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Abstract

This paper proposes a new method to analyze time series data with regime shifts and

makes the following three contributions: (1) it suggests an exponential weighted estimation

algorithm for autoregressive model with time varying coefficients, (2) it gives a visualization

technique of structural change points and an outlier measure based on the Mahalanobis distance

and (3) it illustrates that our method works for hedge fund return data and high frequency FX

data.

I. Introduction

Many financial time series often show abrupt breaks in their behavior coming from some
events like financial crisis or government policy change. Researchers and practicians regard the
time series as ones with several regimes shifts, model the behavior by using some time series
models, and have applied the obtained model for its prediction, risk measurement and so on.
The Hidden Markov (HM) model as originated by L.E. Baum and T. Petrie (1966) is one of the
most famous models used for such a purpose and called regime switching model in financial
literatures.

The most common HM model in financial literatures is HM autoregressive model which is
enabled to switch among several autoregressive (AR) models with different parameters
(Hamilton 1989; 1994). In order to fit this kind of HM model, the number of regimes during
data term must be explicitly countable. However, it is not so easy to reveal the correct number
through statistical data analysis. In addition, if the obtained number of regimes was large, it is
quite difficult in fitting the HM model to the data.

GARCH family models and AR model with time varying coefficients have been also
applied to represent a time series with regime shift. This is because their time varying
parameters including volatility can absorb the differences among each models in all the regimes.
However, by using these models, another problem may arise such as the difficulty in catching
the regime shifts when they occur from variation of parameters in the charts. In other words,
unlike the HM model, these models are not enough to detect change points of regimes.

Moreover, the research works so far assume normal distribution for error term of the
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models. Consequently those models are not robust to outliers which are often observed at
regime switching points like financial crises, to some greater or lesser degree. Therefore the
models often donʼt work for a while after the regime shift happened.

One of the methods to delete infections by outliers is to utilize weighted methods of
moments. Some researchers or practicians occasionally take advantage of Exponentially
Weighted Moving Average (EWMA), especially for estimation of historical volatility. This is
because the EWMA puts more weights on more recent observations. This technique makes the
method more robust to outliers by adjusting a parameter of the weight. But it is available for
estimation of moments only although its computational cost is low. Another solution to
robustness is to replace the normal distribution of the error term to another fat tailed one. Some
researchers and practicians often adopt this solution, although it can not solve the issue about
change point detection as we mentioned. In addition, since its calculation cost is generally
expensive, it is not cost-effective to fit this kind of model to big amounts of time series data,
tick data of foreign exchange, for example.

In summary, the models stated above have both advantages and disadvantages to represent
timeseries with regime shifts. In order to resolve the disadvantages and to handle big data
which we would have no other choice but to deal with in the near future, we have to take the
following points into consideration:

• a time weighted estimation method for time series model with time varying parameters
which enables us to do high-speed calculation applicable for real time model estimation
of tick data, and
• an index for detecting a time point of regime shift from the fitted model.

In this paper, we propose a new framework consisting of the two components, a real-time
estimation method for AR(k) model with time varying parameters and a change point detection
index created from the model fitting.

II. Our Framework

1. An Estimation Algorithm for AR(k) Model with Time Varying Parameters

We assume that xt (t＝1, 2, ... , T) are observations from AR(k) model

xt−μt＝
i＝1

k

a t, i(xt−i−μt−i)+εt (1)

where εt~N(0, σ t
2) and k is a positive integer. In order to estimate the time varying parameters

μt, at, i , σ t
2 from data up to time t, we develop a parameter estimation algorithm based on Yule-

Walker equations and idea of EWMA. Note that in this paper we use n-period EWMA x̄ n at t

defined by Robert([6]) as

x̄ n＝
xt+rxt−1+r

2xt−2+…+r
n−1xt−n−1

1+r+r
2
+…+r

n−1 ≈rx̄ n−1+(1−r)xt (n →∞) . (2)

The basic concept of our algorithm is quite simple. In short, for every t, exponentially
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weighted mean and autocovariances are calculated from data up to t, substituted the
autocovariances into Yule-Walker equations, and solve the equations in order to obtain an
estimation of time varying coefficient at,i.

The following shows the details of our algorithm.

Let l>k be a positive integer. Set initial values to

μ̂l＝
1

l
m＝1

l

xm

Cl, j＝
1

l
m＝j+1

l

(xm−μ̂l)(xm−j−μ̂l) (j＝0, 1, … , k)

In addition let r∈ (0, 1) and â l, j (j＝1, 2, … , k) be the solutions of Yule-Walker
equation


i＝1

k

â l, jCl, j−i＝Cl, j (j＝1, 2, … , k)

where Cl,−m＝Cl,m. And an initival value of variance of the error term εt is set with

σ̂ l
2
＝
1

l−k

m＝k+1

l

{(xm−μ̂l)−
i＝1

k

a l, i(xm−i−μ̂l)}
2
.

For every (t＝l+1, l+2, … , T), by using equation (2), calculate time varying mean

μ̂t＝rμ̂t−1+(1−r)xt , (3)

time varying autocovariance

Ct, j＝rCt−1, j+(1−r)(xt−μ̂t)(xt−j−μ̂t) (j＝0, 1, … , k) (4)

and solve Yule-Walker equation with â t, j (j＝1, 2, … , k).

Note that the equation (4) represents a kind of heteroskedastic structure. This is because Ct,0

corresponds to an estimated value of σ t and the estimate σ̂ t is dependent on σ̂ t−1 . And rσ̂ t−1

determines the persistence in volatitly similar to that of IGARCH(1,1) model: if volatility was
high yesterday, it will be still high today.

2. An Index of Change Point Detection

Regime shifts in financial time series often occur when markets face with crisis or
government abruptly change its policy. At the same time, prices and returns on many securities
or bonds take extreme values, and the model estimated before the regime shift can not work in
many cases. By observing this fact, we establish a method to detect a signal of such a regime
shift by helping hand of outlier detection.

Self information, which is often called Shannon entropy (Shannon 1948), is one of the
most famous criterion for outlier detection. It provides a measure of uncertainty in a random

AN APPROACH TO MODELING ON FINANCIAL TIME SERIES DATA WITH REGIME SHIFTS2020] 23



variable and is applied to statistical model selection. However, it is not available for continuous
random variable like the error term of the equation (1). For gaussian random variable,
Mahalanobis distance is well known as a powerful tool for outlier detection. The malahanobis

distance Dm of a realization x of random variable X~N (μ, σ 2) is defined as

Dm(x)＝


(x−μ)
2

σ
2 . (5)

Then, we add the following procedures to our algorithm.

If t+1≤T, for every t, we calculate predicted value of xt+1 at time t,

x̂ t+1＝μ̂t+
i＝1

k

a t, i(xt−i+1−μ̂t)

and the mahalanobis squared distance

Dm
2 (xt+1)＝

(xt+1−x̂ t+1)
2

σ̂ t
2 . (6)

When Dm
2 (xt+1) is quite large, xt+1 becomes a candidate of change point.

In order to lay down a clear criterion to regard xt+1 as a change point or not, we can utilize x
2

test since Dm
2~x2 (1). Determining a significant level of the x2 test, we can get rid of

arbitrariness of its threshold adjustment.

III. Applications of Our Framework

1. Application to Monthly Return Data of Hedge Fund Index

We introduce an example of application of our framework to empirical data. In this
section, we deal with monthly returns of HFRX global hedge fund index as an example. Hedge
fund returns are said to be autocorrelated occasionally (Getmansky 2003; Miura 2009). To
check the fact of autoregressiveness, we calculated autoregressive models in a rolling method
with 12 months data ending at the month t. Figure 1 illustrates the order of autoregression
determined by AIC. It tells us monthly the return data of HFRX global hedge fund index seems
to have a kind of time varying autoregressive structure since the order of AR increase and
decrease as time goes on. Then, we considered that it is appropriate for fitting of our AR model
with time varying parameters.

We use the return data of HFRX global hedge fund index from April 2003 to June 2010,
and fit the model (1) for k＝1 to the data by using statistical computing environment R. Note
that we rewrite the model (1) for k＝1 as

xt＝at+bt xt−1+εt (7)

for the convenience, and we call at “intercept” and bt “coefficient”.
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The upper figure of Figure 5 illustrates the original series and each bar of the lower figure
illustrates values of our change point indexes based on Mahalanobis distance for every
observations. From the latter half of 2007 to the first half of 2008, somewhat large movements
of our indices can be shown. And shortly after, the two large movements can be shown in the
lower figure. The time of the two movements clearly corresponds to the time of Lehmanʼs fall
which we consider as a regime shift point. Figure 3 illustrates movements of time varying
coefficients of the model (7). The upper figure indicates bt and the lower indicates at. After the

Lehmanʼs fall, the value of bt is significantly increased, in fact, it is about double. So we found

that the returns of HFRX global hedge fund index become more autocorrelated after the
Lehmanʼs fall. If at represents so called “hedge fund alpha”, we may consider that many hedge

funds in the world have difficulty in generating absolute returns after the Lehmanʼs fall because
of its abrupt change for investment.

To verify the validity of our change point index, we statistically examine the data before
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FIGURE 1. ROLLING ORDER OF AR
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and after the time when the change point index marked the extremely high values at September

2008 and October 2008. Firstly we eliminated the two records and divide the dataset into the

two parts, period 1 from April 2004 to August 2008 and period 2 from November 2009 to June

2010. And we calcluate several descriptive statistics on the datasets and execute both Shapiro

Wilk test of normality and Ljung Box test of autocorrelation. Table 1 shows the obtained

values of sample mean, sample standard deviation and p values of the two tests. Sample means

and standard deviations in the period 1 and 2 are very close to each other. Since the p values in

the period 1 and 2 are larger than 0.1, the null hypothesis that returns are not autocorrelated is

not rejected respectively. However period 1 has no normality and period 2 has normality since

null hypothesis on period 1 is rejected at the significant level of 0.1. That is, each distribution

of the two periods are different each other

2. Application to One Minute Data of Foreign Exchange

As an example of fitting our framework to a large amount of financial timeseries data, we

take up one minuteʼs foreign exchange data from US Dollar to EURO. We obtained the data

with 7331 observation time points from Bloomberg and fit the model (7) to the data. The data

length is equivalent to about 5 days from the morning August 13th to the morning 18th 2012.

As is the case in the example of HFRX global hedge fund index in the previous section,

Figure 5 shows a part of original time series and calculation results of our change point index,

and Figure 3 shows movements of time varying parameter bt and at within the same time

period. From these figures, we found that at and bt move inversely each other, and they

abruptly move when a regime shift seems to happen. However, at this time we can not interpret
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FIGURE 3. HFRX2
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0.003597818

Standard deviation

period 1

1.057707e-05

period 2

3.103738e-08

0.01882657

Shapiro Wilk test

Ljung Box test

0.001720629

entire period

0.09136079 0.485497

0.01354429 0.01541439

0.003682878

0.1815455 0.271946

TABLE 1. DESCRIPTIVE STATISTICS ON HFRX GLOBAL HEDGE FUND INDEX

Mean



the meaning of these inversely movements since we donʼt have enough knowledge concerning

FX. Calculation cost of our algorithm is so cheap as we mentioned that we could easily fit our

framework to the dataset by using R installed in generic laptop PC
1
. In actual, it took only 1.6

CPU seconds to obtain this calculation result although our source code includes several for loop

statements which become much computational load for interpreter programming language such

as R, MATLAB, and so on.

IV. Concluding Remarks

As was seen in section III, we consider that our framework could work for financial time

series which seem to have regime shifts, without using complicated statistical models and their

fitting algorithms. In actual, our fitting program in R have about 60 lines in appendix.

Moreover, we also think that it is not difficult to extend our fitting algorithm for univariate

timeseries to one for muitivariate timeseries. This is because our algorithm basically work if

autocovariance of univariate time series of our algorithm was replaced to autocovariance matrix
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FIGURE 5. EURO-USD2
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of multivariate time series in section II.1.

APPENDIX

An Implementation of Algorithm in Section II.1 Using R Language

The following function definition of R is an example of implementation of the algorithm in section

II.1. This program is so simple that it works in S-PLUS which is commercial distribution of S language

and an ancestor of R. Note that for better code readability we dare to write many for loop statements

although it costs more computational time.

EWSA=function(x,k=2,l=10,r=0.99){

mu0=mean(x[1:l])

C0=acf(x[1:l],plot=F,type="cov",lag.max=k)$acf

container=NULL

for(i in 1:k){

tmp=NULL

for(j in 1:k){

tmp[j]=as.numeric(C0)[abs(i-j)+1]

}

container=rbind(container,tmp)

}

a0=solve(container,C0[2:(k+1)])

x.hat0=t(a0)%*%(x[l:1][1:k]-mu0)+mu0

sigma2.0=ar(x[1:l],aic=F,order.max=k)$var

mu.t=NULL

C.t=list()

a.t=list();

x.hat.t=NULL

sigma2.t=NULL

Dm=NULL

Dl=NULL

mu.t[l]=mu0

C.t[[l]]=as.numeric(C0)

a.t[[l]]=a0

sigma2.t[l]=sigma2.0

for(i in 1:(l-1)){

C.t[[i]]=rep(NA,k+1)

a.t[[i]]=rep(NA,k)

}

for(i in (l+1):length(x)){

mu.t[i]=r*mu.t[i-1]+(1-r)*x[i]
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tmpC=NULL

for(j in 1:(k+1)){

tmpC[j]=(x[i]-mu.t[i])*(x[i-j+1]-mu.t[i])

}

C.t[[i]]=r*C.t[[(i-1)]]+(1-r)*tmpC

container=NULL

for(m in 1:k){

tmp=NULL

for(n in 1:k){

tmp[n]=as.numeric(C.t[[i]])[abs(m-n)+1]

}

container=rbind(container,tmp)

}

a.t[[i]]=solve(container,C.t[[i]][2:(k+1)])

x.hat.t[i+1]=t(a.t[[i]])%*%(x[i:1][1:k]-mu.t[i])+mu.t[i]

sigma2.t[i]=r*sigma2.t[i-1]+(1-r)*(x[i]-mu.t[i])^2

if(i!=length(x)){

Dm[i+1]=(x[i+1]-x.hat.t[i+1])^2/sigma2.t[i]

}

}

return(list(k=k,mu.t=mu.t,C.t=C.t,a.t=a.t,x.hat.t=x.hat.t,

sigma2.t=sigma2.t,Dm=Dm,series=x))

}

Arguments

• x : univariate time series data.

• k : order of AR.

• l : the number of samples used for computing initial values.

• r : weight.

Value

•

• mu.t : time varying mean.

• C.t : time varying autocovariance.

• a.t : time varying coefficients of AR.

• x.hat.t : predicited value of AR.

• sigma2.t : time varying variance of error term.

• Dm : Mahalanobis distance.

• x : original time series.
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