ON THE EXTENSION OF WILSON’S THEOREM
TO QUADRATIC FIELDS

By SETSUO OHNARI*

In the theory of numbers the following theorem of Wilson is very familiar to us:
p: a prime number (p—1!=—1 (mod p).

Our main purpose of this paper is to prove two theorems, theorem 2 and theorem 4 in
section 2 and 3, extending the above theorem of Wilson. First in theorem 2 the prime
number p is transposed into a rational integer m which is not always prime, and second
in theorem 4 the prime number p is transposed into an integral ideal M of quadratic
field. To attain our purpose let us explain the right-hand side —1 of the congruence in
the theorem as a representative of the element, whose order is 2, of G(p); where G(p)
denotes a group of reduced residue classes of the ring of all rational integers to modulus
D, and let us explain the left-hand side (p—1)! as a product of all elements of &(p);
where &(p) denotes a complete system of representatives of G(p).

In section 1 we shall prove a few lemmata about a finite Abelian group in preparation
for applications in the succeeding sections. In section 2 we shall prove the case in which
the theorem is formulated by using a rational integer m, which is not always prime, as
modulus. In section 3 we shall prove the case in which the theorem is formulated by
using an integral ideal M of quadratic field as modulus.

We shall define several notations at the beginning of each section.

I wish to express my indebtedness to Professor Kazuo Matsuzaka of Hitotsubashi
University for many helpful teachings and many useful discussions on the results to be
described in this paper.

§1. A few lemmata about finite Abelian group.

In this section we shall use the following notations.
G will denote a finite Abelian group.

e will denote the identity element of G.
|G|  will denote number of elements of G.
S will denote the set of all elements of G whose order is 2.
|S]  will denote number of elements of S.
Lemma 1. .
__fe; |G|=1 or [G]=3
G- {e}gs:};{ax_{a; |G|=2, G={a, e}, a+e
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Proof. If |G|=1 or 2, the above lemma is clearly true. Let |G[=3. For a fixed element
a& G—{e}, we shall define an equivalence relation R, of G as follows;

xR,y (x,yEG)=y=x or y=xa.
For any x€G, xR xa, but x#xa. Therefore each equivalence class of G with respect
to R, contains at least two elements. Since any equivalence classes of G with respect
to R, cannot contain more than three elements by definition of R, each equivalence
class always contains two distinct elements {x, xa} of G. Therefore |G| is even and

MIx= W x(xa)=a"2.
xeG {x, xa}eG/Ry

If we can prove that n/2 is even, this lemma is clearly true by the assumption a*=e.
Accordingly let us assume that n/2 is odd. Then a"/?=a. Similarly using b&G— {e, a}
by the assumption |G|=3 we obtain

II x=5b"2=b.

xeG .
Therefore we get a=>b, which is in contradiction to az£b.
Lemma 2.

_fa IS|=1, S={a}

xle-[Gx—{e; |S]#1
Proof. Let us define a subgroup H of G and an equivalence relation R, of G—H as
follows;

H={x€G; x*=e}

xRy y(x, yEG—H)&=>x=y or xy=e.
Then it is clear that each class of G—H with respect to R, contains two distinct elements
{x, x71}. Therefore

I x= IO xxl=e
xeG—H {x,x"1}e¢G/R,

Therefore
IIx= I x.x=1Ix.

xeG xeG—-H xeH xeH
Since if |S]=1, H={e, a} and if |S|#1, H={e} or |H|=3, we complete the proof by
the lemma 1.

§2. The case in which modulus m is a rational integer.

In this section we shall use the following notations.
Z will denote the ring of all rational integers.
m will denote a rational integer such that m>1.
N(@m) will denote number of solutions of congruence x?*=1 (mod m).
Ds P1» Do Py ... Will denote odd prime numbers.
e, e, €y, €3,... Will denote natural numbers.
G(m) -will denote a group of reduced residue classes of Z to modulus m.
©(m) will denote a complete system of representatives of G(m).
I(m) will denote number of elements of G(m) whose order is 2.
Proposition 1. N(p9)=2,
where e=1, 2,3, ... and p is an odd prime number.
Proof. It is clear that 1=—1 (mod p¢) and +1 (mod p®) are solutions of congruence
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x?=1 (mod p?). Conversely if x2=1 (mod p¢) then (x+1)(x—1)=0 (mod p¢). So there
exist £ and g such that

[,8€Z; f=0, g=0, f4+g=e, x+1=0 (mod p/), x—1=0 (mod p#).
If £>0 and g>0,

x4+1=0 (mod p), x—1=0 (mod p),
then we get 2=0 (mod p). This is a contradiction. Therefore f=0 or g=0. If =0,
x=1 (mod p®) and if g=0, x=—1 (mod pe).

Proposition 2. N(p©1psee ... pfr)=2r,
where ey, e,, ..., e are natural numbers and Py Dos ..., Dr are r odd prime numbers which
are distinct, and r=2.

Proof. By proposition 1 and by familiar relation

x?’=1 (mod p,°1p,*: ... ps*7) < x2=1 (mod p,**) for v=1,2,...,r,
this proposition is clear.

Proposition 3.

1; e=1,
N(2'-’)={2; e=2,
4; e=>3.

Proof. It is clear that, if e=1, 1 (mod 2) is only one solution of congruence x2=1
(mod 2) and if e=2, +1 (mod 2%) are only two solutions of congruence x2=1 (mod 22).
Let us assume ex>3. We shall prove by the induction on e that 41, 414-2¢-1 (mod 2¢)
are only four solutions of congruence x?=1 (mod 2¢). For e=3, the conclusion is clearly
true. Let us assume that the conclusion is true for some ex>3. If x2=1 (mod 2¢+1),
x?=1 (mod 2¢). By the assumption of induction we obtain x=+1, -+142¢-1 (mod 2¢).
Therefore there exist y and z in Z such that x=d-142¢p, x=o4142¢-142¢z,

But considering e=3, we obtain
(£1420-14-2¢2) 2=+ 1 4-2¢-1(1 4-22)2
=142¢(14-2z)422e-2(14-2z2)2
=142¢(1422) (mod 2¢+1)
#1 (mod 2¢+1),
Accordingly x=-+1+42¢y. It is clear that
1428y —1429" (mod 2¢%1) (y, y'€Z),
14+2¢y=14-2¢y/ (mod 2¢*))¢=>y=)/ (mod 2) (y,y'EZ),
—142?y=—14-2¢/ (mod 2**)¢=>y=)’ (mod2) (y, y'EZ),
so complete system of representatives of {4142, yEZ} with respect to modulus 2¢+1
is {41, +£14-2¢}.
Propositiosn 4.

\

2r s e=0o0r 1,
N(Zeple,pze, _"prer)z{zr-l-l; e=2’
2r+2; >3,
where ey, e, ..., e, are natural numbers and p,, p,, ..., pr are odd prime numbers and r=0,
but if r=0, then e=1.
Proof. If r=0, this is the same with proposition 3. Therefore let us assume r=>1.
If e=0, this is the same with proposition 2. If e>1, by familiar relation
x?=1 (mod 2¢)

2= e 1 2 er
x2=1 (mod 2°p\e1p,°t .. Dy )<=>{x2El (mod p,e*), v=1,2,...,r
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and by propositions 1, 2 and 3, this proposition is clear.
We have obtained the following two theorems which depend upon the conclusions
of propositions 1,2, 3 and 4. The first theorem, theorem 1, is clear by proposition 4.
The second theorem, theorem 2, is clear by lemma 2 and theorem 1. Now we can obtain
the theorem of Wilson on odd prime numbers as corollary of theorem 2.
Theorem 1.
I(m)=1 < N(m)=2 <<= m=4 or p® or 2p°
where e is arbitrary natural number and p is arbitrary odd prime number.
Theorem 2.
—1 (mod m); m=4 or p° or 2p°
I x=
x€&(m) 1 (mod m); other cases
where e is arbitrary natural number and p is arbitrary odd prime number.
Corollary 1. (theorem of Wilson)
(p—D!=—1 (mod p)
where p is arbitrary odd prime number.

§3. The case in which modulus M is an integral ideal

of quadratic field.
In this section we shall use the following notations.
m will denote a rational integer which does not contain any square factors
without 1. -
® is A/m if m=2, 3, (mod 4) and is l-i—_—z-ﬂ if m=1 (mod 4).
V4 will denote the ring of all rational integers.
Q will denote the field of all rational numbers.

O,  will denote the ring of all integers in Q(W ).
M, M, M,, M,,... will denote integral ideals of Om.
P, Q, R, P, P;, P;,... will denote prime ideals of Opm.
e, f, ey, €y, €3,... will denote natural numbers.
N(M) will denote norm of integral M over Q.
Nn(M) will.denote number of solutions in O, of congruence £2=1 (mod M).
Gn(M) will denote a group of reduced residue classes of Om with respect to
modulus integral ideal M.
Sm(M) will denote a complete system of representatives of Gn(M).
Xm(M) will denote representative system of all solutions in O, of congruence
&2=1 (mod M).
L.{(M) will denote number of elements, whose order is 2, of Gn(M).
Let us call the prime ideal which divides Or+2 (this means the integral ideal generated
by 2 in O,) even prime ideal, and we shall use notations such as P, Q. Let us call the
prime ideal which does not divide On+2 odd prime ideal, and we shall use notations such

as R, P, Py, Py,.... About even prime ideals we have a familiar result;
PQ, Q=P/#P; m=1 (mod 8),
Om-2={P ; m=5 (mod 8),
P2 ; m=2, 3 (mod 4),
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where P/ will denote a conjugate ideal of P over Q.
Proposition 5. N, (R)=2,

where e is arbitrary natural number and R is arbitrary odd prime ideal of O
Proof. The proof is similar to that of proposition 1 in §2.

Corollary 2. Fm(RE)={+1}
Proposition 6. Nl p121po%2 ... D7) =2,
where ey, e, ..., e are arbitrary natural numbers and py, ps, ..., p- are arbitrary odd prime

ideals which are pairwise coprime and r=2.

Proof. The proof is similar to that of proposition 2 in §2.

Let us consider number of solutions in O,, of congruence &2=1 (mod M) where an
integral ideal M of O, is divided by a few even ideals of O,, classified into four cases
in accordance with the decomposition form of 2 in QWm).

Proposition 7. When m=1 (mod 8), let us put Om2=PQ, Q=P/+P. Then
1; e=1,
Nm(P‘)=Nm(Q")={2; e=2,
4; e=3.

Proof. N(P)=2, therefore N(P¢)=2¢. Since P¢ is a primitive ideal, using canonical

basis over Z, we obtain

Pe=Z.2e1Z(r+w), Nr+w)=0 (mod 2°).
Since any integer of O, is congruent to some rational integer, we obtain a complete
system of representatives of O, to modulus P¢;

{0,1,2,...,2°—1}.
Taking away the rational integers

{02, 1.2, 2.2, ..., (2¢1—1)2}
which are divided by P from the above complete system of representatives of O, to
modulus P¢, we get a representative system &,(P¢) of Gm(P¢);

Gm(P)={1, 3,5, ..., 2°—1}.
Therefore &,(P)={1}, then it is clear that number of solution in O, of congruence
&2=1 (mod P) is only one and it is 1 (mod P). Since &, (P?)=/{l, 3}, regarding 12=1
(mod P2?) and 32—1=2.2240+(r+ )< P2 where 3=—1 (mod PZ%), number of solutions in
O,, of congruence £2=1 (mod P?) is two and they are +1 (mod P2).

Let us assume e=3. For any rational integer x in &,,(P¢), if x2=1 (mod P¢), then
x2=1 (mod Q°), then x?=1 (mod P¢Q¢) i.e. x2=1 (mod 2¢), then x=41, +-1+2¢-1 (mod
2¢). Conversely if x==1, +142°-! (mod 2¢), then x?=1 (mod 2¢) by the proof of
proposition 3, then x?=1 (mod P¢), therefore N,(P°?)=4 for e=3. Similarly we can
obtain Nn(Q)=1, Nn(Q?=2 and N(Q°)=4 for e=3, This completes the proof.

Corollary 3.

{1} ; e=1,
%m(Pe)=%m(Q’)={{i1} ; e=2,
{1, £142¢71}; e=3.

Proposition 8. When m=5 (mod 8), let us put Op+2=P. Then
1; e=1,
Nm(P‘*)={4; e=2,
8; ex=3.
Proof. Using canonical basis over Z, P=2(Z+1+4Z+w). Thus P¢=2¢Z-1+Z.w)
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=Z.2°4Z+.2°w, therefore a necessary and sufficient condition that é=x+yw (x, yEZ)
should be a solutlon of congruence £2=1 (mod P?) is

y2—1 (mod 2¢), 6))

fote
@x+ y)y— (mod 2¢), ‘ @
l

where wz_w+ Now a representative system of ring of residue classes of O, to

modulus Pe¢ is i
{x+y0€0m; 0£x<2e, 05 y<2¢, x, yEZ}
and a necessary and sufficient condition that elements x-yu of the above set should
be divided by 2:0,=P is x, y=0 (mod 2). Therefore we get the following complete
system of representatives of a group Gu(P°);
Bm(P)={x+yw E Om; 0=<x<2e, 0<y<2e, and
x or y=1 (mod 2) x, yEZ}. 3)

When e=1, y=0 (mod 2) by (2), therefore x=1 (mod 2) by (3). Conversely if x=1
(mod 2), y=0 (mod 2), it is clear that (1) and (2) are concluded. So number of solution
in Op of congruence £2=1 (mod P) is only one and it is

x+yw; x=1 (mod 2), y=0 (mod 2).

When e=2, y=0 (mod 2) by (2), thus x=1 (mod 2) by (3). Therefore x=1, 3
(mod 22), y=0, 2 (mod 22). Since the converse is clear, number of solutions in O,, of
congruence &£2=1 (mod p?) is four and they are

x+yw; x=1, 3 (mod 22), y=0, 2 (mod 22).
When e=3, y=0 (mod 2) by (2), thus x=1 (mod 2) by (3).

Therefore x=1,3,5,...,22—1 (mod 2¢),
y=0,2,4,...,2°—2 (mod 2°);
namely x=2k—1 (mod 2°), 1<k<2e- 1,

y=2]—2 (mod 2°), 1< <<2e-1,
Regarding m=8m’/+5 (m/ €Z), let us replace x and y in (1) and (2) with the above x
and y. Then
[left-hand side of (1)|=4{k(k—1)+Q2m/+1)(I—1)2}+1 (mod 2¢),

[left-hand side of (2)]=4(2k+1—2)(I—1) (mod 2e).
So (1) and (2) are equivalent to the following (4) and (5)
k(k—1D+02m/ —1)( —1)2=0 (mod 2¢-2), @
Qk+1-2)(—1)=0 (mod 2¢-2), )

Since the first term of left-hand side of (4) is even, the second term of left-hand side of
(4) is also even. Therefore / is odd, thus the first factor of left-hand side of (5) is odd.
Therefore the second factor of (5) is divided by 2¢—2. Then by (4), we obtain
k(k—1)=0 (mod 2¢-2), 1<k=<<2e-1,
If k is even, k=0 (mod 2¢-2), thus k=22 or 2¢-1. If k is odd, k=1 (mod 2¢-2), thus
k=1 or 14-2¢-2, While
I=1 (mod 2:-2), 11201,
Thus /=1 or 142¢-2, Therefore we get x=+1 or +142¢-1 (mod 2¢), y=0 or 2¢-1
(mod P¢). Since the converse is clear number of solutions in O, of congruence &2=1
(mod P?) is eight and they are
x+yw; x=-+1, 41421 (mod 2°), y=0, 2°—1 (mod 2¢).
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Corollary 4.

{1} ; e=1
%M(Pe)={{-_r1, +1420} s e=2
{£1, £14-2e-1, £142¢-1gy, +1420-142¢-1y}; e=3.
Proposition 9. When m=2 (mod 4), let us put 2.0pn="P2. Then
1; e=l1,
2; e=2, 3,
NlP)= 4; e=4,
8; ex=5.

Proof. Using canonical basis, we obtain
P=s(Zeny+Z(r+w)), s, my, r€Z, 0<r<n,.
Then because of N(P)=2=s%n), s=1, ny)=2. And because of N(r+w)=0 (mod #n,), r=0.
Therefore, P=Z.2+Z-w. Now if e is even, let us put e=2¢/, ¢/ €Z. Then
Pe=(PY)' =026 =Z+2¢+7Z+2¢. .
If e is odd, let us put e=2e¢/+1, ¢/ €Z. Then
Pe=(PO'P=20(Z+2+Ze)=Z+2¢+1+ 7+ 2.
Therefore a necessary and sufficient condition that x+ ya (x, y € Z) should be a solution
in O,, of congruence £2=1 (mod P¢) is if e=1,

x24my?=1 (mod 2), 6)
and if e=2e¢/>2,
x2+my?=1 (mod 2¢), @
2xy=0 (mod 2¢), ®)
and if e=2e¢/41=3,
x24+my?=1 (mod 2¢+1), ©
2xy=0 (mod 2¢). (10)

Now a complete system of representatives of ring of residue classes of O, to modulus

Pe is if e=2e/=2,

{x+yw € On; 0£x<2¢, 0Sy<2%, x, yEZ}
and if e=2e/4+1=1,

{(x+ Y0 € On; 0<x<29+1, 0<y<2¢, x, yEZ},
and a necessary and sufficient condition that the integer x4 yw above should be divided
by P, is x=0 (mod 2) in both cases. Therefore we get a system of representatives of
Gu(P?): if e=2e/=2,

Cn(P)={x+yo € Om; 0<x<2¢, 0<y<2?, x=1 (mod 2), x, y€Z} (11)
and if e=2e/4+121,

Cm(P)={x+yw € Om; 0=x<2¢+1, 0< y<2¥, x=1(mod 2), x, yEZ}. (12)
When e=1, x=1 (mod 2) by (6) because m is even. Since the converse is clear, number
of solution in O, of congruence £2=1 (mod P) is only one (mod P) and it is

x+yw, x=1 (mod 2).

For if x=1 (mod 2), x’=1 (mod 2), y, Y EZ,
x+yo)— '+ Y w)=(x—x)+(y—y )0 EZ-2+Z-0=P,
ie. x4+ yo=x'4+3'w (mod P).
When e=2, x=1 (mod 2) by (7) because m is even. Since the converse is clear,
number of solutions in O, of congruence &2=1 (mod P2?) is two (mod P2) and they are
x+yw, x=1(mod 2).
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For if x=1 (mod 2), x’=1 (mod 2), y=y' (mod 2)
(x+yw) =& + ¥y 0)=(x—=x")+(y—y o € Z2+Z-20=P?,

ie. x+yo=x'+)y» (mod P2,
but if x=1 (mod 2), x’=1 (mod 2), y==3’/ (mod 2),

(x4 yo)— '+ ¥ w)=(x—x)+(—y )0 EZ-2+Z20=P?,

ie. x+yzx'4+y'w (mod P2).

When e=3, x24+my?=1 (mod 2) by (9), therefore x=1 (mod 2). Then if we put
x=2x'41, x’€Z in (9), using m=4m’'+2, m'€Z, we get 2y?=0 (mod 22). Therefore
y2=0 (mod 2); namely y=0 (mod 2). Therefore x=4-1 (mod 22), y=0 (mod 2). Since
the converse is clear, number of solutions of congruence £2=1 (mod P3) is two and
they are

x+yw, x=+1 (mod 2?%), y=0 (mod 2).

When e=4, similarly as above we get x=1 (mod 2), y=1 (mod 2). Therefore x=
41 (mod 22), y=0, 2 (mod 22). Since the converse is clear, number of solutions in O
of congruence £2=1 (mod P*) is four and they are

x+yw, x=41 (mod 2%), y=0, 2 (mod 22).

When e=2¢/+1, /=2, x=1 (mod 2) by (9), therefore y=0 (mod 2¢-1) by (10),

therefore

x=1, 3, 5,..., 2¢+1—1 (mod 2¢+1),

y=0, 2¢-1 (mod 2%).
For the convenience of putting y into (9) let us consider y to modulus 2¢’+!, Then we get

y=0, 2¢-1, 2¢) 3.2¢~1 (mod 2¢+1),
But in any case my?=0 (mod 2¢+1). For if y=2¢-1 (mod 2¢+1), then for some rational
integers m/, y/,

my?=(4m/ +2)(2¢"+1y/ 42’12 =2¢'+1.2¢'~2(2m/ 4-1)(4)/ +1)2=0 (mod 2¢'+1),
and if y=3.2¢-1 (mod 2¢+1), then for some rational integers m/, y’

myt=(4m/ +2)(2¢'+1y/ +3.2¢~1)2=2¢"+1.2¢-22m/ 4 1)(4 )/ +3)2=0 (mod 2¢'+1)
and if y=0, 2¢, the conclusion is clear. Therefore if we put

x=2k—1 (mod 2¢+1) 1ZkL2
into (9) we get

k(k—1)=0 (mod 2¢-1).
If k is even, then k=0 (mod 2¢-1), 1<k<<2¢, then k=2¢-1, 2¢, then x=—142¢, —1
+2¢+1 (=—1) (mod 2¢+1), If k is odd, then k=1 (mod 2¢-1), 1<<k<2¢, then k=1,
142¢—1, then x=1, 14+2¢ (mod 2¢t1). So we get x=+41, +142¢ (mod 2¢+1), y=0,
2¢-1 (mod 2¢). Since the converse is clear, number of solutions in O,, of congruence
£2=1 (mod P¢), e=2e¢/+1, /=2 is eight and they are

x+yw, x=11, £142¢ (mod 2¢+1), =0, 2¢-1 (mod 2¢).

When e=2¢’, ¢/=3, x=1 (mod 2) by (7), therefore y=0 (mod 2¢-1) by (8) therefore

x=1,3,5,...,29—1 (mod 2¢),

y=0, 2¢-1 (mod 2¢).
But in both cases, my=0 (mod 2¢). For if y=2¢-1 (mod 2¢), then for some rational
integers m/, y/ '

my=(4m’ 4+2)(2¢'y! +2¢'-1)2=2¢" s 2¢'~1(2m/ +-1)(2y/ 4+ 1)2=0 (mod 2¢)
and if y=0 (mod 2¢), the conclusion is clear. Therefore if we put

x=2k—1 (mod 2¢) 1=kL201
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into (7), we get

k(k—1)=0 (mod 2¢-2), -
If k is even, then k=0 (mod 2¢-2), 1<k<2¢-1, then k=2¢-2, 2¢~1, then x=—1-42¢-1,
—142¢ (=—1) (mod 2¢). If k is odd then k=1 (mod 2¢-2), 1<k<2¢-1, then k=1,
1422, then x=1, 14-2¢-1 (mod 2¢). So we get x=-+1, +142¢-1 (mod 2¢), y=0,
2¢-1 (mod 2¢).. Since the converse is clear, number of solutions in O, of congruence
£2=1 (mod P¢) e=2¢/, /=3, is eight and they are

x+yw, x==x1, £142¢-1 (mod 2¢), y=0, 2¢-1 (mod 2¢).

Corollary 5.

({1} ; e=1

{1, 14w} ; e=2

ey — {il} M e=3
SrEI=V 1L, w1420} ; e=4

{£1, £1+427, £14291, +14-294-2¢"10} e=2e/+1, /=2
{£1, 2142971, +14-2¢10, £14-2¢-142-14}; e=2e/. e/ =3.
Proposition 10. When m=3 (mod 4), let us put On+2=P2 Then
(1; e=1,
2; e=2, 3,
4; e=4d,
8; e=5.
Proof. Using canonical basis we get

P=Z:2+Z.(140),

Ppe— 224729, ; e=2¢e/,
TNZ2 4 Z29(14-w); e=2e/+1,
in the same way as the proof in the proposition 9. Therefore a necessary and sufficient
condition that £§=x+yw, x, yEZ should be a solution in O,, of congruence £2=1
(mod Pe) is if e=1,

Nm(P"’) =

x2—2xy+my?=1 (mod 2), (13)
and if e=2e/>2, 4
x2+my?=1 (mod 2¢), 14
2xy=0 (mod 2¢), as)
and if e=2e/4+1>3,
x2—2xy+my?=1 (mod 2¢+1), (16)
2xy=0 (mod 2. 17)

Now a complete system of representatives of residue classes of O, to modulus P¢
is if e=2e/>2,
{Xx+ry0€0n; 0<x<2°, 0<y<2?, x, yEZ},
and if e=2e/4-1=1,
{X+ Y0 € Om; 0<Sx<2¢+, 0< <29, x, YEZ}
and a necessary and sufficient condition that elements x+yw in the above set should be
divided by P is x=p (mod 2) in both cases, since x+ yp=x— y+y(1+w). Therefore
we get a system of representatives of G.(P°), if e=2e/=>2,
Bm(P)={x+y0 € On; 0=x<27, 0<p<<2¢, x#£y (mod 2), x, yEZ} (18)
and if e=2e/ 121,
Bm(P)={x+yo € Om; 0<x<29+, 0< y<2¢, x#y (mod 2), x, YEZ}. (19
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When e=1, x24 y2=1 (mod 2) by (13), therefore x=0 (mod 2), y=1 (mod 2) or x
=1 (mod 2), y=0 (mod 2). But both should be contained in the same residue class of
Om (mod P), because if x=0 (mod 2), y=1 (mod 2) and x’=1 (mod 2), y’=0 (mod 2),

(x+yo)—'+y 0)={(x—x)—(y—y N +(r— ¥ )1+ w) EZ2+Z-(1+ w)=P
ie. x4+ yo=x'4+y'» (mod P).
Therefore number of solution in O, of congruence £2=1 (mod P) is only one (mod P)
and it is

x+yow, xz*y (mod 2).

When e=2, x243?=1 (mod 2) by (14), therefore x=0 (mod 2), y=1 (mod 2) or x
=1 (mod 2), y=0 (mod 2). But in this case x+yw, x=0 (mod 2), y=1 (mod 2) and
x'+y'w, x¥’=1 (mod 2), 3’=0 (mod 2) belong to two distinct residue classes of On to
modulus P2, because

(x4 yo)—+y 0)=(x—x)+(y—y o E L2+ Z-20=P?,
ie. x+yw+x'+y' o (mod P2?).
Therefore number of solutions in O, of congruence £2=1 (mod P%) is two and they are
X+yo {xEO (mod 2) {xsl (mod 2)
> ly=1 (mod 2), {y=0 (mod 2).

When e=3 we get x=0 (mod 2), y=1 (mod 2) or x=1 (mod 2) y=0 (mod 2) in
the same way as the case e=1, 2 in this proposition. If x=0 (mod 2), y=1 (mod 2),
for some rational integers x/, )/, .

[left-hand side of (16)]=(2x/)2—2+2x"+(2y’ +1)+m(2y’+1)>=m (mod 4),
then m=1 (mod 4). This is a contradiction. So x=1 (mod 2), therefore x=+1 (mod
22), y=0 (mod 2). Since the converse is clear number of solutions in O, of congruence
£2=1 (mod P?J) is two and they are

x+yw, x==+1 (mod 22), y=0 (mod 2).

When e=4, we get x=1 (mod 2), y=0 (mod 2) in the same way as the case e=3
in this proposition. Therefore x=41 (mod 22), y=0, 2 (mod 2?). Since the converse is
clear, number of solutions in O. of congruence £2=1 (mod P*) is four and they are

x+yw, x==+1 (mod 22), y=0, 2 (mod 22).
When e=2e¢/+1, /=2, we get x=1 (mod 2), y=0 (mod 2) in the same way as the
case e=3 in this proposition. Therefore
x=1,3,5,..., 2+1—1 (mod 2¢+1)
{yEO, 2,4,...,2¢—2 (mod 2¢),
then let us put using some rational integer x’y”,
x=2"+1x/+2k—1, 1Zk<2¢,
y=2¢'y'4+2]—2, 1<1L291,
Then we get out of (16) and (17)
k(k—1D—Qk—1D(I—1)+m(l—1)*=0 (mod 2°-1) (16)
Qk—1)(I—-1)=0 (mod 2¢-%) 17y
therefore by (17) I=1 (mod 2¢-2), 1<7/<2¢-1, then /=1, 2241, then y=0, 2¢'-1
(mod 2¢). When /=1, then by (16) k(k—1)=0 (mod 2¢—!). Therefore if k is even,
then k=0 (mod 2¢-1), 1<k<2¢, then k=2¢-1, 2¢, then x=—14-2¢, —142¢+! (=—1)
(mod 2¢+1). If k is odd, then k=1 (mod 2¢-1), 1<k<2¢, then k=1, 142¢-1, then x
=1, 142¢ (mod 2¢+1). Therefore if /=1; namely y=0 (mod 2¢), then x=-+1, +142¢
(mod 2¢'+1),
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Next let us consider the case /=2¢-24-1. By (16) we obtain
k(k—1)4-2¢-2=0 (mod 2¢-1).
Therefore
{k(k—l)EO (mod 2¢'-2)

kg‘e:;) +1=0 (mod 2),

where %’% is odd. Now if k£ is even, then k=0 (mod 2¢-2) and -;—_Zo(k—l) is
odd, therefore % is also odd. If we denote
k

for some rational integer &/, we obtain k=2¢-1k/4-2¢-2 1<k<2¢ then k=2¢-2, 2¢~2
+2¢-1, then x=—14-2¢-1, —14-2¢-142¢' (mod 2¢+1), 1If k is odd, then k=1 (mod 2¢-2
and k——];_e,__lz is odd, therefore —I;:_IZ is also odd. If we denote

k—1

w =2k/+1
for some rational integer k, we obtain k=14-2¢-24-2¢-1k/ 1<k<2¢ then k=1-42¢-2,
14-2¢-24-2¢'-1 then x=1+42¢-1, 14-2¢-14.2¢ (mod 2¢+1), Therefore if [=2¢-241;
namely y=2¢-1 (mod 2¢), then x=-4-142¢-1, +142¢-142¢ (mod 2¢+1). Since the
converse is clear, number of solutions in O, of congruence £2=1 (mod P¢) where e=
2e/+1, /=2 is eight and they are

*+yo x==+1, £142¢ (mod 2¢+1) (x=-41+42¢-1, +14-2¢-14.2¢ (mod 2¢+1)

> |y=0 (mod 2¢) , |y=2¢-1 (mod 2¢) .

When e=2e/, /=3, we get x=1 (mod 2), y=0 (mod 2) in the same way as the

case e=3 in this proposition. Therefore

x=1,3,5,..., 22—1 (mod 2¢),

y=0,2,4,...,2¢—2 (mod 2¢),
then let us put using some rational integer x/, y’

x=2¢x'4+2k—1, 1<k<2e-1

{y=2"’y’+21—2, 115208

Then we get out of (14) and (15)

k(k—1)+m(I—1)2=0 (mod 2¢-2) 14y

2k—1)(I—1)=0 (mod 2¢-2), (15y
therefore by (15), /=1 (mod 2¢-2), 1<7/<2¢-1, then /=1, 14-2¢-2, then y=0, 2¢-1
(mod 2¢).

Now in both cases we obtain k(k—1)=0 (mod 2¢-2) by (14), therefore if k is even,
then k=0 (mod 2¢-2), 1<k<2¢-1, then k=2¢-2, 2¢-1 then x=—142¢-1 —142¢
(=—1) (mod 2¢). If k is odd, then k=1 (mod 2¢-1), 1<k<2¢-1, then k=1, 14+2¢-2,
then x=1, 142¢-1 (mod 2¢). Therefore we obtain x=+1, +142¢-1 (mod 2¢). Since
the converse is clear, number of solutions in O, of congruence &2=1 (mod P?), e=2¢/,
e/=3 is eight and they are

x+yo, x=+1, £142¢-1 (mod 2¢), y=0, 2¢~1 (mod 2¢-1),
This completes the proof.
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Corollary 6.

({1} ; e=1,
{1, w} ; e=2,
{£1} ; e=3,
{*1, +1420} ; e=4,

TlPI= (1, 1427, 14291421y, 1429142042010}
; e=2e/+1, /=2,

{£1, £142¢1, +1421g, £142¢7142¢"1y}

L ; e=2e/, e/ =3.

Proposition 11.

(i) When m=1 (mod 8), let us denote the decomposition into products of prime ideals of
integral ideal M of Onm by M=P¢QfP Py, Per, where P, Q are even prime ideals
of O such that Oms2=PQ, Q=P'=P, and P, P,, ..., P, are odd prime ideals of On
and e, f, ey, e, ..., e: are nonnegative integers. Then

2r 5 (e)=0,0), 0,1, (1,0, 1,1

2+l (e: f)=(0, 2), (13 2)’ (25 1)’ (21 O)

225 (e, /)=2,2), 0, f), (&, 0), (1, /), (& 1)

where e, f=3

23 (e,f)=(2,f), (e’ 2) where e, fZ3

2t e, f23,
where if r=0, then ex=1 or f=1 and if e=f=0, then r=1.

(ii) When m=>5 (mod 8), let us denote the decomposition into products of prime ideals of
integral ideal M of Op by M=P¢P.:Pe: . P, where P is an even prime ideal of Op
such that Op+2=P, and P, P,, ..., P, are odd prime ideals of On and e, e, e,, ..., e
are nonnegative integers. Then

2r ; e=0,1,
Nm(M):{2r+2; e=2,
2r+3; 323’
where if r=0, then e=1 and if e=0 then r=1.

(i) When m=2, 3 (mod 4), let us denote the decomposition into products of prime ideals
of integral ideal M of On by M=P¢P 1P, ., PSr, where P is an even prime ideal of
O such that Op+2=P2, and P,, P,, ..., P, are odd prime ideals of On and e, e, e, ...,
e, are nonnegative integers. Then

2r ; e=0,1,

2r+l; e=2, 3,

2r+2; e=4,

2r+3; 325:

where if r=0, then e=1 and if e=0 then r=1.

Proof. It is clear by propositions above mentioned.

We have obtained the following two theorems which depend upon the conclusions
of propositions above mentioned. The first theorem, theorem 3, is clear by proposition
11. The second, theorem 4, is clear by lemma 2 and theorem 3.

Theorem 3. P and Q are even prime ideals of O such that

On2=PQ, Q=P'#P; m=1 (mod 8),
Ope2=P ; m=5 (mod §),

Np(M)=

Np(M)=
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Ope2=P2 ; m=2, 3 (mod 4),
and R is an odd prime ideal of O,. Then a necessary and sufficient condition that I.{M)
=1; namely N,(M)=2 is
(i) in the case in which M does not contain any even prime ideals of On
M=Re,
(ii) in the case in which M contains several even prime ideals of On
PRe, QRe, PQRe, P2, Q2 P2Q, PQ?% m=1 (mod 8),
M ={PR“ ; m=5 (mod 8),
PRe, Pz, p3 ; m=2, 3 (mod 4),
where e is arbitrary nonnegative integer.
Theorem 4. (i) Let M be an integral ideal of O, which has any type explained in
the theorem 3. Then
—1 (mod M) ; m=2, 3 (mod 4) and M = P>
_ 14w (mod M); m=2 (mod 4) and M =P?
cconar |o (mod M) 3 m=3 (mod 4) and M=P?
—1 (mod M) ; other cases.
(ii) Let M be an integral ideal of O, which does not have any type explained in the
theorem 3. Then
I &=1 (mod M).
$eBn(M) ;
Remark. Except for the case m=2, 3 (mod 4) and M=P?, if N,(M)=2, then the
element of G,(M) whose order is 2, is —1 (mod M) but in the case m=2 (mod 4) and
M=P?, we obtained in corollary 5 N,(M)=2 and 1=—1 (mod M) and the element of
Gn(M) whose order is 2, is 14w (mod M). And in the case m=3 (mod 4) and M =P?,
we obtained in corollary 7 Nn(M)=2 and 1=—1 (mod M) and the element of G,(M)
whose order is 2, is » (mod M).
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