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Abstract

We propose a new method for the structural identiÖcation of a dynamic causal re-
lationship in factor-augmented vector autoregression models based on changes in the
unconditional shock variances that occur on a historical date. The proposed method
can incorporate both observed and unobserved factors in the structural vector autore-
gression system and it allows the contemporaneous matrix to be fully unrestricted.
We derive the asymptotic distribution of the impulse response estimator and con-
sider a bootstrap inference method. Monte Carlo experiments show that the proposed
method is robust to the misspeciÖcation of the contemporaneous matrix unlike the
existing methods. Both the asymptotic and bootstrap methods obtain a satisfactory
coverage rate when the shock of an observed factor is studied, although the latter is
more accurate when the shock of an unobserved factor is considered. An empirical
example based on the same data employed by Bernanke et al. (2005) provides simi-
lar point estimates and somewhat wider conÖdence intervals, thereby supporting their
identiÖcation strategy.
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1 Introduction

One of the most challenging issues in structural VAR analysis1 is that the model can only

accommodate a small number of variables in the equation system. If the model is lacking

important variables, the empirical results can su§er from a severe omitted variable bias.

One solution to address this concern is to incorporate a small number of unobserved factors

extracted from an information set spanned by a large panel of data. This approach is called

factor-augmented VAR (FAVAR) and it was initiated by Bernanke et al. (2005), advanced in

studies summarized by Stock and Watson (2016). It is well-known that the factors extracted

using the popular principal component method are only identiÖed up to a random rotation

(Bai and Ng, 2013) and this often causes di¢culties when making a particular interpretation

of the estimated unobserved factors, which plays a critical role when identifying a dynamic

causal relationship in the VAR system. Recently, Bai et al. (2016) addressed this concern by

proposing exclusion restrictions for identifying the unobserved factors or, more speciÖcally, to

Öx the random rotation matrix in the FAVAR model. However, their exclusion restrictions

assume zero contemporaneous correlations between the sets of observed and unobserved

factors, which may not be supported without an economic interpretation of the unobserved

factors. This chicken-and-egg problem demands a method for identifying a structural FAVAR

model where its validity can be investigated by a statistical procedure.2

Thus, in this study, we consider an approach for identifying a simultaneous equation

system based on changes in the unconditional variances proposed by Rigobon (2003) and

Rigobon and Sack (2003). Recently, this method was extended to the conventional small-

scale structural VAR system by Lanne and L¸tkepohl (2008), L¸tkepohl (2013), and L¸tke-

pohl and Netsunajev (2017).3 The fundamental idea of this method is to increase the number

of equations in the system by considering changes in the variances4 to achieve the order con-

1See Sims (1980) and the vast amount of work surveyed by Kilian and L¸tkepohl (2017).
2It should also be noted that identiÖcation restrictions motivated by economic reasoning may be di¢cult

even in the conventional structural VAR when its dimension becomes relatively large. For instance, Brun-
nermeier et al. (2017) used the structural VAR to investigate the e§ects of up to 10 orthogonal shocks on
macroeconomic variables and showed that their contemporaneous ordering is not a trivial problem when the
dimension is relatively large.

3See Section 4.5 of Stock and Watson (2016) and Chapter 14 of Kilian and L¸tkepohl (2017) for a survey
of a wider class of identiÖcation methods that use heteroskedasticity. These include discrete changes in
the unconditional variances, variances that follow Markov switching and smooth transition dynamics, and
conditionally heteroskedastic variances. Lewis (2018) discusses a method that is robust to the misspeciÖcation
of heteroskedasticity process.

4Importantly, the coe¢cient parameters are typically assumed to be constant.
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dition for identiÖcation. As a result, we can avoid the agnostic zero restrictions that are

imposed by particularly ordering the VAR variables or imposed on the impulse responses

based on economic meaning. Instead, we can use a statistical procedure to verify the iden-

tiÖcation conditions. See Qu and Perron (2007) and Casini and Perron (2017), for recent

developments in structural break analysis that incorporates changes in the error variances.5

More speciÖcally, in this study, we develop a new method for the structural identiÖcation

of the impulse responses in FAVARmodels based on the changes in shock variances that occur

on a historical date. In particular, we identify the rotated version of the contemporaneous

matrix and this problem is fundamentally the same as that addressed by Bai et al. (2016)

but we allow the contemporaneous matrix to be fully unrestricted. We derive the asymptotic

distributions of the identiÖed structural coe¢cients and impulse response estimators under

the condition that
p
T=N ! 0 as N and T ! 1, where T and N are the time and cross-

section dimensions, respectively. We also consider a bootstrap method for constructing

the conÖdence interval, based on the seminal studies of GonÁalves and Perron (2014)6 and

Yamamoto (2017).

Our Monte Carlo experiments show that the impulse responses are estimated more accu-

rately by the proposed method as the magnitude of the variance change and the sample size

increase. More importantly, the proposed method is robust to the misspeciÖcation of the

contemporaneous matrix unlike the existing methods proposed by Bai et al. (2016). Even

when it is correctly speciÖed, the mean squared error (MSE) with the proposed method is

comparable to that with the existing methods when the magnitude of the variance change

and the time dimension are large. We also Önd that both the asymptotic and bootstrap

conÖdence intervals yield satisfactory Önite sample properties when we study the responses

to the shock of an observed factor. However, the latter provides a more accurate coverage

rate when the shock of an observed factor is considered.
5Many studies considered factor models. In particular, Han and Inoue (2015) proposed a test for changes

in the factor loadings at a common time by investigating a change in the variances of factors. Chen et al.
(2014) considered the relationships between the estimated Örst factor and the remaining estimated factors.
Breitung and Eickmeier (2011) and Yamamoto and Tanaka (2015) investigated changes in the factor loadings
for an individual response variable. Because a change in the variance of factors and some type of changes in
the factor loadings at the same timing may not be identiÖed, we need to ìassumeî that the factor loadings
do not have such common breaks.

6GonÁalves and Perron (2014) allow for serial correlations in the idiosyncratic errors and show that the
bootstrap does not have to replicate them. This is extended to the case where the errors in the factor-
augmented model are serially correlated, as introduced by Djogbenou et al. (2015), and to the case where
the idiosyncratic errors are cross-sectionally correlated, as introduced by GonÁalves and Perron (2016).
GonÁalves et al. (2017) consider the bootstrap prediction intervals in the factor-augmented model by explic-
itly accounting for the uncertainty of unobservable factors and coe¢cients.
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Finally, we investigate whether the recursive identiÖcation strategy of the well-known

study of Bernanke et al. (2005) is valid by using the same data employed in the original

study but with the proposed identiÖcation strategy. To ensure consistency with the empirical

evidence of the Great Moderation, we consider changes in the shock variances in December

1984. We Önd that our identiÖcation method could obtain similar point estimates of the im-

pulse responses to those in the original study but with somewhat wider conÖdence intervals.

These Öndings support the validity of the identiÖcation strategy implemented by Bernanke

et al. (2005).

The remainder of this paper is organized as follows. In Section 2, we introduce the model

and assumptions. In Section 3, we propose a new identiÖcation method for FAVAR models

and derive the asymptotic distributions of the estimators. We also design a bootstrap method

for constructing the conÖdence interval in the same section. In Section 4, we examine the

Önite sample properties of the proposed estimator based on comparisons with alternative

methods proposed by Bai et al. (2016), and an empirical illustration is provided in Section

5. In Section 6, we give our conclusions, and the appendices provide the technical derivations

and details of estimators that are not explained in the main text.

Throughout this study, we use the following notation. The Euclidean norm of vector x is

denoted by kxk. The vector-induced norm is used for matrices. The symbols ì p!î and ì d!î
represent convergence in probability under the probability measure P and convergence in

distribution, respectively. The symbols Op(&) and op(&) denote the order of convergence under
P . We use the symbol ìA ' Bî if, for two random matrices A and B, kA(Bk = op(1) as
N; T !1. Let L be the standard lag operator. The operator vec(X) transforms an m)m
matrix X into an m2 ) 1 vector by stacking the columns, whereas vech(X) stacks only the
elements on and above the main diagonal elements of a square matrix X. We denote the

Cholesky decomposition of a positive deÖnite matrix X by chol(X). [&] returns the integer
part.

2 Model and assumptions

2.1 Structural FAVAR models

We consider the structural factor-augmented vector autoregression (FAVAR) model of order

p:

h"t = 4
" +

Pp
j=1A

"
jh
"
t#j + "t; (1)
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for t = 1; & & &T , where h"t is an r)1 vector of factors and A"j is the VAR coe¢cient of the jth
lag.7 The factors can be a mixture of unobserved factors denoted by an r1) 1 vector f "t and
observed factors denoted by an r2 ) 1 vector g"t , where h"t = [f "0t ; g"0t ]0 and r = r1 + r2. The
error term "t is considered as structural shocks and is assumed to be serially uncorrelated

with a diagonal unconditional covariance matrix E("t"0t) = ). The constant term 4" can be

omitted for simplicity to focus on the essential components. We also observe a large number

of economic variables that are driven by the factors so an N ) 1 vector xt is generated by

xt = <" + *"f "t + +
"g"t + u

"
t ;

= <" + C"h"t + u
"
t ; (2)

where *" and +" are N ) r1 and N ) r2 factor loading matrices of the unobserved and
observed factors, respectively. Let C" = [*";+"] denote the composite factor loadings. If

we write c"i , we denote an r ) 1 vector of factor loadings of the ith response variable for
i = 1; :::; N . Similarly, A"i and B

"
i are r1)1 and r2)1 vectors of the factor loadings attached

to the unobserved and the observed factors, respectively. The error term u"t is an N ) 1
vector referred to as the idiosyncratic errors. Again, the constant term <" can be omitted for

simplicity.

The structural VAR allows contemporaneous correlations among the factors to identify

the causal e§ects of an economic shock. Thus, we deÖne an estimable reduced-form model

by plugging h"t = B
#1ht with a nonsingular r ) r matrix B in (1)

B#1ht =
Pp

j=1A
"
jB

#1ht#j + "t;

or equivalently

ht =
Pp

j=1BA
"
jB

#1ht#j +B"t:

To simplify the notation, we deÖne the reduced-form VAR coe¢cient of the jth lag Aj =

BA"jB
#1 and the reduced-form errors et = B"t and we write the reduced-form VAR model

ht =
Pp

j=1Ajht#j + et: (3)

This is the same model as that described by Bai et al. (2016). If we simplify the notation by

lettingW = [H(#1); H(#2); & & & ; H(#p)] be a T)rpmatrix whereH(#j) = [h1#j; & & & ; hT#j]0; and

7This is a simpliÖed model of the formulation given by Stock and Watson (2016) where the number of
shocks is the same as the number of factors.
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A = [A1; & & & ; Ap]0 is an rp) r matrix, then (3) can be written equivalently as H = WA+ e.

The corresponding reduced-form factor model is

xt = *ft + +gt + ut;

= Cht + ut; (4)

where C = C"B#1 and u"t = ut.

In this study, we develop a method for identifying the structural FAVAR model by esti-

mating the matrix B but without imposing any exclusion restrictions on it. Our approach

follows the method for identiÖcation based on the changes in shock variances proposed by

Rigobon (2003) and Rigobon and Sack (2003) in a demand-and-supply system, which was

extended to the conventional small-scaled structural VAR models by Lanne and L¸tkepohl

(2008), L¸tkepohl (2013) and L¸tkepohl and Netsunajev (2017).8 In particular, we deÖne

the structural impulse response of an observed variable xi;t+h to the structural shocks in "t
at horizon h as

,i;h *
@xi;t+h
@"0t

= c"0i -
"
h = c

0
i-hB;

where -"h and -h are the structural and the reduced-form vector moving-average coe¢cients.

They are recursively deÖned by -"h =
Ph

j=1-
"
h#jA

"
j and -h =

Ph
j=1-h#jAj, respectively,

with -"0 = -0 = Ir.

2.2 Assumptions

We consider the following assumptions on the models introduced in the previous subsection.

Assumption A (VARs)
(i) The structural VAR shocks "t are independent and identically distributed (i.i.d.) with

mean zero, and the unconditional covariance matrix changes on a known date Tb = [GT ]

where G 2 (0; 1), i.e.,

E("t"
0
t) =

8
<

:
)1 for t = 1; :::; Tb

)2 for t = Tb + 1; :::; T
;

8The proposed method considers a discrete change in the unconditional variance of errors, where changes
in the conditional variances and various types of volatility changes are studied (see chapter 14 of Kilian
and L¸tkepohl (2017)). Brunnermeier et al. (2017) apply this method to measure the e§ects of up to 10
orthogonal shocks on macroeconomic variables in Önancial markets.
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where )1 = diag[J
(1)
1 ; J

(2)
1 ; & & & ; J

(r)
1 ] and )2 = diag[J

(1)
2 ; J

(2)
2 ; & & & ; J

(r)
2 ] are diagonal matrices

with distinct positive diagonal elements.

(ii) The VAR variables in h"t are ordered according to the magnitudes of ratio J
(l)
1 =J

(l)
2

for l = 1; & & & r.
(iii) The r ) r contemporaneous matrix B is nonsingular.
(iv) The roots of det(Ir ( A1y ( A2y2 ( & & & ( Apyp) = 0 lie outside the unit circle.

Assumption B (idiosyncratic errors)
(i) E(uit) = 0 and E juitj

8 -M , for all (i; t):
(ii) N#1PN

i=1

PN
k=1 jM ikj - M , where M ik = E(uitukt). T

#1PT
s=1

PT
t=1 jBstj - M; where

Bst = E(N
#1PN

i=1 uisuit):

(iii) For every (s; t), E
%%%N#1=2PN

i=1[uisuit ( E(uisuit)]
%%%
4

-M:

(iv) For any i, T#1=2
PT

t=1 htuit
d! N(0;1Hui), where 1Hui * limV ar

&
T 1=2

PT
t=1 htuit

'
.

Assumption C (factor model)
(i) The factor loadings of the unobserved factors Ai are deterministic and *0*=N ! 5*

a Öxed positive deÖnite matrix.

(ii) The eigenvalues of the r1 ) r1 matrix 5*5F , where 5F = p limT!1 F
0MGF=T and

MG = IT (G(G0G)#1G0, are distinct.
(iii) "t and uis are mutually independent for all (i; s; t).

Assumption D (normalization through structural impulse responses) The val-
ues are known for the main diagonal elements of the matrix of contemporaneous structural

impulse responses of the Örst r variables.

The key assumptions of this paper are Assumptions A (i), (ii) and D. Assumptions A

(i) and (ii) are indeed similar to that considered by L¸tkepohl (2013) and L¸tkepohl and

Netsunajev (2017). They normalize the covariance matrix of one regime to be an identity

matrix to Öx the scale of the structural shocks, we also Öx the scale of the eigenvectors based

on Assumption D. Assumption A (iii) assumes a known break date for simplicity, but this

could be relaxed by using the standard break date estimate developed by Qu and Perron

(2007).9 The standard break date fraction estimator, i.e., the break date estimator divided

by the sample size, would have a faster rate than
p
T so the estimation uncertainty associated

9Strictly speaking, as far as the author knows, this particular technique in the comon factor model is still
an open question.

6



with the break date does not a§ect the asymptotic inference for the least square coe¢cient

estimators. Assumptions A (iv) guarantees a stable VAR system and it also ensures that

the probability limit of F 0MGF=T becomes a Öxed positive deÖnite matrix which we use in

Assumption C (ii). Assumption B is essentially the same as the standard literature of the

factor model, e.g., see Bai (2003) and Bai and Ng (2006), and it allows idiosyncratic errors

to have weak serial and cross-sectional dependence. Assumption C is the standard regularity

condition and it guarantees the statistical identiÖcation of the unobserved factors up to a

random rotation, as discussed in the next section. Finally, by Assumption D, we need to

Öx the scale of the unobserved economic shocks where this normalization depends on the

researcherís discretion, discussed in the empirical illustration.10

3 Estimation and inference

3.1 Estimation of the reduced-form models

We use the two-step principal component method to estimate the reduced-form models (3)

and (4). First, we obtain the regression residuals for xit on the observed factors gt. Then, the

unobserved factors ft are estimated as the r1 principal components of the residuals. Thus,

we obtain an estimate eF as a T ) r1 eigenvector matrix corresponding to the r1 largest
eigenvalues of MGXX

0MG=(TN) where MG * IT ( G(G0G)#1G0, under the normalization
of eF 0 eF=T = Ir. We then construct a T ) r matrix of factor estimate eH * [ eF ;G] and the
lagged variables up to pth order fW * [ eH(#1); & & & ; eH(#p)]. The factor loadings are estimated
using the least squares method eC = X 0 eH( eH 0 eH)#1 and the VAR coe¢cients are estimated
by the feasible generalized least squares (FGLS) such that

vec( eA0) = [(fW 0 . Ir)e5#1e (fW . Ir)]#1(fW 0 . Ir)e5#1e vec( eH 0);

where

e5e =

2

6666664

e51 0 & & & 0

0 e52
...

. . .

0 e5T

3

7777775
;

10This is a common problem when normalizing the structural shocks in FAVARs, e.g., see Stock and
Watson (2016).
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is a Tr ) Tr block diagonal matrix with e5t = 1
Tb#p

PTb
t=p+1 êtê

0
t for t = 1; & & &Tb and e5t =

1
T#Tb

PT
t=Tb+1

êtê
0
t for t = Tb+1; & & &T and êt comprises the ordinary least squares residuals of

the regression of eH on fW . It should be noted that if we denote the random rotation matrix

induced by the two-step principal component estimation by R, then it is known that the

least squares estimators ec0i and eAj are consistent estimators11 for c0iR#1 and RAjR#1 and the
following asymptotic normality results hold according to Bai and Ng (2006)12

p
T (eci (R0#1ci)

d! N(0; Vci);p
T [ eA( (Ip .R0#1)AR0]

d! N(0; VA);

where the asymptotic variances Vci and VA are stated in Appendix A as Lemma A1. Hence,

the reduced-form impulse response c0i-h is also estimated up to a rotation matrix R such

that it is a consistent estimator for c0i-hR
#1.

Remark 1 Bai et al. (2016) considers the same problem but without explicitly considering

the structural identiÖcation, i.e., the contemporaneous correlation matrix B. Hence, their

setup is the same as our reduced-form model (3) and (4), where they aim to identify the

matrix R. We do not separately identify R and B, so our problem is essentially the same as

theirs. We explain their approaches in Section 3.2 and Appendix B.

3.2 IdentiÖcation of the structural parameters

We propose a method for identifying the structural coe¢cients and impulse responses. The

aim is to consistently estimate C"; A", and ,i;h and the asymptotic distribution results are

presented.

Algorithm:

1. Estimate the reduced-form models (3) and (4) to obtain eA; eC, and eet. Let eC1:r be the
Örst r rows of eC.

11In particular,
00eci (R0$1ci

00 p! 0 and
000 eAj (RAjR$1

000 p! 0 where R is a random matrix.
12In the Proof of Theorem 1 in Appendix A, we show that

R =

2

4 Q$1 0r1%r2

(G0G)$1G0F Ir2

3

5 ;

where Q * V $1( eF 0MGF=T )(%
0%=N) and V is a r1 ) r1 diagonal matrix where the main diagonal elements

are the r1 largest eigenvalues of MGXX
0MG=(TN).
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2. Construct the sample covariance matrices for the pre- and post- break VAR residuals,

respectively, by

1

Tb

PTb
t=p+1 eetee

0
t = e11,

1

T ( Tb

PT
t=Tb+1

eetee0t = e12.

3. Obtain an r ) r eigenvector matrix of

eS = eC1:re11e1#12 eC#11:r

in descending order of their associated eigenvalues. Let the kth eigenvector divided by

its kth element be eUk. Then, e7 = [ eU1; & & & ;eUr] is an r ) r matrix.

4. Estimate the contemporaneous matrix B by

eB = eC#11:r e7:

After we obtain eB, the structural parameters are conventionally constructed by com-
bining with the reduced-form estimates Ĉ" * eC eB and Â"j * eB#1 eA:j eB and the structural

impulse response is constructed by ,̂ih * ec0ie-h eB. The following result is presented for these
parameters.

Theorem 1 Under Assumptions A-D, the algorithm given above yields: ĉ"i
p! c"i , Â

"
j

p! A"j ,

and ,̂ih
p! ,ih for each i and j, uniformly in h, as N; T !1.

A formal proof is given in Appendix A, but an intuitive explanation of this identiÖca-

tion mechanism is given as follows. The goal is to obtain eB such that it is asymptotically

equivalent to the rotated version RB. Thus, in step 3, we obtain eS such that

eS = eC1:r|{z}
CR!1

e11|{z}
RB,1B0R0

e1#12|{z}
R0!1B0!1,!12 B!1R!1

eC#11:r|{z}
RC!1

;

! p(C1:rB))1)
#1
2 (B

#1C#11:r ),

= C"1:r)1)
#1
2 C

"#1
1:r :

In the last line in the equations given above, )1)#12 is a diagonal matrix in descending order

by Assumptions A (i) and (ii), and C"1:r has unit diagonal elements by Assumption D, the

eigenvector of eS becomes a consistent estimate for C"1:r, which is C1:rB. Then, in step 4,

eB = eC#11:r e7 ' (RC#11:r )(C1:rB) = RB:

9



Furthermore, by plugging eB in the structural parameters, we can show that the Rs are

cancelled out in the structural parameter and impulse response estimates.

We next derive the asymptotic distributions, where the following lemma is useful. We

note that the matrix C1:r is a submatrix of C but is only used for the identiÖcation of RB.

Thus, in order to avoid notational confusion, we denote C1:r by 8 and C"1:r by 8
" in the

following.

Lemma 1 Under Assumptions A-D, the following holds:

p
Tvec( eB (RB) d! N(0; VB);

as N; T !1 under
p
T=N ! 0;where

VB * (Ir . 9R8#1)V-(Ir . 80#1 9R0) + (7080#1 9R0 . 9R8#1)V.(7
080#1 9R0 . 9R8#1);

with V. * [(R5HR0)#1 . 51:ru ] and V- is given in Lemma A5.

The asymptotic variance of eC1:r is denoted by V. and it is constructed based on the
existing results given by Bai (2003) and Bai and Ng (2006). The asymptotic variance of

the eigenvector matrix e7 denoted by V- is described in Lemma A5 in Appendix A. We

now derive the asymptotic distributions of the structural parameters and impulse responses

estimators in the following theorem.

Theorem 2 Under Assumptions A-D, the algorithm given above yields: (i) for the factor

loadings: p
T (ĉ"i ( c

"
i )

d! N(0;1ci);

as N; T !1 and
p
T=N ! 0 for any i = 1; :::; N , where

1ci * ( 9R
0#1c0i . Ir)KrrVBK

0
rr(ci 9R

#1 . Ir) +B0 9R0Vci 9RB;

where Vci is deÖned in Lemma A1 and Krr is the r2 ) r2 commutation matrix. (ii) For the
VAR coe¢cients: p

Tvec(Â"j ( A
"
j)

d! N(0;1Aj);

as N; T !1 and
p
T=N ! 0 for any j = 1; :::; p, where

1Aj * DBVBD
0
B + (B

0 9R0 .B#1 9R#1)VAj( 9RB . 9R0#1B0#1);

10



with

DB * [(Ir .B#1Aj 9R#1)( (B0A0jB
0#1 .B#1 9R#1)]

(iii) For the impulse responses:

p
T (,̂i;h (,i;h)

d! N(0;1/i;h);

as N; T !1 and
p
T=N ! 0 uniformly in h for any i = 1; :::; N , where

1/i;h =
9R-hBVciB

0-0h
9R0 +DA;hVAD

0
A;h + (Ir . c

0
i-h

9R#1)VB(Ir . 9R0#1-0hci);

with

DA;h * (B0 9R0 . 9R0#1ci)
&Ph#1

j=0 JA
0h#1#j . 9R-j 9R

#1
'
;

where J = [Ir; 0r'r(p#1)] and A is a companion form of [A1; & & & ; Ap].

Several remarks are given pertaining to this result. First, all of the asymptotic variances

given above can be consistently estimated by combining the reduced-form estimates, because

all of the entities in the expressions are the rotated versions (some of them are cancelled out

in the expressions given above). For example R0#1c0i is consistently estimated by ec0i and B0R0

is consistently estimated by eB0. Second, we only derive the asymptotic distribution under
p
T=N ! 0 in this study. GonÁalves and Perron (2014) showed that relaxing this condition

in the form of
p
T=N ! c where 0 - c <1 generates asymptotic bias of the estimators and

the inference that dealing explicitly with this asymptotic bias is important. However, we

leave this issue for future research. Finally, when there are more than one break in the shock

variances, utilizing all these changes yields an overidentifying situation and the proposed

method is not directly applicable. A simple solution would be to use the sample covariances

in only two regimes in step 3 at a cost of e¢ciency.

3.3 Strategies employed by Bai et al. (2016)

Bai et al. (2016) considers identiÖcation strategies for FAVAR models to provide estimates

for coe¢cients and impulse responses that are free from random rotation. Their setup is the

same as our reduced-form models (3) and (4), where

E(ete
0
t) = 5e =

2

4111 112

121 122

3

5 ;

for all t. The following three sets of exclusion restrictions are considered.
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/ IRa: 111 = Ir1, 112 = 121 = 0r1'r2, and N#1*05#1u * is a diagonal matrix where its

diagonal elements are distinct and arranged in descending order.

/ IRb: 111 = Ir1, 112 = 121 = 0r1'r2, and *1:r = [A1; & & & ; Ar1 ] is a lower triangular
matrix.

/ IRc: 112 = 121 = 0r1'r2 and *1:r = [A1; & & & ; Ar1 ] = Ir1.

In the form of structural VAR models (1) and (2), the above restrictions are translated

into those on the matrix B through the relationship 5e = BB0. Thus, we can restrict the

matrix B so 5e = BB0 satisÖes the assumptions given above. A common feature of these

three methods is assuming that 112 = 121 = 0r1'r2. Except for extreme coincidence, this is

achieved by assuming that the same o§-diagonal parts of the matrix B are zeros, i.e., the

unobserved and observed factors are not contemporaneously correlated. In this sense, our

method will complement the previously proposed methods, because it allows the matrix B

to be fully unrestricted.

It should be noted that Bai et al. (2016) considers the quasi-maximum likelihood method

instead of the principal component method for estimating the unobserved factors. However,

their identiÖcation strategies are valid when the principal component factor estimate is used

as they point out, and the steps after factor extraction can be followed exactly. Hence, in

the following, we compare our method with that of Bai et al. (2016) by including their iden-

tiÖcation methods in the two-step estimation using the principal component factor estimate.

3.4 Bootstrap conÖdence interval

The seminal studies of GonÁalves and Perron (2014) and Yamamoto (2017) show that as-

ymptotic inference of the factor-augmented models may under-evaluate the sampling errors

(asymptotic bias) of the coe¢cient estimators because it is assumed that the asymptotic

results are free from factor estimation errors under
p
T=N ! 0. They develop bootstrap in-

ference as an alternative method that is consistent even under
p
T=N ! c where 0 - c <1.

We also consider the bootstrap method in a similar manner. Thus, we also assume inde-

pendence13 but allow for heteroskedasticity in the idiosyncratic errors uit. The procedure is

described as follows.
13GonÁalves and Perron (2014) show that the serial correlations in the idiosyncratic errors are irrelevant

when we focus on the coe¢cients of the factor-autoregression model in which the dependent variable is
observed. However, this is not the case when some of the dependent variables are the estimated factors as
in the FAVAR model.
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Bootstrap algorithm:

1. Estimate the reduced-form models (3) and (4), and obtain the parameter estimate eC,
eA, eB, and the residuals eet and euit. Construct the structural impulse response estimator
,̂i;h by using the algorithm proposed in Section 3.2.

2. Ensure that the pre- and post- break VAR residuals feetgTbt=1 and feetg
T
t=Tb+1

are de-

meaned, respectively, in the time direction. Resample with replacements the pre-break

residuals feetgTbt=1 as r)1 vectors in an i.i.d. manner and label them
5
ebt
6Tb
t=1
. Construct

the same process for the post-break residuals and label them
5
ebt
6T
t=Tb+1

. Generate the

bootstrapped factors via hbt =
Pp

j=1
eAjhbt#j + ebt ; for t = p+ 1; :::; T:14

3. Demean the idiosyncratic residuals euit in both the time and cross-sectional directions.
For each i = 1; :::; N , if fuitg

T
t=1 are considered homoskedastic, then we propose the i.i.d.

resampling of feuitgTt=1 to obtain
5
ubit
6T
t=1
. If fuitg

T
t=1 are considered heteroskedastic,

then use the wild bootstrap ubit = euitZit, where Zit 2 i:i:d:(0; 1) is an external random
variable to obtain

5
ubit
6T
t=1
. Generate the bootstrapped observations xbit = ecihbt + ubit

for t = 1; :::; T and i = 1; :::; N .

4. Using the bootstrap observations xbit, obtain the parameter estimate eCb, eAb, and eBb, by
using the same estimation and identiÖcation methods proposed in Section 3.2, thereby

obtaining the bootstrap estimate of the structural impulse response ,̂bi;h.

5. Repeat steps 2 to 4 nb times and store the recentered statistic si;h * ,̂bi;h\ ( ,̂i;h\,
where \ is an r ) 1 vector of shocks of interest.

6. Sort the statistics and select the 100;
2
th and 100(1 ( ;

2
)th percentiles [s(;=2)i;h ; s

(1#;=2)
i;h ].

The resulting 100(1(])% conÖdence interval for ,i;h\ is [,̂i;h\(s
(1#;=2)
i;h ; ,̂i;h\+s

(;=2)
i;h ].

The bootstrap consistency of the method under
p
T=N ! c (0 - c < 1) would be

similar to that shown by Yamamoto (2017) when explicitly deriving the asymptotic bias of

the original and bootstrap estimates for the impulse responses, but this problem is rather

trivial and it is not presented in this study.

14The bias-correction method discussed by Kilian (1998) can be applied. The bias is estimated by taking
the average of Â!j (R!ÂjR!$1 in another bootstrap loop, where R! is a bootstrap analogue of R and it can
be constructed based on the original estimate and the bootstrap samples.
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4 Monte Carlo experiments

We investigate the Önite sample properties of the impulse response estimator by using Monte

Carlo simulations. First, we compare the accuracy of estimator obtained using our identiÖca-

tion method with that using the three methods based on the IRa, IRb and IRc assumptions

proposed by Bai et al. (2016). To ensure that the comparisons are fair and to simplify the

implementation, we estimate the unobserved factors by the principal component method in-

stead of the quasi-maximum likelihood method.15 We also investigate the empirical coverage

properties of the asymptotic and bootstrap conÖdence intervals when the proposed identi-

Öcation method is used. We use the following reduced-form models as the data generating

process (DGP):

ht = Aht#1 + et; (5)

xit = c0iht + uit; (6)

with ht = [f 0t ; g
0
t]
0 where ft is an r1) 1 vector of unobserved factors and gt is an r2) 1 vector

of observed factors. The number of unobserved factors is r1 = 2 and that of the observed

factors is r2 = 1, so the total number of factors is r = r1 + r2 = 3. The order of the VAR

model (5) is 1 with the VAR coe¢cient matrix

A =

2

6664

0:6 0 0

0 0:4 0

0 0 0:2

3

7775
;

while the VAR errors are generated by et = B"t with the structural shock "t 2 i:i:d:N(0;)t)
and the matrix B is arbitrarily set at

B =

2

6664

1:0 0:4 0:8

0:2 1:0 (0:3

(0:6 0:4 1:0

3

7775
; (7)

unless stated otherwise. The unconditional shock covariance matrix )t changes in the middle

of the sample period such that

)t =

8
<

:
diag(2 + d; 1 + d=2; 0:25), for t = 1; :::; [T=2]

Ir for t = [T=2] + 1; :::; T
;

15As discussed in Section 3.3, this does not a§ect the qualitative results for the main conclusion.
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where the parameter d controls the magnitude of the variance change, and we speciÖcally

consider d = 0:5; 1, and 2 in this experiment. For the factor model (6), the factor loadings

ci are generated as an r ) 1 vector where each element is independently drawn from the

standard normal distribution. Furthermore, the idiosyncratic errors are generated by uit 2
i:i:d:N(0; 1). We consider the impulse responses of the Nth variable ,N;h.16 The number of

Monte Carlo replications is 3,000.

4.1 MSE of the impulse response estimator

First, we examine the MSE of the impulse response estimator to one unit structural shock of

the observed factor and an unobserved factor. In particular, we compare our method (in the

column denoted as ìIRvî) with the methods proposed by Bai et al. (2016) (in the columns

denoted as ìIRaî, ìIRbî, and ìIRcî). In this experiment, the matrix B for IRa, IRb, and

IRc is restricted as follows. Let 1 = BB0 where B is speciÖed by (7). Then, for IRa, IRb,

and IRc, we impose the o§-diagonal blocks 112 and 121 to be zero matrices. Further, for

IRa and IRb, we impose the upper left r1 ) r1 block 111 to be the identity matrix. This
results in

1 =

8
>>>>>><

>>>>>>:

2

4Ir1 0

0 122

3

5 for IRa and IRb

2

4111 0

0 122

3

5 for IRc

; (8)

where 122 is the lower right r2) r2 block of 1 = BB0. After obtaining such 1, we construct
the matrix B by imposing a recursive assumption such that B = chol(1) for IRa, IRb,

and IRc, respectively. Hence, the true or correct B matrix can be di§erent in di§erent

identiÖcation strategies.

The DGPs are di§erent when diverse identiÖcation methods are compared, so it is dif-

Öcult to determine whether the di§erence in MSEs is due to the DGP or the identiÖcation

method. To address this concern, we consider the following four scenarios. In scenario A, the

DGPs conform with the identiÖcation assumptions, and thus the four methods are applied

to di§erent DGPs. In scenario B, the DGP uses the unrestricted B matrix (7) for every

16The factor loadings of the Örst r response variables are used for identiÖcation and they can be di§erent
according to the identiÖcation method employed in this experiment. The remaining factor loadings are the
same even when di§erent identiÖcation methods are considered. The exception is IRa where the factor
loading matrix has a block structure (if 'u is diagonal). In this experiment the Örst factor loading of the
Nth response variable is zero.
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method, and thus the method based on IRv is regarded as a correct method, whereas IRa,

IRb, and IRc are not and the latter is a§ected by misspeciÖcation. In scenario C, the DGP

uses the matrix B based on IRa and IRb (which are the same). In scenario D, the DGP uses

the B matrix based on IRc. As shown in (8), scenario C is the case with the most restrictions

and all four methods satisfy their assumptions. Scenario D is somewhat less restrictive than

scenario C because the 111 part is unrestricted, so the methods based on the IRa and IRb
assumptions involve the misspeciÖcation, whereas the methods based on the IRc and IRv
assumptions are correctly speciÖed.

By contrast, the identiÖcation assumptions on the factor model are correctly imposed

in every case as follows. When we use the method based on IRa, the Örst [0:7N ] response

variables have zero second factor loadings and the last [0:3N ] response variables have zero

Örst factor loadings, so *05u*=N becomes a diagonal matrix. When we use the method

based on IRb, we put three zeros in the factor loading matrix so that the Örst r1 response

variables *1:r1 becomes a lower triangular matrix. When we use the method based on IRc,

*1:r1 is the identity matrix. When we use the method based on IRv, we follow Assumption D

and sets C1:r such that the main diagonal elements of C1:rB are unity.17 We use the impulse

response of the Nth variable, so the objectives are the same regardless of the assumptions,

except for IRa where the Örst factor loading is restricted to be zero. However, that has very

little e§ect on the MSEs.

Table 1 shows the MSEs of the impulse response estimator of the time horizon h = 1

for scenarios A to D. For each scenario, the left panel presents the MSEs of the impulse

response estimator to a shock of the observed factor and the right panel shows the MSEs of

the impulse response estimator to a shock of the Örst unobserved factor. We investigated

the MSEs for di§erent values of the horizon h, but the results were qualitatively similar, so

we only present the case where h = 1.18 In each table, we consider the sample size pairs

(T;N) = (50; 50); (50; 150); (150; 50); and (150; 150).

Throughout the four scenarios, the MSE of IRv tends to decrease as d increases because

the eigenvalues of )1)#12 are more distinct and the asymptotic variance of the eigenvectors

will become smaller.19 By contrast, the MSEs of IRa, IRb, and IRc tend to increase as

17First, we compute C1:rB and set its diagonal elements as one and get back C1:r by right-multiplying
B$1.
18When the sample size and the break size are not large, the MSE of IRv may be driven by a very few

large errors and the results may be unstable. Hence, we report the MSEs after truncating the 1% largest and
1% smallest squared errors. However, this does not a§ect qualitative results of the Monte Carlo simulation.
19This is consistent with Lemma A5, in which the asymptotic variance is shown to have (2(k)1=2 ( 2

(j)
1=2)

2 as
the denominator.
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d becomes large because the variance of the VAR errors increases in (the Örst half of) the

sample period, thereby resulting in larger sampling errors for the impulse response estimator.

We then compare the MSEs of the four identiÖcation methods in each scenario. In

scenario A, when the shock of the observed factor is considered, the MSE of IRv is larger

than that with any other method for every sample size pair. However, it becomes more

comparable to the others, especially with IRb, under a large break d = 2 with a large time

dimension T = 150. A larger N also reduces the MSE except in a few cases, but its e§ect

is more blurred than that of T because the estimator is
p
T consistent. When the shock of

the Örst unobserved factor is considered, the MSEs of IRa and IRb increase whereas those

of IRc decreases compared with the shock of the observed factor case. The MSE of IRv is

much smaller than those of IRa and IRb and it outweighs that of IRc when T is large.

Scenario B is the most interesting experiment because the matrix B is fully unrestricted

and it is the same for all of the identiÖcation methods. When the shock of the observed

factor is considered, the MSEs of IRa, IRb, and IRc are considerably larger than those in

scenario A, whereas the MSEs of IRv does not increase. This is because the methods based

on IRa, IRb, and IRc su§er from misspeciÖcation whereas the method based on IRv does

not. When we consider the shock of the Örst unobserved factor, IRv still tends to give the

smallest MSE when T = 150:

In scenario C, the matrix B has the most restrictions, and thus the relative merit of IRv
is expected to be the smallest among the four scenarios. However, we Önd that IRv gives

MSEs that are comparable with those of IRa, IRb, and IRc when d and T are large and the

shock of the observed factor is considered. The results remained qualitatively similar even

when the shock of the Örst unobserved factor is considered. Finally, the results obtained

under scenario D agree with those under scenario C even when matrix B is slightly more

restricted.

In summary, the Monte Carlo results conÖrm that the impulse responses are estimated

more accurately using the proposed method as the magnitude of the variance change increases

and as the sample size grows. More importantly, the proposed method is robust to the

misspeciÖcation of the matrix B unlike the existing methods proposed by Bai et al. (2016).

Even when the matrix B is correctly speciÖed, the MSEs with the proposed method are

comparable with those as d and T become large.
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4.2 Coverage property of the conÖdence interval

Next, we investigate the coverage property of the conÖdence interval for the impulse re-

sponses identiÖed using the proposed method. Table 2 presents the empirical coverage

rate and the median value of the length, i.e., the upper conÖdence limit minus the lower

conÖdence limit, for the 95% asymptotic conÖdence interval based on 3,000 Monte Carlo

replications. Given that the order of VAR is 1, it is su¢cient to investigate the horizon

h up to 5. The same set of sample size pairs described in the previous subsection, i.e.,

(T;N) = (50; 50); (50; 150); (150; 50), and (150; 150) are used to study the sample size e§ect.

The upper table shows the results for the impulse responses to a unit shock of the observed

factor and the lower table shows the impulse responses to a unit shock of the Örst unobserved

factor. When we consider the shock of the observed factor, the coverage rate is close to the

nominal level of 95% in every case, validating Theorem 2. Importantly, when we consider

the responses to an unobserved factor shock as shown in the lower table, the asymptotic

conÖdence interval tends to fall short of the nominal coverage rate. This under-coverage

property is exacerbated when the sample size is small, especially when N is smaller than T

(T = 150; N = 50) because the condition that
p
T=N ! 0 is considered less appropriate

in this empirical situation. Unsurprisingly, the coverage rate deteriorates as h increases,

because the degree of nonlinearity of impulse responses increases and this undermines the

asymptotic approximation. The median length decreases as d becomes larger because the

asymptotic variance decreases for the same reason explained in the previous subsection. We

also observe that the median length decreases as T increases, which is consistent with the
p
T rate of the estimator, whereas the e§ect of a large N is more blurred.

In the aforementioned studies of bootstrapping factor models, it is suggested that boot-

strap methods can improve the coverage property. To examine this suggestion, Table 3 shows

the coverage rate and median length of the 95% bootstrap conÖdence interval, as proposed

in Section 3.3. We consider the i.i.d. bootstrap based on 499 repetitions. The upper table

again shows the results for a unit shock of the observed factor, where the coverage rate is

very close to the nominal level of 95% and the median length is somewhat longer than the

asymptotic interval, thereby reáecting the factor estimation errors. The lower table shows

the results with respect to a unit shock of the Örst unobserved factor. Clearly, the bootstrap

interval has a coverage rate that is much closer to the nominal level than the asymptotic

interval. As suggested in the seminal study of GonÁalves and Perron (2014), the bootstrap

accounts for the e§ects of factor estimation errors that are not accounted for by the asymp-

totic interval under the assumption of
p
T=N ! 0. A well-known caveat that the coverage
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rate can deteriorate as h becomes larger even with the bootstrap method is also relevant in

this case. This could potentially be Öxed by introducing the double bootstrap bias correction

procedure proposed by Kilian (1998).

5 Empirical illustration

We apply the proposed identiÖcation method to the well-known empirical study by Bernanke

et al. (2005), who investigated the e§ect of a contractionary monetary shock on macroeco-

nomic variables using the same FAVAR model as (3), with the federal funds rate (FFR) as

the observable factor gt and the unobservable factors ft extracted from 120 macroeconomic

data series for the United States. The aim of this study is to examine whether we can ob-

tain impulse response estimates similar to those in the original study by using the proposed

identiÖcation method.

Thus, we Örst explain their identiÖcation strategy. Bernanke et al. (2005) assumed

a recursive structure among the unobserved and observed factors. They Örst extract the

unobserved factors from a subset of ìslow-moving variablesî among the 120 macroeconomic

variables. The remaining unobserved factors are identiÖed as the residuals from the regression

of the standard principal component estimate on the slow-moving factors and gt. Clearly,

the identiÖed unobserved factors are orthogonal to the observed factor and the slow-moving

factors. Our method does not impose these restrictions but a change in the unconditional

shock variances is accounted for in December 1984. The timing of this change in the variance

is consistent with the evidence for the so called Great Moderation20 and a reasonable variation

in the timing does not qualitatively a§ect our results.21 To Öx the scale of the shocks, we

use the point estimate of the reduced-form factor loading estimate for the main diagonal

elements of the contemporaneous impulse responses. Our speciÖc choice is based on the

variables that take a large value for each factor loading. Our speciÖc choices comprise the

industrial production (Önal products) for the Örst factor, the NYSE common stock price

index (composite) for the second factor, the producer price index (Önished goods) for the

third factor, and the spread of FYGT1 from FYFF for the observed factor. As discussed

in Section 2, this choice may a§ect the empirical results and making this step more robust

20Stock and Watson (2002) document that about 40% of 168 U.S. macroeconomic variables experienced a
change of the variance during 1983 and 1985.
21Han and Inoue (2015) pointed out that common breaks in the factor loadings can increase the number

of factors and Yamamoto (2016) investigated a consequence of this fact in a forecasting exercise. Any
criticism of the time-invariant factor loading assumption may apply to this example, so to the original study
of Bernanke et al. (2005).
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should be addressed in future research.

Following the original study, we use the VAR lag order p = 13 and the number of

unobserved factors r = 3. We use exactly the same data employed by Bernanke et al. (2005),

which ranges from January 1959 to August 2001. A 25-basis point increase in the FFR is

investigated, and the impulse responses and associated bootstrap conÖdence intervals are

retransformed to level. The conÖdence level is 90% and the number of bootstrap repetitions

is 1,000. We could compute the impulse responses of the 120 variables, but given space

limitations, the following six selected variables are presented: FFR, industrial production

index (total, IP), consumer price index (all item; CPI), monetary base, exchange rate yen,

commodity price index up to 48 periods ahead as shown in Figure 1.

First, we Önd that the directions of the point estimates of the impulse responses are largely

consistent with those in the original study.22 This suggests that imposing the identiÖcation

assumption of Bernanke et al. (2005) has little e§ect on their main results. Second, not

surprisingly, the conÖdence intervals with our identiÖcation method are somewhat wider than

those in the original study in most cases. We recall that the MSE with our method tends

to become larger when the DGP is restricted correctly (in Scenarios C and D) in our Monte

Carlo investigations, so this Önding also supports the identiÖcation strategy implemented by

Bernanke et al. (2005).

6 Conclusion

In this study, we develop a new structural identiÖcation method for FAVAR models. The

main idea is based on previous studies that use changes in the unconditional shock variances

on a historical date. Similar to the methods developed by Bai et al. (2016), the proposed

method can identify the rotated version of the contemporaneous matrix, but it is advanta-

geous because it allows the contemporaneous matrix to be fully unrestricted. Our method

can utilize statistical methods to verify the identiÖcation assumptions rather than relying on

economically motivated assumptions. We derive the asymptotic distributions of the struc-

tural parameter and impulse response estimators under
p
T=N ! 0 as N; T ! 1 and

propose a bootstrap method for constructing the conÖdence interval. Monte Carlo experi-

ments suggest that the MSEs with the proposed method are larger than the existing methods

if the identifying assumptions of the latter is indeed correct. However, the proposed method

obtains much smaller MSEs when the contemporaneous matrix is indeed unrestricted. This

22We can directly compare the results with Figure II (page 408) of Bernanke et al. (2005).
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feature becomes more distinct when the magnitude of the change in the variance is large and

as T increases. Both the asymptotic and bootstrap conÖdence intervals provide a satisfactory

coverage rate when the impulse response to a shock of the observed factor is investigated.

The bootstrap interval gives more accurate coverage rate when a shock of an unobserved fac-

tor is considered, especially when N is relatively smaller than T , as suggested in the previous

studies. Finally, our empirical investigation of the same model employed by Bernanke et al.

(2005) provides similar point estimates and wider conÖdence intervals in general. These Önd-

ings support the validity of the identiÖcation strategy used by Bernanke et al. (2005) in their

context. Several important issues need to be addressed in future research. The asymptotic

theory under
p
T=N ! c (0 - c <1) must be developed to justify the bootstrap methods.

More importantly, the new identiÖcation strategy can potentially be applied to empirical

data given the large number of studies of structural VARs reviewed by Stock and Watson

(2016) and Kilian and L¸tkepohl (2017), e.g., especially in a data-rich environment.
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Appendix A: Proof of Theorems

Proof of Theorem 1: We rewrite the reduced-form factor model (4) as

xi = FAi +GBi + ui;

= MGFAi +G^T;i + ui;

where ^T;i * [(G0G)#1G0FAi+Bi]. BecauseMGF and G are orthogonal, by using Theorem 1
of Bai and Ng (2006), the reduced-form factor loading estimator has the following property

eci '

2

4 Q
#1 0r1'r2

0r2'r1 Ir2

3

5

2

4 Ai
^T;i

3

5 ;

so that

eci '

2

4 Q
#1 0r1'r2

0r2'r1 Ir2

3

5

2

4 Ir1 0r1'r2

(G0G)#1G0F Ir2

3

5

2

4Ai
Bi

3

5 ;

=

2

4 Q#1 0r1'r2

(G0G)#1G0F Ir2

3

5 ci;

where Q * V #1( eF 0MGF=T )(*
0*=N) and V is an r1 ) r1 diagonal matrix where the main

diagonal elements are the r1 largest eigenvalues of MGXX
0MG=(TN). Thus, we have

e8 * eC1:r
p! C1:r 9R

#1 * 8 9R#1; (A.1)

where

R *

2

4 Q#1 0r1'r2

(G0G)#1G0F Ir2

3

5 ;

and 9R = p lim(R). This implies that the inverse has the probability limit

e8#1 p! 9R8#1: (A.2)

Because the deÖnition of the reduced-form VAR errors yields E(ete0t) = B)jB
0 for j = 1

and 2 and Lemma 2 of Yamamoto (2017) gives
000 1
Tj

P
j eetee0t (R)jR0

000 = Op(
1

minfN;Tg), the

sample covariance matrix of the reduced-form VAR residuals for regime j has a probability
limit

e1j
p! 9RB)jB

0 9R0; (A.3)

for j = 1 and 2 because et = B"t and Assumption A (i).
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Therefore, by using (A.1), (A.2) and (A.3),

eS * e8e11e1#12 e8#1
p! (8 9R#1)( 9RB)1B

0 9R0)( 9RB)2B
0 9R0)#1( 9R8#1);

= 8B)1=2B
#18#1 * S;

where )1=2 is a diagonal matrix where the kth main diagonal element is J
(k)
1=2 * J

(k)
1 =J

(k)
2 for

k = 1; :::; r. Because e7 is the eigenvectors of eS, the probability limit of e7 is the eigenvectors
of

S = 8B)1=2B
#18#1;

and the diagonal elements of 8B * C"1:r are normalized by Assumption D, we obtain

e7 p! 8B; (A.4)

and, by using (A.2) and (A.4),

eB = e8#17̂ p! 9R8#18B = 9RB:

Finally, because the reduced-form estimator satisÖes eci ' R0#1ci for i = 1; :::; N and
eAj ' RAjR#1 for j = 1; :::; p,

ĉi = eB0eci ' B0R0R0#1ci = B0ci = c"i ;

and
Âj = eB#1 eAj eB ' B#1R#1RAjR#1RB = B#1AjB = A"j :

The results follow.!

In the Lemmas A1 and A2, we only consider the case of spherical idiosyncratic errors
in order to simplify the notation for the long-run variance. However, the results can be
extended to the case with heteroskedasticity and standard type of serial correlations.

Lemma A1. Under Assumptions A-D, the following hold as N; T !1 and
p
T=N ! 0:

(i) p
T (eci (R0#1ci)

d! N(0; Vci);

where Vci * `2i ( 9R5H 9R0)#1.
(ii) p

Tvec[ eA( (Ip .R0#1)AR0]! N(0; VA);

where

VA * p limT [f(Ip .R0)W 0g . Ir]#1[(IT .R)5e(IT .R0)][fW (Ip .R)g . Ir]#1:

Proof of Lemma A1: (i) This is a direct result of Theorem 1 of Bai and Ng (2006).
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(ii) First, we note that

eH * HR + ( eH (HR);
= WAR + eR +WAR + (H (HR);

= fW (Ip .R#1)AR + eR + [W (fW (Ip .R#1)]AR + ( eH (HR):

Consider the FGLS estimator. To simplify the notation, we let D * [(fW 0. Ir)e5#1e (fW . Ir)].
Then,

vec( eA0) = D#1(fW 0 . Ir)e5#1e vec( eH 0);

= D#1(fW 0 . Ir)e5#1e vec[R0A0(Ip .R0#1)fW 0];

+D#1(fW 0 . Ir)e5#1e vec(R0e0);
+D#1(fW 0 . Ir)e5#1e vec[R0A0fW 0 ( (Ip .R0#1)fW 0g];

+D#1(fW 0 . Ir)e5#1e vec( eH 0 (R0H);
= I + II + III + IV:

For I, because

vec[R0A0(Ip .R0#1)fW 0] = (fW . Ir)vec[R0A0(Ip .R0#1)];

we obtain
I = vec[R0A0(Ip .R0#1)]:

Hence, p
Tvec[R0A0(Ip .R0#1)fW 0] =

p
T (II + III + IV ):

Terms III and IV are factor estimation errors and they diminish as N; T ! 1 underp
T=N ! 0. This yields

AV ar(
p
Tvec[R0A0(Ip .R0#1)fW 0])

= p lim(TD#1)(fW 0 . Ir)e5#1e [T#1vec(R0e0)vec(R0e0)0]e5#1e (fW . Ir)(TD0#1):

However, because
E(e5e) = E[vec(R0e0)vec(R0e0)0];

we have

p lim(fW 0 . Ir)e5#1e [vec(R0e0)vec(R0e0)0=T ]e5#1e (fW . Ir) = p limT#1D;

or
AV ar(

p
Tvec[R0A0(Ip .R0#1)fW 0]) = p lim(TD#1):

We note that

D ' [f(Ip .R0)W 0g . Ir][(IT .R)5e(IT .R0)]#1[fW (Ip .R)g . Ir]:
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The result follows.!

Lemma A2. Under Assumptions A-D, the following holds:
p
Tvec(e8( 8R#1) d! N(0; V.);

where
V. * [( 9R5H 9R0)#1 . 51:ru ];

51:ru *

2

6664

`21 & & & `1r
...

. . .
...

`r1 & & & `2r

3

7775
; `2i = E(u

2
it) and `ij = E(uitujt).

Proof of Lemma A2: This proof is obtained directly from Lemma A1 (i).!

Lemma A3. The following holds as N; T !1 with
p
T=N ! 0:

p
Tvec(e11e1#12 (R111#12 R

#1)
d! N(0; V31=2);

where

V31=2 * ( 9R0#11#12 9R#1 . Ir)V31( 9R
0#11#12 9R#1 . Ir)

+( 9R0#11#12 9R#1 . 9R111
#1
2
9R#1)V32( 9R

0#11#12 9R#1 . 9R111
#1
2
9R#1);

with

V3j * 2PD( 9R1j 9R
0 . 9R1j 9R

0)PD; for j = 1 and 2;

PD * Dr(D
0
rDr)

#1D0
r;

where Dr is a duplication matrix of dimension r.

Proof of Lemma A3: First, we obtain the following result for the asymptotic distrib-
ution of the sample covariance matrix of the VAR errors by using Lemma 4 of Yamamoto
(2017)

p
Tvec(e1j (R1jR#1)

d! N(0; V3j); (A.5)

where
V3j * 2PD( 9R1j 9R

0 . 9R1j 9R
0)PD; (A.6)

for j = 1; 2 as N; T !1 and
p
T=N ! 0. Then, we let 91j * R1jR0 for j = 1; 2: The delta

method yields p
Tvec(e11e1#12 (R111#12 R

#1)
d! N(0; V31=2);
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where

V31=2 *
@vec(911 91

#1
2 )

@vec(911)0
V31

@vec(911 91
#1
2 )

0

@vec(911)

+
@vec(911 91

#1
2 )

@vec(912)0
V32

@vec(911 91
#1
2 )

0

@vec(912)
: (A.7)

Furthermore,

@vec(911 91
#1
2 )

@vec(911)0
= 91#12 . Ir = ( 9R0#1 91#12 9R#1). Ir; (A.8)

@vec(911 91
#1
2 )

@vec(912)0
= ((Ir . 911)(91#12 . 91#12 );

= ((91#12 . 911 91#12 );
= (( 9R0#11#12 9R#1 . 9R11 9R

0 9R0#11#12
9R#1): (A.9)

Plugging (A.6), (A.8), and (A.9) in (A.7) yields the result. !

Lemma A4. The following holds as N; T !1 with
p
T=N ! 0:

p
Tvec( eQ( 8111#12 8#1)

d! N(0; VQ);

where

VQ * (80#1 9R0 . 8 9R#1)V31=2( 9R8
#1 . 9R0#180)

+(80#1 9R0 . 811=28#1)V.( 9R8#1 . 80#111=280)
+(80#111=2 9R

#1 . Ir)V.( 9R0#111=28#1 . Ir);

where V31=2and V. are given in Lemmas A3 and A2, respectively.

Proof of Lemma A4: We let the probability limit of e11e1#12 be 911=2 * 9R11 9R
0( 9R12 9R

0)#1 =
9R111

#1
2
9R#1 and 98 * 8 9R#1. Then,

eQ ' 98911=298
#1

= (8 9R#1)( 9R111
#1
2
9R#1)( 9R8#1)

= 8111
#1
2 8

#1 * Q:

Using Lemmas A2 and A3, the delta method yields

p
Tvec( eQ(Q) =

p
Tvec( eQ( 811=28#1)

d! N(0; VQ);
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as N; T !1 with
p
T=N ! 0; where

VQ *
@vec(Q)

@vec(911=2)0
V31=2

@vec(Q)0

@vec(911=2)

+
@vec(Q)

@vec(98)0
V.
@vec(Q)0

@vec(98)
: (A.10)

Furthermore,

@vec(Q)

@vec(911=2)0
=

@vec(98911=298
#1)

@vec(911=2)0

= (980#1 . 98) = (80#1R0 . 8R#1); (A.11)

and

@vec(Q)

@vec(98)0
=

@vec(98911=298
#1)

@vec(98)0

= ((Ir . 98911=2)(980#1 . 98#1) + (980#1 9101=2 . Ir);

= ((980#1 . 98911=298#1) + (980#1 9101=2 . Ir);

= ((80#1 9R0 . 811=28#1) + (80#1101=2 9R
#1 . Ir): (A.12)

Hence, plugging (A.11) and (A.12) in (A.10) yields the result.!

Lemma A5. Under Assumptions A-D, for the normalized eigenvector matrix e7 =

[eU1; & & & ;eUk] of eQ, the following holds as N; T !1 with
p
T=N ! 0:

p
Tvec(e7( C"1:r)

d! N (0; V-) ;

where

V- *

2

6664

V@11 & & & V@1r
...

. . .
...

V@r1 & & & V@rr

3

7775
;

with

V@kk *
Pr

j=1;j 6=k
AV ar(vii)

(J
(k)
1=2 ( J

(j)
1=2)

2
c"+jc

"0
+j;

V@kl * (
AV ar(vkl)

(J
(k)
1=2 ( J

(j)
1=2)

2
c"+kc

"0
+l; for k 6= l;

vij is the (i; j)th element of
p
T ( eQ(Q) and c"+j is the jth column of C"1:r.
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Proof of Lemma A5: To prove this lemma, we follow the derivation of the asymptotic
distribution of eigenvectors of a sample covariance in Theorem 13.5.1 of Anderson (2003).
However, we take the eigenvectors of eQ which is not symmetric in Önite samples and its
Önite sample distribution is not necessarily a Wishart distribution. However, the asymptotic
distribution of eQ is that obtained in Lemma A4. First, we consider the asymptotic distribu-
tion of the normalized eigenvector E of C"#1 eQC" * S. Then, we consider that of e7 = C"E.
This relation holds because if we let D be the eigenvalue matrix then

SE = ED , C"SC"#1(C"E) = (C"E)D

, eQe7 = e7D:

If we let
p
T (S ( )1=2) = V and

p
T (E ( Ir) = W; then SE = ED implies that

8
)1=2 +

1
p
T
V

98
I +

1
p
T
W

9
=

8
I +

1
p
T
W

98
)1=2 +

1
p
T
D

9
;

so that
V = W)1=2 ( )1=2W +D +Op(T

#1=2):

If we neglect the terms of order T#1=2, then

V = (W)1=2 ( )1=2W ) +D:

It is shown that wii = 0 because of the diagonal elements are known by Assumption D. For
i 6= j

wij =
vij

J
(j)
1=2 ( J

(i)
1=2

:

Because eUk is the kth column of C"1:rE,

p
T (eUk ( c"+j)

d! N

 
0;
Pr

j=1;j 6=k
AV ar(vii)

(J
(k)
1=2 ( J

(j)
1=2)

2
c"+jc

"0
+j

!
;

and the asymptotic covariance of eUk and eUl (k 6= l) is given by

(
AV ar(vkl)

(J
(k)
1=2 ( J

(l)
1=2)

2
c"+kc

"0
+l:

The result follows.!

Proof of Theorem 2: We let 9B * 9RB; 9ci * ci 9R#1; and 9Aj * 9RAj 9R
#1. (i) The delta

method yields

1ci *
@ 9B09ci
@9c0i

Vci
@9c0i 9B

@9ci
+

@ 9B09ci
@vec( 9B)0

VB
@9c0i

9B

@vec( 9B)
;
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but
@ 9B09ci
@9c0i

= 9B0;

and

@ 9B09ci
@vec( 9B)0

= (9c0i . Ir)
@vec( 9B0)

@vec( 9B)0

= (9c0i . Ir)Krr = ( 9R
0#1c0i . Ir)Krr;

yield the results.
(ii) The delta method yields

1Aj =
@vec( 9B#1 9Aj 9B)

@vec( 9Aj)0
VAj

@vec( 9B#1 9Aj 9B)
0

@vec( 9Aj)
+
@vec( 9B#1 9Aj 9B)

@vec( 9B)0
VB
@vec( 9B#1 9Aj 9B)

0

@vec( 9B)
;

but

@vec( 9B#1 9Aj 9B)

@vec( 9Aj)0
= ( 9B0 . 9B#1);

= (B0 9R0 .B#1 9R#1)

and

@vec( 9B#1 9Aj 9B)

@vec( 9B)0
= (Ir . 9B#1 9Aj) + ( 9B

0 9A0j . Ir)
@vec( 9B#1)

@vec( 9B)0
;

= (Ir . 9B#1 9Aj)( ( 9B0 9A0j . Ir)( 9B
0#1 . 9B#1);

= (Ir . 9B#1 9Aj)( ( 9B0 9A0j 9B
0#1 . 9B#1);

= (Ir .B#1Aj 9R#1)( (B0A0jB
0#1 .B#1 9R#1);

yield the result.
(iii) The proof is essentially the same as that given in Proposition 3.6 of L¸tkepohl (2005)

and thus it is omitted.!
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Appendix B: Estimation under the IRa, IRb, and IRc assumptions

We obtain eB under the three sets of identiÖcation assumptions given by Bai et al. (2016)
as follows.

1. Estimate the reduced-form models to obtain eA; eC, and eet. Let eC1:r be the Örst r rows
of C.

2. Construct the sample covariance matrices of the VAR residuals for the whole sample
by

e1 = 1

T ( pk ( 1
PT

t=p+1 eetee
0
t;

and obtain its partitioned components e111, e112, e121, and e122. Let

e111,2 = e111 ( e112e1#122 e121:

IRa Let Va be the eigenvector matrix of

e11=211,2(e*0e5#1u e*=N)e1
1=2
11,2;

in descending order of their associated eigenvalues. Calculate

eB =

2

4V
0
a
e1#1=211,2 (V 0ae1

#1=2
11,2

e112e1#122
0r2'r1 Ir2

3

5
#1

:

IRb Let Vb be the same as Va and let Qb be the QR decomposition of e11=211,2e*01:r. Then,

eB =

2

4Q
0
b
e1#1=211,2 (Q0be1

#1=2
11,2

e112e1#122
0r2'r1 Ir2

3

5
#1

:

IRc Let

eB =

2

4
e*1:r (e*1:re112e1#122
0r2'r1 Ir2

3

5
#1

:
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Table 1. Mean squared errors of the impulse response estimator

Scenario A: Correct DGP

Responses to a unit shock of the observed factor Responses to a unit shock of the first unobserved factor
d IRa IRb IRc IRv d IRa IRb IRc IRv

T=50, N=50 0.5 0.068 0.126 0.116 0.425 T=50, N=50 0.5 0.521 0.705 0.084 0.289
1.0 0.067 0.132 0.114 0.278 1.0 0.619 0.751 0.077 0.235
2.0 0.066 0.128 0.113 0.262 2.0 0.589 0.815 0.074 0.304

T=50, N=150 0.5 0.065 0.125 0.104 0.274 T=50, N=150 0.5 0.496 0.657 0.084 0.318
1.0 0.063 0.122 0.104 0.264 1.0 0.528 0.759 0.080 0.304
2.0 0.068 0.132 0.112 0.260 2.0 0.641 0.895 0.076 0.241

T=150, N=50 0.5 0.021 0.041 0.034 0.054 T=150, N=50 0.5 0.505 0.730 0.040 0.033
1.0 0.022 0.040 0.034 0.050 1.0 0.567 0.914 0.042 0.030
2.0 0.022 0.045 0.036 0.051 2.0 0.588 1.048 0.039 0.026

T=150, N=50 0.5 0.022 0.043 0.035 0.054 T=150, N=50 0.5 0.451 0.770 0.037 0.030
1.0 0.021 0.043 0.035 0.054 1.0 0.532 0.835 0.037 0.029
2.0 0.022 0.043 0.034 0.048 2.0 0.583 1.031 0.038 0.026

Scenario B: Unrestricted DGP

Responses to a unit shock of the observed factor Responses to a unit shock of the first unobserved factor
d IRa IRb IRc IRv d IRa IRb IRc IRv

T=50, N=50 0.5 0.414 0.543 0.449 0.425 T=50, N=50 0.5 0.678 0.868 0.070 0.280
1.0 0.455 0.614 0.494 0.278 1.0 0.693 0.849 0.068 0.295
2.0 0.472 0.662 0.527 0.262 2.0 0.756 1.036 0.068 0.220

T=50, N=150 0.5 0.405 0.550 0.453 0.274 T=50, N=150 0.5 0.644 0.893 0.068 0.276
1.0 0.431 0.584 0.469 0.264 1.0 0.685 0.862 0.070 0.335
2.0 0.487 0.648 0.521 0.261 2.0 0.786 0.939 0.066 0.318

T=150, N=50 0.5 0.384 0.481 0.413 0.054 T=150, N=50 0.5 0.684 1.023 0.031 0.034
1.0 0.418 0.532 0.445 0.049 1.0 0.788 1.103 0.033 0.040
2.0 0.512 0.637 0.542 0.052 2.0 0.847 1.125 0.032 0.030

T=150, N=50 0.5 0.389 0.473 0.411 0.054 T=150, N=50 0.5 0.699 0.944 0.032 0.034
1.0 0.421 0.530 0.457 0.052 1.0 0.759 1.050 0.032 0.032
2.0 0.507 0.618 0.530 0.049 2.0 0.763 1.103 0.030 0.025
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Table 1. Mean squared errors of the impulse response estimator (continued)

Scenario C: DGP with the IRa and IRb assumptions

Responses to a unit shock of the observed factor Responses to a unit shock of the first unobserved factor
d IRa IRb IRc IRv d IRa IRb IRc IRv

T=50, N=50 0.5 0.068 0.126 0.094 0.373 T=50, N=50 0.5 0.536 0.718 0.046 0.300
1.0 0.067 0.132 0.093 0.266 1.0 0.563 0.738 0.040 0.287
2.0 0.066 0.126 0.092 0.219 2.0 0.656 0.850 0.038 0.296

T=50, N=150 0.5 0.061 0.116 0.085 0.251 T=50, N=150 0.5 0.507 0.661 0.044 0.272
1.0 0.069 0.126 0.094 0.246 1.0 0.542 0.749 0.045 0.347
2.0 0.071 0.141 0.099 0.242 2.0 0.568 0.762 0.038 0.343

T=150, N=50 0.5 0.022 0.042 0.029 0.050 T=150, N=50 0.5 0.547 0.858 0.011 0.034
1.0 0.022 0.041 0.029 0.050 1.0 0.532 0.833 0.011 0.035
2.0 0.023 0.043 0.029 0.049 2.0 0.639 1.003 0.011 0.032

T=150, N=50 0.5 0.019 0.039 0.027 0.045 T=150, N=50 0.5 0.516 0.831 0.012 0.035
1.0 0.021 0.042 0.029 0.048 1.0 0.513 0.835 0.011 0.028
2.0 0.021 0.045 0.029 0.048 2.0 0.587 1.079 0.011 0.031

Scenario D: DGP with the IRc assumption

Responses to a unit shock of the observed factor Responses to a unit shock of the first unobserved factor
d IRa IRb IRc IRv d IRa IRb IRc IRv

T=50, N=50 0.5 0.080 0.162 0.116 0.471 T=50, N=50 0.5 0.821 1.010 0.082 0.385
1.0 0.079 0.169 0.114 0.322 1.0 0.795 1.071 0.077 0.358
2.0 0.079 0.161 0.113 0.273 2.0 0.898 1.270 0.078 0.351

T=50, N=150 0.5 0.077 0.156 0.104 0.308 T=50, N=150 0.5 0.774 1.067 0.084 0.482
1.0 0.075 0.153 0.103 0.312 1.0 0.805 1.175 0.080 0.325
2.0 0.081 0.171 0.114 0.318 2.0 0.910 1.275 0.074 0.322

T=150, N=50 0.5 0.025 0.052 0.034 0.063 T=150, N=50 0.5 0.744 1.080 0.041 0.040
1.0 0.024 0.051 0.033 0.056 1.0 0.933 1.299 0.042 0.035
2.0 0.026 0.056 0.036 0.061 2.0 1.025 1.455 0.041 0.035

T=150, N=50 0.5 0.025 0.051 0.034 0.059 T=150, N=50 0.5 0.777 1.076 0.038 0.038
1.0 0.025 0.052 0.035 0.061 1.0 0.837 1.308 0.041 0.038
2.0 0.025 0.053 0.033 0.055 2.0 0.924 1.438 0.040 0.036
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Table 2. Coverage rate and median length of the asymptotic conÖdence interval

Responses to a shock of the observed factor

Coverage rate Median length
d h=1 2 3 4 5 h=1 2 3 4 5

T=50, N=50 0.5 97.7 94.6 94.6 93.5 91.5 2.63 1.69 1.06 0.70 0.45
1.0 98.5 95.1 94.8 93.8 91.8 2.54 1.66 1.08 0.71 0.45
2.0 98.6 96.1 96.2 94.6 92.7 2.46 1.66 1.09 0.72 0.47

T=50, N=150 0.5 97.5 95.2 95.2 93.8 92.2 2.56 1.68 1.07 0.69 0.45
1.0 98.4 95.6 95.5 93.0 91.9 2.54 1.69 1.09 0.72 0.47
2.0 98.5 95.8 95.3 94.2 92.5 2.44 1.68 1.10 0.72 0.48

T=150, N=50 0.5 97.3 94.9 94.8 94.1 93.0 1.17 0.81 0.54 0.36 0.23
1.0 97.6 95.7 95.5 94.9 94.0 1.15 0.82 0.55 0.36 0.24
2.0 97.5 95.2 95.4 94.8 93.7 1.15 0.83 0.58 0.39 0.26

T=150, N=150 0.5 97.9 94.6 95.0 94.2 93.2 1.18 0.81 0.55 0.36 0.24
1.0 97.9 95.1 94.9 94.7 93.7 1.17 0.82 0.56 0.37 0.24
2.0 97.4 94.3 94.5 94.4 93.3 1.14 0.82 0.56 0.38 0.25

Responses to a shock of the Örst unobserved factor

Coverage rate Median length
d h=1 2 3 4 5 h=1 2 3 4 5

T=50, N=50 0.5 90.3 94.0 93.4 90.3 87.3 1.51 1.12 0.77 0.51 0.33
1.0 89.7 94.5 93.5 90.6 87.0 1.45 1.08 0.75 0.51 0.33
2.0 89.1 93.5 92.0 88.9 86.3 1.35 1.04 0.72 0.48 0.32

T=50, N=150 0.5 90.7 94.9 94.4 91.9 89.1 1.52 1.12 0.78 0.52 0.35
1.0 89.2 93.4 92.4 90.2 87.6 1.43 1.07 0.74 0.51 0.33
2.0 89.0 93.4 91.9 90.3 87.5 1.33 1.03 0.71 0.48 0.32

T=150, N=50 0.5 91.7 94.5 94.6 92.9 89.6 0.77 0.55 0.39 0.26 0.17
1.0 91.5 93.9 93.8 91.5 89.4 0.76 0.56 0.39 0.27 0.18
2.0 90.4 94.1 94.1 91.3 87.7 0.69 0.53 0.37 0.25 0.17

T=150, N=150 0.5 91.9 94.2 94.1 91.2 89.2 0.79 0.56 0.39 0.27 0.17
1.0 92.5 95.1 94.6 91.7 89.0 0.76 0.55 0.40 0.27 0.18
2.0 90.8 94.1 94.5 92.1 89.3 0.69 0.52 0.37 0.25 0.17
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Table 3. Coverage rate and median length of the bootstrap conÖdence interval

Responses to a unit shock of the observed factor

Coverage rate Median length
d h=1 2 3 4 5 h=1 2 3 4 5

T=50, N=50 0.5 98.3 98.7 96.6 96.1 94.6 2.80 1.96 1.12 0.72 0.47
1.0 97.9 98.1 96.0 95.3 93.9 2.59 1.89 1.09 0.69 0.45
2.0 97.6 98.4 96.1 95.6 93.7 2.38 1.78 1.07 0.67 0.42

T=50, N=150 0.5 97.9 98.8 96.5 96.4 95.3 2.77 1.93 1.14 0.73 0.47
1.0 97.9 98.5 97.1 96.2 94.4 2.59 1.88 1.13 0.71 0.46
2.0 97.7 98.3 96.8 96.2 94.7 2.36 1.81 1.07 0.67 0.44

T=150, N=50 0.5 96.1 96.2 94.3 92.7 90.3 1.10 0.83 0.53 0.33 0.21
1.0 96.5 96.7 94.5 93.6 91.4 1.06 0.83 0.52 0.33 0.21
2.0 96.2 95.8 94.1 93.0 91.0 1.03 0.82 0.54 0.34 0.22

T=150, N=150 0.5 96.7 96.1 94.4 93.4 91.7 1.09 0.83 0.53 0.34 0.22
1.0 96.3 96.1 94.1 93.0 91.6 1.07 0.83 0.54 0.34 0.22
2.0 95.6 95.4 92.8 92.1 90.4 1.02 0.81 0.52 0.33 0.21

Responses to a unit shock of the Örst unobserved factor

Coverage rate Median length
d h=1 2 3 4 5 h=1 2 3 4 5

T=50, N=50 0.5 98.6 98.3 95.2 93.0 89.2 2.91 1.73 1.01 0.63 0.40
1.0 98.5 98.3 94.7 91.6 89.3 2.98 1.75 1.02 0.64 0.40
2.0 98.3 97.5 93.6 90.6 87.5 2.82 1.68 0.97 0.60 0.39

T=50, N=150 0.5 98.3 98.3 95.2 93.3 91.0 3.00 1.73 1.03 0.66 0.43
1.0 98.5 97.7 94.3 91.8 88.8 2.93 1.72 0.99 0.62 0.41
2.0 98.6 97.8 94.5 92.1 89.7 2.91 1.69 0.99 0.62 0.41

T=150, N=50 0.5 98.0 97.7 95.0 92.6 89.9 0.99 0.64 0.43 0.29 0.19
1.0 98.9 97.2 95.1 92.2 90.0 1.03 0.66 0.44 0.29 0.20
2.0 98.3 97.4 95.3 92.9 89.7 0.99 0.64 0.43 0.29 0.19

T=150, N=150 0.5 98.1 97.3 94.4 91.9 89.7 1.02 0.65 0.43 0.30 0.20
1.0 98.8 97.6 95.2 92.8 90.3 1.02 0.66 0.43 0.30 0.20
2.0 98.5 97.9 96.0 93.4 90.5 0.98 0.64 0.42 0.28 0.19
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Figure 1. Point estimates and 90% bootstrap conÖdence intervals using the
same data employed by Bernanke et al. (2005)
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