution can be explained as

follows. Facing jump risks in consumption growth, the agent is more willing to hold real bonds,

which potentially shifts the real yield curve downward. But since we do not change the level of

the one-period risk-free rate from that without jumps, the subjective discount rate 1− βt must

increase and hence βt must decrease. Since βt is shifted away from the upper bound of one,

there is more room for βt to fluctuate.

5.2.3 Term structures

The term structures of interest rates and their volatilities are plotted in Figure 10. By con-

struction of the calibration procedure explained in Section 5.2.2, each plot is similar between

with and without jumps. The same is true for the term structure of dividend risk premiums

shown in Figure 11(a). On the other hand, a difference appears in Figure 11(b) showing the

term structure of excess-return volatilities of dividend strips. By including jumps, the volatility

curve in the medium to long maturity range is shifted upward while at n = 1, the volatility is

almost the same between with and without jumps because of the constraint that the volatility of

dividend growth is exactly the same, set at 18%. At n = 160, excess-return volatility with jumps

is 17.0%, which is larger than 16.3% without jumps. An intuitive explanation of the upward

shift is as follows. Among the four factors, the expected-dividend-growth factor xd,t dominates

return volatility for medium- to long-term dividend strips. By introducing jumps into realized

dividend growth but not into expected dividend growth, the covariance between realized and

expected dividend growth becomes less negative than it is before introducing jumps, because

the role of the Gaussian component, which matters with the covariance, is less important with

the presence of jumps. The less negative covariance then leads to higher return volatility for

these strips. Since the volatility is slightly higher with jumps than without, the Sharpe ratios

decrease slightly faster as shown in Figure 11(c).

In summary, the change in some parameter values and the inclusion of jumps into cash flows

together are helpful for improving the proposed model, which now offers economically reasonable

implications about consumption dynamics and preferences while keeping the ability to generate

various term structures.
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6 Concluding remarks

This study proposes an equilibrium asset pricing model with the purpose of jointly producing

the term structures of zero-coupon bonds and equities. For this purpose, we extend a recursive

utility function in a way where the parameters capturing risk aversion and time preference are

driven by state variables of the economy and asset markets, enabling the agent to more directly

express her preferences for cash flows at various points in time. The parameters of the proposed

model are calibrated by matching the stochastic discount factor of the proposed model with that

exogenously specified by Lettau and Wachter (LW) (2011). This calibration approach allows

the proposed model to have a similar descriptive ability to the LW model, and the LW model

to have an equilibrium foundation. With the help of the LW model, the proposed model can

produce a downward-sloping term structure of dividend risk premiums when the term structure

of real interest rates is sloped either upward or downward, which is considered as challenges to

equilibrium models.

At the same time, we uncover that the values of the parameters originally calibrated by LW

may not be realistic when more economic structures are imposed. Most notably, it is implied that

the mean and variance of a state-dependent risk aversion is too high given a reasonable level of

consumption growth volatility. We then change some parameter values of the LW model, which

shifts some risks from a price-of-risk factor to realized dividend growth. We further introduce

into consumption and dividend processes jumps, which can be interpreted as disasters. The

model then implies an economically plausible behavior of both preferences and consumption

growth without losing the descriptive ability for the term structures.

This study presents an approach for creating an equilibrium asset pricing model that is as

flexible as a reduced-form model. But it does not address which state variables really affect a-

gent’s preferences nor how the model is estimated using macro and finance data. These, together

with collecting more evidence on state-dependent preferences, are left for future research.
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Appendix A: Derivation of key equations

The optimal consumption given in equation (6)

Substitute Vt into (2) with Ct replaced by C∗
t (the optimal consumption for the agent):

Vt = C∗1−βt
t Et[V

1−γt
t+1 ]βt/(1−γt) . (81)

Assume that Vt is of the form Vt = ϕtWt, where ϕt is a state-dependent variable identified below.

Substitute first this form and then the budget constraint given in (4) into the RHS of (81):

Vt = C∗1−βt
t (Wt − C∗

t )
βtEt[(ϕt+1Rw,t+1)

1−γt ]βt/(1−γt) . (82)

(82) satisfies the first order condition (FOC): ∂Vt/∂C
∗
t = 0. Given that βt and γt are exogenous

by Assumption (i), solving the FOC yields C∗
t given in (6). By Assumption (ii), the second

order condition is met: ∂2Vt/∂C
∗2
t < 0. Finally, by substituting (6) into (82), Vt is confirmed to

be of the assumed form, where

ϕt = (1− βt)

{
βt

1− βt
Et[(ϕt+1Rw,t+1)

1−γt ]1/(1−γt)
}βt

. (83)

Recursive equation (8) for the value function

Replace first Rw,t+1 with R∗
w,t+1 on the RHS of (83) and then substitute (7):

ϕ∗t
1− βt

= Et

[(
ϕ∗t+1

1− βt+1

Cet+1

Cet

)1−γt
]βt/(1−γt)

, (84)

where ϕ∗t is used in place of ϕt to emphasize the equilibrium. Meanwhile, the continuation value

in equilibrium is V ∗
t = ϕ∗tW

∗
t =

ϕ∗t
1−βtC

e
t . Define νt = V ∗

t /C
e
t =

ϕ∗t
1−βt . Substituting this into (84)

yields (8).

SDF given in equation (9)

A simple way of deriving the SDF is to use the Euler equation for the wealth (a claim to the

flow of endowments). Rearrange (8):

1 = Et

( νt+1

ν
1/βt
t

)1−γt (
Cet+1

Cet

)−γt Cet+1

Cet

 . (85)

By (7),
Cet+1

Cet
= βt

1− βt+1

1− βt
R∗
w,t+1 . (86)

Substitute (86) into (85) and rearrange the terms, we have 1 = Et[Mt+1R
∗
w,t+1], where Mt+1 is

given in (9).
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Value function given in equations (17)–(19)

Assume that the solution to the recursive equation (8) is of the following form: νt = exp{µν +

b′νxt}. Substitute this form into (8) together with βt = β:

exp{µν + b′νxt} = Et[exp{(1− γt)(µν + b′νxt+1 +∆ct+1)}]β/(1−γt)

= exp

{
β

(
Et[χt+1]−

1

2
(γt − 1)vart[χt+1]

)}
, (87)

where

χt = µν + b′νxt +∆ct . (88)

Note that

Et[χt+1] = µν + µc + (bc +Φxbν)
′xt , (89)

vart[χt+1] = b′νsxxbν + 2s′cxbν + scc (= vcν) . (90)

Substitute these conditional moments and γt = µγ + b′γxt into the RHS of (87), and then take

the log of both sides:

µν + b′νxt = β

{
µν + µc + (bc +Φxbν)

′xt −
1

2
vcν(µγ + b′γxt − 1)

}
. (91)

For the assumed form of νt to be true, (91) must hold for any xt, leading to the simultaneous

equations for (µν , b
′
ν) given in (18) and (19).

Risk-free rate given in equations (23)–(25)

By substituting (17) together with βt = β into (9), the SDF can be rewritten using χt+1 defined

in (88) as

Mt+1 = βν
−(1−γt)/β
t exp{(1− γt)χt+1 −∆ct+1} . (92)

Take the conditional expectation of both sides of (92):

Et[Mt+1] = βν
−(1−γt)/β
t Et[exp{(1− γt)χt+1}] Et[e−∆ct+1 ] exp{(γt− 1)covt[χt+1, ∆ct+1]} . (93)

Meanwhile, the recursive equation (8) can be rewritten using χt as

ν
(1−γt)/β
t = Et[exp{(1− γt)χt+1}] . (94)

Substitute (94) into the RHS of (93), develop the conditional moments, and rearrange the terms:

rf,t+1 = − lnEt[Mt+1]

= − lnβ + µc −
1

2
scc − (s′cxbν + scc)(µγ − 1) + {bc − (s′cxbν + scc)bγ}′xt . (95)
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Collecting the intercept and slope terms of (95) into Af and Bf , respectively, yields (24) and

(25).

Approximation of the value function given in equations (17) and (29)–(30)

Substitute νt = exp{µν + b′νxt} into the RHS of (8), develop the conditional expectation, and

rearrange the terms:

ln (RHS of (8)) = β(xt)

{
µν + µc + (bc +Φxbν)

′xt −
1

2
vcν(µγ + b′γxt − 1)

}
, (96)

which is basically the same as the RHS of (91) except that β is replaced by β(xt). Since (96)

is not equal to µν + b′νxt (the log of the LHS of (8)) for any xt, it is approximated as linear in

xt. Specifically, nonlinear terms associated with β(xt) and β(xt)xt are linearized around xt = 0

(the unconditional mean) as given in (27) and (28), respectively. Then, matching the intercept

and slope terms yields (29) and (30).

Approximation of the risk-free rate given in equations (23) and (34)–(35)

By substituting (17) into (9), the SDF can be rewritten as

Mt+1 =
βt

1− βt
ν
−(1−γt)/βt
t exp{(1− γt)χt+1 + ψt+1} , (97)

where χt+1 is defined in (88) and

ψt = µβ + b′βxt −∆ct . (98)

Take the conditional expectation of both sides of (97):

Et[Mt+1] =
βt

1− βt
ν
−(1−γt)/βt
t

×Et[exp{(1− γt)χt+1}]Et[eψt+1 ] exp{(1− γt)covt[χt+1, ψt+1]} . (99)

Note that the recursive equation (8) can also be rewritten as ν
(1−γt)/βt
t = Et[exp{(1− γt)χt+1}].

Substitute this into the RHS of (99) and develop the conditional expectation:

Et[Mt+1] =
βt

1− βt
exp

{
Et[ψt+1] +

1

2
vart[ψt+1] + (1− γt)covt[χt+1, ψt+1]

}
. (100)

Note that

Et[ψt+1] = µβ − µc + (Φxbβ − bc)
′xt , (101)

vart[ψt+1] = b′βsxxbβ − 2s′cxbβ + scc (= vcβ) , (102)

covt[χt+1, ψt+1] = (sxxbν + scx)
′bβ − (s′cxbν + scc) . (103)
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Substitute these conditional moments together with (14) and (16) into the RHS of (100), and

rearrange the terms:

rf,t+1 = − lnβt + µc −
1

2
vcβ + {(sxxbν + scx)

′bβ − (s′cxbν + scc)}(µγ − 1)

+
[
bc + (Id×d − Φx)bβ + {(sxxbν + scx)

′bβ − (s′cxbν + scc)}bγ
]′
xt . (104)

The leading term on the RHS of (104), − lnβt, is nonlinear in xt. It is then linearized around

xt = 0 (the unconditional mean) as given in (33). Then, collecting the intercept and slope terms

into Af and Bf , respectively, yields (34) and (35).

Risk premium of a dividend strip given in equations (72)–(74)

Note that

mt+1 − Et[mt+1] = −λ′tzt+1 , (105)

rDt+1,n−1 − Et[r
D
t+1,n−1] = (σxB

D
n−1 + σd)

′zt+1 , (106)

where λt = (σxbν + σc)γt − σx(bβ + bν). Substitute (105) and (106) into the RHS of (71),

RPDt,n−1 = {(σxbν + σc)γt − σx(bβ + bν)}′(σxBD
n−1 + σd)

= −(bβ + bν)
′(sxxB

D
n−1 + sdx) + {s′dxbν + scd + (sxxbν + scx)

′BD
n−1}γt . (107)

Approximation of the value function with jumps in consumption growth

By ∆ct = ln(Cet /C
e
t−1) = ∆cGt +∆cJt , the recursive equation for the log continuation value can

be written as

ln νt =
βt

1− γt
lnEt[exp{(1− γt)(ln νt+1 +∆cGt+1 +∆cJt+1)}] . (108)

Because ∆cGt and ∆cJt are mutually independent and because νt is a function of the state vector

that has no jump component, the RHS of (108) can be factorized as follows:

ln νt =
βt

1− γt

(
lnEt[exp{(1− γt)(ln νt+1 +∆cGt+1)}] + lnEt[exp{(1− γt)∆c

J
t+1}]

)
. (109)

For ∆cJt+1 = (ln ξ)Nt+1, the second term on the RHS of (109) is developed as

βt
1− γt

lnEt[exp{(1− γt)(ln ξ)Nt+1}] =
l βt(ξ

1−γt − 1)

1− γt
. (110)

To approximate ln νt as ln νt = µν + b′νxt, it is necessary to linearize the RHS of (110) as,

l βt(ξ
1−γt − 1)

1− γt
≈ −(1− eµβ )lk0 + lk′1xt , (111)
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where

k0 =
ξ1−µγ − 1

µγ − 1
, (112)

k1 = eµβk0bβ +
1− eµβ

µγ − 1
{k0 + ξ1−µγ ln ξ}bγ . (113)

It is noted that this approximation is unavoidable even for βt = β (constant). Then, it is

concerned that the approximation to νt is less accurate, which is addressed in Appendix C.

By the additional approximation given in (111), (µν , b
′
ν) satisfies the following equations:

µν = (1− eµβ )

{
µν + µc −

1

2
vcν(µγ − 1)− lk0

}
, (114)

bν = (1− eµβ )

(
bc +Φxbν −

1

2
vcνbγ

)
− eµβ

{
µν + µc −

1

2
vcν(µγ − 1)

}
bβ + lk1 . (115)

Risk-free rate with jumps in consumption growth

We approximate the risk-free rate rf,t+1 as rf,t+1 = Af + B′
fxt. First, the SDF given in (9) is

rewritten as Mt+1 =MG
t+1M

J
t+1, where

MG
t+1 = βt

1− βt+1

1− βt

(
νt+1

ν
1/βt
t

)1−γt
e−γt∆c

G
t+1 , (116)

MJ
t+1 = e−γt(ln ξ)Nt+1 . (117)

Then, by the Euler equation, rf,t+1 = − lnEt[M
G
t+1]− lnEt[M

J
t+1]. The conditional expectation

of the Gaussian part is the same as before and that of the Jump part is developed as

− lnEt[e
−γt(ln ξ)Nt+1 ] = −l(ξ−γt − 1) . (118)

This term is added to the previous equation for rf,t+1 without jumps. To approximate rf,t+1 as

linear in xt, the RHS of (118) is linearized as,

−l(ξ−γt − 1) ≈ −l(ξ−µγ − 1) + lξ−µγ (ln ξ)b′γxt . (119)

Then, rf,t+1 = Af +B′
fxt, where

Af = − ln(1− eµβ ) + µc −
1

2
vcβ + (µγ − 1){(sxxbν + scx)

′bβ − (s′cxbν + scc)}

− l(ξ−µγ − 1) , (120)

Bf = bc + {lξ−µγ ln ξ − (s′cxbν + scc)}bγ +
{

1

1− eµβ
Id×d − Φx + bγ(sxxbν + scx)

′
}
bβ ,(121)
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Appendix B: Condition for the continuation value to be real

For a state-dependent subjective discount factor, β(xt), the continuation value is approximated

as νt = exp{µν+b′νxt}, where µν and bν are the solution to the simultaneous quadratic equations

given in (29) and (30). This appendix presents the condition on which µν and bν are real. Also,

it addresses which real root to select.

Recall that (29) and (30) are, respectively,

µν = β0

{
µν + µc −

1

2
vcν(µγ − 1)

}
,

bν = β0

(
bc +Φxbν −

1

2
vcνbγ

)
+ β1

{
µν + µc −

1

2
vcν(µγ − 1)

}
,

where vcν = b′νsxxbν + 2s′cxbν + scc . By (29), vcν can be expressed as a linear function of µν .

Then, substitute this into (30) and rearrange the terms:

bν = c0 + c1µν , (122)

where

c0 = (Id×d − β0Φx)
−1β0

(
bc −

µc
µγ − 1

bγ

)
, (123)

c1 = (Id×d − β0Φx)
−1

(
β1
β0

+
1− β0
µγ − 1

bγ

)
. (124)

Substituting (122) back into (29) yields a quadratic equation with respect to µν as

α2µ
2
ν + 2α1µν + α0 = 0 , (125)

where

α2 = c′1sxxc1 , (126)

α1 = c′0sxxc1 + s′cxc1 +
1− β0

β0(µγ − 1)
, (127)

α0 = c′0sxxc0 + 2s′cxc0 + scc −
2µc

µγ − 1
. (128)

Then, the condition for real µν is that the determinant of (125) is non-negative:

α2
1 − α2α0 ≥ 0 . (129)

By (122), this is also the condition for real bν .
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Which root to select

Given that (125) has two real roots, we always select a larger root in order to avoid a negative

value of µν if a smaller root is negative. It is likely that at least one root is positive for typical

sets of parameter values, which is explained as follows. (29) can be rewritten as

µν =
β0

1− β0

{
µc −

1

2
vcν(µγ − 1)

}
, (130)

where β0 = 1 − eµβ . By µβ < 0, it holds that 0 < β0 < 1 and hence that β0/(1 − β0) > 0.

Furthermore, it is typically the case that the mean term (µc = E[∆ct]) dominates the (scaled)

variance term (vcν = vart[ln νt+1 +∆ct+1]) even if µγ is large.

Appendix C: Accuracy of approximation to the value function

We examine the accuracy of the approximation to the value function νAPt = exp{µν + b′νxt},

where an uppercase letter “AP” is added here to clarify the approximation. Approximation

error is defined as

et = νt − νAPt = Et[(νt+1e
∆ct+1)1−γt ]βt/(1−γt) − exp{µν + b′νxt} . (131)

Since the true form of νt is unknown, it is difficult to evaluate the conditional expectation on

the RHS of (131) and hence the error et. We instead compute a pseudo approximation error.

First, we decompose et as et = e1,t + e2,t, where

e1,t = Et[(νt+1e
∆ct+1)1−γt ]βt/(1−γt) −Et[(ν

AP
t+1e

∆ct+1)1−γt ]βt/(1−γt) , (132)

e2,t = Et[(ν
AP
t+1e

∆ct+1)1−γt ]βt/(1−γt) − exp{µν + b′νxt} . (133)

Note that taking the log of Et[(ν
AP
t+1e

∆ct+1)1−γt ]βt/(1−γt) yields (96). Then, we compute e2,t as

a pseudo approximation error. Therefore, unless e1,t and e2,t offset each other, e2,t undervalues

the approximation error, and caution is needed to interpret the following results, which are

separated in three cases.

C1. Linear risk aversion γt with E[γt] = 150

Panel A of Table A1 presents e2,t/ν
AP
t in percentage terms when γt is linear and parameter values

are given in Table 4. The errors are evaluated when the factors are above or below k (= 1, 2, 3)

standard deviations from the mean (i.e., zero). By construction of the approximation, e2,t = 0

51



at xt = 0. The label “All factors” indicates that all factors change simultaneously, whereas the

label “Individual factors” indicates that only a factor in each row changes with the other factors

fixed at the mean. Note that the errors in the xπ,t -row are zero as νt does not originally depend

on xπ,t.

First, by changing all elements of xt proportionally, the pseud errors are at most −0.12%.

Second, by changing only the expected-dividend-growth factor xd,t or the risk-free-rate factor

xf,t, the pseud errors are negligibly small. Third, since the price-of-risk factor xλ,t varies more

intensively than the other factors, it is expected to have a larger impact on the accuracy of the

approximation. This is indeed the case, but still the pseud errors are at most 0.1%.

C2. Quadratic γt with E[γt] = 150

In Section 4.3, we refer to a quadratic specification of γt to avoid negative values of γt. We

specify γt = q0 + q1x
2
λ,t with q0, q1 > 0. In order to derive ln νt as a linear function of xt, γt

needs to be linearized around xλ,t = µλ:

γt ≈ q0 + q1µ
2
λ + 2q1µλ(xλ,t − µλ) . (134)

By matching the intercept and slope terms between (48) and (134), we have q1 = bγ4/(2µλ)

and q0 = µγ − q1µ
2
λ. By this matching, we do not re-calibrate the parameters of the model but

simply use those presented in Tables 2 and 4.

Panel B of Table A1 presents e2,t/ν
AP
t in percentage terms for a quadratic γt. As expected,

the pseud errors are larger than those for a linear γt due to the additional approximation given

in (134). Still, they are less than 1% in absolute value.

C3. Linear γt and jumps in cash flow processes

To obtain ln νAPt = µν + b′νxt in the case of jumps, we need to rely on a further approximation

presented in (111). It can be avoided if γt is constant: Remember that βt has already been

approximated, the accuracy of which is not a serious concern as βt does not vary largely. It then

follows that the smaller the variation in γt, the more accurate is the additional approximation.

In Section 5.1, we reduce the volatility of xλ,t and hence the volatility of γt = µγ + bγ4xλ,t,

which is illustrated in Table 6 and Figure 9(a). We can expect therefore that the accuracy is

maintained.

52



Panel C of Table A1 presents e2,t/ν
AP
t in percentage terms, which are computed at parameter

values given implicitly in Table 6. As expected, the additional approximation is not a serious

concern. The pseud error is at most −0.2% when all components of the state vector are above

three standard deviations from the mean. In changing the value of each factor, there is no case

in which the pseud error exceeds 0.1% in absolute value.

Appendix D: Term structure formulas

Risk-neutral drift

To simplify the notation of recursive equations for the prices of zero-coupon bonds and equities,

we bundle model parameters into those in the risk-neutral probability measure. Specifically, we

first describe the risk-neutral dynamics as

∆dt+1 = µQd + bQ ′
d xt + σ′dz

Q
t+1 , (135)

∆πt+1 = µQπ + bQ ′
π xt + σ′πz

Q
t+1 , (136)

xt+1 = µQx +ΦQ ′
x xt + σ′xz

Q
t+1 , (137)

where zQt+1 is an i.i.d. normal random vector in the risk-neutral probability measure. The

risk-neutral drift of ∆dt+1 satisfies for any xt

µQd + bQ ′
d xt = Et[∆dt+1] + covt[mt+1, ∆dt+1] . (138)

The conditional covariance on the RHS of (138) is

covt[∆dt+1, mt,t+1] = −σ′dλt = s′dx(bβ + bν)− (s′dxbν + scd)µγ − (s′dxbν + scd)b
′
γxt . (139)

Then, µQd and bQd on the LHS of (138) are identified as

µQd = µd + s′dx(bβ + bν)− µγ(s
′
dxbν + scd) , bQd = bd − bγ(s

′
dxbν + scd) . (140)

Likewise,

µQπ = µπ + s′πx(bβ + bν)− µγ(s
′
πxbν + scπ) , bQπ = bπ − bγ(s

′
πxbν + scπ) , (141)

µQx = sxx(bβ + bν)− µγ(sxxbν + scx) , ΦQx = Φx − bγ(sxxbν + scx)
′ . (142)

By the calibration, the slope terms of the factor risk premiums are matched exactly between

the LW and proposed models. This is equivalent to matching the slope terms of the risk-neutral

drift (i.e., bQd , b
Q
π , and ΦQx ) between the two models.
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Real zero-coupon bonds

The price of a real zero-coupon bond maturing in n periods, PRt,n, satisfies the following Euler

equation:

PRt,n = Et[Mt+1P
R
t+1,n−1] = e−rf,t+1EQt [P

R
t+1,n−1] , (143)

where the second equality is due to the change from the physical to risk-neutral probability

measures and EQt [·] stands for the conditional expectation under the risk-neutral probability

measure. The initial condition is PRt,0 = 1. By substituting PRt,n = exp{ARn + BR ′
n xt} into

the RHS of (143), developing the conditional expectation under the risk-neutral probability

measure, and matching the intercept and slope terms on both sides, we obtain the following

recursive equations for ARn and BR
n :

ARn = ARn−1 −Af + µQ ′
x BR

n−1 +
1

2
BR ′
n−1sxxB

R
n−1 , (144)

BR
n = ΦQxB

R
n−1 −Bf , (145)

with the initial condition AR0 = 0 and BR
0 = 0.

It is noted that ΦQx in (145) is the same between the LW and proposed models as documented

above. Also, Bf , the loading on the state vector for the real risk-free rate rf,t+1, is the same

between the two models as (50) holds by the calibration procedure. Consequently, BR
n is the

same between the two models for any n.

Nominal zero-coupon bonds

Rewrite the Euler equation (38) for the real price of a nominal zero-coupon bond as

PNt,nΠt = Et

[
Mt+1(P

N
t+1,n−1Πt+1)

Πt
Πt+1

]
= e−rf,t+1EQt

[
(PNt+1,n−1Πt+1)

Πt
Πt+1

]
, (146)

with the initial condition PNt,0Πt = 1. By substituting PNt,nΠt = exp{ANn + BN ′
n xt} into (146),

developing the conditional expectation under the risk-neutral probability measure, and matching

the intercept and slope terms on both sides, we obtain the following recursive equations for ANn

and BN
n :

ANn = ANn−1 −Af − µQπ +
1

2
sππ + (µQx − sπx)

′BN
n−1 +

1

2
BN ′
n−1sxxB

N
n−1 , (147)

BN
n = ΦQxB

N
n−1 −Bf − bQπ , (148)

with the initial condition AN0 = 0 and BN
0 = 0. Notice that BN

n is the same between the LW

and proposed models for any n because ΦQx , Bf , and b
Q
π are the same between the two models

by the calibration.
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Zero-coupon equities

Rewrite the Euler equation (40) for the price of a dividend strip as

PDt,n
Dt

= Et

[
Mt+1

PDt+1,n−1

Dt+1

Dt+1

Dt

]
= e−rf,t+1EQ

t

[
PDt+1,n−1

Dt+1
e∆dt+1

]
, (149)

with the initial condition PDt,0/Dt = 1. By substituting PDt,n/Dt = exp{ADn +BD ′
n xt} into (149),

developing the conditional expectation under the risk-neutral probability measure, and matching

the intercept and slope terms on both sides, we obtain the following recursive equations for ADn

and BD
n :

ADn = ADn−1 −Af + µQd +
1

2
sdd + (µQx + sdx)

′BD
n−1 +

1

2
BD ′
n−1sxxB

D
n−1 , (150)

BD
n = ΦQxB

D
n−1 −Bf + bQd , (151)

with AD0 = 0 and BD
0 = 0. For the same reason as above, BD

n is the same between the LW and

proposed models for any n.

Zero-coupon equities with jumps in consumption and dividend growth

The SDE Mt+1 is decomposed into Gaussian and jump components, which are mutually inde-

pendent, as

Mt+1 =MG
t+1M

J
t+1 = e−rf,t+1

MG
t+1

Et[MG
t+1]

MJ
t+1

Et[MJ
t+1]

.

Also, ∆dt+1 = ∆dGt+1+∆dJt+1. Meanwhile, PDt+1,n−1/Dt+1 does not depend on a jump component

as it is a function of xt+1 that has no jump component. Then, the recursive equation (149) is

developed as

PDt,n
Dt

= e−rf,t+1Et

[
MG
t+1

Et[MG
t+1]

PDt+1,n−1

Dt+1
e∆d

G
t+1

]
Et

[
MJ
t+1

Et[MJ
t+1]

e∆d
J
t+1

]
. (152)

The first conditional expectation on the RHS of (152) is the same as that developed without

jumps. The second conditional expectation is developed by substituting MJ
t+1 = e−γt(ln ξ)Nt+1

and ∆dJt+1 = k(ln ξ)Nt+1 as

Et[exp{(k − γt)(ln ξ)Nt+1 − l(ξ−γt − 1)}] = exp{l(ξk − 1)ξ−γt} . (153)

To derive ln(PDt,n/Dt) as a linear function of xt, ξ
−γt is linearized as

ξ−γt ≈ ξ−µγ{1− (ln ξ)b′γxt} . (154)
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Then, ln(PDt,n/Dt) = ADn +BD ′
n xt, where A

D
n and BD

n are determined recursively as

ADn = ADn−1 −Af + µQd +
1

2
sdd + (µQx + sdx)

′BD
n−1 +

1

2
BD ′
n−1sxxB

D
n−1 + l(ξk − 1)ξ−µγ ,(155)

BD
n = ΦQxB

D
n−1 −Bf + bQd − l(ξk − 1)ξ−µγ (ln ξ)bγ , (156)

with AD0 = 0 and BD
0 = 0.

56



References

Abel, A. B., 1999, Risk Premia and Term Premia in General Equilibrium, Journal of Monetary

Economics 43, 3-33.

Bansal, R., A. R. Gallant, and G. Tauchen, 2007, Rational Pessimism, Rational Exuberance,

and Asset Pricing Models, Review of Economic Studies 74, 1005-1033.

Bansal, R., D. Kiku, and A. Yaron, 2012, An Empirical Evaluation of the Long-Run Risks Model

for Asset Prices, Critical Financial Review 1, 183-221.

Bansal, R., and I. Shaliastovich, 2013, A Long-Run Risks Explanation of Predictability Puzzles

in Bond and Currency Markets, Review of Financial Studies 26, 1-33.

Bansal, R., and A. Yaron, 2004, Risks for the Long Run: A Potential Resolution of Asset Pricing

Puzzles, Journal of Finance 59, 1481-1509.

Barro, R. J., 2006, Rare Disasters and Asset Markets in the Twentieth Century, Quarterly

Journal of Economics 212, 823-866.

Barro, R. J., 2009, Rare Disasters, Asset Prices, and Welfare Costs, American Economic Review

99, 243-264.

Beeler, J., and J. Y. Campbell, 2012, The Long-Run Risks Model and Aggregate Asset Prices:

An Empirical Assessment, Critical Financial Review 1, 141-182.

Belo, F., P. Collin-Dufresne, and R. S. Goldstein, 2015, Dividend Dynamics and the Term

Structure of Dividend Strips, Journal of Finance 70, 1115-1160.

Berrada, T., J. Detemple, and M. Rindisbacher, 2013, Asset Pricing with Regime-Dependent

Preferences and Learning, Working Paper.

Binsbergen, van, J. H., M. Brandt, and R. S. J. Koijen, 2012, On the Timing and Pricing of

Dividends, American Economic Review 102, 1596-1618.

Binsbergen, van, J. H., J. Fernandez-Villaverde, R. S. J. Koijen, and J. Rubio-Ramirez, 2012,

The Term Structure of Interest Rates in a DSGE Model with Recursive Preferences, Journal of

Monetary Economics 59, 634-648.

57



Binsbergen, van, J. H., W. Hueskes, R. Koijen, and E. Vrugt, 2013, Equity Yields, Journal of

Financial Economics 110, 503-519.

Binsbergen, van, J. H., and R. S. J. Koijen, 2017, The Term Structure of Returns: Facts and

Theory, Journal of Financial Economics 124, 1-21.

Campbell, J. Y., 2003, Consumption-based Asset Pricing, Ch.13 in G. Constantinides, M. Harris,

and R. Stulz eds., Handbook of the Economics of Finance IB, North-Holland, Amsterdam, 803-

887.

Campbell, J. Y., and J. H. Cochrane, 1999, By Force of Habit: A Consumption-Based Expla-

nation of Aggregate Stock Market Behavior, Journal of Political Economy 107, 205-251.

Chabi-Yo, F., R. Garcia, and E. Renault, 2008, State Dependence Can Explain the Risk Aversion

Puzzle, Review of Financial Studies 21, 973-1011.

Croce, M. M., M. Lettau, and S. C. Ludvigson, 2015, Investor Information, Long-Run Risk, and

the Term Structure of Equity, Review of Financial Studies 28, 706-742.

Curatola, G., 2015, Loss Aversion, Habit Formation and the Term Structures of Equity and

Interest Rates, Journal of Economic Dynamics and Control 53, 103-122.

Dew-Becker, I., 2014, Bond Pricing with a Time-Varying Price of Risk in an Estimated Medium-

Scale Bayesian DSGE Model, Journal of Money, Credit and Banking 46, 837-888.

Doh, T., and S. Wu, 2016, The Equilibrium Term Structure of Equity and Interest Rates,

Working Paper.

Epstein, L. G., and S. E. Zin, 1989, Substitution, Risk Aversion, and the Temporal Behavior of

Consumption and Asset Returns: A Theoretical Framework, Econometrica 57, 937-969.

Epstein, L. G., and S. E. Zin, 1991, Substitution, Risk Aversion, and the Temporal Behavior

of Consumption and Asset Returns: An Empirical Analysis, Journal of Political Economy 99,

263-286.

Favilukis, J., and X. Lin, 2016, Wage Rigidity: A Quantitative Solution to Several Asset Pricing

Puzzles, Review of Financial Studies 29, 148-192.

Frederick, S., G. Loewenstein, and T. O’Donoghue, 2002, Time Discounting and Time Prefer-

ence: A Critical Review, Journal of Economic Literature 40, 351-401.

58



Gabaix, X., 2012, Variable Rare Disasters: An Exactly Solved Framework for Ten Puzzles in

Macro-Finance, Quarterly Journal of Economics 127, 645-700.

Gordon, S., and P. St-Amour, 2000, A Preference Regime Model of Bull and Bear Markets,

American Economic Review 90, 1019-1033.

Gordon, S., and P. St-Amour, 2004, Asset Returns and State-Dependent Risk Preferences,

Journal of Business and Economic Statistics 22, 241-252.

Grossman, S. J., and R. J. Shiller, 1981, The Determinants of the Variability of Stock Market

Prices, American Economic Review 71, 222-227.

Halevy, Y., 2015, Time Consistency: Stationarity and Time Invariance, Econometrica 83, 335-

352.

Hansen, L. P., J. C. Heaton, and N. Li, 2008, Consumption Strikes Back? Measuring Long-Run

Risk, Journal of Political Economy 116, 260-302.

Hansen, L. P., J. C. Heaton, J. Lee, and N. Roussanov, 2007, Intertemporal Substitution and

Risk Aversion, Handbook of Econometrics Ch.61, 3968-4056.

Harris, C., and D. Laibson, 2001, Dynamic Choices of Hyperbolic Consumers, Econometrica 69,

935-957.
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∆d ∆π xd xπ xf xλ

Unconditional means

µ. 1.29% 3.68% − − 0.96% 17.0

Standard deviations of innovation terms
√
s.. 10.0% 1.18% 0.32% 0.35% 0.19% 4.00

Autocorrelations

diag(ϕx.) − − 0.90 0.78 0.92 0.85

Correlations between innovation terms

∆d 1.00 −0.30 −0.83 −0.30 −0.30 0.00

∆π 1.00 0.00 1.00 0.00 0.00

xd 1.00 0.00 0.00 0.35

xπ 1.00 0.00 0.00

xf 1.00 0.00

Unconditional factor risk premiums

17.00% −0.60% −0.45% −0.18% −0.10% 0.00%

Table 2: Parameter values of the LW model

These values are collected from tables 1–3 in LW (2011). Unconditional means, standard de-

viations, and autocorrelations are annualized, except for the unconditional mean of xλ,t and

the standard deviation of innovation in xλ,t expressed in raw numbers. The last row presents

annualized, unconditional factor risk premiums, except for xλ expressed in row numbers.
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Solution Consumption Risk aversion Subjective discount factor
√
scc E[γt] SD[γt] E[βt] SD[βt]

(%, year) (×102)

(a) 8.84 30 25 0.969 1.097

(b) 5.89 60 51 0.981 0.532

(c) 4.77 90 77 0.985 0.392

(d) 4.22 120 102 0.986 0.331

(e) 3.91 150 128 0.987 0.298

Table 3: Moments for consumption and preferences at selected solutions

Table 3 presents the annualized volatility of innovation in consumption growth (
√
scc), and

the unconditional mean (E[·]) and standard deviation (SD[·]) of state-dependent preferences at
selected solutions to the set of constraint equations given in Section 3.2. The solutions are in

ascending order of E[γt].
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Panel A: Consumption volatility and correlations
√
scc ρcd ρcx1 ρcx2 ρcx3 ρcx4

3.91% 0.877 −0.755 −0.086 −0.046 0.341

Panel B: State-dependent preferences and continuation value

constant xd xπ xf xλ

γt 150 0.00 0.00 0.000 8.9357

ln(1− βt) −4.392 −8.66 0.00 30.170 0.0136

ln νt 0.071 8.86 0.00 −0.817 −0.0029

Panel C: Unconditional factor risk premiums

∆d ∆π xd xπ xf xλ

17.00% −0.60% −0.46% −0.18% −0.11% −0.172

Table 4: Implied parameters of consumption dynamics and preferences

Table 4 presents calibrated parameters at Solution (e) of Table 3. Panel A presents the an-

nualized volatility of innovation in consumption growth (
√
scc) and the correlations between

innovations in consumption growth and the rest of the variables. The correlation with realized

inflation growth is not shown because it is the same as the correlation with expected inflation

growth (ρcx2). Panel B presents the parameters in the risk aversion γt, the log subjective dis-

count rate ln(1 − βt), and the log continuation value ln νt. These functions are all linear in

x′t = (xd,t, xπ,t, xf,t, xλ,t). Panel C presents annualized, unconditional factor risk premiums,

except for xλ expressed in row numbers.
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Panel A: Consumption volatility and correlations
√
scc ρcd ρcx1 ρcx2 ρcx3 ρcx4

4.96% 0.898 −0.792 −0.069 0.085 0.281

Panel B: State-dependent preferences and continuation value

constant xd xπ xf xλ

γt 150 0.00 0.00 0.000 8.7817

ln(1− βt) −6.337 −12.00 0.00 44.639 0.0025

ln νt 0.458 12.36 0.00 −1.619 −0.0035

Panel C: Unconditional factor risk premiums

∆d ∆π xd xπ xf xλ

17.00% −0.60% −0.45% −0.18% 0.02% 0.015

Table 5: Implied parameters for ρdx3 = 0.1

ρdx3 stands for the correlation between innovations in dividend growth and risk-free-rate factor.

It is first changed from −0.3 to 0.1 in the LW model, and then the parameters of the proposed

model are re-calibrated in the same procedure as explained in Section 3.2. The same legend as

in Table 4 follows.
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−3S.D. −2S.D. −1S.D. +1S.D. +2S.D +3S.D.

Panel A: Linear γt

All factors −0.060 −0.030 −0.008 −0.011 −0.048 −0.124

Individual factors

xd 0.046 0.020 0.005 0.004 0.017 0.038

xπ 0.000 0.000 0.000 0.000 0.000 0.000

xf −0.002 −0.001 0.000 0.000 −0.001 −0.002

xλ 0.056 0.028 0.008 0.009 0.042 0.105

Panel B: Quadratic γt

All factors −0.812 −0.364 −0.092 −0.094 −0.378 −0.858

Individual factors

xd 0.046 0.020 0.005 0.004 0.017 0.038

xπ 0.000 0.000 0.000 0.000 0.000 0.000

xf −0.002 -0.001 0.000 0.000 −0.001 −0.002

xλ −0.695 −0.307 −0.076 −0.074 −0.289 −0.635

Panel C: Linear γt with jumps in consumption and dividend growth

All factors −0.099 −0.047 −0.013 −0.015 −0.064 −0.155

Individual factors

xd 0.047 0.020 0.005 0.005 0.018 0.039

xπ 0.000 0.000 0.000 0.000 0.000 0.000

xf −0.004 −0.002 0.000 0.000 −0.001 −0.003

xλ 0.000 0.000 0.000 0.000 0.000 0.001

Table A1: Approximation errors of νAPt
The value function is approximated as νAPt = exp{µν + b′νxt}. The table reports e2,t/ν

AP
t

in percentage terms, where e2,t stands for a pseudo approximation error defined as e2,t =

Et[(ν
AP
t+1e

∆ct+1)1−γt ]β/(1−γt) − νAPt . These errors are evaluated when the values of the factors

are above or below k (= 1, 2, 3) standard deviations (S.D.) from the mean (i.e., zero). In each

panel, the label “All factors” indicates that all factors change proportionally, whereas the label

“Individual factors” indicates that only a factor in each row changes with the other factors fixed

at the mean. By construction of the approximation, e2,t = 0 at xt = 0. Panels A and B are for

a linear risk-aversion and a quadratic risk-aversion, respectively, evaluated at parameter values

given in Tables 2 and 4. Panel C is for a linear risk-aversion with jumps in consumption and

dividend processes, evaluated at parameter values given implicitly in Table 6.
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