
ON THE EXTENSION OF WILSON'S THEOREM 
TO QUADRATIC FIELDS 

By SETSUO OHNARI* 

In the theory of numbers the following theorem of Wilson is very familiar to us: 

p: a prime number (p-1)!=-1 (modp). 
Our main purpose of this paper is to prove two theorems, theorem 2 and theorem 4 in 

section 2 and 3, extending the above theorem of Wilson. First in theorem 2 the prime 

number p is transposed into a rational integer m which is not always prime, and second 

in theorem 4 the prime number p is transposed into an integral ideal M of quadratic 
field. To attain our purpose let us explain the right-hand side - I of the congruence in 

the theorem as a representative of the element, whose order is 2, of G(p) ; where G(p) 

denotes a group of reduced residue classes of the ring of all rational integers to modulus 

p, and let us explain the left-hand side (p-1)! as a product of all elements of ~;(p); 

where ~;(p) denotes a complete system of representatives of G(p). 

In section I we shall prove a few lemmata about a finite Abelian group in preparation 

for applications in the succeeding sections. In section 2 we shall prove the case in which 

the theorem is formulated by using a rational integer m, which is not always prime, as 

modulus. In section 3 we shall prove the case in which the theorem is formulated by 

using an integral ideal M of quadratic field as modulus. 

We shall define several notations at the beginning of each section. 

I wish to express my indebtedness to Professor Kazuo Matsuzaka of Hitotsubashi 
University for many helpful teachings and many useful discussions on the results to be 

,described in this paper. 

S I . A few lemmata about finite Abelian group. 

In this section we shall use the following notations. 

G will denote a finite Abelian group. 
will denote the identity element of G. e

 

l Gl will denote number of elements of G. 
S will denote the set of all elements of G whose order is 2. 

l Sl will denote number of elements of S. 

Lemma I . 

G-{e}CS=>Ilx e; IGl=1 or [GI~3 

- 

 

*<G ~ ; IGl=2, G={a,e}, a~e 

* Assistant Professor (Jokyo~'ju) in Mathematics. 
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Proof. If IGI=1 or 2, the above lemma is clearly true. Let IGl~~3. For a fixed element 

a eE G-{e}, we shall define an equivalence relation Rl of G as follows ; 

xRly (x, y~G)~~y=x or y=xa. 
For any xeG, xRlxa, but x:~:xa. Therefore each equivalence class of G with respect 
to R1 contains at least two elements. Since any equivalence classes of G with respect 

to Rl cannot contain more than three elements by definition of R1' each equivalence 
class always contains two distinct elements {x, xa} of G. Therefore I Gl is even and 

II x = H x(xa) =a"/2. 
x* G {x, x"} = G/R1 

If we can prove that n/2 is even, this lemma is clearly true by the assumption a2=e. 

Accordingly let us assume that n/2 is odd. Then an/2=a. Similarly using b~G-{e, a} 

by the assumption IGl~;3 we obtain 

II x:::bn/2=b. 

x<G 
Therefore we get a:=b, which is in contradiction to a~b. 

Lemma 2. 
llx= a; ISl=1, S={a} {e; ISI:~:1 

x=G 
Proof. Let us define a subgroup H of G and an equivalence relation R2 of G-H as 

follows ; 

H={x~G; x2=:e} 
xR2y(x, yeEG-H)<=>x:=:y or xy=e. 

Then it is clear that each class of G-H with respect to R2 contams two distmct elements 

{x, rl}. Therefore 

II x= H xx~1=e 
x< c-H {x, x-l} * G/R2 

Theref ore 

llx= II x'llx=llx. 
x<G X<G-H x=H x=H 

Since if ISl=1, H{e, a} and if ISI~1, H:={e} or .[H1~3, we complete the proof by 

the lemma l. 

S 2. The case in which modulus m is a rational integer. 

In this section we shall use the following notations. 

will denote the ring of all rational integers. Z 
will denote a rational integer such that m>1. m 

N(m) will denote number of solutions of congruence x2~1 (mod m). 

will denote odd prime numbers. 
p, pl' p2, p3, ･･-

will denote natural numbers. 
e e e e3,･･-' 1' 2, 
G(m) ･ will denote a group of reduced residue classes of Z to modulus m. 
~;(m) will denote a complete system of representatives of G(m). 

I(m) will denote number of elements of G(m) whose order is 2. 

Proposition 1. N(pe)=2, 
where e=1, 2, 3, ... and p is an odd prime number. 
Proof. It is clear that I :~: - I (mod p') and d: I (mod pe) are solutions of congruence 
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x2~=1 (mod p'). Conversely if x2~~1 (mod pe) then (x+1)(x- 1)~0 (mod pe). So there 
exist f and g such that 

f geZ f>0 g>0 f+g e x+1 O (modpf), x-1~0 (modpg). 
If f>0 and g>0, ~ 

x+1~~O (modp), x-1=0 (mod p), 
then we get 2~~O (mod p). This is a contradiction. Therefore f=0 or g O Iff O 
x~~ I (mod pe) and if g=0, x=-1 (mod p'). 
Proposition 2. N(ple*p2e: . .. pre.)=2r, 

where el' e2, "', er are natural numbers and pl' p2' , pr are r odd prime numbers which 

are distinct, and r~2. "' 
Proof. By proposition I and by familiar relation 

x2 1 (modplerp2e2 p ')<=>x2 1 (modp ) for ,)=1, 2,...,r, 
this proposition is clear. 

Proposition 3. 

1; e=1, 
N(2')= 2; e=2, 

4; e~~3. 

Proof. It is clear that, if e=1, I (mod 2) is only one solution of congruence x2~~1 

(mod 2) and if e=2, ~ I (mod 22) are only two solutions of congruence x2~~1 (mod 22). 

Let us assume e~3. We shall prove by the induction on e that :!: 1, :!: 1+2e-1 (mod 2e) 

are only four solutions of congruencc x2~~1 (mod 2e). For e:=3, the conclusion is clearly 

true. Let us assume that the conclusion is true for some e~3. If x2~~1 (mod 2e+1), 
x2~~1 (mod 2e). By the assumption of induction we obtain x=d:1, ~ l+2'-1 (mod 2e). 

Therefore there exist y and z in Z such that x=~1+2ey, x=il+2e-1+2ez. 
But considering e~;3, we obtain 

(~ I +2e-1 +2ez)2= ~ I +2e-1(1 +2z)2 

= I ~2e(1 +2z)+22e-2(1 +2z)2 

~ Id:2･(1+2z) (mod 2e+1) 
~1 (mod 2e+1). 

Accordingly x=~1+2e)/. It is clear that 

l+2ey~-1+2･y! (mod 2e+1) (y, y/eZ), 
1+2ey~~l+2ey! (mod 2'+1)<=>y~~y/ (mod 2) (y, y/eZ), 
-1+2ey~~-1+2ey/ (mod2e+1)<~~y=y/ (mod2) (y,y/eZ), 

so complete system of representatives of {~1+2ey, y e Z} with respect to modulus 2e+1 

is {~1, ~1+2e}. 
Propositiosn 4. 

2r ; e=0 or 1, 
N(2eple,p2el ...p,e.)= 2r+1' e=2, 

2r+2, e~3. 
where el' e2' "', er are natural numbers and pl'p2""'p. are odd prime numbers and r~~O, 

but if r=0, then e~1. 

Proof. If r=:O, this is the same with proposition 3. Therefore let us assume r~1. 

If e=0, this is the same with proposition 2. If e~l, by familiar relation 

x2~~1 (mod 2eplelp2e2 ...pre.) <=> x2~~l (mod 2') {
 
x2~il (modp.'"), v:=:1, 2, 
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and by propositions 1, 2 and 3, this proposition is clear. 

We have obtained the following two theorems which depend upon the conclusions 
of propositions 1, 2, 3 and 4. The first theorem, theorem 1, is clear by proposition 4. 

The second theorem, theorem 2, is clear by lemma 2 and theorem I . Now we can obtain 

the theorem of Wilson on odd prime numbers as corollary of theorem 2. 

Theorem I . 

I(m)=1 <;~ N(m)=2 ~> m=4 or p' or 2p' 
where e is arbitrary natural number and p is arbitrary odd prime number. 

Theorem 2. 
II x~~ ~1 (mod m); m=4 or p' or 2p' { I (mod m); other cases 

x e ~5(m) 

where e is arbitrary natural number and p is arbitrary odd prime number. 

Corollary l. (theorem of Wilson) 

(p-1)!~i-1 (modp) 
where p is arbitrary odd prime number. 

S 3. The case in which modulus M is an integral ideal 

of quadratic field. 

In this section we shall use the following notations. 

In will denote a rational integer which does not contain any square factors 

without 1. -
1+~/~T 
if m I (mod 4) (~' is ~/~T if m~~2 3 (mod 4) and is ~~ 

- '' 

 

Z will denote the ring of all rational integers. 

Q will denote the field of all rational numbers. 
O~ will denote the ring of all integers in Q(~/~T). 

M, Ml' M2, M3, ･･' will denote integral ideals of O~. 
P, Q, R, Pl' P2, P3, "' will denote prime ideals of O~. 

e, f, el' e2, e3, "' will denote natural numbers. 

N(M) will denote norm of integral M over Q. 
N~(M) will , denote number of solutions in O~ of congruence ~2~~1 (mod M). 

G~(M) will denote a group of reduced residue classes of O~ with respect to 

modulus integral ideal M. 
~~(M) will denote a complete system of representatives of G~(M). 

~~(M) will denote representative system of all solutions in O~ of congruence 

~2=1 (mod M). 
I~(M) will denote number of elements, whose order is 2, of G~(M). 

Let us call the prime ideal which divides O~ ･ 2 (this means the integral ideal generated 
by 2 in O~) even prime ideal, and we shall use notations such as P, Q. Let us call the 

prime ideal which does not divide O~ ･ 2 odd prime ideal, and we shall use notations such 
About even pnme ideals we have a familiar result 

' 1' z, 3,･･" PQ, Q=P/~p; m=1 (mod 8), 

O~･2= P ; m~~5 (mod 8), P2 ; m=2, 3 (mod 4), 
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where P/ will denote a conjugate ideal of P over Q. 

Proposition 5. N~(R') = 2, 

where e is arbitrary natural number and R is arbitrary odd prime idea/ of O~. 

Proof. The proof is similar to that of proposition I in S 2. 

Corollary 2. ~~(R')= {~ I } 

Proposition 6. N~(pl'*p2" "'p.")=2･, 
where el' e2, "' , er are arbitrary natural numbers and pl' p2, "' , p, are arbitrary odd prime 

ideals which are pairwise coprime and r~~2. 

Proof. The proof is similar to that of proposition 2 in S 2. 

Let us consider number of solutions in O~ of congruence ~2~:1 (mod M) where an 
integral ideal M of O~ is divided by a few even ideals of O~, classified into four cases 
in accordance with the decomposition form of 2 in Q(~1~). 

Proposition 7. When m~~1 (mod 8), Iet us put O~･2=PQ, Q=P!~p. Then 
1; e=1, 

N~(P')=N~(Qe)= 2; e=2, 
4; e~3. 

Proof. N(P)=2, therefore N(P')=2･. Since P' is a primitive ideal, using canonical 
basis over Z, we obtain 

P'=Z.2･+z(r+0,), N(r+co)=0 (mod 2･). 
Since any integer of O~ is congruent to some rational integer, we obtain a complete 

system of representatives of O~ to modulus P' ; 

{O, 1, 2,... 2･ l} 

Taking away the rational integers 

{0･2, 1.2, 2･2,..., (2･ 1 1)2} 

which are divided by P from the above complete system of representatives of O~ to 
modulus P', we get a representative system e;~(pe) of G~(Pe) ; 

~;~(p.)= {1, 3, 5, ... , 2･-1}. 

Therefore ~;~(p)={1}, then it is clear that number of solution in Om of congruence 
~2~~1 (mod P) is only one and it is I (mod P). Since ~;~(p2)={1, 3}, regarding 12~~1 

(mod P2) and 32-1=2.22+0･(r+co)~~P2 where 3=-1 (mod P2), number of solutions in 
O~ of congruence ~2~~1 (mod P2) is two and they are ~1 (mod P2). 
Let us assume e~3. For any rational integer x in ~;~(p'), if x2~~l (mod P'), then 

x2=1 (mod Q'), then x2:=1 (mod P'Q') i,e. x2=1 (mod 2･), then x:~ ~1, :!:1+2･-1 (mod 

2･). Conversely if x=~1, d: 1+2･-1 (mod 2･), then x2~~~1 (mod 2･) by the proof of 
proposition 3, then x2=1 (mod P'), therefore N~(P')=4 for e~3. Similarly we can 
obtain N~(Q)=1, N~(Q2)=2 and N(Q')=4 for e~3, This completes the proof. 

Corollary 3. 

{1} ; e=1, 
~~(P')=~~(Q')= {~1} ; e=2, 

{~1, ~1+2e-l} ; e~3. 

Proposition 8. When m~~5 (mod 8), Iet us put O~･2=P. Then 
1; e=1, 

N~(P')= 4; e=2, 
8; e~3. 

Proof Usmg canomcal basrs over Z P 2(Z 1+Z.co). Thus P'=2･(Z･1+z･(~') 
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=Z.2'+z.2'co, therefore a necessary and sufficient condition that ~=x+y(o (x, y~Z) 
should be a solution of congruence ~2~~l (mod P') is 

m- 1 

{x2+ 4 y2~=1 (mod 2･), (1) (2x+y)y=0 (mod 2'), ' (2) m- 1 
where (02=co+ 4 ' ' Now a representatrve system of nng of residue classes of O~ to 

modulus P' is 

{x+y(~'eO~; O~x<2･, O~y<2･, x, yeEZ} 
and a necessary and sufficient condition that elements x+ya' of the above set should 

be divided by 2.0~=P is x, y=0 (mod 2). Therefore we get the following complete 
system of representatives of a group G~(P') ; 

f~~(P')={x+ycoeO~; O~x<2･. O~y<2･, and 
x or y=1 (mod 2) x, yeZ}. (3) 

When e=1, y=0 (mod 2) by (2), therefore x~~1 (mod 2) by (3). Conversely if xi~1 

(mod 2), y=0 (mod 2), it is clear that (1) and (2) are concluded. So number of solution 

in O~ of congruence ~2~~1 (mod P) is only one and it is 

x+ya'; x=1 (mod 2), y=0 (mod 2). 
When e=2, y=0 (mod 2) by (2), thus x~~ I (mod 2) by (3). Therefore x~~1, 3 

(mod 22), y~~O, 2 (mod 22). Since the converse is clear, number of solutions in O~ of 

congruence ~2=1 (mod p2) is four and they are 

x+y(t'; x~1, 3 (mod 22), y=0, 2 (mod 22). 

When e~3, y=0 (mod 2) by (2), thus x= I (mod 2) by (3). 

Therefore x~i 1, 3, 5, ..., 2'-1 (mod 2･), 
y O, 2, 4, ..., 2･-2 (mod 2･); 

namely x~=2k-1 (mod 2･), 1~k~2'-1 
y=21-2 (mod 2･), 1~ l~2･-1. 

Regarding m=8m/+5 (m! e Z), Iet us replace x and y in (1) and (2) with the above x 

and y. Then 

[left-hand side of (1)]~4{k(k-1)+(2m/+1)(1-1)2} +1 (mod 2･), 

[1eft-hand side of (2)]~~4(2k+ I -2)(1 - 1) (mod 2･). 
So (1) and (2) are equivalent to the following (4) and (5) 

{k(k= 1)+(2m/_ 1)(1- 1)2=0 (mod 2･-2), (4) 
(2k+1 -2)(1 - l)= O (mod 2･-2). (5) Since the first term of left-hand side of (4) is even, the second term of left-hand side of 

(4) is also even. Therefore I is odd, thus the first factor of left-hand side of (5) is odd. 

Therefore the second factor of (5) is divided by 2'~2. Then by (4), we obtain 

k(k-1)=0 (mod 2･-2), 1~k~2･-1. 
If k is even, k~~O (mod 2･-2), thus k=2･-2 or 2･-1. If k is odd, k~=1 (mod 2･-2), thus 

k=1 or 1+2･-2. While 
l~~1 (mod 2･-2), 1~/~2･-1. 

Thus l=1 or 1+2'-2. Therefore we get x=~1 or ~1+2'-1 (mod 2'), y=0 or 2'~1 
(mod P'). Since the converse is clear number of solutions in O~ of congruence ~ 2~~1 
(mod P') is eight and they are 

x+yco x ~1, ~1+2･-1 (mod 2･), y=0, 2･ I (mod 2･) 
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　　Corollary4．

　　　　　）一｛翫雛±、＋卸仙±1＋…＋…ω，iill

　　Proposition9。　四heη7π……2（mod4），Zα瑠p漉2・0用＝P2．刀1θn

　　　　　・一佳ilきi鉱

　　Proo£　Using　canonical　basis，we　obtain

　　　　P＝s（Z・no十Z・（ア十ω）），5，no，ア∈Z，0≦7＜no，

Then　because　of1〉（P）＝2＝52no，s＝1，no＝2，And　because　of1堕十ω）≡0（modπo），7＝0．

Therefore，、P＝Z・2十Z・ω。Now　ifθis　even，1et　us　putθ＝24，4∈Z．Then
　　　　Pe＝（P2）ε1ニ0“1・2¢ノ＝Z・28’十Z。2ε’ω．

Ifθis　odd，1et　us　putε＝24十1ヲ4∈Z，Then
　　　　Pθニ（P2）4Pニ28’（Z。2十Z・ω）＝Z・24＋1十Z・2ε’ω．

Therefore　a　necessary　an（1sumcient　conditionthat潔十』yω（x，ア∈Z）shouldbe　a　solution

in　O所of　congmenceξ2≡1（mod　Pθ）is　ifε＝1，

　　　　x2十’nメ≡1（mod2），　　　　　　　　　　　　　　　　　　　　　　　　　　（6）

αnd迂θニ2θノ≧2，

　　　　｛　　　　　x2十η2ン2≡1（mod2っ，　　　　　　　　　　　　　　　　　　　　　　　　（7）

　　　　　2xy≡0　　（mod2っ，　　　　　　　　　　　　　　　　　　　　　　　　（8）

and　rθニ24十1≧3，

　　　　｛　　　　　x2＋〃1γ2…1（mod2ε’＋1），　　　　　　　　　　　　　（9）

　　　　　2η≡0　（mod2つ．　　　　　　　　　　　　　（10）
　　Now　a　complete　system　of　representatives　ofring　ofresidue　classes　of　O吻to　modulus
Pθis　臼『θ＝2εノ≧2，

　　　　｛x十アω∈0而0≦x＜2ε’，0≦ア＜2〆，κ，』y∈Z｝

and　ifθニ2θノ十1≧1，

　　　　｛x十アω∈0而0≦x＜2ε’＋1，0≦ア＜2ε’，x，ア∈Z｝，

and　a　necessary　and　sufHcient　condition　that　the　integer　x十アωabove　should　be　divided

by　P，is　x≡0（mod2）in　both　cases，　Therefore　we　get　a　system　of　representatives　of

σ〆P¢）：ifθ＝24≧2，

　　　G朋（Pe）＝｛κ十yω∈0用；0≦κ＜2ε’，0≦ア＜26’，x≡1（mod2），x，ア∈Z｝　（11）

and　if』（～ニ24十1≧1，

　　　G川（Pε）ニ｛κ十アω∈0而0≦κ＜2θ’＋1，0≦アく24，κ≡1（mod2），κ，ツ∈Z｝．（12）

Whenθ＝1，x…1（mod2）by（6）becauseη2is　even．Since　the　converse　is　clear，number

of　solution　in　O用of　congruenceξ2≡1（mod　P）is　only　one（mod　P）and　it　is

　　　x十アω，x≡1（mo（12），

For　if　x≡1（mod2），xノ≡…1（mod2），ア，yノ∈Z，

　　　　（x十アω）一（xノ十アノω）ニ（x－xノ）十（アーア’）ω∈Z・2十Z・ω＝P，

　　i。e．κ十アω≡≡xノ十ンノω（mod　P）．

　　Whenθ＝2，x≡1（mod2）by（7）because解is　even．Since　the　converse　is　clear，

number　of　solutions　in　O切of　congruenceξ2≡1（mod．P2）is　two（mod　P2）and　they　are

　　　　渥十アω，κ≡1（mod2）．
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For if x~~1 (mod 2), x/=1 (mod 2), y:=y! (mod 2) 

(x+ y(o)-(x!+ y/(~')=(x-x/)+(y- y/)(~' ~E Z.2+Z.2co=P2 

i.e. x+y(D=xl+y/a' (mod P2), 
but if x~~1 (mod 2), x/=1 (mod 2), y~y/ (mod 2), 

(x + yo') - (x! + y/co) = (x-x/) + ( y - y/)co ~E Z . 2+ Z . 2Q, = P 2 

i.e. x+y~x!+y/co (mod P2). 
When e=3, xz+my2~~1 (mod 2) by (9), therefore x=1 (mod 2). Then if we put 
x=2x!+1, x/ ~ Z in (9), using m=4m/+2, m/eZ, we get 2y2=0 (mod 22). Therefore 
y2:~0 (mod 2); namely y~~0 (mod 2). Therefore x= d: I (mod 22), y=0 (mod 2). Since 
the converse is clear, number of solutions of congruence ~2=1 (mod P3) is two and 
they are 

x+ya', x~~~1 (mod 22), y=0 (mod 2). 
When e=4, similarly as above we get x=1 (mod 2), y~~l (mod 2). Therefore x~~ 

~1 (mod 22), y=0, 2 (mod 22). Since the converse is clear, number of solutions in O~ 

of congruence ~2~1 (mod P4) is four and they are 

x+yQ,, x:~~1 (mod 22), y!~0, 2 (mod 22), 

When e=2e/+1, e/~2, x=1 (mod 2) by (9), therefore y=0 (mod 2"-1) by (10), 
therefore 

x~~1, 3, 5, ..., 2"+1_1 (mod 2"+1), 

y=0, 2"-1 (mod 2'O. 
For the convenience of putting y into (9) Iet us consider y to modulus 2"+1. Then we get 

y=0, 2"-1, 2", 3.2"-1 (mod 2"+1). 
But in any case my2~~~O (mod 2"+1). For if y=2"~1 (mod 2"+1), then for some rational 
integers m/, yl 

my2= (4m/+2)(2"+1 y/+2"-1)2 =2"+1 . 2"-2(2m/+ 1)(4 y/+ 1)2= O (mod 2"+1), 

and if y~~3'2"~1 (mod 2"+1), then for some rational integers m/, yl 

my2 = (4m/ +2)(2"+1 y/+3 . 2"-1)'- =2"+1 . 2"-2(2m!+ 1)(4 y/+ 3)2 ~=0 (mod 2"+1) 

and if y O 2 the conclusron rs clear. Therefore if we put 

x~2k-1 (mod 2"+1) 1~k~2" 
into (9) we get 

k(k- 1)=0 (mod 2"-1). 

If k is even, then k=0 (mod 2"-1), 1~k~2", then k=2e'-1, 2", then x=-1+2", - l 
+2"+1 (=_1) (mod 2"+1). If k is odd, then k~;1 (mod 2"-1), 1~k~2", then k=1, 
1+2"-], then x=1, 1+2" (mod 2"+1). So we get x=~1, ~1+2" (mod 2"+1), y=0, 
2"-1 (mod 2'~. Since the converse is clear, number of solutions in O~ of congruence 

~2=1 (mod P'), e=2d+1, d~2 is eight and they are 
x+y(D, x=~1, ~1+2" (mod 2"+1), y=0, 2"-1 (mod 2'~. 

When e=2e/ d~3, x= I (mod 2) by (7), therefore y=0 (mod 2"-1) by (8) therefore 
x=1, 3, 5, ..., 2"-1 (mod 2'~, 

y=0, 2"-1 (mod 2'O. 
But in both cases, my2~~O (mod 2'~. For if y~~2"~1 (mod 2eo, then for some rational 
integers m/, yl 

my2=(4m/+2)(2e'y!+2e'-1)2~2 2･ 1(2m +1)(2y!+1) O (mod 2e~ 
and if y~iO (mod 2'~, the conclusion is clear. Therefore if we put 

x~2k-1 (mod 2'O 1~k~2"-1 
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into (7), we get 

k(k-1)~~0 (mod 2e'-2). 

If k is even, then k~~0 (mod 2"-2), 1~k~2"-1, then k=2"-2, 2e'-1, then x~-1+2"-1 

-1+2" (~~-1) (mod 2e~. If k is odd then k=1 (mod 2"-2), 1~k~2"-1, then k=1, 
1+2"-2, then xi~1, 1+2"-1 (mod 2'O. So we get x=~1, :!:1+2"-1 (mod 2'O, y=0, 

2"-1 (mod 2･O. . Since the converse is clear, number of solutions in O~ of congruence 
~2~1 (mod Pe) e=2e! d~3, is eight and they are 

x+yQ,, x=d:1 +1+2' I (mod2) y O 2･ I (mod2~ 
Corollary 5. 

~~(P') = 

{1} 

{1, 1+(o} 

{~1} 
{~1, ~1+2co} 
{~1, :!:1+2･', ~1+2･'-1a', ~1+2･'+2･'-1Q,} 

; e=1 
; e=2 
; e=3 
; e=4 
; e=2d+1, el~2 

{~1, d:1+2･'-1, ~1+2･'-1a' +1+2･ 1+2･ Ico} e 2e/ d>3 
Proposition lO. When m~~3 (mod 4), Iet us put O~.2=P2. Then 

1; e=1, 

N~(P )= 2; e=2, 3, 
4; e=4, 
8; e~5. 

Proof. Using canonical basis we get 

P=Z.2+Z.(1+co), 

P'= Z.2･'+Z.2･'a' ; e=2d 
Z.2･'+1+Z.2･'(1+a,) ; e=2e/+ 1, 

in the same way as the proof in the proposition 9. Therefore a necessary and sufficient 

condition that e=x+ya', x, yeZ should be a solution in O~ of congruence ~2~~ 1 
(modP') is if e=1, 

x2-2xy+my2=1 (mod 2), (13) and if e=2d~2, 

x2+my2~~1 (mod 2･O, ' {
 

( 1 4) 

2xy=0 (mod 2･~, (15) 

and if e=2d+1;~3, 

x2-2xy+my2~~ I (mod 2･'+1), {
 

(16) 

2xy{~0 (mod 2･O- (17) 
Now a complete system of representatives of residue classes of O~ to modulus P' 

is if e=2d~2, 

{x+yco~O~; O~x<2･', O~y<2･', x, ye:Z}, 
and if e=2e/+1~l, 

{x+ya,eO~; O~x<2･'+1, O~y<2･', x, ye:Z} 
and a necessary and sufficient condition that elements x+y(,, in the above set should be 

divided by P is x~~y (mod 2) in both cases, since x+yco=x-y+y(1+a,). Therefore 
we get a system of representatives of G~(P'), if e=2d~2, 

~~(p.)={x+ycoeEO~; O~x<2･', O~y<2･', x~y (mod 2), x, yeZ} (18) 
and if e=2d+1~l, 

~;~(p ) {x+ya'eO~; O~x<2･'+1, O~y<2･', x~y (mod 2), x, y~Z}･ (19) 
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When e=1, x2+y2~~1 (mod 2) by (13), therefore x=0 (mod 2), y~51 (mod 2) or x 
~~ I (mod 2), y=0 (mod 2). But both should be contained in the same residue class of 

O~ (mod P), because if x~~O (mod 2), y=1 (mod 2) and x/~~1 (mod 2), y/=0 (mod 2), 
(x+ yco)- (x/+ y/co)= {(x-x/)_( y= y/)} + ( y- y/)(1 +a') e Z . 2+Z . (1 +a')=P 

i.e. x+y(0=xl+y/o' (mod P). 
Therefore number of solution in Om of congruence ~2~l (mod P) is only one (mod P) 

and it is 

x+ya', x~y (mod 2). 
When e=2, x2+y2=1 (mod 2) by (14), therefore x=0 (mod 2), y=1 (mod 2) or x 
:~1 (mod 2), y~~0 (mod 2). But in this case x+y(o, x~0 (mod 2), y~~1 (mod 2) and 
x/+y/(~', x/~;1 (mod 2), y/~0 (mod 2) belong to two distinct residue classes of O~ to 

modulus P2, because 
(x+ ya')- (x/ + y/co) =(x-x/)+( y- yl)Q, ~l~ Z ' 2+ z. 2a' = P2 

i.e, x+ya'~xl+y!a' (mod P2). 
Therefore number of solutions in O~ of congruence ~ 2 = I (mod P2) is two and they are 

x+y(o, fx~~O (mod 2) fx=1 (mod 2) 
ly~1 (mod 2), Iy~~O (mod 2). 

When e=3 we get x~~0 (mod 2), y~~1 (mod 2) or x=1 (mod 2) y=0 (m04 2) in 
the same way as the case e=1, 2 in this proposition. If x:=0 (mod 2), y:~1 (niod 2), 

for some rational integers x/, yl 

[left-hand side of (16)]=(2x/)2_2.2x!.(2y/+1)+m(2y/+1)2~~m (mod 4), 
then m~:1 (mod 4). This is a contradiction. So x~1 (mod 2), therefore x~~:!:1 (mod 

22), y=0 (mod 2). Since the converse is clear number of solutions in O~ of congruence 

~2~;1 (mod P3) is two and they are 
x+y(2', x~i~1 (mod 22), y~~0 (mod 2). 
When e=4, we get x=1 (mod 2), y~~0 (mod 2) in the same way as the case e=3 

in this proposition. Therefore x~~d:1 (mod 22), y=0, 2 (mod 22). Since the converse is 

clear, number of solutions in O~ of congruence ~ 2~~~1 (mod P4) is four and they are 

x+y(o, x=~1 (mod 22), y=0, 2 (mod 22). 
When e=2e/+1, d~2, we get x~~l (mod 2), )=0 (mod 2) in the same way as the 

case e=3 in this proposition. Therefore 

{x~1, 3, 5, ..., 2"+1_1 (mod 2"+1) 

y=0, 2, 4, ... , 2"-2 (mod 2'~, 

then let us put using some rational integer x!yl 

x=2"+1x/+2k-1, 1~k~2", {
 

, I ~ I ~2e'-1. y=2e'y/+21-2 _ 
Then we get out of (16) and (17) 

(16y 'k(k- l)-(2k- 1)(1 - 1)+m(/ - 1)2~~0 (mod 2"-1) {
 

(17 y (mod 2"-2) (2k-1)(1-1)~~O 
therefore by (17y l~~~1 (mod 2"-2), 1~l~2"-1, then l=1, 2"-2+1, then y~~0, 2"-l 
(mod 2'~. When l=1, then by (16y k(k-1)~~O (mod 2"-1). Therefore if k is even, 
then k~~0 (mod 2"-1), l~k~~2", then k=2"-1, 2", then x~~-1+2", -1+2"+1 (=_1) 
(mod 2"+1). If k is odd, then k~~1 (mod 2"-1), 1~k~2", then k=1, 1+2"-1, then x 
~~1, 1+2" (mod 2"+1). Therefore if l=1; namely y~0 (mod 2'O, then x~i~1, d:1+2" 

(mod 2"+1). 
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Next let us consider the case l=2"-2+1. By (16y we obtain 
k(k- 1)+2e'-2~~O (mod 2e'-1). 

Therefore 

fk(k-1)~~0 (mod 2e'-2) 

k(k- 1) 
2"_2 +1~~0 (mod 2), 

where k(k-1) is odd. Now if k is even, then k=0 (mod 2e'-2) and k .(k-1) is 

odd therefore k is also odd. If we dendte 

' 2e'-2 2'~- 2 =2k/+ 1 

for some rational integer k/ we obtain k=2e'-1k/+2e'-2, 1~k~2e', then k=::2"-2, 2e'-2 

+2e'-1, then x~~-1+2e'-1, _ I +2e'-1+2e' (mod 2e'+1). If k is odd, then k=1 (mod 2e'-2 

and k. k-1 k-1 2e'-2 is odd, therefore is also odd. If we denote 
2e'-2 

k- 1 
2e'-2 =2k/+ 1 

for some rational integer k, we obtain k=1+2e'-2+2"-1k/, 1~k~2", then k=1+2e'-2 
1+2e'-2+2"-1, then x= 1+2e'-1, 1+2"-1+2e' (mod 2e'+1). Therefore if l=2e'-2+1; 
namely y~:2e'-1 (mod 2eo, then x~~~1+2e'-1, ~1+2"-1+2e' (mod 2e'+1). Since the 
converse is clear, number of solutions in Om of congruence ~ 2~~1 (mod Pe) where e= 

2d+1, d~2 is eight and they are 

x+ya', {x=d:1, ~ 1+2e' (mod 2e'+1) fx=~1+2e'-1, ~1+2e'-1+2e' (mod 2e'+1) 
y~~0 (mod 2'O , Iy~~2e'-1 (mod 2eo . 

When e=2d e!~3, we get x=1 (mod 2), y=0 (mod 2) in the same way as the 
case e=3 in this proposition. Therefore 

{x=1, 3, 5, ..., 2e'_1 (mod 2eo, 

y=0, 2, 4, ... , 2e'_2 (mod 2eo, 

then let us put using some rational integer x/, yl 

x=2e'x!+2k-1, 1~k~2e'-l {
 
y=2ey/+21-2, 1~l~2e'-1. 

Then we get out of (14) and (15) 

k(k-1)+m(1- 1)2~~0 (mod 2"-2) {
 

(14 y 

(2k- 1)(/ - 1)~~0 (mod 2e'-2), (1 5 y 

therefore by (15y, l=1 (mod 2e'-2), 1~l~2"-1, then l=1, 1+2"-2, then y=0, 2e'-l 
(mod 2eo. 

Now in both cases we obtain k(k-1)=0 (mod 2e'-2) by (14y, therefore if k is even, 

then k~~0 (mod 2e'-2), 1~k~2e'-1, then k=2e'-2, 2e'-1, then x~~-1+2e'-1, _1+2e' 
(~~-1) (mod 2'~. If k is odd, then k~~1 (mod 2e'-1), 1~k~2e'-1, then k=1, 1+2e'-2 
then x=1, 1+2e'-1 (mod 2eo. Therefore we obtain x~~:1:1, :!:1+2e'-1 (mod 2eo. Since 

the converse is clear, number of solutions in Om of congruence ~2~1 (mod Pe), e:=2d 

d~3 is eight and they are 

x+ya', x=~1, ~ I +2"-1 (mod 2eo, y=0, 2"-1 (mod 2e'-1). 
This completes the proof. 
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Corollary 6. 

~~( P') = 

Proposition 

(i) When m~=1 
integral ideal M of O~ by M=PeQfpl"p2" 

of Om such that Om'2=PQ, 
and e, f, el' e2' 

; e=1, {1} 

{1, a'} ; e=2, 
; e=3, {~1} 

{d:1, ~1+2co} ; e=4, 
{~1, ~1+2e', ~1+2e'-1+2e'-1a', ~1+2' 1+2 +2e lco} 

; e=2d+1, d~~2, 
{~1, ~1+2e'-1, ~1+2e'-1(o, ~1+2e'-1+2e'-1co} 

; e=2d d~3. 
11. 

(mod 8), Iet us denote the decomposition into products of prime ideals of 

.. P where P, Q are even prime ideals ' re., 

Q=P/:~:p, and P1' P2' "" Pr are odd prime ideals of Om 

..., er are nonnegative integers. Then 

2r ; (e,f):=(O, O), (O, 1), (1, O), (1, 1) 

N~(M)= 

where if r=0, then e~l 
(il) When m=5 (mod 8), Iet us denote the decomposition into products ofprime ideals of 

.. Pre., where P is an even prime ideal of Om integral ideal M of Om by M=Peplelp2e2 . 

such that O~･2=P and P P , Pr are odd pnme ideals of Om and e, el' e2' "" er ' 1' 2"" are nonnegative integers. Then 

2r ; e=0, 1, 

N~(M)= 2r+2; e=2, 
2r+3; e~~3, 

where if r=0, then e~l and if e=0 then r~;1. 
(lii) When m=2, 3 (mod 4), Iet us denote the decomposition into products ofprime ideals 

of integral ideal M of Om by M=:Peplelp2'2 ...pre., where P is an even prime ideal of 

O~ such that O~.2=P2 and P P ..., Pr are odd prime ideals of Om and e, el' e2""' 
' l' 2' er are nonnegative integers. Then 

2r ; e=0, 1 
N~(M)- 2'+1; e=2, 3 

~ r+2; e=4, 
2'+3; e;~5, 

where if r=0, then e>__~1 and if e=0 then r~l. 

Proof. It is clear by propositions above mentioned. 

We have obtained the following two theorems which depend upon the conclusions 
of propositions above mentioned. The first theorem, theorem 3, is clear by proposition 

1 1 . The second, theorem 4, is clear by lemma 2 and theorem 3. 

Theorem 3. P and Q are even prime ideals of Om such that 

Om'2=PQ, Q=P!:~:p; m~~1 (mod 8), 

Om'2=P ; m=5 (mod 8), 

2'+1; (e, f)=(O, 2), (1, 2), (2, l), (2, O) 

2'+2; (e,f)=(2, 2), (O, f), (e, O), (1,f), (e, l) 

where e, f~3 
2'+3; (e,f)=(2,f), (e, 2) where e, f~~3 

2'+4; e, f~3, 

~l orf~l and if e=f=0, then r~1. 
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P2 O~･2= ; m:~2, 3 (mod 4), 
and R is an odd prime ideal of O~. Th*･n a necessary and sufficient condition that I~(M) 
=1; namely N~(M)=2 is 
(i) in the case in which M does not contain any even prime ideals of O~ 

M = R' 
(li) in the case in which M contains several even prime ideals of O~ 

PR'. QR', PQR', P2, Q2. P2Q, PQ2. m=1 (mod 8), 

M= PR' ; m~5 (mod 8), PR', P2, P3 . m~~2, 3 (mod 4), 
where e is arbitrary nonnegative integer. 

Theorem 4. (i) Let M be an integral ideal of O~ which has any type explained in 

the theorem 3. Then 

-1 (mod M) ; m~2, 3 (mod 4) and M~P2 
H ~ 1+a' (mod M); m=2 (mod 4) and M=P2 
e ee;~(M) ~ a' (mod M) ; m=3 (mod 4) and M=P2 

-1 (mod M) ; other cases. 
(ii) Let M be an integral ideal of O~ which does not have any type explamed m the 

theorem 3. Then 

H ~=1 (mod M). 
~ e ~~(M) 

Remark. Except for the case m=2, 3 (mod 4) and M=P2, if N~(M)=2, then the 
element of G~(M) whose order is 2, is -1 (mod M) but in the case m~2 (mod 4) and 

M=P2, we obtained in corollary 5 N~(M)=2 and 1=-1 (mod M) and the element of 
G~(M) whose order is 2, is 1+Q, (mod M). And in the case m=3 (mod 4) and M=P2 
we obtained in corollary 7 N~(M)=2 and 1=-1 (mod M) and the element of G~(M) 
whose order is 2, is (~, (mod M). 
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