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We consider a situation in which voters collectively answer a binary question.

Each voter obtains an intuition about the answer to the question, but whether the

question is intuitive or counterintuitive is not known to any voter. If each voter

receives an independent signal on whether the question is intuitive or not, the

majority rule under sincere voting correctly aggregates the intuitions with a large

electorate; however, it is not an equilibrium. We show that in a unique pure-

strategy equilibrium with a large electorate, majority voting makes an incorrect

decision with a probability that can be sufficiently close to 1.
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1. Introduction

In mathematics and science, counterintuitive questions are ubiquitous. The Monty Hall prob-

lem is a well-known example (Selvin, 1975).1 An American public figure, Marilyn vos Savant

published this puzzle in her column of a magazine (vos Savant, 1990). After she gave the correct

answer, 10,000 letters were received, the great majority disagreeing with the correct answer.

The number of critical letters from PhDs (mostly in mathematics or science departments) were

close to 1,000 (Tierney, 1991). For such questions, our intuition is likely to be wrong, and,

more unfortunately, we are not sure in advance whether the answer is counterintuitive or not.

A majority of the people would produce the wrong answer; thus, answering by majority voting

seems to lead to the wrong answer. On the contrary, a vast body of studies on information

aggregation argues the effectiveness of collective wisdom. The well-known Condorcet jury

theorem shows that if each voter obtains independent information, the majority voting makes

the correct decision asymptotically.

Given these two conflicting views, the current study models the situation and examines

whether majority voting correctly aggregates voters’ information. In our model, voters face

a binary question that has a unique answer. Each voter has an independent intuition about

the answer to the question. The answer to the question can be intuitive or counterintuitive.

While intuition is likely to be correct for an intuitive question, it is likely to be incorrect for

a counterintuitive question. We also assume that when the question is counterintuitive, the

informativeness of the intuition is weaker than that when the question is intuitive. Although

each voter is unaware of whether the question is counterintuitive or not, each voter indepen-

dently receives an informative signal on whether the question is counterintuitive or not. We

call this signal a “guess” about the complexity of the question. Therefore, each voter receives

an informative signal about the answer.

In our framework, we show that with a large electorate, although the majority rule under

sincere voting chooses the correct answer with certainty, it is not an equilibrium. In a unique

1The problem is the following one. One of three boxes, A, B and C contains a key and the others are empty.
I know which box contains the key. If you choose the box that contains the key, you win. Suppose that you
choose B. Then, I open a remaining empty box, say C. The question is “Should you change your choice to
A?” The answer is yes because now the probability with which box A contains the key is 2/3.
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pure-strategy nontrivial equilibrium, each voter votes against his gained intuition irrelevant

to his guess. Although voting against intuition is the optimal behavior for a counterintuitive

question, it is the worst possible behavior for an intuitive question. This result remains robust

even when the probability of the question being intuitive is sufficiently close to 1. Therefore,

in such a situation, the majority voting chooses the incorrect alternative with a probability that

is sufficiently close to 1. Surprisingly, this result is also independent of the informativeness

of the signal on whether the question is intuitive or not. Note that the standard Condorcet’s

setting is the limit of our model with respect to the informativeness of the signal. Hence, our

result implies a fragility in the Condorcet jury theorem.

The intuition underlying our result is the following. Note that under strategic voting equi-

libria, each voter cares only about the event in which he or she is pivotal. Under the voters’

responsive behaviors to their intuition, as the intuition is more informative when the question

is intuitive, for the intuitive question, the alternative is more likely to win by a large margin.

Therefore, when the question is intuitive, a given voter is less likely to be pivotal, and in turn,

each voter cares more about the case when the question is counterintuitive. Therefore, such a

contrarian behavior is the best response.

Although the voting equilibrium is inefficient under pure strategy, by allowing mixed strategy,

we can construct an efficient equilibrium under which the correct answer is chosen with

probability one with a large electorate. Owing to this equilibrium multiplicity, an issue of

equilibrium selection arises. On this point, while voting against intuition is robust against any

small perturbation, this efficient equilibrium is not. In this respect, voting against intuition is

more plausible than this efficient equilibrium.

Our setting is suitable for highly professional problems such as scientific or technical ques-

tions because it is difficult for a layman to judge with certainty whether such questions are

intuitive or not. Some of managerial decisions such as choices of product design, production

process, price and sales channel are also examples of such problems. Our result implies

the possibility of an incorrect decision by majority rule that occurs with a sufficiently high

probability, in which case, the majority rule has no superiority over an individual’s decision.

Therefore, for such a question, majority voting is a bad choice.
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Contribution to the literature In the literature, many studies extend the Condorcet jury

theorem to game theoretic environments (Austen-Smith and Banks, 1996; Feddersen and Pe-

sendorfer, 1996, 1997; McLennan, 1998; Wit, 1998; Duggan and Martinelli, 2001; McMurray,

2013). They examine whether voting rules satisfy full information equivalence (FIE). This

means that as the number of voters goes to infinity, the probability of the voting outcome under

a strategic voting equilibrium coinciding with that under complete information converges to 1.

On the contrary, there are many studies that also show sufficient conditions under which

a majority rule violates FIE. While many such studies consider the case with heterogeneous

preferences (Kim and Fey, 2007; Bhattacharya, 2013a,b; Acharya, 2016; Ali, Mihm and Siga,

2017; Tajika, 2018), as in our model, a few studies consider the case with homogeneous

preferences (Martinelli, 2006; Mandler, 2012; Ellis, 2016; Barelli, Bhattacharya, Siga, 2018).

Among these studies, Mandler (2012) is the closest study to ours in the following respect.

In our model, we consider the precision of intuition to be uncertain, as whether a question is

intuitive or not is uncertain. Mandler (2012) proposes a model describing precision uncertainty

of signals in a way that is different from our method. Mandler (2012) also shows the possibility

of majority voting violating FIE. However, in contrast to our result, Mandler (2012) does not

discuss the probability of majority voting choosing the wrong alternative. In our model, we

show that the probability of the incorrect alternative being chosen can be sufficiently close to

1. This is the main contribution of our study.

Moreover, in Mandler (2012)’s model, each voter can receive only one signal, which means

that each voter receives no information about the signal precision. Related to this point, Barelli,

Bhattacharya, Siga (2018) provide a necessary and sufficient condition for FIE in a general

common value voting game. In their environment, when the majority rule violates FIE, voters’

information are necessary to be insufficient. In our model, in contrast to their setting, voters

receive sufficiently informative signals such that if they are correctly aggregated, majority

voting makes the correct decision. Even in this setting, we find an equilibrium in which the

decision by majority voting leads to the wrong answer with sufficiently high probability.

Except for Ali, Mihm and Siga (2017) and Tajika (2018), most of the above studies only show

the possibility of a violation in FIE. Although Ali, Mihm and Siga (2017) and Tajika (2018)
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show that majority voting chooses a “bad” alternative with a probability that is sufficiently

close to 1, they assume heterogeneity in the voters’ preferences.

2. Model

An odd number of voters face a binary question that has one correct answer. N denotes the set

of voters and |N | = 2n+1, n ∈ N. The answer of the question is denoted by ω ∈ {A, B}, which

is unknown to any voter. If the voters choose the correct answer, they receive a payoff of 1.

Otherwise, their payoff is 0. By observing the question, each voter i independently obtains an

intuition about the answer to the question, which is denoted by σi ∈ {A, B}. This intuition is an

informative signal about the answer. However, the question can be intuitive or counterintuitive.

If the question is straightforward (denoted by ψ = S), the answer is intuitive and, thus, the

intuition is likely to be right. Formally, for each i ∈ N , Pr(σi = ω | ψ = S) = θ∗ > 1/2. On

the contrary, if the question is complicated (denoted by ψ = C), the answer is counterintuitive.

Formally, for each i ∈ N , Pr(σi = ω | ψ = C) = θ∗ < 1/2. The term ψ is referred to as the

complexity of the question. We assume that θ∗ > 1 − θ∗ > 1/2. This inequality implies that

the intuition is less informative for the complicated question. Although the complexity of the

question is unknown to any voter, each voter makes a guess about the complexity of the question,

denoted by γi ∈ {C, S}. The guess is an informative signal for the complexity of the question.

For each i ∈ N , Pr(γi = ψ) = q ∈ [1/2, 1). We refer to the tuple (ω, ψ) ∈ {A, B} × {C, S}

as the state and the tuple (σi, γi) ∈ {A, B} × {C, S} as the signal of voter i ∈ N . Last, let

pω = Pr(ω = A) ∈ (0, 1) and pψ = Pr(ψ = S) ∈ (0, 1) be the priors. Assume that ω and ψ have

no correlation. We also assume that pω = 1/2 for simplicity.

The collective decision is made by a simple majority vote. No abstention is allowed.

3. Equilibrium

Regarding the equilibrium concept, we employ the type-symmetric Bayesian Nash equilibria

(abbreviated by BNE).
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3.1. Best responses

Consider voter i ∈ N’s behavior. Let nA be the number of other voters voting for A. Now the

best response is summarized in the following lemma.

Lemma 1. For voter i who receives (σi, γi), voting for alternative A is optimal if and only if

Q(σi, γi) ⩾ 1, where

Q(A,C) B
(1 − q)pψθ∗Pr(nA = n | A, S) + q(1 − pψ)θ∗Pr(nA = n | A,C)

(1 − q)pψ(1 − θ∗)Pr(nA = n | B, S) + q(1 − pψ)(1 − θ∗)Pr(nA = n | B,C), (1)

Q(A, S) B
qpψθ∗Pr(nA = n | A, S) + (1 − q)(1 − pψ)θ∗Pr(nA = n | A,C)

qpψ(1 − θ∗)Pr(nA = n | B, S) + (1 − q)(1 − pψ)(1 − θ∗)Pr(nA = n | B,C), (2)

Q(B,C) B
(1 − q)pψ(1 − θ∗)Pr(nA = n | A, S) + q(1 − pψ)(1 − θ∗)Pr(nA = n | A,C)

(1 − q)pψθ∗Pr(nA = n | B, S) + q(1 − pψ)θ∗Pr(nA = n | B,C) , (3)

Q(B, S) B
qpψ(1 − θ∗)Pr(nA = n | A, S) + (1 − q)(1 − pψ)(1 − θ∗)Pr(nA = n | A,C)

qpψθ∗Pr(nA = n | B, S) + (1 − q)(1 − pψ)θ∗Pr(nA = n | B,C) . (4)

Proof. Omitted. □

Let vA(ω, ψ) be the probability that a given voter votes for alternative A under state (ω, ψ) ∈

{A, B} × {C, S}. Let wA(σi, γi) be the probability that a given voter who receives signal

(σi, γi) ∈ {A, B} × {C, S} votes for alternative A. Then, each voting probability is calculated

as follows:

vA(A,C) = qθ∗wA(A,C) + q(1 − θ∗)wA(B,C) + (1 − q)θ∗wA(A, S) + (1 − q)(1 − θ∗)wA(B, S),

vA(A, S) = (1 − q)θ∗wA(A,C) + (1 − q)(1 − θ∗)wA(B,C) + qθ∗wA(A, S) + q(1 − θ∗)wA(B, S),

vA(B,C) = q(1 − θ∗)wA(A,C) + qθ∗wA(B,C) + (1 − q)(1 − θ∗)wA(A, S) + (1 − q)θ∗wA(B, S),

vA(B, S) = (1 − q)(1 − θ∗)wA(A,C) + (1 − q)θ∗wA(B,C) + q(1 − θ∗)wA(A, S) + qθ∗wA(B, S).

3.2. Sincere voting

We first consider the sincere voting strategy in which each voter acts as if there is only one

voter (Austen-Smith and Banks, 1996). As the first case, assume that pψ = 1/2. In this case,

each voter’s behaves in the following manner: If γi = S, the voter votes for A if σi = A; else,

6



the voter votes for B. If γi = C, the voter behaves conversely. That is, if a voter makes a guess

considering the question to be intuitive, he votes according to the intuition. If a voter makes a

guess considering the question to be counterintuitive, he votes against the intuition. Then, the

voting probability is calculated as follows:

vA(A,C) = q(1 − θ∗) + (1 − q)θ∗,

vA(A, S) = (1 − q)(1 − θ∗) + qθ∗,

vA(B,C) = qθ∗ + (1 − q)(1 − θ∗),

vA(B, S) = (1 − q)θ∗ + q(1 − θ∗).

If q > 1/2, vA(A, S) = 1 − vA(B, S) > 1 − vA(B,C) = vA(A,C) > 1/2. Therefore, under

sincere voting, information is correctly aggregated for sufficiently large n. Indeed, since

vA(A, ψ) > 1/2 > vA(B, ψ) for each ψ ∈ {C, S}, limn→∞ Pr(d = ω) = 1 (d ∈ {A, B} is the

decision by the majority voting).

Let us check whether the strategy profile is a BNE. Note that for each ω and ψ,

Pr(nA = n | ω, ψ) =
(
2n
n

)
[vA(ω, ψ)(1 − vA(ω, ψ))]n.

Under the sincere voting strategy, Pr(nA = n | A,C) = Pr(nA = n | B,C) > Pr(nA = n | A, S) =

Pr(nA = n | B, S). Also note that in this case, for each ( j, k) ∈ {A, B}2, limn→∞
Pr(nA=n| j,C)
Pr(nA=n|k,S) = ∞.

Therefore, for sufficiently large n,

lim
n→∞

Q(A, S) = lim
n→∞

Q(A,C) = θ∗
1 − θ∗

< 1,

lim
n→∞

Q(B, S) = lim
n→∞

Q(B,C) = 1 − θ∗
θ∗

> 1.

Then, by Lemma 1, each voter’s best response is voting against the intuition, irrelevant to his

or her guess, which is in contradiction to sincere voting.

Proposition 1. Assume that q > 1/2 and pψ = 1/2. Then, there is n̄ ∈ N such that for each

n ⩾ n̄, the sincere voting is not a BNE.
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The intuition underlying Proposition 1 works as follows. Recall that the intuition is less

informative if the question is complicated. Due to this assumption, by voting in response to

the intuition, when the question is complicated, the voter is more likely to be pivotal than when

the question is straightforward. In a strategic voting equilibrium, each voter cares only about

the situation in which the voter is pivotal. Therefore, irrelevant to the guess, voting as if the

question is complicated is optimal for each voter. For a complicated question, voting against

the intuition is optimal.

3.3. Contrarian equilibrium

Now we examine other strategies. As observed in the previous section, voting against the

intuition is the best response against sincere voting. We check whether it is a BNE. Under

this strategy profile, vA(A,C) = 1 − θ∗, vA(A, S) = 1 − θ∗, vA(B,C) = θ∗, and vA(B, S) = θ∗.

Then, we have that vA(A, S) = 1− vA(B, S) < 1− vA(A,C) = vA(B,C) < 1/2. This implies that

Pr(nA = n | A,C) = Pr(nA = n | B,C) > Pr(nA = n | A, S) = Pr(nA = n | B, S) and therefore,

lim
n→∞

Q(A, S) = lim
n→∞

Q(A,C) = θ∗
1 − θ∗

< 1,

lim
n→∞

Q(B, S) = lim
n→∞

Q(B,C) = 1 − θ∗
θ∗

> 1.

As in the previous case, voting against the intuition is the best response, and therefore, it is a

BNE.

Proposition 2 (Contrarian equilibrium). For each q ∈ [1/2, 1) and each pψ ∈ (0, 1), there is

n̄ ∈ N such that for each n ⩾ n̄, voting against the intuition is a BNE.

Under the strategy of voting against intuition, the majority voting correctly aggregates

information if the question is complicated, but it fails in correct information aggregation if the

question is straightforward. Indeed, under this strategy profile, limn→∞ Pr(d = ω | ψ = C) =

limn→∞ Pr(d , ω | ψ = S) = 1. This implies that the full information equivalence fails if

the question is straightforward, which is in contrast to the classical Condorcet jury theorem.

Surprisingly, this result does not depend on the value of q. If q = 1, our model is reduced
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to a classical Condorcet’s setting, wherein the jury theorem holds. This implies a fragility of

the jury theorem. Proposition 2 is also independent of the value of pψ . In the limit, as the

probability of the majority voting making a correct decision is pψ limn→∞ Pr(d = ω | ψ =

S) + (1 − pψ) limn→∞ Pr(d = ω | ψ = C) = 1 − pψ , we have the following corollary:

Corollary 1. As pψ → 1 and n → ∞, there is a sequence of BNEs such that the probability of

the incorrect alternative being chosen converges to 1.

Corollary 1 implies that the majority voting achieves the worst outcome in the limit. In this

case, the majority voting is inferior not only to a single voter’s decision but also to a decision

made by rolling a die. More unfortunately, among the nontrivial pure-strategy BNEs, which

are defined below,2 voting against intuition is a unique equilibrium.

Definition 1. A BNE is nontrivial if Pr(nA = n | ω, ψ) > 0 for some ω, ψ at the BNE.

Theorem 1. For sufficiently large n and sufficiently large pψ < 1, voting against intuition is a

unique pure-strategy nontrivial BNE.

Proof. See Appendix A. □

Remark 1 (Informativeness of the intuition). One of the crucial assumptions of our main result

is θ∗ > 1 − θ∗ > 1/2. Under this assumption, in any strategic voting equilibrium, voters care

only about the case when the question is complicated and, therefore, each voter votes against

the intuition. If the converse inequality holds, that is, 1 − θ∗ > θ∗ > 1/2, the converse result

holds: Voting according to the intuition is a BNE. This result also does not depend on the

values of q and pψ . Therefore, as pψ → 0 and n → ∞, in the unique BNE, the probability that

the incorrect alternative wins also converges to 1.

3.4. Efficient equilibrium

Although our focus in the previous sections is pure strategies, by allowing mixed strategies,

we can show that an efficient equilibrium exists. Under such a strategy profile, the statement
2In the majority voting, the strategy profile such that all voters vote for the same alternative is trivially an

equilibrium, in which case, Pr(nA = n | ω, ψ) = 0 for each ω and ψ. We exclude such equilibria as they are
trivial.
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of the classical Condorcet jury theorem is valid.

Proposition 3 (Condorcet jury theorem). If q > 1/2, there exists a sequence of mixed strategy

BNEs such that the probability that the majority rule chooses the correct answer converges to

one.

Proof of Proposition 3. We will show that there exists a BNE such that each voter mixes if

γ = S and votes against intuition if γ = C.

First, under the following conditions, Q(A, S) = Q(B, S) = 1.

Pr(nA = n | A, S)
Pr(nA = n | B,C) =

Pr(nA = n | B, S)
Pr(nA = n | B,C) =

1 − q
q

1 − pψ
pψ

1 − 2θ∗
2θ∗ − 1

, (5)

Pr(nA = n | A,C) = Pr(nA = n | B,C). (6)

Then, we have that

Q(A,C) = (1 − q)2θ∗(1 − 2θ∗) + q2θ∗(2θ∗ − 1)
(1 − q)2(1 − θ∗)(1 − 2θ∗) + q2(1 − θ∗)(2θ∗ − 1)

Q(B,C) = 1
Q(A,C) .

One can show that Q(A,C) < 1 < Q(B,C), and thus, by Lemma 1, wA(B,C) = 1−wA(A,C) = 1.

Then, Pr(nA = n | A, ψ) = Pr(nA = n | B, ψ) if wA(A, S) = 1 − wB(A, S). Moreover, if wA(A, S)

is the following value, vA(A,C) = vA(A, S) > 1/2.

wA(A, S) =
θ∗ − θ∗

q(2θ∗ − 1) + (1 − q)(1 − 2θ∗)
∈ (0, 1). (7)

Therefore, for each n, there is a wn = wA(A, S) that satisfies (5) and (6) and wn converges to

the value of the right hand side of (7). Thus, taking a mixed strategy is optimal for the voters

such that γ = S. Now the considered strategy is a BNE.

Moreover, if n → ∞, vA(A,C) = vA(A, S) > 1/2 and vA(A, ψ) = 1− vA(B, ψ), the probability

that the correct answer is chooses converges to 1. □

The intuition for our strategy is the following. Under sincere voting that considered in

Section 3.2, under state ψ = C, a given voter is more likely to be pivotal. In the equilibrium
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strategy, voter who receive γ = S mixes voting for intuition and voting against intuition. Then,

by doing so, under state ψ = S, the probability that a given voter is pivotal is the same that

under state ψ = C. Now the source of incentive for voting against intuition disappears.

3.5. Instability of the efficient equilibrium

Although the mixed strategy equilibrium given in the proof of Proposition 3 is efficient, remark

that this strategy profile is vulnerable to a small mistake. To see this, we define a concept of

stability.

Definition 2. Let BR : [0, 1]{A,B}×{C,S} → 2[0,1]{A,B}×{C,S } \ {�} be the best response profile cor-

respondence. Symmetric voting probability profile w = (wA(t))t∈{A,B}×{C,S} is asymptotically

stable if there is an ε̄ > 0 such that for each ε < ε̄ and each w′ ∈ Bε(w),3 there is a sequence

of strategy profile (wk)k∈N such that w0 = w′, wk ∈ BR(wk−1) and limk→∞ wk → w.

Therefore, under asymptotically stable strategies, even if a person makes a (small) mistake,

a process of repeated adoption of best responses leads to the original strategy profile.

We show that the mixed strategy equilibrium given in the proof of Proposition 3 is not

asymptotically stable. Let w = (wA(A, S), wA(B, S), wA(A,C), wA(B,C)) be the equilibrium

voting probability. As see in the proof of Proposition 3, (5), (6) and (7) hold. Consider mistake

w′ that satisfies

w′ = (wA(A, S) − ε, wA(B, S) + ε, wA(A,C), wA(B,C))

for small ε > 0. Then, while vA(A, ψ) = 1 − vA(B, ψ) > 1/2 for each ψ and sufficiently

small ε > 0, vA(A, S) decreases and vA(A,C) increases. This implies that P(nA |i,S)
P(nA | j,C) increases

for each i, j ∈ {A, B}. Then, since under the original strategy profile, Q(A, S) = Q(B, S) = 1,

under the new strategy profile, Q(A, S) > 1 > Q(B, S). On the other hand, if ε is sufficiently

small, even under the new profile Q(A,C) < 1 < Q(B,C). Therefore, for such mistake,

(wA(A, S), wA(B, S), wA(A,C), wA(B,C)) = (1, 0, 0, 1) is the best response. As we have seen in

3Bε(w) denotes the ε-neighborhood of point w ∈ [0, 1]{A,B}×{C,S }.
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Section 3.2, we know that this profile is not an equilibrium. Against this strategy profile, voting

against intuition is the best response. Now since voting against intuition is an equilibrium, this

process never leads to the original profile.

On the contrary, voting against intuition is asymptotically stable. This is because, under

this strategy profile, Q(A, S) < 1 < Q(B, S) and Q(A,C) < 1 < Q(B,C). Since each Q(t),

t ∈ {A, B} × {C, S} is continuous in (wA(t′))t ′∈{A,B}×{C,S}, for each small mistake, the relation

Q(A, S) < 1 < Q(B, S) and Q(A,C) < 1 < Q(B,C) remains to hold. Now voting against

intuition is the best response. In this respect, voting against intuition is more plausible than

the efficient equilibrium.

4. Conclusion

We studied the collective decision by a majority voting in responding to a question framed

such that no voter knew whether it is intuitive or counterintuitive. Although sincere voting

correctly aggregates the intuitions, it is not an equilibrium. Instead, voting against an intuition

ignoring the signal about the complexity of the question is a unique pure-strategy equilibrium.

This outcome is robust even when the prior probability of the question being complicated

is sufficiently small and, therefore, it is possible that the incorrect alternative wins with a

probability that is sufficiently close to 1. Our result implies the inferiority of the majority

voting over an individual decision, which is in contrast to the Condorcet jury theorem. On the

other hand, by allowing mixed strategies, our voting game has an efficient equilibrium. Owing

to the equilibrium multiplicity, whether the equilibrium outcome is efficient or not depends

on the equilibrium selection. On this point, we show that although voting against intuition is

robust to any small mistake, the efficient mixed strategy equilibrium is not. In this respect,

voting against intuition is a plausible equilibrium.

For highly professional questions, such as scientific or technical questions, it is difficult for a

layman to infer whether the answer to the question is intuitive or counterintuitive. The finding

from our contribution is that majority voting by laymen should not be used to answer such

questions even when they obtain informative intuitions and make a reasonable guess about the
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complexity of the question.

As a remedy, one may consider a majority voting both for the intuition and for guessing

about the complexity of the question. However, voters may also face uncertainty about the

precision of their guess. In this case, although voters may receive informative signals about

the precision of their guesses, they may also face uncertainty about the informativeness of the

signal. This infinite regress may force the voters to vote for an infinite number of issues, but it

is impossible to do so in reality. To deal with this problem is left for future research.

A. Omitted proof

Proof of Theorem 1. In Proposition 2, we have shown that voting against the intuition is a BNE,

in which case, Pr(nA = n | A,C) = Pr(nA = n | B,C) > Pr(nA = n | A, S) = Pr(nA = n | B, S).

We consider all the remaining patterns of the magnitude relations of Pr(nA = n | ω, ψ) and

show that each case has a contradiction.

Case 1. max{Pr(nA = n | A,C), Pr(nA = n | A, S)} > max{Pr(nA = n | B,C), Pr(nA = n |

B, S)} = 0. In this case, for sufficiently large n, Q(ω, ψ) > 1 for each ω and ψ. Then,

vA(σi, γi) = 1 for each σi and γi, which implies that

Pr(nA = n | A,C) = Pr(nA = n | A, S) = Pr(nA = n | B,C) = Pr(nA = n | B, S) = 0.

This is a contradiction.

Case 2. max{Pr(nA = n | A,C), Pr(nA = n | A, S)} < max{Pr(nA = n | B,C), Pr(nA = n |

B, S)}. As in case 1, we have

Pr(nA = n | A,C) = Pr(nA = n | A, S) = Pr(nA = n | B,C) = Pr(nA = n | B, S) = 0,

which is a contradiction.

Case 3. Pr(nA = n | A, S) = Pr(nA = n | B, S) > max{Pr(nA = n | A,C), Pr(nA = n | B,C)}.

In this case, for sufficiently large n, Q(A, ψ) > 1/2 > Q(B, ψ) for each ψ. Therefore,
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vA(A,C) = θ∗, vA(A, S) = θ∗, vA(B,C) = 1 − θ∗ and vA(B, S) = 1 − θ∗. Then, we have

that

Pr(nA = n | A,C) = Pr(nA = n | B,C) > Pr(nA = n | A, S) = Pr(nA = n | B, S),

which is a contradiction.

Case 4. Pr(nA = n | A, S) = Pr(nA = n | B,C) > max{Pr(nA = n | A,C), Pr(nA = n | B, S)}.

Then, as n → ∞,

Q(A,C) =
(1 − q)pψθ∗

q(1 − pψ)(1 − θ∗)

Q(A, S) =
qpψθ∗

(1 − q)(1 − pψ)(1 − θ∗)
,

Q(B,C) =
(1 − q)pψ(1 − θ∗)

q(1 − pψ)θ∗
,

Q(B, S) =
qpψ(1 − θ∗)

(1 − q)(1 − pψ)θ∗
.

Then, for sufficiently large pψ , Q(ω, ψ) > 1 for each ω and ψ. As in case 1,

Pr(nA = n | A,C) = Pr(nA = n | A, S) = Pr(nA = n | B,C) = Pr(nA = n | B, S) = 0,

which is a contradiction.

Case 5. Pr(nA = n | A,C) = Pr(nA = n | B, S) > max{Pr(nA = n | A, S), Pr(nA = n | B,C)}.

As in case 4, for sufficiently large n and pψ , Q(ω, ψ) < 1 for each ω and ψ. Then, we

have

Pr(nA = n | A,C) = Pr(nA = n | A, S) = Pr(nA = n | B,C) = Pr(nA = n | B, S) = 0,

which is a contradiction.

Case 6. Pr(nA = n | A, S) = Pr(nA = n | B,C) = Pr(nA = n | A,C) > Pr(nA = n | B, S). In

this case, for sufficiently large n and pψ , Q(A, ψ) > 1/2 > Q(B, ψ) for each ψ. As in
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case 3,

Pr(nA = n | A,C) = Pr(nA = n | B,C) > Pr(nA = n | A, S) = Pr(nA = n | B, S),

which is a contradiction.

Case 7. Pr(nA = n | A, S) = Pr(nA = n | B, S) = Pr(nA = n | A,C) > Pr(nA = n | B,C). Then,

for sufficiently large n and pψ , Q(ω, ψ) > 1 for each ω and ψ. As in case 1,

Pr(nA = n | A,C) = Pr(nA = n | A, S) = Pr(nA = n | B,C) = Pr(nA = n | B, S) = 0,

which is a contradiction.

Case 8. Pr(nA = n | B,C) = Pr(nA = n | B, S) = Pr(nA = n | A,C) > Pr(nA = n | A, S). Then,

for sufficiently large n and pψ , Q(ω, ψ) < 1 for each ω and ψ. Then,

Pr(nA = n | A,C) = Pr(nA = n | A, S) = Pr(nA = n | B,C) = Pr(nA = n | B, S) = 0,

which is a contradiction.

Case 9. Pr(nA = n | B,C) = Pr(nA = n | B, S) = Pr(nA = n | A, S) > Pr(nA = n | A,C). Then,

for sufficiently large n and pψ , Q(A, ψ) > 1/2 > Q(B, ψ) for each ψ. As in case 3,

Pr(nA = n | A,C) = Pr(nA = n | B,C) > Pr(nA = n | A, S) = Pr(nA = n | B, S),

which is a contradiction.

Case 10. Pr(nA = n | B,C) = Pr(nA = n | B, S) = Pr(nA = n | A, S) = Pr(nA = n | A,C). Then,

for sufficiently large n and pψ , Q(A, ψ) > 1/2 > Q(B, ψ) for each ψ. As in case 3,

Pr(nA = n | A,C) = Pr(nA = n | B,C) > Pr(nA = n | A, S) = Pr(nA = n | B, S),

which is a contradiction.
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